Analytic representations of Yang-Mills amplitudes
NASA Astrophysics Data System (ADS)
Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.; Feng, Bo
2016-12-01
Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space-fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Möbius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is the foundations of a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.
Analytical formula for three points sinusoidal signals amplitude estimation errors
NASA Astrophysics Data System (ADS)
Nicolae Vizireanu, Dragos; Viorica Halunga, Simona
2012-01-01
In this note, we show that the amplitude estimation of sinusoidal signals proposed in Wu and Hong [Wu, S.T., and Hong, J.L. (2010), 'Five-point Amplitude Estimation of Sinusoidal Signals: With Application to LVDT Signal Conditioning', IEEE Transactions on Instrumentation and Measurement, 59, 623-630] is a particular case of Vizireanu and Halunga [Vizireanu, D.N, and Halunga, S.V. (2011), 'Single Sine Wave Parameters Estimation Method Based on Four Equally Spaced Samples', International Journal of Electronics, 98(7), pp. 941-948]. An analytical formula for amplitude estimation errors as effects of sampling period deviation is obtained.
Full colour for loop amplitudes in Yang-Mills theory
NASA Astrophysics Data System (ADS)
Ochirov, Alexander; Page, Ben
2017-02-01
We present a general method to account for full colour dependence Yang-Mills amplitudes at loop level. The method fits most naturally into the framework of multi-loop integrand reduction and in a nutshell amounts to consistently retaining the colour structures of the unitarity cuts from which the integrand is gradually constructed. This technique has already been used in the recent calculation of the two-loop five-gluon amplitude in pure Yang-Mills theory with all positive helicities, JHEP 10 (2015) 064. In this note, we give a careful exposition of the method and discuss its connection to looplevel Kleiss-Kuijf relations. We also explore its implications for cancellation of nontrivial symmetry factors at two loops. As an example of its generality, we show how it applies to the three-loop case in supersymmetric Yang-Mills case.
Analytic Evolution of Singular Distribution Amplitudes in QCD
Radyushkin, Anatoly V.; Tandogan Kunkel, Asli
2014-03-01
We describe a method of analytic evolution of distribution amplitudes (DA) that have singularities, such as non-zero values at the end-points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, anti-symmetric at DA and then use it for evolution of the two-photon generalized distribution amplitude. Our approach has advantages over the standard method of expansion in Gegenbauer polynomials, which requires infinite number of terms in order to accurately reproduce functions in the vicinity of singular points, and over a straightforward iteration of an initial distribution with evolution kernel. The latter produces logarithmically divergent terms at each iteration, while in our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve, with only one or two iterations needed afterwards in order to get rather precise results.
Analytic Evolution of Singular Distribution Amplitudes in QCD
Tandogan Kunkel, Asli
2014-08-01
Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standard method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.
NASA Astrophysics Data System (ADS)
Maharana, Jnanadeva
2017-01-01
The properties of the high energy behavior of the scattering amplitude of massive, neutral, and spinless particles in higher dimensional field theories are investigated. The axiomatic formulation of Lehmann, Symanzik, and Zimmermann (LSZ) is adopted. The analyticity properties of the causal, the retarded, and the advanced functions associated with the four point elastic amplitudes are studied. The analog of the Lehmann-Jost-Dyson representation is obtained in higher dimensional field theories. The generalized J-L-D representation is utilized to derive the t-plane analyticity property of the amplitude. The existence of an ellipse analogous to the Lehmann ellipse is demonstrated. Thus a fixed-t dispersion relation can be written down with a finite number of subtractions due to the temperedness of the amplitudes. The domain of analyticity of scattering amplitude in s and t variables is extended by imposing unitarity constraints. A generalized version of Martin's theorem is derived to prove the existence of such a domain in D-dimensional field theories. It is shown that the amplitude can be expanded in a power series in t which converges for |" separators=" t | < R , R being s-independent. The positivity properties of absorptive amplitudes are derived to prove the t-plane analyticity of amplitude. In the extended analyticity domain dispersion relations are written with two subtractions. The bound on the total cross section is derived from LSZ axioms without any extra ad hoc assumptions.
Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase.
Yang, Yihao; Jing, Liqiao; Zheng, Bin; Hao, Ran; Yin, Wenyan; Li, Erping; Soukoulis, Costas M; Chen, Hongsheng
2016-08-01
A full-polarization arbitrary-shaped 3D metasurface cloak with preserved amplitude and phase in microwave frequencies is experimentally demonstrated. By taking the unique feature of metasurfaces, it is shown that the cloak can completely restore the polarization, amplitude, and phase of light for full polarization as if light was incident on a flat mirror. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hardware architecture for full analytical Fraunhofer computer-generated holograms
NASA Astrophysics Data System (ADS)
Pang, Zhi-Yong; Xu, Zong-Xi; Xiong, Yi; Chen, Biao; Dai, Hui-Min; Jiang, Shao-Ji; Dong, Jian-Wen
2015-09-01
Hardware architecture of parallel computation is proposed for generating Fraunhofer computer-generated holograms (CGHs). A pipeline-based integrated circuit architecture is realized by employing the modified Fraunhofer analytical formulism, which is large scale and enables all components to be concurrently operated. The architecture of the CGH contains five modules to calculate initial parameters of amplitude, amplitude compensation, phases, and phase compensation, respectively. The precalculator of amplitude is fully adopted considering the "reusable design" concept. Each complex operation type (such as square arithmetic) is reused only once by means of a multichannel selector. The implemented hardware calculates an 800×600 pixels hologram in parallel using 39,319 logic elements, 21,074 registers, and 12,651 memory bits in an Altera field-programmable gate array environment with stable operation at 50 MHz. Experimental results demonstrate that the quality of the images reconstructed from the hardware-generated hologram can be comparable to that of a software implementation. Moreover, the calculation speed is approximately 100 times faster than that of a personal computer with an Intel i5-3230M 2.6 GHz CPU for a triangular object.
Analytic Form of the Two-Loop Planar Five-Gluon All-Plus-Helicity Amplitude in QCD.
Gehrmann, T; Henn, J M; Lo Presti, N A
2016-02-12
Virtual two-loop corrections to scattering amplitudes are a key ingredient to precision physics at collider experiments. We compute the full set of planar master integrals relevant to five-point functions in massless QCD, and use these to derive an analytical expression for the two-loop five-gluon all-plus-helicity amplitude. After subtracting terms that are related to the universal infrared and ultraviolet pole structure, we obtain a remarkably simple and compact finite remainder function, consisting only of dilogarithms.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2004-01-01
The development of a practical method of accurately calculating the full scattering amplitude, without making a partial wave decomposition is continued. The method is developed in the context of electron-hydrogen scattering, and here exchange is dealt with by considering e-H scattering in the static exchange approximation. The Schroedinger equation in this approximation can be simplified to a set of coupled integro-differential equations. The equations are solved numerically for the full scattering wave function. The scattering amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can be formally simplified, and then evaluated using the numerically determined wave function. The results are essentially identical to converged partial wave results.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2004-01-01
The development of a practical method of accurately calculating the full scattering amplitude, without making a partial wave decomposition is continued. The method is developed in the context of electron-hydrogen scattering, and here exchange is dealt with by considering e-H scattering in the static exchange approximation. The Schroedinger equation in this approximation can be simplified to a set of coupled integro-differential equations. The equations are solved numerically for the full scattering wave function. The scattering amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can be formally simplified, and then evaluated using the numerically determined wave function. The results are essentially identical to converged partial wave results.
Analytic one-loop amplitudes for a Higgs boson plus four partons
Dixon, Lance J.; Sofianatos, Yorgos; /SLAC
2009-06-02
We compute the one-loop QCD amplitudes for the processes H{anti q}q{anti Q}Q and H{anti q}qgg, the latter restricted to the case of opposite-helicity gluons. Analytic expressions are presented for the color- and helicity-decomposed amplitudes. The coupling of the Higgs boson to gluons is treated by an effective interaction in the limit of large top quark mass. The Higgs field is split into a complex field {phi} and its complex conjugate {phi}{sup {dagger}}. The split is useful because amplitudes involving {phi} have different analytic structure from those involving {phi}{sup {dagger}}. We compute the cut-containing pieces of the amplitudes using generalized unitarity. The remaining rational parts are obtained by on-shell recursion. Our results for H{anti q}q{anti Q}Q agree with previous semi-numerical computations. We also show how to convert existing semi-numerical results for the production of a scalar Higgs boson into analogous results for a pseudoscalar Higgs boson.
Full analytical solution of Adapted Polarisation State Contrast Imaging.
Upadhyay, Debajyoti; Mondal, Sugata; Lacot, Eric; Orlik, Xavier
2011-12-05
We have earlier proposed a 2-channel imaging technique: Adapted Polarisation State Contrast Imaging (APSCI), which noticeably enhances the polarimetric contrast between an object and its background using fully polarised incident state adapted to the scene, such that the polarimetric responses of those regions are located as far as possible on the Poincaré sphere. We address here the full analytical and graphical analysis of the ensemble of solutions of specific incident states, by introducing 3-Distance Eigen Space and explain the underlying physical structure of APSCI and the effect of noise over the measurements.
The Analytic Structure of Scattering Amplitudes in N = 4 Super-Yang-Mills Theory
NASA Astrophysics Data System (ADS)
Litsey, Sean Christopher
We begin the dissertation in Chapter 1 with a discussion of tree-level amplitudes in Yang-. Mills theories. The DDM and BCJ decompositions of the amplitudes are described and. related to one another by the introduction of a transformation matrix. This is related to the. Kleiss-Kuijf and BCJ amplitude identities, and we conjecture a connection to the existence. of a BCJ representation via a condition on the generalized inverse of that matrix. Under. two widely-believed assumptions, this relationship is proved. Switching gears somewhat, we introduce the RSVW formulation of the amplitude, and the extension of BCJ-like features to residues of the RSVW integrand is proposed. Using the previously proven connection of BCJ representations to the generalized inverse condition, this extension is validated, including a version of gravitational double copy. The remainder of the dissertation involves an analysis of the analytic properties of loop. amplitudes in N = 4 super-Yang-Mills theory. Chapter 2 contains a review of the planar case, including an exposition of dual variables and momentum twistors, dual conformal symmetry, and their implications for the amplitude. After defining the integrand and on-shell diagrams, we explain the crucial properties that the amplitude has no poles at infinite momentum and that its leading singularities are dual-conformally-invariant cross ratios, and can therefore be normalized to unity. We define the concept of a dlog form, and show that it is a feature of the planar integrand as well. This leads to the definition of a pure integrand basis. The proceeding setup is connected to the amplituhedron formulation, and we put forward the hypothesis that the amplitude is determined by zero conditions. Chapter 3 contains the primary computations of the dissertation. This chapter treats. amplitudes in fully nonplanar N = 4 super-Yang-Mills, analyzing the conjecture that they. follow the pattern of having no poles at infinity, can be written in dlog
Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II
NASA Technical Reports Server (NTRS)
Shertzer, J.; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.
Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II
NASA Technical Reports Server (NTRS)
Shertzer, J.; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.
An analytical solution of finite-amplitude solitary kinetic Alfven waves
Wu, D.; Wang, D.; Faelthammar, C.
1995-12-01
An analytical solution of finite-amplitude solitary kinetic Alfven waves (SKAWs) in a low-{beta} ({beta}{much_lt}{ital m}{sub {ital e}}/{ital m}{sub {ital i}}{much_lt}1) plasma is presented. This solution has been compared with the solution of the Korteweg--de Vries (KdV) equation in the small-amplitude limit. It is found that the KdV soliton solution is valid only for the maximum relative density perturbation {ital N}{sub {ital m}}{lt}0.1. For the larger {ital N}{sub {ital m}}, the exact analytical solution shows that the SKAWs have a much wider structure and much stronger perturbed fields than the KdV solitons with the same {ital N}{sub {ital m}}. Moreover, the relations between the width and the amplitude of SKAWs are also considerably different from that of the KdV solitons. In addition, the possibility for applying these results to some events observed from the Freja scientific satellite is discussed. (The Freja is a Swedish--German scientific project for the investigation of ionospheric and magnetospheric plasmas, and the Freja satellite was launched on a Long-March II rocket of China on October 6, 1992.) {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Geroux, Christopher M.; Deupree, Robert G.
2015-02-10
Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.
Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope
NASA Astrophysics Data System (ADS)
Kotko, P.; Serino, M.; Stasto, A. M.
2016-08-01
One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes, if working in the light cone gauge. As shown in recent works using the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in a certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift to the Wilson line slope instead of the external momenta. While in the original BCFW procedure the boundary integrals over the complex shift vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes. The main result can thus be summarized as follows: we derive a decomposition of a helicity-fixed off-shell current into gauge invariant component given by a matrix element of a straight Wilson line plus a reminder given by a sum of products of gauge invariant and gauge dependent quantities. We give several examples realizing this relation, including the five-point next-to-MHV helicity configuration.
Liu, Lewis Z; O'Keeffe, Kevin; Lloyd, David T; Hooker, Simon M
2014-04-01
We present an analytical solution for the phase introduced by a phase-only spatial light modulator to generate far-field phase and amplitude distributions within a domain of interest. The solution is demonstrated experimentally and shown to enable excellent control of the far-field amplitude and phase.
Analytic expressions of amplitudes by the cross-ratio identity method
NASA Astrophysics Data System (ADS)
Zhou, Kang
2017-06-01
In order to obtain the analytic expression of an amplitude from a generic CHY-integrand, a new algorithm based on the so-called cross-ratio identities has been proposed recently. In this paper, we apply this new approach to a variety of theories including the non-linear sigma model, special Galileon theory, pure Yang-Mills theory, pure gravity, Born-Infeld theory, Dirac-Born-Infeld theory and its extension, Yang-Mills-scalar theory, and Einstein-Maxwell and Einstein-Yang-Mills theory. CHY-integrands of these theories which contain higher-order poles can be calculated conveniently by using the cross-ratio identity method, and all results above have been verified numerically.
The prognostic value of amplitude-integrated EEG in full-term neonates with seizures.
Zhang, Dandan; Ding, Haiyan; Liu, Lili; Hou, Xinlin; Sun, Guoyu; Li, Lei; Liu, Yunzhe; Zhou, Congle; Gu, Ruolei; Luo, Yuejia
2013-01-01
Neonatal seizures pose a high risk for adverse outcome in survived infants. While the prognostic value of amplitude-integrated electroencephalogram (aEEG) is well established in neonates with encephalopathy and asphyxia, neonatal seizure studies focusing on the direct correlation between early aEEG measurement and subsequent neurologic outcome are scarce. In this study, the prognostic value of aEEG features was systematically analyzed in 143 full-term neonates to identify prognostic indicators of neurodevelopmental outcome. Neonatal aEEG features of background pattern, cyclicity, and seizure activity, as well as the etiology of neonatal seizures, were significantly associated with neurodevelopmental outcome at one year of age. aEEG background pattern was highly associated with neurologic outcomes (χ² = 116.9), followed by aEEG cyclicity (χ² = 87.2) and seizure etiology (χ² = 79.3). Multiple linear regression showed that the four predictors explained 71.2% of the variation in neurological outcome, with standardized β coefficients of 0.44, 0.24, 0.22, and 0.14 for the predictors of aEEG background pattern, cyclicity, etiology, and aEEG seizure activity, respectively. This clinically applicable scoring system based on etiology and three aEEG indices would allow pediatricians to assess the risk for neurodevelopmental impairment and facilitate an early intervention in newborns developing seizures.
The Prognostic Value of Amplitude-Integrated EEG in Full-Term Neonates with Seizures
Liu, Lili; Hou, Xinlin; Sun, Guoyu; Li, Lei; Liu, Yunzhe; Zhou, Congle; Gu, Ruolei; Luo, Yuejia
2013-01-01
Neonatal seizures pose a high risk for adverse outcome in survived infants. While the prognostic value of amplitude-integrated electroencephalogram (aEEG) is well established in neonates with encephalopathy and asphyxia, neonatal seizure studies focusing on the direct correlation between early aEEG measurement and subsequent neurologic outcome are scarce. In this study, the prognostic value of aEEG features was systematically analyzed in 143 full-term neonates to identify prognostic indicators of neurodevelopmental outcome. Neonatal aEEG features of background pattern, cyclicity, and seizure activity, as well as the etiology of neonatal seizures, were significantly associated with neurodevelopmental outcome at one year of age. aEEG background pattern was highly associated with neurologic outcomes (χ2 = 116.9), followed by aEEG cyclicity (χ2 = 87.2) and seizure etiology (χ2 = 79.3). Multiple linear regression showed that the four predictors explained 71.2% of the variation in neurological outcome, with standardized β coefficients of 0.44, 0.24, 0.22, and 0.14 for the predictors of aEEG background pattern, cyclicity, etiology, and aEEG seizure activity, respectively. This clinically applicable scoring system based on etiology and three aEEG indices would allow pediatricians to assess the risk for neurodevelopmental impairment and facilitate an early intervention in newborns developing seizures. PMID:24236076
NASA Astrophysics Data System (ADS)
Badger, Simon; Biedermann, Benedikt; Hackl, Lucas; Plefka, Jan; Schuster, Theodor; Uwer, Peter
2013-02-01
Recent advances in our understanding of tree-level QCD amplitudes in the massless limit exploiting an effective (maximal) supersymmetry have led to the complete analytic construction of tree amplitudes with up to four external quark-antiquark pairs. In this work we compare the numerical efficiency of evaluating these closed analytic formulas to a numerically efficient implementation of the Berends-Giele recursion. We compare calculation times for color-ordered tree amplitudes with parton numbers ranging from 4 to 25 with no, one, two, and three external quark lines. We find that the analytic results are generally faster in the case of maximally helicity-violating and next-to-maximally helicity-violating amplitudes. Starting with the next-to-next-to-maximally helicity-violating amplitudes the Berends-Giele recursion becomes more efficient. In addition to the runtime we also compare the numerical accuracy. The analytic formulas are on average more accurate than the off-shell recursion relations, though both are well-suited for complicated phenomenological applications. In both cases we observe a reduction in the average accuracy when phase-space configurations close to singular regions are evaluated. In summary, our findings show that for up to nine gluons the closed analytic formulas perform best.
An analytical model for a full wind turbine wake
NASA Astrophysics Data System (ADS)
Keane, Aidan; Olmos Aguirre, Pablo E.; Ferchland, Hannah; Clive, Peter; Gallacher, Daniel
2016-09-01
An analytical wind turbine wake model is proposed to predict the wind velocity distribution for all distances downwind of a wind turbine, including the near-wake. This wake model augments the Jensen model and subsequent derivations thereof, and is a direct generalization of that recently proposed by Bastankhah and Porté-Agel. The model is derived by applying conservation of mass and momentum in the context of actuator disk theory, and assuming a distribution of the double-Gaussian type for the velocity deficit in the wake. The physical solutions are obtained by appropriate mixing of the waked- and freestream velocity deficit solutions, reflecting the fact that only a portion of the fluid particles passing through the rotor disk will interact with a blade.
Ohshima, S. Kobayashi, S.; Yamamoto, S.; Nagasaki, K.; Mizuuchi, T.; Kado, S.; Okada, H.; Minami, T.; Shi, N.; Konoshima, S.; Sano, F.; Lee, H. Y.; Zang, L.; Kenmochi, N.; Kasajima, K.; Ohtani, Y.; Nagae, Y.
2014-11-15
A fluctuation analysis technique using analytic signals is proposed. Analytic signals are suitable to characterize a single mode with time-dependent amplitude and frequency, such as an MHD mode observed in fusion plasmas since the technique can evaluate amplitude and frequency at a specific moment without limitations of temporal and frequency resolutions, which is problematic in Fourier-based analyses. Moreover, a concept of instantaneous phase difference is newly introduced, and error of the evaluated phase difference and its error reduction techniques using conditional/ensemble averaging are discussed. These techniques are applied to experimental data of the beam emission spectroscopic measurement in the Heliotron J device, which demonstrates that the technique can describe nonlinear evolution of MHD instabilities. This technique is widely applicable to other diagnostics having necessity to evaluate phase difference.
Analytic Result for the Two-loop Six-point NMHV Amplitude in N = 4 Super Yang-Mills Theory
Dixon, Lance J.; Drummond, James M.; Henn, Johannes M.; /Humboldt U., Berlin /Princeton, Inst. Advanced Study
2012-02-15
We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parameters uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral {Omega}{sup (2)}, also plays a key role in a new representation of the remainder function R{sub 6}{sup (2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) x (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) x (parity even) part. The second non-polylogarithmic function, the loop integral {tilde {Omega}}{sup (2)}, characterizes this sector. Both {Omega}{sup (2)} and {tilde {Omega}}{sup (2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.
Geroux, Chris M.; Deupree, Robert G.
2013-07-10
We have developed a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and radial pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light curves. Previous multi-dimensional calculations were prevented from reaching full amplitude because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We have removed this difficulty by defining our radial coordinate flow algorithm to require that the mass in a spherical shell remain constant for every time step throughout the pulsation cycle. We have used our new code to perform two-dimensional (2D) simulations of the interaction of radial pulsation and convection. We have made comparisons between light curves from our 2D convective simulations with observed light curves and find that our 2D simulated light curves are better able to match the observed light curve shape near the red edge of the RR Lyrae instability strip than light curves from previous one-dimensional time-dependent convective models.
Mironova, Lidia A; Mironov, Sergej L
2008-01-15
Local Ca(2+) signaling controls many neuronal functions, which is often achieved through spatial localization of Ca(2+) signals. These nanodomains are formed due to combined effects of Ca(2+) diffusion and binding to the cytoplasmic buffers. In this article we derived simple analytical expressions to describe Ca(2+) diffusion in the presence of mobile and immobile buffers. A nonlinear character of the reaction-diffusion problem was circumvented by introducing a logarithmic approximation of the concentration term. The obtained formulas reproduce free Ca(2+) levels up to 50 microM and their changes in the millisecond range. Derived equations can be useful to predict spatiotemporal profiles of large-amplitude [Ca(2+)] transients, which participate in various physiological processes.
Mironova, Lidia A.; Mironov, Sergej L.
2008-01-01
Local Ca2+ signaling controls many neuronal functions, which is often achieved through spatial localization of Ca2+ signals. These nanodomains are formed due to combined effects of Ca2+ diffusion and binding to the cytoplasmic buffers. In this article we derived simple analytical expressions to describe Ca2+ diffusion in the presence of mobile and immobile buffers. A nonlinear character of the reaction-diffusion problem was circumvented by introducing a logarithmic approximation of the concentration term. The obtained formulas reproduce free Ca2+ levels up to 50 μM and their changes in the millisecond range. Derived equations can be useful to predict spatiotemporal profiles of large-amplitude [Ca2+] transients, which participate in various physiological processes. PMID:17872951
Bounding the Higgs width at the LHC using full analytic results for $$gg → e^- e^+ \\mu^- \\mu^+$$
Campbell, John M.; Ellis, R. Keith; Williams, Ciaran
2014-04-09
We revisit the hadronic production of the four-lepton final state, e– e+ μ– μ+, through the fusion of initial state gluons. This process is mediated by loops of quarks and we provide first full analytic results for helicity amplitudes that account for both the effects of the quark mass in the loop and off-shell vector bosons. The analytic results have been implemented in the Monte Carlo program MCFM and are both fast, and numerically stable in the region of low Z transverse momentum. We use our results to study the interference between Higgs-mediated and continuum production of four-lepton final states,more » which is necessary in order to obtain accurate theoretical predictions outside the Higgs resonance region. We have confirmed and extended a recent analysis of Caola and Melnikov that proposes to use a measurement of the off-shell region to constrain the total width of the Higgs boson. Using a simple cut-and-count method, existing LHC data should bound the width at the level of 25-45 times the Standard Model expectation. We investigate the power of using a matrix element method to construct a kinematic discriminant to sharpen the constraint. Furthermore, in our analysis the bound on the Higgs width is improved by a factor of about 1.6 using a simple cut on the MEM discriminant, compared to an invariant mass cut μ4l > 300 GeV.« less
van Rooij, Linda G M; de Vries, Linda S; van Huffelen, Alexander C; Toet, Mona C
2010-05-01
Amplitude integrated electroencephalography (aEEG) is a valuable tool for evaluating neonatal encephalopathy and identifying electrographic seizures. To compare seizure activity and background pattern (BGP) between one-channel and two-channel aEEG recordings in full-term neonates. The two-channel aEEG recordings (F3-P3; F4-P4) of 34 neonates with seizures were compared with single-channel recordings (P3-P4). All 34 infants with unilateral (n=14), diffuse (n=18) or without (n=2) brain injury had seizure patterns on one-channel and two-channel recordings, with 18% more seizure patterns detected with two-channel recording. In 79% of infants with unilateral injury more seizures were noted on the ipsilateral side compared to the contralateral side. In 39% of the infants with diffuse brain damage more seizures were found with two-channel recordings. A sensitivity of 65% was found when using the automatic seizure detection algorithm. In 4/14 (29%) infants with unilateral injury a more severely affected BGP was seen on the ipsilateral side compared to the BGP on one-channel recording. In infants with diffuse injury differences in BGP pattern were seen in 6-17% of the infants depending on the system used for scoring. Although there were no major differences found between seizure detection with one-channel or two-channel aEEG, in a subgroup of infants with a predominantly unilateral brain lesion, two-channel recording did provide additional information with identification of more seizure patterns on the affected side, sometimes also associated with a difference in BGP. To improve early diagnosis of unilateral lesions and improve seizure detection in these infants, routine use of two-channel recordings is recommended.
Integrated Analytic and Linearized Inverse Kinematics for Precise Full Body Interactions
NASA Astrophysics Data System (ADS)
Boulic, Ronan; Raunhardt, Daniel
Despite the large success of games grounded on movement-based interactions the current state of full body motion capture technologies still prevents the exploitation of precise interactions with complex environments. This paper focuses on ensuring a precise spatial correspondence between the user and the avatar. We build upon our past effort in human postural control with a Prioritized Inverse Kinematics framework. One of its key advantage is to ease the dynamic combination of postural and collision avoidance constraints. However its reliance on a linearized approximation of the problem makes it vulnerable to the well-known full extension singularity of the limbs. In such context the tracking performance is reduced and/or less believable intermediate postural solutions are produced. We address this issue by introducing a new type of analytic constraint that smoothly integrates within the prioritized Inverse Kinematics framework. The paper first recalls the background of full body 3D interactions and the advantages and drawbacks of the linearized IK solution. Then the Flexion-EXTension constraint (FLEXT in short) is introduced for the partial position control of limb-like articulated structures. Comparative results illustrate the interest of this new type of integrated analytical and linearized IK control.
Bounding the Higgs width at the LHC using full analytic results for $gg → e^- e^+ \\mu^- \\mu^+$
Campbell, John M.; Ellis, R. Keith; Williams, Ciaran
2014-04-09
We revisit the hadronic production of the four-lepton final state, e^{–} e^{+} μ^{–} μ^{+}, through the fusion of initial state gluons. This process is mediated by loops of quarks and we provide first full analytic results for helicity amplitudes that account for both the effects of the quark mass in the loop and off-shell vector bosons. The analytic results have been implemented in the Monte Carlo program MCFM and are both fast, and numerically stable in the region of low Z transverse momentum. We use our results to study the interference between Higgs-mediated and continuum production of four-lepton final states, which is necessary in order to obtain accurate theoretical predictions outside the Higgs resonance region. We have confirmed and extended a recent analysis of Caola and Melnikov that proposes to use a measurement of the off-shell region to constrain the total width of the Higgs boson. Using a simple cut-and-count method, existing LHC data should bound the width at the level of 25-45 times the Standard Model expectation. We investigate the power of using a matrix element method to construct a kinematic discriminant to sharpen the constraint. Furthermore, in our analysis the bound on the Higgs width is improved by a factor of about 1.6 using a simple cut on the MEM discriminant, compared to an invariant mass cut μ_{4l }> 300 GeV.
NASA Astrophysics Data System (ADS)
Thomas, Robert E.; Opalka, Daniel; Overy, Catherine; Knowles, Peter J.; Alavi, Ali; Booth, George H.
2015-08-01
Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, "replica" ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation.
Thomas, Robert E.; Overy, Catherine; Opalka, Daniel; Alavi, Ali; Knowles, Peter J.; Booth, George H.
2015-08-07
Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation.
A Big Data Analytics Pipeline for the Analysis of TESS Full Frame Images
NASA Astrophysics Data System (ADS)
Wampler-Doty, Matthew; Pierce Doty, John
2015-12-01
We present a novel method for producing a catalogue of extra-solar planets and transients using the full frame image data from TESS. Our method involves (1) creating a fast Monte Carlo simulation of the TESS science instruments, (2) using the simulation to create a labeled dataset consisting of exoplanets with various orbital durations as well as transients (such as tidal disruption events), (3) using supervised machine learning to find optimal matched filters, Support Vector Machines (SVMs) and statistical classifiers (i.e. naïve Bayes and Markov Random Fields) to detect astronomical objects of interest and (4) “Big Data” analysis to produce a catalogue based on the TESS data. We will apply the resulting methods to all stars in the full frame images. We hope that by providing libraries that conform to industry standards of Free Open Source Software we may invite researchers from the astronomical community as well as the wider data-analytics community to contribute to our effort.
Full-dimensional (15-dimensional) ab initio analytical potential energy surface for the H7+ cluster
NASA Astrophysics Data System (ADS)
Barragán, Patricia; Prosmiti, Rita; Wang, Yimin; Bowman, Joel M.
2012-06-01
Full-dimensional ab initio potential energy surface is constructed for the H_7^+ cluster. The surface is a fit to roughly 160 000 interaction energies obtained with second-order MöllerPlesset perturbation theory and the cc-pVQZ basis set, using the invariant polynomial method [B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009), 10.1080/01442350903234923]. We employ permutationally invariant basis functions in Morse-type variables for all the internuclear distances to incorporate permutational symmetry with respect to interchange of H atoms into the representation of the surface. We describe how different configurations are selected in order to create the database of the interaction energies for the linear least squares fitting procedure. The root-mean-square error of the fit is 170 cm-1 for the entire data set. The surface dissociates correctly to the H_5^+ + H2 fragments. A detailed analysis of its topology, as well as comparison with additional ab initio calculations, including harmonic frequencies, verify the quality and accuracy of the parameterized potential. This is the first attempt to present an analytical representation of the 15-dimensional surface of the H_7^+ cluster for carrying out dynamics studies.
NASA Technical Reports Server (NTRS)
Dubois, George B; Ocvirk, Fred W
1953-01-01
An approximate analytical solution including the effect of end leakage from the oil film of short plain bearings is presented because of the importance of endwise flow in sleeve bearings of the short lengths commonly used. The analytical approximation is supported by experimental data, resulting in charts which facilitate analysis of short plain bearings. The analytical approximation includes the endwise flow and that part of the circumferential flow which is related to surface velocity and film thickness but neglects the effect of film pressure on the circumferential flow. In practical use, this approximation applies best to bearings having a length-diameter ratio up to 1, and the effects of elastic deflection, inlet oil pressure, and changes of clearance with temperature minimize the relative importance of the neglected term. The analytical approximation was found to be an extension of a little-known pressure-distribution function originally proposed by Michell and Cardullo.
EXTENSION OF THE 1D FOUR-GROUP ANALYTIC NODAL METHOD TO FULL MULTIGROUP
B. D. Ganapol; D. W. Nigg
2008-09-01
In the mid 80’s, a four-group/two-region, entirely analytical 1D nodal benchmark appeared. It was readily acknowledged that this special case was as far as one could go in terms of group number and still achieve an analytical solution. In this work, we show that by decomposing the solution to the multigroup diffusion equation into homogeneous and particular solutions, extension to any number of groups is a relatively straightforward exercise using the mathematics of linear algebra.
Contreras, Bret; Vigotsky, Andrew D; Schoenfeld, Brad J; Beardsley, Chris; Cronin, John
2016-02-01
Front, full, and parallel squats are some of the most popular squat variations. The purpose of this investigation was to compare mean and peak electromyography (EMG) amplitude of the upper gluteus maximus, lower gluteus maximus, biceps femoris, and vastus lateralis of front, full, and parallel squats. Thirteen healthy women (age = 28.9 ± 5.1 y; height = 164 ± 6.3 cm; body mass = 58.2 ± 6.4 kg) performed 10 repetitions of their estimated 10-repetition maximum of each respective variation. There were no statistical (P ≤ .05) differences between full, front, and parallel squats in any of the tested muscles. Given these findings, it can be concluded that the front, full, or parallel squat can be performed for similar EMG amplitudes. However, given the results of previous research, it is recommended that individuals use a full range of motion when squatting, assuming full range can be safely achieved, to promote more favorable training adaptations. Furthermore, despite requiring lighter loads, the front squat may provide a similar training stimulus to the back squat.
NASA Astrophysics Data System (ADS)
Helbing, D.; Moussaid, M.
2009-06-01
Driven many-particle systems with nonlinear interactions are known to often display multi-stability, i.e. depending on the respective initial condition, there may be different outcomes. Here, we study this phenomenon for traffic models, some of which show stable and linearly unstable density regimes, but areas of metastability in between. In these areas, perturbations larger than a certain critical amplitude will cause a lasting breakdown of traffic, while smaller ones will fade away. While there are common methods to study linear instability, non-linear instability had to be studied numerically in the past. Here, we present an analytical study for the optimal velocity model with a stepwise specification of the optimal velocity function and a simple kind of perturbation. Despite various approximations, the analytical results are shown to reproduce numerical results very well.
Full analytical solution of the bloch equation when using a hyperbolic-secant driving function.
Zhang, Jinjin; Garwood, Michael; Park, Jang-Yeon
2017-04-01
The frequency-swept pulse known as the hyperbolic-secant (HS) pulse is popular in NMR for achieving adiabatic spin inversion. The HS pulse has also shown utility for achieving excitation and refocusing in gradient-echo and spin-echo sequences, including new ultrashort echo-time imaging (e.g., Sweep Imaging with Fourier Transform, SWIFT) and B1 mapping techniques. To facilitate the analysis of these techniques, the complete theoretical solution of the Bloch equation, as driven by the HS pulse, was derived for an arbitrary state of initial magnetization. The solution of the Bloch-Riccati equation for transverse and longitudinal magnetization for an arbitrary initial state was derived analytically in terms of HS pulse parameters. The analytical solution was compared with the solutions using both the Runge-Kutta method and the small-tip approximation. The analytical solution was demonstrated on different initial states at different frequency offsets with/without a combination of HS pulses. Evolution of the transverse magnetization was influenced significantly by the choice of HS pulse parameters. The deviation of the magnitude of the transverse magnetization, as obtained by comparing the small-tip approximation to the analytical solution, was < 5% for flip angles < 30 °, but > 10% for the flip angles > 40 °. The derived analytical solution provides insights into the influence of HS pulse parameters on the magnetization evolution. Magn Reson Med 77:1630-1638, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Hafez, M. G.; Talukder, M. R.; Ali, M. Hossain
2016-01-01
The theoretical and numerical studies have been investigated on the nonlinear propagation of electrostatic ion-acoustic waves (IAWs) in an un-magnetized Thomas-Fermi plasma system consisting of electron, positrons, and positive ions for both of ultra-relativistic and non-relativistic degenerate electrons. Korteweg-de Vries (K-dV) equation is derived from the model equations by using the well-known reductive perturbation method. This equation is solved by employing the generalized Riccati equation mapping method. The hyperbolic functions type solutions to the K-dV equation are only considered for describing the effect of plasma parameters on the propagation of electrostatic IAWs for both of ultra-relativistic and non-relativistic degenerate electrons. The obtained results may be helpful in proper understanding the features of small but finite amplitude localized IAWs in degenerate plasmas and provide the mathematical foundation in plasma physics.
Analytical model of flame spread in full-scale room/corner tests (ISO9705)
Mark. Dietenberger; Ondrej. Grexa
1999-01-01
A physical, yet analytical, model of fire growth has predicted flame spread and rate of heat release (RHR) for an ISO9705 test scenario using bench-scale data from the cone calorimeter. The test scenario simulated was the propane ignition burner at the comer with a 100/300 kW program and the specimen lined on the walls only. Four phases of fire growth were simulated....
Laiho, Jack; Soni, Amarjit
2005-01-01
We show that it is possible to construct {epsilon}{sup '}/{epsilon} to next-to-leading order (NLO) using partially quenched chiral perturbation theory (PQChPT) from amplitudes that are computable on the lattice. We demonstrate that none of the needed amplitudes require 3-momentum on the lattice for either the full theory or the partially quenched theory; nondegenerate quark masses suffice. Furthermore, we find that the electro-weak penguin ({delta}I=3/2 and 1/2) contributions to {epsilon}{sup '}/{epsilon} in PQChPT can be determined to NLO using only degenerate (m{sub K}=m{sub {pi}}) K{yields}{pi} computations without momentum insertion. Issues pertaining to power divergent contributions, originating from mixing with lower dimensional operators, are addressed. Direct calculations of K{yields}{pi}{pi} at unphysical kinematics are plagued with enhanced finite volume effects in the (partially) quenched theory, but in simulations when the sea quark mass is equal to the up and down quark mass the enhanced finite volume effects vanish to NLO in PQChPT. In embedding the QCD penguin left-right operator onto PQChPT an ambiguity arises, as first emphasized by Golterman and Pallante. With one version [the 'PQS' (patially quenched singlet)] of the QCD penguin, the inputs needed from the lattice for constructing K{yields}{pi}{pi} at NLO in PQChPT coincide with those needed for the full theory. Explicit expressions for the finite logarithms emerging from our NLO analysis to the above amplitudes also are given.
Full-dimensional analytical ab initio potential energy surface of the ground state of HOI.
de Oliveira-Filho, Antonio G S; Aoto, Yuri A; Ornellas, Fernando R
2011-07-28
Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1).
Full-dimensional analytical ab initio potential energy surface of the ground state of HOI
NASA Astrophysics Data System (ADS)
de Oliveira-Filho, Antonio G. S.; Aoto, Yuri A.; Ornellas, Fernando R.
2011-07-01
Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol-1. The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm-1.
Hubert, C; Houari, S; Rozet, E; Lebrun, P; Hubert, Ph
2015-05-22
When using an analytical method, defining an analytical target profile (ATP) focused on quantitative performance represents a key input, and this will drive the method development process. In this context, two case studies were selected in order to demonstrate the potential of a quality-by-design (QbD) strategy when applied to two specific phases of the method lifecycle: the pre-validation study and the validation step. The first case study focused on the improvement of a liquid chromatography (LC) coupled to mass spectrometry (MS) stability-indicating method by the means of the QbD concept. The design of experiments (DoE) conducted during the optimization step (i.e. determination of the qualitative design space (DS)) was performed a posteriori. Additional experiments were performed in order to simultaneously conduct the pre-validation study to assist in defining the DoE to be conducted during the formal validation step. This predicted protocol was compared to the one used during the formal validation. A second case study based on the LC/MS-MS determination of glucosamine and galactosamine in human plasma was considered in order to illustrate an innovative strategy allowing the QbD methodology to be incorporated during the validation phase. An operational space, defined by the qualitative DS, was considered during the validation process rather than a specific set of working conditions as conventionally performed. Results of all the validation parameters conventionally studied were compared to those obtained with this innovative approach for glucosamine and galactosamine. Using this strategy, qualitative and quantitative information were obtained. Consequently, an analyst using this approach would be able to select with great confidence several working conditions within the operational space rather than a given condition for the routine use of the method. This innovative strategy combines both a learning process and a thorough assessment of the risk involved.
A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications
NASA Astrophysics Data System (ADS)
Robin, J.; Tanter, M.; Pernot, M.
2017-09-01
Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.
Grüneis, Heidelinde; Penker, Marianne; Höferl, Karl-Michael
2016-01-01
Our scientific view on climate change adaptation (CCA) is unsatisfying in many ways: It is often dominated by a modernistic perspective of planned pro-active adaptation, with a selective focus on measures directly responding to climate change impacts and thus it is far from real-life conditions of those who are actually affected by climate change. Farmers have to simultaneously adapt to multiple changes. Therefore, also empirical climate change adaptation research needs a more integrative perspective on real-life climate change adaptations. This also has to consider "hidden" adaptations, which are not explicitly and directly motivated by CCA but actually contribute to the sector's adaptability to climate change. The aim of the present study is to develop and test an analytic framework that contributes to a broader understanding of CCA and to bridge the gap between scientific expertise and practical action. The framework distinguishes three types of CCA according to their climate related motivations: explicit adaptations, multi-purpose adaptations, and hidden adaptations. Although agriculture is among the sectors that are most affected by climate change, results from the case study of Tyrolean mountain agriculture show that climate change is ranked behind other more pressing "real-life-challenges" such as changing agricultural policies or market conditions. We identified numerous hidden adaptations which make a valuable contribution when dealing with climate change impacts. We conclude that these hidden adaptations have not only to be considered to get an integrative und more realistic view on CCA; they also provide a great opportunity for linking adaptation strategies to farmers' realities.
NASA Astrophysics Data System (ADS)
Leblond, C.; Sigrist, J. F.; Auvity, B.; Peerhossaini, H.
2009-01-01
This paper deals with the transient motions experienced by an elastic circular cylinder in a cylindrical fluid domain initially at rest and subjected to small-amplitude imposed displacements. Three fluid models are considered, namely potential, viscous and acoustic, to cover different fluid-structure interaction regimes. They are derived here from the general compressible Navier-Stokes equations by a formal perturbation method so as to underline their links and ranges of validity a priori. The resulting fluid models are linear owing to the small-amplitude-displacement hypothesis. For simplicity, the elastic flexure beam model is chosen for the circular cylinder dynamics. The semi-analytical approach used here is based on the methods of Laplace transform in time, in vacuo eigenvector expansion with time-dependent coefficients for the transverse beam displacement and separation of variables for the fluid. Moreover, the viscous case is handled with a matched asymptotic expansion performed at first order. The projection of the fluid forces on the in vacuo eigenvectors leads to a fully coupled system involving the modal time-dependent displacement coefficients. These coefficients are then obtained by matrix inversion in the Laplace domain and fast numerical inversion of the Laplace transform. The three models, written in the form of convolution products, are described through the analysis of their kernels, involving both the wave propagation phenomena in the fluid domain and the beam elasticity. Last, the three models are illustrated for a specific imposed motion mimicking shock loading. It is shown that their combination permits coverage of a broad range of motions.
NASA Astrophysics Data System (ADS)
Raji, M. A.; Schug, K. A.
2009-01-01
Full factorial experimental design technique was used to study the main effects and the interaction effects between instrumental parameters in two mass spectrometers equipped with conventional electrospray ion sources (Thermo LCQ Deca XP and Shimadzu LCMS 2010). Four major parameters (spray voltage, ion transfer capillary temperature, ion transfer capillary voltage, and tube lens voltage) were investigated in both instruments for their contribution to analyte response, leading to a total of 16 experiments performed for each instrument. Significant parameters were identified by plotting the cumulative probability of each treatment against the estimated effects in normal plots. Analysis of variance (ANOVA) was employed to evaluate the statistical significance of the effects of the parameters on ESI-MS analyte response. The results reveal a number of important interactions in addition to the main effects for each instrument. In all the experiments performed, the tube lens voltage (or Q-array dc voltage in LCMS 2010) was found to have significant effects on analyte response in both instruments. The tube lens voltage was also found to interact with the capillary temperature in the case of the LCQ Deca XP and with the spray voltage in the case of the LCMS 2010. The results of these experiments provide important considerations in the instrumental optimization of ionization response for ESI-MS analysis.
A full-dimensional analytical potential energy surface for the F+CH4→HF + CH3 reaction
NASA Astrophysics Data System (ADS)
Yang, Chuan-Lu; Wang, Mei-Shan; Liu, Wen-Wang; Zhang, Zhi-Hong; Ma, Xiao-Guang
2013-06-01
A full-dimensional analytical potential energy surface (APES) for the F + CH4 →HF + CH3 reaction is developed based on 7127 ab initio energy points at the unrestricted coupled-cluster with single, double, and perturbative triple excitations. The correlation-consistent polarized triple-split valence basis set is used. The APES is represented with a many-body expansion containing 239 parameters determined by the least square fitting method. The two-body terms of the APES are fitted by potential energy curves with multi-reference configuration interaction, which can describe the diatomic molecules (CH, H2, HF, and CF) accurately. It is found that the APES can reproduce the geometry and vibrational frequencies of the saddle point better than those available in the literature. The rate constants based on the present APES support the experimental results of Moore et al. [Int. J. Chem. Kin. 26, 813 (1994)]. The analytical first-order derivation of energy is also provided, making the present APES convenient and efficient for investigating the title reaction with quasiclassical trajectory calculations.
