Sample records for ampt-induced monoamine depletion

  1. Hyperforin depletes synaptic vesicles content and induces compartmental redistribution of nerve ending monoamines.

    PubMed

    Roz, Netta; Rehavi, Moshe

    2004-10-22

    Hyperforin, a phloroglucinol derivative found in Hypericum perforatum (St. John's wort) extracts has antidepressant properties in depressed patients. Hyperforin has a unique pharmacological profile and it inhibits uptake of biogenic monoamines as well as amino acid transmitters. We have recently showed that the monoamines uptake inhibition exerted by hyperforin is related to its ability to dissipate the pH gradient across the synaptic vesicle membrane thereby interfering with vesicular monoamines storage. In the present study we demonstrate that hyperforin induces dose-dependent efflux of preloaded [3H]5HT and [3H]DA from rat brain slices. Moreover, we show that hyperforin attenuates depolarization- dependent release of monoamines, while increasing monoamine release by amphetamine or fenfluramine. It is also demonstrated that preincubation of brain slices with reserpine is associated with dose- dependent blunting of efflux due to hyperforin. Our data indicate that hyperforin-induced efflux of [3H]5HT and [3H]DA reflect elevated cytoplasmic concentrations of the two monoamines secondary to the depletion of the synaptic vesicle content and the compartmental redistribution of nerve ending monoamines. Copyright 2004 Elsevier Inc.

  2. A comparison of cell proliferation in normal and neoplastic intestinal epithelia following either biogenic amine depletion or monoamine oxidase inhibition.

    PubMed

    Tutton, P J; Barkla, D H

    1976-08-11

    Epithelial cell proliferation was studied in the jejunum and in the colon of normal rats, in the colon of dimethylhydrazine-treated rats and in dimethylhydrazine-induced adenocarcinoma of the colon using a stathmokinetic technique. Estimates of cell proliferation rates in these four tissues were then repeated in animals which had been depleted of biogenic animes by treatment with reserpine and in animals whose monoamine oxidase was inhibited by treatment with nialamide. In amine-depleted animals cell proliferation essentially ceased in all four tissues examined. Inhibition of monoamine oxidase did not significantly influence cell proliferation in nonmalignant tissues but accelerated cell division in colonic tumours.

  3. Reduction in total plasma ghrelin levels following catecholamine depletion: relation to bulimic and depressive symptoms.

    PubMed

    Homan, Philipp; Grob, Simona; Milos, Gabriella; Schnyder, Ulrich; Hasler, Gregor

    2013-09-01

    There is increasing preclinical and clinical evidence of the important role played by the gastric peptide hormone ghrelin in the pathogenesis of symptoms of depression and eating disorders. To investigate the role of ghrelin and its considered counterpart, peptide tyrosine tyrosine (PYY), in the development of bulimic and depressive symptoms induced by catecholamine depletion, we administered the tyrosine hydroxylase inhibitor alpha-methyl-paratyrosine (AMPT) in a randomized, double-blind, placebo-controlled crossover, single-site experimental trial to 29 healthy controls and 20 subjects with fully recovered bulimia nervosa (rBN). We found a decrease between preprandial and postprandial plasma ghrelin levels (p<0.0001) and a postprandial rise in plasma PYY levels (p<0.0001) in both conditions in the entire study population. Plasma ghrelin levels decreased in the entire study population after treatment with AMPT compared to placebo (p<0.006). AMPT-induced changes in plasma ghrelin levels were negatively correlated with AMPT-induced depressive symptoms (p<0.004). Plasma ghrelin and plasma PYY levels were also negatively correlated (p<0.05). We did not observe a difference in ghrelin or PYY response to catecholamine depletion between rBN subjects and healthy controls, and there was no correlation between plasma ghrelin and PYY levels and bulimic symptoms induced by catecholamine depletion. These findings suggest a relationship between catecholamines and ghrelin with depressive symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Dopamine depletion attenuates some behavioral abnormalities in a hyperdopaminergic mouse model of bipolar disorder

    PubMed Central

    van Enkhuizen, Jordy; Geyer, Mark A.; Halberstadt, Adam L.; Zhuang, Xiaoxi; Young, Jared W.

    2014-01-01

    Background Patients with BD suffer from multifaceted symptoms, including hyperactive and psychomotor agitated behaviors. Previously, we quantified hyperactivity, increased exploration, and straighter movements of patients with BD mania in the human Behavioral Pattern Monitor (BPM). A similar BPM profile is observed in mice that are hyperdopaminergic due to reduced dopamine transporter (DAT) functioning. We hypothesized that dopamine depletion through alpha-methyl-p-tyrosine (AMPT) administration would attenuate this mania-like profile. Methods Male and female DAT wild-type (WT; n=26) and knockdown (KD; n=28) mice on a C57BL/6 background were repeatedly tested in the BPM to assess profile robustness and stability. The optimal AMPT dose was identified by treating male C57BL/6 mice (n=39) with vehicle or AMPT (10, 30, or 100 mg/kg) at 24, 20, and 4 h prior to testing in the BPM. Then, male and female DAT WT (n=40) and KD (n=37) mice were tested in the BPM after vehicle or AMPT (30 mg/kg) treatment. Results Compared to WT littermates, KD mice exhibited increased activity, exploration, straighter movement, and disorganized behavior. AMPT-treatment reduced hyperactivity and increased path organization, but potentiated specific exploration in KD mice without affecting WT mice. Limitations AMPT is not specific to dopamine and also depletes norepinephrine. Conclusions KD mice exhibit abnormal exploration in the BPM similar to patients with BD mania. AMPT-induced dopamine depletion attenuated some, but potentiated other, aspects of this mania-like profile in mice. Future studies should extend these findings into other aspects of mania to determine the suitability of AMPT as a treatment for BD mania. PMID:24287168

  5. Severe Serotonin Depletion after Conditional Deletion of the Vesicular Monoamine Transporter 2 Gene in Serotonin Neurons: Neural and Behavioral Consequences

    PubMed Central

    Narboux-Nême, Nicolas; Sagné, Corinne; Doly, Stephane; Diaz, Silvina L; Martin, Cédric B P; Angenard, Gaelle; Martres, Marie-Pascale; Giros, Bruno; Hamon, Michel; Lanfumey, Laurence; Gaspar, Patricia; Mongeau, Raymond

    2011-01-01

    The vesicular monoamine transporter type 2 gene (VMAT2) has a crucial role in the storage and synaptic release of all monoamines, including serotonin (5-HT). To evaluate the specific role of VMAT2 in 5-HT neurons, we produced a conditional ablation of VMAT2 under control of the serotonin transporter (slc6a4) promoter. VMAT2sert−cre mice showed a major (−95%) depletion of 5-HT levels in the brain with no major alterations in other monoamines. Raphe neurons contained no 5-HT immunoreactivity in VMAT2sert−cre mice but developed normal innervations, as assessed by both tryptophan hydroxylase 2 and 5-HT transporter labeling. Increased 5-HT1A autoreceptor coupling to G protein, as assessed with agonist-stimulated [35S]GTP-γ-S binding, was observed in the raphe area, indicating an adaptive change to reduced 5-HT transmission. Behavioral evaluation in adult VMAT2sert−cre mice showed an increase in escape-like reactions in response to tail suspension and anxiolytic-like response in the novelty-suppressed feeding test. In an aversive ultrasound-induced defense paradigm, VMAT2sert−cre mice displayed a major increase in escape-like behaviors. Wild-type-like defense phenotype could be rescued by replenishing intracellular 5-HT stores with chronic pargyline (a monoamine oxidase inhibitor) treatment. Pargyline also allowed some form of 5-HT release, although in reduced amounts, in synaptosomes from VMAT2sert−cre mouse brain. These findings are coherent with the notion that 5-HT has an important role in anxiety, and provide new insights into the role of endogenous 5-HT in defense behaviors. PMID:21814181

  6. Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption.

    PubMed

    Kita, Taizo; Wagner, George C; Nakashima, Toshikatsu

    2003-07-01

    Methamphetamine (METH)-induced neurotoxicity is characterized by a long-lasting depletion of striatal dopamine (DA) and serotonin as well as damage to striatal dopaminergic and serotonergic nerve terminals. Several hypotheses regarding the mechanism underlying METH-induced neurotoxicity have been proposed. In particular, it is thought that endogenous DA in the striatum may play an important role in mediating METH-induced neuronal damage. This hypothesis is based on the observation of free radical formation and oxidative stress produced by auto-oxidation of DA consequent to its displacement from synaptic vesicles to cytoplasm. In addition, METH-induced neurotoxicity may be linked to the glutamate and nitric oxide systems within the striatum. Moreover, using knockout mice lacking the DA transporter, the vesicular monoamine transporter 2, c-fos, or nitric oxide synthetase, it was determined that these factors may be connected in some way to METH-induced neurotoxicity. Finally a role for apoptosis in METH-induced neurotoxicity has also been established including evidence of protection of bcl-2, expression of p53 protein, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), activity of caspase-3. The neuronal damage induced by METH may reflect neurological disorders such as autism and Parkinson's disease.

  7. Neural response to catecholamine depletion in remitted bulimia nervosa: Relation to depression and relapse.

    PubMed

    Mueller, Stefanie Verena; Mihov, Yoan; Federspiel, Andrea; Wiest, Roland; Hasler, Gregor

    2017-07-01

    Bulimia nervosa has been associated with a dysregulated catecholamine system. Nevertheless, the influence of this dysregulation on bulimic symptoms, on neural activity, and on the course of the illness is not clear yet. An instructive paradigm for directly investigating the relationship between catecholaminergic functioning and bulimia nervosa has involved the behavioral and neural responses to experimental catecholamine depletion. The purpose of this study was to examine the neural substrate of catecholaminergic dysfunction in bulimia nervosa and its relationship to relapse. In a randomized, double-blind and crossover study design, catecholamine depletion was achieved by using the oral administration of alpha-methyl-paratyrosine (AMPT) over 24 h in 18 remitted bulimic (rBN) and 22 healthy (HC) female participants. Cerebral blood flow (CBF) was measured using a pseudo continuous arterial spin labeling (pCASL) sequence. In a follow-up telephone interview, bulimic relapse was assessed. Following AMPT, rBN participants revealed an increased vigor reduction and CBF decreases in the pallidum and posterior midcingulate cortex (pMCC) relative to HC participants showing no CBF changes in these regions. These results indicated that the pallidum and the pMCC are the functional neural correlates of the dysregulated catecholamine system in bulimia nervosa. Bulimic relapse was associated with increased depressive symptoms and CBF reduction in the hippocampus/parahippocampal gyrus following catecholamine depletion. AMPT-induced increased CBF in this region predicted staying in remission. These findings demonstrated the importance of depressive symptoms and the stress system in the course of bulimia nervosa. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor.

    PubMed

    Sagi, Yotam; Weinstock, Marta; Youdim, Moussa B H

    2003-07-01

    (R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.

  9. Effects of acute combined serotonin and dopamine depletion on cue-induced drinking intention/desire and cognitive function in patients with alcohol dependence.

    PubMed

    Sun, Hong-Qiang; Liu, Yu; Li, Peng; Bao, Yan-Ping; Sheng, Li-Xia; Zhang, Rui-Ling; Cao, Yan-Jun; Di, Xiao-Lan; Yang, Fu-De; Wang, Fan; Luo, Yi-Xiao; Lu, Lin

    2012-08-01

    Alcohol cues can precipitate the desire to drink and cause relapse in recovering alcohol-dependent patients. Serotonin and dopamine may play a role in alcohol cue-induced craving. Acute combined tryptophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) depletion (CMD) in the diet attenuates the synthesis of serotonin and dopamine in the human brain. However, no study of the effects of acute CMD has been previously conducted. Therefore, we investigated whether the attenuation of serotonin and dopamine synthesis changes cue-induced alcohol craving in recently abstinent alcoholics. In this double-blind, randomized, placebo-controlled, crossover design, 12 male patients who met the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, criteria for alcohol dependence were divided into two conditions: (1) monoamine depletion (i.e., consumption of a concentrated amino acid beverage that resulted in a rapid and significant decrease in plasma-free Tyr/Phe/Trp) and (2) balanced condition (i.e., consumption of a similar beverage that contained Tyr/Phe/Trp). The participants were scheduled for two experimental sessions, with an interval of ≥7 days. The cue-induced craving test session was conducted 6h after each amino acid beverage administration. Drinking urge, blood pressure, heart rate, working memory, and attention/psychomotor performance were assessed before and after administration. Compared with the balanced condition, the monoamine depletion condition significantly increased drinking intention/desire and diastolic blood pressure. Cognitive performance was not different between the two conditions. Acute combined serotonin and dopamine depletion may increase drinking intention/desire and diastolic blood pressure without influencing cognitive function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Methamphetamine-induced alterations in monoamine transport: implications for neurotoxicity, neuroprotection and treatment.

    PubMed

    Volz, Trent J; Fleckenstein, Annette E; Hanson, Glen R

    2007-04-01

    To review studies delineating the neurotoxic effects of methamphetamine on monoamine transport in dopaminergic neurons of the striatum and nucleus accumbens. The scope of this review includes the English language dopamine transporter and vesicular monoamine transporter-2 primary literature to April 2006 identified by Pubmed, Science Citation Index and SciFinder Scholar literature searches. Changes in the function of the plasmalemmal dopamine transporter and the vesicular monoamine transporter-2 are key components of methamphetamine-induced persistent dopaminergic deficits. These deficits include persistent reductions in dopamine content, dopamine transporter density and tyrosine hydroxylase activity. The striatum is susceptible to these effects of methamphetamine while the nucleus accumbens is resistant. Differences in dopamine transporter density and activity, extracellular dopamine levels and antioxidant levels in these two brain regions may, in part, account for the resistance of the nucleus accumbens. These findings concerning the nature of methamphetamine-induced changes in plasmalemmal and vesicular dopamine transport have very important implications for drug targets and for understanding the etiology of dopaminergic neurodegenerative processes, such as those associated with methamphetamine addiction and Parkinson's disease.

  11. Subchronic glucocorticoids, glutathione depletion and a postpartum model elevate monoamine oxidase a activity in the prefrontal cortex of rats.

    PubMed

    Raitsin, Sofia; Tong, Junchao; Kish, Stephen; Xu, Xin; Magomedova, Lilia; Cummins, Carolyn; Andreazza, Ana C; Scola, Gustavo; Baker, Glen; Meyer, Jeffrey H

    2017-07-01

    Recent human brain imaging studies implicate dysregulation of monoamine oxidase-A (MAO-A), in particular in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC), in the development of major depressive disorder (MDD). This study investigates the influence of four alterations underlying important pathologies of MDD, namely, chronic elevation of glucocorticoid levels, glutathione depletion, changes in female gonadal sex hormones and serotonin concentration fluctuation, on MAO-A and MAO-B activities in rats. Young adult rats exposed chronically to the synthetic glucocorticoid dexamethasone at 0, 0.05, 0.5, and 2.0mg/kg/day (osmotic minipumps) for eight days showed significant dose-dependent increases in activities of MAO-A in PFC (+17%, p<0.001) and ACC (+9%, p<0.01) and MAO-B in PFC (+14%, p<0.001) and increased serotonin turnover in the PFC (+31%, p<0.01), not accounted for by dexamethasone-induced changes in serotonin levels, since neither serotonin depletion nor supplementation affected MAO-A activity. Sub-acute depletion of the major antioxidant glutathione by diethyl maleate (5mmol/kg, i.p.) for three days, which resulted in a 36% loss of glutathione in PFC (p=0.0005), modestly, but significantly, elevated activities of MAO-A in PFC and MAO-B in PFC, ACC and hippocampus (+6-9%, p<0.05). Changes in estrogen and progesterone representing pseudopregnancy were associated with significantly elevated MAO-A activity in the ACC day 4-7 postpartum (10-18%, p<0.05 to p<0.0001) but not the PFC or hippocampus. Hence, our study provides data in support of strategies targeting glucocorticoid and glutathione systems, as well as changes in female sex hormones for normalization of MAO-A activities and thus treatment of mood disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Sea Urchin Embryo, an Invertebrate Model for Mammalian Developmental Neurotoxicity, Reveals Multiple Neurotransmitter Mechanisms for Effects of Chlorpyrifos: Therapeutic Interventions and a Comparison with the Monoamine Depleter, Reserpine

    PubMed Central

    Buznikov, Gennady A.; Nikitina, Lyudmila A.; Rakić, Ljubiša M.; Miloševi, Ivan; Bezuglov, Vladimir V.; Lauder, Jean M.; Slotkin, Theodore A.

    2007-01-01

    Lower organisms show promise for the screening of neurotoxicants that might target mammalian brain development. Sea urchins use neurotransmitters as embryonic growth regulatory signals, so that adverse effects on neural substrates for mammalian brain development can be studied in this simple organism. We compared the effects of the organophosphate insecticide, chlorpyrifos in sea urchin embryos with those of the monoamine depleter, reserpine, so as to investigate multiple neurotransmitter mechanisms involved in developmental toxicity and to evaluate different therapeutic interventions corresponding to each neurotransmitter system. Whereas reserpine interfered with all stages of embryonic development, the effects of chlorpyrifos did not emerge until the mid-blastula stage. After that point, the effects of the two agents were similar. Treatment with membrane permeable analogs of the monoamine neurotransmitters, serotonin and dopamine, prevented the adverse effects of either chlorpyrifos or reserpine, despite the fact that chlorpyrifos works simultaneously through actions on acetylcholine, monoamines and other neurotransmitter pathways. This suggests that different neurotransmitters, converging on the same downstream signaling events, could work together or in parallel to offset the developmental disruption caused by exposure to disparate agents. We tested this hypothesis by evaluating membrane permeable analogs of acetylcholine and cannabinoids, both of which proved effective against chlorpyrifos- or reserpine-induced teratogenesis. Invertebrate test systems can provide both a screening procedure for mammalian neuroteratogenesis and may uncover novel mechanisms underlying developmental vulnerability as well as possible therapeutic approaches to prevent teratogenesis. PMID:17720543

  13. Estrogen Treatment Impairs Cognitive Performance following Psychosocial Stress and Monoamine Depletion in Postmenopausal Women

    PubMed Central

    Newhouse, Paul A.; Dumas, Julie; Wilkins, Heather; Coderre, Emily; Sites, Cynthia K.; Naylor, Magdalena; Benkelfat, Chawki; Young, Simon N.

    2010-01-01

    Objective Recent studies have shown women experience an acceleration of cognitive problems after menopause, and that estrogen treatment can improve or at least maintain current levels of cognitive functioning in postmenopausal women. However, we have previously shown that the negative emotional effects of psychosocial stress are magnified in normal postmenopausal women after estrogen treatment. This study examined whether estradiol administration can modify cognitive performance after exposure to psychological stress and monoamine depletion. Methods Participants consisted of 22 postmenopausal women placed on either oral placebo or 17β-estradiol (E2) (1 mg/day for 1 month, then 2 mg/day for 2 months). At the end of the 3 month treatment phase, participants underwent three depletion challenges in which they ingested one of three amino acid mixtures: deficient in tryptophan, deficient in phenylalanine/tyrosine, or balanced. Five hours later, participants performed the Trier Social Stress Test (TSST), followed by mood and anxiety ratings and cognitive testing. Cognitive measures included tests of attention, psychomotor function, and verbal episodic memory. Results E2-treated compared to placebo-treated participants exhibited significant worsening of cognitive performance on tasks measuring attentional performance and psychomotor speed. Similar trends for impairment were seen in measures of long-term episodic memory compared to placebo-treated postmenopausal women. E2-treated participants also showed a significant increase in negative mood and anxiety compared to placebo-treated women after but not before the TSST, though the worsening of both cognitive and behavioral functioning were not correlated. These effects were independent of tryptophan or tyrosine/phenylalanine depletion and were not manifest before the TSST or at baseline. Conclusions These data suggest that the relationship between estrogen administration and cognitive/behavioral performance in

  14. Monoamine involvement in the antidepressant-like effect induced by P2 blockade.

    PubMed

    Diniz, Cassiano R A F; Rodrigues, Murilo; Casarotto, Plínio C; Pereira, Vítor S; Crestani, Carlos C; Joca, Sâmia R L

    2017-12-01

    Depression is a common mental disorder that affects millions of individuals worldwide. Available monoaminergic antidepressants are far from ideal since they show delayed onset of action and are ineffective in approximately 40% of patients, thus indicating the need of new and more effective drugs. ATP signaling through P2 receptors seems to play an important role in neuropathological mechanisms involved in depression, since their pharmacological or genetic inactivation induce antidepressant-like effects in the forced swimming test (FST). However, the mechanisms involved in these effects are not completely understood. The present work investigated monoamine involvement in the antidepressant-like effect induced by non-specific P2 receptor antagonist (PPADS) administration. First, the effects of combining sub-effective doses of PPADS with sub-effective doses of fluoxetine (FLX, selective serotonin reuptake inhibitor) or reboxetine (RBX, selective noradrenaline reuptake inhibitor) were investigated in mice submitted to FST. Significant antidepressant-like effect was observed when subeffective doses of PPADS was combined with subeffective doses of either FLX or RBX, with no significant locomotor changes. Next, the effects of depleting serotonin and noradrenaline levels, by means of PCPA (p-Chlorophenylalanine) or DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride) pretreatment, respectively, was investigated. Both, PCPA and DSP-4 pretreatment partially attenuated PPADS-induced effects in FST, without inducing relevant locomotor changes. Our results suggest that the antidepressant-like effect of PPADS involves modulation of serotonin and noradrenaline levels in the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Small effect of dopamine release and no effect of dopamine depletion on [18F]fallypride binding in healthy humans.

    PubMed

    Cropley, Vanessa L; Innis, Robert B; Nathan, Pradeep J; Brown, Amira K; Sangare, Janet L; Lerner, Alicja; Ryu, Yong Hoon; Sprague, Kelly E; Pike, Victor W; Fujita, Masahiro

    2008-06-01

    Molecular imaging has been used to estimate both drug-induced and tonic dopamine release in the striatum and most recently extrastriatal areas of healthy humans. However, to date, studies of drug-induced and tonic dopamine release have not been performed in the same subjects. This study performed positron emission tomography (PET) with [18F]fallypride in healthy subjects to assess (1) the reproducibility of [18F]fallypride and (2) both D-amphetamine-induced and alpha-methyl-p-tyrosine (AMPT)-induced changes in dopamin release on [(18)F]fallypride binding in striatal and extrastriatal areas. Subjects underwent [18F]fallypride PET studies at baseline and following oral D-amphetamine administration (0.5 mg/kg) and oral AMPT administration (3 g/70 kg/day over 44 h). Binding potential (BP) (BP(ND)) of [18F]fallypride was calculated in striatal and extrastriatal areas using a reference region method. Percent change in regional BP(ND) was computed and correlated with change in cognition and mood. Test-retest variability of [18F]fallypride was low in both striatal and extrastriatal regions. D-Amphetamine significantly decreased BP(ND) by 8-14% in striatal subdivisions, caudate, putamen, substantia nigra, medial orbitofrontal cortex, and medial temporal cortex. Correlation between change in BP(ND) and verbal fluency was seen in the thalamus and substantia nigra. In contrast, depletion of endogenous dopamine with AMPT did not effect [18F]fallypride BP(ND) in both striatum and extrastriatal regions. These findings indicate that [18F]fallypride is useful for measuring amphetamine-induced dopamine release, but may be unreliable for estimating tonic dopamine levels, in striatum and extrastriatal regions of healthy humans.

  16. Brain α2-adrenoceptors in monoamine-depleted rats: increased receptor density, G coupling proteins, receptor turnover and receptor mRNA

    PubMed Central

    Ribas, Catalina; Miralles, Antonio; Busquets, Xavier; García-Sevilla, Jesús A

    2001-01-01

    This study was designed to assess the molecular and cellular events involved in the up-regulation (and receptor supersensitivity) of brain α2-adrenoceptors as a result of chronic depletion of noradrenaline (and other monoamines) by reserpine. Chronic reserpine (0.25 mg kg−1 s.c., every 48 h for 6 – 14 days) increased significantly the density (Bmax values) of cortical α2-adrenoceptor agonist sites (34 – 48% for [3H]-UK14304, 22 – 32% for [3H]-clonidine) but not that of antagonist sites (11 – 18% for [3H]-RX821002). Competition of [3H]-RX821002 binding by (−)-adrenaline further indicated that chronic reserpine was associated with up-regulation of the high-affinity state of α2-adrenoceptors. In cortical membranes of reserpine-treated rats (0.25 mg kg−1 s.c., every 48 h for 20 days), the immunoreactivities of various G proteins (Gαi1/2, Gαi3, Gαo and Gαs) were increased (25 – 34%). Because the high-affinity conformation of the α2-adrenoceptor is most probably related to the complex with Gαi2 proteins, these results suggested an increase in signal transduction through α2-adrenoceptors (and other monoamine receptors) induced by chronic reserpine. After α2-adrenoceptor alkylation, the analysis of receptor recovery (Bmax for [3H]-UK14304) indicated that the increased density of cortical α2-adrenoceptors in reserpine-treated rats was probably due to a higher appearance rate constant of the receptor (Δr=57%) and not to a decreased disappearance rate constant (Δk=7%). Northern- and dot-blot analyses of RNA extracted from the cerebral cortex of saline- and reserpine-treated rats (0.25 mg kg−1, s.c., every 48 h for 20 days) revealed that reserpine markedly increased the expression of α2a-adrenoceptor mRNA in the brain (125%). This transcriptional activation of the receptor gene expression appears to be the cellular mechanism by which reserpine induces up-regulation in the density of brain α2-adrenoceptors

  17. Recent Updates of A Multi-Phase Transport (AMPT) Model

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Wei

    2008-10-01

    We will present recent updates to the AMPT model, a Monte Carlo transport model for high energy heavy ion collisions, since its first public release in 2004 and the corresponding detailed descriptions in Phys. Rev. C 72, 064901 (2005). The updates often result from user requests. Some of these updates expand the physics processes or descriptions in the model, while some updates improve the usability of the model such as providing the initial parton distributions or help avoid crashes on some operating systems. We will also explain how the AMPT model is being maintained and updated.

  18. Baryon spectra and antiparticle-to-particle ratios from the improved AMPT model

    NASA Astrophysics Data System (ADS)

    He, Yuncun; Lin, Zi-Wei

    2018-02-01

    The current version of a multi-phase transport (AMPT) model with string melting can reasonably describe the dN/dy yields, pT spectra and anisotropic flows of pions and kaons at low pT in heavy ion collisions at RHIC and LHC energies, although it failed to reproduce the dN/dy and pT spectra of baryons. In this work, we improve the quark coalescence mechanism in AMPT by removing the forced separate number conservations of mesons, baryons and antibaryons in each event. We find that the improved AMPT model can better describe the yields at midrapidity, the pT spectra and elliptic flow of low-pT baryons in comparison with the experimental data. Antiparticle-to-particle ratios of strange baryons are also significantly improved.

  19. Correlation Between Monoamine Oxidase Inhibitors and Anticonvulsants

    PubMed Central

    Dwivedi, Chandradhar; Misra, Radhey S.; Chaudhari, Anshumali; Parmar, Surendra S.

    1980-01-01

    Monoamine oxidase inhibitory and anticonvulsant properties of 2-substituted styryl-6-bromo-3-(4-ethylbenzoate/4 benzhydrazide)-4-quinazoles are studied. All styryl quinazolone esters except compound number 9 exhibited monoamine oxidase inhibitory properties during oxidative deamination of kynuramine. Corresponding hydrazides were found to have relatively higher activity. All these quinazolones were able to protect against pentylenetetrazol induced seizures. These observations in general do not prove that monoamine oxidase inhibitory properties represent the biochemical basis for the anticonvulsant activity of these compounds. PMID:7420438

  20. Naproxen, a Nonsteroidal Anti-Inflammatory Drug, Can Affect Daily Hypobaric Hypoxia-Induced Alterations of Monoamine Levels in Different Areas of the Brain in Male Rats.

    PubMed

    Goswami, Ananda Raj; Dutta, Goutam; Ghosh, Tusharkanti

    2016-06-01

    Goswami, Ananda Raj, Goutam Dutta, and Tusharkanti Ghosh. Naproxen, a nonsteroidal anti-inflammatory drug can affect daily hypobaric hypoxia-induced alterations of monoamine levels in different areas of the brain in male rats. High Alt Med Biol. 17:133-140, 2016.-The oxidative stress (OS)-induced prostaglandin (PG) release, in hypobaric hypoxic (HHc) condition, may be linked with the changes of brain monoamines. The present study intends to explore the changes of monoamines in hypothalamus (H), cerebral cortex (CC), and cerebellum (CB) along with the motor activity in rats after exposing them to simulated hypobaric condition and the role of PGs on the daily hypobaric hypoxia (DHH)-induced alteration of brain monoamines by administering, an inhibitor of PG synthesis, naproxen. The rats were exposed to a decompression chamber at 18,000 ft for 8 hours per day for 6 days after administration of vehicle or naproxen (18 mg/kg body wt.). The monoamine levels (epinephrine, E; norepinephrine, NE; dopamine, DA; and 5-hydroxytryptamine, 5-HT) in CC, CB, and H were assayed by high-performance liquid chromatography (HPLC) with electrochemical detection, and the locomotor behavior was measured by open field test. The NE and DA levels were decreased in CC, CB, and H of the rat brain in HHc condition. The E and 5-HT levels were decreased in CC, but in H and CB, they remained unaltered in HHc condition. These DHH-induced changes of monoamines in brain areas were prevented after administration of naproxen in HHc condition. The locomotor behavior remained unaltered in HHc condition and after administration of naproxen in HHc condition. The DHH-induced changes of monoamines in the brain in HHc condition are probably linked with PGs that may be induced by OS.

  1. Empirical solution of Green-Ampt equation using soil conservation service - curve number values

    NASA Astrophysics Data System (ADS)

    Grimaldi, S.; Petroselli, A.; Romano, N.

    2012-09-01

    The Soil Conservation Service - Curve Number (SCS-CN) method is a popular widely used rainfall-runoff model for quantifying the total stream-flow volume generated by storm rainfall, but its application is not appropriate for sub-daily resolutions. In order to overcome this drawback, the Green-Ampt (GA) infiltration equation is considered and an empirical solution is proposed and evaluated. The procedure, named CN4GA (Curve Number for Green-Ampt), aims to calibrate the Green-Ampt model parameters distributing in time the global information provided by the SCS-CN method. The proposed procedure is evaluated by analysing observed rainfall-runoff events; results show that CN4GA seems to provide better agreement with the observed hydrographs respect to the classic SCS-CN method.

  2. [Analysis on content of serum monoamine neurotransmitters in macaques with anger-in-induced premenstrual syndrome and liver-qi depression syndrome].

    PubMed

    Wei, Sheng; Hou, Jin-Liang; Chao, Yu-Bin; Du, Xi-Yang; Zong, Shao-Bo

    2012-08-01

    To observe the changes in content of monoamine neurotransmitters in the serum of rhesus macaques, and explore the role of serum monoamine neurotransmitters in premenstrual syndrome (PMS) and liver-qi depression induced by anger-in emotion. Social level pressure was applied on 24 female macaques to induce the angry emotional reaction, and then nine of the low-status macaques with anger-in emotional reaction were screened out and were divided into anger-in emotion group, PMS and liver-qi depression group (model group) and Jingqianshu Granule group. Macaques in the last two groups were suffered extruding in a pack cage for inducing PMS liver-qi depression. After 5 d of extruding, experimental animals were evaluated according to the emotional evaluation scale, meanwhile, macaque serum of follicular phase and middle-late luteal phase was collected to analyze the content of serum norepinephrine, dopamine, and 5-hydroxytryptamine. Compared with the normal control group, the scores of depression of the model group and the anger-in emotion group evaluated with emotional evaluation scale were significantly increased (P<0.01, P<0.05); while the score of the model group was significantly higher than that of the anger-in emotion group (P<0.05), and it returned to normal after Jingqianshu Granule treatment. As compared to the normal control group, serum monoamine neurotransmitter levels of the model group and the anger-in emotion group were increased (P<0.05, P<0.01), and the serum monoamine neurotransmitter levels of the model group were significantly higher than those of the anger-in emotion group (P<0.05), while there was no significant difference when compared with the normal control group after the treatment. Anger-in emotion can induce liver-qi depression syndrome which is related to the changes in monoamine neurotransmitters.