NASA Astrophysics Data System (ADS)
Wu, Wen-hua; Lv, Bai-cheng; Yue, Qian-jin; Zhang, Yan-tao; Lin, Yang
2017-04-01
By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine structure based on full-scale and actual measurement of prototype is proposed. On the basis of short-term field measurement results of structural response, research is carried out on the fatigue analysis of hinge joints at the upper part of the Soft Yoke single point Mooring System (SYMS) by simultaneously monitoring the environmental load and considering the design criteria of offshore structure. Through analysis of finite element modeling, the time-histories of typical stress response are obtained, and then the assessment of fatigue damage at key hinge joints is conducted. The simulation results indicate that the proposed method can accurately analyze the fatigue damage of offshore engineering structure caused by the effect of wave load. The present analytical method of fatigue characteristics can be extended on other offshore engineering structures subjected to meta-ocean load.
NASA Astrophysics Data System (ADS)
Yoo, Ji Ho; Köckert, Hansjochen; Mullaney, John C.; Stephens, Susanna L.; Evans, Corey J.; Walker, Nicholas R.; Le Roy, Robert. J.
2016-12-01
Pure rotational spectra of PbI and InI are interpreted to yield a full analytic potential energy function for each molecule. Rotational spectra for PbI have been retrieved from literature sources to perform the analysis. Rotational transition frequencies for excited vibrational states of InI (0 < v < 11) are measured during this work. Ignoring hyperfine splittings, Bv and Dv values are used to generate a set of ;synthetic; pure R (0) transitions for each vibrational level. These are then fitted to an ;Expanded Morse Oscillator; (EMO) potential using the direct-potential-fit program, dPOTFIT. The well-depth parameter, De , is fixed at a literature value, while values of the equilibrium distance re and EMO exponent-coefficient expansion (potential-shape) parameters are determined from the fits. Comparison with potential functions determined after including older mid-IR and visible electronic transition data shows that our analysis of the pure microwave data alone yields potential energy functions that accurately predict (to better than 1%) the overtone vibrational energies far beyond the range spanned by the levels for which the microwave data is available.
Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis
NASA Technical Reports Server (NTRS)
Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.
NASA Astrophysics Data System (ADS)
Nguyen, Duc Anh; Cat Vu, Minh; Willems, Patrick; Monbaliu, Jaak
2017-04-01
Salt intrusion is the most acute problem for irrigation water quality in coastal regions during dry seasons. The use of numerical hydrodynamic models is widespread and has become the prevailing approach to simulate the salinity distribution in an estuary. Despite its power to estimate both spatial and temporal salinity variations along the estuary, this approach also has its drawbacks. The high computational cost and the need for detailed hydrological, bathymetric and tidal datasets, put some limits on the usability in particular case studies. In poor data environments, analytical salt intrusion models are more widely used as they require less data and have a further reduction of the computational effort. There are few studies however where a more comprehensive comparison is made between the performance of a numerical hydrodynamic and an analytical model. In this research the multi-channel Ma Estuary in Vietnam is considered as a case study. Both the analytical and the hydrodynamic simulation approaches have been applied and were found capable to mimic the longitudinal salt distribution along the estuary. The data to construct the MIKE11 model include observations provided by a network of fixed hydrological stations and the cross-section measurements along the estuary. The analytic model is developed in parallel but based on information obtained from the hydrological network only (typical for poor data environment). Note that the two convergence length parameters of this simplified model are usually extracted from topography data including cross-sectional area and width along the estuary. Furthermore, freshwater discharge data are needed but these are gauged further upstream outside of the tidal region and unable to reflect the individual flows entering the multi-channel estuary. In order to tackle the poor data environment limitations, a new approach was needed to calibrate the two estuary geometry parameters of the parsimonious salt intrusion model. Compared to
NASA Astrophysics Data System (ADS)
Hurlbatt, A.; O'Connell, D.; Gans, T.
2016-08-01
Analytical and numerical models allow investigation of complicated discharge phenomena and the interplay that makes plasmas such a complex environment. Global models are quick to implement and can have almost negligible computation cost, but provide only bulk or spatially averaged values. Full fluid models take longer to develop, and can take days to solve, but provide accurate spatio-temporal profiles of the whole plasma. The work presented here details a different type of model, analytically similar to fluid models, but computationally closer to a global model, and able to give spatially resolved solutions for the challenging environment of electronegative plasmas. Included are non-isothermal electrons, gas heating, and coupled neutral dynamics. Solutions are reached in seconds to minutes, and spatial profiles are given for densities, fluxes, and temperatures. This allows the semi-analytical model to fill the gap that exists between global and full fluid models, extending the tools available to researchers. The semi-analytical model can perform broad parameter sweeps that are not practical with more computationally expensive models, as well as exposing non-trivial trends that global models cannot capture. Examples are given for a low pressure oxygen CCP. Excellent agreement is shown with a full fluid model, and comparisons are drawn with the corresponding global model.
NASA Astrophysics Data System (ADS)
Ebaid, Abdelhalim; Aly, Emad H.; Vajravelu, K.
2017-07-01
The peristaltic flow of nanofluids is a relatively new area of research. Scientists are of the opinion that the no-slip conditions at the boundaries are no longer valid and consequently, the first and the second order slip conditions should be addressed. In this paper, the effects of slip conditions and the convective boundary conditions at the boundary walls on the peristaltic flow of a viscous nanofluid are investigated for. Also, the exact analytical solutions are obtained for the model. The obtained results are presented through graphs and discussed. The results reveal that the two slip parameters have strong effects on the temperature and the nanoparticles volume fraction profiles. Moreover, it has been seen that the temperature and nanoparticles volume fraction profiles attain certain values when the first slip condition exceeds a specified value. However, no limit value for the second slip parameter has been detected. Further, the effects of the various emerging parameters on the flow and heat transfer characteristics have been presented.
Srinivasan, B.; Shumlak, U.
2011-09-15
The 5-moment two-fluid plasma model uses Euler equations to describe the ion and electron fluids and Maxwell's equations to describe the electric and magnetic fields. Two-fluid physics becomes significant when the characteristic spatial scales are on the order of the ion skin depth and characteristic time scales are on the order of the ion cyclotron period. The full two-fluid plasma model has disparate characteristic speeds ranging from the ion and electron speeds of sound to the speed of light. Two asymptotic approximations are applied to the full two-fluid plasma to arrive at the Hall-MHD model, namely negligible electron inertia and infinite speed of light. The full two-fluid plasma model and the Hall-MHD model are studied for applications to an electromagnetic plasma shock, geospace environmental modeling (GEM challenge) magnetic reconnection, an axisymmetric Z-pinch, and an axisymmetric field reversed configuration (FRC).
Realini, Marco; Conti, Claudia; Botteon, Alessandra; Colombo, Chiara; Matousek, Pavel
2017-01-16
We present, for the first time, a portable full micro-Spatially Offset Raman Spectroscopy (micro-SORS) prototype permitting the in situ analysis of thin, highly turbid stratified layers at depths not accessible to conventional Raman microscopy. The technique is suitable for the characterisation of painted layers in panels, canvases and mural paintings, painted statues and decorated objects in cultural heritage or stratified polymers, and biological, catalytic and forensics samples where invasive analysis is undesirable or impossible to perform. The new device is characterised conceptually in polymer and paint layer systems. The provision of portability with full micro-SORS delivers subsurface micro-SORS capability unlocking the non-invasive and non-destructive potential of micro-SORS at its most effective form permitting it to be applied to large and non-portable objects in situ without recourse to removing micro-fragments for laboratory analysis on benchtop Raman microscopes.
NASA Technical Reports Server (NTRS)
Washington, H. P.; Gibbons, J. T.
1973-01-01
Takeoff and landing performance characteristics and field length requirements were determined analytically for a jet STOL transport configuration with full-span, externally blown, tripleslotted flaps. The configuration had a high wing, high T-tail, and four pod-mounted high-bypass-ratio turbofan engines located under and forward of the wing. One takeoff and three approach and landing flap settings were evaluated. The effects of wing loading, thrust-to-weight ratio, weight, ambient temperature, altitude on takeoff and landing field length requirements are discussed.
Protostring scattering amplitudes
NASA Astrophysics Data System (ADS)
Thorn, Charles B.
2016-11-01
We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.
Espinosa-Garcia, Joaquin; Rangel, Cipriano; Suleimanov, Yury V
2017-07-26
We have developed an analytical full-dimensional potential energy surface, named PES-2017, for the gas-phase hydrogen abstraction reaction between the cyano radical and methane. This surface is fitted using high-level ab initio information as input. Using the PES-2017 surface, a kinetics study was performed via two theoretical approaches: variational transition-state theory with multidimensional tunnelling (VTST-MT) and ring polymer molecular dynamics (RPMD). The results are compared with the experimental data. In the whole temperature range analysed, 300-1500 K, both theories agree within a factor of <2, reproducing the experimental behaviour taking into account the experimental uncertainties. At high temperatures, where the recrossing effects dominate and the RPMD theory is exact, both theories differ by a factor of about 20%; while at low temperatures this difference is larger, 45%. Note that in this temperature regime, the tunnelling effect is negligible. The CN + CH4/CD4 kinetic isotope effects are important, reproducing the scarce experimental evidence. The good agreement with the ab initio information used in the fitting process (self-consistency test) and with the kinetic behaviour in a wide temperature range gives confidence and strength to the new surface.
NASA Astrophysics Data System (ADS)
Paulo, Álvaro San; García, Ricardo
2001-11-01
Amplitude-modulation (tapping mode) atomic force microscopy is a technique for high resolution imaging of a wide variety of surfaces in air and liquid environments. Here by using the virial theorem and energy conservation principles we have derived analytical relationships between the oscillation amplitude, phase shift, and average tip-surface forces. We find that the average value of the interaction force and oscillation and the average power dissipated by the tip-surface interaction are the quantities that control the amplitude reduction. The agreement obtained between analytical and numerical results supports the analytical method.
Zoccatelli, Gianni; Dalla Pellegrina, Chiara; Mosconi, Silvia; Consolini, Marica; Veneri, Gianluca; Chignola, Roberto; Peruffo, Angelo; Rizzi, Corrado
2007-02-01
Wheat proteinaceous alpha-amylase inhibitors (alpha-AIs) are increasingly investigated for their agronomical role as natural defence molecules of plants against the attack of insects and pests, but also for their effects on human health. The wheat genomes code for several bioactive alpha-AIs that share sequence homology, but differ in their specificity against alpha-amylases from different species and for their aggregation states. Wheat alpha-AIs are traditionally classified as belonging to the three classes of tetrameric, homodimeric and monomeric forms, each class being constituted by a number of polypeptides that display different electrophoretic mobilities. Here we describe a proteomic approach for the identification of bioactive alpha-AIs from wheat and, in particular, a 3-D technique that allows to best identify and characterize the dimeric fraction. The technique takes advantage of the thermal resistance of alpha-AIs (resistant to T > 70 degrees C) and consists in the separation of protein mixtures by 2-D polyacrylamide/starch electrophoresis under nondissociating PAGE (ND-PAGE, first dimension) and dissociating (urea-PAGE or U-PAGE second dimension) conditions, followed by in-gel spontaneous reaggregation of protein complexes and identification of the alpha-amylase inhibitory activity (antizymogram, third dimension) using enzymes from human salivary glands and from the larvae of Tenebrio molitor coleopter (yellow mealworm). Dimeric alpha-AIs from Triticum aestivum (bread wheat) were observed to exist as heterodimers. The formation of heterodimeric complexes was also confirmed by in vitro reaggregation assays carried out on RP-HPLC purified wheat dimeric alpha-AIs, and their bioactivity assayed by antizymogram analysis. The present 3-D analytical technique can be exploited for fast, full-fledged identification and characterization of wheat alpha-AIs.
Stephanson, N N; Signell, P; Helander, A; Beck, O
2017-08-01
The influx of new psychoactive substances (NPS) has created a need for improved methods for drug testing in toxicology laboratories. The aim of this work was to design, validate and apply a multi-analyte liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method for screening of 148 target analytes belonging to the NPS class, plant alkaloids and new psychoactive therapeutic drugs. The analytical method used a fivefold dilution of urine with nine deuterated internal standards and injection of 2 μl. The LC system involved a 2.0 μm 100 × 2.0 mm YMC-UltraHT Hydrosphere-C18 column and gradient elution with a flow rate of 0.5 ml/min and a total analysis time of 6.0 min. Solvent A consisted of 10 mmol/l ammonium formate and 0.005% formic acid, pH 4.8, and Solvent B was methanol with 10 mmol/l ammonium formate and 0.005% formic acid. The HRMS (Q Exactive, Thermo Scientific) used a heated electrospray interface and was operated in positive mode with 70 000 resolution. The scan range was 100-650 Da, and data for extracted ion chromatograms used ± 10 ppm tolerance. Product ion monitoring was applied for confirmation analysis and for some selected analytes also for screening. Method validation demonstrated limited influence from urine matrix, linear response within the measuring range (typically 0.1-1.0 μg/ml) and acceptable imprecision in quantification (CV <15%). A few analytes were found to be unstable in urine upon storage. The method was successfully applied for routine drug testing of 17 936 unknown samples, of which 2715 (15%) contained 52 of the 148 analytes. It is concluded that the method design based on simple dilution of urine and using LC-HRMS in extracted ion chromatogram mode may offer an analytical system for urine drug testing that fulfils the requirement of a 'black box' solution and can replace immunochemical screening applied on autoanalyzers. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Computing Maximally Supersymmetric Scattering Amplitudes
NASA Astrophysics Data System (ADS)
Stankowicz, James Michael, Jr.
This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at
Lewis, I.A.D.
1956-05-15
This patent pentains to an electrical pulse amplitude analyzer, capable of accepting input pulses having a separation between adjacent pulses in the order of one microsecond while providing a large number of channels of classification. In its broad aspect the described pulse amplitude analyzer utilizes a storage cathode ray tube und control circuitry whereby the amplitude of the analyzed pulses controls both the intensity and vertical defiection of the beam to charge particular spots in horizontal sectors of the tube face as the beam is moved horizontally across the tube face. As soon as the beam has swept the length of the tube the information stored therein is read out by scanning individually each horizontal sector corresponding to a certain range of pulse amplitudes and applying the output signal from each scan to separate indicating means.
Greenblatt, M.H.
1958-03-25
This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.
Real topological string amplitudes
NASA Astrophysics Data System (ADS)
Narain, K. S.; Piazzalunga, N.; Tanzini, A.
2017-03-01
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.
Lough, Denver M; Yang, Mei; Blum, Anthony; Reichensperger, Joel D; Cosenza, Nicole M; Wetter, Nathan; Cox, Lisa A; Harrison, Carrie E; Neumeister, Michael W
2014-03-01
The recently discovered leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6+) epithelial stem cell located within the follicular bulge of the adnexal compartment is capable of producing all cellular lineages of the skin. In this study, the authors sought to determine whether these cells can be transplanted for use as a type of cellular therapy for the repair of full-thickness wounds in which the native stem cell niche has been obliterated. Full-thickness murine skin was harvested and LGR6(+GFP) epithelial stem cells were isolated using fluorescence-activated cell sorting. This enriched epithelial stem cell population was then transplanted by means of local injection into wound beds on the dorsum of nude mice. Viability, migration, healing, the development of nascent hair follicles, and gene and proteomic expression studies were performed to determine whether the engraftment of LGR6(+GFP) epithelial stem cells enhanced healing when compared with controls. Wound beds receiving LGR6(+GFP) epithelial stem cells showed enhanced healing; nascent follicle growth; and augmentation of the Wnt, vascular endothelial growth factor, epidermal growth factor, and platelet-derived growth factor pathways when compared with controls. The LGR6+ epithelial stem cells appear to hold great promise for the development of a clinically useful stem cell–based therapy for the repair of full-thickness wounds and hair regeneration. These results indicate that transplantation of LGR6+ epithelial stem cells promotes epithelialization, hair growth, and angiogenesis in tissues destined for scar formation.
Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands
NASA Technical Reports Server (NTRS)
Vinas, A. F.; Goldstein, M. L.
1992-01-01
This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.
Quasidistribution amplitude of heavy quarkonia
NASA Astrophysics Data System (ADS)
Jia, Yu; Xiong, Xiaonu
2016-11-01
The recently proposed quasidistributions point out a promising direction for lattice QCD to investigate the light-cone correlators, such as parton distribution functions and distribution amplitudes (DAs), directly in the x space. Owing to its excessive simplicity, heavy quarkonium can serve as an ideal theoretical laboratory to ascertain certain features of quasi-DAs. In the framework of nonrelativistic QCD factorization, we compute the order-αs correction to both light-cone distribution amplitudes (LCDAs) and quasi-DAs associated with the lowest-lying quarkonia, with the transverse-momentum UV cutoff interpreted as the renormalization scale. We confirm analytically that the quasi-DA of a quarkonium does reduce to the respective LCDA in the infinite-momentum limit. We also observe that, provided that the momentum of a charmonium reaches about 2-3 times its mass, the quasi-DAs already converge to the LCDAs to a decent level. These results might provide some useful guidance for the future lattice study of quasidistributions.
Stability of full-amplitude solutions for RR Lyrae variables
Hodson, S.W.; Cox, A.N.
1982-07-30
Since the discovery of numerous double-mode RR Lyrae variables in the globular cluster M15 by Cox, Hodson, and Clancy (1981a and 1983, CHC), double-mode behavior in these Population II variables has made it possible to theoretically determine their masses, composition, and maybe even their evolution direction. The most unusual characteristic of these new double-mode pulsators is that they are found in a narrow range of first overtone periods (P/sub 1/=0./sup d/38-0./sup d/43) and period ratios (P/sub 1//P/sub 0/=0.746+-0.001), where P/sub 0/ is the fundamental mode period. This compares with P/sub 1/=0./sup d/41 and P/sub 1//P/sub 0/=0.746 for AQ Leonis, the only known field double-mode RR Lyrae star. Recent linear studies by CHC (1981a and 1983) suggest that double-mode behavior in this class of stars results from mode switching between the fundamental (F) and first overtone (1H) radial pulsation modes at the transition line just to the red of the F-mode blue edge.
Feng Bo
2007-11-20
In this talk, we will present recent progresses in perturbative calculations of scattering amplitudes at tree and one-loop levels. At tree level, we will discuss MHV-diagram method and on-shell recursion relation. At one-loop level, we will establish the framework of Unitarity cut method.
Reinforcing Saccadic Amplitude Variability
ERIC Educational Resources Information Center
Paeye, Celine; Madelain, Laurent
2011-01-01
Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…
NASA Astrophysics Data System (ADS)
Taylor, Tomasz R.
2017-05-01
This a pedagogical introduction to scattering amplitudes in gauge theories. It proceeds from Dirac equation and Weyl fermions to the two pivot points of current developments: the recursion relations of Britto, Cachazo, Feng and Witten, and the unitarity cut method pioneered by Bern, Dixon, Dunbar and Kosower. In ten lectures, it covers the basic elements of on-shell methods.
Planar amplitude ammonia sensor
NASA Astrophysics Data System (ADS)
Karasinski, Pawel; Rogozinski, Roman
2004-09-01
The paper presents the results of investigation involving the influence of the change of launching conditions on the characteristics of amplitude ammonia sensors produced with the application of strip waveguides of different refractive profiles. Strip waveguides were produced using ion exchange technique, and the absorption sensitive films were produced using sol-gel technology.
The twelve-graviton next-to-MHV amplitude from Risager's construction
NASA Astrophysics Data System (ADS)
Conde, Eduardo; Rajabi, Sayeh
2012-09-01
The MHV or CSW expansion of tree-level Yang-Mills amplitudes provides an elegant and simple way of obtaining analytic formulas for S-matrix elements. Inspired by the BCFW technique, a systematic approach to obtain the MHV expansion was introduced by Risager, using a particular complex deformation. Although it works for Yang-Mills amplitudes, Risager's technique fails to provide an MHV expansion already for Next-to- MHV gravity amplitudes with more than eleven particles, as shown by Bianchi, Elvang and Freedman in 2008 [15]. This fact implies that in this sector there is a contribution at infinity starting at n = 12. In this note we determine the explicit analytic form of this residue at infinity for n = 12. Together with the terms of the Risager MHV expansion, the residue at infinity completes the first full CSW-like analytic expression of the twelve- graviton NMHV amplitude. Our technique can also be used to compute the residue at infinity for higher points.
True amplitude prestack depth migration
NASA Astrophysics Data System (ADS)
Deng, Feng
Reliable analysis of amplitude variation with offset (or with angle) requires accurate amplitudes from prestack migration. In routine seismic data processing, amplitude balancing and automatic gain control are often used to reduce amplitude lateral variations. However, these methods are empirical and lack a solid physical basis; thus, there are uncertainties that might produce erroneous conclusions, and hence cause economic loss. During wavefield propagation, geometrical spreading, intrinsic attenuation, transmission losses and the energy conversion significantly distort the wavefield amplitude. Most current true-amplitude migrations usually compensate only for geometrical spreading. A new prestack depth migration based on the framework of reverse-time migration in the time-space domain was developed in this dissertation with the aim of compensating all of the propagation effects in one integrated algorithm. Geometrical spreading is automatically included because of the use of full two-way wave extrapolation. Viscoelastic wave equations are solved to handle the intrinsic attenuation with a priori quality factor. Transmission losses for both up- and down-going waves are compensated using a two-pass, recursive procedure based on extracting the angle-dependent reflection/transmission coefficients from prestack migration. The losses caused by the conversion of energy from one elastic model to another are accounted for through elastic wave extrapolation; the influence of the S wave velocity contrast on the P wave reflection coefficient is implicitly included by using the Zoeppritz equations to describe the reflection and transmission at an elastic interface. Only smooth background models are assumed to be known. The contrasts/ratios of the model parameters can be estimated by fitting the compensated angle-dependent reflection coefficients obtained from data for multiple sources. This is one useful by-product of the algorithm. Numerical tests on both 2D and 3D scalar
Weak boson production amplitude zeros; equalities of the helicity amplitudes
NASA Astrophysics Data System (ADS)
Mamedov, Fizuli
2002-08-01
We investigate the radiation amplitude zeros exhibited by many standard model amplitudes for triple weak gauge boson production processes. We show that WZγ production amplitudes have an especially rich structure in terms of zeros; these amplitudes have zeros originating from several different sources. It is also shown that the type-I current null zone is the special case of the equality of the specific helicity amplitudes.
Amplitude metrics for cellular circadian bioluminescence reporters.
St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J
2014-12-02
Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary
Amplitude Metrics for Cellular Circadian Bioluminescence Reporters
St. John, Peter C.; Taylor, Stephanie R.; Abel, John H.; Doyle, Francis J.
2014-01-01
Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary
NASA Astrophysics Data System (ADS)
Can, T. V.; Weber, R. T.; Walish, J. J.; Swager, T. M.; Griffin, R. G.
2017-04-01
We present a pulsed dynamic nuclear polarization (DNP) study using a ramped-amplitude nuclear orientation via electron spin locking (RA-NOVEL) sequence that utilizes a fast arbitrary waveform generator (AWG) to modulate the microwave pulses together with samples doped with narrow-line radicals such as 1,3-bisdiphenylene-2-phenylallyl (BDPA), sulfonated-BDPA (SA-BDPA), and trityl-OX063. Similar to ramped-amplitude cross polarization in solid-state nuclear magnetic resonance, RA-NOVEL improves the DNP efficiency by a factor of up to 1.6 compared to constant-amplitude NOVEL (CA-NOVEL) but requires a longer mixing time. For example, at τmix = 8 μs, the DNP efficiency reaches a plateau at a ramp amplitude of ˜20 MHz for both SA-BDPA and trityl-OX063, regardless of the ramp profile (linear vs. tangent). At shorter mixing times (τmix = 0.8 μs), we found that the tangent ramp is superior to its linear counterpart and in both cases there exists an optimum ramp size and therefore ramp rate. Our results suggest that RA-NOVEL should be used instead of CA-NOVEL as long as the electronic spin lattice relaxation T1e is sufficiently long and/or the duty cycle of the microwave amplifier is not exceeded. To the best of our knowledge, this is the first example of a time domain DNP experiment that utilizes modulated microwave pulses. Our results also suggest that a precise modulation of the microwave pulses can play an important role in optimizing the efficiency of pulsed DNP experiments and an AWG is an elegant instrumental solution for this purpose.
Erbert, G
2009-09-01
The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 ps apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.
High amplitude propagated contractions.
Bharucha, A E
2012-11-01
While most colonic motor activity is segmental and non-propulsive, colonic high amplitude propagated contractions (HAPC) can transfer colonic contents over long distances and often precede defecation. High amplitude propagated contractions occur spontaneously, in response to pharmacological agents or colonic distention. A subset of patients with slow transit constipation have fewer HAPC. In this issue of Neurogastroenterology and Motility, Rodriguez et al. report that anal relaxation during spontaneous and bisacodyl-induced HAPC exceeds anal relaxation during rectal distention in constipated children undergoing colonic manometry. Moreover, and consistent with a neural mechanism, anal relaxation often precedes arrival of HAPC in the left colon. High amplitude propagated contractions are also used to evaluate the motor response to a meal and pharmacological stimuli (e.g., bisacodyl, neostigmine) and to identify colonic inertia during colonic motility testing in chronic constipation. This editorial comprehensively reviews the characteristics, physiology and pharmacology of HAPC, their assessment by manometry, and relevance to constipation and diarrhea. © 2012 Blackwell Publishing Ltd.
Amplitudes of Spiral Perturbations
NASA Astrophysics Data System (ADS)
Grosbol, P.; Patsis, P. A.
2014-03-01
It has proven very difficult to estimate the amplitudes of spiral perturbations in disk galaxies from observations due to the variation of mass-to-light ratio and extinction across spiral arms. Deep, near-infrared images of grand-design spiral galaxies obtained with HAWK-I/VLT were used to analyze the azimuthal amplitude and shape of arms, which, even in the K-band may, be significantly biased by the presence of young stellar populations. Several techniques were applied to evaluate the relative importance of young stars across the arms, such as surface brightness of the disk with light from clusters subtracted, number density of clusters detected, and texture of the disk. The modulation of the texture measurement, which correlates with the number density of faint clusters, yields amplitudes of the spiral perturbation in the range 0.1-0.2. This estimate gives a better estimate of the mass perturbation in the spiral arms, since it is dominated by old clusters.
Gray, G.W.; Jensen, A.S.
1957-10-22
A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.
Cut-constructible part of QCD amplitudes
Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo
2006-05-15
Unitarity cuts are widely used in analytic computation of loop amplitudes in gauge theories such as QCD. We expand upon the technique introduced in hep-ph/0503132 to carry out any finite unitarity cut integral. This technique naturally separates the contributions of bubble, triangle and box integrals in one-loop amplitudes and is not constrained to any particular helicity configurations. Loop momentum integration is reduced to a sequence of algebraic operations. We discuss the extraction of the residues at higher-order poles. Additionally, we offer concise algebraic formulas for expressing coefficients of three-mass triangle integrals. As an application, we compute all remaining coefficients of bubble and triangle integrals for nonsupersymmetric six-gluon amplitudes.
Dispersion relations with crossing symmetry for {pi}{pi} D- and F-wave amplitudes
Kaminski, R.
2011-04-01
A set of once subtracted dispersion relations with imposed crossing symmetry condition for the {pi}{pi} D- and F-wave amplitudes is derived and analyzed. An example of numerical calculations in the effective two-pion mass range from the threshold to 1.1 GeV is presented. It is shown that these new dispersion relations impose quite strong constraints on the analyzed {pi}{pi} interactions and are very useful tools to test the {pi}{pi} amplitudes. One of the goals of this work is to provide a complete set of equations required for easy use. Full analytical expressions are presented. Along with the well-known dispersion relations successful in testing the {pi}{pi} S- and P-wave amplitudes, those presented here for the D and F waves give a complete set of tools for analyses of the {pi}{pi} interactions.
HIGH AMPLITUDE PROPAGATED CONTRACTIONS
Bharucha, Adil E.
2012-01-01
While most colonic motor activity is segmental and non-propulsive, colonic high amplitude propagated contractions (HAPC) can transfer colonic contents over long distances and often precede defecation. HAPC occur spontaneously, in response to pharmacological agents or colonic distention. In this issue of Neurogastroenterology and Motility, Rodriguez and colleagues report that anal relaxation during spontaneous and bisacodyl-induced HAPC exceeds anal relaxation during rectal distention in constipated children undergoing colonic manometry. Moreover, and consistent with a neural mechanism, anal relaxation often precedes arrival of HAPC in the left colon. This editorial comprehensively reviews the characteristics, physiology and pharmacology of HAPC, their assessment by manometry, and relevance to constipation and diarrhea. PMID:23057554
Pion distribution amplitude and quasidistributions
Radyushkin, Anatoly V.
2017-03-27
We extend our analysis of quasidistributions onto the pion distribution amplitude. Using the formalism of parton virtuality distribution amplitudes, we establish a connection between the pion transverse momentum dependent distribution amplitude Ψ(x,k2⊥) and the pion quasidistribution amplitude (QDA) Qπ(y,p3). We build models for the QDAs from the virtuality-distribution-amplitude-based models for soft transverse momentum dependent distribution amplitudes, and analyze the p3 dependence of the resulting QDAs. As there are many models claimed to describe the primordial shape of the pion distribution amplitude, we present the p3-evolution patterns for models producing some popular proposals: Chernyak-Zhitnitsky, flat, and asymptotic distribution amplitude. Finally, ourmore » results may be used as a guide for future studies of the pion distribution amplitude on the lattice using the quasidistribution approach.« less
Color-kinematics duality for QCD amplitudes
NASA Astrophysics Data System (ADS)
Johansson, Henrik; Ochirov, Alexander
2016-01-01
We show that color-kinematics duality is present in tree-level amplitudes of quantum chromodynamics with massive flavored quarks. Starting with the color structure of QCD, we work out a new color decomposition for n-point tree amplitudes in a reduced basis of primitive amplitudes. These primitives, with k quark-antiquark pairs and ( n - 2 k) gluons, are taken in the ( n - 2)! /k! Melia basis, and are independent under the color-algebra Kleiss-Kuijf relations. This generalizes the color decomposition of Del Duca, Dixon, and Maltoni to an arbitrary number of quarks. The color coefficients in the new decomposition are given by compact expressions valid for arbitrary gauge group and representation. Considering the kinematic structure, we show through explicit calculations that color-kinematics duality holds for amplitudes with general configurations of gluons and massive quarks. The new (massive) amplitude relations that follow from the duality can be mapped to a well-defined subset of the familiar BCJ relations for gluons. They restrict the amplitude basis further down to ( n - 3)!(2 k - 2) /k! primitives, for two or more quark lines. We give a decomposition of the full amplitude in that basis. The presented results provide strong evidence that QCD obeys the color-kinematics duality, at least at tree level. The results are also applicable to supersymmetric and D-dimensional extensions of QCD.
Analytical consideration and computer simulation of DFWM
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Kuchik, Igor E.
2017-04-01
Degenerate four-wave mixing (DFWM) for co-propagating femtosecond laser pulses is considered in the axial-symmetric case for bulk medium with cubic nonlinear response, if pump-wave amplitudes are being equal. Computer simulation is based on the set of nonlinear Schrödinger equations describing this process. For the analytical consideration we use the frame-work of both plane wave approximation and long pulse duration approximation taking into account the phase matching. In opposite to widely used approach, based on the pump-waves non-depletion, the problem invariants are used for analytical solution developing. The solution demonstrates various DFWM modes existence and allows us to provide full analysis of the problem in dependence of its parameters. Analytical solution and derived pulse interaction modes can explain complicated regime of DFWM, which may appear at different intensities of interacting waves.
Amplitude death induced by fractional derivatives in nonlinear coupled oscillators
NASA Astrophysics Data System (ADS)
Liu, Q. X.; Liu, J. K.; Chen, Y. M.
2017-07-01
This paper presents a study on amplitude death in nonlinear coupled oscillators containing fractional derivatives. Analytical criterion for amplitude death region is obtained by eigenvalue analysis and verified by numerical results. It is found that amplitude death regions can be enlarged to a large extent by fractional derivatives. For this reason, amplitude death can be detected in fractional Stuart-Landau systems with weak coupling strength and low frequency, whereas it never appears in integer-order systems. Interestingly, the widening of amplitude death region induced by fractional derivative is shared by a variety of oscillators with different types of coupling mechanisms. An interpretation for the underlying mechanism of this phenomenon is briefly addressed, based on which we further suggest a coupling organization leading to amplitude death only in fractional oscillators.
PULSE AMPLITUDE DISTRIBUTION RECORDER
Cowper, G.
1958-08-12
A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.
EPA’s Web Analytics Program collects, analyzes, and provides reports on traffic, quality assurance, and customer satisfaction metrics for EPA’s website. The program uses a variety of analytics tools, including Google Analytics and CrazyEgg.
A description of seismic amplitude techniques
NASA Astrophysics Data System (ADS)
Shadlow, James
2014-02-01
The acquisition of seismic data is a non-invasive technique used for determining the sub surface geology. Changes in lithology and fluid fill affect the seismic wavelet. Analysing seismic data for direct hydrocarbon indicators (DHIs), such as full stack amplitude anomalies, or amplitude variation with offset (AVO), can help a seismic interpreter relate the geophysical response to real geology and, more importantly, to distinguish the presence of hydrocarbons. Inversion is another commonly used technique that attempts to tie the seismic data back to the geology. Much has been written about these techniques, and attempting to gain an understanding on the theory and application of them by reading through various journals can be quite daunting. The purpose of this paper is to briefly outline DHI analysis, including full stack amplitude anomalies, AVO and inversion and show the relationship between all three. The equations presented have been included for completeness, but the reader can pass over the mathematical detail.
Bootstrapping a five-loop amplitude using Steinmann relations
Caron-Huot, Simon; Dixon, Lance J.; McLeod, Andrew; ...
2016-12-05
Here, the analytic structure of scattering amplitudes is restricted by Steinmann relations, which enforce the vanishing of certain discontinuities of discontinuities. We show that these relations dramatically simplify the function space for the hexagon function bootstrap in planar maximally supersymmetric Yang-Mills theory. Armed with this simplification, along with the constraints of dual conformal symmetry and Regge exponentiation, we obtain the complete five-loop six-particle amplitude.
Bootstrapping a Five-Loop Amplitude Using Steinmann Relations.
Caron-Huot, Simon; Dixon, Lance J; McLeod, Andrew; von Hippel, Matt
2016-12-09
The analytic structure of scattering amplitudes is restricted by Steinmann relations, which enforce the vanishing of certain discontinuities of discontinuities. We show that these relations dramatically simplify the function space for the hexagon function bootstrap in planar maximally supersymmetric Yang-Mills theory. Armed with this simplification, along with the constraints of dual conformal symmetry and Regge exponentiation, we obtain the complete five-loop six-particle amplitude.
A cluster bootstrap for two-loop MHV amplitudes
NASA Astrophysics Data System (ADS)
Golden, John; Spradlin, Marcus
2015-02-01
We apply a bootstrap procedure to two-loop MHV amplitudes in planar super-Yang-Mills theory. We argue that the mathematically most complicated part (the Λ2 B 2 coproduct component) of the n-particle amplitude is uniquely determined by a simple cluster algebra property together with a few physical constraints (dihedral symmetry, analytic structure, supersymmetry, and well-defined collinear limits). We present a concise, closed-form expression which manifests these properties for all n.
Invariant amplitudes for pion electroproduction
NASA Astrophysics Data System (ADS)
Pasquini, B.; Drechsel, D.; Tiator, L.
2007-12-01
The invariant amplitudes for pion electroproduction on the nucleon are evaluated by dispersion relations at constant t with MAID as input for the imaginary parts of these amplitudes. In the threshold region these amplitudes are confronted with the predictions of several low-energy theorems derived in the soft-pion limit. In general agreement with chiral perturbation theory, the dispersive approach yields large corrections to these theorems because of the finite pion mass.
ABJM amplitudes and the positive orthogonal Grassmannian
NASA Astrophysics Data System (ADS)
Huang, Yu-tin; Wen, CongKao
2014-02-01
A remarkable connection between perturbative scattering amplitudes of four dimensional planar SYM, and the stratification of the positive Grassmannian, was revealed in the seminal work of Arkani-Hamed et al. Similar extension for three-dimensional ABJM theory was proposed. Here we establish a direct connection between planar scattering amplitudes of ABJM theory, and singularities thereof, to the stratification of the positive orthogonal Grassmannian. In particular, scattering processes are constructed through on-shell diagrams, which are simply iterative gluing of the fundamental four-point amplitude. Each diagram is then equivalent to the merging of fundamental OG2 orthogonal Grassmannian to form a larger OG k , where 2 k is the number of external particles. The invariant information that is encoded in each diagram is precisely this stratification. This information can be easily read off via permutation paths of the on-shell diagram, which also can be used to derive a canonical representation of OG k that manifests the vanishing of consecutive minors as the singularity of all on-shell diagrams. Quite remarkably, for the BCFW recursion representation of the tree-level amplitudes, the on-shell diagram manifests the presence of all physical factorization poles, as well as the cancellation of the spurious poles. After analytically continuing the orthogonal Grassmannian to split signature, we reveal that each on-shell diagram in fact resides in the positive cell of the orthogonal Grassmannian, where all minors are positive. In this language, the amplitudes of ABJM theory is simply an integral of a product of d log forms, over the positive orthogonal Grassmannian.
Amplitude variations in coarticulated vowels
Jacewicz, Ewa; Fox, Robert Allen
2008-01-01
This paper seeks to characterize the nature, size, and range of acoustic amplitude variation in naturally produced coarticulated vowels in order to determine its potential contribution and relevance to vowel perception. The study is a partial replication and extension of the pioneering work by House and Fairbanks [J. Acoust. Soc. Am. 22, 105–113 (1953)], who reported large variation in vowel amplitude as a function of consonantal context. Eight American English vowels spoken by men and women were recorded in ten symmetrical CVC consonantal contexts. Acoustic amplitude measures included overall rms amplitude, amplitude of the rms peak along with its relative location in the CVC-word, and the amplitudes of individual formants F1–F4 along with their frequencies. House and Fairbanks’ amplitude results were not replicated: Neither the overall rms nor the rms peak varied appreciably as a function of consonantal context. However, consonantal context was shown to affect significantly and systematically the amplitudes of individual formants at the vowel nucleus. These effects persisted in the auditory representation of the vowel signal. Auditory spectra showed that the pattern of spectral amplitude variation as a function of contextual effects may still be encoded and represented at early stages of processing by the peripheral auditory system. PMID:18529192
On the Period-Amplitude and Amplitude-Period Relationships
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2008-01-01
Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.
Renormalization Scale-Fixing for Complex Scattering Amplitudes
Brodsky, Stanley J.; Llanes-Estrada, Felipe J.; /Madrid U.
2005-12-21
We show how to fix the renormalization scale for hard-scattering exclusive processes such as deeply virtual meson electroproduction by applying the BLM prescription to the imaginary part of the scattering amplitude and employing a fixed-t dispersion relation to obtain the scale-fixed real part. In this way we resolve the ambiguity in BLM renormalization scale-setting for complex scattering amplitudes. We illustrate this by computing the H generalized parton distribution at leading twist in an analytic quark-diquark model for the parton-proton scattering amplitude which can incorporate Regge exchange contributions characteristic of the deep inelastic structure functions.
Singularity structure of maximally supersymmetric scattering amplitudes.
Arkani-Hamed, Nima; Bourjaily, Jacob L; Cachazo, Freddy; Trnka, Jaroslav
2014-12-31
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic singularities and is free of any poles at infinity--properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA).
Non-linear finite-amplitude transfer of basal perturbations to a glacier surface
NASA Astrophysics Data System (ADS)
Raymond, M.; Gudmundsson, G. H.; Funk, M.
2003-04-01
Disturbances of surface topography and velocity fields on ice streams can be caused by spatial variations in basal properties. Understanding the relationship between basal and surface perturbations allows estimates of the role of basal control on the dynamics of ice streams to be made. This relationship is well understood for linear medium and small-amplitude basal perturbations where analytical methods can be applied. Studies of the non-linear problems have so far been limited to special cases where semi-analytical methods can be used. Here the transfer of basal variability to a glacier surface is investigated using a numerical model for non-linear ice rheology. Two dimensional steady-state transfer functions for both sinusoidal bedrock undulations and variations in till resistance are determined using Glen's flow law and the full momentum equation system. Amplitude ratios and phase shifts are calculated for wavelengths up to thousand times the mean ice thickness and compared with predictions based on small-amplitude perturbation theory.
Substorm statistics: Occurrences and amplitudes
Borovsky, J.E.; Nemzek, R.J.
1994-05-01
The occurrences and amplitudes of substorms are statistically investigated with the use of three data sets: the AL index, the Los Alamos 3-satellite geosynchronous energetic-electron measurements, and the GOES-5 and -6 geosynchronous magnetic-field measurements. The investigation utilizes {approximately} 13,800 substorms in AL, {approximately} 1400 substorms in the energetic-electron flux, and {approximately} 100 substorms in the magnetic field. The rate of occurrence of substorms is determined as a function of the time of day, the time of year, the amount of magnetotail bending, the orientation of the geomagnetic dipole, the toward/away configuration of the IMF, and the parameters of the solar wind. The relative roles of dayside reconnection and viscous coupling in the production of substorms are assessed. Three amplitudes are defined for a substorms: the jump in the AL index, the peak of the >30-keV integral electron flux at geosynchronous orbit near midnight, and the angle of rotation of the geosynchronous magnetic field near midnight. The substorm amplitudes are statistically analyzed, the amplitude measurements are cross correlated with each other, and the substorm amplitudes are determined as functions of the solar-wind parameters. Periodically occurring and randomly occurring substorms are analyzed separately. The energetic-particle-flux amplitudes are consistent with unloading and the AL amplitudes are consistent with direct driving plus unloading.
Remane, Daniela; Meyer, Markus R; Wissenbach, Dirk K; Maurer, Hans H
2011-06-01
Multi-analyte procedures are of great interest in clinical and forensic toxicology making the analytical process much simpler, faster, and cheaper and allow monitoring of analytes of different drug classes in one single body sample. The aim of the present study was to validate an ultra high performance liquid chromatographic-tandem mass spectrometric approach for fast target screening and quantification of 34 antidepressants in plasma after simple liquid-liquid extraction as part of a multi-analyte procedure for over 130 drugs. The validation process including recovery, matrix effects, process efficiency, ion suppression/enhancement of co-eluting analytes (already published), selectivity, cross talk, accuracy and precision, stabilities, and limits of quantification and detection showed that the approach was selective, sensitive, accurate, and precise for 28 of the 34 tested drugs. The applicability was successfully tested by analyzing authentic plasma samples and external quality control samples. Furthermore, it could be shown that time- and cost-saving one-point calibration was applicable for 21 drugs for daily routine and especially in emergency cases.
Large-amplitude inviscid fluid motion in an accelerating container
NASA Technical Reports Server (NTRS)
Perko, L. M.
1968-01-01
Study of dynamic behavior of the liquid-vapor interface of an inviscid fluid in an accelerating cylindrical container includes an analytical-numerical method for determining large amplitude motion. The method is based on the expansion of the velocity potential in a series of harmonic functions with time dependent coefficients.
Small amplitude quasibreathers and oscillons
Fodor, Gyula; Lukacs, Arpad; Forgacs, Peter; Horvath, Zalan
2008-07-15
Quasibreathers (QB) are time-periodic solutions with weak spatial localization introduced in G. Fodor et al. in [Phys. Rev. D 74, 124003 (2006)]. QB's provide a simple description of oscillons (very long-living spatially localized time dependent solutions). The small amplitude limit of QB's is worked out in a large class of scalar theories with a general self-interaction potential, in D spatial dimensions. It is shown that the problem of small amplitude QB's is reduced to a universal elliptic partial differential equation. It is also found that there is the critical dimension, D{sub crit}=4, above which no small amplitude QB's exist. The QB's obtained this way are shown to provide very good initial data for oscillons. Thus these QB's provide the solution of the complicated, nonlinear time dependent problem of small amplitude oscillons in scalar theories.
Large Amplitude Oscillations in Prominences
NASA Astrophysics Data System (ADS)
Tripathi, D.; Isobe, H.; Jain, R.
2009-12-01
Since the first reports of oscillations in prominences in the 1930s, there have been major theoretical and observational developments to understand the nature of these oscillatory phenomena, leading to the whole new field of the so-called “prominence seismology”. There are two types of oscillatory phenomena observed in prominences; “small-amplitude oscillations” (2-3 km s-1), which are quite common, and “large-amplitude oscillations” (>20 km s-1) for which observations are scarce. Large-amplitude oscillations have been found as “winking filament” in H α as well as motion in the plane-of-sky in H α, EUV, micro-wave and He 10830 observations. Historically, it has been suggested that the large-amplitude oscillations in prominences were triggered by disturbances such as fast-mode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large-amplitude oscillations in prominences. Large-amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a few hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and, therefore, justifies prominence seismology as a powerful diagnostic tool. On rare occasions, when the large-amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large-amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology.
Tempo and amplitude in growth.
Hermanussen, Michael
2011-01-01
Growth is defined as an increase of size over time with time usually defined as physical time. Yet, the rigid metric of physical time is not directly relevant to the internal dynamics of growth. Growth is linked to maturation. Children and adolescents differ in the tempo at which they mature. One calendar year differs in its meaning in a fast maturing, and in a slow maturing child. The slow child needs more calendar years for completing the same stage of maturity. Many characteristics in the human growth curve are tempo characteristics. Tempo - being fast or slow maturing - has to be carefully separated from amplitude - being tall or short. Several characteristic phenomena such as catch-up growth after periods of illness and starvation are largely tempo phenomena, and do usually not affect the amplitude component of growth. Applying Functional Data Analysis and Principal Component Analysis, the two main sources of height variance: tempo and amplitude can statistically be separate and quantified. Tempo appears to be more sensitive than amplitude to nutrition, health and environmental stress. An appropriate analysis of growth requires disentangling its two major components: amplitude and tempo. The assessment of the developmental tempo thus is an integral part of assessing child and adolescent growth. Though an Internet portal is currently available to process small amounts of height data (www.willi-will-wachsen.com) for separately determining amplitude and tempo in growth, there is urgent need of better and practical solutions for analyzing individual growth.
Amplitude death of identical oscillators in networks with direct coupling
NASA Astrophysics Data System (ADS)
Illing, Lucas
2016-08-01
It is known that amplitude death can occur in networks of coupled identical oscillators if they interact via diffusive time-delayed coupling links. Here we consider networks of oscillators that interact via direct time-delayed coupling links. It is shown analytically that amplitude death is impossible for directly coupled Stuart-Landau oscillators, in contradistinction to the case of diffusive coupling. We demonstrate that amplitude death in the strict sense does become possible in directly coupled networks if the node dynamics is governed by second-order delay differential equations. Finally, we analyze in detail directly coupled nodes whose dynamics are described by first-order delay differential equations and find that, while amplitude death in the strict sense is impossible, other interesting oscillation quenching scenarios exist.
Laser beam complex amplitude measurement by phase diversity.
Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph
2014-02-24
The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.
Grassmannian origin of scattering amplitudes
NASA Astrophysics Data System (ADS)
Trnka, Jaroslav
Quantum field theory (QFT) is our central theoretical framework to describe the microscopic world, arising from the union of quantum mechanics and special relativity. Since QFTs play such a central role in our understanding of Nature, a deeper study of their physical properties is one of the most exciting directions of research in theoretical physics. This has led to the discovery of many important theoretical concepts, such as supersymmetry and string theory. One of the most prominent physical observable in any QFT is the scattering amplitude, which describes scattering processes of elementary particles. Theoretical progress in understanding and computing scattering amplitudes has accelerated in last few years with the discovery of amazing new mathematical structures in a close cousin of QCD, known as N=4 Super-Yang-Mills theory (SYM). In the first chapter we study integrands of loop amplitudes in planar N=4 SYM and show their astonishing simplicity when written in terms of special set of chiral integrals. In chapter two we show how to reconstruct the multi-loop integrand recursively starting from tree-level amplitudes. This approach makes the long-hidden Yangian symmetry of the theory completely manifest and provides a Lagrangian-independent approach for determining the integrand at any loop order. In chapter three we demonstrate that the problem of calculating of scattering amplitudes in planar N=4 SYM can be completely reformulated in a new framework in terms of on-shell diagrams and integrals over the positive Grassmannian G(k,n). Remarkably, the building blocks for amplitudes play a fundamental role in an active area of research in mathematics spanning algebraic geometry to combinatorics. In chapter four we sketch the argument that the amplitude itself is represented by a single geometrical object defined purely using a new striking property -- positivity -- and all physical concepts like unitarity and locality emerge as derived concepts, each having a sharp
NASA Astrophysics Data System (ADS)
Milton, Graeme W.
2016-11-01
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p. If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p. For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.
Milton, Graeme W
2016-11-01
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p. If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p. For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90(°) rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.
Lorentzian proper vertex amplitude: Asymptotics
NASA Astrophysics Data System (ADS)
Engle, Jonathan; Vilensky, Ilya; Zipfel, Antonia
2016-09-01
In previous work, the Lorentzian proper vertex amplitude for a spin-foam model of quantum gravity was derived. In the present work, the asymptotics of this amplitude are studied in the semiclassical limit. The starting point of the analysis is an expression for the amplitude as an action integral with action differing from that in the Engle-Pereira-Rovelli-Livine (EPRL) case by an extra "projector" term. This extra term scales linearly with spins only in the asymptotic limit, and is discontinuous on a (lower dimensional) submanifold of the integration domain in the sense that its value at each such point depends on the direction of approach. New tools are introduced to generalize stationary phase methods to this case. For the case of boundary data which can be glued to a nondegenerate Lorentzian 4-simplex, the asymptotic limit of the amplitude is shown to equal the single Feynman term, showing that the extra term in the asymptotics of the EPRL amplitude has been eliminated.
Optical factors influencing the amplitude of accommodation.
López-Alcón, Diego; Marín-Franch, Iván; Fernández-Sánchez, Vicente; López-Gil, Norberto
2016-09-23
The purpose of this work was to find plausible predictors among optical parameters that may explain the inter-individual differences in subjective amplitude of accommodation not explained by age. An exploratory multivariable regression analysis was carried out retrospectively on a dataset with 180 eyes from 97 subjects (ages ranged from 20 to 58years). Subjective amplitudes of accommodation were recorded with the use of a custom-made Badal system. A commercial aberrometer was used to obtain each eye's wavefront during the full range of accommodation. The plausible predictors under study were pupil diameter in the unaccommodated eye, its reduction with accommodation; fourth- and six-order Zernike spherical aberration, their reduction with accommodation, and subjective refraction. At a significance level of 0.05, only fourth- and sixth-order Zernike spherical aberration were found to be predictors of subjective amplitude of accommodation not explained by age, each explaining on their own less than 5% of the variance, and about 9% together. All other optical parameters explained less than 2%. Spherical aberration did not explain the greater variability for younger eyes than for older eyes. The remainder variability in amplitude of accommodation not explained by age or spherical aberration was about ±2.6D for 20year-old subjects, ±1.5D for 40year-old subjects, and about ±0.6D for 55year-old subjects. Optical factors do not seem to account for much of the inter-individual differences in subjective amplitude of accommodation. Most of the variability not explained by age must be due to anatomical differences and physiological, psychological, or other factors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Factorization of chiral string amplitudes
NASA Astrophysics Data System (ADS)
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
2016-09-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
All Tree-level Amplitudes in Massless QCD
Dixon, Lance J.; Henn, Johannes M.; Plefka, Jan; Schuster, Theodor; /Humboldt U., Berlin
2010-10-25
We derive compact analytical formulae for all tree-level color-ordered gauge theory amplitudes involving any number of external gluons and up to three massless quark-anti-quark pairs. A general formula is presented based on the combinatorics of paths along a rooted tree and associated determinants. Explicit expressions are displayed for the next-to-maximally helicity violating (NMHV) and next-to-next-to-maximally helicity violating (NNMHV) gauge theory amplitudes. Our results are obtained by projecting the previously-found expressions for the super-amplitudes of the maximally supersymmetric Yang-Mills theory (N = 4 SYM) onto the relevant components yielding all gluon-gluino tree amplitudes in N = 4 SYM. We show how these results carry over to the corresponding QCD amplitudes, including massless quarks of different flavors as well as a single electroweak vector boson. The public Mathematica package GGT is described, which encodes the results of this work and yields analytical formulae for all N = 4 SYM gluon-gluino trees. These in turn yield all QCD trees with up to four external arbitrary-flavored massless quark-anti-quark-pairs.
One-Loop Helicity Amplitudes for tt Production at Hadron Colliders
Badger, Simon; Sattler, Ralf; Yundin, Valery
2011-04-01
We present compact analytic expressions for all one-loop helicity amplitudes contributing to tt production at hadron colliders. Using recently developed generalized unitarity methods and a traditional Feynman based approach we produce a fast and flexible implementation.
Calculation of the Scattering Amplitude Without Partial Wave Expansion
NASA Technical Reports Server (NTRS)
Shertzer, J.; Temkin, Aaron; Fisher, Richard R. (Technical Monitor)
2001-01-01
Two developments in the direct calculation of the angular differential scattering amplitude have been implemented: (a) The integral expansion of the scattering amplitude is simplified by analytically integration over the azimuthal angle. (b) The resulting integral as a function of scattering angle is calculated by using the numerically generated wave function from a finite element method calculation. Results for electron-hydrogen scattering in the static approximation will be shown to be as accurate as a partial wave expansion with as many l's as is necessary for convergence at the incident energy being calculated.
Closed-form decomposition of one-loop massive amplitudes
Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo
2008-07-15
We present formulas for the coefficients of 2-, 3-, 4-, and 5-point master integrals for one-loop massive amplitudes. The coefficients are derived from unitarity cuts in D dimensions. The input parameters can be read off from any unitarity-cut integrand, as assembled from tree-level expressions, after simple algebraic manipulations. The formulas presented here are suitable for analytical as well as numerical evaluation. Their validity is confirmed in two known cases of helicity amplitudes contributing to gg{yields}gg and gg{yields}gH, where the masses of the Higgs and the fermion circulating in the loop are kept as free parameters.
Large amplitude drop shape oscillations
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Wang, T. G.
1982-01-01
An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.
Toward complete pion nucleon amplitudes
Mathieu, Vincent; Danilkin, Igor V.; Fernández-Ramírez, Cesar; ...
2015-10-05
We compare the low-energy partial wave analyses πN scattering with a high-energy data via finite energy sum rules. We also construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and then reconstruct the real parts using dispersion relations.
Toward complete pion nucleon amplitudes
Mathieu, Vincent; Danilkin, Igor V.; Fernández-Ramírez, Cesar; Pennington, Michael R.; Schott, Diane M.; Szczepaniak, Adam P.; Fox, G.
2015-10-05
We compare the low-energy partial wave analyses πN scattering with a high-energy data via finite energy sum rules. We also construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and then reconstruct the real parts using dispersion relations.
NASA Astrophysics Data System (ADS)
Pchelkin, Vladimir; Beloglazov, Mikhail
The distributions of the amplitudes of natural emissions of electromagnetic field in the Shu-mann resonance frequency range are investigated. From the data of Lovozero observatory daily variations of the number of overshoots of signal amplitude above given thresholds were con-structed. A possibility is discussed of applicability for the considered frequency range a known from the literature formula, which describes analytically the peak distribution of the spherics. We note the influence of magnetic disturbances on amplitude distribution function.
Stochastic heating of electrons by a large-amplitude extraordinary wave in plasma
Krasovitskiy, V. B.; Turikov, V. A.
2010-12-15
Stochastic heating of plasma electrons by a large-amplitude electromagnetic wave propagating across a strong external magnetic field is studied theoretically and numerically. An analytic estimate of the threshold wave amplitude at which heating begins is obtained. The dependence of the average electron energy on the magnetic field and plasma density is investigated using particle-in-cell simulations.
High frequency amplitude detector for GMI magnetic sensors.
Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul
2014-12-19
A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.
High Frequency Amplitude Detector for GMI Magnetic Sensors
Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul
2014-01-01
A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003
NASA Technical Reports Server (NTRS)
Flannelly, W. G.; Fabunmi, J. A.; Nagy, E. J.
1981-01-01
Analytical methods for combining flight acceleration and strain data with shake test mobility data to predict the effects of structural changes on flight vibrations and strains are presented. This integration of structural dynamic analysis with flight performance is referred to as analytical testing. The objective of this methodology is to analytically estimate the results of flight testing contemplated structural changes with minimum flying and change trials. The category of changes to the aircraft includes mass, stiffness, absorbers, isolators, and active suppressors. Examples of applying the analytical testing methodology using flight test and shake test data measured on an AH-1G helicopter are included. The techniques and procedures for vibration testing and modal analysis are also described.
Scattering amplitudes over finite fields and multivariate functional reconstruction
NASA Astrophysics Data System (ADS)
Peraro, Tiziano
2016-12-01
Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of independent helicity configurations.
Pulse amplitude modulated chlorophyll fluorometer
Greenbaum, Elias; Wu, Jie
2015-12-29
Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.
Genus dependence of superstring amplitudes
Davis, Simon
2006-11-15
The problem of the consistency of the finiteness of the supermoduli space integral in the limit of vanishing super-fixed point distance and the genus-dependence of the integral over the super-Schottky coordinates in the fundamental region containing a neighborhood of |K{sub n}|=0 is resolved. Given a choice of the categories of isometric circles representing the integration region, the exponential form of bounds for superstring amplitudes is derived.
Phase variation of hadronic amplitudes
Dedonder, J.-P.; Gibbs, W. R.; Nuseirat, Mutazz
2008-04-15
The phase variation with angle of hadronic amplitudes is studied with a view to understanding the underlying physical quantities that control it and how well it can be determined in free space. We find that unitarity forces a moderately accurate determination of the phase in standard amplitude analyses but that the nucleon-nucleon analyses done to date do not give the phase variation needed to achieve a good representation of the data in multiple scattering calculations. Models are examined that suggest its behavior near forward angles is related to the radii of the real and absorptive parts of the interaction. The dependence of this phase on model parameters is such that if these radii are modified in the nuclear medium (in combination with the change due to the shift in energy of the effective amplitude in the medium) then the larger magnitudes of the phase needed to fit the data might be attainable but only for negative values of the phase variation parameter.
Finite amplitude effects on drop levitation for material properties measurement
NASA Astrophysics Data System (ADS)
Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn
2017-05-01
The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.
Superstring disk amplitudes in a rolling tachyon background
Jokela, Niko; Majumder, Jaydeep; Keski-Vakkuri, Esko
2006-02-15
We study the tree level scattering or emission of n closed superstrings from a decaying non-BPS brane in Type II superstring theory. We attempt to calculate generic n-point superstring disk amplitudes in the rolling tachyon background. We show that these can be written as infinite power series of Toeplitz determinants, related to expectation values of a periodic function in Circular Unitary Ensembles. Further analytical progress is possible in the special case of bulk-boundary disk amplitudes. These are interpreted as probability amplitudes for emission of a closed string with initial conditions perturbed by the addition of an open string vertex operator. This calculation has been performed previously in bosonic string theory, here we extend the analysis for superstrings. We obtain a result for the average energy of closed superstrings produced in the perturbed background.
Radiation Belt Electron Dynamics Driven by Large-Amplitude Whistlers
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, T. K.
2013-01-01
Acceleration of radiation belt electrons driven by oblique large-amplitude whistler waves is studied. We show analytically and numerically that this is a stochastic process; the intensity of which depends on the wave power modified by Bessel functions. The type of this dependence is determined by the character of the nonlinear interaction due to coupling between action and phase. The results show that physically significant quantities have a relatively weak dependence on the wave power.
Radiation Belt Electron Dynamics Driven by Large-Amplitude Whistlers
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, T. K.
2013-01-01
Acceleration of radiation belt electrons driven by oblique large-amplitude whistler waves is studied. We show analytically and numerically that this is a stochastic process; the intensity of which depends on the wave power modified by Bessel functions. The type of this dependence is determined by the character of the nonlinear interaction due to coupling between action and phase. The results show that physically significant quantities have a relatively weak dependence on the wave power.
Crisis in Amplitude Control Hides in Multistability
NASA Astrophysics Data System (ADS)
Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan
2016-12-01
A crisis of amplitude control can occur when a system is multistable. This paper proposes a new chaotic system with a line of equilibria to demonstrate the threat to amplitude control from multistability. The new symmetric system has two coefficients for amplitude control, one of which is a partial amplitude controller, while the other is a total amplitude controller that simultaneously controls the frequency. The amplitude parameter rescales the basins of attraction and triggers a state switch among different states resulting in a failure of amplitude control to the desired state.
Calculation of multi-loop superstring amplitudes
NASA Astrophysics Data System (ADS)
Danilov, G. S.
2016-12-01
The multi-loop interaction amplitudes in the closed, oriented superstring theory are obtained by the integration of local amplitudes. The local amplitude is represented by a sum over the spinning string local amplitudes. The spinning string local amplitudes are given explicitly through super-Schottky group parameters and through interaction vertex coordinates on the (1| 1) complex, non-split supermanifold. The obtained amplitudes are free from divergences. They are consistent with the world-sheet spinning string symmetries. The vacuum amplitude vanishes along with 1-, 2- and 3-point amplitudes of massless states. The vanishing of the above-mentioned amplitude occurs after the integration of the corresponding local amplitude has been performed over the super-Schottky group limiting points and over interaction vertex coordinate, except for those (3| 2) variables which are fixed due to SL(2)-symmetry.
The Determination of Pseudoscalar Meson Photoproduction Amplitudes from Complete Experiments
A. M. Sandorfi, S. Hoblit, H. Kamano, and T-S. H. Lee
2011-10-01
A new generation of complete experiments is currently underway with the goal of performing a high precision extraction of pseudoscalar meson photo-production amplitudes. Here we review the most general analytic form of the cross section, dependent upon the three polarization vectors of the beam, target and recoil baryon, including all single, double and triple-polarization terms involving 16 spin-dependent observables. Analytic expressions that determine the recoil baryon polarization are also presented. Different conventions are in use in the literature and we have used a numerical calculation of cross sections from Chew-Goldberger-Low-Nambu amplitudes with arbitrary spin projections to clarify apparent sign differences. As an illustration of the use of this machinery, we carry out a multipole analysis of the gammap --> K+Lambda reaction and examine the impact of recently published polarization measurements. In fitting multipoles, we use a combined Monte Carlo sampling of the amplitude space, with gradient minimization, and find a shallow chi2 valley pitted with a very large number of local minima, despite the inclusion of recent data on 8 different observables. We conclude that, while a mathematical solution to the problem of determining an amplitude free of ambiguities may require 8 observables, as has been pointed out in the literature, experiments with realistically achievable uncertainties will require a significantly larger number.
Bootstrapping an NMHV amplitude through three loops
NASA Astrophysics Data System (ADS)
Dixon, Lance J.; von Hippel, Matt
2014-10-01
We extend the hexagon function bootstrap to the next-to-maximally-helicity-violating (NMHV) configuration for six-point scattering in planar = 4 super-Yang-Mills theory at three loops. Constraints from the differential equation, from the operator product expansion (OPE) for Wilson loops with operator insertions, and from multi-Regge factorization, lead to a unique answer for the three-loop ratio function. The three-loop result also predicts additional terms in the OPE expansion, as well as the behavior of NMHV amplitudes in the multi-Regge limit at one higher logarithmic accuracy (NNLL) than was used as input. Both predictions are in agreement with recent results from the flux-tube approach. We also study the multi-particle factorization of multi-loop amplitudes for the first time. We find that the function controlling this factorization is purely logarithmic through three loops. We show that a function U , which is closely related to the parity-even part of the ratio function V , is remarkably simple; only five of the nine possible final entries in its symbol are non-vanishing. We study the analytic and numerical behavior of both the parity-even and parity-odd parts of the ratio function on simple lines traversing the space of cross ratios ( u, v, w), as well as on a few two-dimensional planes. Finally, we present an empirical formula for V in terms of elements of the coproduct of the six-gluon MHV remainder function R 6 at one higher loop, which works through three loops for V (four loops for R 6).
Nonlinear amplitude approximation for bilinear systems
NASA Astrophysics Data System (ADS)
Jung, Chulwoo; D'Souza, Kiran; Epureanu, Bogdan I.
2014-06-01
An efficient method to predict vibration amplitudes at the resonant frequencies of dynamical systems with piecewise-linear nonlinearity is developed. This technique is referred to as bilinear amplitude approximation (BAA). BAA constructs a single vibration cycle at each resonant frequency to approximate the periodic steady-state response of the system. It is postulated that the steady-state response is piece-wise linear and can be approximated by analyzing the response over two time intervals during which the system behaves linearly. Overall the dynamics is nonlinear, but the system is in a distinct linear state during each of the two time intervals. Thus, the approximated vibration cycle is constructed using linear analyses. The equation of motion for analyzing the vibration of each state is projected along the overlapping space spanned by the linear mode shapes active in each of the states. This overlapping space is where the vibratory energy is transferred from one state to the other when the system switches from one state to the other. The overlapping space can be obtained using singular value decomposition. The space where the energy is transferred is used together with transition conditions of displacement and velocity compatibility to construct a single vibration cycle and to compute the amplitude of the dynamics. Since the BAA method does not require numerical integration of nonlinear models, computational costs are very low. In this paper, the BAA method is first applied to a single-degree-of-freedom system. Then, a three-degree-of-freedom system is introduced to demonstrate a more general application of BAA. Finally, the BAA method is applied to a full bladed disk with a crack. Results comparing numerical solutions from full-order nonlinear analysis and results obtained using BAA are presented for all systems.
Not Available
2006-06-01
In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.
Design of optimal binary phase and amplitude filters for maximization of correlation peak sharpness
NASA Technical Reports Server (NTRS)
Downie, John D.
1991-01-01
Current binary-phase filters used for optical correlation are usually assumed to have uniform amplitude transmission. Here, a new type of filter is studied, the binary-phase-and-amplitude filter. If binary phase values of 0 and pi are assumed, the amplitude transmittance values of this type of filter can be optimized to maximize the peak sharpness. For a polarization-encoded binary-phase filter this can be translated into optimization of the rotation angle of the output polarizer following the filter-spatial-light modulator. An analytic expression is presented for the optimum polarizer angle and thus for the optimum binary-phase-and-amplitude filter design.
Design of optimal binary phase and amplitude filters for maximization of correlation peak sharpness
NASA Technical Reports Server (NTRS)
Downie, John D.
1991-01-01
Current binary-phase filters used for optical correlation are usually assumed to have uniform amplitude transmission. Here, a new type of filter is studied, the binary-phase-and-amplitude filter. If binary phase values of 0 and pi are assumed, the amplitude transmittance values of this type of filter can be optimized to maximize the peak sharpness. For a polarization-encoded binary-phase filter this can be translated into optimization of the rotation angle of the output polarizer following the filter-spatial-light modulator. An analytic expression is presented for the optimum polarizer angle and thus for the optimum binary-phase-and-amplitude filter design.
Forecasting Wave Amplitudes after the Arrival of a Tsunami
NASA Astrophysics Data System (ADS)
Nyland, David; Huang, Paul
2014-12-01
The destructive Pacific Ocean tsunami generated off the east coast of Honshu, Japan, on 11 March 2011 prompted the West Coast and Alaska Tsunami Warning Center (WCATWC) to issue a tsunami warning and advisory for the coastal regions of Alaska, British Columbia, Washington, Oregon, and California. Estimating the length of time the warning or advisory would remain in effect proved difficult. To address this problem, the WCATWC developed a technique to estimate the amplitude decay of a tsunami recorded at tide stations within the Warning Center's Area of Responsibly (AOR). At many sites along the West Coast of North America, the tsunami wave amplitudes will decay exponentially following the arrival of the maximum wave ( Mofjeld et al., Nat Hazards 22:71-89, 2000). To estimate the time it will take before wave amplitudes drop to safe levels, the real-time tide gauge data are filtered to remove the effects of tidal variations. The analytic envelope is computed and a 2 h sequence of amplitude values following the tsunami peak is used to obtain a least squares fit to an exponential function. This yields a decay curve which is then combined with an average West Coast decay function to provide an initial tsunami amplitude-duration forecast. This information may then be provided to emergency managers to assist with response planning.
Mathematical Aspects of Scattering Amplitudes
NASA Astrophysics Data System (ADS)
Duhr, Claude
In these lectures we discuss some of the mathematical structures that appear when computing multi-loop Feynman integrals. We focus on a specific class of special functions, the so-called multiple polylogarithms, and introduce their Hopf algebra structure. We show how these mathematical concepts are useful in physics by illustrating on several examples how these algebraic structures are useful to perform analytic computations of loop integrals, in particular to derive functional equations among polylogarithms.
A generalized fidelity amplitude for open systems.
Gorin, T; Moreno, H J; Seligman, T H
2016-06-13
We consider a central system which is coupled via dephasing to an open system, i.e. an intermediate system which in turn is coupled to another environment. Considering the intermediate and far environment as one composite system, the coherences in the central system are given in the form of fidelity amplitudes for a certain perturbed echo dynamics in the composite environment. On the basis of the Born-Markov approximation, we derive a master equation for the reduction of that dynamics to the intermediate system alone. In distinction to an earlier paper (Moreno et al 2015 Phys. Rev. A 92, 030104. (doi:10.1103/PhysRevA.92.030104)), where we discussed the stabilizing effect of the far environment on the decoherence in the central system, we focus here on the possibility of using the measurable coherences in the central system for probing the open quantum dynamics in the intermediate system. We illustrate our results for the case of chaotic dynamics in the near environment, where we compare random matrix simulations with our analytical result. © 2016 The Author(s).
N >= 4 Supergravity Amplitudes from Gauge Theory at Two Loops
Boucher-Veronneau, C.; Dixon, L.J.; /SLAC
2012-02-15
We present the full two-loop four-graviton amplitudes in N = 4, 5, 6 supergravity. These results were obtained using the double-copy structure of gravity, which follows from the recently conjectured color-kinematics duality in gauge theory. The two-loop four-gluon scattering amplitudes in N = 0, 1, 2 supersymmetric gauge theory are a second essential ingredient. The gravity amplitudes have the expected infrared behavior: the two-loop divergences are given in terms of the squares of the corresponding one-loop amplitudes. The finite remainders are presented in a compact form. The finite remainder for N = 8 supergravity is also presented, in a form that utilizes a pure function with a very simple symbol.
Large amplitude relativistic plasma waves
Coffey, Timothy
2010-05-15
Relativistic, longitudinal plasma oscillations are studied for the case of a simple water bag distribution of electrons having cylindrical symmetry in momentum space with the axis of the cylinder parallel to the velocity of wave propagation. The plasma is required to obey the relativistic Vlasov-Poisson equations, and solutions are sought in the wave frame. An exact solution for the plasma density as a function of the electrostatic field is derived. The maximum electric field is presented in terms of an integral over the known density. It is shown that when the perpendicular momentum is neglected, the maximum electric field approaches infinity as the wave phase velocity approaches the speed of light. It is also shown that for any nonzero perpendicular momentum, the maximum electric field will remain finite as the wave phase velocity approaches the speed of light. The relationship to previously published solutions is discussed as is some recent controversy regarding the proper modeling of large amplitude relativistic plasma waves.
Expansion of Einstein-Yang-Mills amplitude
NASA Astrophysics Data System (ADS)
Fu, Chih-Hao; Du, Yi-Jian; Huang, Rijun; Feng, Bo
2017-09-01
In this paper, we study from various perspectives the expansion of tree level single trace Einstein-Yang-Mills amplitudes into linear combination of color-ordered Yang-Mills amplitudes. By applying the gauge invariance principle, a programable recursive construction is devised to expand EYM amplitude with arbitrary number of gravitons into EYM amplitudes with fewer gravitons. Based on this recursive technique we write down the complete expansion of any single trace EYM amplitude in the basis of color-order Yang-Mills amplitude. As a byproduct, an algorithm for constructing a polynomial form of the BCJ numerator for Yang-Mills amplitudes is also outlined in this paper. In addition, by applying BCFW recursion relation we show how to arrive at the same EYM amplitude expansion from the on-shell perspective. And we examine the EYM expansion using KLT relations and show how to evaluate the expansion coefficients efficiently.
Constructing amplitudes from their soft limits
NASA Astrophysics Data System (ADS)
Boucher-Veronneau, Camille; Larkoski, Andrew J.
2011-09-01
The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an ( n - 1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which "soft" particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.
Constructing Amplitudes from Their Soft Limits
Boucher-Veronneau, Camille; Larkoski, Andrew J.; /SLAC
2011-12-09
The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an (n-1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which 'soft' particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.
All one-loop maximally helicity violating gluonic amplitudes in QCD
NASA Astrophysics Data System (ADS)
Berger, Carola F.; Bern, Zvi; Dixon, Lance J.; Forde, Darren; Kosower, David A.
2007-01-01
We use on-shell recursion relations to compute analytically the one-loop corrections to maximally helicity-violating n-gluon amplitudes in QCD. The cut-containing parts have been computed previously; our work supplies the remaining rational parts for these amplitudes, which contain two gluons of negative helicity and the rest positive, in an arbitrary color ordering. We also present formulae specific to the six-gluon cases with helicities (-+-+++) and (-++-++), as well as numerical results for six, seven, and eight gluons. Our construction of the n-gluon amplitudes illustrates the relatively modest growth in complexity of the on-shell-recursive calculation as the number of external legs increases. These amplitudes add to the growing body of one-loop amplitudes known for all n, which are useful for studies of general properties of amplitudes, including their twistor-space structure.
All One-loop Maximally Helicity Violating Gluonic Amplitudes in QCD
Berger, Carola F.; Bern, Zvi; Dixon, Lance J.; Forde, Darren; Kosower, David A.
2006-07-05
We use on-shell recursion relations to compute analytically the one-loop corrections to maximally-helicity-violating n-gluon amplitudes in QCD. The cut-containing parts have been computed previously; our work supplies the remaining rational parts for these amplitudes, which contain two gluons of negative helicity and the rest positive, in an arbitrary color ordering. We also present formulae specific to the six-gluon cases, with helicities (-+-+++) and (-++-++), as well as numerical results for six, seven, and eight gluons. Our construction of the n-gluon amplitudes illustrates the relatively modest growth in complexity of the on-shell-recursive calculation as the number of external legs increases. These amplitudes add to the growing body of one-loop amplitudes known for all n, which are useful for studies of general properties of amplitudes, including their twistor-space structure.
Lewis, D.W. . Dept. of Geology); McConchie, D.M. . Centre for Coastal Management)
1994-01-01
Both a self instruction manual and a cookbook'' guide to field and laboratory analytical procedures, this book provides an essential reference for non-specialists. With a minimum of mathematics and virtually no theory, it introduces practitioners to easy, inexpensive options for sample collection and preparation, data acquisition, analytic protocols, result interpretation and verification techniques. This step-by-step guide considers the advantages and limitations of different procedures, discusses safety and troubleshooting, and explains support skills like mapping, photography and report writing. It also offers managers, off-site engineers and others using sediments data a quick course in commissioning studies and making the most of the reports. This manual will answer the growing needs of practitioners in the field, either alone or accompanied by Practical Sedimentology, which surveys the science of sedimentology and provides a basic overview of the principles behind the applications.
Tsunami Focusing and Leading Amplitude
NASA Astrophysics Data System (ADS)
Kanoglu, U.
2016-12-01
Tsunamis transform substantially through spatial and temporal spreading from their source region. This substantial spreading might result unique maximum tsunami wave heights which might be attributed to the source configuration, directivity, the waveguide structures of mid-ocean ridges and continental shelves, focusing and defocusing through submarine seamounts, random focusing due to small changes in bathymetry, dispersion, and, most likely, combination of some of these effects. In terms of the maximum tsunami wave height, after Okal and Synolakis (2016 Geophys. J. Int. 204, 719-735), it is clear that dispersion would be one of the reasons to drive the leading wave amplitude in a tsunami wave train. Okal and Synolakis (2016), referring to this phenomenon as sequencing -later waves in the train becoming higher than the leading one, considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp) formalism, in addition to LeMéhauté and Wang's (1995 Water waves generated by underwater explosion, World Scientific, 367 pp), to evaluate linear dispersive tsunami propagation from a circular plug uplifted on an ocean of constant depth. They identified transition distance, as the second wave being larger, performing parametric study for the radius of the plug and the depth of the ocean. Here, we extend Okal and Synolakis' (2016) analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave (Tadepalli and Synolakis, 1994 Proc. R. Soc. A: Math. Phys. Eng. Sci. 445, 99-112). First, we investigate the focusing feature in the leading-depression side, which enhance tsunami wave height as presented by Kanoglu et al. (2013 Proc. R. Soc. A: Math. Phys. Eng. Sci. 469, 20130015). We then discuss the results in terms of leading wave amplitude presenting a parametric study and identify a simple relation for the transition distance. The solution presented here could be used to better analyze dispersive
Deka, C; Sklar, L A; Steinkamp, J A
1994-09-01
We have developed a method for fluorescence lifetime measurements in a flow cytometer based upon the amplitude demodulation of the fluorescence signals using digital data acquisition techniques. Amplitude demodulation is one of the two methods by which excited state lifetimes may be investigated in the frequency domain. The other method involves the phase-shift measurements. In frequency-domain measurement techniques, the amplitude-demodulation and phase-shift data serve mutually complementary roles to enhance the analytical capabilities of the measurements. The purpose of having amplitude demodulation measurement capability is to obtain information that supplements, rather than replaces, that obtained by the phase-shift method alone. Application of amplitude demodulation measurements has been widely explored in static, cuvette-based, frequency domain systems. However, due to time dependence of the amplitude of the modulated fluorescence signal in a flow cytometer, the amplitude demodulation measurements in flow turns out to be more complicated than similar measurements in a static system. The goal of the present work is to explore the problems involved in amplitude demodulation measurements in flow (using digital method), through detailed theoretical modeling and use the model to develop a practical method that can be incorporated into a flow cytometer to measure amplitude modulation lifetimes. We experimentally verify the amplitude demodulation measurement capability of this method using fluorescent microspheres. The experimental measurements show good agreement with static frequency-domain measurements on microspheres in bulk suspensions.
Leading Wave Amplitude of a Tsunami
NASA Astrophysics Data System (ADS)
Kanoglu, U.
2015-12-01
Okal and Synolakis (EGU General Assembly 2015, Geophysical Research Abstracts-Vol. 17-7622) recently discussed that why the maximum amplitude of a tsunami might not occur for the first wave. Okal and Synolakis list observations from 2011 Japan tsunami, which reached to Papeete, Tahiti with a fourth wave being largest and 72 min later after the first wave; 1960 Chilean tsunami reached Hilo, Hawaii with a maximum wave arriving 1 hour later with a height of 5m, first wave being only 1.2m. Largest later waves is a problem not only for local authorities both in terms of warning to the public and rescue efforts but also mislead the public thinking that it is safe to return shoreline or evacuated site after arrival of the first wave. Okal and Synolakis considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) linear dispersive analytical solution with a tsunami generation through an uplifting of a circular plug on the ocean floor. They performed parametric study for the radius of the plug and the depth of the ocean since these are the independent scaling lengths in the problem. They identified transition distance, as the second wave being larger, regarding the parameters of the problem. Here, we extend their analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave as presented by Tadepalli and Synolakis (1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112). We compare our results with non-dispersive linear shallow water wave results as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015), investigating focusing feature. We discuss the results both in terms of leading wave amplitude and tsunami focusing. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk
Light-Front Holography and Hadronization at the Amplitude Level
Brodsky, Stanley J.; Teramond, Guy F. de; Shrock, Robert
2008-10-13
The correspondence between theories in anti-de Sitter space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. Light-front holography is a remarkable feature of AdS/CFT: it allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates and the behavior of the QCD coupling in the infrared. We suggest that the spatial support of QCD condensates is restricted to the interior of hadrons, since they arise due to the interactions of confined quarks and gluons. Chiral symmetry is thus broken in a limited domain of size 1/m{sub {pi}}, in analogy to the limited physical extent of superconductor phases. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.
Light-Front Holography and Hadronization at the Amplitude Level
Brodsky, Stanley J.; de Teramond, Guy; Shrock, Robert
2008-07-25
The correspondence between theories in anti-de Sitter space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. Light-front holography is a remarkable feature of AdS/CFT: it allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates and the behavior of the QCD coupling in the infrared. We suggest that the spatial support of QCD condensates is restricted to the interior of hadrons, since they arise due to the interactions of confined quarks and gluons. Chiral symmetry is thus broken in a limited domain of size 1=m{sub {pi}} in analogy to the limited physical extent of superconductor phases. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.
Renormalization of position space amplitudes in a massless QFT
NASA Astrophysics Data System (ADS)
Todorov, Ivan
2017-03-01
Ultraviolet renormalization of position space massless Feynman amplitudes has been shown to yield associate homogeneous distributions. Their degree is determined by the degree of divergence while their order—the highest power of logarithm in the dilation anomaly—is given by the number of (sub)divergences. In the present paper we review these results and observe that (convergent) integration over internal vertices does not alter the total degree of (superficial) ultraviolet divergence. For a conformally invariant theory internal integration is also proven to preserve the order of associate homogeneity. The renormalized 4-point amplitudes in the φ4 theory (in four space-time dimensions) are written as (non-analytic) translation invariant functions of four complex variables with calculable conformal anomaly. Our conclusion concerning the (off-shell) infrared finiteness of the ultraviolet renormalized massless φ4 theory agrees with the old result of Lowenstein and Zimmermann [23].
Full-Color Plasmonic Metasurface Holograms.
Wan, Weiwei; Gao, Jie; Yang, Xiaodong
2016-12-27
Holography is one of the most attractive approaches for reconstructing optical images, due to its capability of recording both the amplitude and phase information on light scattered from objects. Recently, optical metasurfaces for manipulating the wavefront of light with well-controlled amplitude, phase, and polarization have been utilized to reproduce computer-generated holograms. However, the currently available metasurface holograms have only been designed to achieve limited colors and record either amplitude or phase information. This fact significantly limits the performance of metasurface holograms to reconstruct full-color images with low noise and high quality. Here, we report the design and realization of ultrathin plasmonic metasurface holograms made of subwavelength nanoslits for reconstructing both two- and three-dimensional full-color holographic images. The wavelength-multiplexed metasurface holograms with both amplitude and phase modulations at subwavelength scale can faithfully produce not only three primary colors but also their secondary colors. Our results will advance various holographic applications.
The relationship between sensory latency and amplitude.
Bodofsky, Elliot B; Cohen, Stephen J; Kumar, Rohini J; Schindelheim, Adam; Gaughan, John
2016-12-01
To prove that the relationship between sensory latencies and amplitudes is useful in determining the severity of neuropathies. This is achieved by deriving a mathematical relationship between sensory distal latency and amplitude. Determine whether sensory amplitudes below predicted correlate with a worse pathology. Patients seen for Nerve Conduction Studies by the Department of Physical Medicine and Rehabilitation at Cooper University Hospital between 12/1/12 and 12/31/14 were invited to participate in a prospective database. The median, ulnar and sural sensory latencies and amplitudes were analyzed with both linear and power regression. Patients with amplitudes above and below the regression curve were compared for latency, amplitude and velocity of other nerves. Carpal Tunnel Patients were analyzed to determine whether Median sensory amplitude below predicted correlated with more severe disease. For the Median nerve, Power Regression Analysis showed a stronger correlation (R(2)=0.54) than linear regression (R(2)=0.34). Patients with Median sensory amplitude below the power correlation curve showed significantly longer ulnar sensory latency, and lower sensory amplitude than those above. Carpal Tunnel Syndrome patients with Median sensory amplitude well below predicted by the power relationship showed more advanced disease. For the ulnar and sural sensory nerve, the difference between power and linear regression was not significant. A power regression curve correlates sensory latency and amplitude better than linear regression. The latency amplitude relationship correlates with other parameters of nerve function and severity of Carpal Tunnel Syndrome. This implies that below predicted sensory amplitude may indicate worse disease, and could be a useful diagnostic tool. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
General set of traveling-wave solutions for amplitude equations in the phase field crystal model
NASA Astrophysics Data System (ADS)
Nizovtseva, I. G.; Galenko, P. K.
2017-04-01
Fronts dynamics of periodic crystalline state, which invades the homogeneous state (liquid phase), are analysed. These fronts are considered as traveling waves of atomic density amplitudes. The propagation of amplitudes is described by the hyperbolic equation of an extended Allen-Cahn type for which the complete set of analytical traveling-wave solutions are obtained by tanh-method. The set of solutions includes previously known traveling waves for the parabolic Allen-Cahn equation of both extended and standard form.
Full and empty spaces in the analytic process.
Perelberg, Rosine Jozef
2003-06-01
In this paper the author discusses two categories of patients which differ in terms of the impact they have in the countertransference. On the one hand, there are patients who create an empty space in the analyst's mind. The response they provoke is a kind of depressive feeling that remains after they leave. The patient may bring dreams and associations, but they do not reverberate in the analyst's mind. The experience is of dryness, a dearth of memory, which may--at times--leave the analyst with a sense of exclusion from the patient's internal world. At the other extreme, there are patients who fill the consulting room. They do that with their words, dreams and associations but also with their emotions and their actions. The experience is that the analyst is over-included in the patient's world. They have dreams that directly refer to the analyst and the analyst feels consistently involved in the patient's analysis. The pathway through which the analyst can understand both these types of patients is via the countertransference or, to put it another way, the analyst's passion. In 'Analysis terminable and interminable' Freud suggested that the bedrock of any analysis is the repudiation of femininity. The author believes this statement may be viewed as lying at the crossroads of the discussion about the limits of the theoretical and clinical psychoanalytic formulations which she refers to. In the examples presented the author relates the repudiation of femininity in its connections to the gaps implicit in psychoanalytic understanding.
Keenan, Kevin G.; Valero-Cuevas, Francisco J.
2008-01-01
Researchers and clinicians routinely rely on interference electromyograms (EMGs) to estimate muscle forces and command signals in the neuromuscular system (e.g., amplitude, timing, and frequency content). The amplitude cancellation intrinsic to interference EMG, however, raises important questions about how to optimize these estimates. For example, what should the length of the epoch (time window) be to average an EMG signal to reliably estimate muscle forces and command signals? Shorter epochs are most practical, and significant reductions in epoch have been reported with high-pass filtering and whitening. Given that this processing attenuates power at frequencies of interest (< 250 Hz), however, it is unclear how it improves the extraction of physiologically-relevant information. We examined the influence of amplitude cancellation and high-pass filtering on the epoch necessary to accurately estimate the “true” average EMG amplitude calculated from a 28 s EMG trace (EMGref) during simulated constant isometric conditions. Monte Carlo iterations of a motor-unit model simulating 28 s of surface EMG produced 245 simulations under 2 conditions: with and without amplitude cancellation. For each simulation, we calculated the epoch necessary to generate average full-wave rectified EMG amplitudes that settled within 5% of EMGref. For the no-cancellation EMG, the necessary epochs were short (e.g., < 100 ms). For the more realistic interference EMG (i.e., cancellation condition), epochs shortened dramatically after using high-pass filter cutoffs above 250 Hz, producing epochs short enough to be practical (i.e., < 500 ms). We conclude that the need to use long epochs to accurately estimate EMG amplitude is likely the result of unavoidable amplitude cancellation, which helps to clarify why high-pass filtering (> 250 Hz) improves EMG estimates. PMID:19081815
Berger, Carola F.; Del Duca, Vittorio; Dixon, Lance J.
2006-08-18
We consider a scalar field, such as the Higgs boson H, coupled to gluons via the effective operator H tr G{sub {mu}{nu}} G{sup {mu}{nu}} induced by a heavy-quark loop. We treat H as the real part of a complex field {phi} which couples to the self-dual part of the gluon field-strength, via the operator {phi} tr G{sub SD {mu}{nu}} G{sub SD}{sup {mu}{nu}}, whereas the conjugate field {phi} couples to the anti-self-dual part. There are three infinite sequences of amplitudes coupling {phi} to quarks and gluons that vanish at tree level, and hence are finite at one loop, in the QCD coupling. Using on-shell recursion relations, we find compact expressions for these three sequences of amplitudes and discuss their analytic properties.
Partial synchronization and partial amplitude death in mesoscale network motifs
NASA Astrophysics Data System (ADS)
Poel, Winnie; Zakharova, Anna; Schöll, Eckehard
2015-02-01
We study the interplay between network topology and complex space-time patterns and introduce a concept to analytically predict complex patterns in networks of Stuart-Landau oscillators with linear symmetric and instantaneous coupling based solely on the network topology. These patterns consist of partial amplitude death and partial synchronization and are found to exist in large variety for all undirected networks of up to 5 nodes. The underlying concept is proved to be robust with respect to frequency mismatch and can also be extended to larger networks. In addition it directly links the stability of complete in-phase synchronization to only a small subset of topological eigenvalues of a network.
Partial synchronization and partial amplitude death in mesoscale network motifs.
Poel, Winnie; Zakharova, Anna; Schöll, Eckehard
2015-02-01
We study the interplay between network topology and complex space-time patterns and introduce a concept to analytically predict complex patterns in networks of Stuart-Landau oscillators with linear symmetric and instantaneous coupling based solely on the network topology. These patterns consist of partial amplitude death and partial synchronization and are found to exist in large variety for all undirected networks of up to 5 nodes. The underlying concept is proved to be robust with respect to frequency mismatch and can also be extended to larger networks. In addition it directly links the stability of complete in-phase synchronization to only a small subset of topological eigenvalues of a network.
Amplitude-dependent station magnitude
NASA Astrophysics Data System (ADS)
Radzyner, Yael; Ben Horin, Yochai; Steinberg, David M.