  3. Prevention of dopaminergic toxicity of MPTP in mice by phenylethylamine, a specific substrate of type B monoamine oxidase.

    PubMed Central

    Melamed, E.; Youdim, M. B.

    1985-01-01

    N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is toxic to dopaminergic neurones in several mammalian species including mice. Combined treatment with phenylethylamine prevented in mice the long-term (30 days post-treatment) dopamine depletions in striatum induced by MPTP. Phenylethylamine, a naturally-occurring specific substrate of monoamine oxidase (MAO) type B, probably protects against effects of MPTP by competitively inhibiting the oxidative conversion of MPTP to its toxic metabolite N-methyl-4-phenylpyridinium ion catalysed by MAO-B. PMID:3877535

  4. Characterization of beta-phenylethylamine-induced monoamine release in rat nucleus accumbens: a microdialysis study.

    PubMed

    Nakamura, M; Ishii, A; Nakahara, D

    1998-05-22

    In vivo microdialysis was used to investigate the effect of beta-phenylethylamine on extracellular levels of monoamines and their metabolites in the nucleus accumbens of conscious rats. At all doses tested (1, 10 and 100 microM), infusion of beta-phenylethylamine through the microdialysis probe significantly increased extracellular levels of dopamine in the nucleus accumbens. These increases were dose-related. The increase in dopamine levels induced by 100 microM beta-phenylethylamine was not affected by co-perfusion of 4 microM tetrodotoxin. The ability of 100 microM beta-phenylethylamine to increase the extracellular level of dopamine was comparable to that of the same dose of methamphetamine. On the other hand, beta-phenylethylamine had a much less potent enhancing effect on 5-hydroxytryptamine (5-HT) than dopamine levels. Only the highest dose (100 microM) caused a statistically significant effect on 5-HT levels. Over the dose range tested (1, 10 and 100 microM), beta-phenylethylamine had no effect on extracellular metabolite levels of dopamine and 5-HT. The results suggest that beta-phenylethylamine increases the efflux of monoamines, preferentially dopamine, without affecting monoamine metabolism, in the nucleus accumbens.

  5. Effects of indole-3-carbinol on clonidine-induced neurotoxicity in rats: Impact on oxidative stress, inflammation, apoptosis and monoamine levels.

    PubMed

    El-Naga, Reem N; Ahmed, Hebatalla I; Abd Al Haleem, Ekram N

    2014-09-01

    The relationship between inflammation, oxidative stress and the incidence of depression had been well studied. Indole-3-carbinol (I3C), a natural active compound found in cruciferous vegetables, was shown to have anti-oxidant and anti-inflammatory activities. Therefore, the aim of this study was to investigate the potential protective effects of I3C against clonidine-induced depression-like behaviors in rats. Also, the possible mechanisms underlying this neuroprotection; anti-oxidant, anti-inflammatory as well as the modulatory effect on monoamine levels in brain tissues were investigated. I3C was given orally (50mg/kg) daily over 2 weeks starting 7 days before giving clonidine (0.8mg/kg i.p.). Fluoxetine was used as a standard anti-depressant. Open-field test and forced swimming test were carried out to assess exploratory activity and despair behavior, respectively. I3C showed a significant improvement in the behavioral changes induced by clonidine. As indicators of oxidative stress, clonidine induced a significant reduction in GSH and SOD levels as well as an increase lipid peroxidation level. Tissue levels of pro-inflammatory and apoptotic markers were significantly increased in clonidine group. In addition, monoamine levels; noradrenaline and serotonin, showed a drastic decrease in clonidine group. Also, neuron specific enolase (NSE) was significantly elevated in clonidine group. In contrast, I3C pre-treatment significantly attenuated clonidine-induced oxidative stress, inflammation, apoptosis, decreased NSE expression and increased levels of monoamines. Fluoxetine was used as a standard. In conclusion, the findings of this study suggest that I3C protects against clonidine-induced depression. This neuroprotective effect is partially mediated by its anti-oxidant, anti-inflammatory and anti-apoptotic activities as well as elevating monoamines levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Protein disulfide isomerase mediates glutathione depletion-induced cytotoxicity.

    PubMed

    Okada, Kazushi; Fukui, Masayuki; Zhu, Bao-Ting

    2016-08-26

    Glutathione depletion is a distinct cause underlying many forms of pathogenesis associated with oxidative stress and cytotoxicity. Earlier studies showed that glutamate-induced glutathione depletion in immortalized murine HT22 hippocampal neuronal cells leads to accumulation of reactive oxygen species (ROS) and ultimately cell death, but the precise mechanism underlying these processes is not clear. Here we show that during the induction of glutathione depletion, nitric oxide (NO) accumulation precedes ROS accumulation. While neuronal NO synthase (nNOS) in untreated HT22 cells exists mostly as a monomer, glutathione depletion results in increased formation of the dimer nNOS, accompanied by increases in the catalytic activity. We identified that nNOS dimerization is catalyzed by protein disulfide isomerase (PDI). Inhibition of PDI's isomerase activity effectively abrogates glutathione depletion-induced conversion of monomer nNOS into dimer nNOS, accumulation of NO and ROS, and cytotoxicity. Furthermore, we found that PDI is present in untreated cells in an inactive S-nitrosylated form, which becomes activated following glutathione depletion via S-denitrosylation. These results reveal a novel role for PDI in mediating glutathione depletion-induced oxidative cytotoxicity, as well as its role as a valuable therapeutic target for protection against oxidative cytotoxicity. Copyright © 2016. Published by Elsevier Inc.

  7. Effects of exposure to amphetamine derivatives on passive avoidance performance and the central levels of monoamines and their metabolites in mice: correlations between behavior and neurochemistry

    PubMed Central

    Murnane, Kevin Sean; Perrine, Shane Alan; Finton, Brendan James; Galloway, Matthew Peter; Howell, Leonard Lee; Fantegrossi, William Edward

    2011-01-01

    Rationale Considerable evidence indicates that amphetamine derivatives can deplete brain monoaminergic neurotransmitters. However, the behavioral and cognitive consequences of neurochemical depletions induced by amphetamines are not well established. Objectives In this study, mice were exposed to dosing regimens of 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine (METH), or para-chloroamphetamine (PCA) known to deplete the monoamine neurotransmitters dopamine and serotonin, and the effects of these dosing regimens on learning and memory were assessed. Methods In the same animals, we determined deficits in learning and memory via passive avoidance (PA) behavior and changes in tissue content of monoamine neurotransmitters and their primary metabolites in the striatum, frontal cortex, cingulate, hippocampus, and amygdala via ex vivo high pressure liquid chromatography. Results Consistent with previous studies, significant reductions in tissue content of dopamine and serotonin were readily apparent. In addition, exposure to METH and PCA impaired PA performance and resulted in significant depletions of dopamine, serotonin, and their metabolites in several brain regions. Multiple linear regression analysis revealed that the tissue concentration of dopamine in the anterior striatum was the strongest predictor of PA performance, with an additional significant contribution by the tissue concentration of the serotonin metabolite 5-hydroxyindoleacetic acid in the cingulate. In contrast to the effects of METH and PCA, exposure to MDMA did not deplete anterior striatal dopamine levels or cingulate levels of 5-hydroxyindoleacetic acid, and it did not impair PA performance. Conclusions These studies demonstrate that certain amphetamines impair PA performance in mice and that these impairments may be attributable to specific neurochemical depletions. PMID:21993877

  8. The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-05-01

    The neurotransmitter dopamine (DA) has long been implicated as a participant in the neurotoxicity caused by methamphetamine (METH), yet, its mechanism of action in this regard is not fully understood. Treatment of mice with the tyrosine hydroxylase (TH) inhibitor alpha-methyl-p-tyrosine (AMPT) lowers striatal cytoplasmic DA content by 55% and completely protects against METH-induced damage to DA nerve terminals. Reserpine, by disrupting vesicle amine storage, depletes striatal DA by more than 95% and accentuates METH-induced neurotoxicity. l-DOPA reverses the protective effect of AMPT against METH and enhances neurotoxicity in animals with intact TH. Inhibition of MAO-A by clorgyline increases pre-synaptic DA content and enhances METH striatal neurotoxicity. In all conditions of altered pre-synaptic DA homeostasis, increases or decreases in METH neurotoxicity paralleled changes in striatal microglial activation. Mice treated with AMPT, l-DOPA, or clorgyline + METH developed hyperthermia to the same extent as animals treated with METH alone, whereas mice treated with reserpine + METH were hypothermic, suggesting that the effects of alterations in cytoplasmic DA on METH neurotoxicity were not strictly mediated by changes in core body temperature. Taken together, the present data reinforce the notion that METH-induced release of DA from the newly synthesized pool of transmitter into the extracellular space plays an essential role in drug-induced striatal neurotoxicity and microglial activation. Subtle alterations in intracellular DA content can lead to significant enhancement of METH neurotoxicity. Our results also suggest that reactants derived from METH-induced oxidation of released DA may serve as neuronal signals that lead to microglial activation early in the neurotoxic process associated with METH.

  9. A small-scale plasmoid formed during the May 13, 1985, AMPTE magnetotail barium release

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Fritz, T. A.; Bernhardt, P. A.

    1989-01-01

    Plasmoids are closed magnetic-loop structures with entrained hot plasma which are inferred to occur on large spatial scales in space plasma systems. A model is proposed here to explain the brightening and rapid tailward movement of the barium cloud released by the AMPTE IRM spacecraft on May 13, 1985. The model suggests that a small-scale plasmoid was formed due to a predicted development of heavy-ion-induced tearing in the thinned near-tail plasma sheet. Thus, a plasmoid may actually have been imaged due to the emissions of the entrained plasma ions within the plasma bubble.

  10. Xylopia aethiopica fruit extract exhibits antidepressant-like effect via interaction with serotonergic neurotransmission in mice.

    PubMed

    Biney, Robert P; Benneh, Charles K; Ameyaw, Elvis O; Boakye-Gyasi, Eric; Woode, Eric

    2016-05-26

    Xylopia aethiopica has been used traditionally to treat some central nervous system disorders including epilepsy. Despite the central analgesic and sedative effects, there is little evidence for its traditional use for CNS disorders. This study thus assessed the antidepressant potential of Xylopia aethiopica ethanolic fruit extract (XAE). Antidepressant effect was assessed in the forced swim test (FST) and tail suspension test (TST) models in mice. The role of monoamines in the antidepressant effects of XAE was evaluated by selective depletion of serotonin and noradrenaline, whereas involvement of NMDA/nitric oxide was assessed with NMDA receptor co-modulators; d-serine and d-cycloserine and NOS inhibitor, l-NAME. Xylopia aethiopica (30, 100, 300mgkg(-1)) dose dependently reduced immobility in both FST and TST. The reduced immobility was reversed after 5-hydroxytryptamine (5-HT) depletion with tryptophan hydroxylase inhibitor-p-chlorophenylalanine (pCPA) and after monoamine depletion with vesicular monoamine transporter inhibitor-reserpine. The observed antidepressant effect was not affected by catecholamine depletion with the tyrosine hydroxylase inhibitor, α-methyl-p-tyrosine (AMPT). Similarly XAE did not potentiate the toxicity of a sub-lethal dose of noradrenaline. XAE had a synergistic effect with the glycineB receptor partial agonist, d-cycloserine and nitric oxide synthase inhibitor, l-NAME. However established antidepressant effects of XAE were abolished by NMDA and NOS activation with d-serine and l-arginine. This study shows that Xylopia aethiopica has antidepressant potential largely due to effects on 5-HT neurotransmission with possible glutamatergic effect through the glycineB co-binding site and nitric oxide synthase inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Monoamines stimulate sex reversal in the saddleback wrasse.

    PubMed

    Larson, Earl T; Norris, David O; Gordon Grau, E; Summers, Cliff H

    2003-02-15

    Monoamine neurotransmitters (norepinephrine, dopamine, and serotonin) play an important role in reproduction and sexual behavior throughout the vertebrates. They are the first endogenous chemical signals in the regulation of the hypothalamo-pituitary-gonadal (HPG) axis. In teleosts with behavioral sex determination, much is known about behavioral cues that induce sex reversal. The cues are social, processed via the visual system and depend on the ratio of females to males in the population. The mechanisms by which these external behavioral cues are converted to an internal chemical regulatory process are largely unknown. The protogynous Hawaiian saddleback wrasse, Thalassoma duperrey, was used to investigate the biological pathway mediating the conversion of a social cue into neuroendocrine events regulating sex reversal. Because monoamines play an important role in the regulation of the HPG axis, they were selected as likely candidates for such a conversion. To determine if monoamines could affect sex reversal, drugs affecting monoamines were used in an attempt to either induce sex reversal under non-permissive conditions, or prevent sex reversal under permissive conditions. Increasing norepinephrine or blocking dopamine or serotonin lead to sex reversal in experimental animals under non-permissive conditions. Increasing serotonin blocked sex reversal under permissive conditions, while blocking dopamine or norepinephrine retarded the process. The results presented here demonstrate that monoamines contribute significantly to the control sex reversal. Norepinephrine stimulates initiation and completion of gonadal sex of reversal as well as color change perhaps directly via its effects on the HPG axis. Dopamine exercises inhibitory action on the initiation of sex reversal while 5-HT inhibits both initiation and completion of sex reversal. The serotonergic system appears to be an integral part of the pathway mediating the conversion of a social cue into a

  12. Determination of Monoamine Oxidase A and B Activity in Long-Term Treated Patients With Parkinson Disease.

    PubMed

    Müller, Thomas; Riederer, Peter; Grünblatt, Edna

    Biogenic amines and monoamine oxidase inhibitors influence peripheral monoamine oxidase enzyme activity in chronic levodopa/dopa decarboxylase inhibitor-treated patients with Parkinson disease. Rasagiline is an irreversible inhibitor of monoamine oxidase B. Safinamide blocks this isoenzyme in a reversible fashion. The aim of this study was to determine monoamine oxidase A (plasma) and B (platelets) enzyme activity in long-term levodopa-treated patients without and with additional oral intake of 50- or 100-mg safinamide or 1-mg rasagiline or first-time intake of rasagiline. Monoamine oxidase A enzyme activity did not differ between all groups. Patients on rasagiline or safinamide showed lower monoamine oxidase-B enzyme activity compared with patients without monoamine oxidase B inhibitor intake. No impact of the number of previous oral levodopa intakes was found. Rasagiline and safinamide did not essentially differ in terms of inhibition of monoamine oxidase B despite their different pharmacology regarding reversibility of monoamine oxidase B inhibition. In view of the observed, considerable heterogeneity of enzyme activities, we suggest to determine activities of monoamine oxidase A and B to reduce the risk for tyramine-induced hypertension and the serotonergic syndrome during chronic therapy with rasagiline or safinamide.

  13. Activation of monoamine oxidase isotypes by prolonged intake of aluminum in rat brain.

    PubMed

    Huh, Jae-Wan; Choi, Myung-Min; Lee, Jang Han; Yang, Seung-Ju; Kim, Mi Jung; Choi, Jene; Lee, Kwan Ho; Lee, Jong Eun; Cho, Sung-Woo

    2005-10-01

    Rats were fed 100 microM aluminum maltolate for one year in their drinking water. Brain aluminum contents have increased 4.2-fold in the aluminum-treated group, whereas no significant changes in the body weight, brain weight, and brain protein content were observed. Long-term aluminum feeding induced apoptosis as assessed by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method and showed activatory effects on the catalytic efficiency (kcat/KM) of monoamine oxidase-A and monoamine oxidase-B up to 1.9- and 3.8-fold, respectively. The expression level of monoamine oxidase isotypes on the Western blot remained unchanged between the two groups, suggesting a change in post-translational regulation of the activities of monoamine oxidase isotypes by long-term aluminum feeding.

  14. Wisconsin mixture characterization using the asphalt mixture performance tester (AMPT) on historical aggregate structures.

    DOT National Transportation Integrated Search

    2010-01-01

    This research evaluated the stiffness and permanent deformation properties of typical Wisconsin Department of : Transportation (WisDOT) asphalt mixtures using the Asphalt Mixture Performance Tester (AMPT) and associated test and : analysis procedures...

  15. The combined use of Green-Ampt model and Curve Number method as an empirical tool for loss estimation

    NASA Astrophysics Data System (ADS)

    Petroselli, A.; Grimaldi, S.; Romano, N.

    2012-12-01

    The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model widely used to estimate losses and direct runoff from a given rainfall event, but its use is not appropriate at sub-daily time resolution. To overcome this drawback, a mixed procedure, referred to as CN4GA (Curve Number for Green-Ampt), was recently developed including the Green-Ampt (GA) infiltration model and aiming to distribute in time the information provided by the SCS-CN method. The main concept of the proposed mixed procedure is to use the initial abstraction and the total volume given by the SCS-CN to calibrate the Green-Ampt soil hydraulic conductivity parameter. The procedure is here applied on a real case study and a sensitivity analysis concerning the remaining parameters is presented; results show that CN4GA approach is an ideal candidate for the rainfall excess analysis at sub-daily time resolution, in particular for ungauged basin lacking of discharge observations.

  16. Parameter sensitivity analysis of the mixed Green-Ampt/Curve-Number method for rainfall excess estimation in small ungauged catchments

    NASA Astrophysics Data System (ADS)

    Romano, N.; Petroselli, A.; Grimaldi, S.

    2012-04-01

    With the aim of combining the practical advantages of the Soil Conservation Service - Curve Number (SCS-CN) method and Green-Ampt (GA) infiltration model, we have developed a mixed procedure, which is referred to as CN4GA (Curve Number for Green-Ampt). The basic concept is that, for a given storm, the computed SCS-CN total net rainfall amount is used to calibrate the soil hydraulic conductivity parameter of the Green-Ampt model so as to distribute in time the information provided by the SCS-CN method. In a previous contribution, the proposed mixed procedure was evaluated on 100 observed events showing encouraging results. In this study, a sensitivity analysis is carried out to further explore the feasibility of applying the CN4GA tool in small ungauged catchments. The proposed mixed procedure constrains the GA model with boundary and initial conditions so that the GA soil hydraulic parameters are expected to be insensitive toward the net hyetograph peak. To verify and evaluate this behaviour, synthetic design hyetograph and synthetic rainfall time series are selected and used in a Monte Carlo analysis. The results are encouraging and confirm that the parameter variability makes the proposed method an appropriate tool for hydrologic predictions in ungauged catchments. Keywords: SCS-CN method, Green-Ampt method, rainfall excess, ungauged basins, design hydrograph, rainfall-runoff modelling.

  17. The role of BDNF, leptin, and catecholamines in reward learning in bulimia nervosa.

    PubMed

    Homan, Philipp; Grob, Simona; Milos, Gabriella; Schnyder, Ulrich; Eckert, Anne; Lang, Undine; Hasler, Gregor

    2014-12-07

    A relationship between bulimia nervosa and reward-related behavior is supported by several lines of evidence. The dopaminergic dysfunctions in the processing of reward-related stimuli have been shown to be modulated by the neurotrophin brain derived neurotrophic factor (BDNF) and the hormone leptin. Using a randomized, double-blind, placebo-controlled, crossover design, a reward learning task was applied to study the behavior of 20 female subjects with remitted bulimia nervosa and 27 female healthy controls under placebo and catecholamine depletion with alpha-methyl-para-tyrosine (AMPT). The plasma levels of BDNF and leptin were measured twice during the placebo and the AMPT condition, immediately before and 1 hour after a standardized breakfast. AMPT-induced differences in plasma BDNF levels were positively correlated with the AMPT-induced differences in reward learning in the whole sample (P=.05). Across conditions, plasma brain derived neurotrophic factor levels were higher in remitted bulimia nervosa subjects compared with controls (diagnosis effect; P=.001). Plasma BDNF and leptin levels were higher in the morning before compared with after a standardized breakfast across groups and conditions (time effect; P<.0001). The plasma leptin levels were higher under catecholamine depletion compared with placebo in the whole sample (treatment effect; P=.0004). This study reports on preliminary findings that suggest a catecholamine-dependent association of plasma BDNF and reward learning in subjects with remitted bulimia nervosa and controls. A role of leptin in reward learning is not supported by this study. However, leptin levels were sensitive to a depletion of catecholamine stores in both remitted bulimia nervosa and controls. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  18. Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane.

    PubMed

    Roz, Netta; Rehavi, Moshe

    2003-06-13

    Extracts of Hypericum perforatum (St. John's wort) have antidepressant properties in depressed patients and exert antidepressant-like action in laboratory animals. The phloroglucinol derivative hyperforin has become a topic of interest, as this Hypericum component is a potent inhibitor of monoamines reuptake. The molecular mechanism by which hyperforin inhibits monoamines uptake is yet unclear. In the present study we try to clarify the mechanism by which hyperforin inhibits the synaptic vesicle transport of monoamines. The pH gradient across the synaptic vesicle membrane, induced by vacuolar type H(+)-ATPase, is the major driving force for vesicular monoamines uptake and storage. We suggest that hyperforin, like the protonophore FCCP, dissipates an existing Delta pH generated by an efflux of inwardly pumped protons. Proton transport was measured by acridine orange fluorescence quenching. Adding Mg-ATP to a medium containing 130 mM KCl and synaptic vesicles caused an immediate decrease in fluorescence of acridine orange and the addition of 1 microM FCCP abolished this effect. H(+)-ATPase dependent proton pumping was inhibited by hyperforin in a dose dependent manner (IC(50) = 1.9 x 10(-7) M). Hyperforin acted similarly to the protonophore FCCP, abolishing the ATP induced fluorescence quenching (IC(50) = 4.3 x 10(-7) M). Hyperforin and FCCP had similar potencies for inhibiting rat brain synaptosomal uptake of [3H]monoamines as well as vesicular monoamine uptake. The efflux of [3H]5HT from synaptic vesicles was sensitive to both drugs, thus 50% of preloaded [3H]5HT was released in the presence of 2.1 x 10(-7) M FCCP and 4 x 10(-7) M hyperforin. The effect of hyperforin on the pH gradient in synaptic vesicle membrane may explain its inhibitory effect on monoamines uptake, but could only partially explain its antidepressant properties.

  19. In vivo relationship between monoamine oxidase type B and alcohol dehydrogenase: effects of ethanol and phenylethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliyu, S.U.; Upahi, L.

    The role of acute ethanol and phenylethylamine on the brain and platelet monoamine oxidase activities, hepatic cytosolic alcohol dehydrogenase, redox state and motor behavior were studied in male rats. Ethanol on its own decreased the redox couple ratio, as well as, alcohol dehydrogenase activity in the liver while at the same time it increased brain and platelet monoamine oxidase activity due to lower Km with no change in Vmax. The elevation in both brain and platelet MAO activity was associated with ethanol-induced hypomotility in the rats. Co-administration of phenylethylamine and ethanol to the animals, caused antagonism of the ethanol-induced effectsmore » described above. The effects of phenylethylamine alone, on the above mentioned biochemical and behavioral indices, are more complex. Phenylethylamine on its own, like ethanol, caused reduction of the cytosolic redox, ratio and elevation of monoamine oxidase activity in the brain and platelets. However, in contrast to ethanol, this monoamine produced hypermotility and activation of the hepatic cytosolic alcohol dehydrogenase activity in the animals.« less

  20. Beam energy dependence of elliptic and triangular flow with the AMPT model

    NASA Astrophysics Data System (ADS)

    Solanki, Dronika; Sorensen, Paul; Basu, Sumit; Raniwala, Rashmi; Nayak, Tapan Kumar

    2013-03-01

    A beam energy scan has been carried out at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory to search for the onset of deconfinement and a possible critical point where the transition from a Quark Gluon Plasma to a hadronic phase changes from a rapid cross-over to a first order phase transition. Anisotropy in the azimuthal distribution of produced particles such as the second and third harmonics v2 and v3 are expected to be sensitive to the existence of a Quark Gluon Plasma phase and the Equation of State of the system. For this reason, they are of great experimental interests. In this Letter we report on calculations of v2 and v3 from the AMPT model in the Default (Def.) and String Melting (SM) mode to provide a reference for the energy dependence of v2 and v3 for √{sNN} from 7.7 GeV to 2.76 TeV. We expect that in the case that collisions cease to produce QGP at lower colliding energies, data will deviate from the AMPT String Melting calculations and come in better agreement with the Default calculations.

  1. Changes in the brain biogenic monoamines of rats, induced by piracetam and aniracetam.

    PubMed

    Petkov, V D; Grahovska, T; Petkov, V V; Konstantinova, E; Stancheva, S

    1984-01-01

    Single oral dose of 600 mg/kg weight piracetam, respectively 50 mg/kg aniracetam, causes essential changes in the level and turnover of dopamine (DA) and serotonin (5-HT) in some rat cerebral structures. When the animals were killed one hour after the administration of the drugs, piracetam significantly increased the DA level in the cerebral cortex and in the striatum, as well as the 5-HT level in the cortex, reducing the 5-HT level in the striatum, brain stem and hypothalamus. At the same time, under the effect of piracetam the DA turnover was accelerated in the cortex and hypothalamus and delayed in the striatum, the noradrenaline turnover was accelerated in the brain stem, the 5-HT turnover was accelerated in the cortex and delayed in the striatum, stem and hypothalamus. Under the effect of aniracetam the DA level was reduced in the striatum and hypothalamus; the 5-HT level was also decreased in the hypothalamus and increased in the cortex and striatum. Aniracetam delayed the DA turnover in the striatum and the 5-HT turnover in the hypothalamus, accelerating the 5-HT turnover in the cortex, striatum and stem. The results obtained show that the changes induced in the cerebral biogenic monoamines participate in the mechanism of action of piracetam and aniracetam, whereby it seems that the analogies and differences in their effects on the cerebral biogenic monoamines play a definite role for the observed analogies and differences in the behavioural effects of these two "nootropic" compounds.

  2. Disruption of the magnetotail current sheet observed by AMPTE/CCE

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Zanetti, L. J.; Mcentire, R. W.; Potemra, T. A.; Lopez, R. E.

    1987-01-01

    An unusual large-amplitude (from less than 10 nT to greater than 40 nT) magnetic oscillation characterized by about-13-sec periodicity and southward turnings of the field was observed by AMPTE/CCE on August 28, 1986. The magnetic field was often stronger southward, with some southward components exceeding 20 nT being noted. The level of the high frequency perturbations was also seen to be enhanced. It is suggested that these observations may be due to the formation of an X-type neutral line and its motion near the spacecraft.

  3. Inhibition of Excessive Monoamine Oxidase A/B Activity Protects Against Stress-induced Neuronal Death in Huntington Disease.

    PubMed

    Ooi, Jolene; Hayden, Michael R; Pouladi, Mahmoud A

    2015-12-01

    Monoamine oxidases (MAO) are important components of the homeostatic machinery that maintains the levels of monoamine neurotransmitters, including dopamine, in balance. Given the imbalance in dopamine levels observed in Huntington disease (HD), the aim of this study was to examine MAO activity in a mouse striatal cell model of HD and in human neural cells differentiated from control and HD patient-derived induced pluripotent stem cell (hiPSC) lines. We show that mouse striatal neural cells expressing mutant huntingtin (HTT) exhibit increased MAO expression and activity. We demonstrate using luciferase promoter assays that the increased MAO expression reflects enhanced epigenetic activation in striatal neural cells expressing mutant HTT. Using cellular stress paradigms, we further demonstrate that the increase in MAO activity in mutant striatal neural cells is accompanied by enhanced susceptibility to oxidative stress and impaired viability. Treatment of mutant striatal neural cells with MAO inhibitors ameliorated oxidative stress and improved cellular viability. Finally, we demonstrate that human HD neural cells exhibit increased MAO-A and MAO-B expression and activity. Altogether, this study demonstrates abnormal MAO expression and activity and suggests a potential use for MAO inhibitors in HD.

  4. The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fishermore » 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96 h in medium containing DMSO ± 60 μM PM or KU 55933 (48 h; 10 nM). PM-induced activation of DNA damage repair genes was observed as early as 12 h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96 h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity. - Highlights: • PM exposure induces DNA damage repair gene expression. • Inhibition of ATM prevented PM-induced follicle depletion. • PKCδ deficiency did not impact PM-induced ovotoxicity.« less

  5. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones.

    PubMed

    Simmler, L D; Rickli, A; Hoener, M C; Liechti, M E

    2014-04-01

    Psychoactive β-keto amphetamines (cathinones) are sold as "bath salts" or "legal highs" and recreationally abused. We characterized the pharmacology of a new series of cathinones, including methedrone, 4-methylethcathinone (4-MEC), 3-fluoromethcathinone (3-FMC), pentylone, ethcathinone, buphedrone, pentedrone, and N,N-dimethylcathinone. We investigated norepinephrine (NE), dopamine (DA), and serotonin (5-HT) uptake inhibition using human embryonic kidney 293 (HEK 293) cells that express the respective human monoamine transporter, the drug-induced efflux of NE, DA, and 5-HT from monoamine-preloaded cells, and binding affinity to monoamine transporters and receptors. All of the cathinones were potent NE uptake inhibitors but differed in their DA vs. 5-HT transporter inhibition profiles and monoamine release effects. Methedrone was a more potent 5-HT than DA transporter inhibitor and released NE and 5-HT similar to para-methoxymethamphetamine (PMMA), para-methoxyamphetamine (PMA), 4-methylthioamphetamine (4-MTA), and 3,4-methylenedioxymethamphetamine (MDMA). 4-MEC and pentylone equipotently inhibited all of the monoamine transporters and released 5-HT. Ethcathinone and 3-FMC inhibited NE and DA uptake and released NE, and 3-FMC also released DA similar to N-ethylamphetamine and methamphetamine. Pentedrone and N,N-dimethylcathinone were non-releasing NE and DA uptake inhibitors as previously shown for pyrovalerone cathinones. Buphedrone preferentially inhibited NE and DA uptake and also released NE. None of the cathinones bound to rodent trace amine-associated receptor 1, in contrast to the non-β-keto-amphetamines. None of the cathinones exhibited relevant binding to other monoamine receptors. In summary, we found considerable differences in the monoamine transporter interaction profiles among different cathinones and compared with related amphetamines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells

    PubMed Central

    Martin-Sanchez, Diego; Gallegos-Villalobos, Angel; Fontecha-Barriuso, Miguel; Carrasco, Susana; Sanchez-Niño, Maria Dolores; Lopez-Hernandez, Francisco J; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belén

    2017-01-01

    Iron deficiency has been associated with kidney injury. Deferasirox is an oral iron chelator used to treat blood transfusion-related iron overload. Nephrotoxicity is the most serious and common adverse effect of deferasirox and may present as an acute or chronic kidney disease. However, scarce data are available on the molecular mechanisms of nephrotoxicity. We explored the therapeutic modulation of deferasirox-induced proximal tubular cell death in culture. Deferasirox induced dose-dependent tubular cell death and AnexxinV/7AAD staining showed features of apoptosis and necrosis. However, despite inhibiting caspase-3 activation, the pan-caspase inhibitor zVAD-fmk failed to prevent deferasirox-induced cell death. Moreover, zVAD increased deferasirox-induced cell death, a feature sometimes found in necroptosis. Electron microscopy identified mitochondrial injury and features of necrosis. However, neither necrostatin-1 nor RIP3 knockdown prevented deferasirox-induced cell death. Deferasirox caused BclxL depletion and BclxL overexpression was protective. Preventing iron depletion protected from BclxL downregulation and deferasirox cytotoxicity. In conclusion, deferasirox promoted iron depletion-dependent cell death characterized by BclxL downregulation. BclxL overexpression was protective, suggesting a role for BclxL downregulation in iron depletion-induced cell death. This information may be used to develop novel nephroprotective strategies. Furthermore, it supports the concept that monitoring kidney tissue iron depletion may decrease the risk of deferasirox nephrotoxicity. PMID:28139717

  7. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells.