2016-04-01
Magnitude, a concept first presented by Gutenberg and Richter, adjusts measurements of ground motion for epicentral distance and source depth. Following this principle, the IDC defines the j'th station body wave magnitude for event i as mb(stai,j) = log 10(Aj,i/Tj,i) + V C(Δj,i,hi) , where VC is the Veith-Clawson (VC) correction to compensate for the epicentral distance of the station and the depth of the source. The network magnitude is calculated as the average of station magnitudes. The IDC magnitude estimation is used for event characterization and discrimination and it should be as accurate as possible. Ideally, the network magnitude should be close in value to the station magnitudes. In reality, it is observed that the residuals range between -1 and 1 mu or ±25% of a given mb(neti) value. We show that the residual, mb(neti) -mb(staj,i), depends linearly on log 10(Aj,i/Tj,i), and we correct for this dependence using the following procedure: Calculate a "jackknifed" network magnitude, mbj,n(neti), i.e. an average over all participating stations except station n. Using all measurements at station n, calculate the parameters an, bn of the linear fit of the residual mbj,n(neti) - mb(stan,i to log 10(An,i/Tn,i). For each event i at station n calculate the new station magnitude mbnew(stan,i) = (an + 1)log(An,i/Tn,i) + V C(Δn,i,hi) + bn Calculate the new network magnitude: mbnew(neti) = 1N- ∑ n=1nmbnew(stan,i) The procedure was used on more than two million station-event pairs. Correcting for the station-specific dependence on log amplitude reduces the residuals by roughly a third. We have calculated the spread of the distributions, and compared the original values and those for the corrected magnitudes. The spread is the ratio between the variance of the network magnitudes, and the variance of the residual. Calculations show an increase in the ratio of the variance, meaning that the correction process presented in this document did not lead to loss of variance
Gravity and Yang-Mills amplitude relations
Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Soendergaard, Thomas; FengBo
2010-11-15
Using only general features of the S matrix and quantum field theory, we prove by induction the Kawai-Lewellen-Tye relations that link products of gauge theory amplitudes to gravity amplitudes at tree level. As a bonus of our analysis, we provide a novel and more symmetric form of these relations. We also establish an infinite tower of new identities between amplitudes in gauge theories.
Minimal Basis for Gauge Theory Amplitudes
Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Vanhove, Pierre
2009-10-16
Identities based on monodromy for integrations in string theory are used to derive relations between different color-ordered tree-level amplitudes in both bosonic and supersymmetric string theory. These relations imply that the color-ordered tree-level n-point gauge theory amplitudes can be expanded in a minimal basis of (n-3)exclamation amplitudes. This result holds for any choice of polarizations of the external states and in any number of dimensions.
Discontinuities of multi-Regge amplitudes
NASA Astrophysics Data System (ADS)
Fadin, V. S.
2015-04-01
In the BFKL approach, discontinuities of multiple production amplitudes in invariant masses of produced particles are discussed. It turns out that they are in evident contradiction with the BDS ansatz for n-gluon amplitudes in the planar N = 4 SYM at n ≥ 6. An explicit expression for the NLO discontinuity of the two-to-four amplitude in the invariant mass of two produced gluons is is presented.
Enhanced gauge groups in N=4 topological amplitudes and Lorentzian Borcherds algebras
NASA Astrophysics Data System (ADS)
Hohenegger, Stefan; Persson, Daniel
2011-11-01
We continue our study of algebraic properties of N=4 topological amplitudes in heterotic string theory compactified on T2, initiated in arXiv:1102.1821. In this work we evaluate a particular one-loop amplitude for any enhanced gauge group h⊂e8⊕e8, i.e. for arbitrary choice of Wilson line moduli. We show that a certain analytic part of the result has an infinite product representation, where the product is taken over the positive roots of a Lorentzian Kac-Moody algebra g++. The latter is obtained through double extension of the complement g=(e8⊕e8)/h. The infinite product is automorphic with respect to a finite index subgroup of the full T-duality group SO(2,18;Z) and, through the philosophy of Borcherds-Gritsenko-Nikulin, this defines the denominator formula of a generalized Kac-Moody algebra G(g++), which is an ’automorphic correction’ of g++. We explicitly give the root multiplicities of G(g++) for a number of examples.
Modeling and Analysis of Large Amplitude Flight Maneuvers
NASA Technical Reports Server (NTRS)
Anderson, Mark R.
2004-01-01
Analytical methods for stability analysis of large amplitude aircraft motion have been slow to develop because many nonlinear system stability assessment methods are restricted to a state-space dimension of less than three. The proffered approach is to create regional cell-to-cell maps for strategically located two-dimensional subspaces within the higher-dimensional model statespace. These regional solutions capture nonlinear behavior better than linearized point solutions. They also avoid the computational difficulties that emerge when attempting to create a cell map for the entire state-space. Example stability results are presented for a general aviation aircraft and a micro-aerial vehicle configuration. The analytical results are consistent with characteristics that were discovered during previous flight-testing.
Nonlinear saturation amplitude of cylindrical Rayleigh—Taylor instability
NASA Astrophysics Data System (ADS)
Liu, Wan-Hai; Yu, Chang-Ping; Ye, Wen-Hua; Wang, Li-Feng
2014-09-01
The nonlinear saturation amplitude (NSA) of the fundamental mode in the classical Rayleigh—Taylor instability with a cylindrical geometry for an arbitrary Atwood number is analytically investigated by considering the nonlinear corrections up to the third order. The analytic results indicate that the effects of the initial radius of the interface (r0) and the Atwood number (A) play an important role in the NSA of the fundamental mode. The NSA of the fundamental mode first increases gently and then decreases quickly with increasing A. For a given A, the smaller the r0/λ (λ is the perturbation wavelength), the larger the NSA of the fundamental mode. When r0/λ is large enough (r0 ≫ λ), the NSA of the fundamental mode is reduced to the prediction in the previous literatures within the framework of the third-order perturbation theory.
DVCS amplitude with kinematical twist-3 terms
Radyushkin, A.V.; Weiss, C.
2000-08-01
The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term.
Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas
Gogoi, Runmoni; Devi, Nirupama
2008-07-15
Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.
Secondary threshold amplitudes for sinuous streak breakdown
NASA Astrophysics Data System (ADS)
Cossu, Carlo; Brandt, Luca; Bagheri, Shervin; Henningson, Dan S.
2011-07-01
The nonlinear stability of laminar sinuously bent streaks is studied for the plane Couette flow at Re = 500 in a nearly minimal box and for the Blasius boundary layer at Reδ*=700. The initial perturbations are nonlinearly saturated streamwise streaks of amplitude AU perturbed with sinuous perturbations of amplitude AW. The local boundary of the basin of attraction of the linearly stable laminar flow is computed by bisection and projected in the AU - AW plane providing a well defined critical curve. Different streak transition scenarios are seen to correspond to different regions of the critical curve. The modal instability of the streaks is responsible for transition for AU = 25%-27% for the considered flows, where sinuous perturbations of amplitude below AW ≈ 1%-2% are sufficient to counteract the streak viscous dissipation and induce breakdown. The critical amplitude of the sinuous perturbations increases when the streamwise streak amplitude is decreased. With secondary perturbations amplitude AW ≈ 4%, breakdown is induced on stable streamwise streaks with AU ≈ 13%, following the secondary transient growth scenario first examined by Schoppa and Hussain [J. Fluid Mech. 453, 57 (2002)]. A cross-over, where the critical amplitude of the sinuous perturbation becomes larger than the amplitude of streamwise streaks, is observed for streaks of small amplitude AU < 5%-6%. In this case, the transition is induced by an initial transient amplification of streamwise vortices, forced by the decaying sinuous mode. This is followed by the growth of the streaks and final breakdown. The shape of the critical AU - AW curve is very similar for Couette and boundary layer flows and seems to be relatively insensitive to the nature of the edge states on the basin boundary. The shape of this critical curve indicates that the stability of streamwise streaks should always be assessed in terms of both the streak amplitude and the amplitude of spanwise velocity perturbations.
Off-shell amplitudes and Grassmannians
NASA Astrophysics Data System (ADS)
Bork, L. V.; Onishchenko, A. I.
2017-09-01
The Grassmannian representation for gauge-invariant amplitudes for arbitrary number of legs with one of them being off-shell is derived for the case of N = 4 SYM. The obtained formula are successfully checked against known BCFW results for MHV n , NMHV4 and NMHV5 amplitudes.
BCFW construction of the Veneziano amplitude
NASA Astrophysics Data System (ADS)
Fotopoulos, Angelos
2011-06-01
In this paper we demonstrate how one can compute the Veneziano amplitude for bosonic string theory using the Britto-Cachazo-Feng-Witten method. We use an educated ansatz for the cubic amplitude of two tachyons and an arbitrary level string state.
Formant Amplitude of Children with Down's Syndrome.
ERIC Educational Resources Information Center
Pentz, Arthur L., Jr.
1987-01-01
The sustained vowel sounds of 14 noninstitutionalized 7- to 10-year-old children with Down's syndrome were analyzed acoustically for vowel formant amplitude levels. The subjects with Down's syndrome had formant amplitude intensity levels significantly lower than those of a similar group of speakers without Down's syndrome. (Author/DB)
Amplitude image processing by diffractive optics.
Cagigal, Manuel P; Valle, Pedro J; Canales, V F
2016-02-22
In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.
Magnetospheric chorus - Amplitude and growth rate
NASA Technical Reports Server (NTRS)
Burtis, W. J.; Helliwell, R. A.
1975-01-01
A new study of the amplitude of magnetospheric chorus with 1966-1967 data from the Stanford University/Stanford Research Institute VLF receivers on Ogo 1 and Ogo 3 has confirmed the band-limited character of magnetospheric chorus in general and the double-banding of near-equatorial chorus. Chorus amplitude tended to be inversely correlated with frequency, implying lower intensities at lower L values. Individual chorus emissions often showed a characteristic amplitude variation, with rise times of 10 to 300 ms, a short duration at peak amplitude, and decay times of 100 to 3000 msec. Growth was often approximately exponential, with rates from 200 to nearly 2000 dB/sec. Rate of change of frequency was found in many cases to be independent of emission amplitude, in agreement with the cyclotron feedback theory of chorus (Helliwell, 1967, 1970).
Thermal cracking and amplitude dependent attenuation
Johnston, D.H.; Toksoez, M.N.
1980-02-10
The role of crack and grain boundary contacts in determining seismic wave attenuation in rock is investigated by examining Q as a function of thermal cycling (cracking) and wave strain amplitude. Q values are obtained using a longitudinal resonant bar technique in the 10- to 20-kHz range for maximum strain amplitudes varying from roughly 10/sup -8/ to 10/sup -5/. The samples studied include the Berea and Navajo sandstones, Plexiglas, Westerly granite, Solenhofen limestone, and Frederick diabase, the latter two relatively crack free in their virgin state. Measurements were made at room temperature and pressure in air. Q values for both sandstones are constant at low strains (<10/sup -6/) but decrease rapidly with amplitude at higher strains. There is no hysteresis of Q with amplitude. Q values for Plexiglas show no indication of amplitude dependent behavior. The granite, limestone, and diabase are thermally cycled at both fast and slow heating rates in order to induce cracking. Samples slowly cycled at 400/sup 0/C show a marked increase in Q that cannot be entirely explained by outgassing of volatiles. Cycling may also widen thin cracks and grain boundaries, reducing contact areas. Samples heated beyond 400/sup 0/C, or rapidly heated, result in generally decreasing Q values. The amplitude dependence of Q is found to be coupled to the effects of thermal cycling. For rock slowly cycled 400)C or less, the transition from low-amplitude contant Q to high-amplitude variable Q behavior decreases to lower amplitudes as a function of maximum temperature. Above 400/sup 0/C, and possibly in th rapidly heated samples also, the transition moves to higher amplitudes.
Model equation for strongly focused finite-amplitude sound beams
Kamakura; Ishiwata; Matsuda
2000-06-01
A model equation that describes the propagation of sound beams in a fluid is developed using the oblate spheroidal coordinate system. This spheroidal beam equation (SBE) is a parabolic equation and has a specific application to a theoretical prediction on focused, high-frequency beams from a circular aperture. The aperture angle does not have to be small. The theoretical background is basically along the same analytical lines as the composite method (CM) reported previously [B. Ystad and J. Berntsen, Acustica 82, 698-706 (1996)]. Numerical examples are displayed for the amplitudes of sound pressure along and across the beam axis when sinusoidal waves are radiated from the source with uniform amplitude distribution. The primitive approach to linear field analysis is readily extended to the case where harmonic generation in finite-amplitude sound beams becomes significant due to the inherent nonlinearity of the medium. The theory provides the propagation and beam pattern profiles that differ from the CM solution for each harmonic component.
Hanna, Andrew I; Mandic, Danilo P
2003-03-01
A complex-valued nonlinear gradient descent (CNGD) learning algorithm for a simple finite impulse response (FIR) nonlinear neural adaptive filter with an adaptive amplitude of the complex activation function is proposed. This way the amplitude of the complex-valued analytic nonlinear activation function of a neuron in the learning algorithm is made gradient adaptive to give the complex-valued adaptive amplitude nonlinear gradient descent (CAANGD). Such an algorithm is beneficial when dealing with signals that have rich dynamical behavior. Simulations on the prediction of complex-valued coloured and nonlinear input signals show the gradient adaptive amplitude, CAANGD, outperforming the standard CNGD algorithm.
Large-amplitude nonlinear normal modes of the discrete sine lattices
NASA Astrophysics Data System (ADS)
Smirnov, Valeri V.; Manevitch, Leonid I.
2017-02-01
We present an analytical description of the large-amplitude stationary oscillations of the finite discrete system of harmonically coupled pendulums without any restrictions on their amplitudes (excluding a vicinity of π ). Although this model has numerous applications in different fields of physics, it was studied earlier in the infinite limit only. The discrete chain with a finite length can be considered as a well analytical analog of the coarse-grain models of flexible polymers in the molecular dynamics simulations. The developed approach allows to find the dispersion relations for arbitrary amplitudes of the nonlinear normal modes. We emphasize that the long-wavelength approximation, which is described by well-known sine-Gordon equation, leads to an inadequate zone structure for the amplitudes of about π /2 even if the chain is long enough. An extremely complex zone structure at the large amplitudes corresponds to multiple resonances between nonlinear normal modes even with strongly different wave numbers. Due to the complexity of the dispersion relations the modes with shorter wavelengths may have smaller frequencies. The stability of the nonlinear normal modes under condition of the resonant interaction are discussed. It is shown that this interaction of the modes in the vicinity of the long wavelength edge of the spectrum leads to the localization of the oscillations. The thresholds of instability and localization are determined explicitly. The numerical simulation of the dynamics of a finite-length chain is in a good agreement with obtained analytical predictions.
Amplitude- and rise-time-compensated filters
Nowlin, Charles H.
1984-01-01
An amplitude-compensated rise-time-compensated filter for a pulse time-of-occurrence (TOOC) measurement system is disclosed. The filter converts an input pulse, having the characteristics of random amplitudes and random, non-zero rise times, to a bipolar output pulse wherein the output pulse has a zero-crossing time that is independent of the rise time and amplitude of the input pulse. The filter differentiates the input pulse, along the linear leading edge of the input pulse, and subtracts therefrom a pulse fractionally proportional to the input pulse. The filter of the present invention can use discrete circuit components and avoids the use of delay lines.
Hidden simplicity of gauge theory amplitudes
NASA Astrophysics Data System (ADS)
Drummond, J. M.
2010-11-01
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in \\ {N}=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
A recursion relation for gravity amplitudes
NASA Astrophysics Data System (ADS)
Bedford, James; Brandhuber, Andreas; Spence, Bill; Travaglini, Gabriele
2005-08-01
Britto, Cachazo and Feng have recently derived a recursion relation for tree-level scattering amplitudes in Yang-Mills. This relation has a bilinear structure inherited from factorisation on multi-particle poles of the scattering amplitudes—a rather generic feature of field theory. Motivated by this, we propose a new recursion relation for scattering amplitudes of gravitons at tree level. Using this, we derive a new general formula for the MHV tree-level scattering amplitude for n gravitons. Finally, we comment on the existence of recursion relations in general field theories.
Phase and amplitude errors in FM radars
NASA Astrophysics Data System (ADS)
Griffiths, Hugh D.
The constraints on phase and amplitude errors are determined for various types of FM radar by calculating the range sidelobe levels on the point target response due to the phase and amplitude modulation of the target echo. It is shown that under certain circumstances the constraints on phase linearity appropriate for conventional pulse compression radars are unnecessarily stringent, and quite large phase errors can be tolerated provided the relative delay of the local oscillator with respect to the target echo is small compared with the periodicity of the phase error characteristic. The constraints on amplitude flatness, however, are severe under almost all circumstances.
A link representation for gravity amplitudes
NASA Astrophysics Data System (ADS)
He, Song
2013-10-01
We derive a link representation for all tree amplitudes in supergravity, from a recent conjecture by Cachazo and Skinner. The new formula explicitly writes amplitudes as contour integrals over constrained link variables, with an integrand naturally expressed in terms of determinants, or equivalently tree diagrams. Important symmetries of the amplitude, such as supersymmetry, parity and (partial) permutation invariance, are kept manifest in the formulation. We also comment on rewriting the formula in a GL( k)-invariant manner, which may serve as a starting point for the generalization to possible Grassmannian contour integrals.
Saffar, Saber; Abdullah, Amir
2014-01-01
The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. Copyright © 2013 Elsevier B.V. All rights reserved.
Amplitude dynamics favors synchronization in complex networks
Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia
2016-01-01
In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics. PMID:27108847
Stable ac phase and amplitude comparator
NASA Technical Reports Server (NTRS)
Bruce, H. P.
1967-01-01
Stable ac phase and amplitude comparator detects excessive vehicle maneuvering or vibration. It has phase demodulation, low-pass filter, and multiple threshold-setting capability designed specifically for low drifts over a wide range of temperatures.
Pion distribution amplitude from lattice QCD
NASA Astrophysics Data System (ADS)
Zhang, Jian-Hui; Chen, Jiunn-Wei; Ji, Xiangdong; Jin, Luchang; Lin, Huey-Wen
2017-05-01
We present the first lattice-QCD calculation of the pion distribution amplitude using the large-momentum effective field theory (LaMET) approach, which allows us to extract light cone parton observables from a Euclidean lattice. The mass corrections needed to extract the pion distribution amplitude from this approach are calculated to all orders in mπ2/Pz2 . We also implement the Wilson-line renormalization which is crucial to remove the power divergences in this approach, and find that it reduces the oscillation at the end points of the distribution amplitude. Our exploratory result at 310-MeV pion mass favors a single-hump form broader than the asymptotic form of the pion distribution amplitude.
The periods and amplitudes of TU Cas
NASA Technical Reports Server (NTRS)
Hodson, S. W.; Cox, A. N.
1980-01-01
Light curve observations of the double-mode Cepheid TU Cas obtained by 10 different sets of observers on several photometric systems over a time span of 67 years were carefully studied to determine the fundamental and first overtone periods and their amplitudes on the V magnitude scale. The presence of a second overtone radial pulsation is discussed, and it is concluded that a previous detection of this mode was spurious due to the lack of a proper zero point correction for two groups of observations. The amplitudes of the two modes are shown to possibly vary during the entire observing period with the fundamental mode amplitude of 0.69 + or - 0.03 and the overtone amplitude decreasing about 0.2 or 0.3 magnitude. If this Cepheid displays the two pulsation modes because it is mode switching, this switching time scale might be less than a hundred years.
Amplitude dynamics favors synchronization in complex networks
NASA Astrophysics Data System (ADS)
Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia
2016-04-01
In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics.
Large Amplitude Oscillations of a Double Pendulum
NASA Astrophysics Data System (ADS)
Gerres, Jeffrey M.; Jacobs, Robert M.; Kasun, Sara F.; Bacon, Margaret E.; Nagolu, Chakravarthi M.; Owens, Erin L.; Siehl, Kevin F.; Thomsen, Marshall; Troyer, Jon S.
2008-03-01
The nature of the normal modes of oscillation in the small angle regime of a double pendulum is well established. However, for large amplitude oscillations, a closed form solution of the differential equations of motion does not exist. Using Lagrange formalism, we explore both the in-phase and out-of-phase normal modes of oscillation of a double pendulum as a function of the mass ratio of the two bobs and their initial angular positions. We conduct the analysis using MatLab, where we initially verify our code in the known small amplitude limit. Among our results we find that certain symmetries between the in-phase and out-of-phase normal modes that exist in the small amplitude limit are no longer present at large amplitudes.
Quartic Amplitudes for Minkowski Higher Spin
NASA Astrophysics Data System (ADS)
Bengtsson, Anders K. H.
The old problem of finding general quartic interaction terms between fields of higher helicities on the light-front is discussed from the point of view of calculating the corresponding amplitudes directly from the cubic vertices using BCFW recursion. Amplitude based no-go results that has appeared in the literature are reviewed and discussed and it is pointed out how they may perhaps be circumvented.
Seismic directional beamforming using cosine amplitude distribution
NASA Astrophysics Data System (ADS)
Jiang, T.; Xu, X.; Song, J.; Jia, H.; Ge, L.
2013-12-01
o improve the signal-to-noise ratio in seismic exploration, we studied the method of time domain seismic beam-forming based on receiver array (TSBBRA). TSBBRA is useful to extract reflected waves from some target layers and decrease noise from other direction. When noise is strong enough, the control parameter of the method of TSBBRA need to be increased. It means that we have to use more raw records to form a directional seismic record. Therefore, the signal energy in beam is much denser, and the beam becomes narrower accordingly. When the beam can not cover the receiver array, the signal-to-noise ratios in different traces are quite unbalanced and average quality of data probably is still quite low. Therefore, this paper proposes seismic directional beamforming using the cosine amplitude distribution (SDBCAD). SDBCAD can adjust seismic beam shape by introducing cosine amplitude distribution, an amplitude weighting method, in the procedure of beamforming. We studied cosine amplitude weighting function, analyzed the characteristics of uniform and cosine amplitude distribution in beamforming, and compared directivity of beams from the two kind of amplitude pattern. It shows that the main beam of cosine-weighted amplitude is different from uniform distribution. The coverage of main beam from SDBCAD is wider than uniform amplitude, and the width of beam is varied with different number of cosine order. So we simulated the seismic raw record, and used TSBBRA and SDBCAD to process simulated data at the receiving array. The results show that SDBCAD can broaden directional beam, and the main beam from SDBCAD can cover the entire traces instead of partial coverage in TSBBRA. The average signal-to-noise ratio increased 0.2~4.5dB. It concludes that SDBCAD is competent to stretch beam reasonable, and it is useful to boost signal-to-noise ratio when beam from TSBBRA is too narrow to illuminate receiver array properly. Updated results will be presented at the meeting.
Nucleon Distribution Amplitudes from Lattice QCD
Goeckeler, Meinulf; Kaltenbrunner, Thomas; Warkentin, Nikolaus; Horsley, Roger; Zanotti, James M.; Nakamura, Yoshifumi; Pleiter, Dirk; Schierholz, Gerrit; Rakow, Paul E. L.; Schaefer, Andreas; Stueben, Hinnerk
2008-09-12
We calculate low moments of the leading-twist and next-to-leading-twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MS scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature.
Bootstrapping One-Loop QCD Amplitudes
Berger, Carola F.; /SLAC
2006-09-08
We review the recently developed bootstrap method for the computation of high-multiplicity QCD amplitudes at one loop. We illustrate the general algorithm step by step with a six-point example. The method combines (generalized) unitarity with on-shell recursion relations to determine the not cut-constructible, rational terms of these amplitudes. Our bootstrap approach works for arbitrary configurations of gluon helicities and arbitrary numbers of external legs.
Feynman amplitudes and limits of heights
NASA Astrophysics Data System (ADS)
Amini, O.; Bloch, S. J.; Burgos Gil, J. I.; Fresán, J.
2016-10-01
We investigate from a mathematical perspective how Feynman amplitudes appear in the low-energy limit of string amplitudes. In this paper, we prove the convergence of the integrands. We derive this from results describing the asymptotic behaviour of the height pairing between degree-zero divisors, as a family of curves degenerates. These are obtained by means of the nilpotent orbit theorem in Hodge theory.
Vowel identification by amplitude and phase contrast.
Molis, Michelle R; Diedesch, Anna; Gallun, Frederick; Leek, Marjorie R
2013-02-01
Vowel identification is largely dependent on listeners' access to the frequency of two or three peaks in the amplitude spectrum. Earlier work has demonstrated that, whereas normal-hearing listeners can identify harmonic complexes with vowel-like spectral shapes even with very little amplitude contrast between "formant" components and remaining harmonic components, listeners with hearing loss require greater amplitude differences. This is likely the result of the poor frequency resolution that often accompanies hearing loss. Here, we describe an additional acoustic dimension for emphasizing formant versus non-formant harmonics that may supplement amplitude contrast information. The purpose of this study was to determine whether listeners were able to identify "vowel-like" sounds using temporal (component phase) contrast, which may be less affected by cochlear loss than spectral cues, and whether overall identification improves when congruent temporal and spectral information are provided together. Five normal-hearing and five hearing-impaired listeners identified three vowels over many presentations. Harmonics representing formant peaks were varied in amplitude, phase, or a combination of both. In addition to requiring less amplitude contrast, normal-hearing listeners could accurately identify the sounds with less phase contrast than required by people with hearing loss. However, both normal-hearing and hearing-impaired groups demonstrated the ability to identify vowel-like sounds based solely on component phase shifts, with no amplitude contrast information, and they also showed improved performance when congruent phase and amplitude cues were combined. For nearly all listeners, the combination of spectral and temporal information improved identification in comparison to either dimension alone.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2016-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
Twistor-strings and gravity tree amplitudes
NASA Astrophysics Data System (ADS)
Adamo, Tim; Mason, Lionel
2013-04-01
Recently we discussed how Einstein supergravity tree amplitudes might be obtained from the original Witten and Berkovits twistor-string theory when external conformal gravitons are restricted to be Einstein gravitons. Here we obtain a more systematic understanding of the relationship between conformal and Einstein gravity amplitudes in that twistor-string theory. We show that although it does not in general yield Einstein amplitudes, we can nevertheless obtain some partial twistor-string interpretation of the remarkable formulae recently been found by Hodges and generalized to all tree amplitudes by Cachazo and Skinner. The Hodges matrix and its higher degree generalizations encode the world sheet correlators of the twistor string. These matrices control both Einstein amplitudes and those of the conformal gravity arising from the Witten and Berkovits twistor-string. Amplitudes in the latter case arise from products of the diagonal elements of the generalized Hodges matrices and reduced determinants give the former. The reduced determinants arise if the contractions in the worldsheet correlator are restricted to form connected trees at MHV. The (generalized) Hodges matrices arise as weighted Laplacian matrices for the graph of possible contractions in the correlators and the reduced determinants of these weighted Laplacian matrices give the sum of the connected tree contributions by an extension of the matrix-tree theorem.
Interference-based optical image encryption with silhouette removal by amplitude modulation
NASA Astrophysics Data System (ADS)
Wang, Yong; Quan, Chenggen
2017-10-01
Interference-based optical encryption schemes have an inherent silhouette problem, due to the equipollent nature of the phase-only masks generated from an analytical method. We propose a new interference-based optical image encryption with silhouette removal by amplitude modulation. Different from the previous methods, which require time-consuming iterative computation or post-processing of the phase-only masks for silhouette removal, the proposed method can resolve the problem by adding an amplitude modulating operation on the original image. The introduction of the amplitude modulator can significantly enhance the security of the system, and the silhouette problem inherent in a conventional interference-based encryption method is fully resolved. The design and parameter choice of the amplitude modulator is discussed. Numerical simulations are presented to verify the validity of the proposed method.
Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction
NASA Astrophysics Data System (ADS)
Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar
2016-07-01
We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey-Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart-Landau and Van der Pol oscillators.
Multiloop amplitudes of light-cone gauge NSR string field theory in noncritical dimensions
NASA Astrophysics Data System (ADS)
Ishibashi, Nobuyuki; Murakami, Koichi
2017-01-01
Feynman amplitudes of light-cone gauge superstring field theory are ill-defined because of various divergences. In a previous paper, one of the authors showed that taking the worldsheet theory to be the one in a linear dilaton background Φ = - iQX 1 with Feynman iɛ ( ɛ > 0) and Q 2 > 10 yields finite amplitudes. In this paper, we apply this worldsheet theory to dimensional regularization of the light-cone gauge NSR superstring field theory. We concentrate on the amplitudes for even spin structure with external lines in the (NS,NS) sector. We show that the multiloop amplitudes are indeed regularized in our scheme and that they coincide with the results in the first-quantized formalism through the analytic continuation Q → 0.
Amplitude requirements, visual information, and the spatial structure of movement.
Slifkin, Andrew B; Eder, Jeffrey R
2012-08-01
Studies using a variety of experimental tasks have established that when humans repeatedly produce an action, the amount of variability in system output is distributed across a range of time scales or frequencies. A finding of particular interest is that fluctuations in the output of cognitive systems are the highest at the lowest frequencies with fluctuation magnitude (power) systematically declining as frequency increases. Such time-series structure--captured by spectral analysis--is termed pink noise. However, the appearance of pink noise seems to be limited to tasks where action is executed in the absence of external, task-related feedback. In contrast, a few studies have demonstrated that when action was executed in the presence of external, task-related feedback, power was evenly distributed across all spectral frequencies--that is, a white-noise time-series structure was revealed. Here, we sought to determine if the time-series structure of movement amplitude values would change when movement amplitude requirements increased (6.35, 12.70, 25.40, 50.80, and 101.60 mm) under conditions of full visual feedback. Given that increases in movement amplitude requirements are known to induce increased reliance on the available visual feedback, we predicted an amplitude-requirement-induced shift in time-series structure from pink to white noise. Indeed, those results were revealed. Last, the main findings were captured by a computer simulation that was based on established principles of motor control.
Amplitude Modulations of Acoustic Communication Signals
NASA Astrophysics Data System (ADS)
Turesson, Hjalmar K.
2011-12-01
In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a
Analytic formulae for transit timing variations of planets
NASA Astrophysics Data System (ADS)
Deck, Katherine Michele; Agol, Eric
2015-12-01
Gravitational interactions between planets in transiting exoplanetary systems lead to variations in the times of transit (TTVs) that are diagnostic of the planetary masses and the dynamical state of the system. I will present analytic formulae for TTVs which can be applied to planetary systems with nearly circular orbits which are not caught in a mean motion resonance. The formulae relate physical parameters, like masses and orbital elements, to direct TTV observables, including shape, amplitude, and timescales. Importantly, the formulae highlight which components of TTVs break degeneracies to allow for unique measurements of planet masses and eccentricities. Additionally, modeling of TTV data using our analytic formulae can be nearly 4 orders of magnitude faster compared with n-body integration. For a number of Kepler systems with TTVs, I will show that our formulae lead to accurate mass and orbital element measurements without full dynamical analyses involving direct integration of the equations of motion. The analytic formulae may ultimately allow for a homogenous analysis of the TTVs (or lack thereof) of many multi-planet systems.
Global oscillation amplitudes excited by the Jupiter-comet collision
NASA Technical Reports Server (NTRS)
Lee, U.; Van Horn, H. M.
1994-01-01
The energy released during the collision of fragments of comet Shoemaker-Levy 9 with Jupiter in 1994 July may excite a spectrum of global oscillation modes. We estimate the maximum amplitudes to which the p-modes, discontinuity modes, inertial modes, and r-modes can be excited by assuming that the full kinetic energy of the fragment, which we take to be 10(exp 30) ergs, is converted into the energy of each individual mode. We have used two realistics Jovian models as the basis for our estimates: one with and one without the predicted 'plasma phase transition' (PPT) of hydrogen. A density discontinuity in the planet's hydrogen-helium envelope is associated with the PPT. We find that high-frequency p-modes, with periods approximately less than 15 minutes, may be excited to sufficiently large amplitudes to be observable as Doppler shifts (velocity amplitudes approximately greater than serveral m/s) or temperature variations (delta(T) approximately greater than 0.01 K) at the planetary surface. Inertial modes may also be observable. If the PPT exists in Jupiter, inertial modes with periods approximately 8 hr or approximately 2.2 days trapped in the surface region of the planet, above the PPT, may be detectable as temperature fluctuations of order delta(T) approximately 0.01 K. Inertial modes with periods of order 8-8.5 hr appear to be particularly strongly excited if the PPT exists. If the PPT does not exist in Jupiter, intertial modes with periods approximately 8-8.5 hr have much lower amplitudes. In this case, inertial modes with periods longer than approximately 18 hr may produce temperature fluctuations of order delta(T) approximately 0.01 K. Discontinuity modes associated with the PPT and r-modes unfortunately may not reach observable amplitudes.
Observing rapid quasi-wave ionospheric disturbance using amplitude charts
NASA Astrophysics Data System (ADS)
Kurkin, Vladimir; Laryunin, Oleg; Podlesnyi, Alexey
Data from vertical (quasi-vertical) sounding are traditionally used for determining a number of ionospheric parameters such as critical frequencies of E and F layers, peaks of these layers, and for reconstructing electron density profiles. In this respect, radio sounding is not used to its full capacity. Modern ionosondes provide additional information encoded in ionospheric echoes, including information on reflected-signal amplitude. The time dependence of the amplitude-frequency characteristic of reflected signal has been named "amplitude chart" (A-chart). Ionosondes used by the ISTP SB RAS Geophysical Observatory for constructing A-charts employ the frequency-modulated continuous-wave (FMCW) signal in a range 1.3-15 MHz. One-minute sounding interval allows a more detailed study of dynamic processes in the ionosphere. The ionosonde has a direct digital synthesizer and direct sampling receiver without automatic gain control (AGC). The absence of AGC and the high dynamic range enable determination of the relative field strength at a receiving point and registration of relative long-term variations in reflected-signal amplitude over the entire range of operating frequencies of the ionosonde. We have revealed that the passage of travelling ionospheric disturbances (TID) along with height-frequency distortion modulates amplitude characteristics of signal. The characteristic depth of the modulation reaches 40 dB. The pronounced alternate vertical stripes typical for A-charts are likely to be associated with focusing properties of TID. In order to examine the space-time structure of TID able to induce such a focusing of the radio waves, we performed ray tracing simulations. We used geometrical-optics approximation, took magneto-ionic effects into account and prescribed electron density to be a stratified electron density profile on which an undulating disturbance was superimposed. This work was supported by the RFBR grant №14-05-00259-а.
Phonological awareness and sinusoidal amplitude modulation in phonological dislexia.
Peñaloza-López, Yolanda; Herrera-Rangel, Aline; Pérez-Ruiz, Santiago J; Poblano, Adrián
2016-04-01
Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA) and Sinusoidal amplitude modulation (SAM) threshold in children with Phonological dyslexia (PD). We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD.
Periodic amplitude variations in Jovian continuum radiation
NASA Technical Reports Server (NTRS)
Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.
1986-01-01
An analysis of periodic variations in the amplitude of continuum radiation near 3 kHz trapped in the Jovian magnetosphere shows structure with periods near both five and ten hours. Contrary to a plausible initial idea, the continuum amplitudes are not organized by position of the observer relative to the dense plasma sheet. Instead, there seem to be preferred orientations of system III longitude with respect to the direction to the sun which account for the peaks. This implies a clock-like modulation of the continuum radiation intensity as opposed to a searchlight effect. The importance of the dipole longitude-solar wind alignment to the amplitude of the continuum radiation implies the source region of the radiation is near the magnetopause and may indirectly tie the generation of the radio waves to the clocklike modulation of energetic electron fluxes from Jupiter.
Amplitude-coded color doppler: clinical applications.
Turetschek, K; Kollmann, C; Dorffner, R; Wunderbaldinger, P; Mostbeck, G
1999-01-01
Amplitude-coded color Doppler sonography (ACD) has become an useful adjunct to gray-scale US and conventional color Doppler sonography (CD) for the assessment of vascular diseases and pathologic conditions that might affect or alter tissue vascularization or perfusion. Basically, all US units that generate conventional color Doppler information through autocorrelation technique are capable of displaying ACD. This technique is also referred to as power Doppler, amplitude-mode color Doppler US, color Doppler energy (CDE), or US angiography. Amplitude-coded color Doppler sonography has already emerged as a valuable adjunct to conventional CD, particularly for evaluating flow in parts of the body where CD signal is weak because of slow flow, small blood vessels, or both.
Modified π π amplitude with σ pole
NASA Astrophysics Data System (ADS)
Bydžovský, P.; Kamiński, R.; Nazari, V.
2014-12-01
A set of well-known once subtracted dispersion relations with imposed crossing symmetry condition is used to modify unitary multichannel S (π π , K K ¯, and η η ) and P (π π , ρ 2 π , and ρ σ ) wave amplitudes mostly below 1 GeV. Before the modifications, these amplitudes significantly did not satisfy the crossing symmetry condition and did not describe the π π threshold region. Moreover, the pole of the S wave amplitude related with the f0(500 ) meson (former f0(600 ) or σ ) had much smaller imaginary part and bigger real one in comparison with those in the newest Particle Data Group Tables. Here, these amplitudes are supplemented by near threshold expansion polynomials and refitted to the experimental data in the effective two pion mass from the threshold to 1.8 GeV and to the dispersion relations up to 1.1 GeV. In result the self consistent, i.e., unitary and fulfilling the crossing symmetry condition, S and P wave amplitudes are formed and the σ pole becomes much narrower and lighter. To eliminate doubts about the uniqueness of the so obtained sigma pole position short and purely mathematical proof of the uniqueness of the results is also presented. This analysis is addressed to a wide group of physicists and aims at providing a very effective and easy method of modification of, many presently used, π π amplitudes with a heavy and broad σ meson without changing of their original mathematical structure.
Amplitude Scintillation due to Atmospheric Turbulence for the Deep Space Network Ka-Band Downlink
NASA Technical Reports Server (NTRS)
Ho, C.; Wheelon, A.
2004-01-01
Fast amplitude variations due to atmospheric scintillation are the main concerns for the Deep Space Network (DSN) Ka-band downlink under clear weather conditions. A theoretical study of the amplitude scintillation variances for a finite aperture antenna is presented. Amplitude variances for weak scattering scenarios are examined using turbulence theory to describe atmospheric irregularities. We first apply the Kolmogorov turbulent spectrum to a point receiver for three different turbulent profile models, especially for an exponential model varying with altitude. These analytic solutions then are extended to a receiver with a finite aperture antenna for the three profile models. Smoothing effects of antenna aperture are expressed by gain factors. A group of scaling factor relations is derived to show the dependences of amplitude variances on signal wavelength, antenna size, and elevation angle. Finally, we use these analytic solutions to estimate the scintillation intensity for a DSN Goldstone 34-m receiving station. We find that the (rms) amplitude fluctuation is 0.13 dB at 20-deg elevation angle for an exponential model, while the fluctuation is 0.05 dB at 90 deg. These results will aid us in telecommunication system design and signal-fading prediction. They also provide a theoretical basis for further comparison with other measurements at Ka-band.
Nonlinear (super)symmetries and amplitudes
NASA Astrophysics Data System (ADS)
Kallosh, Renata
2017-03-01
There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E 7(7) scalar sector symmetries as well as the fermionic goldstino symmetries.
Coherent quantum states from classical oscillator amplitudes
NASA Astrophysics Data System (ADS)
Briggs, John S.; Eisfeld, Alexander
2012-05-01
In the first days of quantum mechanics Dirac pointed out an analogy between the time-dependent coefficients of an expansion of the Schrödinger equation and the classical position and momentum variables solving Hamilton's equations. Here it is shown that the analogy can be made an equivalence in that, in principle, systems of classical oscillators can be constructed whose position and momenta variables form time-dependent amplitudes which are identical to the complex quantum amplitudes of the coupled wave function of an N-level quantum system with real coupling matrix elements. Hence classical motion can reproduce quantum coherence.
Constructing Chaotic Systems with Total Amplitude Control
NASA Astrophysics Data System (ADS)
Li, Chunbiao; Sprott, Julien Clinton; Yuan, Zeshi; Li, Hongtao
A general method is introduced for controlling the amplitude of the variables in chaotic systems by modifying the degree of one or more of the terms in the governing equations. The method is applied to the Sprott B system as an example to show its flexibility and generality. The method may introduce infinite lines of equilibrium points, which influence the dynamics in the neighborhood of the equilibria and reorganize the basins of attraction, altering the multistability. However, the isolated equilibrium points of the original system and their stability are retained with their basic properties. Electrical circuit implementation shows the convenience of amplitude control, and the resulting oscillations agree well with results from simulation.
Topographic quantitative EEG amplitude in recovered alcoholics.
Pollock, V E; Schneider, L S; Zemansky, M F; Gleason, R P; Pawluczyk, S
1992-05-01
Topographic measures of electroencephalographic (EEG) amplitude were used to compare recovered alcoholics (n = 14) with sex- and age-matched control subjects. Delta, alpha, and beta activity did not distinguish the groups, but regional differences in theta distribution did. Recovered alcoholics showed more uniform distributions of theta amplitudes in bilateral anterior and posterior regions compared with controls. Because a minimum of 5 years had elapsed since the recovered alcoholic subjects fulfilled DSM-III-R criteria for alcohol abuse or dependence, it is unlikely these EEG theta differences reflect the effects of withdrawal.
Amplitude Models for Discrimination and Yield Estimation
Phillips, William Scott
2016-09-01
This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.
Dual amplitude pulse generator for radiation detectors
Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.
2001-01-01
A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.
Amplitude for N-Gluon Superstring Scattering
Stieberger, Stephan; Taylor, Tomasz R.
2006-11-24
We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope {alpha}{sup '}. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in {alpha}{sup '}, for the so-called maximally helicity violating configurations, with N=4, 5 and N=6. We also obtain the leading O({alpha}{sup '2}) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.
Amplitude for N-gluon superstring scattering.
Stieberger, Stephan; Taylor, Tomasz R
2006-11-24
We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope alpha'. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in alpha', for the so-called maximally helicity violating configurations, with N = 4, 5 and N = 6. We also obtain the leading O(alpha '2) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.
Full-field vibrometry with digital Fresnel holography
Leval, Julien; Picart, Pascal; Boileau, Jean Pierre; Pascal, Jean Claude
2005-09-20
A setup that permits full-field vibration amplitude and phase retrieval with digital Fresnel holography is presented. Full reconstruction of the vibration is achieved with a three-step stroboscopic holographic recording, and an extraction algorithm is proposed. The finite temporal width of the illuminating light is considered in an investigation of the distortion of the measured amplitude and phase. In particular, a theoretical analysis is proposed and compared with numerical simulations that show good agreement. Experimental results are presented for a loudspeaker under sinusoidal excitation; the mean quadratic velocity extracted from amplitude evaluation under two different measuring conditions is presented. Comparison with time averaging validates the full-field vibrometer.
Structure of ionospheric irregularities from amplitude and phase scintillation observations
Bhattacharyya, A.; Rastogi, R.G. )
1991-04-01
The mutual coherence function Gamma 2, or the second moment of the complex amplitude of a radio wave which traverses through equatorial F region irregularities, is computed from amplitude and phase scintillation data. Theoretically, the equation satisfied by the coherence function has an analytic solution over the whole range of scintillation strength. This solution is directly related to the structure function for the phase fluctuations produced by the irregularities. Hence, the shape of the correlation function for variations in the total electron content along the signal path can be derived from the computed values of Gamma 2. With a suitable power-law model for the irregularities, an 'intermediate break scale', this scale, as well as the rms density fluctuation are deduced from a comparison of computed values for short-time lags with those expected from theory. During a postsunset scintillation event, this scale is found to increase with local time. In the context of the generalized Rayleigh-Taylor instability, which is the likely source of the irregularities, this increase may be attributed to a decline in the effective electric field prevailing in the region of the irregularities. 26 refs.
A Canonical Circuit for Generating Phase-Amplitude Coupling
Onslow, Angela C. E.; Jones, Matthew W.; Bogacz, Rafal
2014-01-01
‘Phase amplitude coupling’ (PAC) in oscillatory neural activity describes a phenomenon whereby the amplitude of higher frequency activity is modulated by the phase of lower frequency activity. Such coupled oscillatory activity – also referred to as ‘cross-frequency coupling’ or ‘nested rhythms’ – has been shown to occur in a number of brain regions and at behaviorally relevant time points during cognitive tasks; this suggests functional relevance, but the circuit mechanisms of PAC generation remain unclear. In this paper we present a model of a canonical circuit for generating PAC activity, showing how interconnected excitatory and inhibitory neural populations can be periodically shifted in to and out of oscillatory firing patterns by afferent drive, hence generating higher frequency oscillations phase-locked to a lower frequency, oscillating input signal. Since many brain regions contain mutually connected excitatory-inhibitory populations receiving oscillatory input, the simplicity of the mechanism generating PAC in such networks may explain the ubiquity of PAC across diverse neural systems and behaviors. Analytic treatment of this circuit as a nonlinear dynamical system demonstrates how connection strengths and inputs to the populations can be varied in order to change the extent and nature of PAC activity, importantly which phase of the lower frequency rhythm the higher frequency activity is locked to. Consequently, this model can inform attempts to associate distinct types of PAC with different network topologies and physiologies in real data. PMID:25136855
ERIC Educational Resources Information Center
MacNeill, Sheila; Campbell, Lorna M.; Hawksey, Martin
2014-01-01
This article presents an overview of the development and use of analytics in the context of education. Using Buckingham Shum's three levels of analytics, the authors present a critical analysis of current developments in the domain of learning analytics, and contrast the potential value of analytics research and development with real world…
ERIC Educational Resources Information Center
Oblinger, Diana G.