    PubMed

    Martin-Sanchez, Diego; Gallegos-Villalobos, Angel; Fontecha-Barriuso, Miguel; Carrasco, Susana; Sanchez-Niño, Maria Dolores; Lopez-Hernandez, Francisco J; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belén

    2017-01-31

    Iron deficiency has been associated with kidney injury. Deferasirox is an oral iron chelator used to treat blood transfusion-related iron overload. Nephrotoxicity is the most serious and common adverse effect of deferasirox and may present as an acute or chronic kidney disease. However, scarce data are available on the molecular mechanisms of nephrotoxicity. We explored the therapeutic modulation of deferasirox-induced proximal tubular cell death in culture. Deferasirox induced dose-dependent tubular cell death and AnexxinV/7AAD staining showed features of apoptosis and necrosis. However, despite inhibiting caspase-3 activation, the pan-caspase inhibitor zVAD-fmk failed to prevent deferasirox-induced cell death. Moreover, zVAD increased deferasirox-induced cell death, a feature sometimes found in necroptosis. Electron microscopy identified mitochondrial injury and features of necrosis. However, neither necrostatin-1 nor RIP3 knockdown prevented deferasirox-induced cell death. Deferasirox caused BclxL depletion and BclxL overexpression was protective. Preventing iron depletion protected from BclxL downregulation and deferasirox cytotoxicity. In conclusion, deferasirox promoted iron depletion-dependent cell death characterized by BclxL downregulation. BclxL overexpression was protective, suggesting a role for BclxL downregulation in iron depletion-induced cell death. This information may be used to develop novel nephroprotective strategies. Furthermore, it supports the concept that monitoring kidney tissue iron depletion may decrease the risk of deferasirox nephrotoxicity.

  8. An eastward propagating compressional Pc 5 wave observed by AMPTE/CCE in the postmidnight sector

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Lopez, R. E.; McEntire, R. W.; Zanetti, L. J.; Kistler, L. M.; Ipavich, F. M.

    1987-12-01

    This paper presents a detailed analysis of a compressional Pc 5 wave observed in the postmidnight sector on July 21, 1986, using data from the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer aboard the AMPTE/Charge Composition Explorer (CCE) spacecraft. The Pc 5 wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons, and a large azimuthal wave number, i.e., properties that are similar to those of compressional Pc5 waves observed previously at geostationary orbit. The unique observations recorded by the AMPTE/CCE included the occurrence of the wave in the postmidnight sector, its sunward propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. In spite of the morphological uniqueness observed, the excitation of the July 21 event is considered to be due to the same type of instability as operates at geostationary orbit.

  9. Neural Correlates of Impaired Reward-Effort Integration in Remitted Bulimia Nervosa.

    PubMed

    Mueller, Stefanie Verena; Morishima, Yosuke; Schwab, Simon; Wiest, Roland; Federspiel, Andrea; Hasler, Gregor

    2018-03-01

    The integration of reward magnitudes and effort costs is required for an effective behavioral guidance. This reward-effort integration was reported to be dependent on dopaminergic neurotransmission. As bulimia nervosa has been associated with a dysregulated dopamine system and catecholamine depletion led to reward-processing deficits in remitted bulimia nervosa, the purpose of this study was to identify the role of catecholamine dysfunction and its relation to behavioral and neural reward-effort integration in bulimia nervosa. To investigate the interaction between catecholamine functioning and behavioral, and neural responses directly, 17 remitted bulimic (rBN) and 21 healthy individuals (HC) received alpha-methyl-paratyrosine (AMPT) over 24 h to achieve catecholamine depletion in a randomized, crossover study design. We used functional magnetic resonance imaging (fMRI) and the monetary incentive delay (MID) task to assess reward-effort integration in relation to catecholaminergic neurotransmission at the behavioral and neural level. AMPT reduced the ability to integrate rewards and efforts effectively in HC participants. In contrast, in rBN participants, the reduced reward-effort integration was associated with illness duration in the sham condition and unrelated to catecholamine depletion. Regarding neural activation, AMPT decreased the reward anticipation-related neural activation in the anteroventral striatum. This decrease was associated with the AMPT-induced reduction of monetary earning in HC in contrast to rBN participants. Our findings contributed to the theory of a desensitized dopaminergic system in bulimia nervosa. A disrupted processing of reward magnitudes and effort costs might increase the probability of maintenance of bulimic symptoms.

  10. Monoamine Transporters as Ionotropic Receptors.

    PubMed

    De Felice, Louis J

    2017-04-01

    It is well established that glutamate and GABA signal through both ionotropic and metabotropic receptors. Conversely, it is thought that, with one exception, monoamines (dopamine, serotonin, and norepinephrine) signal via metabotropic receptors. Given their capacity to generate fast-acting currents, I suggest that the monoamine transporters should be considered as ionotropic receptors. Copyright © 2017. Published by Elsevier Ltd.

  11. Coarse-grained molecular dynamics simulations of depletion-induced interactions for soft matter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shendruk, Tyler N., E-mail: tyler.shendruk@physics.ox.ac.uk; Bertrand, Martin; Harden, James L.

    2014-12-28

    Given the ubiquity of depletion effects in biological and other soft matter systems, it is desirable to have coarse-grained Molecular Dynamics (MD) simulation approaches appropriate for the study of complex systems. This paper examines the use of two common truncated Lennard-Jones (Weeks-Chandler-Andersen (WCA)) potentials to describe a pair of colloidal particles in a thermal bath of depletants. The shifted-WCA model is the steeper of the two repulsive potentials considered, while the combinatorial-WCA model is the softer. It is found that the depletion-induced well depth for the combinatorial-WCA model is significantly deeper than the shifted-WCA model because the resulting overlap ofmore » the colloids yields extra accessible volume for depletants. For both shifted- and combinatorial-WCA simulations, the second virial coefficients and pair potentials between colloids are demonstrated to be well approximated by the Morphometric Thermodynamics (MT) model. This agreement suggests that the presence of depletants can be accurately modelled in MD simulations by implicitly including them through simple, analytical MT forms for depletion-induced interactions. Although both WCA potentials are found to be effective generic coarse-grained simulation approaches for studying depletion effects in complicated soft matter systems, combinatorial-WCA is the more efficient approach as depletion effects are enhanced at lower depletant densities. The findings indicate that for soft matter systems that are better modelled by potentials with some compressibility, predictions from hard-sphere systems could greatly underestimate the magnitude of depletion effects at a given depletant density.« less

  12. Induced nanoparticle aggregation for short nucleic acid quantification by depletion isotachophoresis.

    PubMed

    Marczak, Steven; Senapati, Satyajyoti; Slouka, Zdenek; Chang, Hsueh-Chia

    2016-12-15

    A rapid (<20min) gel-membrane biochip platform for the detection and quantification of short nucleic acids is presented based on a sandwich assay with probe-functionalized gold nanoparticles and their separation into concentrated bands by depletion-generated gel isotachophoresis. The platform sequentially exploits the enrichment and depletion phenomena of an ion-selective cation-exchange membrane created under an applied electric field. Enrichment is used to concentrate the nanoparticles and targets at a localized position at the gel-membrane interface for rapid hybridization. The depletion generates an isotachophoretic zone without the need for different conductivity buffers, and is used to separate linked nanoparticles from isolated ones in the gel medium and then by field-enhanced aggregation of only the linked particles at the depletion front. The selective field-induced aggregation of the linked nanoparticles during the subsequent depletion step produces two lateral-flow like bands within 1cm for easy visualization and quantification as the aggregates have negligible electrophoretic mobility in the gel and the isolated nanoparticles are isotachophoretically packed against the migrating depletion front. The detection limit for 69-base single-stranded DNA targets is 10 pM (about 10 million copies for our sample volume) with high selectivity against nontargets and a three decade linear range for quantification. The selectivity and signal intensity are maintained in heterogeneous mixtures where the nontargets outnumber the targets 10,000 to 1. The selective field-induced aggregation of DNA-linked nanoparticles at the ion depletion front is attributed to their trailing position at the isotachophoretic front with a large field gradient. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Dopamine agonist 3-PPP fails to protect against MPTP-induced toxicity.

    PubMed

    Muralikrishnan, Dhanasekaran; Ebadi, Manuchair; Brown-Borg, Holly M

    2004-02-01

    We investigated the neuroprotective effect of the dopamine agonist, 3-PPP [3-(3-hydroxyphenyl)-N-propylpiperidine] against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. MPTP (30 mg/kg, i.p., twice, 16 h apart) causes significant dopamine depletion in nucleus caudatus putamen (NCP) by 1 week. 3-PPP had no effect on the monoamine oxidase-B activity (MAO-B) activity in NCP. 3-PPP did not affect dopamine uptake, whereas mazindol significantly blocked the uptake of dopamine dose dependently. MPTP-induced behavioral changes in mice were not reduced by pretreatment with 3-PPP. This dopamine agonist did not prevent dopamine depletion caused by MPTP. MPP+ (20 microM) significantly inhibited the cell proliferation of SH-SY5Y dopaminergic neuronal cells. 3-PPP had no effect on the SH-SY5Y neuronal cell growth in culture and did not block the MPP(+)-induced cytotoxicity. This study shows that the dopamine agonist 3-PPP failed to protect against MPTP-induced dopaminergic neurotoxicity.

  14. Electromagnetic ion cyclotron waves in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.

    1993-01-01

    Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.

  15. Heat stress-induced neuroinflammation and aberration in monoamine levels in hypothalamus are associated with temperature dysregulation.

    PubMed

    Chauhan, Nishant Ranjan; Kapoor, Medha; Prabha Singh, Laxmi; Gupta, Rajinder Kumar; Chand Meena, Ramesh; Tulsawani, Rajkumar; Nanda, Sarita; Bala Singh, Shashi

    2017-09-01

    Heat Stress (HS) induces diverse pathophysiological changes, which include brain ischemia, oxidative stress and neuronal damage. The present study was undertaken with the objective to ascertain whether neuroinflammation in Hypothalamus (HTH) caused under HS affects monoamine levels and hence, its physiological role in thermoregulation. Rats were exposed to HS in a heat simulation environmental chamber (Ambient temperature, Ta=45±0.5°C and Relative Humidity, RH=30±10%) with real-time measurement of core temperature (Tc) and skin temperature (Ts). Animals were divided into two subgroups: Moderate HS (MHS) (Tc=40°C) and Severe HS (SHS)/Heat stroke (Tc=42°C). Rats with MHS showed an increase in Mean Arterial Pressure (MAP) and Heart Rate (HR) while fall in MAP and rise in HR was observed in rats with SHS. In addition, oxidative stress and an increase in pyknotic neurons were observed in HTH. High levels of Adrenocorticotropic-hormone (ACTH), Epinephrine (EPI), Norepinephrine (NE) and Dopamine (DA) in the systemic circulation and progressive increase in EPI and DA levels in HTH were recorded after the thermal insult. Moreover, a substantial increase in Glutamate (Glu) level was observed in HTH as well as in systemic circulation of heat stroke rats. We found a rise in NE whereas a fall in Serotonin (5-HT) level in HTH at MHS, without perturbing inflammatory mediators. However, rats with SHS exhibited significant elevations in NF-kB, IL-1β, COX2, GFAP and Iba1 protein expression in HTH. In conclusion, the data suggest that SHS induces neuroinflammation in HTH, which is associated with monoamines and Glu imbalances, leading to thermoregulatory disruption. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Mechanistic Role for a Novel Glucocorticoid-KLF11 (TIEG2) Protein Pathway in Stress-induced Monoamine Oxidase A Expression*

    PubMed Central

    Grunewald, Matthew; Johnson, Shakevia; Lu, Deyin; Wang, Zhe; Lomberk, Gwen; Albert, Paul R.; Stockmeier, Craig A.; Meyer, Jeffrey H.; Urrutia, Raul; Miczek, Klaus A.; Austin, Mark C.; Wang, Junming; Paul, Ian A.; Woolverton, William L.; Seo, Seungmae; Sittman, Donald B.; Ou, Xiao-Ming

    2012-01-01

    Chronic stress is a risk factor for psychiatric illnesses, including depressive disorders, and is characterized by increased blood glucocorticoids and brain monoamine oxidase A (MAO A, which degrades monoamine neurotransmitters). This study elucidates the relationship between stress-induced MAO A and the transcription factor Kruppel-like factor 11 (KLF11, also called TIEG2, a member of the Sp/KLF- family), which inhibits cell growth. We report that 1) a glucocorticoid (dexamethasone) increases KLF11 mRNA and protein levels in cultured neuronal cells; 2) overexpressing KLF11 increases levels of MAO A mRNA and enzymatic activity, which is further enhanced by glucocorticoids; in contrast, siRNA-mediated KLF11 knockdown reduces glucocorticoid-induced MAO A expression in cultured neurons; 3) induction of KLF11 and translocation of KLF11 from the cytoplasm to the nucleus are key regulatory mechanisms leading to increased MAO A catalytic activity and mRNA levels because of direct activation of the MAO A promoter via Sp/KLF-binding sites; 4) KLF11 knockout mice show reduced MAO A mRNA and catalytic activity in the brain cortex compared with wild-type mice; and 5) exposure to chronic social defeat stress induces blood glucocorticoids and activates the KLF11 pathway in the rat brain, which results in increased MAO A mRNA and enzymatic activity. Thus, this study reveals for the first time that KLF11 is an MAO A regulator and is produced in response to neuronal stress, which transcriptionally activates MAO A. The novel glucocorticoid-KLF11-MAO A pathway may play a crucial role in modulating distinct pathophysiological steps in stress-related disorders. PMID:22628545

  17. Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression.

    PubMed

    Grunewald, Matthew; Johnson, Shakevia; Lu, Deyin; Wang, Zhe; Lomberk, Gwen; Albert, Paul R; Stockmeier, Craig A; Meyer, Jeffrey H; Urrutia, Raul; Miczek, Klaus A; Austin, Mark C; Wang, Junming; Paul, Ian A; Woolverton, William L; Seo, Seungmae; Sittman, Donald B; Ou, Xiao-Ming

    2012-07-13

    Chronic stress is a risk factor for psychiatric illnesses, including depressive disorders, and is characterized by increased blood glucocorticoids and brain monoamine oxidase A (MAO A, which degrades monoamine neurotransmitters). This study elucidates the relationship between stress-induced MAO A and the transcription factor Kruppel-like factor 11 (KLF11, also called TIEG2, a member of the Sp/KLF- family), which inhibits cell growth. We report that 1) a glucocorticoid (dexamethasone) increases KLF11 mRNA and protein levels in cultured neuronal cells; 2) overexpressing KLF11 increases levels of MAO A mRNA and enzymatic activity, which is further enhanced by glucocorticoids; in contrast, siRNA-mediated KLF11 knockdown reduces glucocorticoid-induced MAO A expression in cultured neurons; 3) induction of KLF11 and translocation of KLF11 from the cytoplasm to the nucleus are key regulatory mechanisms leading to increased MAO A catalytic activity and mRNA levels because of direct activation of the MAO A promoter via Sp/KLF-binding sites; 4) KLF11 knockout mice show reduced MAO A mRNA and catalytic activity in the brain cortex compared with wild-type mice; and 5) exposure to chronic social defeat stress induces blood glucocorticoids and activates the KLF11 pathway in the rat brain, which results in increased MAO A mRNA and enzymatic activity. Thus, this study reveals for the first time that KLF11 is an MAO A regulator and is produced in response to neuronal stress, which transcriptionally activates MAO A. The novel glucocorticoid-KLF11-MAO A pathway may play a crucial role in modulating distinct pathophysiological steps in stress-related disorders.

  18. Observations and theory of the AMPTE magnetotail barium releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Roussel-Dupre, R. A.; Pongratz, M. B.; Haerendel, G.; Valenzuela, A.

    1987-01-01

    The barium releases in the magnetotail during the Active Magnetospheric Particle Tracer Explorers (AMPTE) operation were monitored by ground-based imagers and by instruments on the Ion Release Module. After each release, the data show the formation of a structured diamagnetic cavity. The cavity grows until the dynamic pressure of the expanding ions balances the magnetic pressure on its surface. The magnetic field inside the cavity is zero. The barium ions collect on the surface of the cavity, producing a shell. Plasma irregularities form along magnetic field lines draped over the surface of the cavity. The scale size of the irregularities is nearly equal to the thickness of the shell. The evolution and structuring of the diamagnetic cavity are modeled using magnetohydrodynamics theory.

  19. Cardiovascular and renal manifestations of glutathione depletion induced by buthionine sulfoximine.

    PubMed

    Vargas, Félix; Rodríguez-Gómez, Isabel; Pérez-Abud, Rocío; Vargas Tendero, Pablo; Baca, Yolanda; Wangensteen, Rosemary

    2012-06-01

    Oxidative stress contributes to the development of several cardiovascular diseases, including diabetes, renal insufficiency, and arterial hypertension. Animal studies have evidenced the association between higher blood pressure (BP) and increased oxidative stress, and treatment with antioxidants has been shown to reduce BP, while BP reduction due to antihypertensive drugs is associated with reduced oxidative stress. In 2000, it was first reported that oxidative stress and arterial hypertension were produced in normal Sprague-Dawley rats by oral administration of buthionine sulfoximine (BSO), which induces glutathione (GSH) depletion, indicating that oxidative stress may induce hypertension. The contribution of several potential pathogenic factors has been evaluated in the BSO rat model, the prototype of oxidative stress-induced hypertension, including vascular reactivity, endothelium-derived factors, renin-angiotensin system activity, TXA(2)-PGH(2) production, sodium sensitivity, renal dopamine-induced natriuresis, and sympathetic tone. This review summarizes the main factors implicated in the pathogenesis of BSO-induced hypertension and the alterations associated with GSH depletion that are related to renal function or BP control.

  20. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    PubMed

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  1. Frost Induces Respiration and Accelerates Carbon Depletion in Trees

    PubMed Central

    Sperling, Or; Earles, J. Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A.

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0°C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm-3 yr-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics. PMID:26629819

  2. Chronic Stress Enhances the Corticosterone Response and Neurotoxicity to +3,4-Methylenedioxymethamphetamine (MDMA): The Role of Ambient Temperature

    PubMed Central

    Johnson, Bethann N.

    2010-01-01

    Stress facilitates drug abuse by humans. In rodents, stress enhances the neurochemical, neuroendocrine, and behavioral responses to psychostimulants. Although chronic unpredictable stress (CUS) enhances the acute hyperthermic and long-term monoamine-depleting effects of the psychostimulant +3,4-methylenedioxymethamphetamine (MDMA), the roles of hyperthermia and corticosterone (CORT) in mediating the stress-induced enhancement of MDMA-induced serotonin (5-HT) and dopamine (DA) depletions are unknown. Rats were exposed to 10 days of CUS and then challenged with MDMA (5 mg/kg i.p. once every 2 h for a total of four injections). Prior exposure to CUS augmented MDMA-induced hyperthermia and plasma CORT secretion and the long-term depletions in 5-HT content in striatum, hippocampus, and frontal cortex and DA content in striatum. A reduced ambient temperature of 21°C attenuated the hyperthermia, CORT secretion, and 5-HT decreases after MDMA in nonstressed rats. The lower ambient temperature also prevented the augmented hyperthermia, CORT secretion, and enhanced 5-HT and DA depletions after MDMA in chronically stressed rats to levels exhibited by nonstressed, MDMA-treated rats. To investigate the role of CORT on monoamine depletions in response to MDMA, stressed and nonstressed rats were treated with the CORT synthesis inhibitor metyrapone during exposure to MDMA. Metyrapone prevented CORT secretion in both stressed and nonstressed rats but did not modify 5-HT or DA depletions in any brain region examined. This study suggests that enhanced CORT is a consequence of enhanced hyperthermia and the CUS-induced enhancements of MDMA-induced monoamine depletions may be mediated by hyperthermia but not CORT. PMID:20634423

  3. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis.

    PubMed Central

    Stefanelli, C; Bonavita, F; Stanic', I; Farruggia, G; Falcieri, E; Robuffo, I; Pignatti, C; Muscari, C; Rossoni, C; Guarnieri, C; Caldarera, C M

    1997-01-01

    In quiescent thymocytes, mitochondrial de-energization was not correlated to apoptotic death. In fact, thymocytes treated with oligomycin, a highly specific inhibitor of ATP synthase, alone or with atractyloside to block ATP translocation from the cytoplasm, were alive, even if their mitochondria were depolarized, as revealed by flow cytometry after Rhodamine 123 staining. Furthermore, oligomycin was a powerful inhibitor of apoptosis induced in rat thymocytes by dexamethasone and, to a lesser extent, by the calcium ionophore A23187 and etoposide, but was without effect when apoptosis was induced by staurosporine, and increased cell death in mitogen-treated thymocytes. The inhibition of apoptosis was confirmed by morphological criteria, inhibition of inter-nucleosomal DNA fragmentation and inhibition of the loss of membrane integrity. The anti-apoptotic effect of oligomycin in cells treated with A23187 or etoposide was correlated to the inhibition of protein synthesis, while inhibition of apoptosis induced by dexamethasone, already evident at an oligomycin concentration of 10 ng/ml, was instead strictly correlated to the effect exerted on the cellular ATP level. Thymocyte apoptosis triggered by dexamethasone was blocked or delayed by inhibitors of respiratory-chain uncouplers, inhibitors of ATP synthase and antioxidants: a lasting protection from dexamethasone-induced apoptosis was always correlated to a drastic and rapid reduction in ATP level (31-35% of control), while a delay in the death process was characterized by a moderate decrease in ATP (73-82% of control). Oligomycin inhibited the specific binding of radioactive corticosteroid to thymocyte nuclei, confirming the inhibitory effect of ATP depletion on glucocorticoid binding and suggesting that ATP depletion is a common mediator of the anti-apoptotic action of different effectors in glucocorticoid-induced apoptosis. In conclusion, the reported data indicate that ATP may act as a cellular modulator of some

  4. Serotonin depletion can enhance the cerebrovascular responses induced by cortical spreading depression via the nitric oxide pathway.

    PubMed

    Saengjaroentham, Chonlawan; Supornsilpchai, Weera; Ji-Au, Wilawan; Srikiatkhachorn, Anan; Maneesri-le Grand, Supang

    2015-02-01

    Serotonin (5-HT) is an important neurotransmitter involved in the control of neural and vascular responses. 5-HT depletion can induce several neurological disorders, including migraines. Studies on a cortical spreading depression (CSD) migraine animal model showed that the cortical neurons sensitivity, vascular responses, and nitric oxide (NO) production were significantly increased in 5-HT depletion. However, the involvement of NO in the cerebrovascular responses in 5-HT depletion remains unclear. This study aimed to investigate the role of NO in the CSD-induced alterations of cerebral microvessels in 5-HT depletion. Rats were divided into four groups: control, control with L-NAME treatment, 5-HT depleted, and 5-HT depleted with L-NAME treatment. 5-HT depletion was induced by intraperitoneal injection with para-chlorophenylalanine (PCPA) 3 days before the experiment. The CSD was triggered by KCl application. After the second wave of CSD, N-nitro-l-arginine methyl ester (L-NAME) or saline was intravenously injected into the rats with or without L-NAME treatment groups, respectively. The intercellular adhesion molecules-1 (ICAM-1), cell adhesion molecules-1 (VCAM-1), and the ultrastructural changes of the cerebral microvessels were examined. The results showed that 5-HT depletion significantly increased ICAM-1 and VCAM-1 expressions in the cerebral cortex. The number of endothelial pinocytic vesicles and microvilli was higher in the 5-HT depleted group when compared to the control. Interestingly, L-NAME treatment significantly reduced the abnormalities observed in the 5-HT depleted group. The results of this study demonstrated that an increase of NO production is one of the mechanisms involved in the CSD-induced alterations of the cerebrovascular responses in 5-HT depletion.

  5. Zinc stress induces copper depletion in Acinetobacter baumannii.

    PubMed

    Hassan, Karl A; Pederick, Victoria G; Elbourne, Liam D H; Paulsen, Ian T; Paton, James C; McDevitt, Christopher A; Eijkelkamp, Bart A

    2017-03-11

    The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens.

  6. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  7. Isolation and characterization of a monoamine oxidase B selective inhibitor from tobacco smoke.

    PubMed

    Khalil, Ashraf A; Davies, Bruce; Castagnoli, Neal

    2006-05-15

    It is well established that tobacco smokers have reduced levels of monoamine oxidase activities both in the brain and peripheral organs. Furthermore, extensive evidence suggests that smokers are less prone to develop Parkinson's disease. These facts, plus the observation that inhibition of monoamine oxidase B protects against the parkinsonian inducing effects of the nigrostriatal neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, have prompted studies to identify monoamine oxidase inhibitors in the tobacco plant and tobacco cigarette smoke. Our previous efforts on cured tobacco leaf extracts have led to the characterization of 2,3,6-trimethyl-1,4-naphthoquinone, a non-selective monoamine oxidase inhibitor, and farnesylacetone, a selective monoamine oxidase B inhibitor. We now have extended these studies to tobacco smoke constituents. Fractionation of the smoke extracts has confirmed and extended the qualitative results of an earlier report [J. Korean Soc. Tob. Sci.1997, 19, 136] demonstrating the inhibitory activity of the terpene trans,trans-farnesol on rat brain MAO-B. In the present study, K(i) values for the inhibition of human, baboon, monkey, dog, rat, and mouse liver MAO-B have been determined. Noteworthy is the absence of inhibitory effects on human placental MAO-A and beef liver MAO-B. A limited structure-activity relationship study of analogs of trans,trans-farnesol is reported. Although the health hazards associated with the use of tobacco products preclude any therapeutic opportunities linked to smoking, these results suggest the possibility of identifying novel structures of compounds that could lead to the development of neuroprotective agents.

  8. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However,more » the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.« less

  9. Mixing the Green-Ampt model and Curve Number method as an empirical tool for rainfall excess estimation in small ungauged catchments.

    NASA Astrophysics Data System (ADS)

    Grimaldi, S.; Petroselli, A.; Romano, N.

    2012-04-01

    The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model that is widely used to estimate direct runoff from small and ungauged basins. The SCS-CN is a simple and valuable approach to estimate the total stream-flow volume generated by a storm rainfall, but it was developed to be used with daily rainfall data. To overcome this drawback, we propose to include the Green-Ampt (GA) infiltration model into a mixed procedure, which is referred to as CN4GA (Curve Number for Green-Ampt), aiming to distribute in time the information provided by the SCS-CN method so as to provide estimation of sub-daily incremental rainfall excess. For a given storm, the computed SCS-CN total net rainfall amount is used to calibrate the soil hydraulic conductivity parameter of the Green-Ampt model. The proposed procedure was evaluated by analyzing 100 rainfall-runoff events observed in four small catchments of varying size. CN4GA appears an encouraging tool for predicting the net rainfall peak and duration values and has shown, at least for the test cases considered in this study, a better agreement with observed hydrographs than that of the classic SCS-CN method.

  10. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain.

    PubMed

    Abhilash, M; Alex, Manju; Mathews, Varghese V; Nair, R Harikumaran

    2014-07-01

    Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions. © The Author(s) 2014.

  11. Flavonoid-induced glutathione depletion: Potential implications for cancer treatment☆

    PubMed Central

    Kachadourian, Remy; Day, Brian J.

    2014-01-01

    The ability of a number of flavonoids to induce glutathione (GSH) depletion was measured in lung (A549), myeloid (HL-60), and prostate (PC-3) human tumor cells. The hydroxychalcone (2′-HC) and the dihydroxychalcones (2′,2-, 2′,3-, 2′,4-, and 2′,5′-DHC) were the most effective in A549 and HL-60 cells, depleting more than 50% of intracellular GSH within 4 h of exposure at 25 µM. In contrast, the flavones chrysin and apigenin were the most effective in PC-3 cells, depleting 50–70% of intracellular GSH within 24 h of exposure at 25 µM. In general, these flavonoids were more effective than three classical substrates of multidrug resistance protein 1 (MK-571, indomethacin, and verapamil). Prototypic flavonoids (2′,5′-DHC and chrysin) were subsequently tested for their abilities to potentiate the toxicities of prooxidants (etoposide, rotenone, 2-methoxyestradiol, and curcumin). In A549 cells, 2′,5′-DHC potentiated the cytotoxicities of rotenone, 2-methoxyestradiol, and curcumin, but not etoposide. In HL-60 and PC-3 cells, chrysin potentiated the cytotoxicity of curcumin, cytotoxicity that was attenuated by the catalytic antioxidant manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP). Assessments of mitochondrial GSH levels mitochondrial membrane potential and cytochrome c release showed that the potentiation effects induced by 2′,5′-DHC and chrysin involve mitochondrial dysfunction. PMID:16781454

  12. EFFECTS OF SYSTEMIC NEUTROPHIL DEPLETION ON LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    Effects of Systemic Neutrophil Depletion on LPS-induced Airway Disease
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, David A. Schwartz
    Pulmonary and Critical Care Division, Dept of Medicine ? Duke University Medical Center
    * National Health and E...

  13. In Vivo [11C]Dihydrotetrabenazine ([11C]DTBZ) Binding in Rat Striatum: Sensitivity to Dopamine Concentrations

    PubMed Central

    Kilbourn, Michael R.; Butch, Elizabeth R.; Desmond, Timothy; Sherman, Phillip; Harris, Paul E.; Frey, Kirk A.

    2009-01-01

    Introduction The sensitivity of the in vivo binding of [11C]dihydrotetrabenazine ([11C]DTBZ) and [11C]methylphenidate ([11C]MPH) to their respective targets, the vesicular monoamine transporter (VMAT2) and the neuronal membrane dopamine transporter (DAT), after alterations of endogenous levels of dopamine were examined in the rat brain. Methods In vivo binding of [11C]DTBZ and [11C]MPH were determined using a bolus+infusion protocol. In vitro numbers of VMAT2 binding sites were determined by autoradiography. Results Repeated dosing with α-methyl-p-tyrosine (AMPT) at doses that significantly (−75%) depleted brain tissue dopamine levels resulted in increased (+36%) in vivo [11C]DTBZ binding to VMAT2 in the striatum. The increase in binding could be completely reversed by treatment with L-DOPA/benserazide to restore dopamine levels. There were no changes in total numbers of VMAT2 binding sites as measured using in vitro autoradiography. No changes were observed for in vivo [11C]MPH binding to the DAT in the striatum following AMPT pretreatment. Conclusion These results indicate that large reductions of dopamine concentrations in the rat brain can produce modest but significant changes in binding of radioligands to the VMAT2, which can be reversed by repleneshment of dopamine using exogenous L-DOPA. PMID:20122661

  14. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

    PubMed

    Yang, Wei; Wang, Huanlin

    2018-02-01

    The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg). 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  15. Methylphenidate blocks effort-induced depletion of regulatory control in healthy volunteers.

    PubMed

    Sripada, Chandra; Kessler, Daniel; Jonides, John

    2014-06-01

    A recent wave of studies--more than 100 conducted over the last decade--has shown that exerting effort at controlling impulses or behavioral tendencies leaves a person depleted and less able to engage in subsequent rounds of regulation. Regulatory depletion is thought to play an important role in everyday problems (e.g., excessive spending, overeating) as well as psychiatric conditions, but its neurophysiological basis is poorly understood. Using a placebo-controlled, double-blind design, we demonstrated that the psychostimulant methylphenidate (commonly known as Ritalin), a catecholamine reuptake blocker that increases dopamine and norepinephrine at the synaptic cleft, fully blocks effort-induced depletion of regulatory control. Spectral analysis of trial-by-trial reaction times revealed specificity of methylphenidate effects on regulatory depletion in the slow-4 frequency band. This band is associated with the operation of resting-state brain networks that produce mind wandering, which raises potential connections between our results and recent brain-network-based models of control over attention. © The Author(s) 2014.