2012-01-01
Talk about analytics seems to be everywhere. Everyone is talking about analytics. Yet even with all the talk, many in higher education have questions about--and objections to--using analytics in colleges and universities. In this article, the author explores the use of analytics in, and all around, higher education. (Contains 1 note.)
CESR feedback system using a constant amplitude pulser
Codner, G.; Billing, M.; Meller, R.; Patten, R.; Rogers, J.; Sikora, J.; Sloand, M.; Strohman, C.
1998-12-10
Particle beam feedback system using constant-amplitude, 1000 V, 12 ns pulses has been built to provide longitudinal and horizontal feedback for stabilizing 14 ns spaced bunches for use in CESR (Cornell Electron Storage Ring). The pulse rate is modulated to obtain proportional amplitude control and the pulse arrival time is modulated to obtain both positive and negative kicks. The average repetition rate is limited by pulser power dissipation, but the instantaneous rate may be increased to full duty cycle for short periods of time to handle transients. The pulser drives a 50-ohm stripline kicker so the equivalent peak power at 1000 V is 10 kW. The characteristics of the pulser and its modulator will be described along with the system's operation.
Phase, amplitude, and polarization microscopy with a sampling field sensor.
Tumbar, Remy
2008-07-01
I describe an improved implementation of a previously reported interferometric device, the sampling field sensor (SFS) [Appl. Opt.47, B32-B43 (2008)]. It provides X, Y, and XY shearing interferometric information simultaneously (space multiplexed) with amplitude and polarization information while using time-multiplexed phase shifting. Its simple common-path configuration makes it compact and vibration insensitive, as demonstrated by the ~lambda/125 phase estimation repeatability that was below the coherent noise floor (estimated at ~lambda/50). The SFS may be viewed as an efficient, robust and accurate full-field optical-digital interface, easy to integrate with traditional imaging systems. This is demonstrated by using the sensor as the focal plane array of a transmitted-light microscope in a straightforward setup using an illumination path polarization phase shifter. This work is focused on a qualitative demonstration and presents phase, amplitude, and polarization images of different types of human cheek cells and Caenorhabditiselegans larvae.
Maximal R-symmetry violating amplitudes in type IIb superstring theory.
Boels, Rutger H
2012-08-24
On-shell superspace techniques are used to quantify R-symmetry violation in type IIB superstring theory amplitudes in a flat background in 10 dimensions. This shows the existence of a particularly simple class of nonvanishing amplitudes in this theory, which violate R symmetry maximally. General properties of the class and some of its extensions are established that at string tree level are shown to determine the first three nontrivial effective field theory contributions to all multiplicity. This leads to a natural conjecture for the exact analytic part of the first two of these.
Derivation of amplitude equations for nonlinear oscillators subject to arbitrary forcing.
Mayol, Catalina; Toral, Raúl; Mirasso, Claudio R
2004-06-01
By using a generalization of the multiple scales technique we develop a method to derive amplitude equations for zero-dimensional forced systems. The method allows to consider either additive or multiplicative forcing terms and can be straightforwardly applied to the case that the forcing is white noise. We give examples of the use of this method to the case of the van der Pol-Duffing oscillator. The writing of the amplitude equations in terms of a Lyapunov potential allow us to obtain an analytical expression for the probability distribution function which reproduces reasonably well the numerical simulation results.
Analyticity and the Holographic S-Matrix
Fitzpatrick, A.Liam; Kaplan, Jared; /SLAC
2012-04-03
We derive a simple relation between the Mellin amplitude for AdS/CFT correlation functions and the bulk S-Matrix in the flat spacetime limit, proving a conjecture of Penedones. As a consequence of the Operator Product Expansion, the Mellin amplitude for any unitary CFT must be a meromorphic function with simple poles on the real axis. This provides a powerful and suggestive handle on the locality vis-a-vis analyticity properties of the S-Matrix. We begin to explore analyticity by showing how the familiar poles and branch cuts of scattering amplitudes arise from the holographic description. For this purpose we compute examples of Mellin amplitudes corresponding to 1-loop and 2-loop Witten diagrams in AdS. We also examine the flat spacetime limit of conformal blocks, implicitly relating the S-Matrix program to the Bootstrap program for CFTs. We use this connection to show how the existence of small black holes in AdS leads to a universal prediction for the conformal block decomposition of the dual CFT.
Travel-Time and Amplitude Sensitivity Kernels
2011-09-01
amplitude sensitivity kernels shown in the lower panels concentrate about the corresponding eigenrays . Each 3D kernel exhibits a broad negative...in 2 and 3 dimensions have similar 11 shapes to corresponding travel-time sensitivity kernels (TSKs), centered about the respective eigenrays
Connected formulas for amplitudes in standard model
NASA Astrophysics Data System (ADS)
He, Song; Zhang, Yong
2017-03-01
Witten's twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.
The CMU Baryon Amplitude Analysis Program
Matt Bellis
2007-10-01
The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.
Consonant confusions in amplitude-expanded speech.
Freyman, R L; Nerbonne, G P
1996-12-01
The perceptual consequences of expanding the amplitude variations in speech were studied under conditions in which spectral information was obscured by signal correlated noise that had an envelope correlated with the speech envelope, but had a flat amplitude spectrum. The noise samples, created individually from 22 vowel-consonant-vowel nonsense words, were used as maskers of those words, with signal-to-noise ratios ranging from -15 to 0 dB. Amplitude expansion was by a factor of 3.0 in terms of decibels. In the first experiment, presentation level for speech peaks was 80 dB SPL. Consonant recognition performance for expanded speech by 50 listeners with normal hearing was as much as 30 percentage points poorer than for unexpanded speech and the types of errors were dramatically different, especially in the midrange of S-N ratios. In a second experiment presentation level was varied to determine whether reductions in consonant levels produced by expansion were responsible for the differences between conditions. Recognition performance for unexpanded speech at 40 dB SPL was nearly equivalent to that for expanded speech at 80 dB SPL. The error patterns obtained in these two conditions were different, suggesting that the differences between conditions in Experiment 1 were due largely to expanded amplitude envelopes rather than differences in audibility.
Scattering amplitudes for dark and bright excitons
NASA Astrophysics Data System (ADS)
Shiau, Shiue-Yuan; Combescot, Monique; Combescot, Roland; Dubin, François; Chang, Yia-Chung
2017-05-01
Using the composite boson many-body formalism that takes single-exciton states rather than free carrier states as a basis, we derive the integral equation fulfilled by the exciton-exciton effective scattering from which the role of fermion exchanges can be unraveled. For excitons made of (+/-1/2) -spin electrons and (+/-3/2) -spin holes, as in GaAs heterostructures, one major result is that most spin configurations lead to brightness-conserving scatterings with equal amplitude Δ, despite differences in the carrier exchanges involved. A brightness-changing channel also exists when two opposite-spin excitons scatter: dark excitons (2,-2) can end either in the same dark states with an amplitude Δe , or in opposite-spin bright states (1,-1) , with a different amplitude Δo , the number of carrier exchanges involved in these scatterings being even or odd, respectively. Another major result is that these amplitudes are linked by a striking relation, Δ_e+Δ_o=Δ , which has decisive consequence on exciton Bose-Einstein condensation. By using Born values, we show that the exciton condensate can be optically observed through a bright part when excitons have large dipole only, that is, when the electrons and holes are in two well-separated layers, as in current experiments.
Audio steganography by amplitude or phase modification
NASA Astrophysics Data System (ADS)
Gopalan, Kaliappan; Wenndt, Stanley J.; Adams, Scott F.; Haddad, Darren M.
2003-06-01
This paper presents the results of embedding short covert message utterances on a host, or cover, utterance by modifying the phase or amplitude of perceptually masked or significant regions of the host. In the first method, the absolute phase at selected, perceptually masked frequency indices was changed to fixed, covert data-dependent values. Embedded bits were retrieved at the receiver from the phase at the selected frequency indices. Tests on embedding a GSM-coded covert utterance on clean and noisy host utterances showed no noticeable difference in the stego compared to the hosts in speech quality or spectrogram. A bit error rate of 2 out of 2800 was observed for a clean host utterance while no error occurred for a noisy host. In the second method, the absolute phase of 10 or fewer perceptually significant points in the host was set in accordance with covert data. This resulted in a stego with successful data retrieval and a slightly noticeable degradation in speech quality. Modifying the amplitude of perceptually significant points caused perceptible differences in the stego even with small changes of amplitude made at five points per frame. Finally, the stego obtained by altering the amplitude at perceptually masked points showed barely noticeable differences and excellent data recovery.
The CMU Baryon Amplitude Analysis Program
NASA Astrophysics Data System (ADS)
Bellis, Matt
2007-05-01
The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.
Particle Distribution Modification by Low Amplitude Modes
White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.
2009-08-28
Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.
Amplitude Frequency Response Measurement: A Simple Technique
ERIC Educational Resources Information Center
Satish, L.; Vora, S. C.
2010-01-01
A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the "Linear-Sweep" frequency mode, while the oscilloscope…
Large Amplitude Patterns for Two Competing Species.
1980-06-01
scalar equation arising in population genetics . Mimura and Nishiura, [14], have obtained small amplitude spatial patterns for a system arising in...A nonlinear eigenvalue problem occuring in population genetics , preprint. [17] Peletier, L. A., Fife, P.: Nonlinear diffusion in population genetics . Arch
Holographic corrections to the Veneziano amplitude
NASA Astrophysics Data System (ADS)
Armoni, Adi; Ireson, Edwin
2017-08-01
We propose a holographic computation of the 2 → 2 meson scattering in a curved string background, dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction due to the background curvature. The result implies a small deviation from a linear trajectory, which is a requirement of the UV regime of QCD.
Amplitude Frequency Response Measurement: A Simple Technique
ERIC Educational Resources Information Center
Satish, L.; Vora, S. C.
2010-01-01
A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the "Linear-Sweep" frequency mode, while the oscilloscope…
Amplitude of Supersonic Diffuser Flow Pulsations
NASA Technical Reports Server (NTRS)
Sterbentz, William H.; Davids, Joseph
1952-01-01
A theoretical method for evaluating the stability characteristics and the amplitude and the frequency of pulsation of ram-jet engines without heat addition is presented herein. Experimental verification of the theoretical results are included where data were available. Theory and experiment show that the pulsation amplitude of a high mass-flow-ratio diffuser having no cone surface flow separation increases with decreasing mass flow. The theoretical trends for changes in amplitude, frequency, and mean-pressure recovery with changes in plenum-chamber volume were experimentally confirmed. For perforated convergent-divergent-type diffusers, a stability hysteresis loop was predicted on the pressure-recovery mass-flow-ratio curve. At a given mean mass-flow ratio, the higher.value of mean pressure recovery corresponded to oscillatory flow in the diffuser while the lower branch was stable. This hysteresis has been observed experimentally. The theory indicates that for a ram-jet engine of given diameter, the amplitude of pulsation of a supersonic diffuser is increased by decreasing the relative size of the plenum chamber with respect to the diffuser volume down to a critical value at which oscillations cease. In the region of these critical values, the stable mass-flow range of the diffuser may be increased either by decreasing the combustion chamber volume or by increasing the length of the diffuser.
Amplitude and phase modulation of radiation in a travelling-wave amplifier based on a laser diode
Bogatov, A P; D'yachkov, N V; Drakin, A E; Gushchik, T I
2013-08-31
An analytical solution (in quadratures) to the problem of propagation of quasi-monochromatic optical signal in a semiconductor amplifier under harmonic modulation of its pump current is obtained for the first time. It is shown that the modulation of the output radiation has amplitude and phase features. The relation is found between the coefficients of the amplitude and phase modulation with the effect of gain saturation taken into account. Adequacy of the results obtained is confirmed experimentally. (control of laser radiation parameters)
Schleich, W.; Scully, M.O.; von Garssen, H.
1988-04-15
An analytical steady-state distribution for the phase difference psi in a correlated spontaneous-emission laser (CEL) is derived based on the amplitude and phase equations of a CEL. This distribution is shown to be an excellent approximation to that obtained from a numerical simulation of the complete set of CEL equations. In particular, the effects of amplitude noise on CEL operation are considered and it is shown that fluctuations in the relative amplitude are also noise quenched.
Quantitative laryngeal electromyography: turns and amplitude analysis.
Statham, Melissa McCarty; Rosen, Clark A; Nandedkar, Sanjeev D; Munin, Michael C
2010-10-01
Laryngeal electromyography (LEMG) is primarily a qualitative examination, with no standardized approach to interpretation. The objectives of our study were to establish quantitative norms for motor unit recruitment in controls and to compare with interference pattern analysis in patients with unilateral vocal fold paralysis (VFP). Retrospective case-control study We performed LEMG of the thyroarytenoid-lateral cricoarytenoid muscle complex (TA-LCA) in 21 controls and 16 patients with unilateral VFP. Our standardized protocol used a concentric needle electrode with subjects performing variable force TA-LCA contraction. To quantify the interference pattern density, we measured turns and mean amplitude per turn for ≥10 epochs (each 500 milliseconds). Logarithmic regression analysis between amplitude and turns was used to calculate slope and intercept. Standard deviation was calculated to further define the confidence interval, enabling generation of a linear-scale graphical "cloud" of activity containing ≥90% of data points for controls and patients. Median age of controls and patients was similar (50.7 vs. 48.5 years). In controls, TA-LCA amplitude with variable contraction ranged from 145-1112 μV, and regression analysis comparing mean amplitude per turn to root-mean-square amplitude demonstrated high correlation (R = 0.82). In controls performing variable contraction, median turns per second was significantly higher compared to patients (450 vs. 290, P = .002). We first present interference pattern analysis in the TA-LCA in healthy adults and patients with unilateral VFP. Our findings indicate that motor unit recruitment can be quantitatively measured within the TA-LCA. Additionally, patients with unilateral VFP had significantly reduced turns when compared with controls.
Long-range interactions and the sign of natural amplitudes in two-electron systems
Giesbertz, Klaas J. H.; Leeuwen, Robert van
2013-09-14
In singlet two-electron systems, the natural occupation numbers of the one-particle reduced density matrix are given as squares of the natural amplitudes which are defined as the expansion coefficients of the two-electron wave function in a natural orbital basis. In this work, we relate the sign of the natural amplitudes to the nature of the two-body interaction. We show that long-range Coulomb-type interactions are responsible for the appearance of positive amplitudes and give both analytical and numerical examples that illustrate how the long-distance structure of the wave function affects these amplitudes. We further demonstrate that the amplitudes show an avoided crossing behavior as function of a parameter in the Hamiltonian and use this feature to show that these amplitudes never become zero, except for special interactions in which infinitely many of them can become zero simultaneously when changing the interaction strength. This mechanism of avoided crossings provides an alternative argument for the non-vanishing of the natural occupation numbers in Coulomb systems.
A finite-element method for large-amplitude, two-dimensional panel flutter at hypersonic speeds
NASA Technical Reports Server (NTRS)
Mei, Chuh; Gray, Carl E.
1989-01-01
The nonlinear flutter behavior of a two-dimensional panel in hypersonic flow is investigated analytically. An FEM formulation based unsteady third-order piston theory (Ashley and Zartarian, 1956; McIntosh, 1970) and taking nonlinear structural and aerodynamic phenomena into account is derived; the solution procedure is outlined; and typical results are presented in extensive tables and graphs. A 12-element finite-element solution obtained using an alternative method for linearizing the assumed limit-cycle time function is shown to give predictions in good agreement with classical analytical results for large-amplitude vibration in a vacuum and large-amplitude panel flutter, using linear aerodynamics.
NASA Astrophysics Data System (ADS)
Hashemi, Mahdieh; Moazami, Amin; Naserpour, Mahin; Zapata-Rodríguez, Carlos J.
2017-06-01
In this paper we show that engineering both phase and amplitude of the scattered light can be employed in designing metalenses with either higher resolution or apodized focal spots. C-shaped split-ring micro-resonators (CSRRs) with different geometrical parameters are selected to have a full control of amplitude and phase. While phase engineering is necessary for light focusing, amplitude modulation of the scattered wave can be applied to characterize the focal point properties such as resolution gain and sidelobe level. We show that both axial and transverse resolution improvement or apodization is possible in the far-field region by applying proper amplitude function. Amplitude modulation technique, which is introduced in this paper, paves a new way to design efficient lenses which can be utilized in imaging and lithography applications in all frequency ranges.
Generating all tree amplitudes in {N} = 4{{SYM}} by Inverse Soft Limit
NASA Astrophysics Data System (ADS)
Nandan, Dhritiman; Wen, Congkao
2012-08-01
The idea of adding particles to construct amplitudes has been utilized in various ways in exploring the structure of scattering amplitudes. This idea is often called Inverse Soft Limit, namely it is the reverse mechanism of taking particles to be soft. We apply the Inverse Soft Limit to the tree-level amplitudes in {N} = 4 super Yang-Mills theory, which allows us to generate full tree-level superamplitudes by adding "soft" particles in a certain way. With the help from Britto-Cachazo-Feng-Witten recursion relations, a systematic and concrete way of adding particles is determined recursively. The amplitudes constructed solely by adding particles not only have manifest Yangian symmetry, but also make the soft limit transparent. The method of generating amplitudes by Inverse Soft Limit can also be generalized for constructing form factors.
Wigner function and transition amplitude of three mutually coupled oscillators
NASA Astrophysics Data System (ADS)
Nassar, M. M.; Sebawe Abdalla, M.
2007-04-01
A full quantum mechanical treatment of three electromagnetic fields is considered. The proposed model consists of three different coupling parameters for which the rotating and counter-rotating terms are retained. An exact solution of the wave function in the Schrödinger picture is obtained and the connection with the coherent states wave function is given. The symmetrical ordered quasi-probability distribution function ( W-Wigner function) is calculated via the wave function in the coherent states representation. The squeezing phenomenon is also examined for both single mode and squared-amplitude, where the collapse and revival phenomena are observed. For the case in which λ3=0 and ω1=ω2=ω3 (exact resonances) we find that the late phenomenon is apparent but only after long period of the time considered. The transition amplitude between two different coherent states (a state in which all the coupling parameters are involved and a state when the coupling parameter λ3=0) is calculated. It is shown that the probability amplitude is sensitive to the variation of the mean photon numbers, and the coupling parameters as well as to the field frequencies.
A Generic Receiver Tracking Model for GPS Ionospheric Amplitude Scintillation
NASA Astrophysics Data System (ADS)
Paula, E. R.; Moraes, A. D.; Perrella, W. J.; Galera Monico, J. F.
2012-12-01
Ionospheric scintillations result in rapid variations in phase and amplitude of the radio signal, which propagates through the ionosphere. Depending on the temporal and spatial situation, the scintillation can represent a problem in the availability and precision of the Global Navigation Satellite Systems (GNSS). Scintillations affect the receiver performance, specially the tracking loop level. Depending on the scintillation level, the receiver might increase the measurement errors or even can lead to a loss of lock of the carrier and code loops. In extreme cases, the scintillation can result in full disrupting of the receiver. In this work we introduce a generic model to evaluate the effects of ionospheric amplitude scintillation on GPS receiver tracking loops. This model is based on α-μ distribution, which can be seen as a generalized fading model, that includes a variety of distributions such as Gamma, Nakagami-m, Exponential, Weibull, one-sided Gaussian and Rayleigh. Differently from the model based only on Nakagami-m, this one is not limited to S4< 0,71 which allows using it to predict amplitude scintillation effects for stronger scenarios. The estimation of α-μ coefficients, the empirical parameterization based on field measurements and the typical values estimated based on observations made during the last solar maximum are presented and discussed.
AMPLITUDE AND TIME MEASUREMENT ASIC WITH ANALOG DERANDOMIZATION.
O CONNOR,P.; DE GERONIMO,G.; KANDASAMY,A.
2002-11-10
We describe a new ASIC for accurate and efficient processing of high-rate pulse signals from highly segmented detectors. In contrast to conventional approaches, this circuit affords a dramatic reduction in data volume through the use of analog techniques (precision peak detectors and time-to-amplitude converters) together with fast arbitration and sequencing logic to concentrate the data before digitization. In operation the circuit functions like a data-driven analog first-in, first-out (FIFO) memory between the preamplifiers and the ADC. Peak amplitudes of pulses arriving at any one of the 32 inputs are sampled, stored, and queued for readout and digitization through a single output port. Hit timing, pulse risetime, and channel address are also available at the output. Prototype chips have been fabricated in 0.35 micron CMOS and tested. First results indicate proper functionality for pulses down to 30 ns peaking time and input rates up to 1.6 MHz/channel. Amplitude accuracy of the peak detect and hold circuit is 0.3% (absolute). TAC accuracy is within 0.3% of full scale. Power consumption is less than 2 mW/channel. Compared with conventional techniques such as track-and-hold and analog memory, this new ASIC will enable efficient pulse height measurement at 20 to 300 times higher rates.
Multimedia Analysis plus Visual Analytics = Multimedia Analytics
Chinchor, Nancy; Thomas, James J.; Wong, Pak C.; Christel, Michael; Ribarsky, Martin W.
2010-10-01
Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.
Stability of amplitude chimeras in oscillator networks
NASA Astrophysics Data System (ADS)
Tumash, L.; Zakharova, A.; Lehnert, J.; Just, W.; Schöll, E.
2017-01-01
We show that amplitude chimeras in ring networks of Stuart-Landau oscillators with symmetry-breaking nonlocal coupling represent saddle-states in the underlying phase space of the network. Chimera states are composed of coexisting spatial domains of coherent and of incoherent oscillations. We calculate the Floquet exponents and the corresponding eigenvectors in dependence upon the coupling strength and range, and discuss the implications for the phase-space structure. The existence of at least one positive real part of the Floquet exponents indicates an unstable manifold in phase space, which explains the nature of these states as long-living transients. Additionally, we find a Stuart-Landau network of minimum size N = 12 exhibiting amplitude chimeras.
Multilayered models for electromagnetic reflection amplitudes
NASA Technical Reports Server (NTRS)
Linlor, W. I.
1976-01-01
The remote sensing of snowpack characteristics with surface installations or with an airborne system could have important applications in water resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayer snow models is analyzed. Normally incident plane waves are assumed at frequencies ranging from 10 to the 6th power to 10 to the 10th power Hz, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice sheets. Layers are defined by a thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients, versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the reflection coefficient variations as a function of frequency.
Constructing QCD one-loop amplitudes
Forde, Darren; /SLAC /UCLA
2008-02-22
In the context of constructing one-loop amplitudes using a unitarity bootstrap approach we discuss a general systematic procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted after examining the behavior of the cut integrand as the unconstrained parameters of a specifically chosen parameterization of the cut loop momentum approach infinity. Measurements of new physics at the forthcoming experimental program at CERN's Large Hadron Collider (LHC) will require a precise understanding of processes at next-to-leading order (NLO). This places increased demands for the computation of new one-loop amplitudes. This in turn has spurred recent developments towards improved calculational techniques. Direct calculations using Feynman diagrams are in general inefficient. Developments of more efficient techniques have usually centered around unitarity techniques [1], where tree amplitudes are effectively 'glued' together to form loops. The most straightforward application of this method, in which the cut loop momentum is in D = 4, allows for the computation of 'cut-constructible' terms only, i.e. (poly)logarithmic containing terms and any related constants. QCD amplitudes contain, in addition to such terms, rational pieces which cannot be derived using such cuts. These 'missing' rational parts can be extracted using cut loop momenta in D = 4-2 {var_epsilon}. The greater difficulty of such calculations has restricted the application of this approach, although recent developments [3, 4] have provided new promise for this technique. Recently the application of on-shell recursion relations [5] to obtaining the 'missing' rational parts of one-loop processes [6] has provided an alternative very promising solution to this problem. In combination with unitarity methods an 'on-shell bootstrap' approach provides an efficient technique for computing complete one-loop QCD amplitudes [7]. Additionally
Amplitudes of MHD Waves in Sunspots
NASA Astrophysics Data System (ADS)
Norton, Aimee Ann; Cally, Paul; Baldner, Charles; Kleint, Lucia; Tarbell, Theodore D.; De Pontieu, Bart; Scherrer, Philip H.; Rajaguru, Paul
2016-05-01
The conversion of p-modes into MHD waves by strong magnetic fields occurs mainly in the sub-photospheric layers. The photospheric signatures of MHD waves are weak due to low amplitudes at the beta=1 equipartion level where mode-conversion occurs. We report on small amplitude oscillations observed in the photosphere with Hinode SOT/SP in which we analyze time series for sunspots ARs 12186 (11.10.2014) and 12434 (17.10.2015). No significant magnetic field oscillations are recovered in the umbra or penumbra in the ME inversion. However, periodicities in the inclination angle are found at the umbral/penumbral boundary with 5 minute periods. Upward propagating waves are indicated in the intensity signals correlated between HMI and AIA at different heights. We compare SP results with the oscillations observed in HMI data. Simultaneous IRIS data shows transition region brightening above the umbral core.
Is DAMAs modulation amplitude changing with time?
NASA Astrophysics Data System (ADS)
Kelso, Chris
2016-06-01
If dark matter is composed of weakly interacting particles, Earth's orbital motion induces a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level (CL) such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with about 7 years of observations. We examine the nature of this modulation signal and find the modulation amplitude for the two detectors is inconsistent at the 3σ CL over 2-6 keVee. Such a time-dependence in the modulation amplitude is unexpected behavior for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. We also find unusual behavior over the 5-6 keVee energy range that might indicate problems with the data.
Analytic expression for epithermal neutron spectra amplitudes as a function of water content
NASA Technical Reports Server (NTRS)
Drake, Darrell
1993-01-01
The epithermal portion of an equilibrium neutron spectrum in a planetary body is a function of the water content of its material. The neutrons are produced at high energies but are moderated by elastic and inelastic scattering until they either are captured by surrounding nuclei or escape. We have derived an expression that explicitly shows the dependance of epithermal neutron spectra on water content. Additionally, we compared its predictions to calculations done by Boltzman transport code for infinite media for silicon, oxygen, and a possible lunar composition, and we have obtained very good agreement.
Application of scattering theory to P-wave amplitude fluctuations in the crust
NASA Astrophysics Data System (ADS)
Yoshimoto, Kazuo; Takemura, Shunsuke; Kobayashi, Manabu
2015-12-01
The amplitudes of high-frequency seismic waves generated by local and/or regional earthquakes vary from site to site, even at similar hypocentral distances. It had been suggested that, in addition to local site effects (e.g., variable attenuation and amplification in surficial layers), complex wave propagation in inhomogeneous crustal media is responsible for this observation. To quantitatively investigate this effect, we performed observational, theoretical, and numerical studies on the characteristics of seismic amplitude fluctuations in inhomogeneous crust. Our observations of P-wave amplitude for small to moderately sized crustal earthquakes revealed that fluctuations in P-wave amplitude increase with increasing frequency and hypocentral distance, with large fluctuations showing up to ten-times difference between the largest and the smallest P-wave amplitudes. Based on our theoretical investigation, we developed an equation to evaluate the amplitude fluctuations of time-harmonic waves that radiated isotropically from a point source and propagated spherically in acoustic von Kármán-type random media. Our equation predicted relationships between amplitude fluctuations and observational parameters (e.g., wave frequency and hypocentral distance). Our numerical investigation, which was based on the finite difference method, enabled us to investigate the characteristics of wave propagation in both acoustic and elastic random inhomogeneous media using a variety of source time functions. The numerical simulations indicate that amplitude fluctuation characteristics differ a little between medium types (i.e., acoustic or elastic) or source time function durations. These results confirm the applicability of our analytical equation to practical seismic data analysis.
Photon Counting Chirped Amplitude Modulation Ladar
2008-03-01
135 S. Taylor Ave., Room 103, Louisville, CO 80027-3025 14. ABSTRACT This work developed a method using Geiger - mode avalanche photodiode (GM-APD...effort to develop a method using Geiger - mode avalanche photodiode (GM-APD) photon counting detectors in the U.S. Army Research Laboratory’s chirped...architecture are discussed. 15. SUBJECT TERMS laser radar, ladar, avalanche photo-detectors, Geiger mode detectors, chirped amplitude modulation
Chiral extrapolation of SU(3) amplitudes
Ecker, Gerhard
2011-05-23
Approximations of chiral SU(3) amplitudes at NNLO are proposed to facilitate the extrapolation of lattice data to the physical meson masses. Inclusion of NNLO terms is essential for investigating convergence properties of chiral SU(3) and for determining low-energy constants in a controllable fashion. The approximations are tested with recent lattice data for the ratio of decay constants F{sub K}/F{sub {pi}}.
Automatic generation of tree level helicity amplitudes
NASA Astrophysics Data System (ADS)
Stelzer, T.; Long, W. F.
1994-11-01
The program MadGraph is presented which automatically generates postscript Feynman diagrams and Fortran code to calculate arbitrary tree level helicity amplitudes by calling HELAS[1] subroutines. The program is written in Fortran and is available in Unix and VMS versions. MadGraph currently includes standard model interactions of QCD and QFD, but is easily modified to include additional models such as supersymmetry.
Automatic generation of tree level helicity amplitudes
NASA Astrophysics Data System (ADS)
Stelzer, T.; Long, W. F.
1994-07-01
The program MadGraph is presented which automatically generates postscript Feynman diagrams and Fortran code to calculate arbitrary tree level helicity amplitudes by calling HELAS[1] subroutines. The program is written in Fortran and is available in Unix and VMS versions. MadGraph currently includes standard model interactions of QCD and QFD, but is easily modified to include additional models such as supersymmetry.
Large Amplitude Oscillatory Shear near Jamming
NASA Astrophysics Data System (ADS)
Tighe, Brian; Dagois-Bohy, Simon; Somfai, Ellak; van Hecke, Martin
2014-11-01
Jammed solids such as foams and emulsions can be driven with oscillatory shear at finite strain amplitude and frequency. On a macro scale, this induces nonlinearities such as strain softening and shear thinning. On the micro scale one observes the onset of irreversibility, caging, and long-time diffusion. Using simulations of soft viscous spheres, we systematically vary the distance to the jamming transition. We correlate crossovers in the microscopic and macroscopic response, and construct scaling arguments to explain their relationships.
Amplitude calibration experiment for SIR-B
NASA Technical Reports Server (NTRS)
Held, D. N.; Ulaby, F. T.
1984-01-01
The objectives, approach, and expected results of the amplitude calibration experiment for the Shuttle Imaging Radar-B (SIR-B) are outlined. Specific objectives include: (1) the determination of the repeatability (stability) of the SIR-B; (2) the absolute and relative calibration of the system; and (3) the ground truth verification of the calibration accuracy using measurements made by a ground spectrometer and an airborne synthetic aperture radar.
Understanding the amplitudes of noise correlation measurements
Tsai, Victor C.
2011-01-01
Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.
NASA Astrophysics Data System (ADS)
Ji, X.; Li, X.
2011-07-01
The propagation properties of apertured laser beams with amplitude modulations (AMs) and phase fluctuations (PFs) through atmospheric turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity, power in the bucket ( PIB) and Strehl ratio ( S R ) of apertured laser beams with AMs and PFs propagating through atmospheric turbulence are derived. It is found that the worse the phase fluctuation and the higher the amplitude modulation are, the less laser beams are affected by turbulence. Furthermore, apertured Gaussian beams are more sensitive to turbulence than apertured laser beams with AMs and PFs. The average intensity of apertured laser beams with AMs and PFs may be even larger than that of apertured Gaussian beams due to turbulence. In particular, the influence of turbulence on the average maximum intensity of apertured laser beams with PFs and AMs may become serious if an unsuitable truncated parameter is chosen, which should be avoided in practice.
NASA Astrophysics Data System (ADS)
Nakajima, Nobuharu; Yoshino, Masayuki
2017-01-01
We present a proof-of-principle experiment of an analytic (noniterative) phase-retrieval method for coherent imaging systems under scanning illumination of a probe beam. This method allows to reconstruct the amplitude and phase distribution of a semi-transparent object over a wide area from intensities measured at three points in the Fourier plane of the object under scanning illumination of a known Gaussian-amplitude beam in the object plane. The present measurement system is very simple in contrast to ones of interferometric techniques, and also the speed of the calculation of phase retrieval in this method is faster than that in iterative algorithms since this method is based on an analytic solution to the phase retrieval. The effectiveness of this method is shown in experimental examples of the object reconstructions of a converging lens and a plastic plate for scratch standards.
Analytical Challenges in Biotechnology.
ERIC Educational Resources Information Center
Glajch, Joseph L.
1986-01-01
Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)
Analytical Challenges in Biotechnology.
ERIC Educational Resources Information Center
Glajch, Joseph L.
1986-01-01
Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)
[Amplitude modulation in sound signals by mammals].
Nikol'skiĭ, A A
2012-01-01
Periodic variations in amplitude of a signal, or amplitude modulation (AM), affect the structure of communicative messages spectrum. Within the spectrum of AM-signals, side frequencies are formed both above and below the carrier frequency that is subjected to modulation. In case of harmonic signal structure they are presented near fundamental frequency as well as near harmonics. Thus, AM may by viewed as a relatively simple mechanism for controlling the spectrum of messages transmitted by mammals. Examples of AM affecting the spectrum structure of functionally different sound signals are discussed as applied to representatives of four orders of mammals: rodents (Reodentia), duplicidentates (Lagomorpha), pinnipeds (Pinnipedia), and paridigitates (Artiodactia). For the first time, the classification of AM in animals' sound signals is given. Five forms of AM are picked out in sound signals by mammals: absence of AM, continuous AM, fragmented, heterogeneous, and multilevel one. AM presence/absence is related neither with belonging to any specific order nor with some particular function of a signal. Similar forms of AM can occur in different orders of mammals in parallel. On the contrary, different forms of AM can be detected in signals meant for similar functions. The assumption is made about AM-signals facilitating information encoding and jamprotection of messages transmitted by mammals. Preliminry analysis indicates that hard-driving amplitude modulation is incompatible with hard-driving frequency modulation.
Prominence Seismology Using Small Amplitude Oscillations
NASA Astrophysics Data System (ADS)
Oliver, Ramón
2009-12-01
Quiescent prominences can be modeled as thin slabs of cold, dense plasma embedded in the much hotter and rarer solar corona. Although their global shape is rather irregular, they are often characterised by an internal structure consisting of a large number of thin, parallel threads piled together. Prominences often display periodic disturbances mostly observed in the Doppler displacement of spectral lines and with an amplitude typically of the order of or smaller than 2-3 km s-1, a value which seems to be much smaller than the characteristic speeds of the prominence plasma (namely the Alfvén and sound velocities). Two particular features of these small amplitude prominence oscillations are that they seem to damp in a few periods and that they seem not to affect the whole prominence structure. In addition, in high spatial resolution observations, in which threads can be discerned, small amplitude oscillations appear to be clearly associated to these fine structure constituents. Prominence seismology tries to bring together the results from these observations (e.g. periods, wavelengths, damping times) and their theoretical modeling (by means of the magnetohydrodynamic theory) to gain insight into physical properties of prominences that cannot be derived from direct observation. In this paper we discuss works that have not been described in previous reviews, namely the first seismological application to solar prominences and theoretical advances on the attenuation of prominence oscillations.
Continuous phase and amplitude holographic elements
NASA Technical Reports Server (NTRS)
Maker, Paul D. (Inventor); Muller, Richard E. (Inventor)
1995-01-01
A method for producing a phase hologram using e-beam lithography provides n-ary levels of phase and amplitude by first producing an amplitude hologram on a transparent substrate by e-beam exposure of a resist over a film of metal by exposing n is less than or equal to m x m spots of an array of spots for each pixel, where the spots are randomly selected in proportion to the amplitude assigned to each pixel, and then after developing and etching the metal film producing a phase hologram by e-beam lithography using a low contrast resist, such as PMMA, and n-ary levels of low doses less than approximately 200 micro-C/sq cm and preferably in the range of 20-200 micro-C/sq cm, and aggressive development using pure acetone for an empirically determined time (about 6 s) controlled to within 1/10 s to produce partial development of each pixel in proportion to the n-ary level of dose assigned to it.
Zeroing in on Supersymmetric Radiation Amplitude Zeros
Hewett, JoAnne L.; Ismail, Ahmed; Rizzo, Thomas G.; /SLAC
2012-02-15
Radiation amplitude zeros have long been used to test the Standard Model. Here, we consider the supersymmetric radiation amplitude zero in chargino-neutralino associated production, which can be observed at the luminosity upgraded LHC. Such an amplitude zero only occurs if the neutralino has a large wino fraction and hence this observable can be used to determine the neutralino eigenstate content. We find that this observable can be measured by comparing the p{sub T} spectrum of the softest lepton in the trilepton {tilde {chi}}{sub 1}{sup {+-}} {tilde {chi}}{sub 2}{sup 0} decay channel to that of a control process such as {tilde {chi}}{sub 1}{sup +} {tilde {chi}}{sub 1}{sup -} or {tilde {chi}}{sub 2}{sup 0} {tilde {chi}}{sub 2}{sup 0}. We test this technique on a previously generated model sample of the 19 dimensional parameter space of the phenomenological MSSM, and find that it is effective in determining the wino content of the neutralino.
Mellin amplitudes for dual conformal integrals
NASA Astrophysics Data System (ADS)
Paulos, Miguel F.; Spradlin, Marcus; Volovich, Anastasia
2012-08-01
Motivated by recent work on the utility of Mellin space for representing conformal correlators in AdS/CFT, we study its suitability for representing dual conformal integrals of the type which appear in perturbative scattering amplitudes in super-Yang-Mills theory. We discuss Feynman-like rules for writing Mellin amplitudes for a large class of integrals in any dimension, and find explicit representations for several familiar toy integrals. However we show that the power of Mellin space is that it provides simple representations even for fully massive integrals, which except for the single case of the 4-mass box have not yet been computed by any available technology. Mellin space is also useful for exhibiting differential relations between various multi-loop integrals, and we show that certain higher-loop integrals may be written as integral operators acting on the fully massive scalar n-gon in n dimensions, whose Mellin amplitude is exactly 1. Our chief example is a very simple formula expressing the 6-mass double box as a single integral of the 6-mass scalar hexagon in 6 dimensions.
Monocular 3D see-through head-mounted display via complex amplitude modulation.
Gao, Qiankun; Liu, Juan; Han, Jian; Li, Xin
2016-07-25
The complex amplitude modulation (CAM) technique is applied to the design of the monocular three-dimensional see-through head-mounted display (3D-STHMD) for the first time. Two amplitude holograms are obtained by analytically dividing the wavefront of the 3D object to the real and the imaginary distributions, and then double amplitude-only spatial light modulators (A-SLMs) are employed to reconstruct the 3D images in real-time. Since the CAM technique can inherently present true 3D images to the human eye, the designed CAM-STHMD system avoids the accommodation-convergence conflict of the conventional stereoscopic see-through displays. The optical experiments further demonstrated that the proposed system has continuous and wide depth cues, which enables the observer free of eye fatigue problem. The dynamic display ability is also tested in the experiments and the results showed the possibility of true 3D interactive display.
Rivera-Ortega, Uriel; Meneses-Fabian, Cruz; Rodriguez-Zurita, Gustavo
2013-07-29
A new method in interferometry based on on-off non-quadrature amplitude modulation for object phase retrieval is presented. Although the technique introduces inhomogeneous visibility and phase variations in the interferogram, it is shown that the phase retrieval of a given object is still possible. This method is implemented by using three beams and two Mach-Zehnder interferometers in series. One of the arms of the system is used as a probe beam and the other two are used as reference beams, yielding from their sum the conventional reference beam of a two-beam interferometer. We demonstrate that, if there is a phase difference within the range of (0,π) between these two beams, the effect of modulation in both amplitude and phase is generated for the case of on-off non-quadrature amplitude modulation. An analytical discussion is provided to sustain this method. Numerical and experimental results are also shown.
Simultaneous phase, amplitude, and polarization control of femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Lindinger, A.; Weber, S. M.; Plewicki, M.; Weise, F.
2012-12-01
We present a serial pulse shaper design which allows us to shape the phase, amplitude, and polarization of fs laser pulses independently and simultaneously. The capabilities of this setup are demonstrated by implementing a method for generating parametrically tailored laser pulses. This method is applied on the ionization of NaK molecules by feedback loop optimization, employing a temporal sub pulse encoding. Moreover, we introduce and characterize a further development of this common path pulse shaper scheme for full control of all light field parameters.
Analyticity without Differentiability
ERIC Educational Resources Information Center
Kirillova, Evgenia; Spindler, Karlheinz
2008-01-01
In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…
Amplitude and phase effects on the synchronization of delay-coupled oscillators
D'Huys, O.; Vicente, R.; Danckaert, J.; Fischer, I.
2010-12-15
We consider the behavior of Stuart-Landau oscillators as generic limit-cycle oscillators when they are interacting with delay. We investigate the role of amplitude and phase instabilities in producing symmetry-breaking/restoring transitions. Using analytical and numerical methods we compare the dynamics of one oscillator with delayed feedback, two oscillators mutually coupled with delay, and two delay-coupled elements with self-feedback. Taking only the phase dynamics into account, no chaotic dynamics is observed, and the stability of the identical synchronization solution is the same in each of the three studied networks of delay-coupled elements. When allowing for a variable oscillation amplitude, the delay can induce amplitude instabilities. We provide analytical proof that, in case of two mutually coupled elements, the onset of an amplitude instability always results in antiphase oscillations, leading to a leader-laggard behavior in the chaotic regime. Adding self-feedback with the same strength and delay as the coupling stabilizes the system in the transverse direction and, thus, promotes the onset of identically synchronized behavior.
NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS
Nigam, R.; Kosovichev, A. G. E-mail: sasha@quake.stanford.ed
2010-01-10
Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.
Neural processing of amplitude and formant rise time in dyslexia.
Peter, Varghese; Kalashnikova, Marina; Burnham, Denis
2016-06-01
This study aimed to investigate how children with dyslexia weight amplitude rise time (ART) and formant rise time (FRT) cues in phonetic discrimination. Passive mismatch responses (MMR) were recorded for a/ba/-/wa/contrast in a multiple deviant odd-ball paradigm to identify the neural response to cue weighting in 17 children with dyslexia and 17 age-matched control children. The deviant stimuli had either partial or full ART or FRT cues. The results showed that ART did not generate an MMR in either group, whereas both partial and full FRT cues generated MMR in control children while only full FRT cues generated MMR in children with dyslexia. These findings suggest that children, both controls and those with dyslexia, discriminate speech based on FRT cues and not ART cues. However, control children have greater sensitivity to FRT cues in speech compared to children with dyslexia. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Detecting the Amplitude Mode of Strongly Interacting Lattice Bosons by Bragg Scattering
Bissbort, Ulf; Hofstetter, Walter; Li Yongqiang
2011-05-20
We report the first detection of the Higgs-type amplitude mode using Bragg spectroscopy in a strongly interacting condensate of ultracold atoms in an optical lattice. By the comparison of our experimental data with a spatially resolved, time-dependent bosonic Gutzwiller calculation, we obtain good quantitative agreement. This allows for a clear identification of the amplitude mode, showing that it can be detected with full momentum resolution by going beyond the linear response regime. A systematic shift of the sound and amplitude modes' resonance frequencies due to the finite Bragg beam intensity is observed.
Detecting the amplitude mode of strongly interacting lattice bosons by Bragg scattering.
Bissbort, Ulf; Götze, Sören; Li, Yongqiang; Heinze, Jannes; Krauser, Jasper S; Weinberg, Malte; Becker, Christoph; Sengstock, Klaus; Hofstetter, Walter
2011-05-20
We report the first detection of the Higgs-type amplitude mode using Bragg spectroscopy in a strongly interacting condensate of ultracold atoms in an optical lattice. By the comparison of our experimental data with a spatially resolved, time-dependent bosonic Gutzwiller calculation, we obtain good quantitative agreement. This allows for a clear identification of the amplitude mode, showing that it can be detected with full momentum resolution by going beyond the linear response regime. A systematic shift of the sound and amplitude modes' resonance frequencies due to the finite Bragg beam intensity is observed.
VizieR Online Data Catalog: Kepler δ Sct stars amplitude modulation (Bowman+, 2016)
NASA Astrophysics Data System (ADS)
Bowman, D. M.; Kurtz, D. W.; Breger, M.; Murphy, S. J.; Holdsworth, D. L.
2016-06-01
We searched for amplitude modulation of pulsation modes in δ Sct stars observed by the Kepler Space Telescope. The number of pulsation modes out of a maximum of twelve that have constant amplitudes and variable amplitudes are given in the columns NoMod and AMod, respectively, along with stellar parameters from Huber et al. (2014, Cat. J/ApJS/211/2). Table 1 is the full version for all 983 δ Sct stars the abridged version of the paper. (1 data file).