  16. Strong Depletion in Hybrid Perovskite p-n Junctions Induced by Local Electronic Doping.

    PubMed

    Ou, Qingdong; Zhang, Yupeng; Wang, Ziyu; Yuwono, Jodie A; Wang, Rongbin; Dai, Zhigao; Li, Wei; Zheng, Changxi; Xu, Zai-Quan; Qi, Xiang; Duhm, Steffen; Medhekar, Nikhil V; Zhang, Han; Bao, Qiaoliang

    2018-04-01

    A semiconductor p-n junction typically has a doping-induced carrier depletion region, where the doping level positively correlates with the built-in potential and negatively correlates with the depletion layer width. In conventional bulk and atomically thin junctions, this correlation challenges the synergy of the internal field and its spatial extent in carrier generation/transport. Organic-inorganic hybrid perovskites, a class of crystalline ionic semiconductors, are promising alternatives because of their direct badgap, long diffusion length, and large dielectric constant. Here, strong depletion in a lateral p-n junction induced by local electronic doping at the surface of individual CH 3 NH 3 PbI 3 perovskite nanosheets is reported. Unlike conventional surface doping with a weak van der Waals adsorption, covalent bonding and hydrogen bonding between a MoO 3 dopant and the perovskite are theoretically predicted and experimentally verified. The strong hybridization-induced electronic coupling leads to an enhanced built-in electric field. The large electric permittivity arising from the ionic polarizability further contributes to the formation of an unusually broad depletion region up to 10 µm in the junction. Under visible optical excitation without electrical bias, the lateral diode demonstrates unprecedented photovoltaic conversion with an external quantum efficiency of 3.93% and a photodetection responsivity of 1.42 A W -1 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    PubMed

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  18. [Domino principle--monoamines in bottom-view].

    PubMed

    Sümegi, András

    2008-06-01

    One of the first neurobiological theories of major depression was the monoamine deficiency hypothesis. The classic monoamine theory of depression suggested that a deficit in monoamine neurotransmitters in the synaptic cleft was the main and primary cause of depression. Recent and newer versions and modifications of the primary classic theory also mainly included this postulate, while other theories of depression preferred departing from the monoamine-based model altogether. Unfortunately, the clear neurobiology of major depression remains an elusive issue, despite intense research. It is clearly held that most, if not all, antidepressant pharmacotherapies treatments produce their therapeutic antidepressant effects, at least in part, by modulating monoamine systems (noradrenergic, serotonergic, and dopaminergic) by a selective or a multi-acting way; however, much less is known about the neurobiological pathology of these monoamine systems in depression. Much of the past 10-15 years of research in the biology of mood disorders has led to considerable evidence in depression implicating multiple system pathology, including abnormalities of monoamine as well as other neurotransmitter systems. These approaches and findings have led researchers to propose broader theories regarding the neurobiology of depression, just like a spreading disorder of specific neuronal networks in the brain. A model for the pathophysiology of depression ill be discussed in the next pages, after describing the main components of depression pathogenesis. Suggestion is that the primary defect emerges in the cross-regulation and vulnerability of special monoaminergic and non-monoaminergic neural networks, which leads to a decrease in the tonic release of neurotransmitters in their projection areas, altering postsynaptic sensitivity, and following, overexaggerated responses to acute increases in the presynaptic firing rate and transmitter release. It is proposed that the primary defect should be

  19. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    PubMed

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  20. R1, a novel repressor of the human monoamine oxidase A.

    PubMed

    Chen, Kevin; Ou, Xiao-Ming; Chen, Gao; Choi, Si Ho; Shih, Jean C

    2005-03-25

    Monoamine oxidase catalyzes the oxidative deamination of a number of neurotransmitters. A deficiency in monoamine oxidase A results in aggressive behavior in both humans and mice. Studies on the regulation of monoamine oxidase A gene expression have shown that the Sp1 family is important for monoamine oxidase A expression. To search for novel transcription factors, the sequences of three Sp1 sites in the monoamine oxidase A core promoter were used in the yeast one-hybrid system to screen a human cDNA library. A novel repressor, R1 (RAM2), has been cloned. The R1 cDNA encodes a protein with 454 amino acids and an open reading frame at the 5'-end. The transfection of R1 in a human neuroblastoma cell line, SK-N-BE (2)-C, inhibited the monoamine oxidase A promoter and enzymatic activity. The degree of inhibition of monoamine oxidase A by R1 correlated with the level of R1 protein expression. R1 was also found to repress monoamine oxidase A promoter activity within a natural chromatin environment. A gel-shift assay indicated that the endogenous R1 protein in SK-N-BE (2)-C cells interacted with the R1 binding sequence. R1 also bound directly to the natural monoamine oxidase A promoter in vivo as shown by chromatin immunoprecipitation assay. Immunocytochemical analysis showed that R1 was expressed in both cytosol and nucleus, which suggested a role for R1 in transcriptional regulation. Northern blot analysis revealed the presence of endogenous R1 mRNA in human brain and peripheral tissues. Taken together, this study shows that R1 is a novel repressor that inhibits monoamine oxidase A gene expression.

  1. Biogenic amines in the nervous system of the cockroach, Periplaneta americana following envenomation by the jewel wasp, Ampulex compressa.

    PubMed

    Banks, Christopher N; Adams, Michael E

    2012-02-01

    The emerald jewel wasp, Ampulex compressa, exploits the American cockroach, Periplaneta americana, as a host for its progeny. The wasp subdues the host by stinging directly into the brain and subesophageal ganglion, inducing long-term hypokinesia. The hypokinesic host lacks normal escape behavior and motivation to walk, making it easy for subjugation by the wasp. The mechanism underlying hypokinesia induction is not known, but depletion of monoamines induces behavior resembling venom-induced hypokinesia. To test whether amine depletion occurs in stung animals, we used high-performance liquid chromatography with electrochemical detection (HPLC-ED) to measure quantitatively amine levels in the central nervous system. Our data show clearly that levels of dopamine, serotonin, octopamine and tyramine remain unchanged in stung animals, whereas animals treated with reserpine exhibited marked depletion of all amines sampled. Furthermore, stung animals treated with reserpine show depletion of amines, demonstrating that envenomation also does not interfere with amine release. These results show that hypokinesia induced by Ampulex venom does not result from amine depletion or inability to release monoamines in the central nervous system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Effect of Alkaloids Isolated from Phyllodium pulchellum on Monoamine Levels and Monoamine Oxidase Activity in Rat Brain.

    PubMed

    Cai, Lu; Wang, Chao; Huo, Xiao-Kui; Dong, Pei-Pei; Zhang, Bao-Jing; Zhang, Hou-Li; Huang, Shan-Shan; Zhang, Bo; Yu, Sheng-Ming; Zhong, Ming; Ma, Xiao-Chi

    2016-01-01

    Phyllodium pulchellum (P. pulchellum) is a folk medicine with a significant number of bioactivities. The aim of this study was to investigate the effects displayed by alkaloids fractions, isolated from the roots of P. pulchellum, on neurotransmitters monoamine levels and on monoamine oxidase (MAO) activity. Six alkaloids, which had indolealkylamine or β-carboline skeleton, were obtained by chromatographic technologies and identified by spectroscopic methods such as NMR and MS. After treatment with alkaloids of P. pulchellum, the reduction of DA levels (54.55%) and 5-HT levels (35.01%) in rat brain was observed by HPLC-FLD. The effect of alkaloids on the monoamines metabolism was mainly related to MAO inhibition, characterized by IC50 values of 37.35 ± 6.41 and 126.53 ± 5.39 μg/mL for MAO-A and MAO-B, respectively. The acute toxicity indicated that P. pulchellum extract was nontoxic.

  3. Clinical and physiological consequences of rapid tryptophan depletion.

    PubMed

    Moore, P; Landolt, H P; Seifritz, E; Clark, C; Bhatti, T; Kelsoe, J; Rapaport, M; Gillin, J C

    2000-12-01

    We review here the rapid tryptophan depletion (RTD) methodology and its controversial association with depressive relapse. RTD has been used over the past decade to deplete serotonin (5-hydroxy-tryptamine, or 5-HT) in humans and to probe the role of the central serotonin system in a variety of psychiatric conditions. Its current popularity was stimulated by reports that RTD reversed the antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) and monoamine oxidase inhibitors (MAOIs) in remitted patients with a history of depression but not in patients treated with antidepressants which promote catecholaminergic rather than serotonergic neurotransmission (such as tricyclic antidepressants or buproprion). However, RTD has inconsistent effects in terms of full clinical relapse in depressed patients. Pooling the data from all published reports, patients who are either unmedicated and/or fully remitted are much less likely to experience relapse (7 of 61, or approximately 9%) than patients who are recently medicated and partially remitted (63 of 133, or approximately 47%; although, the numbers here may reflect patient overlap between reports). Recently remitted patients who have been treated with non-pharmacological therapies such as total sleep deprivation, electroconvulsive therapy, or bright light therapy also do not commonly show full clinical relapse with RTD. We briefly review RTD effects in other psychiatric disorders, many of which are treated with SSRIs. There is accumulating evidence to suggest that RTD affects central serotonergic neurotransmission. Nevertheless, many questions remain about the ability of RTD to reverse the beneficial effects of SSRIs or MAOIs, or to induce symptoms in unmedicated symptomatic or asymptomatic patients.

  4. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis

    PubMed Central

    Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Li, Qinlong; Hu, Peizhen; Shi, Changhong; Li, Yang; Chen, Yi-Ting; Yin, Fei; Liao, Chun-Peng; Stiles, Bangyan L.; Zhau, Haiyen E.; Shih, Jean C.; Chung, Leland W.K.

    2014-01-01

    Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the TWIST1 promoter. Importantly, the MAOA-dependent HIF1α/VEGF-A/FOXO1/TWIST1 pathway was activated in high-grade PCa specimens, and knockdown of MAOA reduced or even eliminated prostate tumor growth and metastasis in PCa xenograft mouse models. Pharmacological inhibition of MAOA activity also reduced PCa xenograft growth in mice. Moreover, high MAOA expression in PCa tissues correlated with worse clinical outcomes in PCa patients. These findings collectively characterize the contribution of MAOA in PCa pathogenesis and suggest that MAOA has potential as a therapeutic target in PCa. PMID:24865426

  5. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis.

    PubMed

    Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Li, Qinlong; Hu, Peizhen; Shi, Changhong; Li, Yang; Chen, Yi-Ting; Yin, Fei; Liao, Chun-Peng; Stiles, Bangyan L; Zhau, Haiyen E; Shih, Jean C; Chung, Leland W K

    2014-07-01

    Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the TWIST1 promoter. Importantly, the MAOA-dependent HIF1α/VEGF-A/FOXO1/TWIST1 pathway was activated in high-grade PCa specimens, and knockdown of MAOA reduced or even eliminated prostate tumor growth and metastasis in PCa xenograft mouse models. Pharmacological inhibition of MAOA activity also reduced PCa xenograft growth in mice. Moreover, high MAOA expression in PCa tissues correlated with worse clinical outcomes in PCa patients. These findings collectively characterize the contribution of MAOA in PCa pathogenesis and suggest that MAOA has potential as a therapeutic target in PCa.

  6. Melatonin in concentrated ethanol and ethanol alone attenuate methamphetamine-induced dopamine depletions in C57BL/6J mice.

    PubMed

    Yu, L; Cherng, C-F G; Chen, C

    2002-12-01

    The present study aimed to investigate the protective effects of melatonin, ethanol and temperature changes on methamphetamine-induced neurotoxicity in both sexes of mice. Mice exhibited a similar degree of striatal dopamine depletion when methamphetamine was administered during the light and dark cycles. Moreover, 10 mg/kg, but not 5 mg/kg, of methamphetamine, significantly increased body temperature even though dopamine depletions were observed following both doses. Melatonin (80 mg/kg) dissolved in 30% (v/v) ethanol and 30% ethanol alone exerted a moderate to full protection against methamphetamine-induced dopamine depletions in both sexes of mice, whereas the same dose of melatonin in 3% ethanol exerted no protective effect. Furthermore, ethanol attenuated methamphetamine-induced dopamine depletions in a dose-dependent manner with the exception of high efficacy of ethanol at low doses. Finally, the protective effects of ethanol were not blocked by bicuculline. Together, we conclude that ethanol may protect mice against methamphetamine-induced dopamine depletion probably via non-GABAA receptor activation.

  7. Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation.

    PubMed

    Launay, Jean-Marie; Del Pino, Muriel; Chironi, Gilles; Callebert, Jacques; Peoc'h, Katell; Mégnien, Jean-Louis; Mallet, Jacques; Simon, Alain; Rendu, Francine

    2009-11-23

    Postulating that serotonin (5-HT), released from smoking-activated platelets could be involved in smoking-induced vascular modifications, we studied its catabolism in a series of 115 men distributed as current smokers (S), never smokers (NS) and former smokers (FS) who had stopped smoking for a mean of 13 years. 5-HT, monoamine oxidase (MAO-B) activities and amounts were measured in platelets, and 5-hydroxyindolacetic acid (5-HIAA)--the 5-HT/MAO catabolite--in plasma samples. Both platelet 5-HT and plasma 5-HIAA levels were correlated with the 10-year cardiovascular Framingham relative risk (P<0.01), but these correlations became non-significant after adjustment for smoking status, underlining that the determining risk factor among those taken into account in the Framingham risk calculation was smoking. Surprisingly, the platelet 5-HT content was similar in S and NS but lower in FS with a parallel higher plasma level of 5-HIAA in FS. This was unforeseen since MAO-B activity was inhibited during smoking (P<0.00001). It was, however, consistent with a higher enzyme protein concentration found in S and FS than in NS (P<0.001). It thus appears that MAO inhibition during smoking was compensated by a higher synthesis. To investigate the persistent increase in MAO-B protein concentration, a study of the methylation of its gene promoter was undertaken in a small supplementary cohort of similar subjects. We found that the methylation frequency of the MAOB gene promoter was markedly lower (P<0.0001) for S and FS vs. NS due to cigarette smoke-induced increase of nucleic acid demethylase activity. This is one of the first reports that smoking induces an epigenetic modification. A better understanding of the epigenome may help to further elucidate the physiopathology and the development of new therapeutic approaches to tobacco addiction. The results could have a larger impact than cardiovascular damage, considering that MAO-dependent 5-HT catabolism is also involved in

  8. Contrasting effects of vortioxetine and paroxetine on pineal gland biochemistry in a tryptophan-depletion model of depression in female rats.

    PubMed

    Franklin, M; Hlavacova, N; Li, Y; Bermudez, I; Csanova, A; Sanchez, C; Jezova, D

    2017-10-03

    We studied the effects of the multi-modal antidepressant, vortioxetine and the SSRI, paroxetine on pineal melatonin and monoamine synthesis in a sub-chronic tryptophan (TRP) depletion model of depression based on a low TRP diet. Female Sprague-Dawley rats were randomised to groups a) control, b) low TRP diet, c) low TRP diet+paroxetine and d) low TRP diet+vortioxetine. Vortioxetine was administered via the diet (0.76mg/kg of food weight) and paroxetine via drinking water (10mg/kg/day) for 14days. Both drugs resulted in SERT occupancies >90%. Vortioxetine significantly reversed TRP depletion-induced reductions of pineal melatonin and serotonin (5-HT) and significantly increased pineal noradrenaline NA. Paroxetine did none of these things. Other studies suggest pineal melatonin synthesis may involve N-methyl-d-aspartate (NMDA) receptors and glutamatergic modulation. Here observed changes may be mediated via vortioxetine's strong 5-HT reuptake blocking action together with possible additional effects on glutamate neurotransmission in the pineal via NMDA receptor-modulation and possibly with added impetus from increased NA output. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of Alkaloids Isolated from Phyllodium pulchellum on Monoamine Levels and Monoamine Oxidase Activity in Rat Brain

    PubMed Central

    Cai, Lu; Wang, Chao; Dong, Pei-pei; Zhang, Bao-jing; Zhang, Hou-Li; Huang, Shan-shan; Zhang, Bo; Yu, Sheng-ming; Zhong, Ming; Ma, Xiao-Chi

    2016-01-01

    Phyllodium pulchellum (P. pulchellum) is a folk medicine with a significant number of bioactivities. The aim of this study was to investigate the effects displayed by alkaloids fractions, isolated from the roots of P. pulchellum, on neurotransmitters monoamine levels and on monoamine oxidase (MAO) activity. Six alkaloids, which had indolealkylamine or β-carboline skeleton, were obtained by chromatographic technologies and identified by spectroscopic methods such as NMR and MS. After treatment with alkaloids of P. pulchellum, the reduction of DA levels (54.55%) and 5-HT levels (35.01%) in rat brain was observed by HPLC-FLD. The effect of alkaloids on the monoamines metabolism was mainly related to MAO inhibition, characterized by IC50 values of 37.35 ± 6.41 and 126.53 ± 5.39 μg/mL for MAO-A and MAO-B, respectively. The acute toxicity indicated that P. pulchellum extract was nontoxic. PMID:27195015

  10. Measurement of Beta Particles Induced Electron-Hole Pairs Recombination in Depletion Region of GaAs PN Junction

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Yang; Jiang, Lan; Li, Da-Rang

    2011-05-01

    PN junctions and schottky diodes are widely employed as electron-hole pair collectors in electron beam induced current (EBIC) techniques and betavoltaic batteries, in which the recombination in depletion regions is ignored. We measured the beta particles induced electron-hole pairs recombination in the depletion region of a GaAs P+PN+ junction, based on comparisons between measured short currents and ideal values. The results show that only 20% electron-hole pairs in the depletion can be collected, causing the short current. This indicates an electron-hole pair diffusion length of 0.2μm in the depletion region. Hence, it is necessary to evaluate the recombination in the EBIC techniques and betavoltaic design.

  11. Effect of contraceptive steroids on monoamine oxidase activity

    PubMed Central

    Southgate, Jennifer; Collins, G. G. S.; Pryse-Davies, J.; Sandler, M.

    1969-01-01

    Cyclical variations in monoamine oxidase activity during the human menstrual cycle, specific to the endometrium and modified in women undergoing contraceptive steroid treatment, may reflect changes in hormonal environment. Treatment of rats with individual constituents of the contraceptive pill causes analogous changes: oestrogens inhibit and progestogens potentiate uterine monoamine oxidase activity. ImagesFig. 2Fig. 3

  12. Depletion region surface effects in electron beam induced current measurements.

    PubMed

    Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.

  13. Depletion region surface effects in electron beam induced current measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Paul M.; Zhitenev, Nikolai B.; Yoon, Heayoung P.

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and chargedmore » surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.« less

  14. Cyclooxygenase activity contributes to the monoaminergic damage caused by serial exposure to stress and methamphetamine

    PubMed Central

    Northrop, Nicole A.; Yamamoto, Bryan K.

    2013-01-01

    Methamphetamine (Meth) is a widely abused psychostimulant that causes long-term dopamine (DA) and serotonin (5-HT) depletions. Stress and Meth abuse are comorbid events in society and stress exacerbates Meth-induced monoaminergic terminal damage. Stress is also known to produce neuroinflammation. This study examined the role of the neuroinflammatory mediator, cyclooxygenase (COX), in the depletions of monoamines caused by serial exposure to chronic unpredictable stress (CUS) and Meth. CUS produced an increase in COX-2 protein expression and enhanced Meth-induced monoaminergic depletions in the striatum and hippocampus. The enhanced DA and 5-HT depletions in the striatum, but not the hippocampus, were prevented by pretreatment with COX inhibitor, ketoprofen, during stress or during Meth; however, ketoprofen did not attenuate the monoaminergic damage caused by Meth alone. The COX-dependent enhancement by stress of Meth-induced monoaminergic depletions was independent of hyperthermia, as ketoprofen did not attenuate Meth-induced hyperthermia. In addition, the EP1 receptor antagonist, SC-51089, did not attenuate DA or 5-HT depletions caused by stress and Meth. These findings illustrate that COX activity, but not activation of the EP1 receptor, is responsible for the potentiation of Meth-induced damage to striatal monoamine terminals by stress and suggests the use of anti-inflammatory drugs for mitigating the neurotoxic effects associated with the combination of stress and Meth. PMID:23643743

  15. Monoamine Transporter Inhibitors and Substrates as Treatments for Stimulant Abuse

    PubMed Central

    Howell, Leonard L.; Negus, S. Stevens

    2015-01-01

    The acute and chronic effects of abused psychostimulants on monoamine transporters and associated neurobiology have encouraged development of candidate medications that target these transporters. Monoamine transporters in general, and dopamine transporters in particular, are critical molecular targets that mediate abuse-related effects of psychostimulants such as cocaine and amphetamine. Moreover, chronic administration of psychostimulants can cause enduring changes in neurobiology reflected in dysregulation of monoamine neurochemistry and behavior. The current review will evaluate evidence for the efficacy of monoamine transporter inhibitors and substrates to reduce abuse-related effects of stimulants in preclinical assays of stimulant self-administration, drug discrimination and reinstatement. In considering deployment of monoamine transport inhibitors and substrates as agonist-type medications to treat stimulant abuse, the safety and abuse liability of the medications are an obvious concern, and this will also be addressed. Future directions in drug discovery should identify novel medications that retain efficacy to decrease stimulant use but possess lower abuse liability, and evaluate the degree to which efficacious medications can attenuate or reverse neurobiological effects of chronic stimulant use. PMID:24484977

  16. Monoamine Oxidase A is Required for Rapid Dendritic Remodeling in Response to Stress

    PubMed Central

    Godar, Sean C; Bortolato, Marco; Richards, Sarah E; Li, Felix G; Chen, Kevin; Wellman, Cara L

    2015-01-01

    Background: Acute stress triggers transient alterations in the synaptic release and metabolism of brain monoamine neurotransmitters. These rapid changes are essential to activate neuroplastic processes aimed at the appraisal of the stressor and enactment of commensurate defensive behaviors. Threat evaluation has been recently associated with the dendritic morphology of pyramidal cells in the orbitofrontal cortex (OFC) and basolateral amygdala (BLA); thus, we examined the rapid effects of restraint stress on anxiety-like behavior and dendritic morphology in the BLA and OFC of mice. Furthermore, we tested whether these processes may be affected by deficiency of monoamine oxidase A (MAO-A), the primary enzyme catalyzing monoamine metabolism. Methods: Following a short-term (1–4h) restraint schedule, MAO-A knockout (KO) and wild-type (WT) mice were sacrificed, and histological analyses of dendrites in pyramidal neurons of the BLA and OFC of the animals were performed. Anxiety-like behaviors were examined in a separate cohort of animals subjected to the same experimental conditions. Results: In WT mice, short-term restraint stress significantly enhanced anxiety-like responses, as well as a time-dependent proliferation of apical (but not basilar) dendrites of the OFC neurons; conversely, a retraction in BLA dendrites was observed. None of these behavioral and morphological changes were observed in MAO-A KO mice. Conclusions: These findings suggest that acute stress induces anxiety-like responses by affecting rapid dendritic remodeling in the pyramidal cells of OFC and BLA; furthermore, our data show that MAO-A and monoamine metabolism are required for these phenomena. PMID:25857821

  17. An eastward propagating compressional Pc 5 wave observed by AMPTE/CCE in the postmidnight sector. [Active Magnetospheric Particle Tracer Explorers

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Mcentire, R. W.; Zanetti, L. J.; Lopez, R. E.; Kistler, L. M.

    1987-01-01

    This paper presents a detailed analysis of a compressional Pc 5 wave observed in the postmidnight sector on July 21, 1986, using data from the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer aboard the AMPTE/Charge Composition Explorer (CCE) spacecraft. The Pc 5 wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons, and a large azimuthal wave number, i.e., properties that are similar to those of compressional Pc5 waves observed previously at geostationary orbit. The unique observations recorded by the AMPTE/CCE included the occurrence of the wave in the postmidnight sector, its sunward propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. In spite of the morphological uniqueness observed, the excitation of the July 21 event is considered to be due to the same type of instability as operates at geostationary orbit.

  18. Standardization of formulations for the acute amino acid depletion and loading tests.

    PubMed

    Badawy, Abdulla A-B; Dougherty, Donald M

    2015-04-01

    The acute tryptophan depletion and loading and the acute tyrosine plus phenylalanine depletion tests are powerful tools for studying the roles of cerebral monoamines in behaviour and symptoms related to various disorders. The tests use either amino acid mixtures or proteins. Current amino acid mixtures lack specificity in humans, but not in rodents, because of the faster disposal of branched-chain amino acids (BCAAs) by the latter. The high content of BCAA (30-60%) is responsible for the poor specificity in humans and we recommend, in a 50g dose, a control formulation with a lowered BCAA content (18%) as a common control for the above tests. With protein-based formulations, α-lactalbumin is specific for acute tryptophan loading, whereas gelatine is only partially effective for acute tryptophan depletion. We recommend the use of the whey protein fraction glycomacropeptide as an alternative protein. Its BCAA content is ideal for specificity and the absence of tryptophan, tyrosine and phenylalanine render it suitable as a template for seven formulations (separate and combined depletion or loading and a truly balanced control). We invite the research community to participate in standardization of the depletion and loading methodologies by using our recommended amino acid formulation and developing those based on glycomacropeptide. © The Author(s) 2015.

  19. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour.

    PubMed

    Desbonnet, Lieve; Clarke, Gerard; Traplin, Alexander; O'Sullivan, Orla; Crispie, Fiona; Moloney, Rachel D; Cotter, Paul D; Dinan, Timothy G; Cryan, John F

    2015-08-01

    There is growing appreciation for the importance of bacteria in shaping brain development and behaviour. Adolescence and early adulthood are crucial developmental periods during which exposure to harmful environmental factors can have a permanent impact on brain function. Such environmental factors include perturbations of the gut bacteria that may affect gut-brain communication, altering the trajectory of brain development, and increasing vulnerability to psychiatric disorders. Here we assess the effects of gut bacterial depletion from weaning onwards on adult cognitive, social and emotional behaviours and markers of gut-brain axis dysfunction in mice. Mice were treated with a combination of antibiotics from weaning onwards and effects on behaviours and potential gut-brain axis neuromodulators (tryptophan, monoamines, and neuropeptides) and BDNF expression were assessed in adulthood. Antibiotic-treatment depleted and restructured gut microbiota composition of caecal contents and decreased spleen weights in adulthood. Depletion of the gut microbiota from weaning onwards reduced anxiety, induced cognitive deficits, altered dynamics of the tryptophan metabolic pathway, and significantly reduced BDNF, oxytocin and vasopressin expression in the adult brain. Microbiota depletion from weaning onwards by means of chronic treatment with antibiotics in mice impacts on anxiety and cognitive behaviours as well as key neuromodulators of gut-brain communication in a manner that is similar to that reported in germ-free mice. This model may represent a more amenable alternative for germ-free mice in the assessment of microbiota modulation of behaviour. Finally, these data suggest that despite the presence of a normal gut microbiome in early postnatal life, reduced abundance and diversity of the gut microbiota from weaning influences adult behaviours and key neuromodulators of the microbiota-gut-brain axis suggesting that dysregulation of this axis in the post-weaning period may

  20. Monoamine oxidase inactivation: from pathophysiology to therapeutics.

    PubMed

    Bortolato, Marco; Chen, Kevin; Shih, Jean C

    2008-01-01

    Monoamine oxidases (MAOs) A and B are mitochondrial bound isoenzymes which catalyze the oxidative deamination of dietary amines and monoamine neurotransmitters, such as serotonin, norepinephrine, dopamine, beta-phenylethylamine and other trace amines. The rapid degradation of these molecules ensures the proper functioning of synaptic neurotransmission and is critically important for the regulation of emotional behaviors and other brain functions. The byproducts of MAO-mediated reactions include several chemical species with neurotoxic potential, such as hydrogen peroxide, ammonia and aldehydes. As a consequence, it is widely speculated that prolonged excessive activity of these enzymes may be conducive to mitochondrial damages and neurodegenerative disturbances. In keeping with these premises, the development of MAO inhibitors has led to important breakthroughs in the therapy of several neuropsychiatric disorders, ranging from mood disorders to Parkinson's disease. Furthermore, the characterization of MAO knockout (KO) mice has revealed that the inactivation of this enzyme produces a number of functional and behavioral alterations, some of which may be harnessed for therapeutic aims. In this article, we discuss the intriguing hypothesis that the attenuation of the oxidative stress induced by the inactivation of either MAO isoform may contribute to both antidepressant and antiparkinsonian actions of MAO inhibitors. This possibility further highlights MAO inactivation as a rich source of novel avenues in the treatment of mental disorders.

  1. ARMS depletion facilitates UV irradiation induced apoptotic cell death in melanoma.

    PubMed

    Liao, Yi-Hua; Hsu, Su-Ming; Huang, Pei-Hsin

    2007-12-15

    Tumor cells often aberrantly reexpress molecules that mediate proper embryonic development for advantageous growth or survival. Here, we report that ankyrin repeat-rich membrane spanning (ARMS), a transmembrane protein abundant in the developing and adult neural tissues, is overexpressed in melanoma, a tumor ontogenetically originating from neural crest. Immunohistochemical study of 79 melanocytic lesions showed significantly increased expression of ARMS in primary malignant melanomas (92.9%) and metastatic melanoma (60.0%) in comparison with benign nevocellular nevi (26.7%). To investigate the role of ARMS in melanoma formation, murine B16F0 melanoma cells with stable knockdown of ARMS were established by RNA interference. Down-regulation of ARMS resulted in significant inhibition of anchorage-independent growth in soft agar and restrictive growth of melanoma in severe combined immunodeficient mice. Importantly, depletion of ARMS facilitated UVB-induced apoptosis in melanoma cells through inactivation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK. Addition of MEK inhibitor PD98059 further sensitized ARMS-depleted melanoma cells to UVB-induced apoptosis, whereas constitutively active MEK rescued ARMS-depleted cells from apoptosis. We further showed that BRAF, a downstream signaling molecule of ARMS in ERK pathway, is not mutated as a constitutively active form in acral lentiginous melanoma; in contrast, BRAF(T1799A) mutation, which leads to constitutive activation of ERK signaling, was detected in 57.1% of superficial spreading melanoma. Our study suggests that overexpression of ARMS per se serves as one mechanism to promote melanoma formation by preventing stress-induced apoptotic death mediated by the MEK/ERK signaling pathway, especially in acral lentiginous melanoma, most of which does not harbor BRAF mutation.

  2. High homocysteine induces betaine depletion

    PubMed Central

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J.

    2015-01-01

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI—LC–MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte. PMID:26182429

  3. High homocysteine induces betaine depletion.

    PubMed

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J

    2015-04-28

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI-LC-MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte. © 2015 Author(s).

  4. Sleep apneas are increased in mice lacking monoamine oxidase A.

    PubMed

    Real, Caroline; Popa, Daniela; Seif, Isabelle; Callebert, Jacques; Launay, Jean-Marie; Adrien, Joëlle; Escourrou, Pierre

    2007-10-01

    Alterations in the serotonin (5-HT) system have been suggested as a mechanism of sleep apnea in humans and rodents. The objective is to evaluate the contribution of 5-HT to this disorder. We studied sleep and breathing (whole-body plethysmography) in mutant mice that lack monoamine oxidase A (MAOA) and have increased concentrations of monoamines, including 5-HT. Compared to wild-type mice, the mutants showed similar amounts of slow wave sleep (SWS) and rapid eye movement sleep (REMS), but exhibited a 3-fold increase in SWS and REMS apnea indices. Acute administration of the MAOA inhibitor clorgyline decreased REMS amounts and increased the apnea index in wild-type but not mutant mice. Parachlorophenylalanine, a 5-HT synthesis inhibitor, reduced whole brain concentrations of 5-HT in both strains, and induced a decrease in apnea index in mutant but not wild-type mice. Our results show that MAOA deficiency is associated with increased sleep apnea in mice and suggest that an acute or chronic excess of 5-HT contributes to this phenotype.