Quantification of neonatal amplitude-integrated EEG patterns.
Thorngate, Lauren; Foreman, Shuyuann Wang; Thomas, Karen A
2013-12-01
Amplitude-integrated EEG (aEEG) is increasingly used in research with premature infants; however, comprehensive interpretation is limited by the lack of simple approaches for reliably quantifying and summarizing the data. Explore operational measures for quantifying continuity and discontinuity, measured by aEEG as components of infant brain function. An exploratory naturalistic study of neonates while in the Neonatal Intensive Care Unit (NICU). One single channel aEEG recording per infant was obtained without disruption of nursing care practices. 24 infants with mean postmenstrual age (PMA) of 33.11 weeks (SD 3.49), average age of 2.62 weeks (SD 1.35) and mean birth weights of 1.39 kg (SD 0.73). Quantification of continuity and discontinuity included bandwidth and lower border of aEEG, calculated proportion of time with signal amplitude below 10 μV, and peak counts. Variance of bandwidth and lower border denoted cycling. Group mean bandwidth was 52.98 μV (SD 27.62). Median peak count in 60 second epochs averaged 3.63 (SD 1.74), while median proportion < 10 μV was 22% (SD 0.20). The group mean of lower border within-subject aggregated medians was 6.20 μV (SD 2.13). Group mean lower border standard deviation was 3.96 μV. Proportion < 10 μV showed a strong negative correlation with the natural log of the lower border median (r = -0.906, p < .0001) after controlling for PMA. This study introduces a novel quantification process by counting peaks and proportion of time < 10 μV. Expanded definitions and analytic techniques will serve to strengthen the application of existing scoring systems for use in naturalistic research settings and clinical practice. © 2013 Elsevier Ireland Ltd. All rights reserved.
The equilibrium cross-shore amplitude of lithologically diverse rocky coastlines
NASA Astrophysics Data System (ADS)
Limber, P. W.; Murray, A.
2011-12-01
amplitude is large, beach sediment production from cliff erosion will be high, and pocket beach width will grow wide enough to prevent cliff erosion in embayments. Then, amplitude will decrease because headlands are retreating faster than embayments (and vice versa for small amplitudes). As a result, pocket beaches eventually reach a steady-state width so that embayment retreat equals headland retreat, and amplitude reaches equilibrium. Using an analytical model, the equilibrium amplitude for a lithologically-diverse rocky coastline scales inversely with the retreat rate of headlands, the proportion of the coastline that consists of headlands, and the sediment yield of sea cliffs. Equilibrium amplitude can be predicted for any initial coastline shape (e.g., a newly flooded, fluvially-dissected landscape or an inherited coastline previously modified by a sea level highstand), and compared to actual landscapes. If, however, our key assumption that headlands remain sediment-free does not hold due to an additional sediment source (a river), the coastline can evolve differently: a beach can persist at the river mouth, protecting nearby sea cliffs from wave attack and forming a seaward-protruding "rocky delta". These previously unexplored features have been observed along the coastline of California, USA.
Loop-quantum-gravity vertex amplitude.
Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo
2007-10-19
Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.
Fatigue damage analysis under variable amplitude cycling
NASA Technical Reports Server (NTRS)
Leis, B. N.; Forte, T. P.
1983-01-01
This paper explores the suitability of a recently proposed mean stress parameter and introduces a nonlinear damage accumulation procedure. Data covering a range of positive and negative stress ratios from +0.6 to -2.66, for several aluminum alloys and steels, are assembled and shown to be well correlated by a simple damage parameter. A nonlinear damage accumulation postulate is advanced to replace the usual linear procedure. Results of critical experiments performed to assess the suitability of the postulate are introduced and shown to support a non-linear criterion. The implications of this work related to variable amplitude life prediction are discussed.
Fatigue crack growth under variable amplitude loading
NASA Astrophysics Data System (ADS)
Sidawi, Jihad A.
1994-09-01
Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.
Fatigue crack growth under variable amplitude loading
NASA Technical Reports Server (NTRS)
Sidawi, Jihad A.
1994-01-01
Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.
Phase amplitude conformal symmetry in Fourier transforms
NASA Astrophysics Data System (ADS)
Kuwata, S.
2015-04-01
For the Fourier transform ℑ : L2(R) → L2(R) of a complex-valued even or odd function ψ, it is found that the amplitude invariance |ℑψ| = |ψ| leads to a phase invariance or inversion as arg(ℑψ) = ±argψ + θ (θ = constant). The converse holds unless arg ψ = constant. The condition |ψ| = |ℑψ| is required in dealing with, for example, the minimum uncertainty relation between position and momentum. Without the evenness or oddness of ψ, |ℑψ| = |ψ| does not necessarily imply arg(ℑψ) = ±argψ + θ, nor is the converse.
In-Medium Pion Valence Distribution Amplitude
NASA Astrophysics Data System (ADS)
Tsushima, K.; de Melo, J. P. B. C.
2017-03-01
After a brief review of the quark-based model for nuclear matter, and some pion properties in medium presented in our previous works, we report new results for the pion valence wave function as well as the valence distribution amplitude in medium, which are presented in our recent article. We find that both the in-medium pion valence distribution and the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.
The small amplitude magnetohydrodynamic Riemann problem
NASA Technical Reports Server (NTRS)
Wu, C. C.; Kennel, C. F.
1993-01-01
The small-amplitude MHD Riemann problem is studied using the Cohen-Kulsrud-Burgers equations. Unlike the coplanar Riemann problem, the evolution of noncoplanar Riemann problems is not self-similar and its flow structures could change in time. But its large-time behavior is very simple and a time-dependent 2 - 3 intermediate shock is always involved for the noncoplanar field rotations. The time-dependent 2 - 3 intermediate shock has a well-defined structure and exists for any degree of field rotation.
Stochastic aspects of nuclear large amplitude motion
Kolomietz, V.M.
1995-08-01
A consistent description of the macroscopic large amplitude dynamics and processes of internal excitation of a nucleus is suggested. The cranking model approach is used for the calculation of the response function of the nucleus in a moving frame. Using spectral statistics smearing, the collective mass, friction, and diffusion coefficients are derived. The relation of the response function in a moving frame to the correlation function in a classical chaotic system is established. The rate of dissipation due to the Landau-Zener transitions and through the Kubo mechanism is considered.
Amplitude Variability and Extracellular Low-Pass Filtering of Neuronal Spikes☆
Pettersen, Klas H.; Einevoll, Gaute T.
2008-01-01
Abstract The influence of neural morphology and passive electrical parameters on the width and amplitude of extracellular spikes is investigated by combined analytical and numerical investigations of idealized and anatomically reconstructed pyramidal and stellate neuron models. The main results are: 1), All models yield a low-pass filtering effect, that is, a spike-width increase with increasing distance from soma. 2), A neuron's extracellular spike amplitude is seen to be approximately proportional to the sum of the dendritic cross-sectional areas of all dendritic branches connected to the soma. Thus, neurons with many, thick dendrites connected to soma will produce large amplitude spikes, and therefore have the largest radius of visibility. 3), The spike shape and amplitude are found to be dependent on the membrane capacitance and axial resistivity, but not on the membrane resistivity. 4), The spike-amplitude decay with distance r is found to depend on dendritic morphology, and is decaying as 1/rn with 1 ≤ n ≤ 2 close to soma and n ≥ 2 far away. PMID:17921225
New strings for old Veneziano amplitudes. II. Group-theoretic treatment
NASA Astrophysics Data System (ADS)
Kholodenko, A. L.
2006-09-01
In this part of our four parts work we use theory of polynomial invariants of finite pseudo-reflection groups in order to reconstruct both the Veneziano and Veneziano-like (tachyon-free) amplitudes and the generating function reproducing these amplitudes. We demonstrate that such generating function and amplitudes associated with it can be recovered with help of finite dimensional exactly solvableN=2 supersymmetric quantum mechanical model known earlier from works of Witten, Stone and others. Using the Lefschetz isomorphism theorem we replace traditional supersymmetric calculations by the group-theoretic thus solving the Veneziano model exactly using standard methods of representation theory. Mathematical correctness of our arguments relies on important theorems by Shepard and Todd, Serre and Solomon proven respectively in the early 50s and 60s and documented in the monograph by Bourbaki. Based on these theorems, we explain why the developed formalism leaves all known results of conformal field theories unchanged. We also explain why these theorems impose stringent requirements connecting analytical properties of scattering amplitudes with symmetries of space-time in which such amplitudes act.
PERIOD AND AMPLITUDE VARIABILITY OF THE HIGH-AMPLITUDE {delta} SCUTI STAR GP ANDROMEDAE
Zhou, A.-Y.; Jiang, S.-Y.
2011-10-15
Extensive differential time-series CCD photometry has been carried out between 2003 and 2009 for the high-amplitude {delta} Scuti (HADS) star GP And. We acquired 12,583 new measurements consisting of 41 nights (153.3 hr) spanning over 2221 days. This is the largest time-series data set to date for the star. Based upon these data and others available in the literature, a comprehensive analysis has been conducted to investigate the pulsational properties of the star. Except for the known fundamental period and its harmonics we failed to detect any additional pulsation periods either radial or nonradial. We show clear amplitude variability, but we failed to verify the previously claimed periodic amplitude modulation. Classic O-C analysis indicates that the fundamental pulsation period of GP And is slowly increasing at a rate of P-dot /P = (5.49 {+-} 0.1)x10{sup -8} yr{sup -1} in accordance with the predictions of stellar evolutionary models. Findings of nonradial oscillations in previously known radial high-amplitude pulsators are being increasingly reported. We have briefly reviewed the current status of multiperiodicity and nonradial pulsation features among the high-amplitude pulsators in the classic instability strip.
Small-amplitude synchrotron tune near transition
Ng, K.Y.; /Fermilab
2010-05-01
The separatrices of the rf buckets near transition are mapped when the synchronous phase is neither 0 or {pi}. The small-amplitude synchronous tune is derived when the rf frequency is changed. Synchrotron radiation is present in all electron storage ring. As a result, the synchronous phase is always offset from {phi}{sub s} = {pi} to compensate for the power loss. Even for proton storage rings with negligible synchrotron radiation, the synchronous phase is also required to be offset from {phi}{sub s} = 0 or {pi} slightly to compensate for beam loading. Thus for all storage rings operating near transition, beam particles reside in accelerating buckets instead of stationary bucket. It is of interest to map these buckets and see how they evolve near transition. When the rf frequency is varied, the closed orbit is pushed radially inward or outward. The momentum of the particle synchronous with the rf is thus changed. By measuring the small-amplitude synchrotron tune as a function of the rf frequency, the lowest first few orders of the slip factor can be inferred. Here, we derive this relationship up to the lowest first three orders of the slip factor when the particle velocity is not ultra-relativistic.
Amplitude enhancement by a gold dimer
NASA Astrophysics Data System (ADS)
Hong, Xin; Wang, Jingxin; Jin, Zheng
2016-10-01
The unique optical properties such as brightness, non-bleaching, good bio-compatibility make gold particles ideal label candidates for molecular probes. Due to the strongly enhanced field, aggregation of gold nanoparticles finds themselves plenty of applications in bio-imaging. But limited by its small cross-section associated with nanometer sized particle, it is a big challenge to employ it in a single molecular detection. The field enhancement results from the effect of plasmonic coupling between two closely attached gold nanoparticle under the right excitation condition. With the aim to apply the gold dimer probe to find the molecules in our recently established optical detection method, we compared of the amplitude enhancement by the dimer relative to a single particle. The amplitude distribution under a highly focused illumination objective was calculated, whose results suggest that at the optimized excitation condition, the local field can be enhanced 190 fold. In consequence, experimental detection was carried out. Gold dimers were linked together by the hybridization of two single chain DNAs. Dimer and single particle probes were mixed together in one detection. Overwhelming contrast between these two kinds of probes were clearly exhibited in the experimental detection image. This method can provide a way to a high specific detection in early diagnosis.
Wrist Proprioception: Amplitude or Position Coding?
Marini, Francesca; Squeri, Valentina; Morasso, Pietro; Masia, Lorenzo
2016-01-01
This work examines physiological mechanisms underlying the position sense of the wrist, namely, the codification of proprioceptive information related to pointing movements of the wrist toward kinesthetic targets. Twenty-four healthy subjects participated to a robot-aided assessment of their wrist proprioceptive acuity to investigate if the sensorimotor transformation involved in matching targets located by proprioceptive receptors relies on amplitude or positional cues. A joint position matching test was performed in order to explore such dichotomy. In this test, the wrist of a blindfolded participant is passively moved by a robotic device to a preset target position and, after a removal movement from this position, the participant has to actively replicate and match it as accurately as possible. The test involved two separate conditions: in the first, the matching movements started from the same initial location; in the second one, the initial location was randomly assigned. Target matching accuracy, precision, and bias in the two conditions were then compared. Overall results showed a consistent higher performance in the former condition than in the latter, thus supporting the hypothesis that the joint position sense is based on vectorial or amplitude coding rather than positional. PMID:27807417
Color-kinematic duality in ABJM theory without amplitude relations
NASA Astrophysics Data System (ADS)
Sivaramakrishnan, Allic
2017-01-01
We explicitly show that the Bern-Carrasco-Johansson color-kinematic duality holds at tree level through at least eight points in Aharony-Bergman-Jafferis-Maldacena theory with gauge group SU(N) × SU(N). At six points we give the explicit form of numerators in terms of amplitudes, displaying the generalized gauge freedom that leads to amplitude relations. However, at eight points no amplitude relations follow from the duality, so the diagram numerators are fixed unique functions of partial amplitudes. We provide the explicit amplitude-numerator decomposition and the numerator relations for eight-point amplitudes.
Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun
2016-07-01
Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.
Henry, Molly J.; Obleser, Jonas
2013-01-01
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals. PMID:24205309
Analytic Approximations for the Extrapolation of Lattice Data
Masjuan, Pere
2010-12-22
We present analytic approximations of chiral SU(3) amplitudes for the extrapolation of lattice data to the physical masses and the determination of Next-to-Next-to-Leading-Order low-energy constants. Lattice data for the ratio F{sub K}/F{sub {pi}} is used to test the method.
Analytical Chemistry in Russia.
Zolotov, Yuri
2016-09-06
Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.
Understanding Business Analytics
2015-01-05
Business Analytics, Decision Analytics, Business Intelligence, Advanced Analytics, Data Science . . . to a certain degree, to label is to limit - if only...broad category of inquiry that can be used to help drive changes and improvements in business practices. Data Science : the study of where infor...Management Sciences (INFORMS) This scientific process of transforming data into insight with ana- lytics for better decision-making has taken the form
Science Update: Analytical Chemistry.
ERIC Educational Resources Information Center
Worthy, Ward
1980-01-01
Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)
Population transfer by an amplitude-modulated pulse
Vitanov, N.V.; Yatsenko, L.P.; Bergmann, K.
2003-10-01
We propose a technique for coherent population inversion of a two-state system, which uses an amplitude-modulated pulse. In the modulation-free adiabatic basis, the modulation introduces oscillating interaction between the adiabatic states. In a second rotating-wave approximation picture, this oscillating interaction induces a pair of level crossings between the energies of the adiabatic states if the modulation frequency is chosen appropriately. By suitably offsetting the modulation with respect to the center of the pulse, one can make the modulation act only in the vicinity of one of these crossings. In a higher-order adiabatic basis, this crossing shows up as an avoided crossing between the energies of the higher-order adiabatic states. As a result robust and efficient population transfer can be achieved between the adiabatic states, and hence, between the original bare states. We derive analytically the conditions on the interaction parameters for this technique and verify them with numerical simulations. Possible experimental implementations are discussed.
Localization of source with unknown amplitude using IPMC sensor arrays
NASA Astrophysics Data System (ADS)
Abdulsadda, Ahmad T.; Zhang, Feitian; Tan, Xiaobo
2011-04-01
The lateral line system, consisting of arrays of neuromasts functioning as flow sensors, is an important sensory organ for fish that enables them to detect predators, locate preys, perform rheotaxis, and coordinate schooling. Creating artificial lateral line systems is of significant interest since it will provide a new sensing mechanism for control and coordination of underwater robots and vehicles. In this paper we propose recursive algorithms for localizing a vibrating sphere, also known as a dipole source, based on measurements from an array of flow sensors. A dipole source is frequently used in the study of biological lateral lines, as a surrogate for underwater motion sources such as a flapping fish fin. We first formulate a nonlinear estimation problem based on an analytical model for the dipole-generated flow field. Two algorithms are presented to estimate both the source location and the vibration amplitude, one based on the least squares method and the other based on the Newton-Raphson method. Simulation results show that both methods deliver comparable performance in source localization. A prototype of artificial lateral line system comprising four ionic polymer-metal composite (IPMC) sensors is built, and experimental results are further presented to demonstrate the effectiveness of IPMC lateral line systems and the proposed estimation algorithms.
Thakur, C P; Sharma, D
1984-01-01
The incidence of crimes reported to three police stations in different towns (one rural, one urban, one industrial) was studied to see if it varied with the day of the lunar cycle. The period of the study covered 1978-82. The incidence of crimes committed on full moon days was much higher than on all other days, new moon days, and seventh days after the full moon and new moon. A small peak in the incidence of crimes was observed on new moon days, but this was not significant when compared with crimes committed on other days. The incidence of crimes on equinox and solstice days did not differ significantly from those on other days, suggesting that the sun probably does not influence the incidence of crime. The increased incidence of crimes on full moon days may be due to "human tidal waves" caused by the gravitational pull of the moon. PMID:6440656
Thakur, C P; Sharma, D
The incidence of crimes reported to three police stations in different towns (one rural, one urban, one industrial) was studied to see if it varied with the day of the lunar cycle. The period of the study covered 1978-82. The incidence of crimes committed on full moon days was much higher than on all other days, new moon days, and seventh days after the full moon and new moon. A small peak in the incidence of crimes was observed on new moon days, but this was not significant when compared with crimes committed on other days. The incidence of crimes on equinox and solstice days did not differ significantly from those on other days, suggesting that the sun probably does not influence the incidence of crime. The increased incidence of crimes on full moon days may be due to "human tidal waves" caused by the gravitational pull of the moon.
Compressive full waveform lidar
NASA Astrophysics Data System (ADS)
Yang, Weiyi; Ke, Jun
2017-05-01
To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.
Evaluation of new spin foam vertex amplitudes
NASA Astrophysics Data System (ADS)
Khavkine, Igor
2009-06-01
The Christensen-Egan algorithm is extended and generalized to efficiently evaluate new spin foam vertex amplitudes proposed by Engle, Pereira and Rovelli and Freidel and Krasnov, with or without (factored) boundary states. A concrete pragmatic proposal is made for comparing the different models using uniform methodologies, applicable to the behavior of large spin asymptotics and of expectation values of specific semiclassical observables. The asymptotics of the new models exhibit non-oscillatory, power-law decay similar to that of the Barrett-Crane model, though with different exponents. Also, an analysis of the semiclassical wave packet propagation problem indicates that the Magliaro, Rovelli and Perini's conjecture of good semiclassical behavior of the new models does not hold for generic factored states, which neglect spin-spin correlations.
Amplitude Scaling of Active Separation Control
NASA Technical Reports Server (NTRS)
Stalnov, Oksana; Seifert, Avraham
2010-01-01
Three existing and two new excitation magnitude scaling options for active separation control at Reynolds numbers below one Million. The physical background for the scaling options was discussed and their relevance was evaluated using two different sets of experimental data. For F+ approx. 1, 2D excitation: a) The traditional VR and C(mu) - do not scale the data. b) Only the Re*C(mu) is valid. This conclusion is also limited for positive lift increment.. For F+ > 10, 3D excitation, the Re corrected C(mu), the St corrected velocity ratio and the vorticity flux coefficient, all scale the amplitudes equally well. Therefore, the Reynolds weighted C(mu) is the preferred choice, relevant to both excitation modes. Incidence also considered, using Ue from local Cp.
Low Amplitude Impact of Damaged PBX 9501
NASA Astrophysics Data System (ADS)
Idar, Deanne
1999-06-01
Low amplitude impact tests on damaged, baseline and aged, PBX 9501 specimens have been performed to determine the critical impact-velocity threshold for violent reaction. Tests were performed using 3.0-in. diameter, 2 kg. mild-steel projectiles launched from a spigot gun at lightly confined modified Steven targets. Prior damage on the seven targets was induced by a single impact ranging in velocity from 36.9 to 52.7 m/s. External blast gauge data were coupled with ballistic pendulum data to evaluate the level of reaction violence relative to a steady-state detonation. Strain gage data were used to evaluate the response of the explosive to impact and characterize subsequent reaction profiles. The effect of PBX 9501 lots, age, and prior level of damage on threshold behavior will be discussed and compared to single impact test results.
Speech recognition with amplitude and frequency modulations
NASA Astrophysics Data System (ADS)
Zeng, Fan-Gang; Nie, Kaibao; Stickney, Ginger S.; Kong, Ying-Yee; Vongphoe, Michael; Bhargave, Ashish; Wei, Chaogang; Cao, Keli
2005-02-01
Amplitude modulation (AM) and frequency modulation (FM) are commonly used in communication, but their relative contributions to speech recognition have not been fully explored. To bridge this gap, we derived slowly varying AM and FM from speech sounds and conducted listening tests using stimuli with different modulations in normal-hearing and cochlear-implant subjects. We found that although AM from a limited number of spectral bands may be sufficient for speech recognition in quiet, FM significantly enhances speech recognition in noise, as well as speaker and tone recognition. Additional speech reception threshold measures revealed that FM is particularly critical for speech recognition with a competing voice and is independent of spectral resolution and similarity. These results suggest that AM and FM provide independent yet complementary contributions to support robust speech recognition under realistic listening situations. Encoding FM may improve auditory scene analysis, cochlear-implant, and audiocoding performance. auditory analysis | cochlear implant | neural code | phase | scene analysis
Presynaptic spike broadening reduces junctional potential amplitude.
Spencer, A N; Przysiezniak, J; Acosta-Urquidi, J; Basarsky, T A
1989-08-24
Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.
Conformal basis for flat space amplitudes
NASA Astrophysics Data System (ADS)
Pasterski, Sabrina; Shao, Shu-Heng
2017-09-01
We study solutions of the Klein-Gordon, Maxwell, and linearized Einstein equations in R1 ,d +1 that transform as d -dimensional conformal primaries under the Lorentz group S O (1 ,d +1 ). Such solutions, called conformal primary wavefunctions, are labeled by a conformal dimension Δ and a point in Rd, rather than an on-shell (d +2 )-dimensional momentum. We show that the continuum of scalar conformal primary wavefunctions on the principal continuous series Δ ∈d/2 +i R of S O (1 ,d +1 ) spans a complete set of normalizable solutions to the wave equation. In the massless case, with or without spin, the transition from momentum space to conformal primary wavefunctions is implemented by a Mellin transform. As a consequence of this construction, scattering amplitudes in this basis transform covariantly under S O (1 ,d +1 ) as d -dimensional conformal correlators.
Amplitude envelope synchronization in coupled chaotic oscillators.
Gonzalez-Miranda, J M
2002-03-01
A peculiar type of synchronization has been found when two Van der Pol-Duffing oscillators, evolving in different chaotic attractors, are coupled. As the coupling increases, the frequencies of the two oscillators remain different, while a synchronized modulation of the amplitudes of a signal of each system develops, and a null Lyapunov exponent of the uncoupled systems becomes negative and gradually larger in absolute value. This phenomenon is characterized by an appropriate correlation function between the returns of the signals, and interpreted in terms of the mutual excitation of new frequencies in the oscillators power spectra. This form of synchronization also occurs in other systems, but it shows up mixed with or screened by other forms of synchronization, as illustrated in this paper by means of the examples of the dynamic behavior observed for three other different models of chaotic oscillators.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris
2005-01-01
FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.
ERIC Educational Resources Information Center
Matuskey, Patricia Varan; Tango, Robert
The "Care-Full" teaching process described in this report is an assessment-oriented procedure which monitors the student's specific rate of growth toward defined learning objectives. First, the report briefly delineates eight steps in the process, indicating that teachers and counselors: (1) become aware of the need for assessment; (2) transform…
Compositions of bosonic string amplitudes with cylinder topology
Trisnadi, J.I.
1989-01-01
Many issues in string theory are conveniently addressed and handled in a quantum fleld theoretical framework, from which Feynman rules can then be derived. Although at present a generally acceptable quantum field theory of closed strings does not yet exist, the Feynman rules are known. This is due to another development in string theory, namely, the Polyakov path integral approach. In this approach, scattering amplitudes are calculated directly without appealing to the quantum fleld theoretical description. It is therefore important to examine if the scattering amplitude can be reconstructed by composing propagators and vertices. In general, the author is interested in knowing if Polyakov amplitudes can be consistently composed. Composition of amplitudes in general has been studied formally. Explicit composition, however, is limited to amplitudes that have been calculated explicitly. Among them is the amplitude with cylinder topology. In this dissertation, the author will rederive this cylinder amplitude. The author uses the action principle in the evaluation of the path integral. This way, the contributions of the ghost zero modes, which are usually introduced by hand, come out automatically. Then, the author studies three compositions of the cylinder amplitude: two cylinder amplitudes into one, a single cylinder amplitude into a torus amplitude, and a cylinder amplitude into a Klein-bottle amplitude. The author shows that the resulting amplitudes agree with known results. Using the cylinder amplitude, the author also demonstrates the derivation of the (imaginary time) Schrodinger equation for the free closed bosonic string. Finally, the author applies the techniques to derive the composable transition amplitude of gravity in a Friedmann-RobertsonWalker cosmology.
Localized finite-amplitude disturbances and selection of solitary waves
Kliakhandler; Porubov; Velarde
2000-10-01
It turns out that evolution of localized finite-amplitude disturbances in perturbed KdV equation is qualitatively different compared with conventional small-amplitude initial conditions. Namely, relatively fast solitary waves, with one and the same amplitude and velocity, are formed ahead of conventional chaotic-like irregular structures. The amplitude and velocity of the waves, obtained from the asymptotic theory, are in excellent agreement with numerics.
Chiral closed strings: four massless states scattering amplitude
NASA Astrophysics Data System (ADS)
Leite, Marcelo M.; Siegel, Warren
2017-01-01
We compute the scattering amplitudes of four massless states for chiral (closed) bosonic and type II superstrings using the Kawai-Lewellen-Tye ( KLT ) factorization method. The amplitude in the chiral bosonic case is identical to a field theory amplitude corresponding to the spin-2 tachyon, massless gravitational sector and massive spin-2 tardyon states of the spectrum. Chiral type II superstrings amplitude only possess poles associated with the massless gravitational sector. We briefly discuss the extension of the calculation to heterotic superstrings.
Finite amplitude stability of attachment line boundary layers
NASA Astrophysics Data System (ADS)
Balakumar, P.; Trivedi, Prakash A.
1998-09-01
Two-dimensional nonlinear equilibrium solutions for the swept Hiemenz flow attachment line boundary layer are directly computed by solving the full Navier-Stokes equations as a nonlinear eigenvalue problem. The equations are discretized using the two-point fourth order compact scheme and the resulting nonlinear homogeneous equations are solved using the Newton-Raphson iteration technique. It is found that for Reynolds numbers larger than the linear critical Reynolds number of 583, the nonlinear neutral surfaces form open curves. The results showed that the subcritical instability exists near the upper branch neutral curve and supercritical equilibrium solutions exist near the lower branch. These conclusions are in agreement with the weakly nonlinear theory. However, at higher amplitudes away from the linear neutral points the nonlinear neutral surfaces show subcritical instability at lower and higher wave number regions. At Reynolds numbers lower than the critical value, the nonlinear neutral surfaces form closed loops. By reducing the Reynolds number, we found that the nonlinear critical point occurs at a Reynolds number of 511.3, below which all the two-dimensional disturbances will decay. The secondary instability of these equilibrium solutions is investigated using the Floquet theory. The results showed that these two-dimensional finite amplitude neutral solutions are unstable to three-dimensional disturbances.
Multidimensional Stability of Large-Amplitude Navier-Stokes Shocks
NASA Astrophysics Data System (ADS)
Humpherys, Jeffrey; Lyng, Gregory; Zumbrun, Kevin
2017-07-01
Extending results of Humpherys-Lyng-Zumbrun in the one-dimensional case, we use a combination of asymptotic ODE estimates and numerical Evans-function computations to examine the multidimensional stability of planar Navier-Stokes shocks across the full range of shock amplitudes, including the infinite-amplitude limit, for monatomic or diatomic ideal gas equations of state and viscosity and heat conduction coefficients {μ} , {μ +η} , and {ν=κ/c_v} constant and in the physical ratios predicted by statistical mechanics, and Mach number {M > 1.035} . Our results indicate unconditional stability within the parameter range considered; this agrees with the results of Erpenbeck and Majda for the corresponding inviscid case of Euler shocks. Notably, this study includes the first successful numerical computation of an Evans function associated with the multidimensional stability of a viscous shock wave. The methods introduced can be used in principle to decide stability for shocks in any polytropic gas, or indeed for shocks of other models, including in, particular, viscoelasticity, combustion, and magnetohydrodynamics (MHD).
Contrast and spatial resolution in MREIT using low amplitude current.
Birgul, Ozlem; Hamamura, Mark J; Muftuler, L Tugan; Nalcioglu, Orhan
2006-10-07
Magnetic resonance-electrical impedance tomography employs low amplitude currents injected or induced inside an object. The additional magnetic field due to these currents results in a phase in the MR images. In this study, a modified fast spin-echo sequence was used to measure this magnetic field, which is obtained by scaling the MR phase image. A finite element method with first order triangular elements was used for the solution of the forward problem. An iterated sensitivity matrix-based algorithm was developed for the inverse problem. The resulting ill-conditioned matrix equation was regularized using the Tikhonov method and solved using a conjugate gradient solver. The spatial and contrast resolution of the technique was tested using agarose gel phantoms. A circular phantom with 7 cm diameter and 1 cm thickness is used in the phantom experiments. The amplitude of the injected current was 1 mA. 3, 5 and 8 mm diameter insulators and high conductor objects are used for the spatial resolution study and an average full-width half-maximum value of 4.7 mm is achieved for the 3 mm insulator case. For the contrast analysis, the conductivity of a 15 mm object is varied between 44% and 500% with respect to the background and results are compared to the ideal reconstruction.
Not Available
1990-01-01
This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)
ERIC Educational Resources Information Center
Ember, Lois R.
1977-01-01
The procedures utilized by the Association of Official Analytical Chemists (AOAC) to develop, evaluate, and validate analytical methods for the analysis of chemical pollutants are detailed. Methods validated by AOAC are used by the EPA and FDA in their enforcement programs and are granted preferential treatment by the courts. (BT)
Extreme Scale Visual Analytics
Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio
2012-05-08
Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.
Analytical mass spectrometry. Abstracts
Not Available
1990-12-31
This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)
ERIC Educational Resources Information Center
Ember, Lois R.
1977-01-01
The procedures utilized by the Association of Official Analytical Chemists (AOAC) to develop, evaluate, and validate analytical methods for the analysis of chemical pollutants are detailed. Methods validated by AOAC are used by the EPA and FDA in their enforcement programs and are granted preferential treatment by the courts. (BT)
Signals: Applying Academic Analytics
ERIC Educational Resources Information Center
Arnold, Kimberly E.
2010-01-01
Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…
Signals: Applying Academic Analytics
ERIC Educational Resources Information Center
Arnold, Kimberly E.
2010-01-01
Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…
Learning Analytics Considered Harmful
ERIC Educational Resources Information Center
Dringus, Laurie P.
2012-01-01
This essay is written to present a prospective stance on how learning analytics, as a core evaluative approach, must help instructors uncover the important trends and evidence of quality learner data in the online course. A critique is presented of strategic and tactical issues of learning analytics. The approach to the critique is taken through…
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
Quo vadis, analytical chemistry?
Valcárcel, Miguel
2016-01-01
This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.
NASA Technical Reports Server (NTRS)
1931-01-01
Construction of motor fairing for the fan motors of the Full-Scale Tunnel (FST). The motors and their supporting structures were enclosed in aerodynamically smooth fairings to minimize resistance to the air flow. Close examination of this photograph reveals the complicated nature of constructing a wind tunnel. This motor fairing, like almost every other structure in the FST, represents a one-of-a-kind installation.
SUPERFUND TREATABILITY CLEARINGHOUSE: FULL ...
This treatability study reports on the results of one of a series of field trials using various remedial action technologies that may be capable of restoring Herbicide Orange (HO)XDioxin contaminated sites. A full-scale field trial using a rotary kiln incinerator capable of processing up to 6 tons per hour of dioxin contaminated soil was conducted at the Naval Construction Battalion Center, Gulfport, MS. publish information
NASA Technical Reports Server (NTRS)
1929-01-01
Interior view of Full-Scale Tunnel (FST) model. (Small human figures have been added for scale.) On June 26, 1929, Elton W. Miller wrote to George W. Lewis proposing the construction of a model of the full-scale tunnel . 'The excellent energy ratio obtained in the new wind tunnel of the California Institute of Technology suggests that before proceeding with our full scale tunnel design, we ought to investigate the effect on energy ratio of such factors as: 1. small included angle for the exit cone; 2. carefully designed return passages of circular section as far as possible, without sudden changes in cross sections; 3. tightness of walls. It is believed that much useful information can be obtained by building a model of about 1/16 scale, that is, having a closed throat of 2 ft. by 4 ft. The outside dimensions would be about 12 ft. by 25 ft. in plan and the height 4 ft. Two propellers will be required about 28 in. in diameter, each to be driven by direct current motor at a maximum speed of 4500 R.P.M. Provision can be made for altering the length of certain portions, particularly the exit cone, and possibly for the application of boundary layer control in order to effect satisfactory air flow.
Analytical model of the optical vortex microscope.
Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz
2016-04-20
This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.
Generalized Parton Distributions, Analyticity and Formfactors
Teryaev, O. V
2008-10-13
The QCD factorization for hard exclusive amplitudes is compared with their crossing and analytic properties. The crucial role is played by their mathematical structure described by Radon and Abel transforms, leading to 'holographic' property of GPDs at LO. These transforms are very different in the even- and odd-dimensional spaces, the latter case related to 'creation' GPDs describing, say, the deuteron breakup. The bounds implied by crossing and analyticity for the angular distributions in two-photon processes are obtained. The contributions of different types of QCD factorization and duality between them are considered. The relations of GPDs to (gravitational) formfactors, equivalence principle (EP) and its extension (EEP) are analyzed. EEP is also considered for the case of vector mesons, showing the possible link with AdS/QCD correspondence.
Feed-forward digital phase and amplitude correction system
Yu, D.U.L.; Conway, P.H.
1994-11-15
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.
Feed-forward digital phase and amplitude correction system
Yu, David U. L.; Conway, Patrick H.
1994-01-01
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.
Amplitude-Phase Analysis of Cosmic Microwave Background Maps
NASA Astrophysics Data System (ADS)
Novikov, D.; Naselsky, P.; Silk, J.
We suggest the amplitude-phase analysis (APA) as a new method for the CMB image reconstruction. This method has been adopted for any kind of possible noise in the CMB observational data ( like point sources, dust emission, pixel and radiometer noise and so on). The important advantage of our scheme is that unlike other methods the phase analysis doesn't require any information about the expected CMB power spectra to subtract the noise. The only assumption we made is that the initial cosmological signal has a Gaussian nature. This method is very efficient computationally because it requires only O(Nln (N)) operations, where N is the number of pixels. Therefore, the full advantage of our scheme can be reached on very large data sets. Its efficiency has been successfully tested on simulated signals corresponding to MAP, PLANCK and RATAN-600 angular resolutions. P. Naselsky (TAC, Denmark), I. Novikov (TAC, Denmark)
Unity-Efficiency Parametric Down-Conversion via Amplitude Amplification
NASA Astrophysics Data System (ADS)
Niu, Murphy Yuezhen; Sanders, Barry C.; Wong, Franco N. C.; Shapiro, Jeffrey H.
2017-03-01
We propose an optical scheme, employing optical parametric down-converters interlaced with nonlinear sign gates (NSGs), that completely converts an n -photon Fock-state pump to n signal-idler photon pairs when the down-converters' crystal lengths are chosen appropriately. The proof of this assertion relies on amplitude amplification, analogous to that employed in Grover search, applied to the full quantum dynamics of single-mode parametric down-conversion. When we require that all Grover iterations use the same crystal, and account for potential experimental limitations on crystal-length precision, our optimized conversion efficiencies reach unity for 1 ≤n ≤5 , after which they decrease monotonically for n values up to 50, which is the upper limit of our numerical dynamics evaluations. Nevertheless, our conversion efficiencies remain higher than those for a conventional (no NSGs) down-converter.
Amplitude interpretation and visualization of three-dimensional reflection data
Enachescu, M.E. )
1994-07-01
Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements not obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.
Analytical estimate of phase mixing time of longitudinal Akhiezer-Polovin waves
NASA Astrophysics Data System (ADS)
Mukherjee, Arghya; Sengupta, Sudip
2014-11-01
Phase mixing of a longitudinal Akhiezer-Polovin wave subjected to a small amplitude longitudinal perturbation and its eventual breaking is studied analytically. It is well known that longitudinal Akhiezer-Polovin wave subjected to arbitrarily small longitudinal perturbation breaks via the process of phase mixing at an amplitude well below its limiting amplitude [Verma et al., Phys. Rev. Lett. 108, 125005 (2012)]. We analytically show that the phase mixing time (breaking time, ωpτmix) scales with β (phase velocity) and um(maximum fluid velocity) as ωpτmi x˜2/πβ 3 δ [1 /um2-1 /4 ] , where δ is the amplitude of velocity perturbation and ωp is the non-relativistic plasma frequency. This analytical dependence of phase mixing time on β, um, and δ is further verified using numerical simulations based on Dawson sheet model.
Writing CFT correlation functions as AdS scattering amplitudes
NASA Astrophysics Data System (ADS)
Penedones, Joao
2011-03-01
We explore the Mellin representation of conformal correlation functions recently proposed by Mack. Examples in the AdS/CFT context reinforce the analogy between Mellin amplitudes and scattering amplitudes. We conjecture a simple formula relating the bulk scattering amplitudes to the asymptotic behavior of Mellin amplitudes and show that previous results on the flat space limit of AdS follow from our new formula. We find that the Mellin amplitudes are particularly useful in the case of conformal gauge theories in the planar limit. In this case, the four point Mellin amplitudes are meromorphic functions whose poles and their residues are entirely determined by two and three point functions of single-trace operators. This makes the Mellin amplitudes the ideal objects to attempt the conformal bootstrap program in higher dimensions.
Efficient reverse time migration with amplitude encoding
NASA Astrophysics Data System (ADS)
Hu, Jiangtao; Wang, Huazhong; Zhao, Lei; Shao, Yu; Wang, Meixia; Osen, Are
2015-08-01
Reverse time migration (RTM) is an accurate seismic imaging method for imaging the complex subsurface structure. Traditional common shot RTM suffers from low efficiency due to the large number of single shot gathers, especially for marine seismic data. Phase encoding is commonly used to reduce the computational cost of RTM. Phase encoding in the frequency domain is usually related to time shift in the time domain. Therefore, phase-encoding-based RTM needs time padding to avoid information loss which degrades the efficiency of the time-domain wavefield extrapolator. In this paper, an efficient time-domain RTM scheme based on the amplitude encoding is proposed. This scheme uses the orthogonal cosine basis as the encoding function, which has similar physical meaning to plane wave encoding (i.e. plane-wave components with different surface shooting angles). The proposed scheme can generate a qualified imaging result as well as common shot RTM but with less computational cost. Since this scheme does not need time padding, it is more efficient than the phase encoding schemes and can be conveniently implemented in the time domain. Numerical examples on the Sigsbee2a synthetic dataset demonstrate the feasibility of the proposed method.
[Amplitude modulation following responses in audiological diagnostics].
Pethe, J; Mühler, R; von Specht, H
2002-12-01
The registration of brainstem potentials currently represents one of the most common methods in objective audiological diagnostics. However, regardless of their use, they are still known to possess important disadvantages, such as low specificity and validity in the lower frequency range due to broadband stimuli, or uncertainties due to the need for subjective evaluation. One potential solution to these problems could involve the registration of amplitude modulation following responses (AMFR). These potentials are being discussed much more regularly within the anglo-american literature due to their known frequency specificity within the high frequency range (resulting from a very narrow frequency band of stimulation), and also their ability to permit assessment of the hearing threshold at lower frequencies. Another additional advantage of AMFR results from the simple statistical verification of its presence.Extensive studies on the influence of both stimulating and recording parameters have also shown that the registration of AMFR could prove to be a very promising audiological tool, with past interest being focussed primarily on the optimal modulation frequency, the influence of vigilance of the generation of potentials, and the precise assessment of an objective threshold.
Nonlinear amplitude dynamics in flagellar beating
NASA Astrophysics Data System (ADS)
Oriola, David; Gadêlha, Hermes; Casademunt, Jaume
2017-03-01
The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.
Sensitivity to changes in amplitude envelope
NASA Astrophysics Data System (ADS)
Gallun, Erick; Hafter, Ervin R.; Bonnel, Anne-Marie
2002-05-01
Detection of a brief increment in a tonal pedestal is less well predicted by energy-detection (e.g., Macmillan, 1973; Bonnel and Hafter, 1997) than by sensitivity to changes in the stimulus envelope. As this implies a mechanism similar to an envelope extractor (Viemeister, 1979), sinusoidal amplitude modulation was used to mask a single ramped increment (10, 45, or 70 ms) added to a 1000-ms pedestal with carrier frequency (cf)=477 Hz. As in informational masking (Neff, 1994) and ``modulation-detection interference'' (Yost and Sheft, 1989), interference occurred with masker cfs of 477 and 2013 Hz. While slight masking was found with modulation frequencies (mfs) from 16 to 96 Hz, masking grew inversely with still lower mfs, being greatest for mf=4 Hz. This division is reminiscent of that said to separate sensations of ``roughness'' and ``beats,'' respectively (Terhardt, 1974), with the latter also being related to durations associated with auditory groupings in music and speech. Importantly, this result held for all of the signal durations and onset-offset ramps tested, suggesting that an increment on a pedestal is treated as a single auditory object whose detection is most difficult in the presence of other objects (in this case, ``beats'').
Baseline blood oxygenation modulates response amplitude
Lu, Hanzhang; Zhao, Chenguang; Ge, Yulin; Lewis-Amezcua, Kelly
2008-01-01
Although BOLD fMRI provides a useful tool for probing neuronal activities, large inter-subject variations in signal amplitude are commonly observed. Understanding the physiologic basis for these variations will have a significant impact on many fMRI studies. First, the physiologic modulator can be used as a regressor to reduce variations across subjects, thereby improving statistical power for detecting group differences. Second, if a pathologic condition or a drug treatment is shown to change fMRI responses, monitoring this modulatory parameter is useful in correctly interpreting the fMRI changes to neuronal deficits/recruitments. Here we present evidence that the task-evoked fMRI signals are modulated by baseline blood oxygenation. To measure global blood oxygenation, we used a recently developed technique, T2-Relaxation-Under-Spin-Tagging MRI, yielding baseline oxygenation of 63.7±7.2% in sagittal sinus with an estimation error of 1.3%. It was found that individuals with higher baseline oxygenation tend to have a smaller fMRI signal and vice versa. For every 10% difference in baseline oxygenation across subjects, the BOLD and cerebral blood flow signal differ by -0.4% and -30.0%, respectively, when using visual stimulation. TRUST MRI is a useful measurement for fMRI studies to control for the modulatory effects of baseline oxygenation that are unique to each subject. PMID:18666103
Nonlinear amplitude dynamics in flagellar beating
Casademunt, Jaume
2017-01-01
The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating. PMID:28405357
The pulsed amplitude unit for the SLC
Rolfe, J.; Browne, M.J.; Jobe, R.K.
1987-02-01
There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital Converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU is a part of the system that controls the output of Klystrons in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed.
An amplitude modulated radio frequency plasma generator
NASA Astrophysics Data System (ADS)
Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo
2017-04-01
A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.
SAR amplitude probability density function estimation based on a generalized Gaussian model.
Moser, Gabriele; Zerubia, Josiane; Serpico, Sebastiano B
2006-06-01
In the context of remotely sensed data analysis, an important problem is the development of accurate models for the statistics of the pixel intensities. Focusing on synthetic aperture radar (SAR) data, this modeling process turns out to be a crucial task, for instance, for classification or for denoising purposes. In this paper, an innovative parametric estimation methodology for SAR amplitude data is proposed that adopts a generalized Gaussian (GG) model for the complex SAR backscattered signal. A closed-form expression for the corresponding amplitude probability density function (PDF) is derived and a specific parameter estimation algorithm is developed in order to deal with the proposed model. Specifically, the recently proposed "method-of-log-cumulants" (MoLC) is applied, which stems from the adoption of the Mellin transform (instead of the usual Fourier transform) in the computation of characteristic functions and from the corresponding generalization of the concepts of moment and cumulant. For the developed GG-based amplitude model, the resulting MoLC estimates turn out to be numerically feasible and are also analytically proved to be consistent. The proposed parametric approach was validated by using several real ERS-1, XSAR, E-SAR, and NASA/JPL airborne SAR images, and the experimental results prove that the method models the amplitude PDF better than several previously proposed parametric models for backscattering phenomena.
Modal amplitude extraction of guided waves in rails using scanning laser vibrometer measurements
NASA Astrophysics Data System (ADS)
Loveday, P. W.; Long, C. S.
2012-05-01
It is advantageous to be able to measure the amplitude of the individual modes of propagation during the development of guided wave systems for rail monitoring. This paper addresses the problem of extracting modal amplitudes from scanning laser vibrometer measurements. The wave propagation characteristics of the rail are computed using the semi-analytical finite element method, and are used to represent the frequency response at a set of measurement locations (with unknown amplitude coefficients). Experimental frequency responses are measured and the amplitude of each mode is estimated using a pseudo-inverse technique. The selection of measurement points is investigated. A set of measureable points is defined based on accessibility and scanning angles. A technique is proposed for selecting appropriate measurement points, from within this set, to yield a well conditioned problem. It is shown that there exists a number of points, above which additional points do not add to the accuracy of the process. The method is demonstrated on a 5 m length of rail excited by a piezoelectric transducer in the lab.
Scholtz, Jean; Burtner, Edwin R.; Cook, Kristin A.
2016-06-13
This course will introduce the field of Visual Analytics to HCI researchers and practitioners highlighting the contributions they can make to this field. Topics will include a definition of visual analytics along with examples of current systems, types of tasks and end users, issues in defining user requirements, design of visualizations and interactions, guidelines and heuristics, the current state of user-centered evaluations, and metrics for evaluation. We encourage designers, HCI researchers, and HCI practitioners to attend to learn how their skills can contribute to advancing the state of the art of visual analytics
Li, Hua; Noel, Camille; Garcia-Ramirez, Jose; Low, Daniel; Bradley, Jeffrey; Robinson, Clifford; Mutic, Sasa; Parikh, Parag
2012-02-01
(24∕64), comparable artifacts in 54.7% of the cases (35∕64), and slightly greater artifacts in 7.8% of the cases (5∕64). Evaluation of SBRT cases demonstrated that the reconstructed tumor sizes and locations were comparable in 96% (1∕28) of the MIP image pairs generated from both amplitude- and phase-binning algorithms. In this case the amplitude-binned image set rendered a smaller tumor size, which was likely due to very shallow respiratory amplitudes occurring over several breathing cycles. Overall, the amplitude-binning algorithm for 4DCT reconstruction reduced the severity of tumor distortion and image artifacts compared to the phase-binning algorithm. However, the full range of motion may not be characterized using amplitude-binning algorithms. Despite superior performance, amplitude binning can still be susceptible to motion artifacts caused by large variations in amplitude of respiratory waves.
Li Hua; Noel, Camille; Garcia-Ramirez, Jose; Low, Daniel; Bradley, Jeffrey; Robinson, Clifford; Mutic, Sasa; Parikh, Parag
2012-02-15
artifacts in 37.5% of the cases (24/64), comparable artifacts in 54.7% of the cases (35/64), and slightly greater artifacts in 7.8% of the cases (5/64). Evaluation of SBRT cases demonstrated that the reconstructed tumor sizes and locations were comparable in 96% (1/28) of the MIP image pairs generated from both amplitude- and phase-binning algorithms. In this case the amplitude-binned image set rendered a smaller tumor size, which was likely due to very shallow respiratory amplitudes occurring over several breathing cycles. Conclusions: Overall, the amplitude-binning algorithm for 4DCT reconstruction reduced the severity of tumor distortion and image artifacts compared to the phase-binning algorithm. However, the full range of motion may not be characterized using amplitude-binning algorithms. Despite superior performance, amplitude binning can still be susceptible to motion artifacts caused by large variations in amplitude of respiratory waves.
High energy bounds on soft mathcal{N} = 4 SYM amplitudes from AdS/CFT
NASA Astrophysics Data System (ADS)
Giordano, M.; Peschanski, R.
2010-05-01
Using the AdS/CFT correspondence, we study the high-energy behavior of colorless dipole elastic scattering amplitudes in mathcal{N} = 4 SYM gauge theory through the Wilson loop correlator formalism and Euclidean to Minkowskian analytic continuation. The purely elastic behavior obtained at large impact-parameter L, through duality from disconnected AdS 5 minimal surfaces beyond the Gross-Ooguri transition point, is combined with unitarity and analyticity constraints in the central region. In this way we obtain an absolute bound on the high-energy behavior of the forward scattering amplitude due to the graviton interaction between minimal surfaces in the bulk. The dominant “Pomeron” intercept is bounded by α ≤ 11=7 using the AdS/CFT constraint of a weak gravitational field in the bulk. Assuming the elastic eikonal approximation in a larger impact-parameter range gives 4/3 ≤ α ≤ 11/7: The actual intercept becomes 4/3 if one assumes the elastic eikonal approximation within its maximally allowed range L ≳ exp Y/3; where Y is the total rapidity. Subleading AdS/CFT contributions at large impact-parameter due to the other d = 10 supergravity fields are obtained. A divergence in the real part of the tachyonic KK scalar is cured by analyticity but signals the need for a theoretical completion of the AdS/CFT scheme.
López-Gil, Norberto; Fernández-Sánchez, Vicente; Thibos, Larry N.; Montés-Micó, Robert
2010-01-01
Purpose We studied the accuracy and precision of 32 objective wavefront methods for finding the amplitude of accommodation obtained in 180 eyes. Methods Ocular accommodation was stimulated with 0.5 D steps in target vergence spanning the full range of accommodation for each subject. Subjective monocular amplitude of accommodation was measured using two clinical methods, using negative lenses and with a custom Badal optometer. Results Both subjective methods gave similar results. Results obtained from the Badal optometer where used to test the accuracy of the objective methods. All objective methods showed lower amplitude of accommodation that the subjective ones by an amount that varied from 0.2 to 1.1 D depending on the method. The precision in this prediction also varied between subjects, with an average standard error of the mean of 0.1 D that decreased with age. Conclusions Depth of field increases subjective of amplitude of accommodation overestimating the objective amplitude obtained with all the metrics used. The change in the negative direction of spherical aberration during accommodation increases the amplitude of accommodation by an amount that varies with age.
NASA Astrophysics Data System (ADS)
Howard, J. E.
2014-12-01
This study focusses on improving methods of accounting for atmospheric effects on infrasound amplitudes observed on arrays at regional distances in the southwestern United States. Recordings at ranges of 150 to nearly 300 km from a repeating ground truth source of small HE explosions are used. The explosions range in actual weight from approximately 2000-4000 lbs. and are detonated year-round which provides signals for a wide range of atmospheric conditions. Three methods of correcting the observed amplitudes for atmospheric effects are investigated with the data set. The first corrects amplitudes for upper stratospheric wind as developed by Mutschlecner and Whitaker (1999) and uses the average wind speed between 45-55 km altitudes in the direction of propagation to derive an empirical correction formula. This approach was developed using large chemical and nuclear explosions and is tested with the smaller explosions for which shorter wavelengths cause the energy to be scattered by the smaller scale structure of the atmosphere. The second approach isa semi-empirical method using ray tracing to determine wind speed at ray turning heights where the wind estimates replace the wind values in the existing formula. Finally, parabolic equation (PE) modeling is used to predict the amplitudes at the arrays at 1 Hz. The PE amplitudes are compared to the observed amplitudes with a narrow band filter centered at 1 Hz. An analysis is performed of the conditions under which the empirical and semi-empirical methods fail and full wave methods must be used.
NASA Astrophysics Data System (ADS)
Shchesnovich, V. S.
2013-09-01
An asymptotic analytical approach is proposed for bosonic probability amplitudes in unitary linear networks, such as the optical multiport devices for photons. The asymptotic approach applies for large number of bosons N ≫ M in the M-mode network, where M is finite. The probability amplitudes of N bosons unitarily transformed from the input modes to the output modes of a unitary network are approximated by a multidimensional integral with the integrand containing a large parameter (N) in the exponent. The integral representation allows an asymptotic estimate of bosonic probability amplitudes up to a multiplicative error of order 1/N by the saddle point method. The estimate depends on solution of the scaling problem for the M × M-dimensional unitary network matrix: to find the left and right diagonal matrices which scale the unitary matrix to a matrix which has specified row and column sums (equal, respectively, to the distributions of bosons in the input and output modes). The scaled matrices give the saddle points of the integral. For simple saddle points, an explicit formula giving the asymptotic estimate of bosonic probability amplitudes is derived. Performance of the approximation and the scaling of the relative error with N are studied for two-mode network (the beam splitter), where the saddle-points are roots of a quadratic and an exact analytical formula for the probability amplitudes is available, and for three-mode network (the tritter).
Surface Wave Amplitude Anomalies in the Western United States
NASA Astrophysics Data System (ADS)
Eddy, C.; Ekstrom, G.
2011-12-01
We determine maps of local surface wave amplitude factors across the Western United States for Rayleigh and Love waves at discrete periods between 25 and 125s. Measurements of raw amplitude anomalies are made from data recorded at 1161 USArray stations for minor arc arrivals of earthquakes with Mw>5.5 occurring between 2006 and 2010. We take the difference between high-quality amplitude anomaly measurements for events recorded on station pairs less than 2 degrees apart. The mean of these differences for each station pair is taken as the datum. Surface wave amplitudes are controlled by four separate mechanisms: focusing due to elastic structure, attenuation due to anelastic structure, source effects, and receiver effects. By taking the mean of the differences of amplitude anomalies for neighboring stations, we reduce the effects of focusing, attenuation, and the seismic source, thus isolating amplitude anomalies due to near-receiver amplitude effects. We determine local amplitude factors for each USArray station by standard linear inversion of the differential data set. The individual station amplitude factors explain the majority of the variance of the data. For example, derived station amplitude factors for 50s Rayleigh waves explain 92% of the variance of the data. We explore correlations between derived station amplitude factors and local amplitude factors predicted by crust and upper mantle models. Maps of local amplitude factors show spatial correlation with topography and geologic structures in the Western United States, particularly for maps derived from Rayleigh wave amplitude anomalies. A NW-SE trending high in amplitude factors in Eastern California is evident in the 50s map, corresponding to the location of the Sierra Nevada Mountains. High amplitude factors are observed in Colorado and New Mexico in the 50s-125s maps in the location of the highest peaks of the Rocky Mountains. High amplitude factors are also seen in Southern Idaho and Eastern Wyoming in
Full Tolerant Archiving System
NASA Astrophysics Data System (ADS)
Knapic, C.; Molinaro, M.; Smareglia, R.
2013-10-01
The archiving system at the Italian center for Astronomical Archives (IA2) manages data from external sources like telescopes, observatories, or surveys and handles them in order to guarantee preservation, dissemination, and reliability, in most cases in a Virtual Observatory (VO) compliant manner. A metadata model dynamic constructor and a data archive manager are new concepts aimed at automatizing the management of different astronomical data sources in a fault tolerant environment. The goal is a full tolerant archiving system, nevertheless complicated by the presence of various and time changing data models, file formats (FITS, HDF5, ROOT, PDS, etc.) and metadata content, even inside the same project. To avoid this unpleasant scenario a novel approach is proposed in order to guarantee data ingestion, backward compatibility, and information preservation.
NASA Technical Reports Server (NTRS)
1930-01-01
Construction of Full Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; an fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293)
NASA Technical Reports Server (NTRS)
1930-01-01
Construction of Full-Scale Tunnel (FST). In November 1929, Smith DeFrance submitted his recommendations for the general design of the Full Scale Wind Tunnel. The last on his list concerned the division of labor required to build this unusual facility. He believed the job had five parts and described them as follows: 'It is proposed that invitations be sent out for bids on five groups of items. The first would be for one contract on the complete structure; second the same as first, including the erection of the cones but not the fabrication, since this would be more of a shipyard job; third would cover structural steel, cover, sash and doors, but not cones or foundation; fourth, foundations; and fifth, fabrication of cones.' DeFrance's memorandum prompted the NACA to solicit estimates from a large number of companies. Preliminary designs and estimates were prepared and submitted to the Bureau of the Budget and Congress appropriated funds on February 20, 1929. The main construction contract with the J.A. Jones Company of Charlotte, North Carolina was signed one year later on February 12, 1930. It was a peculiar structure as the building's steel framework is visible on the outside of the building. DeFrance described this in NACA TR No. 459: 'The entire equipment is housed in a structure, the outside walls of which serve as the outer walls of the return passages. The over-all length of the tunnel is 434 feet 6 inches, the width 222 feet, and the maximum height 97 feet. The framework is of structural steel....' (pp. 292-293).
Santos, Sergio; Barcons, Victor; Verdaguer, Albert; Chiesa, Matteo
2011-12-01
In ambient conditions, nanometric water layers form on hydrophilic surfaces covering them and significantly changing their properties and characteristics. Here we report the excitation of subharmonics in amplitude modulation atomic force microscopy induced by intermittent water contacts. Our simulations show that there are several regimes of operation depending on whether there is perturbation of water layers. Single period orbitals, where subharmonics are never induced, follow only when the tip is either in permanent contact with the water layers or in pure noncontact where the water layers are never perturbed. When the water layers are perturbed subharmonic excitation increases with decreasing oscillation amplitude. We derive an analytical expression which establishes whether water perturbations compromise harmonic motion and show that the predictions are in agreement with numerical simulations. Empirical validation of our interpretation is provided by the observation of a range of values for apparent height of water layers when subharmonic excitation is predicted.
Resonant π+γ→π+π0 amplitude from Quantum Chromodynamics
Briceño, Raúl A.; Dudek, Jozef J.; Edwards, Robert G.; ...
2015-12-08
We present the first ab initio calculation of a radiative transition of a hadronic resonance within Quantum Chromodynamics (QCD). We compute the amplitude formore » $$\\pi\\pi \\to \\pi\\gamma^\\star$$, as a function of the energy of the $$\\pi\\pi$$ pair and the virtuality of the photon, in the kinematic regime where $$\\pi\\pi$$ couples strongly to the unstable $$\\rho$$ resonance. This exploratory calculation is performed using a lattice discretization of QCD with quark masses corresponding to $$m_\\pi \\approx 400$$ MeV. As a result, we obtain a description of the energy dependence of the transition amplitude, constrained at 48 kinematic points, that we can analytically continue to the $$\\rho$$ pole and identify from its residue the $$\\rho \\to \\pi\\gamma^\\star$$ form-factor.« less
Amplitude ratios for critical systems in the c=-2 universality class.
Izmailian, N Sh; Hu, Chin-Kun
2013-01-01
We study the finite-size corrections of the critical dense polymer (CDP) and the dimer models on ∞×N rectangular lattice. We find that the finite-size corrections in the CDP and dimer models depend in a crucial way on the parity of N, and a change of the parity of N is equivalent to the change of boundary conditions. We present a set of universal amplitude ratios for amplitudes in finite-size correction terms of critical systems in the universality class with central charge c=-2. The results are in perfect agreement with a perturbated conformal field theory under the assumption that all analytical corrections coming from the operators which belongs to the tower of the identity. Our results inspire many interesting problems for further studies.
Sheretov, Ernst P; Philippov, Igor V; Karnav, Tatiana B; Kolotilin, Boris I; Ivanov, Vladimir W
2002-01-01
We present a theory that describes a 'spiking' structure of the amplitude characteristics for trajectories of ions within a hyperboloidal mass spectrometer (HMS) discovered and reported recently. This effect, as well as modulation parametric resonance, relates directly to a fine structure of the stability diagram for a HMS. A method of extremum characteristic solutions of the Hill equation (developed in our laboratory earlier) has been used in this work. Simple expressions determined the shape of narrow dips (or reversed peaks) in the amplitude of ion oscillation versus stability parameter curves and conditions of their appearance are presented. The results that were calculated from analytical expressions are compared with those obtained from direct computations of ion trajectories in a HMS. This effect with respect to a nature of 'black holes' or 'black canyons' observed earlier in investigations of trapping efficiency and ion trapping within ion traps is discussed.
Twistor transform of all tree amplitudes in N=4 SYM theory
NASA Astrophysics Data System (ADS)
Korchemsky, G. P.; Sokatchev, E.
2010-04-01
We perform the twistor (half-Fourier) transform of all tree n-particle superamplitudes in N=4 SYM and show that it has a transparent geometric interpretation. We find that the NMHV amplitude is supported on a set of 2k+1 intersecting lines in twistor space and demonstrate that the corresponding line moduli form a lightlike (2k+1)-gon in moduli space. This polygon is triangulated into two kinds of lightlike triangles lying in different planes. We formulate simple graphical rules for constructing the triangulated polygons, from which the analytic expressions of the NMHV amplitudes follow directly, both in twistor and in momentum space. We also discuss the ordinary and dual conformal properties and the cancellation of spurious singularities in twistor space.
Resonant π^{+}γ→π^{+}π^{0} Amplitude from Quantum Chromodynamics.
Briceño, Raúl A; Dudek, Jozef J; Edwards, Robert G; Shultz, Christian J; Thomas, Christopher E; Wilson, David J
2015-12-11
We present the first ab initio calculation of a radiative transition of a hadronic resonance within quantum chromodynamics (QCD). We compute the amplitude for ππ→πγ^{⋆}, as a function of the energy of the ππ pair and the virtuality of the photon, in the kinematic regime where ππ couples strongly to the unstable ρ resonance. This exploratory calculation is performed using a lattice discretization of QCD with quark masses corresponding to m_{π}≈400 MeV. We obtain a description of the energy dependence of the transition amplitude, constrained at 48 kinematic points, that we can analytically continue to the ρ pole and identify from its residue the ρ→πγ^{⋆} form factor.
Two-Loop Contributions to the Boson-Antiboson Mixing Amplitude
NASA Astrophysics Data System (ADS)
Fortin, Simon
It is known that the Standard Model, being a spontaneously broken gauge theory, violates the decoupling theorem. In practice, this means that amplitudes for low-energy processes grow without limit as the mass of fermions or scalars is made large. As a result of the recent determination of a lower bound of 90 GeV on the mass of the top quark and the general expectation of a large mass for the Higgs boson, this effect could lead to large higher order corrections to the observables of the theory. In this spirit, we calculate the two-loop corrections to the B_{d } - | B_{d} mixing amplitude in the two limits of a very large top quark mass or a very large Higgs mass. Analytical expressions are obtained for the leading terms. The results are found to be much smaller than what one would naively expect.
Enzymes in Analytical Chemistry.
ERIC Educational Resources Information Center
Fishman, Myer M.
1980-01-01
Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)
Analytical techniques: A compilation
NASA Technical Reports Server (NTRS)
1975-01-01
A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.
Extreme Scale Visual Analytics
Steed, Chad A; Potok, Thomas E; Pullum, Laura L; Ramanathan, Arvind; Shipman, Galen M; Thornton, Peter E; Potok, Thomas E
2013-01-01
Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.
NASA Technical Reports Server (NTRS)
2007-01-01
This image of Jupiter is produced from a 2x2 mosaic of photos taken by the New Horizons Long Range Reconnaissance Imager (LORRI), and assembled by the LORRI team at the Johns Hopkins University Applied Physics Laboratory. The telescopic camera snapped the images during a 3-minute, 35-second span on February 10, when the spacecraft was 29 million kilometers (18 million miles) from Jupiter. At this distance, Jupiter's diameter was 1,015 LORRI pixels -- nearly filling the imager's entire (1,024-by-1,024 pixel) field of view. Features as small as 290 kilometers (180 miles) are visible.
Both the Great Red Spot and Little Red Spot are visible in the image, on the left and lower right, respectively. The apparent 'storm' on the planet's right limb is a section of the south tropical zone that has been detached from the region to its west (or left) by a 'disturbance' that scientists and amateur astronomers are watching closely.
At the time LORRI took these images, New Horizons was 820 million kilometers (510 million miles) from home -- nearly 51/2 times the distance between the Sun and Earth. This is the last full-disk image of Jupiter LORRI will produce, since Jupiter is appearing larger as New Horizons draws closer, and the imager will start to focus on specific areas of the planet for higher-resolution studies.
Incremental full configuration interaction
NASA Astrophysics Data System (ADS)
Zimmerman, Paul M.
2017-03-01
The incremental expansion provides a polynomial scaling method for computing electronic correlation energies. This article details a new algorithm and implementation for the incremental expansion of full configuration interaction (FCI), called iFCI. By dividing the problem into n-body interaction terms, accurate correlation energies can be recovered at low n in a highly parallel computation. Additionally, relatively low-cost approximations are possible in iFCI by solving for each incremental energy to within a specified threshold. Herein, systematic tests show that FCI-quality energies can be asymptotically reached for cases where dynamic correlation is dominant as well as where static correlation is vital. To further reduce computational costs and allow iFCI to reach larger systems, a select-CI approach (heat-bath CI) requiring two parameters is incorporated. Finally, iFCI provides the first estimate of FCI energies for hexatriene with a polarized double zeta basis set, which has 32 electrons correlated in 118 orbitals, corresponding to a FCI dimension of over 1038.
Full Color Holographic Endoscopy
NASA Astrophysics Data System (ADS)
Osanlou, A.; Bjelkhagen, H.; Mirlis, E.; Crosby, P.; Shore, A.; Henderson, P.; Napier, P.
2013-02-01
The ability to produce color holograms from the human tissue represents a major medical advance, specifically in the areas of diagnosis and teaching. This has been achieved at Glyndwr University. In corporation with partners at Gooch & Housego, Moor Instruments, Vivid Components and peninsula medical school, Exeter, UK, for the first time, we have produced full color holograms of human cell samples in which the cell boundary and the nuclei inside the cells could be clearly focused at different depths - something impossible with a two-dimensional photographic image. This was the main objective set by the peninsula medical school at Exeter, UK. Achieving this objective means that clinically useful images essentially indistinguishable from the object human cells could be routinely recorded. This could potentially be done at the tip of a holo-endoscopic probe inside the body. Optimised recording exposure and development processes for the holograms were defined for bulk exposures. This included the optimisation of in-house recording emulsions for coating evaluation onto polymer substrates (rather than glass plates), a key step for large volume commercial exploitation. At Glyndwr University, we also developed a new version of our in-house holographic (world-leading resolution) emulsion.
NASA Astrophysics Data System (ADS)
Sedighi, H. M.; Shirazi, K. H.; Changizian, M.
2015-03-01
This paper exhibits the effect of the amplitude of vibrations on the pull-in instability and nonlinear natural frequency of a double-sided actuated microswitch by using a nonlinear frequency-amplitude relationship. The nonlinear governing equation of the microswitch pre-deformed by an electric field includes even and odd nonlinearities with a quintic nonlinear term. The study is performed by a new analytical method called the Hamiltonian approach (HA). It is demonstrated that the first term in series expansions is sufficient to produce an acceptable solution. Results obtained by numerical methods validate the soundness of the asymptotic procedure.
SRL online Analytical Development
Jenkins, C.W.
1991-12-31
The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R&D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R&D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control & Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications.
SRL online Analytical Development
Jenkins, C.W.
1991-01-01
The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications.
ENVIRONMENTAL ANALYTICAL CHEMISTRY OF ...
Within the scope of a number of emerging contaminant issues in environmental analysis, one area that has received a great deal of public interest has been the assessment of the role of pharmaceuticals and personal care products (PPCPs) as stressors and agents of change in ecosystems as well as their role in unplanned human exposure. The relationship between personal actions and the occurrence of PPCPs in the environment is clear-cut and comprehensible to the public. In this overview, we attempt to examine the separations aspect of the analytical approach to the vast array of potential analytes among this class of compounds. We also highlight the relationship between these compounds and endocrine disrupting compounds (EDCs) and between PPCPs and EDCs and the more traditional environmental analytes such as the persistent organic pollutants (POPs). Although the spectrum of chemical behavior extends from hydrophobic to hydrophilic, the current focus has shifted to moderately and highly polar analytes. Thus, emphasis on HPLC and LC/MS has grown and MS/MS has become a detection technique of choice with either electrospray ionization or atmospheric pressure chemical ionization. This contrasts markedly with the bench mark approach of capillary GC, GC/MS and electron ionization in traditional environmental analysis. The expansion of the analyte list has fostered new vigor in the development of environmental analytical chemistry, modernized the range of tools appli
[Dependence of "amplitude modulation following response" on attention].
Pethe, J; Mühler, R; von Specht, H
2001-03-01
Amplitude modulation following responses (AMFR) allows good estimation of the hearing threshold due to the very narrow band excitation of the cochlea. Audiological use of AMFR requires knowledge of the relationship of these responses to the state of vigilance. The few studies published compared only qualitatively the amplitude of AMFR recorded in awake subjects to that recorded in sleeping subjects. A quantitative determination of the level of vigilance on the basis of recorded physiological parameters has not yet been carried out. In the present study, the relationship between the amplitude of AMFR and the level of vigilance was investigated quantitatively. In eight adults with normal hearing, the relationship between the AMFR amplitude and EEG amplitude in the delta- and theta-band was determined. The amplitude in both frequency bands was used to indicate the state of vigilance. The subjects were studied during natural and drug-induced sleep. A 1-kHz carrier tone with a sinusoidally modulated amplitude of 40 Hz or 80 Hz was used as stimulus. At 40-Hz modulation frequency, the AMFR amplitude correlates with the EEG amplitude both in natural and drug-induced sleep. An increase in EEG activity is paralleled by a significant reduction of AMFR amplitude. At 80-Hz modulation frequency, no relationship between AMFR amplitude and EEG activity could be detected. Under all conditions, the amplitudes of AMFR evoked by a modulation frequency of 80 Hz were significantly lower than those evoked by 40 Hz. These results suggest that for an audiological use of the 40-Hz AMFR the state of vigilance should be stabilised at a constantly high level. In spite of the lower influence of vigilance on the 80-Hz AMFR, this response appears less ideal for threshold estimation in adults due to the significantly smaller amplitudes.
ALOHA: Automatic libraries of helicity amplitudes for Feynman diagram computations
NASA Astrophysics Data System (ADS)
de Aquino, Priscila; Link, William; Maltoni, Fabio; Mattelaer, Olivier; Stelzer, Tim
2012-10-01
We present an application that automatically writes the HELAS (HELicity Amplitude Subroutines) library corresponding to the Feynman rules of any quantum field theory Lagrangian. The code is written in Python and takes the Universal FeynRules Output (UFO) as an input. From this input it produces the complete set of routines, wave-functions and amplitudes, that are needed for the computation of Feynman diagrams at leading as well as at higher orders. The representation is language independent and currently it can output routines in Fortran, C++, and Python. A few sample applications implemented in the MADGRAPH 5 framework are presented. Program summary Program title: ALOHA Catalogue identifier: AEMS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: http://www.opensource.org/licenses/UoI-NCSA.php No. of lines in distributed program, including test data, etc.: 6094320 No. of bytes in distributed program, including test data, etc.: 7479819 Distribution format: tar.gz Programming language: Python2.6 Computer: 32/64 bit Operating system: Linux/Mac/Windows RAM: 512 Mbytes Classification: 4.4, 11.6 Nature of problem: An effcient numerical evaluation of a squared matrix element can be done with the help of the helicity routines implemented in the HELAS library [1]. This static library contains a limited number of helicity functions and is therefore not always able to provide the needed routine in the presence of an arbitrary interaction. This program provides a way to automatically create the corresponding routines for any given model. Solution method: ALOHA takes the Feynman rules associated to the vertex obtained from the model information (in the UFO format [2]), and multiplies it by the different wavefunctions or propagators. As a result the analytical expression of the helicity routines is obtained. Subsequently, this expression is
2005-12-06
This giant mosaic reveals Saturn's icy moon Rhea in her full, crater-scarred glory. This view consists of 21 clear-filter images and is centered at 0.4 degrees south latitude, 171 degrees west longitude. The giant Tirawa impact basin is seen above and to the right of center. Tirawa, and another basin to its southwest, are both covered in impact craters, indicating they are quite ancient. The bright, approximately 40-kilometer-wide (25-mile) ray crater seen in many Cassini views of Rhea is located on the right side of this mosaic (at 12 degrees south latitude, 111 degrees west longitude). See PIA07764 for a close-up view of the eastern portion of the bright, ray crater. There are few signs of tectonic activity in this view. However, the wispy streaks on Rhea that were seen at lower resolution by NASA's Voyager and Cassini spacecraft, were beyond the western (left) limb from this perspective. In high-resolution Cassini flyby images of Dione, similar features were identified as fractures caused by extensive tectonism. Rhea is Saturn's second-largest moon, at 1,528 kilometers (949 miles) across. The images in this mosaic were taken with the Cassini spacecraft narrow-angle camera during a close flyby on Nov. 26, 2005. The images were acquired as Cassini approached the moon at distances ranging from 79,190 to 58,686 kilometers (49,206 to 36,466 miles) from Rhea and at a Sun-Rhea-spacecraft, or phase, angle of about 19 degrees. Image scale in the mosaic is 354 meters (1,161 feet) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA07763
NASA Technical Reports Server (NTRS)
1930-01-01
Installation of Full Scale Tunnel (FST) power plant. Virginia Public Service Company could not supply adequate electricity to run the wind tunnels being built at Langley. (The Propeller Research Tunnel was powered by two submarine diesel engines.) This led to the consideration of a number of different ideas for generating electric power to drive the fan motors in the FST. The main proposition involved two 3000 hp and two 1000 hp diesel engines with directly connected generators. Another, proposition suggested 30 Liberty motors driving 600 hp DC generators in pairs. For a month, engineers at Langley were hopeful they could secure additional diesel engines from decommissioned Navy T-boats but the Navy could not offer a firm commitment regarding the future status of the submarines. By mid-December 1929, Virginia Public Service Company had agreed to supply service to the field at the north end of the King Street Bridge connecting Hampton and Langley Field. Thus, new plans for FST powerplant and motors were made. Smith DeFrance described the motors in NACA TR No. 459: 'The most commonly used power plant for operating a wind tunnel is a direct-current motor and motor-generator set with Ward Leonard control system. For the FST it was found that alternating current slip-ring induction motors, together with satisfactory control equipment, could be purchased for approximately 30 percent less than the direct-current equipment. Two 4000-horsepower slip-ring induction motors with 24 steps of speed between 75 and 300 r.p.m. were therefore installed.'
NASA Technical Reports Server (NTRS)
Chu, T.
1971-01-01
The focusing of acoustic pulses is studied analytically by considering the region of study in three parts: the converging, interaction and diverging regions. First, the linear problem of a pulse of infinitesimal amplitude is studied. For the spherical case, the expected phase change as a result of focusing is verified. The nonlinear case of finite-amplitude pulses leads to the development of M-waves, as determined by applying the method of matched-asymptotic expansions to Burges equation.
Arbitrary amplitude magnetosonic solitary and shock structures in spin quantum plasma
Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar; Khan, Manoranjan
2013-11-15
A nonlinear analysis is carried out for the arbitrary amplitude magnetosonic solitary and shock structures in spin quantum plasmas. A quantum magnetohydrodynamic model is used to describe the magnetosonic quantum plasma with the Bohm potential and the pressure like spin force for electrons. Analytical calculations are used to simplify the basic equations, which are then studied numerically. It is shown that the magnetic diffusivity is responsible for dissipation, which causes the shock-like structures rather than the soliton structures. Additionally, wave speed, Zeeman energy, and Bohm potential are found to have significant impact on the shock wave structures.
Large amplitude solitary waves in a warm magnetoplasma with kappa distributed electrons
El-Tantawy, S. A.; El-Bedwehy, N. A.; Abd El-Razek, H. N.; Mahmood, S.
2013-02-15
The large amplitude nonlinear ion acoustic solitary wave propagating obliquely to an external magnetic field in a magnetized plasma with kappa distributed electrons and warm ions is investigated through deriving energy-balance-like expression involving a Sagdeev potential. Analytical and numerical calculations of the values of Mach number reveal that both of subsonic and supersonic electrostatic solitary structures can exist in this system. The influence on the soliton characteristics of relevant physical parameters such as the Mach number, the superthermal parameter, the directional cosine, the ratio of ion-to-electron temperature, and the ion gyrofrequency has been investigated.
Image measurement technique on vibration amplitude of ultrasonic horn
NASA Astrophysics Data System (ADS)
Zhang, Yong-bin; Wu, Zhi-qun; Zhu, Jian-ping; He, Jian-guo; Liu, Guang-min
2013-10-01
The paper proposes a method to measure vibration amplitude of ultrasonic horn which is a very important component in the spindle for micro-electrical-chemical discharging machining. The method of image measuring amplitude on high frequency vibration is introduced. Non-contact measurement system based on vision technology is constructed. High precision location algorithm on image centroid, quadratic location algorithm, is presented to find the center of little light spot. Measurement experiments have been done to show the effect of image measurement technique on vibration amplitude of ultrasonic horn. In the experiments, precise calibration of the vision system is implemented using a normal graticule to obtain the scale factor between image pixel and real distance. The vibration amplitude of ultrasonic horn is changed by modifying the voltage amplitude of pulse power supply. The image of feature on ultrasonic horn is captured and image processing is carried out. The vibration amplitudes are got at different voltages.
Detection of combined frequency and amplitude modulation.
Moore, B C; Sek, A
1992-12-01
This article is concerned with the detection of mixed modulation (MM), i.e., simultaneously occurring amplitude modulation (AM) and frequency modulation (FM). In experiment 1, an adaptive two-alternative forced-choice task was used to determine thresholds for detecting AM alone. Then, thresholds for detecting FM were determined for stimuli which had a fixed amount of AM in the signal interval only. The amount of AM was always less than the threshold for detecting AM alone. The FM thresholds depended significantly on the magnitude of the coexisting AM. For low modulation rates (4, 16, and 64 Hz), the FM thresholds did not depend significantly on the relative phase of modulation for the FM and AM. For a high modulation rate (256 Hz) strong effects of modulator phase were observed. These phase effects are as predicted by the model proposed by Hartmann and Hnath [Acustica 50, 297-312 (1982)], which assumes that detection of modulation at modulation frequencies higher than the critical modulation frequency is based on detection of the lower sideband in the modulated signal's spectrum. In the second experiment, psychometric functions were measured for the detection of AM alone and FM alone, using modulation rates of 4 and 16 Hz. Results showed that, for each type of modulation, d' is approximately a linear function of the square of the modulation index. Application of this finding to the results of experiment 1 suggested that, at low modulation rates, FM and AM are not detected by completely independent mechanisms. In the third experiment, psychometric functions were again measured for the detection of AM alone and FM alone, using a 10-Hz modulation rate. Detectability was then measured for combined AM and FM, with modulation depths selected so that each type of modulation would be equally detectable if presented alone. Significant effects of relative modulator phase were found when detectability was relatively high. These effects were not correctly predicted by either a
The πN amplitude and the three-nucleon force
NASA Astrophysics Data System (ADS)
Afnan, I. R.; Saito, T.-Y.
1995-05-01
We examine the role of the energy dependence of the πN amplitude on the π-π three-nucleon force. We find that the inclusion of the full energy dependence reduces the magnitude of the three-nucleon force as a result of the cancellation between the S- and P-wave πN contributions.
Warnecke, Sascha; Toennies, J. Peter; Tang, K. T.
2015-04-07
The Tang-Toennies potential for the weakly interacting systems H{sub 2} b{sup 3}Σ{sub u}{sup +}, H–He {sup 2}Σ{sup +}, and He{sub 2} {sup 1}Σ{sub g}{sup +} is extended down to the united atom limit of vanishing internuclear distance. A simple analytic expression connects the united atom limiting potential with the Tang-Toennies potential in the well region. The new potential model is compared with the most recent ab initio calculations for all three systems. The agreement is better than 20% (H{sub 2} and He{sub 2}) or comparable with the differences in the available ab initio calculations (H–He) over six orders of magnitude corresponding to the entire range of internuclear distances.
Log-periodic Critical Amplitudes: A Perturbative Approach
NASA Astrophysics Data System (ADS)
Derrida, Bernard; Giacomin, Giambattista
2013-06-01
Log-periodic amplitudes appear in the critical behavior of a large class of systems, in particular when a discrete scale invariance is present. Here we show how to compute these critical amplitudes perturbatively when they originate from a renormalization map which is close to a monomial. In this case, the log-periodic amplitudes of the subdominant corrections to the leading critical behavior can also be calculated.
N >= 4 Supergravity Amplitudes from Gauge Theory at One Loop
Bern, Z.; Boucher-Veronneau, C.; Johansson, H.; /Saclay
2011-08-19
We expose simple and practical relations between the integrated four- and five-point one-loop amplitudes of N {ge} 4 supergravity and the corresponding (super-)Yang-Mills amplitudes. The link between the amplitudes is simply understood using the recently uncovered duality between color and kinematics that leads to a double-copy structure for gravity. These examples provide additional direct confirmations of the duality and double-copy properties at loop level for a sample of different theories.
Calculation and modular properties of multiloop superstring amplitudes
Danilov, G. S.
2013-06-15
Multiloop superstring amplitudes are calculated within an extensively used gauge where the two-dimensional gravitino field carries Grassmann moduli. In general, the amplitudes possess, instead of modular symmetry, symmetry with respect to modular transformation supplemented with appropriate transformations of two-dimensional local supersymmetry. If the number of loops is larger than three, the integrationmeasures are notmodular forms, while the expression for the amplitude contains integrals along the boundary of the fundamental region of the modular group.
Mass of nonrelativistic meson from leading twist distribution amplitudes
NASA Astrophysics Data System (ADS)
Braguta, V. V.
2011-01-01
In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.
Tree-level split helicity amplitudes in ambitwistor space
NASA Astrophysics Data System (ADS)
Chen, Bin; Wu, Jun-Bao
2009-12-01
We study all tree-level split helicity gluon amplitudes by using the recently proposed Britto-Cachazo-Feng-Witten recursion relation and Hodges diagrams in ambitwistor space. We pick out the contributing diagrams and find that all of them can be divided into triangles in a suitable way. We give the explicit expressions for all of these amplitudes. As an example, we reproduce the six-gluon split next-to-maximally-helicity-violating amplitudes in momentum space.
Scattering amplitudes and BCFW recursion in twistor space
NASA Astrophysics Data System (ADS)
Mason, Lionel; Skinner, David
2010-01-01
Twistor ideas have led to a number of recent advances in our understanding of scattering amplitudes. Much of this work has been indirect, determining the twistor space support of scattering amplitudes by examining the amplitudes in momentum space. In this paper, we construct the actual twistor scattering amplitudes themselves. We show that the recursion relations of Britto, Cachazo, Feng and Witten have a natural twistor formulation that, together with the three-point seed amplitudes, allows us to recursively construct general tree amplitudes in twistor space. We obtain explicit formulae for n-particle MHV and NMHV super-amplitudes, their CPT conjugates (whose representations are distinct in our chiral framework), and the eight particle N2MHV super-amplitude. We also give simple closed form formulae for the mathcal{N} = 8 supergravity recursion and the MHV and overline {text{MHV}} amplitudes. This gives a formulation of scattering amplitudes in maximally supersymmetric theories in which superconformal symmetry and its breaking is manifest. For N k MHV, the amplitudes are given by 2 n - 4 integrals in the form of Hilbert transforms of a product of n - k - 2 purely geometric, superconformally invariant twistor delta functions, dressed by certain sign operators. These sign operators subtly violate conformal invariance, even for tree-level amplitudes in mathcal{N} = 4 super Yang-Mills, and we trace their origin to a topological property of split signature space-time. We develop the twistor transform to relate our work to the ambidextrous twistor diagram approach of Hodges and of Arkani-Hamed, Cachazo, Cheung and Kaplan.
Amplitude-modulated circular-harmonic filter for pattern recognition.
Chen, X W; Chen, Z P
1995-02-10
An amplitude-modulated circular-harmonic filter is proposed for rotation-invariant pattern recognition. We investigate the filter characteristics by varying two design parameters, A(ρ) and B(ρ), and select optimum values to design an amplitude-modulated circular-harmonic filter. When compared with the phase-only circular-harmonic filter, the amplitude-modulated circular-harmonic filter is found to yield a sharper correlation peak, a better noise tolerance, and an improved correlation discrimination.
Amplitudes and Ultraviolet Behavior of N = 8 Supergravity
Bern, Zvi; Carrasco, John Joseph; Dixon, Lance J.; Johansson, Henrik; Roiban, Radu; /Penn State U.
2011-05-20
In this contribution we describe computational tools that permit the evaluation of multi-loop scattering amplitudes in N = 8 supergravity, in terms of amplitudes in N = 4 super-Yang-Mills theory. We also discuss the remarkable ultraviolet behavior of N = 8 supergravity, which follows from these amplitudes, and is as good as that of N = 4 super-Yang-Mills theory through at least four loops.
NASA Astrophysics Data System (ADS)
Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Bilodeau, Maxime; Masson, Patrice
2015-03-01
In Structural Health Monitoring (SHM), classical imaging techniques rely on the use of analytical formulations to predict the propagation and interaction of guided waves generated using piezoceramic (PZT) transducers. For the implementation of advanced imaging approaches on composites structures, analytical formulations need to consider (1) the dependency of phase velocity and damping as a function of angle (2) the steering effect on guided wave propagation caused by the anisotropy of the structure and (3) the full transducer dynamics. In this paper, the analytical modeling of guided waves generation by a circular PZT and propagation on composite structures is investigated. This work, based on previous work from the authors, is intended to extend a semi- analytical formulation from isotropic to transversely isotropic plate-like structures. The formulation considers the dependency of the interfacial shear stress under the PZT as a function of radius, angular frequency and orientation on the composite structure. Validation is conducted for a unidirectional transversely isotropic structure with a bonded circular PZT of 10 mm in diameter. Amplitude curves and time domain signals of the A0 and S0 modes obtained from the proposed formulation and the classical pin-force model are first compared to Finite Element Model simulations. Experimental validation is then conducted using a 3D laser Doppler vibrometer for a non- principal direction on the composite. The results show the interest of considering a semi-analytical formulation for which the transducer dynamics where the shear stress distribution under the transducer is considered in order to reproduce more precisely the generation of guided waves on composite structures.
A critical note on the definition of phase-amplitude cross-frequency coupling.
Özkurt, Tolga Esat; Schnitzler, Alfons
2011-10-15
Recent studies have observed the ubiquity of phase-amplitude coupling (PAC) phenomenon in human and animal brain recordings. While various methods were performed to quantify it, a rigorous analytical definition of PAC is lacking. This paper yields an analytical definition and accordingly offers theoretical insights into some of the current methods. A direct PAC estimator based on the given definition is presented and shown theoretically to be superior to some of the previous methods such as general linear model (GLM) estimator. It is also shown that the proposed PAC estimator is equivalent to GLM estimator when a constant term is removed from its formulation. The validity of the derivations is demonstrated with simulated data of varying noise levels and local field potentials recorded from the subthalamic nucleus of a Parkinson's disease patient.
On the solutions of a model equation for shallow water waves of moderate amplitude
NASA Astrophysics Data System (ADS)
Mi, Yongsheng; Mu, Chunlai
This paper is concerned with the Cauchy problem of a model equation for shallow water waves of moderate amplitude, which was proposed by A. Constantin and D. Lannes [The hydrodynamical relevance of the Camassa-Holmand Degasperis-Procesi equations, Arch. Ration. Mech. Anal. 192 (2009) 165-186]. First, the local well-posedness of the model equation is obtained in Besov spaces Bp,rs, p,r∈[1,∞], s>max{3/2,1+1/p} (which generalize the Sobolev spaces Hs) by using Littlewood-Paley decomposition and transport equation theory. Second, the local well-posedness in critical case (with s=3/2, p=2, r=1) is considered. Moreover, with analytic initial data, we show that its solutions are analytic in both variables, globally in space and locally in time. Finally, persistence properties on strong solutions are also investigated.
Cluster functions and scattering amplitudes for six and seven points
NASA Astrophysics Data System (ADS)
Harrington, Thomas; Spradlin, Marcus
2017-07-01
Scattering amplitudes in planar super-Yang-Mills theory satisfy several basic physical and mathematical constraints, including physical constraints on their branch cut structure and various empirically discovered connections to the mathematics of cluster algebras. The power of the bootstrap program for amplitudes is inversely proportional to the size of the intersection between these physical and mathematical constraints: ideally we would like a list of constraints which determine scattering amplitudes uniquely. We explore this intersection quantitatively for two-loop six- and seven-point amplitudes by providing a complete taxonomy of the Gr(4, 6) and Gr(4, 7) cluster polylogarithm functions of [15] at weight 4.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William [Overland Park, KS
2008-10-21
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William
2007-07-03
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William
2007-10-02
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William
2007-07-17
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William [Overland Park, KS
2009-09-01
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William
2007-07-03
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Phase and amplitude control system for Stanford Linear Accelerator
Yoo, S.J.