  5. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters

    PubMed Central

    Bermingham, Daniel P.

    2016-01-01

    Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies. PMID:27591044

  6. Green-Ampt approximations: A comprehensive analysis

    NASA Astrophysics Data System (ADS)

    Ali, Shakir; Islam, Adlul; Mishra, P. K.; Sikka, Alok K.

    2016-04-01

    Green-Ampt (GA) model and its modifications are widely used for simulating infiltration process. Several explicit approximate solutions to the implicit GA model have been developed with varying degree of accuracy. In this study, performance of nine explicit approximations to the GA model is compared with the implicit GA model using the published data for broad range of soil classes and infiltration time. The explicit GA models considered are Li et al. (1976) (LI), Stone et al. (1994) (ST), Salvucci and Entekhabi (1994) (SE), Parlange et al. (2002) (PA), Barry et al. (2005) (BA), Swamee et al. (2012) (SW), Ali et al. (2013) (AL), Almedeij and Esen (2014) (AE), and Vatankhah (2015) (VA). Six statistical indicators (e.g., percent relative error, maximum absolute percent relative error, average absolute percent relative errors, percent bias, index of agreement, and Nash-Sutcliffe efficiency) and relative computer computation time are used for assessing the model performance. Models are ranked based on the overall performance index (OPI). The BA model is found to be the most accurate followed by the PA and VA models for variety of soil classes and infiltration periods. The AE, SW, SE, and LI model also performed comparatively better. Based on the overall performance index, the explicit models are ranked as BA > PA > VA > LI > AE > SE > SW > ST > AL. Results of this study will be helpful in selection of accurate and simple explicit approximate GA models for solving variety of hydrological problems.

  7. Lateral Parabrachial Nucleus Serotonergic Mechanisms and Salt Appetite Induced by Sodium Depletion

    NASA Technical Reports Server (NTRS)

    Menani, Jose Vanderlei; DeLuca, Laurival Antonio, Jr.; Johnson, Alan Kim

    1998-01-01

    This study investigated the effects of bilateral injections of a serotonin (5-HT) receptor agonist into the lateral parabrachial nucleus on the intake of NaCl and water induced by 24-h water deprivation or by sodium depletion followed by 24 h of sodium deprivation (injection of the diuretic furosemide plus 24 h of d sodium-deficient diet). Rats had stainless steel cannulas implanted bilaterally into the LPBN. Bilateral LPBN injections of the serotonergic 5-HT(1/2) receptor antagonist methysergide (4 micro-g/200 nl at each site) increased hypertonic NaCl intake when tested 24 h after sodium depletion and after 24 h of water deprivation. Water intake also increased after bilateral injections of methysergide into the LPBN. In contrast, the intake of a palatable solution (0.06 M sucrose) under body fluid-replete conditions was not changed after bilateral LPBN methysergide injections. The results show that serotonergic mechanisms in the LPBN modulate water and sodium intake induced by volume depletion and sodium loss. The finding that sucrose intake was not affected by LPBN serotonergic blockade suggests that the effects of the methysergide treatment on the intakes of water and NaCl are not due to a mechanism producing a nonspecific enhancement of all ingestive behaviors.

  8. Cortical Regulation of Dopamine Depletion-Induced Dendritic Spine Loss in Striatal Medium Spiny Neurons

    PubMed Central

    Neely, M. Diana; Schmidt, Dennis E.; Deutch, Ariel Y.

    2007-01-01

    The proximate cause of Parkinson’s Disease is striatal dopamine depletion. Although no overt toxicity to striatal neurons has been reported in Parkinson’s Disease, one of the consequences of striatal dopamine loss is a decrease in the number of dendritic spines on striatal medium spiny neurons (MSNs). Dendrites of these neurons receive cortical glutamatergic inputs onto the dendritic spine head and dopaminergic inputs from the substantia nigra onto the spine neck. This synaptic arrangement suggests that dopamine gates corticostriatal glutamatergic drive onto spines. Using triple organotypic slice cultures comprised of ventral mesencephalon, striatum, and cortex, we examined the role of the cortex in dopamine depletion-induced dendritic spine loss in MSNs. The striatal dopamine innervation was lesioned by treatment of the cultures with the dopaminergic neurotoxin MPP+ or by removing the mesencephalon. Both MPP+ and mesencephalic ablation decreased MSN dendritic spine density. Analysis of spine morphology revealed that thin spines were preferentially lost after dopamine depletion. Removal of the cortex completely prevented dopamine depletion-induced spine loss. These data indicate that the dendritic remodeling of MSNs seen in parkinsonism occurs secondary to increases in corticostriatal glutamatergic drive, and suggest that modulation of cortical activity may be a useful therapeutic strategy in Parkinson’s Disease. PMID:17888581

  9. Factors controlling headspace pressure in a manual manometric BMP method can be used to produce a methane output comparable to AMPTS.

    PubMed

    Himanshu, H; Voelklein, M A; Murphy, J D; Grant, J; O'Kiely, P

    2017-08-01

    The manual manometric biochemical methane potential (mBMP) test uses the increase in pressure to calculate the gas produced. This gas production may be affected by the headspace volume in the incubation bottle and by the overhead pressure measurement and release (OHPMR) frequency. The biogas and methane yields of cellulose, barley, silage and slurry were compared with three incubation bottle headspace volumes (50, 90 and 180ml; constant 70ml total medium) and four OHPMR frequencies (daily, each third day, weekly and solely at the end of experiment). The methane yields of barley, silage and slurry were compared with those from an automated volumetric method (AMPTS). Headspace volume and OHPMR frequency effects on biogas yield were mediated mainly through headspace pressure, with the latter having a negative effect on the biogas yield measured and relatively little effect on methane yield. Two mBMP treatments produced methane yields equivalent to AMPTS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Inhibition of monoamine oxidase A increases recovery after experimental cardiac arrest.

    PubMed

    Vuohelainen, Vilma; Hämäläinen, Mari; Paavonen, Timo; Karlsson, Sari; Moilanen, Eeva; Mennander, Ari

    2015-10-01

    Perioperative myocardial infarction (MI) with ischaemia-reperfusion injury (IRI) is a devastating entity occurring in 1-2% of patients after cardiac surgery. The molecular pathway leading to myocardial cellular destruction after MI may include monoamine oxidases. We experimentally investigated whether moclobemide, a monoamine oxidase inhibitor, enhances myocardial recovery after cardiac arrest and MI. Fifty-six syngeneic Fischer rats underwent heterotopic cardiac transplantation to induce reversible IRI after cardiac arrest. Twenty-eight rats also underwent permanent ligation of the left anterior descending coronary artery to induce MI after cardiac arrest. Twenty-eight rats with or without MI were treated with subcutaneous moclobemide 10 mg/kg/day. Methods used to study myocardial recovery were microdialysis for intramyocardial metabolism, histology and quantitative reverse-transcription polymerase chain reaction for high-mobility group box-1 (HMGB1), haeme oxygenase-1 (HO-1), interleukin-6, hypoxia-inducible factor 1α and macrophages (CD68). Pyruvate increased in MI treated with moclobemide versus IRI with moclobemide (29.19 ± 7.64 vs 13.86 ± 8.49 µM, P = 0.028), reflecting metabolic activity after cardiac arrest and reperfusion. Myocardial inflammation increased in MI compared with IRI after 1 h (0.80 ± 0.56 vs 0, point score units [PSUs], P = 0.003), but decreased after 5 days in MI treated with moclobemide versus MI alone (0.80 ± 0.83 vs 2.00 ± 0.70, PSU, P = 0.033). Expressions of HMGB1, CD68 and HO-1 decreased in MI treated with moclobemide versus MI alone (1.33 ± 0.20 vs 1.75 ± 0.24, fold changes [FCs], P = 0.028; 5.15 ± 1.10 vs 9.59 ± 2.75, FC, P = 0.050; 10.41 ± 4.17 vs 21.28 ± 10.01, FC, P = 0.047), indicating myocardial recovery and increased cellularity of remote intramyocardial arteries. Moclobemide enhances myocardial recovery after cardiac arrest and MI; inhibition of remote myocardial changes may be achieved by targeting treatment

  11. Age-dependent methamphetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity.

    PubMed

    Truong, Jannine G; Wilkins, Diana G; Baudys, Jakub; Crouch, Dennis J; Johnson-Davis, Kamisha L; Gibb, James W; Hanson, Glen R; Fleckenstein, Annette E

    2005-09-01

    Tens of thousands of adolescents and young adults have used illicit methamphetamine. This is of concern since its high-dose administration causes persistent dopaminergic deficits in adult animal models. The effects in adolescents are less studied. In adult rodents, toxic effects of methamphetamine may result partly from aberrant cytosolic dopamine accumulation and subsequent reactive oxygen species formation. The vesicular monoamine transporter-2 (VMAT-2) sequesters cytoplasmic dopamine into synaptic vesicles for storage and perhaps protection against dopamine-associated oxidative consequences. Accordingly, aberrant VMAT-2 function may contribute to the methamphetamine-induced persistent dopaminergic deficits. Hence, this study examined effects of methamphetamine on VMAT-2 in adolescent (postnatal day 40) and young adult (postnatal day 90) rats. Results revealed that high-dose methamphetamine treatment caused greater acute (within 1 h) decreases in vesicular dopamine uptake in postnatal day 90 versus 40 rats, as determined in a nonmembrane-associated subcellular fraction. Greater basal levels of VMAT-2 at postnatal day 90 versus 40 in this purified fraction seemed to contribute to the larger effect. Basal tissue dopamine content was also greater in postnatal day 90 versus 40 rats. In addition, postnatal day 90 rats were more susceptible to methamphetamine-induced persistent dopaminergic deficits as assessed by measuring VMAT-2 activity and dopamine content 7 days after treatment, even if drug doses were adjusted for age-related pharmacokinetic differences. Together, these data demonstrate dynamic changes in VMAT-2 susceptibility to methamphetamine as a function of development. Implications with regard to methamphetamine-induced dopaminergic deficits, as well as dopamine-associated neurodegenerative disorders such as Parkinson's disease, are discussed.

  12. Flaxseed oil reduces oxidative stress and enhances brain monoamines release in streptozotocin-induced diabetic rats.

    PubMed

    Badawy, E A; Rasheed, W I; Elias, T R; Hussein, J; Harvi, M; Morsy, S; Mahmoud, Ya El-Latif

    2015-11-01

    This study was performed to investigate the biochemical effect of flaxseed oil on oxidative stress and brain monoamines release in streptozotocin-induced diabetic rats. Sixty male albino rats were divided into following four groups (15 for each group): control group, flaxseed oil group, diabetic group, and flaxseed oil-treated diabetic group. Serum glucose, insulin, pentosidine, plasma advanced oxidation protein products (AOPPs), and plasma total antioxidant capacity were estimated. Brain neurotransmitters, malondialdehyde (MDA), and nitric oxide (NO) were also determined. The mean values of serum pentosidine and plasma AOPP showed a significant decrease in treated diabetic group as compared to their values in the diabetic group. Also, brain neurotransmitters levels were improved after treatment with flaxseed. Brain MDA and NO were increased significantly in the diabetic group, while they were significantly decreased after treatment. Brain NO and brain MDA had a significant positive correlation with pentosidine, AOPP, and neurotransmitters. We concluded that flaxseed oil supplementation may be useful in the treatment of brain dysfunction in diabetes. © The Author(s) 2015.

  13. Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and dynamics explorer

    NASA Technical Reports Server (NTRS)

    Erlandson, Robert E.

    1994-01-01

    The overall objective of this research is to investigate the generation and propagation of electromagnetic ion cyclotron (EMIC) waves in the frequency range from 0.2 to 5 Hz (Pc 1 frequency band). Data used in this research were acquired by the AMPTE/CCE, DE-1, and DE-2 satellites. One of the primary questions addressed in this research is the role which EMIC waves have on the transfer of energy from the equatorial magnetosphere to the ionosphere. The primary result from this research is that some fraction of EMIC waves, generated in the equatorial magnetosphere, are Landau damped in the ionosphere and are therefore a heat source for ionospheric electrons. This result as well as other results are summarized below.

  14. Radio observations of a coronal mass ejection induced depletion in the outer solar corona

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Sastry, Ch. V.

    2000-06-01

    We report the first low frequency radio observations of a depletion that occurred in the outer solar corona in the aftermath of the CME event of 1986 June 5, with the large E-W one dimensional grating interferometer at the Gauribidanur radio observatory. We estimated the mass loss associated with the depletion and found that it agrees well with the value obtained through white light observations of the event. The radio brightness temperature at the location of the depletion was less by a factor of ~ 7 compared to the ambient. The angular extent over which the decrease in brightness took place was <= 3'. The electron density variation was found to be proportional to r-10. Since observations at different wavelength bands have different physical origins, the radio method might be useful in independently estimating the characteristics of CME induced coronal depletions.

  15. The increasing role of monoamine oxidase type B inhibitors in Parkinson's disease therapy.

    PubMed

    Elmer, Lawrence W; Bertoni, John M

    2008-11-01

    The role of monoamine oxidase type B inhibitors in the treatment of Parkinson's disease has expanded with the new monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets. As primary therapy in early disease monoamine oxidase B inhibitors reduce motor disability and delay the need for levodopa. In more advanced disease requiring levodopa, adjunctive monoamine oxidase B inhibitors reduce 'off' time and may improve gait and freezing. Rasagiline and selegiline oral disintegrating tablets may reduce the safety risks associated with the amfetamine and methamfetamine metabolites of conventional oral selegiline while retaining or improving therapeutic efficacy. Articles were identified by searches of PubMed and searches on the Internet and reviewed. All articles and other referenced materials were retrieved using the keywords 'Parkinson's disease', 'treatment' and 'monoamine oxidase B inhibitor' and were published between 1960 and 2007, with older references selected for historical significance. Only papers published in English were reviewed. Accumulating data support the use of monoamine oxidase B inhibitors as monotherapy for early and mild Parkinson's disease and as adjunctive therapy for more advanced Parkinson's disease with levodopa-associated motor fluctuations. The recently released monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets, have potential advantages over conventional oral selegiline.

  16. Spontaneous Ion Depletion and Accumulation Phenomena Induced by Imbibition through Permselective Medium

    NASA Astrophysics Data System (ADS)

    Lee, Hyomin; Jung, Yeonsu; Park, Sungmin; Kim, Ho-Young; Kim, Sung Jae

    2016-11-01

    Generally, an ion depletion region near a permselective medium is induced by predominant ion flux through the medium. External electric field or hydraulic pressure has been reported as the driving forces. Among these driving forces, an imbibition through the nanoporous medium was chosen as the mechanism to spontaneously generate the ion depletion region. The water-absorbing process leads to the predominant ion flux so that the spontaneous formation of the ion depletion zone is expected even if there are no additional driving forces except for the inherent capillary action. In this presentation, we derived the analytical solutions using perturbation method and asymptotic analysis for the spontaneous phenomenon. Using the analysis, we found that there is also spontaneous accumulation regime depending on the mobility of dissolved electrolytic species. Therefore, the rigorous analysis of the spontaneous ion depletion and accumulation phenomena would provide a key perspective for the control of ion transportation in nanofluidic system such as desalinator, preconcentrator, and energy harvesting device, etc. Samsung Research Funding Center of Samsung Electronics (SRFC-MA1301-02) and BK21 plus program of Creative Research Engineer Development IT, Seoul National University.

  17. Emulating proton-induced conformational changes in the vesicular monoamine transporter VMAT2 by mutagenesis.

    PubMed

    Yaffe, Dana; Vergara-Jaque, Ariela; Forrest, Lucy R; Schuldiner, Shimon

    2016-11-22

    Neurotransporters located in synaptic vesicles are essential for communication between nerve cells in a process mediated by neurotransmitters. Vesicular monoamine transporter (VMAT), a member of the largest superfamily of transporters, mediates transport of monoamines to synaptic vesicles and storage organelles in a process that involves exchange of two H + per substrate. VMAT transport is inhibited by the competitive inhibitor reserpine, a second-line agent to treat hypertension, and by the noncompetitive inhibitor tetrabenazine, presently in use for symptomatic treatment of hyperkinetic disorders. During the transport cycle, VMAT is expected to occupy at least three different conformations: cytoplasm-facing, occluded, and lumen-facing. The lumen- to cytoplasm-facing transition, facilitated by protonation of at least one of the essential membrane-embedded carboxyls, generates a binding site for reserpine. Here we have identified residues in the cytoplasmic gate and show that mutations that disrupt the interactions in this gate also shift the equilibrium toward the cytoplasm-facing conformation, emulating the effect of protonation. These experiments provide significant insight into the role of proton translocation in the conformational dynamics of a mammalian H + -coupled antiporter, and also identify key aspects of the mode of action and binding of two potent inhibitors of VMAT2: reserpine binds the cytoplasm-facing conformation, and tetrabenazine binds the lumen-facing conformation.

  18. Lead intoxication induces noradrenaline depletion, motor nonmotor disabilities, and changes in the firing pattern of subthalamic nucleus neurons.

    PubMed

    Sabbar, M; Delaville, C; De Deurwaerdère, P; Benazzouz, A; Lakhdar-Ghazal, N

    2012-05-17

    Lead intoxication has been suggested as a high risk factor for the development of Parkinson disease. However, its impact on motor and nonmotor functions and the mechanism by which it can be involved in the disease are still unclear. In the present study, we studied the effects of lead intoxication on the following: (1) locomotor activity using an open field actimeter and motor coordination using the rotarod test, (2) anxiety behavior using the elevated plus maze, (3) "depression-like" behavior using sucrose preference test, and (4) subthalamic nucleus (STN) neuronal activity using extracellular single unit recordings. Male Sprague-Dawley rats were treated once a day with lead acetate or sodium acetate (20 mg/kg/d i.p.) during 3 weeks. The tissue content of monoamines was used to determine alteration of these systems at the end of experiments. Results show that lead significantly reduced exploratory activity, locomotor activity and the time spent on the rotarod bar. Furthermore, lead induced anxiety but not "depressive-like" behavior. The electrophysiological results show that lead altered the discharge pattern of STN neurons with an increase in the number of bursting and irregular cells without affecting the firing rate. Moreover, lead intoxication resulted in a decrease of tissue noradrenaline content without any change in the levels of dopamine and serotonin. Together, these results show for the first time that lead intoxication resulted in motor and nonmotor behavioral changes paralleled by noradrenaline depletion and changes in the firing activity of STN neurons, providing evidence consistent with the induction of atypical parkinsonian-like deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Plasma waves associated with the AMPTE artificial comet

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Anderson, R. R.; Haeusler, B.; Haerendel, G.; Bauer, O. H.

    1985-01-01

    Numerous plasma wave effects were detected by the AMPTE/IRM spacecraft during the artificial comet experiment on December 27, 1984. As the barium ion cloud produced by the explosion expanded over the spacecraft, emissions at the electron plasma frequency and ion plasma frequency provided a determination of the local electron density. The electron density in the diamagnetic cavity produced by the ion cloud reached a peak of more than 5 x 10 to the 5th per cu cm, then decayed smoothly as the cloud expanded, varying approximately as t exp-2. As the cloud began to move due to interactions with the solar wind, a region of compressed plasma was encountered on the upstream side of the diamagnetic cavity. The peak electron density in the compression region was about 1.5 x 10 to the 4th per cu cm. Later, a very intense (140 mVolt/m) broadband burst of electrostatic noise was encountered on the sunward side of the compression region. This noise has characteristics very similar to noise observed in the earth's bow shock, and is believed to be a shocklike interaction produced by an ion beam-plasma instability between the nearly stationary barium ions and the streaming solar wind protons.

  20. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes

    PubMed Central

    Eid, Stéphanie; Boutary, Suzan; Braych, Kawthar; Sabra, Ramzi; Massaad, Charbel; Hamdy, Ahmed; Rashid, Awad; Moodad, Sarah; Block, Karen; Gorin, Yves; Abboud, Hanna E.

    2016-01-01

    Abstract Aim: Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. We explored the hypothesis that mammalian target of rapamycin complex 2 (mTORC2) mediates podocyte injury in diabetes. Results: High glucose (HG)-induced podocyte injury reflected by alterations in the slit diaphragm protein podocin and podocyte depletion/apoptosis. This was paralleled by activation of the Rictor/mTORC2/Akt pathway. HG also increased the levels of Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using small interfering RNA (siRNA)-targeting Rictor in vitro decreased HG-induced Nox1 and Nox4, NADPH oxidase activity, restored podocin levels, and reduced podocyte depletion/apoptosis. Inhibition of mTORC2 had no effect on mammalian target of rapamycin complex 1 (mTORC1) activation, described by our group to be increased in diabetes, suggesting that the mTORC2 activation by HG could mediate podocyte injury independently of mTORC1. In isolated glomeruli of OVE26 mice, there was a similar activation of the Rictor/mTORC2/Akt signaling pathway with increase in Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using antisense oligonucleotides targeting Rictor restored podocin levels, reduced podocyte depletion/apoptosis, and attenuated glomerular injury and albuminuria. Innovation: Our data provide evidence for a novel function of mTORC2 in NADPH oxidase-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. Conclusion: mTORC2 and/or NADPH oxidase inhibition may represent a therapeutic modality for diabetic kidney disease. Antioxid. Redox Signal. 25, 703–719. PMID:27393154

  1. Dopamine-related genes and their relationships to monoamine metabolites in CSF.

    PubMed

    Jönsson, E; Sedvall, G; Brené, S; Gustavsson, J P; Geijer, T; Terenius, L; Crocq, M A; Lannfelt, L; Tylec, A; Sokoloff, P; Schwartz, J C; Wiesel, F A

    1996-11-15

    Monoamine metabolite (MM) levels in lumbar cerebrospinal fluid (CSF) are extensively used as indirect estimates of monoamine turnover in the brain. In this study we investigated genotypes for DNA polymorphisms in the D2 (DRD2), D3 (DRD3), and D4 (DRD4) dopamine receptor and tyrosine hydroxylase (TH) genes and their relationships to CSF MM in healthy volunteers (n = 66). Concentrations of homovanillic acid (HVA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) were corrected for back length, a confounding variable. Corrected MM levels were not related to age, gender, height, weight heredity, season or atmospheric pressure at sampling. Individuals with specific DRD2 and TH allele and genotype configurations significantly differed in HVA and MHPG concentrations. DRD3 homo- and heterozygotic genotypes had significantly different CSF 5-HIAA levels. DRD4 genotypes were not related to MM concentrations. The results suggest that specific DRD2, DRD3, and TH genotypes participate in the regulation of monoamine turnover in the central nervous system. Accordingly monoamine receptors and synthesizing enzyme genotypes appear to be variance factors influencing MM concentrations in CSF. The relationships found in this study support MM concentrations as markers for monoamine transmission in the human brain.

  2. Monoamine Reuptake Inhibitors in Parkinson's Disease

    PubMed Central

    Huot, Philippe; Fox, Susan H.; Brotchie, Jonathan M.

    2015-01-01

    The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia. PMID:25810948

  3. Chemotherapy-Induced Monoamine Oxidase Expression in Prostate Carcinoma Functions as a Cytoprotective Resistance Enzyme and Associates with Clinical Outcomes

    PubMed Central

    Huang, Chung-Ying; Harris, William P.; Sim, Hong Gee; Lucas, Jared M.; Coleman, Ilsa; Higano, Celestia S.; Gulati, Roman; True, Lawrence D.; Vessella, Robert; Lange, Paul H.; Garzotto, Mark; Beer, Tomasz M.; Nelson, Peter S.

    2014-01-01

    To identify molecular alterations in prostate cancers associating with relapse following neoadjuvant chemotherapy and radical prostatectomy patients with high-risk localized prostate cancer were enrolled into a phase I-II clinical trial of neoadjuvant chemotherapy with docetaxel and mitoxantrone followed by prostatectomy. Pre-treatment prostate tissue was acquired by needle biopsy and post-treatment tissue was acquired by prostatectomy. Prostate cancer gene expression measurements were determined in 31 patients who completed 4 cycles of neoadjuvant chemotherapy. We identified 141 genes with significant transcript level alterations following chemotherapy that associated with subsequent biochemical relapse. This group included the transcript encoding monoamine oxidase A (MAOA). In vitro, cytotoxic chemotherapy induced the expression of MAOA and elevated MAOA levels enhanced cell survival following docetaxel exposure. MAOA activity increased the levels of reactive oxygen species and increased the expression and nuclear translocation of HIF1α. The suppression of MAOA activity using the irreversible inhibitor clorgyline augmented the apoptotic responses induced by docetaxel. In summary, we determined that the expression of MAOA is induced by exposure to cytotoxic chemotherapy, increases HIF1α, and contributes to docetaxel resistance. As MAOA inhibitors have been approved for human use, regimens combining MAOA inhibitors with docetaxel may improve clinical outcomes. PMID:25198178

  4. Chemotherapy-induced monoamine oxidase expression in prostate carcinoma functions as a cytoprotective resistance enzyme and associates with clinical outcomes.

    PubMed

    Gordon, Ryan R; Wu, Mengchu; Huang, Chung-Ying; Harris, William P; Sim, Hong Gee; Lucas, Jared M; Coleman, Ilsa; Higano, Celestia S; Gulati, Roman; True, Lawrence D; Vessella, Robert; Lange, Paul H; Garzotto, Mark; Beer, Tomasz M; Nelson, Peter S

    2014-01-01

    To identify molecular alterations in prostate cancers associating with relapse following neoadjuvant chemotherapy and radical prostatectomy patients with high-risk localized prostate cancer were enrolled into a phase I-II clinical trial of neoadjuvant chemotherapy with docetaxel and mitoxantrone followed by prostatectomy. Pre-treatment prostate tissue was acquired by needle biopsy and post-treatment tissue was acquired by prostatectomy. Prostate cancer gene expression measurements were determined in 31 patients who completed 4 cycles of neoadjuvant chemotherapy. We identified 141 genes with significant transcript level alterations following chemotherapy that associated with subsequent biochemical relapse. This group included the transcript encoding monoamine oxidase A (MAOA). In vitro, cytotoxic chemotherapy induced the expression of MAOA and elevated MAOA levels enhanced cell survival following docetaxel exposure. MAOA activity increased the levels of reactive oxygen species and increased the expression and nuclear translocation of HIF1α. The suppression of MAOA activity using the irreversible inhibitor clorgyline augmented the apoptotic responses induced by docetaxel. In summary, we determined that the expression of MAOA is induced by exposure to cytotoxic chemotherapy, increases HIF1α, and contributes to docetaxel resistance. As MAOA inhibitors have been approved for human use, regimens combining MAOA inhibitors with docetaxel may improve clinical outcomes.

  5. Depletion forces on circular and elliptical obstacles induced by active matter

    NASA Astrophysics Data System (ADS)

    Leite, L. R.; Lucena, D.; Potiguar, F. Q.; Ferreira, W. P.

    2016-12-01

    Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.

  6. Depletion forces on circular and elliptical obstacles induced by active matter.

    PubMed

    Leite, L R; Lucena, D; Potiguar, F Q; Ferreira, W P

    2016-12-01

    Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.

  7. Effects of oxcarbazepine on monoamines content in hippocampus and head and body shakes and sleep patterns in kainic acid-treated rats.

    PubMed

    Alfaro-Rodríguez, Alfonso; González-Piña, Rigoberto; Bueno-Nava, Antonio; Arch-Tirado, Emilio; Ávila-Luna, Alberto; Uribe-Escamilla, Rebeca; Vargas-Sánchez, Javier

    2011-09-01

    The aim of this work was to analyze the effect of oxcarbazepine (OXC) on sleep patterns, "head and body shakes" and monoamine neurotransmitters level in a model of kainic-induced seizures. Adult Wistar rats were administered kainic acid (KA), OXC or OXC + KA. A polysomnographic study showed that KA induced animals to stay awake for the whole initial 10 h. OXC administration 30 min prior to KA diminished the effect of KA on the sleep parameters. As a measure of the effects of the drug treatments on behavior, head and body shakes were visually recorded for 4 h after administration of KA, OXC + KA or saline. The presence of OXC diminished the shakes frequency. 4 h after drug application, the hippocampus was dissected out, and the content of monoamines was analyzed. The presence of OXC still more increased serotonin, 5-hidroxyindole acetic acid, dopamine, and homovanilic acid, induced by KA.

  8. Wnt/beta-catenin pathway activation and myogenic differentiation are induced by cholesterol depletion.

    PubMed

    Mermelstein, Cláudia S; Portilho, Débora M; Mendes, Fábio A; Costa, Manoel L; Abreu, José Garcia

    2007-03-01

    Myogenic differentiation is a multistep process that begins with the commitment of mononucleated precursors that withdraw from cell cycle. These myoblasts elongate while aligning to each other, guided by the recognition between their membranes. This step is followed by cell fusion and the formation of long and striated multinucleated myotubes. We have recently shown that cholesterol depletion by methyl-beta-cyclodextrin (MbetaCD) induces myogenic differentiation by enhancing myoblast recognition and fusion. Here, we further studied the signaling pathways responsible for early steps of myogenesis. As it is known that Wnt plays a role in muscle differentiation, we used the chemical MbetaCD to deplete membrane cholesterol and investigate the involvement of the Wnt/beta-catenin pathway during myogenesis. We show that cholesterol depletion promoted a significant increase in expression of beta-catenin, its nuclear translocation and activation of the Wnt pathway. Moreover, we show that the activation of the Wnt pathway after cholesterol depletion can be inhibited by the soluble protein Frzb-1. Our data suggest that membrane cholesterol is involved in Wnt/beta-catenin signaling in the early steps of myogenic differentiation.

  9. Directed aggregation of carbon nanotube on curved surfaces by polymer induced depletion attraction

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Chieh; Jiang, Hong-Ren

    2017-12-01

    In this study, we show that by chemically grafting macromolecule, polyethylene glycol (PEG), onto CNTs, PEG-CNTs become dispersible in an aqueous solution with tunable depletion interactions with each other. The aggregation of the PEG-CNTs can be controlled by adding PEG polymers into the solution. PEG-CNTs not only aggregate with each other but also tend to aggregate on curved surfaces. Due to this property, we show that PEG-CNTs can be directed to aggregate on particles and patterned surfaces. Depletion interaction induced aggregation of PEG-CNTs may provide a method to place PEG-CNTs on a specific position for different applications ranging from biomedical to industrial usages.

  10. Monoamine uptake inhibitors block alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation.

    PubMed

    Long, Cheng; Chen, Mei-Fang; Sarwinski, Susan J; Chen, Po-Yi; Si, Minliang; Hoffer, Barry J; Evans, M Steven; Lee, Tony J F

    2006-07-01

    We have proposed that activation of cerebral perivascular sympathetic alpha7-nicotinic acetylcholine receptors (alpha7-nAChRs) by nicotinic agonists releases norepinephrine, which then acts on parasympathetic nitrergic nerves, resulting in release of nitric oxide and vasodilation. Using patch-clamp electrophysiology, immunohistochemistry, and in vitro tissue bath myography, we tested this axo-axonal interaction hypothesis further by examining whether blocking norepinephrine reuptake enhanced alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation. The results indicated that choline- and nicotine-induced alpha7-nAChR-mediated nitrergic neurogenic relaxation in endothelium-denuded isolated porcine basilar artery rings was enhanced by desipramine and imipramine at lower concentrations (0.03-0.1 microM) but inhibited at higher concentrations (0.3-10 microM). In cultured superior cervical ganglion (SCG) neurons of the pig and rat, choline (0.1-30 mM)-evoked inward currents were reversibly blocked by 1-30 microM mecamylamine, 1-30 microM methyllycaconitine, 10-300 nM alpha-bungarotoxin, and 0.1-10 microM desipramine and imipramine, providing electrophysiological evidence for the presence of similar functional alpha7-nAChRs in cerebral perivascular sympathetic neurons of pigs and rats. In alpha7-nAChR-expressing Xenopus oocytes, choline-elicited inward currents were attenuated by alpha-bungarotoxin, imipramine, and desipramine. These monoamine uptake inhibitors appeared to directly block the alpha7-nAChR, resulting in diminished nicotinic agonist-induced cerebral nitrergic vasodilation. The enhanced nitrergic vasodilation by lower concentrations of monoamine uptake inhibitors is likely due to a greater effect on monoamine uptake than on alpha7-nAChR blockade. These results further support the hypothesis of axo-axonal interaction in nitrergic regulation of cerebral vascular tone.

  11. Substorm variations in the magnitude of the magnetic field - AMPTE/CCE observations

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Sibeck, D. G.; Lui, A. T. Y.; Takahashi, K.; Mcentire, R. W.

    1988-01-01

    Using energetic-particle data taken in the near-earth tail by the AMPTE/Charge Composition Explorer (CCE) satellite, 167 ion injection events, that were essentially dispersionless over a 25-285 keV energy range, were identified, and the variations in the total magnetic field strength over the course of these events were examined in order to determine the dependence of the magnetic field strength on dipole latitude. Results indicate that, during periods of substorm activity, the latitudinal position of the current sheet varied significantly within the 32-deg wedge centered on the dipole equator traversed by CCE. Results also suggest that, even in the near-earth magnetotail out to 8.8 R(E) (CCE apogee), the local field measurements are a better guide to the determination of satellite's position relative to the current shield during a substorm, than is the magnetic latitude.

  12. Standardization of formulations for the acute amino acid depletion and loading test

    PubMed Central

    Badawy, Abdulla A-B; Dougherty, Donald M

    2017-01-01

    The acute tryptophan (Trp) depletion (ATD) and loading (ATL) and the acute tyrosine (Tyr) plus phenylalanine (Phe) depletion (ATPD) tests are powerful tools for studying the roles of cerebral monoamines in behaviour and symptoms related to various disorders. The tests use either amino acid mixtures or proteins. Current amino acid mixtures lack specificity in humans, but not in rodents, because of the faster disposal of branched-chain amino acids (BCAA) by the latter. The high content of BCAA (30-60%) is responsible for the poor specificity in humans and we recommend, in a 50g dose, the control formulation of Young et al. (1985) with a lowered BCAA content (18%) and minor modifications as a common control for the above tests. With protein-based formulations, α-lactalbumin is specific for ATL, whereas gelatine is only partially effective for ATD. We recommend the use of the whey protein fraction glycomacropeptide (GMP) as an alternative protein. Its BCAA content is ideal for specificity and the absence of Trp, Tyr and Phe render it suitable as a template for 7 formulations (separate and combined depletion or loading and a truly balanced control). We invite the research community to participate in standardization of the depletion and loading methodologies by using our recommended amino acid formulation and developing those based on GMP. PMID:25586395

  13. AMPTE CCE observations of Pi 2 pulsations in the inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Takahashi, Kazue; Ohtani, Shin-Ichi; Yumoto, Kiyohumi

    1992-01-01

    Magnetic field data acquired with the AMPTE Charge Composition Explorer satellite in the inner magnetosphere (L = 2-5) often show Pi 2 pulsations whose waveforms match Pi 2 pulsations simultaneously observed on the ground at Kakioka (L = 1.2). From a study such events, it is found that the magnetic pulsations in the equatorial magnetosphere are dominated by poloidal-mode oscillations. The relative phase between the compressional component at CCE and the horizontal component at Kakioka is either near zero or near 180 deg, with the 180 lag observed only when the satellite is at L greater than 3. This observation implies that there is a node of a radial standing wave at L greater than 3. It is argued that the nodal structure arises from reflection of MHD fast-mode waves at some inner boundary of the magnetosphere and discuss the relevance of the nodal structure to cavity-mode resonances and oscillations in the inner magnetosphere forced by a source wave external to the inner magnetosphere.

  14. Effects of Neonatal Methamphetamine and Stress on Brain Monoamines and Corticosterone in Preweanling Rats

    PubMed Central

    Jablonski, Sarah A.; Graham, Devon L.; Vorhees, Charles V.; Williams, Michael T.

    2017-01-01

    Neonatal exposure to methamphetamine (MA) and developmental chronic stress significantly alter neurodevelopmental profiles that show a variety of long-term physiological and behavioral effects. In the current experiment, Sprague-Dawley rats were exposed to one of two housing conditions along with MA. Rats were given 0 (saline), 5, or 7.5 mg/kg MA, four times per day from postnatal day (P)11 to 15 or P11 to 20. Half of the litters were reared in cages with standard bedding and half with no bedding. Separate litters were assessed at P15 or P20 for organ weights (adrenals, spleen, thymus); corticosterone; and monoamine assessments (dopamine, serotonin, norepinephrine) and their metabolites within the neostriatum, hippocampus, and prefrontal cortex. Findings show neonatal MA altered mono-amines, corticosterone, and organ characteristics alone, and as a function of developmental age and stress compared with controls. These alterations may in part be responsible for MA and early life stress-induced long-term learning and memory deficits. PMID:27817108

  15. Conditional Macrophage Depletion Increases Inflammation and Does Not Inhibit the Development of Osteoarthritis in Obese Macrophage Fas-Induced Apoptosis-Transgenic Mice.

    PubMed

    Wu, Chia-Lung; McNeill, Jenna; Goon, Kelsey; Little, Dianne; Kimmerling, Kelly; Huebner, Janet; Kraus, Virginia; Guilak, Farshid

    2017-09-01

    To investigate whether short-term, systemic depletion of macrophages can mitigate osteoarthritis (OA) following injury in the setting of obesity. CSF-1R-GFP+ macrophage Fas-induced apoptosis (MaFIA)-transgenic mice that allow conditional depletion of macrophages were placed on a high-fat diet and underwent surgery to induce knee OA. A small molecule (AP20187) was administrated to deplete macrophages in MaFIA mice. The effects of macrophage depletion on acute joint inflammation, OA severity, and arthritic bone changes were evaluated using histology and micro-computed tomography. Immunohistochemical analysis was performed to identify various immune cells. The levels of serum and synovial fluid cytokines were also measured. Macrophage-depleted mice had significantly fewer M1 and M2 macrophages in the surgically operated joints relative to controls and exhibited decreased osteophyte formation immediately following depletion. Surprisingly, macrophage depletion did not attenuate the severity of OA in obese mice; instead, it induced systemic inflammation and led to a massive infiltration of CD3+ T cells and particularly neutrophils, but not B cells, into the injured joints. Macrophage-depleted mice also demonstrated a markedly increased number of proinflammatory cytokines including granulocyte colony-stimulating factor, interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor in both serum and joint synovial fluid, although the mice showed a trend toward decreased levels of insulin and leptin in serum after macrophage depletion. Our findings indicate that macrophages are vital for modulating homeostasis of immune cells in the setting of obesity and suggest that more targeted approaches of depleting specific macrophage subtypes may be necessary to mitigate inflammation and OA in the setting of obesity. © 2017, American College of Rheumatology.

  16. Polymer-Induced Depletion Interaction and Its Effect on Colloidal Sedimentation in Colloid-Polymer Mixtures

    NASA Technical Reports Server (NTRS)

    Tong, Penger

    1996-01-01

    In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.

  17. Functional genetic variants in the vesicular monoamine transporter 1 modulate emotion processing.

    PubMed

    Lohoff, F W; Hodge, R; Narasimhan, S; Nall, A; Ferraro, T N; Mickey, B J; Heitzeg, M M; Langenecker, S A; Zubieta, J-K; Bogdan, R; Nikolova, Y S; Drabant, E; Hariri, A R; Bevilacqua, L; Goldman, D; Doyle, G A

    2014-01-01

    Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits and risk for psychopathology.

  18. [The effect of droxidopa on the monoamine metabolsim in the human brain].

    PubMed

    Maruyama, W; Naoi, M; Narabayashi, H

    1994-10-01

    Droxidopa (L-threo-3,4-dihydroxyphenylserine) is an artificial amino acid, which is used to supplement noradrenaline (NA) in neurodegenerative disorders. Droxidopa is decarboxylated into NA by aromatic L-amino acid decarboxylase in the brain, but its effects on other monoamine neurotransmitters, such as dopamine (DA) and serotonin (5-HT) have not been systematically examined. The monoamine metabolism has been suggested to interact with each other in the brain, and by analysis of the cerebrospinal fluid, L-DOPA, a precursor amino acid used for supplement of DA, was found to inhibit serotonin synthesis in the brain. To examine the effects of droxidopa on the monoamine metabolism, the intraventricular fluid of the patients administered with droxidopa and L-DOPA was analyzed. The levels of monoamines, their precursor amino acids, and their metabolites were compared between the patients administered with L-DOPA. In the patients administered by droxidopa and L-DOPA, droxidopa was shown to increase the concentrations of monoamines (NA, DA and 5-HT), but the difference was not statistically significant by comparison with those treated by L-DOPA alone. The metbolites of DA and 5-HT by monoamine oxidase, 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA) were also found to increase by droxidopa administration. On the other hand, the metabolites of NA and DA by catechol-O-methyltransferase (COMT), normetanephrine (NMN) and 3-methoxytyramine (3-MT), decreased in the patients treated with droxidopa and L-DOPA compared with the patients administered with L-DOPA alone and control patients.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity.

    PubMed

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; Bruemmer, Dennis

    2011-12-01

    Excessive accumulation of reactive oxygen species (ROS) in adipose tissue has been implicated in the development of insulin resistance and type 2 diabetes. However, emerging evidence suggests a physiologic role of ROS in cellular signaling and insulin sensitivity. In this study, we demonstrate that pharmacologic depletion of the antioxidant glutathione in mice prevents diet-induced obesity, increases energy expenditure and locomotor activity, and enhances insulin sensitivity. These observations support a beneficial role of ROS in glucose homeostasis and warrant further research to define the regulation of metabolism and energy balance by ROS.

  20. Proposed structural basis of interaction of piperine and related compounds with monoamine oxidases.

    PubMed

    Rahman, Taufiq; Rahmatullah, Mohammed

    2010-01-15

    Several studies have revealed piperine and a few related compounds as potent inhibitors of monoamine oxidases without delineating the underlying mechanism. Using in silico modelling, we propose a structural basis of such activity by showing that these compounds can successfully dock into the inhibitor binding pockets of human monoamine oxidase isoforms with predicted affinities comparable to some known inhibitors. The results therefore suggest that piperine can be a promising lead for developing novel monoamine oxidase inhibitors. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral

    NASA Astrophysics Data System (ADS)

    Sheridan, C.; Grosjean, Ph.; Leblud, J.; Palmer, C. V.; Kushmaro, A.; Eeckhaut, I.

    2014-12-01

    High sedimentation rates have been linked to reduced coral health within multiple systems; however, whether this is a direct result of compromised coral immunity has not been previously investigated. The potential effects of sedimentation on immunity of the hard coral Montipora patula were examined by comparing physiological responses of coral fragments inoculated with sterilized marine sediments and those under control conditions. Sediments were collected from terrestrial runoff-affected reefs in SW Madagascar and applied cyclically for a total of 24 h at a rate observed during precipitation-induced sedimentation events. Coral health was determined 24 h after the onset of the sedimentation stress through measuring metabolic proxies of O2 budget and lipid ratios. Immune response of the melanin synthesis pathway was measured by quantifying phenoloxidase activity and melanin deposits. Sedimentation induced both immune and metabolic responses in M. patula. Both phenoloxidase activity and melanin deposition were significantly higher in the sediment treatment compared to controls, indicating an induced immune response. Sediment-treated corals also showed a tendency towards increased respiration (during the night) and decreased photosynthesis (during the day) and a significant depletion of energy reserves as compared to controls. These data highlight that short-term (24 h) sedimentation, free of live microorganisms, compromises the health of M. patula. The energetically costly immune response, potentially elicited by residual endotoxins and other inflammatory particles associated with the sterile sediments, likely contributes to the energy depletion. Overall, exposure to sedimentation adversely affects coral health and continued exposure may lead to resource depletion and an increased susceptibility to disease.

  2. Towards rational therapy with monoamine oxidase inhibitors.

    PubMed

    Tyrer, P

    1976-04-01

    A rational approach to the use of monoamine oxidase inhibitors (MAOIs) is outlined. Patients suitable for treatment cannot be classified adequately using conventional diagnostic labels. They include those with primary symptoms of hypochondriasis, agoraphobia and social phobias, irritability, somatic anxiety and anergia; those with primary depressed mood, guilt, ideas of reference and personality disorders seldom respond. There is great variation in the interval between the first administration of these drugs and clinical response, and this may account for the inconsistencies in published trials. The type of drug and its dose may affect rate of response, as may biochemical factors, including acetylator and monoamine oxidase status. To obtain maximum benefit, a course of therapy with MAOIs should last for several months.

  3. Monoamines and glycogen levels in cerebral cortices of fast and slow methionine sulfoximine-inbred mice.

    PubMed

    Boissonnet, Arnaud; Hévor, Tobias; Landemarre, Ludovic; Cloix, Jean-François

    2013-05-01

    The experimental model of seizures which depends upon methionine sulfoximine (MSO) simulates the most striking form of human epilepsy. MSO generates epileptiform seizures in a large variety of animals, increases brain glycogen content and induces brain monoamines modifications. We selected two inbred lines of mice based upon their latency toward MSO-dependent seizures, named as MSO-Fast (sensitive), having short latency toward MSO, and MSO-Slow (resistant) with a long latency. We determined 13 monoamines and glycogen contents in brain cortices of the MSO-Fast and slow lines in order to determine the relationships with MSO-dependent seizures. The present data show that using these MSO-Fast and MSO-Slow inbred lines it could be demonstrated that: (1) in basal conditions the neurotransmitter 5-HT is significantly higher in MSO-Fast mice than in MSO-Slow ones; (2) MSO in both lines induced a significant increase in brain content of DOPAC (3,4-dihydroxyphenylacetic acid), HVA (homovanillic acid), MHPG (3-methoxy-4-hydroxyphenylglycol), and 5-HT (serotonin); a significant decrease in MSO-Slow mice in brain content of NME (normetepinephrine), and 5-HIAA (5-hydroxyindoleacetic acid) and the variation of other monoamines were not significant; (3) the brain glycogen content is significantly higher in MSO-Fast mice than in MSO-Slow ones, both in basal conditions and after MSO administration. From our data, we propose that brain glycogen content may constitute a defense against epileptic attack, as glycogen may be degraded down to glucose-6-phosphate that can be used to either postpone the epileptic attack or to provide neurons with energy when they needed it. Brain glycogen might therefore be considered as a molecule that can contribute to struggle seizures, at least in MSO-dependent seizure. The 5-HT content may constitute a defense against MSO-dependent epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Synergistic effects of melatonin and deprenyl against MPTP-induced mitochondrial damage and DA depletion.

    PubMed

    Khaldy, Hoda; Escames, Germaine; León, Josefa; Bikjdaouene, Leila; Acuña-Castroviejo, Darío

    2003-01-01

    Previous studies showed a synergistic effect of melatonin and deprenyl against dopamine (DA) autoxidation in vitro. Since oxidative stress is implicated in Parkinson's disease (PD), we explored the effects of melatonin plus deprenyl administration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in C57/Bl6 mice. Melatonin, but not deprenyl prevents the inhibition of mitochondrial complex I and the oxidative damage in nigrostriatal neurons induced by MPTP. With the dose used deprenyl recovers 50% DA levels and tyrosine hydroxylase activity depressed by the neurotoxin, normalizing locomotor activity of mice. Melatonin, which was unable to counteract MPTP-induced DA depletion and inhibition of tyrosine hydroxylase activity, potentiates the effect of deprenyl on catecholamine turnover and mice ambulatory activity. These results suggest a dissociation of complex I inhibition from DA depletion in this model of Parkinson's disease. The data also support that a combination of melatonin, which improves mitochondrial electron transport chain and reduces oxidative damage, and deprenyl, which promotes the specific function of the rescued neurons, i.e. DA turnover, may be a promising strategy for the treatment of PD.

  5. 5-HT has contrasting effects in the frontal cortex, but not the hypothalamus, on changes in noradrenaline efflux induced by the monoamine releasing-agent, d-amphetamine, and the reuptake inhibitor, BTS 54 354.

    PubMed

    Géranton, Sandrine M; Heal, David J; Stanford, S Clare

    2004-03-01

    There is extensive evidence for functional interactions between central noradrenergic and serotonergic neurones. Here, dual-probe microdialysis was used in freely-moving rats to compare the effects of 5-HT on noradrenergic transmission in the rat frontal cortex and hypothalamus. We studied the effects of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA; which depleted 5-HT stores in both the frontal cortex and the hypothalamus), on spontaneous efflux of noradrenaline and on the noradrenergic responses to d-amphetamine, and the monoamine reuptake inhibitor, BTS 54 354. pCPA pretreatment alone did not affect spontaneous noradrenaline efflux in either brain region, whether or not alpha2-autoreceptors were inactivated by administration of the alpha2-antagonist, atipamezole (1 mg/kg i.p). However, in the frontal cortex, pCPA pretreatment augmented the amplitude of, and prolonged, the noradrenergic response to local infusion of d-amphetamine (10 microM). In contrast, pCPA abolished the increase in cortical noradrenaline efflux induced by local infusion of BTS 54 354 (50 microM). In the hypothalamus, pCPA did not affect the amplitude of the response to either of these agents but did prolong the effects of d-amphetamine on noradrenaline efflux. These findings suggest that serotonergic transmission has complex effects on the noradrenergic response to drugs that increase noradrenergic transmission in the frontal cortex, but has less influence in the hypothalamus.

  6. Recent advances in Parkinson's disease therapy: use of monoamine oxidase inhibitors.

    PubMed

    Henchcliffe, Claire; Schumacher, H Christian; Burgut, F Tuna

    2005-11-01

    Monoamine oxidase inhibitors inhibit dopamine metabolism and are therefore effective in treating Parkinson's disease, a condition associated with progressive striatal dopamine deficiency secondary to degeneration of dopaminergic neurons in the substantia nigra. Selegiline is currently the most widely used monoamine oxidase-B inhibitor for Parkinson's disease, but has a low and variable bioavailability, and is metabolized to L-methamphetamine and L-amphetamine that carry a risk for potential neurotoxicity. There are two new approaches that circumvent these potential disadvantages. First, selegiline orally disintegrating tablets provide a novel delivery form of selegiline, avoiding first pass metabolism by rapid absorption through the oral mucosa, thus leading to significantly lower plasma concentrations of L-metamphetamine and L-amphetamine. Selegiline orally disintegrating tablets prove to be clinically effective and safe in patients with moderately advanced Parkinson's disease. Second, rasagiline is a new monoamine oxidase inhibitor, without known neurotoxic metabolites. In large clinical trials, rasagiline proves effective as monotherapy in early Parkinson's disease, as well as adjunctive therapy to levodopa in advanced disease. Clinical data suggest, in addition, a disease-modifying effect of rasagiline that may correlate with neuroprotective activity of monoamine oxidase-B inhibitors in animal models of Parkinson's disease.

  7. ATP depletion during mitotic arrest induces mitotic slippage and APC/CCdh1-dependent cyclin B1 degradation.

    PubMed

    Park, Yun Yeon; Ahn, Ju-Hyun; Cho, Min-Guk; Lee, Jae-Ho

    2018-04-27

    ATP depletion inhibits cell cycle progression, especially during the G1 phase and the G2 to M transition. However, the effect of ATP depletion on mitotic progression remains unclear. We observed that the reduction of ATP after prometaphase by simultaneous treatment with 2-deoxyglucose and NaN 3 did not arrest mitotic progression. Interestingly, ATP depletion during nocodazole-induced prometaphase arrest resulted in mitotic slippage, as indicated by a reduction in mitotic cells, APC/C-dependent degradation of cyclin B1, increased cell attachment, and increased nuclear membrane reassembly. Additionally, cells successfully progressed through the cell cycle after mitotic slippage, as indicated by EdU incorporation and time-lapse imaging. Although degradation of cyclin B during normal mitotic progression is primarily regulated by APC/C Cdc20 , we observed an unexpected decrease in Cdc20 prior to degradation of cyclin B during mitotic slippage. This decrease in Cdc20 was followed by a change in the binding partner preference of APC/C from Cdc20 to Cdh1; consequently, APC/C Cdh1 , but not APC/C Cdc20 , facilitated cyclin B degradation following ATP depletion. Pulse-chase analysis revealed that ATP depletion significantly abrogated global translation, including the translation of Cdc20 and Cdh1. Additionally, the half-life of Cdh1 was much longer than that of Cdc20. These data suggest that ATP depletion during mitotic arrest induces mitotic slippage facilitated by APC/C Cdh1 -dependent cyclin B degradation, which follows a decrease in Cdc20 resulting from reduced global translation and the differences in the half-lives of the Cdc20 and Cdh1 proteins.

  8. Plasma waves associated with the first AMPTE magnetotail barium release

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Anderson, R. R.; Bernhardt, P. A.; Luehr, H.; Haerendel, G.

    1986-01-01

    Plasma waves observed during the March 21, 1985, AMPTE magnetotail barium release are described. Electron plasma oscillations provided local measurements of the plasma density during both the expansion and decay phases. Immediately after the explosion, the electron density reached a peak of about 400,000/cu cm, and then started decreasing approximately as t to the -2.4 as the cloud expanded. About 6 minutes after the explosion, the electron density suddenly began to increase, reached a secondary peak of about 240/cu cm, and then slowly decayed down to the preevent level over a period of about 15 minutes. The density increase is believed to be caused by the collapse of the ion cloud into the diamagnetic cavity created by the initial expansion. The plasma wave intensities observed during the entire event were quite low. In the diamagnetic cavity, electrostatic emissions were observed near the barium ion plasma frequency, and in another band at lower frequencies. A broadband burst of electrostatic noise was also observed at the boundary of the diamagnetic cavity. Except for electron plasma oscillations, no significant wave activity was observed outside of the diamagnetic cavity.

  9. Exposure to (12)C particles alters the normal dynamics of brain monoamine metabolism and behaviour in rats.

    PubMed

    Belov, Oleg V; Belokopytova, Ksenia V; Bazyan, Ara S; Kudrin, Vladimir S; Narkevich, Viktor B; Ivanov, Aleksandr A; Severiukhin, Yury S; Timoshenko, Gennady N; Krasavin, Eugene A

    2016-09-01

    Planning of the deep-space exploration missions raises a number of questions on the radiation protection of astronauts. One of the medical concerns is associated with exposure of a crew to highly energetic particles of galactic cosmic rays. Among many other health disorders, irradiation with these particles has a substantial impact on the central nervous system (CNS). Although radiation damage to CNS has been addressed extensively during the last years, the mechanisms underlying observed impairments remain mostly unknown. The present study reveals neurochemical and behavioural alterations induced in rats by 1Gy of 500MeV/u (12)C particles with a relatively moderate linear energy transfer (10.6keV/μm). It is found that exposure to carbon ions leads to significant modification of the normal monoamine metabolism dynamics as well as the locomotor, exploratory, and anxiety-like behaviours during a two-month period. The obtained results indicate an abnormal redistribution of monoamines and their metabolites in different brain regions after exposure. The most pronounced impairments are detected in the prefrontal cortex, nucleus accumbens, and hypothalamus that illustrate the sensitivity of these brain regions to densely ionizing radiations. It is also shown that exposure to (12)C particles enhances the anxiety in animals and accelerates the age-related reduction in their exploratory capability. The observed monoamine metabolism pattern may indicate the presence of certain compensatory mechanisms being induced in response to irradiation and capable of partial restoration of monoaminergic systems' functions. Overall, these findings support a possibility of CNS damage by space-born particles of a relatively moderate linear energy transfer. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. AMPTE/CCE CHEM observations of the energetic ion population at geosynchronous altitudes

    NASA Technical Reports Server (NTRS)

    Daglis, Ioannis A.; Sarris, Emmanuel T.; Wilken, Berend

    1993-01-01

    The paper presents results of a statistical study of average characteristics of the energetic ion population at geosynchronous altitudes, using energetic-ion (1-300 keV/e) measurements from the CHEM spectrometer aboard the AMPTE Charge Composition Explorer between January 1985 and June 1987. Data were sorted into four MLT groups and two extreme geomagnetic activity levels ('very quiet' for AE less than 30 nT and 'very active' for AE greater than 700 nT). A clear quiet-time dayside feature found in the measurements was a dip in H(+) and He(2+) spectra, at 6.6 keV/e in the prenoon sector and at 3.5 keV/e in the postnoon sector. During active times, the ion fluxes increased (except for He(+)), and the O(+) contribution to the total energy density increased dramatically. The pitch angle distributions were normal during quiet times and isotropic or field-aligned during active times.

  11. Apoptosis inducing factor gene depletion inhibits zearalenone-induced cell death in a goat Leydig cell line.

    PubMed

    Yang, Diqi; Jiang, Tingting; Lin, Pengfei; Chen, Huatao; Wang, Lei; Wang, Nan; Zhao, Fan; Tang, Keqiong; Zhou, Dong; Wang, Aihua; Jin, Yaping

    2017-01-01

    Zearalenone (ZEA) is a contaminant of human food and animal feedstuffs that causes health hazards. However, the signal pathways underlying ZEA toxicity remain elusive. The aims of this study were to determine which pathways are involved in ZEA-induced cell death and investigate the effect of apoptosis inducing factor (AIF) on cell death during ZEA treatment in the immortalized goat Leydig cell line hTERT-GLC. This study showed that ZEA-induced cell death in hTERT-GLCs works via endoplasmic reticulum (ER) stress, the caspase-dependent pathway, the caspase-independent pathway and autophagy. Recombinant lentiviral vectors were constructed to silence AIF expression in hTERT-GLCs. Flow cytometry results showed that knockdown of AIF diminished ZEA-induced cell apoptosis in hTERT-GLCs. Furthermore, we found AIF depletion down-regulated phosphoIRE1α, GRP78, CHOP and promoted the switch of LC3-I to LC3-II. Therefore, ZEA induces cytotoxicity in hTERT-GLCs via different pathways, while AIF-mediated signaling plays a critical role in ZEA-induced cell death in hTERT-GLCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Behavioral and monoamine perturbations in adult male mice with chronic inflammation induced by repeated peripheral lipopolysaccharide administration.

    PubMed

    Krishna, Saritha; Dodd, Celia A; Filipov, Nikolay M

    2016-04-01

    Considering the limited information on the ability of chronic peripheral inflammation to induce behavioral alterations, including on their persistence after inflammatory stimuli termination and on associated neurochemical perturbations, this study assessed the effects of chronic (0.25 mg/kg; i.p.; twice weekly) lipopolysaccharide (LPS) treatment on selected behavioral, neurochemical and molecular measures at different time points in adult male C57BL/6 mice. Behaviorally, LPS-treated mice were hypoactive after 6 weeks, whereas significant hyperactivity was observed after 12 weeks of LPS and 11 weeks after 13 week LPS treatment termination. Similar biphasic responses, i.e., early decrease followed by a delayed increase were observed in the open field test center time, suggestive of, respectively, increased and decreased anxiety. In a forced swim test, mice exhibited increased immobility (depressive behavior) at all times they were tested. Chronic LPS also produced persistent increase in splenic serotonin (5-HT) and time-dependent, brain region-specific alterations in striatal and prefrontocortical dopamine and 5-HT homeostasis. Microglia, but not astrocytes, were activated by LPS early and late, but their activation did not persist after LPS treatment termination. Above findings demonstrate that chronic peripheral inflammation initially causes hypoactivity and increased anxiety, followed by persistent hyperactivity and decreased anxiety. Notably, chronic LPS-induced depressive behavior appears early, persists long after LPS termination, and is associated with increased splenic 5-HT. Collectively, our data highlight the need for a greater focus on the peripheral/central monoamine alterations and lasting behavioral deficits induced by chronic peripheral inflammation as there are many pathological conditions where inflammation of a chronic nature is a hallmark feature. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Nitrogen-based drugs are not essential for blockade of monoamine transporters.

    PubMed

    Madras, B K; Pristupa, Z B; Niznik, H B; Liang, A Y; Blundell, P; Gonzalez, M D; Meltzer, P C

    1996-12-01

    In brain, monoamine transporters are principal targets of widely used therapeutic drugs including antidepressants, methylphenidate (Ritalin), and the addictive drug cocaine. Without exception, these transport blocking agents contain an amine nitrogen. A prevalent view and untested premise is that an amine nitrogen is needed to bind to the same counterion on the transporter as does the amine nitrogen of the monoamine neurotransmitter. We report that several compounds without nitrogen (8-oxa-bicyclo-3-aryl-[3.2.1] octanes, or aryloxatropanes) are active at monoamine transporters. One of these, tropoxane (0-914), bound with high affinity to the dopamine (IC50: 3.35 +/- 0.39 nM), serotonin (IC50: 6.52 +/- 2.05 nM), and norepinephrine (IC50: 20.0 +/- 0.3 nM) transporters in monkey brain, the human striatal dopamine transporter (IC50: 5.01 +/- 1.74 nM), and blocked dopamine transport (IC50: 7.2 +/- 3.0 nM) in COS-7 cells transfected with the human dopamine transporter. These unique compounds require a revision of current concepts of the drug binding domains on monoamine transporters, open avenues for discovery of a new generation of drugs and raise the issue of whether mammalian transporters and receptors may respond to, as yet, undiscovered non-amine bearing neurotransmitters or drugs.

  14. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Yuhui; Huang, Jiawei; Gu, Ying

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MTmore » −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after

  15. Deplete! Deplete! Deplete!

    NASA Astrophysics Data System (ADS)

    Woodson, J.

    2017-12-01

    Deplete is intended to demonstrate by analogy the harmful effect that Green House Gases (GHG's) such as CO2 and H2O vapor are causing to the Ozone Layer. Increasing temperatures from human activities are contributing to the depletion of Ozone.

  16. PF 9601N [N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine], a new MAO-B inhibitor, attenuates MPTP-induced depletion of striatal dopamine levels in C57/BL6 mice.