1983-09-26
The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system.
Cluster functions and scattering amplitudes for six and seven points
Harrington, Thomas; Spradlin, Marcus
2017-07-05
Scattering amplitudes in planar super-Yang-Mills theory satisfy several basic physical and mathematical constraints, including physical constraints on their branch cut structure and various empirically discovered connections to the mathematics of cluster algebras. The power of the bootstrap program for amplitudes is inversely proportional to the size of the intersection between these physical and mathematical constraints: ideally we would like a list of constraints which determine scattering amplitudes uniquely. Here, we explore this intersection quantitatively for two-loop six- and seven-point amplitudes by providing a complete taxonomy of the Gr(4, 6) and Gr(4, 7) cluster polylogarithm functions of [15] at weight 4.
Anomalously low amplitude of S waves produced by the 3D structures in the lower mantle
NASA Astrophysics Data System (ADS)
To, Akiko; Capdeville, Yann; Romanowicz, Barbara
2016-07-01
Direct S and Sdiff phases with anomalously low amplitudes are recorded for the earthquakes in Papua New Guinea by seismographs in northern America. According to the prediction by a standard 1D model, the amplitudes are the lowest at stations in southern California, at a distance and azimuth of around 95° and 55°, respectively, from the earthquake. The amplitude anomaly is more prominent at frequencies higher than 0.03 Hz. We checked and ruled out the possibility of the anomalies appearing because of the errors in the focal mechanism used in the reference synthetic waveform calculations. The observed anomaly distribution changes drastically with a relatively small shift in the location of the earthquake. The observations indicate that the amplitude reduction is likely due to the 3D shear velocity (Vs) structure, which deflects the wave energy away from the original ray paths. Moreover, some previous studies suggested that some of the S and Sdiff phases in our dataset are followed by a prominent postcursor and show a large travel time delay, which was explained by placing a large ultra-low velocity zone (ULVZ) located on the core-mantle boundary southwest of Hawaii. In this study, we evaluated the extent of amplitude anomalies that can be explained by the lower mantle structures in the existing models, including the previously proposed ULVZ. In addition, we modified and tested some models and searched for the possible causes of low amplitudes. Full 3D synthetic waveforms were calculated and compared with the observations. Our results show that while the existing models explain the trends of the observed amplitude anomalies, the size of such anomalies remain under-predicted especially at large distances. Adding a low velocity zone, which is spatially larger and has less Vs reduction than ULVZ, on the southwest side of ULVZ, contributes to explain the low amplitudes observed at distances larger than 100° from the earthquake. The newly proposed low velocity zone
High speed cross-amplitude modulation in concatenated SOA-EAM-SOA.
Cleary, Ciaran S; Manning, Robert J
2012-06-18
We observe a near-ideal high speed amplitude impulse response in an SOA-EAM-SOA configuration under optimum conditions. Full amplitude recovery times as low as 10 ps with modulation depths of 70% were observed in pump-probe measurements. System behavior could be controlled by the choice of signal wavelength, SOA current biases and EAM reverse bias voltages. Experimental data and impulse response modelling indicated that the slow tail in the gain response of first SOA was negated by a combination of cross-absorption modulation between pump and modulated CW probe, and self-gain modulation of the modulated CW probe in both the EAM and second SOA.
Advances in analytical chemistry
NASA Technical Reports Server (NTRS)
Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.
1991-01-01
Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.
Advances in analytical chemistry
NASA Technical Reports Server (NTRS)
Arendale, W. F.; Congo, Richard T.; Nielsen, Bruce J.
1991-01-01
Implementation of computer programs based on multivariate statistical algorithms makes possible obtaining reliable information from long data vectors that contain large amounts of extraneous information, for example, noise and/or analytes that we do not wish to control. Three examples are described. Each of these applications requires the use of techniques characteristic of modern analytical chemistry. The first example, using a quantitative or analytical model, describes the determination of the acid dissociation constant for 2,2'-pyridyl thiophene using archived data. The second example describes an investigation to determine the active biocidal species of iodine in aqueous solutions. The third example is taken from a research program directed toward advanced fiber-optic chemical sensors. The second and third examples require heuristic or empirical models.
Competing on talent analytics.
Davenport, Thomas H; Harris, Jeanne; Shapiro, Jeremy
2010-10-01
Do investments in your employees actually affect workforce performance? Who are your top performers? How can you empower and motivate other employees to excel? Leading-edge companies such as Google, Best Buy, Procter & Gamble, and Sysco use sophisticated data-collection technology and analysis to answer these questions, leveraging a range of analytics to improve the way they attract and retain talent, connect their employee data to business performance, differentiate themselves from competitors, and more. The authors present the six key ways in which companies track, analyze, and use data about their people-ranging from a simple baseline of metrics to monitor the organization's overall health to custom modeling for predicting future head count depending on various "what if" scenarios. They go on to show that companies competing on talent analytics manage data and technology at an enterprise level, support what analytical leaders do, choose realistic targets for analysis, and hire analysts with strong interpersonal skills as well as broad expertise.
Amplitude-integrated EEG and the newborn infant.
Shah, Divyen K; Mathur, Amit
2014-01-01
There is emerging recognition of the need for continuous long term electrographic monitoring of the encephalopathic neonate. While full-montage EEG with video remains the gold standard for monitoring, it is limited in application due to the complexity of lead application and specialized interpretation of results. Amplitude integrated EEG (aEEG) is derived from limited channels (usually C3-P3, C4-P4) and is filtered, rectified and time-compressed to serve as a bedside electrographic trend monitor. Its simple application and interpretation has resulted in increasing use in neonatal units across the world. Validation studies with full montage EEG have shown reliable results in interpretation of EEG background and electrographic seizures, especially when used with the simultaneously displayed raw EEG trace. Several aEEG monitors are commercially available and seizure algorithms are being developed for use on these monitors. These aEEG monitors, complement conventional EEG and offer a significant advance in the feasibility of long term electrographic monitoring of the encephalopathic neonate.
An extended analytical approach for diffuse optical imaging.
Erkol, H; Nouizi, F; Unlu, M B; Gulsen, G
2015-07-07
In this work, we introduce an analytical method to solve the diffusion equation in a cylindrical geometry. This method is based on an integral approach to derive the Green's function for specific boundary conditions. Using our approach, we obtain comprehensive analytical solutions with the Robin boundary condition for diffuse optical imaging in both two and three dimensions. The solutions are expressed in terms of the optical properties of tissue and the amplitude and position of the light source. Our method not only works well inside the tissue but provides very accurate results near the tissue boundaries as well. The results obtained by our method are first compared with those obtained by a conventional analytical method then validated using numerical simulations. Our new analytical method allows not only implementation of any boundary condition for a specific problem but also fast simulation of light propagation making it very suitable for iterative image reconstruction algorithms.
Analytically Solvable Quantum Hamiltonians and Relations to Orthogonal Polynomials
Regniers, G.; Van der Jeugt, J.
2010-06-17
Quantum systems consisting of a linear chain of n harmonic oscillators coupled by a quadratic nearest-neighbour interaction are considered. We investigate when such a system is analytically solvable, in the sense that the eigenvalues and eigenvectors of the interaction matrix have analytically closed expressions. This leads to a relation with Jacobi matrices of systems of discrete orthogonal polynomials. Our study is first performed in the case of canonical quantization. Then we consider these systems under Wigner quantization, leading to solutions in terms of representations of Lie superalgebras. Finally, we show how such analytically solvable Hamiltonians also play a role in another application, that of spin chains used as communication channels in quantum computing. In this context, the analytic solvability leads to closed form expressions for certain transition amplitudes.
Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus
Zobay, Oliver; Adjamian, Peyman
2015-01-01
The thalamocortical dysrhythmia (TCD) model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz). The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz) oscillations (“edge effect”) giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC) was computed within the auditory cortices for frequencies (f1, f2) between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1, f2 < 30 Hz) and high (f1, f2 > 30 Hz) frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL), tinnitus handicap and duration, and HL at tinnitus frequency), we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus. PMID:26665004
NASA Astrophysics Data System (ADS)
Smith, J. Scott
The field of food analysis, or any type of analysis, involves a considerable amount of time learning principles, methods, and instrument operations and perfecting various techniques. Although these areas are extremely important, much of our effort would be for naught if there were not some way for us to evaluate the data obtained from the various analytical assays. Several mathematical treatments are available that provide an idea of how well a particular assay was performed or how well we can reproduce an experiment. Fortunately, the statistics are not too involved and apply to most analytical determinations.
Monitoring the analytic surface.
Spence, D P; Mayes, L C; Dahl, H
1994-01-01
How do we listen during an analytic hour? Systematic analysis of the speech patterns of one patient (Mrs. C.) strongly suggests that the clustering of shared pronouns (e.g., you/me) represents an important aspect of the analytic surface, preconsciously sensed by the analyst and used by him to determine when to intervene. Sensitivity to these patterns increases over the course of treatment, and in a final block of 10 hours shows a striking degree of contingent responsivity: specific utterances by the patient are consistently echoed by the analyst's interventions.
Frontiers in analytical chemistry
Amato, I.
1988-12-15
Doing more with less was the modus operandi of R. Buckminster Fuller, the late science genius, and inventor of such things as the geodesic dome. In late September, chemists described their own version of this maxim--learning more chemistry from less material and in less time--in a symposium titled Frontiers in Analytical Chemistry at the 196th National Meeting of the American Chemical Society in Los Angeles. Symposium organizer Allen J. Bard of the University of Texas at Austin assembled six speakers, himself among them, to survey pretty widely different areas of analytical chemistry.
NASA Astrophysics Data System (ADS)
Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia
2011-11-01
This issue aims to serve as an introduction to our current understanding of the structure of scattering amplitudes in gauge theory, an area which has seen particularly rapid advances in recent years following decades of steady progress. The articles contained herein provide a snapshot of the latest developments which we hope will serve as a valuable resource for graduate students and other scientists wishing to learn about the current state of the field, even if our continually evolving understanding of the subject might soon render this compilation incomplete. Why the fascination with scattering amplitudes, which have attracted the imagination and dedicated effort of so many physicists? Part of it stems from the belief, supported now by numerous examples, that unexpected simplifications of otherwise apparently complicated calculations do not happen by accident. Instead they provide a strong motivation to seek out an underlying explanation. The insight thereby gained can subsequently be used to make the next class of seemingly impossible calculations not only possible, but in some cases even trivial. This two-pronged strategy of exploring and exploiting the structure of gauge theory amplitudes appeals to a wide audience from formal theorists interested in mathematical structure for the sake of its own beauty to more phenomenologically-minded physicists eager to speed up the next generation of analysis software. Understandably it is the maximally supersymmetric 𝒩 = 4 Yang-Mills theory (SYM) which has the simplest structure and has correspondingly received the most attention. Rarely in theoretical physics are we fortunate enough to encounter a toy model which is simple enough to be solved completely yet rich enough to possess interesting non-trivial structure while simultaneously, and most importantly, being applicable (even if only as a good approximation) to a wide range of 'real' systems. The canonical example in quantum mechanics is of course the harmonic
Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators
Zhu, Long; Wang, Jian
2014-01-01
Spatial structure of a light beam is an important degree of freedom to be extensively explored. By designing simple configurations with phase-only spatial light modulators (SLMs), we show the ability to arbitrarily manipulate the spatial full field information (i.e. amplitude and phase) of a light beam. Using this approach to facilitating arbitrary and independent control of spatial amplitude and phase, one can flexibly generate different special kinds of light beams for different specific applications. Multiple collinear orbital angular momentum (OAM) beams, Laguerre-Gaussian (LG) beams, and Bessel beams, having both spatial amplitude and phase distributions, are successfully generated in the experiments. Some arbitrary beams with odd-shaped intensity are also generated in the experiments. PMID:25501584
QCD amplitudes with 2 initial spacelike legs via generalised BCFW recursion
NASA Astrophysics Data System (ADS)
Kutak, Krzysztof; van Hameren, Andreas; Serino, Mirko
2017-02-01
We complete the generalisation of the BCFW recursion relation to the off-shell case, allowing for the computation of tree level scattering amplitudes for full High Energy Factorisation (HEF), i.e. with both incoming partons having a non-vanishing transverse momentum. We provide explicit results for color-ordered amplitudes with two off-shell legs in massless QCD up to 4 point, continuing the program begun in two previous papers. For the 4-fermion amplitudes, which are not BCFW-recursible, we perform a diagrammatic computation, so as to offer a complete set of expressions. We explicitly show and discuss some plots of the squared 2 → 2 matrix elements as functions of the differences in rapidity and azimuthal angle of the final state particles.
NASA Astrophysics Data System (ADS)
Du, Yi-Jian; Teng, Fei; Wu, Yong-Shi
2016-11-01
In this paper we define, independent of theories, two discriminant matrices involving a solution to the scattering equations in four dimensions, the ranks of which are used to divide the solution set into a disjoint union of subsets. We further demonstrate, entirely within the Cachazo-He-Yuan formalism, that each subset of solutions gives nonzero contribution to tree-level N k MHV gauge/gravity amplitudes only for a specific value of k. Thus the solutions can be characterized by the rank of their discriminant matrices, which in turn determines the value of k of the N k MHV amplitudes a solution can support. As another application of the technique developed, we show analytically that in Einstein-Yang-Mills theory, if all gluons have the same helicity, the tree-level single-trace amplitudes must vanish.
NASA Astrophysics Data System (ADS)
Yadav, N.; Ghosh, S.; Malviya, P. S.
2017-05-01
In communication processes, amplitude modulation is very helpful to save power using a single band transmission. Using the hydrodynamical description of semiconductor plasma analytical investigations are made for the amplitude modulation as well as demodulation of an electromagnetic wave in magnetized ion implanted semiconductor plasmas having strain dependent dielectric constants. Analysis is made under different wave number regimes over a wide range of cyclotron frequencies without and with colloids. Numerical estimations are made for n-doped BaTiO3 crystal irradiated by pump wave frequency 1.78 × 1013s-1. It has been found that ion implantation of negatively charged colloids modifies nearly ≈ 105 of magnitude of amplitude modulation and demodulation processes. Ion implantation plays a key role in development of optoelectronics.
Analytical and experimental study of vibrations in a gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, F. B.; Coy, J. J.
1991-01-01
An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at NASA Lewis. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. Transient and steady-state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single-mesh-gear noise test rig are modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.
Graph Diagrams in Transition Amplitudes of Dipole Cosmology
NASA Astrophysics Data System (ADS)
Kisielowski, Marcin; Lewandowski, Jerzy; Puchta, Jacek
2015-01-01
The Operator Spin-network Diagrams is a new framework that enables to express Spin-foam amplitudes in a clear graphical way. Within this framework it is easy to find and characterise all the spin-foams with a given fixed boundary graph. We used this technique to characterise transition amplitudes in Dipole Cosmology in higher order in the vertex expansion.
Amplitudes in N = 4 Super-Yang-Mills Theory
NASA Astrophysics Data System (ADS)
Spradlin, Marcus
These lecture notes provide a lightning introduction to some aspects of scattering amplitudes in maximally supersymmetric theory, aimed at the audience of students attending the 2014 TASI summer school "Journeys Through the Precision Frontier: Amplitudes for Colliders". Emphasis is placed on explaining modern terminology so that students needing to delve further may more easily access the available literature.
Proof of a new colour decomposition for QCD amplitudes
NASA Astrophysics Data System (ADS)
Melia, Tom
2015-12-01
Recently, Johansson and Ochirov conjectured the form of a new colour decom-position for QCD tree-level amplitudes. This note provides a proof of that conjecture. The proof is based on `Mario World' Feynman diagrams, which exhibit the hierarchical Dyck structure previously found to be very useful when dealing with multi-quark amplitudes.
Proof of a new colour decomposition for QCD amplitudes
Melia, Tom
2015-12-16
Recently, Johansson and Ochirov conjectured the form of a new colour decom-position for QCD tree-level amplitudes. This note provides a proof of that conjecture. The proof is based on ‘Mario World’ Feynman diagrams, which exhibit the hierarchical Dyck structure previously found to be very useful when dealing with multi-quark amplitudes.
Simple parametrization of the π-N amplitude
NASA Astrophysics Data System (ADS)
McLeod, R. J.; Afnan, I. R.
1985-07-01
We present a simple parametrization of the S-, P-, and D-wave π-N amplitudes using separable potentials for Tπ<1 GeV. The effect of the inelasticity is included in the Green's function while maintaining consistency with unitarity. The P11 amplitude is written as a pole plus nonpole in order to describe pion absorption in A>=2.
Miracles in Scattering Amplitudes: from QCD to Gravity
Volovich, Anastasia
2016-10-09
The goal of my research project "Miracles in Scattering Amplitudes: from QCD to Gravity" involves deepening our understanding of gauge and gravity theories by exploring hidden structures in scattering amplitudes and using these rich structures as much as possible to aid practical calculations.
Abnormal Selective Attention Normalizes P3 Amplitudes in PDD
ERIC Educational Resources Information Center
Hoeksma, Marco R.; Kemner, Chantal; Kenemans, J. Leon; van Engeland, Herman
2006-01-01
This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in…
Automated force controller for amplitude modulation atomic force microscopy
Miyagi, Atsushi E-mail: simon.scheuring@inserm.fr; Scheuring, Simon E-mail: simon.scheuring@inserm.fr
2016-05-15
Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.
Analytics: Changing the Conversation
ERIC Educational Resources Information Center
Oblinger, Diana G.
2013-01-01
In this third and concluding discussion on analytics, the author notes that we live in an information culture. We are accustomed to having information instantly available and accessible, along with feedback and recommendations. We want to know what people think and like (or dislike). We want to know how we compare with "others like me."…
ERIC Educational Resources Information Center
Buckingham Shum, Simon; Ferguson, Rebecca
2012-01-01
We propose that the design and implementation of effective "Social Learning Analytics (SLA)" present significant challenges and opportunities for both research and enterprise, in three important respects. The first is that the learning landscape is extraordinarily turbulent at present, in no small part due to technological drivers.…
ERIC Educational Resources Information Center
Buckingham Shum, Simon; Ferguson, Rebecca
2012-01-01
We propose that the design and implementation of effective "Social Learning Analytics (SLA)" present significant challenges and opportunities for both research and enterprise, in three important respects. The first is that the learning landscape is extraordinarily turbulent at present, in no small part due to technological drivers.…
Analytics: Changing the Conversation
ERIC Educational Resources Information Center
Oblinger, Diana G.
2013-01-01
In this third and concluding discussion on analytics, the author notes that we live in an information culture. We are accustomed to having information instantly available and accessible, along with feedback and recommendations. We want to know what people think and like (or dislike). We want to know how we compare with "others like me."…
Challenges for Visual Analytics
Thomas, James J.; Kielman, Joseph
2009-09-23
Visual analytics has seen unprecedented growth in its first five years of mainstream existence. Great progress has been made in a short time, yet great challenges must be met in the next decade to provide new technologies that will be widely accepted by societies throughout the world. This paper sets the stage for some of those challenges in an effort to provide the stimulus for the research, both basic and applied, to address and exceed the envisioned potential for visual analytics technologies. We start with a brief summary of the initial challenges, followed by a discussion of the initial driving domains and applications, as well as additional applications and domains that have been a part of recent rapid expansion of visual analytics usage. We look at the common characteristics of several tools illustrating emerging visual analytics technologies, and conclude with the top ten challenges for the field of study. We encourage feedback and collaborative participation by members of the research community, the wide array of user communities, and private industry.
Analytical Chemistry Laboratory
NASA Technical Reports Server (NTRS)
Anderson, Mark
2013-01-01
The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.
Analytical Chemistry Laboratory
NASA Technical Reports Server (NTRS)
Anderson, Mark
2013-01-01
The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.
Analytic Modeling of Insurgencies
2014-08-01
influenced by interests and utilities. 4.1 Carrots and Sticks An analytic model that captures the aforementioned utilitarian aspect is presented in...instead of the insurgents, to improve or worsen their welfare . The insurgents execute two types of actions: (a) violent actions, aimed to coerce potential
Analytical Services Management System
Church, Shane; Nigbor, Mike; Hillman, Daniel
2005-03-30
Analytical Services Management System (ASMS) provides sample management services. Sample management includes sample planning for analytical requests, sample tracking for shipping and receiving by the laboratory, receipt of the analytical data deliverable, processing the deliverable and payment of the laboratory conducting the analyses. ASMS is a web based application that provides the ability to manage these activities at multiple locations for different customers. ASMS provides for the assignment of single to multiple samples for standard chemical and radiochemical analyses. ASMS is a flexible system which allows the users to request analyses by line item code. Line item codes are selected based on the Basic Ordering Agreement (BOA) format for contracting with participating laboratories. ASMS also allows contracting with non-BOA laboratories using a similar line item code contracting format for their services. ASMS allows sample and analysis tracking from sample planning and collection in the field through sample shipment, laboratory sample receipt, laboratory analysis and submittal of the requested analyses, electronic data transfer, and payment of the laboratories for the completed analyses. The software when in operation contains business sensitive material that is used as a principal portion of the Kaiser Analytical Management Services business model. The software version provided is the most recent version, however the copy of the application does not contain business sensitive data from the associated Oracle tables such as contract information or price per line item code.
Amplitude transitions of swimmers and flexors in viscoelastic fluids
NASA Astrophysics Data System (ADS)
Guy, Robert; Thomases, Becca
2015-11-01
In both theoretical and experimental studies of the effect of fluid elasticity on micro-organism swimming, very different behavior has been observed for small and large amplitude strokes. We present simulations of an undulatory swimmer in an Oldroyd-B fluid and show that the resulting viscoelastic stresses are a nonlinear function of the amplitude. Specifically, there appears to be an amplitude dependent transition that is key to obtaining a speed-up over the Newtonian swimming speed. To understand the physical mechanism of the transition, we examine the stresses in a time-symmetric oscillatory bending beam, or flexor. We compare the flow in a neighborhood of the flexor tips with a large-amplitude oscillatory extensional flow, and we see similar amplitude dependent transitions. We relate these transitions to observed speed-ups in viscoelastic swimmers.
Reinforcing saccadic amplitude variability in a visual search task.
Paeye, Céline; Madelain, Laurent
2014-11-20
Human observers often adopt rigid scanning strategies in visual search tasks, even though this may lead to suboptimal performance. Here we ask whether specific levels of saccadic amplitude variability may be induced in a visual search task using reinforcement learning. We designed a new gaze-contingent visual foraging task in which finding a target among distractors was made contingent upon specific saccadic amplitudes. When saccades of rare amplitudes led to displaying the target, the U values (measuring uncertainty) increased by 54.89% on average. They decreased by 41.21% when reinforcing frequent amplitudes. In a noncontingent control group no consistent change in variability occurred. A second experiment revealed that this learning transferred to conventional visual search trials. These results provide experimental support for the importance of reinforcement learning for saccadic amplitude variability in visual search. © 2014 ARVO.
Discontinuities of BFKL amplitudes and the BDS ansatz
NASA Astrophysics Data System (ADS)
Fadin, V. S.; Fiore, R.
2015-12-01
We perform an examination of discontinuities of multiple production amplitudes, which are required for further development of the BFKL approach. It turns out that the discontinuities of 2 → 2 + n amplitudes obtained in the BFKL approach contradict to the BDS ansatz for amplitudes with maximal helicity violation in N = 4 supersymmetric Yang-Mills theory with large number of colors starting with n = 2. Explicit expressions for the discontinuities of the 2 → 3 and 2 → 4 amplitudes in the invariant mass of pairs of produced gluons are obtained in the planar N = 4 SYM in the next-to-leading logarithmic approximation. These expressions can be used for checking the conjectured duality between the light-like Wilson loops and the MHV amplitudes.
Effective Field Theories from Soft Limits of Scattering Amplitudes.
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav
2015-06-05
We derive scalar effective field theories-Lagrangians, symmetries, and all-from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We propose a natural classification of all scalar effective field theories according to two numbers which encode the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where there is no consistent amplitude, the corresponding theory does not exist.
New formulas for amplitudes from higher-dimensional operators
NASA Astrophysics Data System (ADS)
He, Song; Zhang, Yong
2017-02-01
In this paper we study tree-level amplitudes from higher-dimensional operators, including F 3 operator of gauge theory, and R 2, R 3 operators of gravity, in the Cachazo-He-Yuan formulation. As a generalization of the reduced Pfaffian in Yang-Mills theory, we find a new, gauge-invariant object that leads to gluon amplitudes with a single insertion of F 3, and gravity amplitudes by Kawai-Lewellen-Tye relations. When reduced to four dimensions for given helicities, the new object vanishes for any solution of scattering equations on which the reduced Pfaffian is non-vanishing. This intriguing behavior in four dimensions explains the vanishing of graviton helicity amplitudes produced by the Gauss-Bonnet R 2 term, and provides a scattering-equation origin of the decomposition into self-dual and anti-self-dual parts for F 3 and R 3 amplitudes.
The Origin of Complex Quantum Amplitudes
NASA Astrophysics Data System (ADS)
Goyal, Philip; Knuth, Kevin H.; Skilling, John
2009-12-01
Physics is real. Measurement produces real numbers. Yet quantum mechanics uses complex arithmetic, in which √-1 is necessary but mysteriously relates to nothing else. By applying the same sort of symmetry arguments that Cox [1, 2] used to justify probability calculus, we are now able to explain this puzzle. The dual device/object nature of observation requires us to describe the world in terms of pairs of real numbers about which we never have full knowledge. These pairs combine according to complex arithmetic, using Feynman's rules.
Analytic characterization of biosimilars.
Sullivan, Peter M; DiGrazia, Lisa M
2017-04-15
The biosimilar development process, comparability for biological agents, and analytic characterization of biosimilars are described. Healthcare providers must understand the requirements for biosimilar approval, including the science behind biosimilar development and testing that contributes to the totality of evidence. The foundation of development is to demonstrate that a biosimilar is highly similar to the reference product through analytic characterization. Advances in analytic techniques enable scientists to extensively characterize biological products to identify potential product differences compared with the reference product that may affect the purity, safety, and efficacy of the biosimilar candidate. When developing a biosimilar, the clinical efficacy of the biological product has been proven with trials from the reference biological product; therefore, analytic testing on the molecular structure and biological function becomes the focus. In addition, nonclinical studies in animals are performed, including toxicology and immunogenicity testing. In humans, clinical pharmacology studies are performed to evaluate the safety and the pharmacokinetic and pharmacodynamic properties of the proposed biosimilar. If there is any residual uncertainty about the proposed biological product after this testing, the developer should use guidance from the Food and Drug Administration to determine what additional clinical studies may be needed to adequately address that uncertainty. Requirements for the approval of a biosimilar product include analytic characterization, which tests for similarity in primary amino acid structure, analysis of higher-order structure using circular dichroism and nuclear magnetic resonance spectroscopies, detection of posttranslational modifications, assessment of optimal target binding, and testing for impurities and optimal potency. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bellan, Diego; Pignari, Sergio A.
2016-07-01
This work deals with the statistical characterization of real-time digital measurement of the amplitude of harmonics affected by frequency instability. In fact, in modern power systems both the presence of harmonics and frequency instability are well-known and widespread phenomena mainly due to nonlinear loads and distributed generation, respectively. As a result, real-time monitoring of voltage/current frequency spectra is of paramount importance as far as power quality issues are addressed. Within this framework, a key point is that in many cases real-time continuous monitoring prevents the application of sophisticated algorithms to extract all the information from the digitized waveforms because of the required computational burden. In those cases only simple evaluations such as peak search of discrete Fourier transform are implemented. It is well known, however, that a slight change in waveform frequency results in lack of sampling synchronism and uncertainty in amplitude estimate. Of course the impact of this phenomenon increases with the order of the harmonic to be measured. In this paper an approximate analytical approach is proposed in order to describe the statistical properties of the measured magnitude of harmonics affected by frequency instability. By providing a simplified description of the frequency behavior of the windows used against spectral leakage, analytical expressions for mean value, variance, cumulative distribution function, and probability density function of the measured harmonics magnitude are derived in closed form as functions of waveform frequency treated as a random variable.
Modeling of finite-amplitude sound beams: second order fields generated by a parametric loudspeaker.
Yang, Jun; Sha, Kan; Gan, Woon-Seng; Tian, Jing
2005-04-01
The nonlinear interaction of sound waves in air has been applied to sound reproduction for audio applications. A directional audible sound can be generated by amplitude-modulating the ultrasound carrier with an audio signal, then transmitting it from a parametric loudspeaker. This brings the need of a computationally efficient model to describe the propagation of finite-amplitude sound beams for the system design and optimization. A quasilinear analytical solution capable of fast numerical evaluation is presented for the second-order fields of the sum-, difference-frequency and second harmonic components. It is based on a virtual-complex-source approach, wherein the source field is treated as an aggregation of a set of complex virtual sources located in complex distance, then the corresponding fundamental sound field is reduced to the computation of sums of simple functions by exploiting the integrability of Gaussian functions. By this result, the five-dimensional integral expressions for the second-order sound fields are simplified to one-dimensional integrals. Furthermore, a substantial analytical reduction to sums of single integrals also is derived for an arbitrary source distribution when the basis functions are expressible as a sum of products of trigonometric functions. The validity of the proposed method is confirmed by a comparison of numerical results with experimental data previously published for the rectangular ultrasonic transducer.
NASA Astrophysics Data System (ADS)
Hou, X. Y.; Koh, C. G.; Kuang, K. S. C.; Lee, W. H.
2017-07-01
This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations.
NASA Astrophysics Data System (ADS)
Radożycki, Tomasz
2015-09-01
The Lorentz transformation properties of the equal-time bound-state Bethe-Salpeter amplitude in the two-dimensional massless quantum electrodynamics (the so-called Schwinger model) are considered. It is shown that while boosting a bound state (a `meson') this amplitude is subject to approximate Lorentz contraction. The effect is exact for large separations of constituent particles (`quarks'), while for small distances the deviation is more significant. For this phenomenon to appear, the full function, i.e. with the inclusion of all instanton contributions, has to be considered. The amplitude in each separate topological sector does not exhibit such properties.
Gravity Amplitudes as Generalized Double Copies of Gauge-Theory Amplitudes
NASA Astrophysics Data System (ADS)
Bern, Zvi; Carrasco, John Joseph; Chen, Wei-Ming; Johansson, Henrik; Roiban, Radu
2017-05-01
Whenever the integrand of a gauge-theory loop amplitude can be arranged into a form where the Bern-Carrasco-Johansson duality between color and kinematics is manifest, a corresponding gravity integrand can be obtained simply via the double-copy procedure. However, finding such gauge-theory representations can be challenging, especially at high loop orders. Here, we show that we can, instead, start from generic gauge-theory integrands, where the duality is not manifest, and apply a modified double-copy procedure to obtain gravity integrands that include contact terms generated by violations of dual Jacobi identities. We illustrate this with three-, four- and five-loop examples in N =8 supergravity.
Gravity Amplitudes as Generalized Double Copies of Gauge-Theory Amplitudes.
Bern, Zvi; Carrasco, John Joseph; Chen, Wei-Ming; Johansson, Henrik; Roiban, Radu
2017-05-05
Whenever the integrand of a gauge-theory loop amplitude can be arranged into a form where the Bern-Carrasco-Johansson duality between color and kinematics is manifest, a corresponding gravity integrand can be obtained simply via the double-copy procedure. However, finding such gauge-theory representations can be challenging, especially at high loop orders. Here, we show that we can, instead, start from generic gauge-theory integrands, where the duality is not manifest, and apply a modified double-copy procedure to obtain gravity integrands that include contact terms generated by violations of dual Jacobi identities. We illustrate this with three-, four- and five-loop examples in N=8 supergravity.
Multi-loop positivity of the planar N = 4 SYM six-point amplitude
NASA Astrophysics Data System (ADS)
Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.; Trnka, Jaroslav
2017-02-01
We study the six-point NMHV ratio function in planar N = 4 SYM theory in the context of positive geometry. The Amplituhedron construction of the integrand for the amplitudes provides a kinematical region in which the integrand was observed to be positive. It is natural to conjecture that this property survives integration, i.e. that the final result for the ratio function is also positive in this region. Establishing such a result would imply that preserving positivity is a surprising property of the Minkowski contour of integration and it might indicate some deeper underlying structure. We find that the ratio function is positive everywhere we have tested it, including analytic results for special kinematical regions at one and two loops, as well as robust numerical evidence through five loops. There is also evidence for not just positivity, but monotonicity in a "radial" direction. We also investigate positivity of the MHV six-gluon amplitude. While the remainder function ceases to be positive at four loops, the BDS-like normalized MHV amplitude appears to be positive through five loops.
Uncertainties in model-independent extractions of amplitudes from complete experiments
S. Hoblit, A. M. Sandorfi, H. Kamano, T.-S. H. Lee
2012-04-01
A new generation of over-complete experiments is underway, with the goal of performing a high precision extraction of pseudoscalar meson photo-production amplitudes. Such experimentally determined amplitudes can be used both as a test to validate models and as a starting point for an analytic continuation in the complex plane to search for poles. Of crucial importance for both is the level of uncertainty in the extracted multipoles. We have probed these uncertainties by analyses of pseudo-data for KLambda photoproduction, first for the set of 8 observables that have been published for the K{sup +} Lambda channel and then for pseudo-data on a complete set of 16 observables with the uncertainties expected from analyses of ongoing CLAS experiments. In fitting multipoles, we have used a combined Monte Carlo sampling of the amplitude space, with gradient minimization, and have found a shallow X{sup 2} valley pitted with a large number of local minima. This results in bands of solutions that are experimentally indistinguishable. All ongoing experiments will measure observables with limited statistics. We have found a dependence on the particular random choice of values of Gaussian distributed pseudo-data, due to the presence of multiple local minima. This results in actual uncertainties for reconstructed multipoles that are often considerable larger than those returned by gradient minimization routines such as Minuit which find a single local minimum. As intuitively expected, this additional level of uncertainty decreases as larger numbers of observables are included.
A small-amplitude study of solitons near critical plasma compositions
NASA Astrophysics Data System (ADS)
Olivier, Carel P.; Verheest, Frank; Maharaj, Shimul K.
2016-12-01
The properties of small-amplitude solitons are established near critical plasma compositions in a generalized fluid plasma with an arbitrary number of species. The study is conducted via a Taylor series expansion of the Sagdeev potential. It is shown that there are two types of critical compositions, namely rich critical and poor critical compositions. The coexistence of positive and negative polarity solitons is shown to arise at rich critical compositions and near rich critical compositions. At poor critical compositions, no small-amplitude solitons exist, while weak double layers arise near poor critical compositions. A novel analytical expression is obtained for a small-amplitude acoustic speed soliton solution near rich critical compositions. These solitons have a Lorentzian shape with much fatter tails than regular solitons. A case study is also performed for a simple fluid model consisting of cold ions and two Boltzmann electron species. Exact agreement is obtained between the Sagdeev analysis and reductive perturbation theory. For the first time, we derive the same Lorentzian acoustic speed soliton from reductive perturbation theory.
Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Amplitude Equations
NASA Technical Reports Server (NTRS)
Lee, Sang Soo
1998-01-01
The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented. In this part of the analysis, the system of partial differential critical-layer equations derived in Part I is solved analytically to yield the amplitude equations which are analyzed using a combination of asymptotic and numerical methods. Numerical solutions of the inviscid non-equilibrium oblique-mode amplitude equations show that the frequency-detuned self-interaction enhances the growth of the lower-frequency oblique modes more than the higher-frequency ones. All amplitudes become singular at the same finite downstream position. The frequency detuning delays the occurrence of the singularity. The spanwise-periodic mean-flow distortion and low-frequency nonlinear modes are generated by the critical-layer interaction between frequency-detuned oblique modes. The nonlinear mean flow and higher harmonics as well as the primary instabilities become as large as the base mean flow in the inviscid wall layer in the downstream region where the distance from the singularity is of the order of the wavelength scale.
Multi-loop positivity of the planar $$ \\mathcal{N} $$ = 4 SYM six-point amplitude
Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.; ...
2017-02-22
We study the six-point NMHV ratio function in planarmore » $$ \\mathcal{N} $$ = 4 SYM theory in the context of positive geometry. The Amplituhedron construction of the integrand for the amplitudes provides a kinematical region in which the integrand was observed to be positive. It is natural to conjecture that this property survives integration, i.e. that the final result for the ratio function is also positive in this region. Establishing such a result would imply that preserving positivity is a surprising property of the Minkowski contour of integration and it might indicate some deeper underlying structure. We find that the ratio function is positive everywhere we have tested it, including analytic results for special kinematical regions at one and two loops, as well as robust numerical evidence through five loops. There is also evidence for not just positivity, but monotonicity in a “radial” direction. We also investigate positivity of the MHV six-gluon amplitude. While the remainder function ceases to be positive at four loops, the BDS-like normalized MHV amplitude appears to be positive through five loops.« less
Factorization and resummation: A new paradigm to improve gravitational wave amplitudes
NASA Astrophysics Data System (ADS)
Nagar, Alessandro; Shah, Abhay
2016-11-01
We introduce a new resummed analytical form of the post-Newtonian (PN), factorized, multipolar amplitude corrections fℓm of the effective-one-body (EOB) gravitational waveform of spinning, nonprecessing, circularized, coalescing black hole binaries (BBHs). This stems from the following two-step paradigm: (i) the factorization of the orbital (spin-independent) terms in fℓm; (ii) the resummation of the residual spin (or orbital) factors. We find that resumming the residual spin factor by taking its inverse resummed (iResum) is an efficient way to obtain amplitudes that are more accurate in the strong-field, fast-velocity regime. The performance of the method is illustrated on the ℓ=2 and m =(1 ,2 ) waveform multipoles, both for a test mass orbiting around a Kerr black hole and for comparable-mass BBHs. In the first case, the iResum fℓm's are much closer to the corresponding "exact" functions (obtained by numerically solving the Teukolsky equation) up to the light ring than the nonresummed ones, especially when the black-hole spin is nearly extremal. The iResum paradigm is also more efficient than including higher post-Newtonian terms (up to 20PN order): the resummed 5PN information yields per se a rather good numerical or analytical agreement at the last stable orbit and a well-controlled behavior up to the light ring. For comparable mass binaries (including the highest PN-order information available, 3.5PN), comparing EOB with numerical relativity (NR) data shows that the EOB/NR fractional disagreement at merger, without NR calibration of the EOB waveform, is generically reduced by iResum, from 40% of the usual approach to just a few percent. This suggests that EOBNR waveform models for coalescing BBHs may be improved by using iResum amplitudes.
Developments in analytical instrumentation
NASA Astrophysics Data System (ADS)
Petrie, G.
The situation regarding photogrammetric instrumentation has changed quite dramatically over the last 2 or 3 years with the withdrawal of most analogue stereo-plotting machines from the market place and their replacement by analytically based instrumentation. While there have been few new developments in the field of comparators, there has been an explosive development in the area of small, relatively inexpensive analytical stereo-plotters based on the use of microcomputers. In particular, a number of new instruments have been introduced by manufacturers who mostly have not been associated previously with photogrammetry. Several innovative concepts have been introduced in these small but capable instruments, many of which are aimed at specialised applications, e.g. in close-range photogrammetry (using small-format cameras); for thematic mapping (by organisations engaged in environmental monitoring or resources exploitation); for map revision, etc. Another innovative and possibly significant development has been the production of conversion kits to convert suitable analogue stereo-plotting machines such as the Topocart, PG-2 and B-8 into fully fledged analytical plotters. The larger and more sophisticated analytical stereo-plotters are mostly being produced by the traditional mainstream photogrammetric systems suppliers with several new instruments and developments being introduced at the top end of the market. These include the use of enlarged photo stages to handle images up to 25 × 50 cm format; the complete integration of graphics workstations into the analytical plotter design; the introduction of graphics superimposition and stereo-superimposition; the addition of correlators for the automatic measurement of height, etc. The software associated with this new analytical instrumentation is now undergoing extensive re-development with the need to supply photogrammetric data as input to the more sophisticated G.I.S. systems now being installed by clients, instead
DESIGN OF PHASE INDUCED AMPLITUDE APODIZATION CORONAGRAPHS OVER SQUARE APERTURES
Pueyo, Laurent; Jeremy Kasdin, N.; Carlotti, Alexis; Vanderbei, Robert
2011-08-01
The purpose of this paper is to present the results of a theoretical study pertaining to the feasibility of Phase Induced Amplitude Apodization (PIAA) units using deformable mirrors (DMs). We begin by reviewing the general derivation of the design equations driving PIAA. We then show how to solve these equations for square apertures and show the performance of pure PIAA systems in the ray optics regime. We tie these design equations into the study of edge diffraction effects and provide a general expression for the field after a full propagation through a PIAA coronagraph. Third, we illustrate how a combination of pre- and post-apodizers yields a contrast of 10{sup -10} even in the presence of diffractive effects, for configuration with neither wavefront errors or wavefront control. Finally, we present novel PIAA configurations over square apertures which circumvent the constraints on the manufacturing of PIAA optics by inducing the apodization with two square DMs. Such solutions rely on pupil size smaller than currently envisioned static PIAA solutions and thus require aggressive pre- and post-apodizing screens in order to mitigate for diffractive effect between the two mirrors. As a result they are associated with significant loss in performance, throughput in particular.
Amplitude path corrections for regional phases in China
Phillips, W.S.; Velasco, A.A.; Taylor, S.R.; Randall, G.E.
1998-12-31
The authors investigate the effectiveness of amplitude path corrections for regional phases on seismic event discrimination and magnitude estimation. Waveform data from digital stations in China for regional, shallow (< 50 km) events were obtained from the IRIS Data Management Center (DMC) for years 1986 to 1996 using the USGS Preliminary Determination of Epicenters (PDE) and the Chinese State Seismological Bureau (SSB) catalogs. For each event, the amplitudes for each regional phase (P{sub n}, P{sub g}, S{sub n}, L{sub g}) were measured, as well as the P{sub g} and L{sub g} coda. Measured amplitudes were corrected for source scaling using estimates of m{sub b} and for distance using a power law that accounts for attenuation and spreading. The amplitude residuals were interpolated and mapped as 2-D amplitude correction surfaces. The authors employ several methods to create the amplitude correction surfaces: a waveguide method, and two interpolation methods (Baysian kriging and a circular moving window mean smoother). They explore the sensitivities of the surfaces to the method and to regional propagation, and apply these surfaces to correct amplitude data to reduce scatter in discrimination ratios and magnitude estimates.
Amplitude Dispersion Compensation for Damage Detection Using Ultrasonic Guided Waves
Zeng, Liang; Lin, Jing; Huang, Liping; Zhao, Ming
2016-01-01
Besides the phase and group velocities, the amplitude of guided wave mode is also frequency dependent. This amplitude dispersion also influences the performance of guided wave methods in nondestructive evaluation (NDE) and structural health monitoring (SHM). In this paper, the effects of amplitude dispersion to the spectrum and waveform of a propagating wave-packet are investigated. It is shown that the amplitude dispersion results in distortion in the spectrum of guided wave response, and thus influences the waveform of the wave-packet. To remove these effects, an amplitude dispersion compensation method is established on the basis of Vold–Kalman filter and Taylor series expansion. The performance of that method is then investigated by experimental examples. The results show that with the application of the amplitude dispersion compensation, the time reversibility could be preserved, which ensures the applicability of the time reversal method for damage detection. Besides, through amplitude dispersion compensation, the testing resolution of guided waves could be improved, so that the structural features located in the close proximity may be separately identified. PMID:27706067
Discriminating simulated vocal tremor source using amplitude modulation spectra.
Carbonell, Kathy M; Lester, Rosemary A; Story, Brad H; Lotto, Andrew J
2015-03-01
Sources of vocal tremor are difficult to categorize perceptually and acoustically. This article describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor), and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. These results supply initial support for an amplitude-envelope-based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Bootstrapping Multi-Parton Loop Amplitudes in QCD
Bern, Zvi; Dixon, Lance J.; Kosower, David A.; /Saclay, SPhT
2005-07-06
The authors present a new method for computing complete one-loop amplitudes, including their rational parts, in non-supersymmetric gauge theory. This method merges the unitarity method with on-shell recursion relations. It systematizes a unitarity-factorization bootstrap approach previously applied by the authors to the one-loop amplitudes required for next-to-leading order QCD corrections to the processes e{sup +}e{sup -} {yields} Z, {gamma}* {yields} 4 jets and pp {yields} W + 2 jets. We illustrate the method by reproducing the one-loop color-ordered five-gluon helicity amplitudes in QCD that interfere with the tree amplitude, namely A{sub 5;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}) and A{sub 5;1}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup +}). Then we describe the construction of the six- and seven-gluon amplitudes with two adjacent negative-helicity gluons, A{sub 6;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}) and A{sub 7;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}, 7{sup +}), which uses the previously-computed logarithmic parts of the amplitudes as input. They present a compact expression for the six-gluon amplitude. No loop integrals are required to obtain the rational parts.