    PubMed

    Perez, Virgili; Unzeta, Mercedes

    2003-02-01

    Monoamine oxidase isoform B (MAO-B) is involved in Parkinson's disease (PD) induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin (MPTP) in human and non-human-primate. MAO-B inhibitors, such as L-deprenyl have shown to prevent against MPTP-toxicity in different species, and it has been used in Parkinson therapy, however, the fact that it is metabolized to (-)-methamphetamine and (-)-amphetamine highlights the need to find out new MAO-B inhibitors without a structural amphetaminic moiety. In this context we herein report, for the first time, anywhere a novel non-amphetamine-like MAO-B inhibitor, PF 9601N, N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine. This attenuates the MPTP-induced striatal dopamine depletion in young-adult and adult-old C57/BL mice, using different schedules of administration, and which behave "ex vivo" as a slightly more potent and selective MAO-B inhibitor than L-deprenyl, assayed for comparative purposes in the same experimental conditions. The MAO-B ID(50) values were calculated from the total MAO-B activity measured against [14C] phenylethylamine (22 microM) as substrate, at each inhibitor concentration. The MAO-B ID(50) values resulted to be 381 and 577 nmol/kg for PF 9601N and L-deprenyl, respectively. The intraperitoneally (i.p.) co-administration to young-adult C57/BL6 mice of MPTP (30 mg/kg), with different concentrations of PF 9601N or L-deprenyl (29.5-0.357 micromol/kg) showed a dose-dependent protective effect against striatal dopamine depletion, measuring the dopamine contents and its metabolites by HPLC. The ED(50) value proved to be 3.07 micromol/kg without any significant differences between either MAO-B inhibitor. Nevertheless, lower doses of PF 9601N (1.5 micromol/kg) were necessary to get almost total protection, without any change in the DOPAC and HVA content, when administered 2 h before MPTP (30 mg/kg), whereas partial protection (45%) against dopamine depletion was observed in the case of L-deprenyl. In

  17. Monoamine oxidase and head-twitch response in mice. Mechanisms of alpha-methylated substrate derivatives.

    PubMed

    Nakagawasai, Osamu; Arai, Yuichiro; Satoh, Shin-etsu; Satoh, Nobunori; Neda, Mitsuro; Hozumi, Masato; Oka, Ryusho; Hiraga, Hajime; Tadano, Takeshi

    2004-01-01

    It is well known that head-twitch response (HTR) in mice represents hallucinations, since administration of lysergic acid diethylamide (LSD) produces hallucinations in humans, and the HTR in mice is induced by administration of LSD as a hallucinogen. The HTR is produced by excitation of 5-hydroxytryptamine (5-HT)2A receptors. In this paper, we review the mechanisms of HTR induced by various drugs such as 5-HT precursor, 5-HT receptor agonist, 5-HT releaser, hallucinogenic compounds, benzodiazepins and cannabinoid. The response induced by HTR-inducers is significantly enhanced by combined treatment with a non-selective form of monoamine oxidase (MAO) inhibitor. Thus, the relationship between MAO activity and HTR caused by these drugs (especially, alpha-methylated analogous compounds which 5-fluoro-alpha-methyltryptamine, 6-fluoro-alpha-methyltryptamine and p-hydroxyamphetamine) is presented in detail.

  18. Neural basis of major depressive disorder: Beyond monoamine hypothesis.

    PubMed

    Boku, Shuken; Nakagawa, Shin; Toda, Hiroyuki; Hishimoto, Akitoyo

    2018-01-01

    The monoamine hypothesis has been accepted as the most common hypothesis of major depressive disorder (MDD) for a long period because of its simplicity and understandability. Actually, most currently used antidepressants have been considered to act based on the monoamine hypothesis. However, an important problem of the monoamine hypothesis has been pointed out as follows: it fails to explain the latency of response to antidepressants. In addition, many patients with MDD have remained refractory to currently used antidepressants. Therefore, monoamine-alternate hypotheses are required to explain the latency of response to antidepressants. Such hypotheses have been expected to contribute to identifying hopeful new therapeutic targets for MDD. Past studies have revealed that the volume of the hippocampus is decreased in patients with MDD, which is likely caused by the failure of the hypothalamic-pituitary-adrenal axis and following elevation of glucocorticoids. Two hypotheses have been proposed to explain the volume of the hippocampus: (i) the neuroplasticity hypothesis; and (ii) the neurogenesis hypothesis. The neuroplasticity hypothesis explains how the hippocampal volume is decreased by the morphological changes of hippocampal neurons, such as the shortening length of dendrites and the decreased number and density of spines. The neurogenesis hypothesis explains how the hippocampal volume is decreased by the decrease of neurogenesis in the hippocampal dentate gyrus. These hypotheses are able to explain the latency of response to antidepressants. In this review, we first overview how the neuroplasticity and neurogenesis hypotheses have been developed. We then describe the details of these hypotheses. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  19. Monoamines and neurosteroids in sexual function during induced hypogonadism in healthy men.

    PubMed

    Bloch, Miki; Rubinow, David R; Berlin, Kate; Kevala, Karl R; Kim, Hee-Yong; Schmidt, Peter J

    2006-04-01

    Although the behavioral effects of high-dose androgen administration may involve alterations in serotonergic activity, few studies have investigated the impact of androgen withdrawal on the central nervous system in humans. To examine the effects of pharmacologically induced hypogonadism on several cerebrospinal fluid (CSF) systems that could mediate the behavioral concomitants of hypogonadism. Double-blind assessment of the effects of the short-term induction of hypogonadism and subsequent replacement with testosterone and placebo in a crossover design. National Institutes of Health, Bethesda, Md. Twelve healthy male volunteers. We administered the gonadotropin-releasing hormone agonist leuprolide acetate (7.5 mg intramuscularly every 4 weeks) to the healthy male volunteers, creating a hypogonadal state, and then either replaced testosterone (200 mg intramuscularly) or administered a placebo every 2 weeks for 1 month. Mood and behavioral symptoms were monitored with daily self-ratings, and lumbar punctures were performed during both hypogonadal (placebo) and testosterone-replaced conditions for CSF levels of steroids and monoamine metabolites. The CSF testosterone, dihydrotestosterone, and androsterone levels were significantly lower during hypogonadism (P=.002, .04, and .046, respectively), but no significant changes were observed in CSF measures of 5-hydroxyindoleacetic acid, homovanillic acid, dehydroepiandrosterone, or pregnenolone. Decreased sexual interest was observed during the hypogonadal state compared with both baseline and testosterone replacement (P=.009) and correlated significantly with CSF measures of androsterone during both hypogonadism and testosterone replacement (r = -0.76 and -0.81, respectively; P<.01). Moreover, the change in severity of decreased sexual interest correlated significantly with the change in CSF androsterone levels between testosterone replacement and hypogonadism (r = -0.68; P<.05). The CSF 5-hydroxyindoleacetic acid and

  20. Androgen receptor and monoamine oxidase polymorphism in wild bonobos

    PubMed Central

    Garai, Cintia; Furuichi, Takeshi; Kawamoto, Yoshi; Ryu, Heungjin; Inoue-Murayama, Miho

    2014-01-01

    Androgen receptor gene (AR), monoamine oxidase A gene (MAOA) and monoamine oxidase B gene (MAOB) have been found to have associations with behavioral traits, such as aggressiveness, and disorders in humans. However, the extent to which similar genetic effects might influence the behavior of wild apes is unclear. We examined the loci AR glutamine repeat (ARQ), AR glycine repeat (ARG), MAOA intron 2 dinucleotide repeat (MAin2) and MAOB intron 2 dinucleotide repeat (MBin2) in 32 wild bonobos, Pan paniscus, and compared them with those of chimpanzees, Pan troglodytes, and humans. We found that bonobos were polymorphic on the four loci examined. Both loci MAin2 and MBin2 in bonobos showed a higher diversity than in chimpanzees. Because monoamine oxidase influences aggressiveness, the differences between the polymorphisms of MAin2 and MBin2 in bonobos and chimpanzees may be associated with the differences in aggression between the two species. In order to understand the evolution of these loci and AR, MAOA and MAOB in humans and non-human primates, it would be useful to conduct future studies focusing on the potential association between aggressiveness, and other personality traits, and polymorphisms documented in bonobos. PMID:25606465

  1. Stereoselective effects of MDMA on inhibition of monoamine uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, T.D.; Nichols, D.E.; Yim, G.K.W.

    1986-03-05

    The R(-)-isomers of hallucinogenic phenylisopropylamines are most active, whereas the S(+)-enantiomers of amphetamine (AMPH) and methylenedioxymethamphetamine (MDMA) are more potent centrally. To determine if MDMA exhibits stereoselective effects at the biochemical level that resemble either those of amphetamine or the potent hallucinogen 2,5-dimethoxy-4-methylamphetamine (DOM), the ability of the isomers of MDMA, AMPH and DOM to inhibit uptake of radiolabelled monoamines into synaptosomes was measured. AMPH was more potent than MDMA in inhibiting uptake of /sup 3/H-norepinephrine (NE) into hypothalamic synaptosomes and /sup 3/H-dopamine (DA) into striatal synaptosomes. The S(+)-isomer was more active in each case. MDMA was more potent thanmore » AMPH in inhibiting uptake of /sup 3/H-serotonin (5-HT) into hippocampal synaptosomes and exhibited a high degree of stereoselectivity, in favor of the S(+)-isomer. DOM showed only minimal activity in inhibiting uptake of any monoamine (IC/sub 50/ > 10/sup -5/M). These results suggest that MDMA exhibits stereoselective effects similar to those of amphetamine on monoamine uptake inhibition, a parameter that is unrelated to the mechanism of action of the hallucinogen DOM.« less

  2. Age-related ultrastructural and monoamine oxidase changes in the rat optic nerve.

    PubMed

    Taurone, S; Ripandelli, G; Minni, A; Lattanzi, R; Miglietta, S; Pepe, N; Fumagalli, L; Micera, A; Pastore, F S; Artico, M

    2016-01-01

    The aim of this paper is to study the morphology and the distribution of the monoamine oxidase enzymatic system in the optic nerve of 4 month-old Wistar (young) and 28 month-old Wistar (old) rats. The optic nerve was harvested from 20 young and old rats. The segment of optic nerve was divided longitudinally into two pieces, each 0.1 mm in length. The first piece was used for transmission electron microscopy. The second piece was stained with histochemical reaction for monoamine oxidase. The agerelated changes in the optic nerve of rats include micro-anatomical details, ultrastructure and monoamine oxidase histochemical staining. A strong decrease of the thin nerve fibers and a swelling of the thick ones can be observed in optic nerve fibers of old rats. Increased monoamine oxidase histochemical staining of the optic nerve of aged rats is well demonstrated. The increase of meningeal shealth and the decrease of thin nerve fibers of the optic nerve in old rats are well documented. Morphological, ultrastructural and histochemical changes observed in optic nerve fibers of the old rats show a close relation with aging.

  3. Maladaptive defensive behaviours in monoamine oxidase A-deficient mice.

    PubMed

    Godar, Sean C; Bortolato, Marco; Frau, Roberto; Dousti, Mona; Chen, Kevin; Shih, Jean C

    2011-10-01

    Rich evidence indicates that monoamine oxidase (MAO) A, the major enzyme catalysing the degradation of monoamine neurotransmitters, plays a key role in emotional regulation. Although MAOA deficiency is associated with reactive aggression in humans and mice, the involvement of this enzyme in defensive behaviour remains controversial and poorly understood. To address this issue, we tested MAOA knockout (KO) mice in a spectrum of paradigms and settings associated with variable degrees of threat. The presentation of novel inanimate objects induced a significant reduction in exploratory approaches and increase in defensive behaviours, such as tail-rattling, biting and digging. These neophobic responses were context-dependent and particularly marked in the home cage. In the elevated plus- and T-mazes, MAOA KO mice and wild-type (WT) littermates displayed equivalent locomotor activity and time in closed and open arms; however, MAOA KO mice featured significant reductions in risk assessment, as well as unconditioned avoidance and escape. No differences between genotypes were observed in the defensive withdrawal and emergence test. Conversely, MAOA KO mice exhibited a dramatic reduction of defensive and fear-related behaviours in the presence of predator-related cues, such as predator urine or an anaesthetized rat, in comparison with those observed in their WT littermates. The behavioural abnormalities in MAOA KO mice were not paralleled by overt alterations in sensory and microvibrissal functions. Collectively, these results suggest that MAOA deficiency leads to a general inability to appropriately assess contextual risk and attune defensive and emotional responses to environmental cues.

  4. Fluorinated phenmetrazine "legal highs" act as substrates for high-affinity monoamine transporters of the SLC6 family.

    PubMed

    Mayer, Felix P; Burchardt, Nadine V; Decker, Ann M; Partilla, John S; Li, Yang; McLaughlin, Gavin; Kavanagh, Pierce V; Sandtner, Walter; Blough, Bruce E; Brandt, Simon D; Baumann, Michael H; Sitte, Harald H

    2018-05-15

    A variety of new psychoactive substances (NPS) are appearing in recreational drug markets worldwide. NPS are compounds that target various receptors and transporters in the central nervous system to achieve their psychoactive effects. Chemical modifications of existing drugs can generate NPS that are not controlled by current legislation, thereby providing legal alternatives to controlled substances such as cocaine or amphetamine. Recently, 3-fluorophenmetrazine (3-FPM), a derivative of the anorectic compound phenmetrazine, appeared on the recreational drug market and adverse clinical effects have been reported. Phenmetrazine is known to elevate extracellular monoamine concentrations by an amphetamine-like mechanism. Here we tested 3-FPM and its positional isomers, 2-FPM and 4-FPM, for their abilities to interact with plasma membrane monoamine transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). We found that 2-, 3- and 4-FPM inhibit uptake mediated by DAT and NET in HEK293 cells with potencies comparable to cocaine (IC 50 values < 2.5 μM), but display less potent effects at SERT (IC 50 values >80 μM). Experiments directed at identifying transporter-mediated reverse transport revealed that FPM isomers induce efflux via DAT, NET and SERT in HEK293 cells, and this effect is augmented by the Na + /H + ionophore monensin. Each FPM evoked concentration-dependent release of monoamines from rat brain synaptosomes. Hence, this study reports for the first time the mode of action for 2-, 3- and 4-FPM and identifies these NPS as monoamine releasers with marked potency at catecholamine transporters implicated in abuse and addiction. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.' Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. AMPTE/CCE observations of the plasma composition below 17 keV during the September 4, 1984 magnetic storm

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Klumpar, D. M.; Peterson, W. K.; Ghielmetti, A.; Balsiger, H.; Geiss, J.; Rosenbauer, H.

    1985-01-01

    Observations from the Hot Plasma Composition Experiment on the AMPTE/CCE spacecraft during the magnetic storm of 4-5 September 1984 reveal that significant injection of ions of terrestrial origin accompanied the storm development. The compression of the magnetosphere at storm sudden commencement carried the magnetopause inside the CCE orbit clearly revealing the shocked solar wind plasma. A build up of suprathermal ions is observed near the plasmapause during the storm main phase and recovery phase. Pitch angle distributions in the ring current during the main phase show differences between H(+) and O(+) that suggest mass dependent injection, transport and/or loss processes.

  6. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition.

    PubMed

    Zheng, Hailin; Gal, Shunit; Weiner, Lev M; Bar-Am, Orit; Warshawsky, Abraham; Fridkin, Mati; Youdim, Moussa B H

    2005-10-01

    Iron-dependent oxidative stress, elevated levels of iron and of monoamine oxidase (MAO)-B activity, and depletion of antioxidants in the brain may be major pathogenic factors in Parkinson's disease, Alzheimer's disease and related neurodegenerative diseases. Accordingly, iron chelators, antioxidants and MAO-B inhibitors have shown efficacy in a variety of cellular and animal models of CNS injury. In searching for novel antioxidant iron chelators with potential MAO-B inhibitory activity, a series of new iron chelators has been designed, synthesized and investigated. In this study, the novel chelators were further examined for their activity as antioxidants, MAO-B inhibitors and neuroprotective agents in vitro. Three of the selected chelators (M30, HLA20 and M32) were the most effective in inhibiting iron-dependent lipid peroxidation in rat brain homogenates with IC50 values (12-16 microM), which is comparable with that of desferal, a prototype iron chelator that is not has orally active. Their antioxidant activities were further confirmed using electron paramagnetic resonance spectroscopy. In PC12 cell culture, the three novel chelators at 0.1 microM were able to attenuate cell death induced by serum deprivation and by 6-hydroxydopamine. M30 possessing propargyl, the MAO inhibitory moiety of the anti-Parkinson drug rasagiline, displayed greater neuroprotective potency than that of rasagiline. In addition, in vitro, M30 was a highly potent non-selective MAO-A and MAO-B inhibitor (IC50 < 0.1 microM). However, HLA20 was more selective for MAO-B but had poor MAO inhibition, with an IC50 value of 64.2 microM. The data suggest that M30 and HLA20 might serve as leads in developing drugs with multifunctional activities for the treatment of various neurodegenerative disorders.

  7. Validity of urinary monoamine assay sales under the “spot baseline urinary neurotransmitter testing marketing model”

    PubMed Central

    Hinz, Marty; Stein, Alvin; Uncini, Thomas

    2011-01-01

    Spot baseline urinary monoamine assays have been used in medicine for over 50 years as a screening test for monoamine-secreting tumors, such as pheochromocytoma and carcinoid syndrome. In these disease states, when the result of a spot baseline monoamine assay is above the specific value set by the laboratory, it is an indication to obtain a 24-hour urine sample to make a definitive diagnosis. There are no defined applications where spot baseline urinary monoamine assays can be used to diagnose disease or other states directly. No peer-reviewed published original research exists which demonstrates that these assays are valid in the treatment of individual patients in the clinical setting. Since 2001, urinary monoamine assay sales have been promoted for numerous applications under the “spot baseline urinary neurotransmitter testing marketing model”. There is no published peer-reviewed original research that defines the scientific foundation upon which the claims for these assays are made. On the contrary, several articles have been published that discredit various aspects of the model. To fill the void, this manuscript is a comprehensive review of the scientific foundation and claims put forth by laboratories selling urinary monoamine assays under the spot baseline urinary neurotransmitter testing marketing model. PMID:21912487

  8. Striatal norepinephrine efflux in l-DOPA-induced dyskinesia.

    PubMed

    Ostock, Corinne Y; Bhide, Nirmal; Goldenberg, Adam A; George, Jessica A; Bishop, Christopher

    2018-03-01

    l-DOPA remains the primary treatment for Parkinson's disease (PD). Unfortunately, its therapeutic benefits are compromised by the development of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID). The norepinephrine (NE) system originating in the locus coeruleus is profoundly affected in PD and known to influence dopamine (DA) signaling. However, the effect of noradrenergic loss on l-DOPA-induced striatal monoamine efflux and Parkinsonian motor behavior remains controversial and is frequently overlooked in traditional animal models of LID. Thus, the current study sought to determine whether degeneration of the DA and/or NE system(s) altered l-DOPA-induced striatal monoamine efflux in hemiparkinsonian rats with additional NE loss induced by the potent NE-toxin α DA beta hydroxylase (DBH)-saporin. Sham-, DA-, NE-, and dual DA + NE-lesioned rats were treated with l-DOPA (6 mg/kg, s.c.) for 2 weeks. Thereafter, l-DOPA-mediated striatal monoamine efflux was measured with in vivo microdialysis, and concurrent AIMs testing occurred to determine responsiveness to l-DOPA. Noradrenergic lesions exacerbated parkinsonian motor deficits but did not significantly alter LID expression or corresponding l-DOPA-induced striatal monoamine efflux. Interestingly, l-DOPA-induced striatal NE efflux rather than DA efflux, corresponded more closely with dyskinesia severity. Moreover, marked reductions in striatal NE tissue concentration did not appear to impact l-DOPA-induced striatal NE efflux. The current study implicates l-DOPA-induced striatal NE as an important factor in LID expression and demonstrates the importance of developing treatment strategies that co-modulate the NE and DA systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Temporary Depletion of Microglia during the Early Postnatal Period Induces Lasting Sex-Dependent and Sex-Independent Effects on Behavior in Rats

    PubMed Central

    2016-01-01

    Abstract Microglia are the primary immune cells of the brain and function in multiple ways to facilitate proper brain development. However, our current understanding of how these cells influence the later expression of normal behaviors is lacking. Using the laboratory rat, we administered liposomal clodronate centrally to selectively deplete microglia in the developing postnatal brain. We then assessed a range of developmental, juvenile, and adult behaviors. Liposomal clodronate treatment on postnatal days 0, 2, and 4 depleted microglia with recovery by about 10 days of age and induced a hyperlocomotive phenotype, observable in the second postnatal week. Temporary microglia depletion also increased juvenile locomotion in the open field test and decreased anxiety-like behaviors in the open field and elevated plus maze. These same rats displayed reductions in predator odor–induced avoidance behavior, but increased their risk assessment behaviors compared with vehicle-treated controls. In adulthood, postnatal microglia depletion resulted in significant deficits in male-specific sex behaviors. Using factor analysis, we identified two underlying traits—behavioral disinhibition and locomotion—as being significantly altered by postnatal microglia depletion. These findings further implicate microglia as being critically important to the development of juvenile and adult behavior. PMID:27957532

  10. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans

    PubMed Central

    Zhang, Liangyu; Ward, Jordan D.; Cheng, Ze; Dernburg, Abby F.

    2015-01-01

    Experimental manipulation of protein abundance in living cells or organisms is an essential strategy for investigation of biological regulatory mechanisms. Whereas powerful techniques for protein expression have been developed in Caenorhabditis elegans, existing tools for conditional disruption of protein function are far more limited. To address this, we have adapted the auxin-inducible degradation (AID) system discovered in plants to enable conditional protein depletion in C. elegans. We report that expression of a modified Arabidopsis TIR1 F-box protein mediates robust auxin-dependent depletion of degron-tagged targets. We document the effectiveness of this system for depletion of nuclear and cytoplasmic proteins in diverse somatic and germline tissues throughout development. Target proteins were depleted in as little as 20-30 min, and their expression could be re-established upon auxin removal. We have engineered strains expressing TIR1 under the control of various promoter and 3′ UTR sequences to drive tissue-specific or temporally regulated expression. The degron tag can be efficiently introduced by CRISPR/Cas9-based genome editing. We have harnessed this system to explore the roles of dynamically expressed nuclear hormone receptors in molting, and to analyze meiosis-specific roles for proteins required for germ line proliferation. Together, our results demonstrate that the AID system provides a powerful new tool for spatiotemporal regulation and analysis of protein function in a metazoan model organism. PMID:26552885

  11. Rapid depletion of budding yeast proteins by fusion to a heat-inducible degron.

    PubMed

    Sanchez-Diaz, Alberto; Kanemaki, Masato; Marchesi, Vanessa; Labib, Karim

    2004-03-02

    One effective way to study the biological function of a protein in vivo is to inactivate it and see what happens to the cell. For proteins that are dispensable for cell viability, the corresponding gene can simply be deleted from its chromosomal locus. The study of essential proteins is more challenging, however, because the function of the protein must be inactivated conditionally. Here, we describe a method that allows the target protein to be depleted rapidly and conditionally, so that the immediate effects on the cell can be examined. The chromosomal locus of a budding yeast gene is modified so that a "heat-inducible degron cassette" is added to the N terminus of the encoded protein, causing it to be degraded by a specific ubiquitin-mediated pathway when cells are shifted from 24 degrees to 37 degrees C. Degradation requires recognition of the degron cassette by the evolutionarily conserved Ubr1 protein, which is associated with a ubiquitin-conjugating enzyme. To promote rapid and conditional depletion of the target protein, we use a yeast strain in which expression of the UBR1 gene can be either repressed or strongly induced. Degron strains are constructed by a simple "one-step" approach using the polymerase chain reaction.

  12. Lipopolysaccharide mitagates methamphetamine-induced striatal dopamine depletion via modulating local TNF-alpha and dopamine transporter expression.

    PubMed

    Lai, Yu-Ting; Tsai, Yen-Ping N; Cherng, Chianfang G; Ke, Jing-Jer; Ho, Ming-Che; Tsai, Chia-Wen; Yu, Lung

    2009-04-01

    Systemic lipopolysaccharide (LPS) treatment may affect methamphetamine (MA)-induced nigrostriatal dopamine (DA) depletion. This study was undertaken to determine the critical time window for the protective effects of LPS treatment and the underlying mechanisms. An LPS injection (1 mg/kg) 72 h before or 2 h after MA treatment [three consecutive, subcutaneous injections of MA (10 mg/kg each) at 2-h intervals] diminished the MA-induced DA depletion in mouse striatum. Such an LPS-associated effect was independent of MA-produced hyperthermia. TNF-alpha, IL-1beta, IL-6 expressions were all elevated in striatal tissues following a systemic injection with LPS, indicating that peripheral LPS treatment affected striatal pro-inflammatory cytokine expression. Striatal TNF-alpha expression was dramatically increased at 72 and 96 h after the MA treatment, while such TNF-alpha elevation was abolished by the LPS pretreatment protocol. Moreover, MA-produced activation of nuclear NFkappaB, a transcription factor following TNF-alpha activation, in striatum was abolished by the LPS (1 mg/kg) pretreatment. Furthermore, thalidomide, a TNF-alpha antagonist, treatment abolished the LPS pretreatment-associated protective effects. Pretreatment with mouse recombinant TNF-alpha in striatum diminished the MA-produced DA depletion. Finally, single LPS treatment caused a rapid down-regulation of dopamine transporter (DAT) in striatum. Taken together, we conclude that peripheral LPS treatment protects nigrostriatal DA neurons against MA-induced toxicity, in part, by reversing elevated TNF-alpha expression and subsequent signaling cascade and causing a rapid DAT down-regulation in striatum.

  13. Water infiltration in prewetted porous media: dynamic capillary pressure and Green-Ampt modeling

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Hilpert, M.

    2013-12-01

    Recently, an experimental study has shown that the modified Green-Ampt (GA) model, which accounts for a velocity-dependent capillary pressure, can describe water infiltration in dry sand columns better than the classical GA model. Studies have also shown that the initial water content of prewetted porous media affects the dynamic capillary pressure during infiltration. In this study, we performed a series of downward water infiltration experiments in prewetted sand columns for four different initial water contents: 0%, 3.3%, 6.5%, and 13.8%. We also used three different ponding heights: 10 cm, 20 cm, and 40 cm. As expected, an increase in ponding height resulted in a monotonic increase in cumulative infiltration. However, we found anomalous behavior, in that the cumulative infiltration did not monotonically decrease as the initial water content increased. When modeling the experiments with the modified GA approach, we linked this anomalous behavior to the reduction factor in the model for dynamic capillary pressure that is a function of initial water content.

  14. Optical observations of the AMPTE artificial comet and magnetotail barium releases

    NASA Technical Reports Server (NTRS)

    Hallinan, T. J.; Stenbaek-Nielsen, H.; Brown, N.

    1985-01-01

    The first AMPTE artificial comet was observed with a low light level television camera operated aboard the NASA CV990 flying out of Moffett Field, California. The comet head, neutral cloud, and comet tail were all observed for four minutes with an unifiltered camera. Brief observations at T + 4 minutes through a 4554A Ba(+) filter confirmed the identification of the structures. The ion cloud expanded along with the neutral cloud at a rate of 2.3 km/sec (diameter) until it reached a final diameter of approx. 170 km at approx. T + 90 s. It also drifted with the neutral cloud until approx. 165 s. By T + 190 s it had reached a steady state velocity of 5.4 km/sec southward. A barium release in the magnetotail was observed from the CV990 in California, Eagle, Alaska, and Fairbanks, Alaska. Over a twenty-five minute period, the center of the barium streak drifted southward (approx. 500 m/sec), upward (24 km/sec) and eastward (approx 1 km/sec) in a nonrotating reference frame. An all-sky TV at Eagle showed a single auroral arc in the far North during this period.

  15. Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans

    PubMed Central

    Crockett, Molly J.; Clark, Luke; Robbins, Trevor W.

    2009-01-01

    The neuromodulator serotonin has been implicated in a large number of affective and executive functions, but its precise contribution to motivation remains unclear. One influential hypothesis has implicated serotonin in aversive processing; another has proposed a more general role for serotonin in behavioral inhibition. Since behavioral inhibition is a pre-potent reaction to aversive outcomes, it has been a challenge to reconcile these two accounts. Here, we show that serotonin is critical for punishment-induced inhibition, but not overall motor response inhibition or reporting aversive outcomes. We used acute tryptophan depletion to temporarily lower brain serotonin in healthy human volunteers as they completed a novel task designed to obtain separate measures of motor response inhibition, punishment-induced inhibition, and sensitivity to aversive outcomes. Following a placebo treatment, participants were slower to respond under punishment conditions, compared to reward conditions. Tryptophan depletion abolished this punishment-induced inhibition, without affecting overall motor response inhibition or the ability to adjust response bias in line with punishment contingencies. The magnitude of reduction in punishment-induced inhibition depended on the degree to which tryptophan depletion reduced plasma tryptophan levels. These findings extend and clarify previous research on the role of serotonin in aversive processing and behavioral inhibition, and fit with current theorizing on serotonin's involvement in predicting aversive outcomes. PMID:19776285

  16. Evaluation program for secondary spacecraft cells. Initial evaluation tests of General Electric Company 4.0 ampere-hour nickel-cadmium spacecraft cells for the AMPTE satellite program

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1984-01-01

    Cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open circuit voltage above 1.150 volts during the internal short test are addressed. The Active Magnetic Particle Tracer Explorer (AMPTE) cell design was characterized and the effects of specific mission parameters on cell life were demonstrated.

  17. Cerebrospinal fluid monoamines in Prader-Willi syndrome.

    PubMed

    Akefeldt, A; Ekman, R; Gillberg, C; Månsson, J E

    1998-12-15

    The behavioral phenotype of Prader-Willi syndrome (PWS) suggests hypothalamic dysfunction and altered neurotransmitter regulation. The purpose of this study was to examine whether there was any difference in the concentrations of monoamine metabolites in the cerebrospinal fluid (CSF) in PWS and non-PWS comparison cases. The concentration of monoamine metabolites in CSF was determined in 13 children and adolescents with PWS diagnosed on clinical and genetic criteria. The concentrations were compared with those from 56 comparison cases in healthy and other contrast groups. The concentrations of dopamine and particularly serotonin metabolites were increased in the PWS group. The differences were most prominent for 5-hydroxyindoleacetic acid. The increased concentrations were found in all PWS cases independently of age, body mass index, and level of mental retardation. The findings implicate dysfunction of the serotonergic system and possibly also of the dopamine system in PWS individuals, and might help inform future psychopharmacologic studies.

  18. Ascorbic acid glucoside reduces neurotoxicity and glutathione depletion in mouse brain induced by nitrotriazole radiosensitazer.

    PubMed

    Cherdyntseva, Nadezda V; Ivanova, Anna A; Ivanov, Vladimir V; Cherdyntsev, Evgeny; Nair, Cherupally Krishnan Krishnan; Kagiya, Tsutomu V

    2013-01-01

    To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G) to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g) were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Administration of high (non-therapeutic) doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.

  19. AMP kinase–mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis

    PubMed Central

    Concannon, Caoimhín G.; Tuffy, Liam P.; Weisová, Petronela; Bonner, Helena P.; Dávila, David; Bonner, Caroline; Devocelle, Marc C.; Strasser, Andreas; Ward, Manus W.

    2010-01-01

    Excitotoxicity after glutamate receptor overactivation induces disturbances in cellular ion gradients, resulting in necrosis or apoptosis. Excitotoxic necrosis is triggered by rapid, irreversible ATP depletion, whereas the ability to recover cellular bioenergetics is suggested to be necessary for the activation of excitotoxic apoptosis. In this study, we demonstrate that even a transient decrease in cellular bioenergetics and an associated activation of adenosine monophosphate–activated protein kinase (AMPK) is necessary for the activation of excitotoxic apoptosis. We show that the Bcl-2 homology domain 3 (BH3)–only protein Bim, a proapoptotic Bcl-2 family member, is activated in multiple excitotoxicity paradigms, mediates excitotoxic apoptosis, and inhibits delayed Ca2+ deregulation, mitochondrial depolarization, and apoptosis-inducing factor translocation. We demonstrate that bim activation required the activation of AMPK and that prolonged AMPK activation is sufficient to induce bim gene expression and to trigger a bim-dependent cell death. Collectively, our data demonstrate that AMPK activation and the BH3-only protein Bim couple transient energy depletion to stress-induced neuronal apoptosis. PMID:20351066

  20. Toll-like receptors 2 and 4 contribute to sepsis-induced depletion of spleen dendritic cells.

    PubMed

    Pène, Frédéric; Courtine, Emilie; Ouaaz, Fatah; Zuber, Benjamin; Sauneuf, Bertrand; Sirgo, Gonzalo; Rousseau, Christophe; Toubiana, Julie; Balloy, Viviane; Chignard, Michel; Mira, Jean-Paul; Chiche, Jean-Daniel

    2009-12-01

    Depletion of dendritic cells (DC) in secondary lymphoid organs is a hallmark of sepsis-induced immune dysfunction. In this setting, we investigated if Toll-like receptor (TLR)-dependent signaling might modulate the maturation process and the survival of DC. Using a model of sublethal polymicrobial sepsis induced by cecal ligation and puncture, we investigated the quantitative and functional features of spleen DC in wild-type, TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. By 24 h, a decrease in the relative percentage of CD11c(high) spleen DC occurred in wild-type mice but was prevented in TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. In wild-type mice, sepsis dramatically affected both CD11c(+) CD8alpha(+) and CD11c(+) CD8alpha(-) subsets. In all three types of knockout mice studied, the CD11c(+) CD8alpha(+) subset followed a depletion pattern similar to that for wild-type mice. In contrast, the loss of CD11c(+) CD8alpha(-) cells was attenuated in TLR2(-/-) and TLR4(-/-) mice and completely prevented in TLR2(-/-) TLR4(-/-) mice. Accordingly, apoptosis of spleen DC was increased in septic wild-type mice and inhibited in knockout mice. In addition we characterized the functional features of spleen DC obtained from septic mice. As shown by increased expression of major histocompatibility complex class II and CD86, polymicrobial sepsis induced maturation of DC, with subsequent increased capacity to prime T lymphocytes, similarly in wild-type and knockout mice. In response to CpG DNA stimulation, production of interleukin-12 was equally impaired in DC obtained from wild-type and knockout septic mice. In conclusion, although dispensable for the DC maturation process, TLR2 and TLR4 are involved in the mechanisms leading to depletion of spleen DC following polymicrobial sepsis.

  1. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage.

    PubMed

    Siebelt, Michiel; Groen, Harald C; Koelewijn, Stuart J; de Blois, Erik; Sandker, Marjan; Waarsing, Jan H; Müller, Cristina; van Osch, Gerjo J V M; de Jong, Marion; Weinans, Harrie

    2014-01-29

    Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced

  2. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage

    PubMed Central

    2014-01-01

    Introduction Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. Methods sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. Results All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Conclusions Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage

  3. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    PubMed

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  4. A comparison of energetic ions in the plasma depletion layer and the quasi-parallel magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselier, Stephen A.

    1994-01-01

    Energetic ion spectra measured by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) downstream from the Earth's quasi-parallel bow shock (in the quasi-parallel magnetosheath) and in the plasma depletion layer are compared. In the latter region, energetic ions are from a single source, leakage of magnetospheric ions across the magnetopause and into the plasma depletion layer. In the former region, both the magnetospheric source and shock acceleration of the thermal solar wind population at the quasi-parallel shock can contribute to the energetic ion spectra. The relative strengths of these two energetic ion sources are determined through the comparison of spectra from the two regions. It is found that magnetospheric leakage can provide an upper limit of 35% of the total energetic H(+) population in the quasi-parallel magnetosheath near the magnetopause in the energy range from approximately 10 to approximately 80 keV/e and substantially less than this limit for the energetic He(2+) population. The rest of the energetic H(+) population and nearly all of the energetic He(2+) population are accelerated out of the thermal solar wind population through shock acceleration processes. By comparing the energetic and thermal He(2+) and H(+) populations in the quasi-parallel magnetosheath, it is found that the quasi-parallel bow shock is 2 to 3 times more efficient at accelerating He(2+) than H(+). This result is consistent with previous estimates from shock acceleration theory and simulati ons.

  5. A Comparative study for striatal-direct and -indirect pathway neurons to DA depletion-induced lesion in a PD rat model.

    PubMed

    Zheng, Xuefeng; Wu, Jiajia; Zhu, Yaofeng; Chen, Si; Chen, Zhi; Chen, Tao; Huang, Ziyun; Wei, Jiayou; Li, Yanmei; Lei, Wanlong

    2018-04-16

    Striatal-direct and -indirect Pathway Neurons showed different vulnerability in basal ganglia disorders. Therefore, present study aimed to examine and compare characteristic changes of densities, protein and mRNA levels of soma, dendrites, and spines between striatal-direct and -indirect pathway neurons after DA depletion by using immunohistochemistry, Western blotting, real-time PCR and immunoelectron microscopy techniques. Experimental results showed that: 1) 6OHDA-induced DA depletion decreased the soma density of striatal-direct pathway neurons (SP+), but no significant changes for striatal-indirect pathway neurons (ENK+). 2) DA depletion resulted in a decline of dendrite density for both striatal-direct (D1+) and -indirect (D2+) pathway neurons, and D2+ dendritic density declined more obviously. At the ultrastructure level, the densities of D1+ and D2+ dendritic spines reduced in the 6OHDA groups compared with their control groups, but the density of D2+ dendritic spines reduced more significant than that of D1. 3) Striatal DA depletion down-regulated protein and mRNA expression levels of SP and D1, on the contrary, ENK and D2 protein and mRNA levels of indirect pathway neurons were up-regulated significantly. Present results suggested that indirect pathway neurons be more sensitive to 6OHDA-induced DA depletion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The separate and combined effects of monoamine oxidase inhibition and nicotine on P50 sensory gating.

    PubMed

    Smith, Dylan M; Fisher, Derek; Blier, Pierre; Illivitsky, Vadim; Knott, Verner

    2015-06-01

    The cognitive effects of nicotine in humans remain a topic of great interest, due to the continued prevalence of cigarette smoking in society as well as the hypothesis that cognitively impaired populations such as schizophrenia patients use nicotine as a means of self-medicating against deficits of sensory gating. However, chronic smoking can predispose individuals to robust monoamine oxidase (MAO) inhibition, and thus far, the effect of MAO inhibition on human sensory gating is unknown. In this study, we investigated the effects of both nicotine (6-mg gum) and pharmacologically induced MAO-A inhibition via moclobemide (75 mg) on P50 event-related potential-indexed sensory gating in a sample of 24 healthy non-smoking males. Ratio score (rP50) measured gating revealed significant improvement in auditory stimulus suppression after combined nicotine and MAO-A inhibition compared to placebo and to the nicotine-alone condition. This nicotine + MAO-A inhibition-induced efficient gating was consistent regardless of participants' baseline (placebo) gating efficiency, despite the observation that nicotine in the absence of MAO-A inhibition exhibited a detrimental effect on gating in participants with high baseline suppression ratios. Nicotine and monoamine oxidase-inhibiting agents in tobacco smoke appear to exert a synergistic effect on sensory gating, which may contribute to the elevated dependence rates seen in populations with cognitive deficits such as schizophrenia.

  7. 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings.

    PubMed

    Baumann, Michael H; Wang, Xiaoying; Rothman, Richard B

    2007-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of "interspecies scaling" to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1-2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10-20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks.

  8. Cerebrospinal Fluid Levels of Monoamine Metabolites in the Epileptic Baboon

    PubMed Central

    Szabó, C. Ákos; Patel, Mayuri; Uteshev, Victor V.

    2016-01-01

    The baboon represents a natural model for genetic generalized epilepsy and sudden unexpected death in epilepsy (SUDEP). In this retrospective study, cerebrospinal fluid (CSF) monoamine metabolites and scalp electroencephalography (EEG) were evaluated in 263 baboons of a pedigreed colony. CSF monoamine abnormalities have been linked to reduced seizure thresholds, behavioral abnormalities and SUDEP in various animal models of epilepsy. The levels of 3-hydroxy-4-methoxyphenylglycol, 5-hydroxyindolacetic acid and homovanillic acid in CSF samples drawn from the cisterna magna were analyzed using high-performance liquid chromatography. These levels were compared between baboons with seizures (SZ), craniofacial trauma (CFT) and asymptomatic, control (CTL) baboons, between baboons with abnormal and normal EEG studies. We hypothesized that the CSF levels of major monoaminergic metabolites (i.e., dopamine, serotonin and norepinephrine) associate with the baboons’ electroclinical status and thus can be used as clinical biomarkers applicable to seizures/epilepsy. However, despite apparent differences in metabolite levels between the groups, usually lower in SZ and CFT baboons and in baboons with abnormal EEG studies, we did not find any statistically significant differences using a logistic regression analysis. Significant correlations between the metabolite levels, especially between 5-HIAA and HVA, were preserved in all electroclinical groups. While we were not able to demonstrate significant differences in monoamine metabolites in relation to seizures or EEG markers of epilepsy, we cannot exclude the monoaminergic system as a potential source of pathogenesis in epilepsy and SUDEP. A prospective study evaluating serial CSF monoamine levels in baboons with recently witnessed seizures, and evaluation of abnormal expression and function of monoaminergic receptors and transporters within epilepsy-related brain regions, may impact the electroclinical status. PMID:26924854

  9. Monoamine Oxidases Regulate Telencephalic Neural Progenitors in Late Embryonic and Early Postnatal Development

    PubMed Central

    Cheng, Aiwu; Scott, Anna L.; Ladenheim, Bruce; Chen, Kevin; Ouyang, Xin; Lathia, Justin D.; Mughal, Mohamed; Cadet, Jean Lud; Mattson, Mark P.; Shih, Jean C.

    2010-01-01

    Monoamine neurotransmitters play major roles in regulating a range of brain functions in adults and increasing evidence suggests roles for monoamines in brain development. Here we show that mice lacking the monoamine metabolic enzymes MAO A and MAO B (MAO AB-deficient mice) exhibit diminished proliferation of neural stem cells (NSC) in the developing telencephalon beginning in late gestation [embryonic day (E) 17.5], a deficit that persists in neonatal and adult mice. These mice showed significantly increased monoamine levels and anxiety-like behaviors as adults. Assessments of markers of intermediate progenitor cells (IPC) and mitosis showed that NSC in the subventricular zone (SVZ), but not in the ventricular zone, are reduced in MAO AB-deficient mice. A developmental time course of monoamines in frontal cortical tissues revealed increased serotonin levels as early as E14.5, and a further large increase was found between E17.5 and postnatal day 2. Administration of an inhibitor of serotonin synthesis (parachlorophenylalanine) between E14.5 and E19.5 restored the IPC numbers and SVZ thickness, suggesting the role of serotonin in the suppression of IPC proliferation. Studies of neurosphere cultures prepared from the telencephalon at different embryonic and postnatal ages showed that serotonin stimulates proliferation in wild-type, but not in MAO AB-deficient, NSC. Together, these results suggest that a MAO-dependent long-lasting alteration in the proliferation capacity of NSC occurs late in embryonic development and is mediated by serotonin. Our findings reveal novel roles for MAOs and serotonin in the regulation of IPC proliferation in the developing brain. PMID:20702706

  10. Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice.

    PubMed

    Von Linstow, C U; Severino, M; Metaxas, A; Waider, J; Babcock, A A; Lesch, K P; Gramsbergen, J B; Finsen, B

    2017-09-01

    Aging is the greatest single risk factor of the neurodegenerative disorder Alzheimer's disease (AD). The monoaminergic system, including serotonin (5-HT), dopamine (DA) and noradrenaline (NA) modulates cognition, which is affected in AD. Changes in monoamine levels have been observed in AD, but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APP SWE /PS1 ΔE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice. In combination, these findings indicate that aging alone is not sufficient to affect brain monoamine levels, unlike the APP SWE /PS1 ΔE9 genotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. MONOAMINE OXIDASE: From Genes to Behavior

    PubMed Central

    Shih, J. C.; Chen, K.; Ridd, M. J.

    2010-01-01

    Cloning of MAO (monoamine oxidase) A and B has demonstrated unequivocally that these enzymes are made up of different polypeptides, and our understanding of MAO structure, regulation, and function has been significantly advanced by studies using their cDNA. MAO A and B genes are located on the X-chromosome (Xp11.23) and comprise 15 exons with identical intron-exon organization, which suggests that they are derived from the same ancestral gene. MAO A and B knockout mice exhibit distinct differences in neurotransmitter metabolism and behavior. MAO A knock-out mice have elevated brain levels of serotonin, norephinephrine, and dopamine and manifest aggressive behavior similar to human males with a deletion of MAO A. In contrast, MAO B knock-out mice do not exhibit aggression and only levels of phenylethylamine are increased. Mice lacking MAO B are resistant to the Parkinsongenic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine. Both MAO A and B knock-out mice show increased reactivity to stress. These knock-out mice are valuable models for investigating the role of monoamines in psychoses and neurodegenerative and stress-related disorders. PMID:10202537

  12. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    PubMed

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  13. The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons

    PubMed Central

    Lawal, Hakeem O.; Chang, Hui-Yun; Terrell, Ashley N.; Brooks, Elizabeth S.; Pulido, Dianne; Simon, Anne F.; Krantz, David E.

    2010-01-01

    Dopamine is cytotoxic and may play a role in the development of Parkinson’s disease. However, its interaction with environmental risk factors such as pesticides remains poorly understood. The vesicular monoamine transporter (VMAT) regulates intracellular dopamine content, and we have tested the neuroprotective effects of VMAT in vivo using the model organism Drosophila melanogaster. We find that Drosophila VMAT (dVMAT) mutants contain fewer dopaminergic neurons than wild type, consistent with a developmental effect, and that dopaminergic cell loss in the mutant is exacerbated by the pesticides rotenone and paraquat. Over-expression of DVMAT protein does not increase the survival of animals exposed to rotenone, but blocks the loss of dopaminergic neurons caused by this pesticide. These results are the first to demonstrate an interaction between a VMAT and pesticides in vivo, and provide an important model to investigate the mechanisms by which pesticides and cellular DA may interact to kill dopaminergic cells. PMID:20472063

  14. Antidepressant like effects of hydrolysable tannins of Terminalia catappa leaf extract via modulation of hippocampal plasticity and regulation of monoamine neurotransmitters subjected to chronic mild stress (CMS).

    PubMed

    Chandrasekhar, Y; Ramya, E M; Navya, K; Phani Kumar, G; Anilakumar, K R

    2017-02-01

    Terminalia catappa L. belonging to Combretaceae family is a folk medicine, known for its multiple pharmacological properties, but the neuro-modulatory effect of TC against chronic mild stress was seldom explored. The present study was designed to elucidate potential antidepressant-like effect of Terminalia cattapa (leaf) hydro-alcoholic extract (TC) by using CMS model for a period of 7 weeks. Identification of hydrolysable tannins was done by using LC-MS. After the CMS exposure, mice groups were administered with imipramine (IMP, 10mg/kg, i.p.) and TC (25, 50 and 100mg/kg of TC, p.o.). Behavioural paradigms used for the study included forced swimming test (FST), tail suspension test (TST) and sucrose preference test (SPT). After behavioural tests, monoamine neurotransmitter, cortisol, AchE, oxidative stress levels and mRNA expression studies relevant to depression were assessed. TC supplementation significantly reversed CMS induced immobility time in FST and other behavioural paradigms. Moreover, TC administration significantly restored CMS induced changes in concentrations of hippocampal neurotransmitters (5-HT, DA and NE) as well as levels of acetyl cholinesterase, cortisol, monoamine oxidases (MAO-A, MAO-B), BDNF, CREB, and p-CREB. It suggests that TC supplementation could supress stress induced depression by regulating monoamine neurotransmitters, CREB, BDNF, cortisol, AchE level as well as by amelioration of oxidative stress. Hence TC can be used as a complementary medicine against depression-like disorder. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state.

    PubMed

    Hanning, Jennifer E; Saini, Harpreet K; Murray, Matthew J; Caffarel, Maria M; van Dongen, Stijn; Ward, Dawn; Barker, Emily M; Scarpini, Cinzia G; Groves, Ian J; Stanley, Margaret A; Enright, Anton J; Pett, Mark R; Coleman, Nicholas

    2013-11-01

    In cervical carcinomas, high-risk human papillomavirus (HR-HPV) may be integrated into host chromosomes or remain extra-chromosomal (episomal). We used the W12 cervical keratinocyte model to investigate the effects of HPV16 early gene depletion on in vitro cervical carcinogenesis pathways, particularly effects shared by cells with episomal versus integrated HPV16 DNA. Importantly, we were able to study the specific cellular consequences of viral gene depletion by using short interfering RNAs known not to cause phenotypic or transcriptional off-target effects in keratinocytes. We found that while cervical neoplastic progression in vitro was characterized by dynamic changes in HPV16 transcript levels, viral early gene expression was required for cell survival at all stages of carcinogenesis, regardless of viral physical state, levels of early gene expression or histology in organotypic tissue culture. Moreover, HPV16 early gene depletion induced changes in host gene expression that were common to both episome-containing and integrant-containing cells. In particular, we observed up-regulation of autophagy genes, associated with enrichment of senescence and innate immune-response pathways, including the senescence-associated secretory phenotype (SASP). In keeping with these observations, HPV16 early gene depletion induced autophagy in both episome-containing and integrant-containing W12 cells, as evidenced by the appearance of autophagosomes, punctate expression of the autophagy marker LC3, conversion of LC3B-I to LC3B-II, and reduced levels of the autophagy substrate p62. Consistent with the reported association between autophagy and senescence pathways, HPV16 early gene depletion induced expression of the senescence marker beta-galactosidase and increased secretion of the SASP-related protein IGFBP3. Together, these data indicate that depleting HR-HPV early genes would be of potential therapeutic benefit in all cervical carcinogenesis pathways, regardless of viral

  16. Monoamine reuptake inhibition and mood-enhancing potential of a specified oregano extract.

    PubMed

    Mechan, Annis O; Fowler, Ann; Seifert, Nicole; Rieger, Henry; Wöhrle, Tina; Etheve, Stéphane; Wyss, Adrian; Schüler, Göde; Colletto, Biagio; Kilpert, Claus; Aston, James; Elliott, J Martin; Goralczyk, Regina; Mohajeri, M Hasan

    2011-04-01

    A healthy, balanced diet is essential for both physical and mental well-being. Such a diet must include an adequate intake of micronutrients, essential fatty acids, amino acids and antioxidants. The monoamine neurotransmitters, serotonin, dopamine and noradrenaline, are derived from dietary amino acids and are involved in the modulation of mood, anxiety, cognition, sleep regulation and appetite. The capacity of nutritional interventions to elevate brain monoamine concentrations and, as a consequence, with the potential for mood enhancement, has not been extensively evaluated. The present study investigated an extract from oregano leaves, with a specified range of active constituents, identified via an unbiased, high-throughput screening programme. The oregano extract was demonstrated to inhibit the reuptake and degradation of the monoamine neurotransmitters in a dose-dependent manner, and microdialysis experiments in rats revealed an elevation of extracellular serotonin levels in the brain. Furthermore, following administration of oregano extract, behavioural responses were observed in mice that parallel the beneficial effects exhibited by monoamine-enhancing compounds when used in human subjects. In conclusion, these data show that an extract prepared from leaves of oregano, a major constituent of the Mediterranean diet, is brain-active, with moderate triple reuptake inhibitory activity, and exhibits positive behavioural effects in animal models. We postulate that such an extract may be effective in enhancing mental well-being in humans.

  17. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    PubMed

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Neurotoxicity with Blood-Brain Barrier Monoamine Oxidase Activity

    NASA Astrophysics Data System (ADS)

    Kalaria, Rajesh N.; Mitchell, Mary Jo; Harik, Sami I.

    1987-05-01

    Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes parkinsonism in humans and subhuman primates, but not in rats and many other laboratory animals; mice are intermediate in their susceptibility. Since MPTP causes selective dopaminergic neurotoxicity when infused directly into rat substantia nigra, we hypothesized that systemic MPTP may be metabolized by monoamine oxidase and/or other enzymes in rat brain capillaries and possibly other peripheral organs and thus prevented from reaching its neuronal sites of toxicity. We tested this hypothesis by assessing monoamine oxidase in isolated cerebral microvessels of humans, rats, and mice by measuring the specific binding of [3H]pargyline, an irreversible monoamine oxidase inhibitor, and by estimating the rates of MPTP and benzylamine oxidation. [3H]Pargyline binding to rat cerebral microvessels was about 10-fold higher than to human or mouse microvessels. Also, MPTP oxidation by rat brain microvessels was about 30-fold greater than by human microvessels; mouse microvessels yielded intermediate values. These results may explain, at least in part, the marked species differences in susceptibility to systemic MPTP. They also suggest the potential importance of ``enzyme barriers'' at the blood-brain interface that can metabolize toxins not excluded by structural barriers, and may provide biological bases for developing therapeutic strategies for the prevention of MPTP-induced neurotoxicity and other neurotoxic conditions including, possibly, Parkinson disease.

  19. Parasite manipulation of brain monoamines in California killifish (Fundulus parvipinnis) by the trematode Euhaplorchis californiensis

    USGS Publications Warehouse

    Shaw, J.C.; Korzan, W.J.; Carpenter, R.E.; Kuris, A.M.; Lafferty, K.D.; Summers, C.H.; Overli, O.

    2009-01-01

    California killifish (Fundulus parvipinnis) infected with the brain-encysting trematode Euhaplorchis californiensis display conspicuous swimming behaviours rendering them more susceptible to predation by avian final hosts. Heavily infected killifish grow and reproduce normally, despite having thousands of cysts inside their braincases. This suggests that E. californiensis affects only specific locomotory behaviours. We hypothesised that changes in the serotonin and dopamine metabolism, essential for controlling locomotion and arousal may underlie this behaviour modification. We employed micropunch dissection and HPLC to analyse monoamine and monoamine metabolite concentrations in the brain regions of uninfected and experimentally infected fish. The parasites exerted density-dependent changes in monoaminergic activity distinct from those exhibited by fish subjected to stress. Specifically, E. californiensis inhibited a normally occurring, stress-induced elevation of serotonergic metabolism in the raphae nuclei. This effect was particularly evident in the experimentally infected fish, whose low-density infections were concentrated on the brainstem. Furthermore, high E. californiensis density was associated with increased dopaminergic activity in the hypothalamus and decreased serotonergic activity in the hippocampus. In conclusion, the altered monoaminergic metabolism may explain behavioural differences leading to increased predation of the infected killifish by their final host predators. ?? 2008 The Royal Society.

  20. Beyond Monoamines-Novel Targets for Treatment-Resistant Depression: A Comprehensive Review

    PubMed Central

    Rosenblat, Christian; McIntyre, Roger S.; Alves, Gilberto S.; Fountoulakis, Konstantinos N.; Carvalho, André F.

    2015-01-01

    Major depressive disorder (MDD) is a leading cause of disability worldwide. Current first line therapies target modulation of the monoamine system. A large variety of agents are currently available that effectively alter monoamine levels; however, approximately one third of MDD patients remain treatment refractory after adequate trials of multiple monoamine based therapies. Therefore, patients with treatment-resistant depression (TRD) may require modulation of pathways outside of the classic monoamine system. The purpose of this review was thus to discuss novel targets for TRD, to describe their potential mechanisms of action, the available clinical evidence for these targets, the limitations of available evidence as well as future research directions. Several alternate pathways involved in the patho-etiology of TRD have been uncovered including the following: inflammatory pathways, the oxidative stress pathway, the hypothalamic-pituitary-adrenal (HPA) axis, the metabolic and bioenergetics system, neurotrophic pathways, the glutamate system, the opioid system and the cholinergic system. For each of these systems, several targets have been assessed in preclinical and clinical models. Preclinical models strongly implicate these pathways in the patho-etiology of MDD. Clinical trials for TRD have been conducted for several novel targets; however, most of the trials discussed are small and several are uncontrolled. Therefore, further clinical trials are required to assess the true efficacy of these targets for TRD. As well, several promising novel agents have been clinically tested in MDD populations, but have yet to be assessed specifically for TRD. Thus, their applicability to TRD remains unknown. PMID:26467412

  1. Dual inhibitors of cholinesterases and monoamine oxidases for Alzheimer's disease.

    PubMed

    Knez, Damijan; Sova, Matej; Košak, Urban; Gobec, Stanislav

    2017-05-01

    Accumulating evidence indicates a solid relationship between several enzymes and Alzheimer's disease. Cholinesterases and monoamine oxidases are closely associated with the disease symptomatology and progression and have been tackled simultaneously using several multifunctional ligands. This design strategy offers great chances to alter the course of Alzheimer's disease, in addition to alleviation of the symptoms. More than 15 years of research has led to the identification of various dual cholinesterase/monoamine oxidase inhibitors, while some showing positive outcomes in clinical trials, thus giving rise to additional research efforts in the field. The aim of this review is to provide an update on the novel dual inhibitors identified recently and to shed light on their therapeutic potential.

  2. Impaired reward learning and intact motivation after serotonin depletion in rats.

    PubMed

    Izquierdo, Alicia; Carlos, Kathleen; Ostrander, Serena; Rodriguez, Danilo; McCall-Craddolph, Aaron; Yagnik, Gargey; Zhou, Feimeng

    2012-08-01

    Aside from the well-known influence of serotonin (5-hydroxytryptamine, 5-HT) on emotional regulation, more recent investigations have revealed the importance of this monoamine in modulating cognition. Parachlorophenylalanine (PCPA) depletes 5-HT by inhibiting tryptophan hydroxylase, the enzyme required for 5-HT synthesis and, if administered at sufficiently high doses, can result in a depletion of at least 90% of the brain's 5-HT levels. The present study assessed the long-lasting effects of widespread 5-HT depletions on two tasks of cognitive flexibility in Long Evans rats: effort discounting and reversal learning. We assessed performance on these tasks after administration of either 250 or 500 mg/kg PCPA or saline (SAL) on two consecutive days. Consistent with a previous report investigating the role of 5-HT on effort discounting, pretreatment with either dose of PCPA resulted in normal effortful choice: All rats continued to climb tall barriers to obtain large rewards and were not work-averse. Additionally, rats receiving the lower dose of PCPA displayed normal reversal learning. However, despite intact motivation to work for food rewards, rats receiving the largest dose of PCPA were unexpectedly impaired relative to SAL rats on the pretraining stages leading up to reversal learning, ultimately failing to approach and respond to the stimuli associated with reward. High performance liquid chromatography (HPLC) with electrochemical detection confirmed 5-HT, and not dopamine, levels in the ventromedial frontal cortex were correlated with this measure of associative reward learning. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Dysregulation of autophagy in rat liver with mitochondrial DNA depletion induced by the nucleoside analogue zidovudine.

    PubMed

    Santos-Llamas, Ana; Monte, Maria J; Marin, Jose J G; Perez, Maria J

    2018-03-28

    The nucleoside reverse transcriptase inhibitor zidovudine (AZT), used in HIV infection treatment, induces mitochondrial DNA (mtDNA) depletion. A cause-effect relationship between mtDNA status alterations and autophagy has been reported. Both events are common in several liver diseases, including hepatocellular carcinoma. Here, we have studied autophagy activation in rat liver with mtDNA depletion induced by AZT administration in drinking water for 35 days. AZT at a concentration of 1 mg/ml, but not 0.5 mg/ml in the drinking water, decreased mtDNA levels in rat liver and extrahepatic tissues. In liver, mtDNA-encoded cytochrome c oxidase 1 protein levels were decreased. Although serum biomarkers of liver and kidney toxicity remained unaltered, β-hydroxybutyrate levels were increased in liver of AZT-treated rats. Moreover, autophagy was dysregulated at two levels: (i) decreased induction signalling of this process as indicated by increases in autophagy inhibitors activity (AKT/mTOR), and absence of changes (Beclin-1, Atg5, Atg7) or decreases (AMPK/ULK1) in the expression/activity of pro-autophagy proteins; and (ii) reduced autophagosome degradation as indicated by decreases in the lysosome abundance (LAMP2 marker) and the transcription factor TFEB controlling lysosome biogenesis. This resulted in increased autophagosome abundance (LC3-II marker) and accumulation of the protein selectively degraded by autophagy p62, and the transcription factor Nrf2 in liver of AZT-treated rats. Nrf2 was activated as indicated by the up-regulation of antioxidant target genes Nqo1 and Hmox-1. In conclusion, rat liver with AZT-induced mtDNA depletion presented dysregulations in autophagosome formation and degradation balance, which results in accumulation of these structures in parenchymal liver cells, favouring hepatocarcinogenesis.

  4. Studies on the mechanisms underlying amiloride enhancement of 3,4-methylenedioxymethamphetamine-induced serotonin depletion in rats.

    PubMed

    Goñi-Allo, Beatriz; Puerta, Elena; Hervias, Isabel; Di Palma, Richard; Ramos, Maria; Lasheras, Berta; Aguirre, Norberto

    2007-05-21

    Amiloride and several of its congeners known to block the Na(+)/Ca(2+) and/or Na(+)/H(+) antiporters potentiate methamphetamine-induced neurotoxicity without altering methamphetamine-induced hyperthermia. We now examine whether amiloride also exacerbates 3,4-methylenedioxymethamphetamine (MDMA)-induced long-term serotonin (5-HT) loss in rats. Amiloride (2.5 mg/kg, every 2 h x 3, i.p.) given at ambient temperature 30 min before MDMA (5 mg/kg, every 2 h x 3, i.p.), markedly exacerbated long-term 5-HT loss. However, in contrast to methamphetamine, amiloride also potentiated MDMA-induced hyperthermia. Fluoxetine (10 mg/kg i.p.) completely protected against 5-HT depletion caused by the MDMA/amiloride combination without significantly altering the hyperthermic response. By contrast, the calcium channel antagonists flunarizine or diltiazem did not afford any protection. Findings with MDMA and amiloride were extended to the highly selective Na(+)/H(+) exchange inhibitor dimethylamiloride, suggesting that the potentiating effects of amiloride are probably mediated by the blockade of Na(+)/H(+) exchange. When the MDMA/amiloride combination was administered at 15 degrees C hyperthermia did not develop and brain 5-HT concentrations remained unchanged 7 days later. Intrastriatal perfusion of MDMA (100 microM for 8 h) in combination with systemic amiloride caused a small depletion of striatal 5-HT content in animals made hyperthermic but not in the striatum of normothermic rats. These data suggest that enhancement of MDMA-induced 5-HT loss caused by amiloride or dimethylamiloride depends on their ability to enhance MDMA-induced hyperthermia. We hypothesise that blockade of Na(+)/H(+) exchange could synergize with hyperthermia to render 5-HT terminals more vulnerable to the toxic effects of MDMA.

  5. Increase in expression of brain serotonin transporter and monoamine oxidase a genes induced by repeated experience of social defeats in male mice.

    PubMed

    Filipenko, M L; Beilina, A G; Alekseyenko, O V; Dolgov, V V; Kudryavtseva, N N

    2002-04-01

    Serotonin transporter and monoamine oxidase (MAO) A are involved in the inactivation of serotonin. The former is responsible for serotonin re-uptake from the synapse, whereas the latter catalyzes serotonin deamination in presynaptic terminals. Expression of serotonin transporter and MAO A genes was investigated in raphe nuclei of midbrain of CBA/Lac male mice with repeated experience of social victories or defeats in 10 daily aggressive confrontations. The amount of cDNA of these genes was evaluated using multiplex RT-PCR. Two independent experiments revealed that the defeated mice were characterized by significantly higher levels of serotonin transporter and MAO A mRNAs than the control and aggressive animals. Increased expression of MAO A and serotonin transporter genes is suggested to reflect the accelerated serotonin degradation in response to activation of the serotonergic system functioning induced by social stress. Significant positive correlation between MAO A and serotonin transporter mRNA levels suggests common pathways of regulation of transcriptional activity of these genes.

  6. Molecular aspects of monoamine oxidase B.

    PubMed

    Ramsay, Rona R

    2016-08-01

    Monoamine oxidases (MAO) influence the monoamine levels in brain by virtue of their role in neurotransmitter breakdown. MAO B is the predominant form in glial cells and in platelets. MAO B structure, function and kinetics are described as a background for the effect of alterations in its activity on behavior. The need to inhibit MAO B to combat decreased brain amines continues to drive the search for new drugs. Reversible and irreversible inhibitors are now designed using data-mining, computational screening, docking and molecular dynamics. Multi-target ligands designed to combat the elevated activity of MAO B in Alzheimer's and Parkinson's Diseases incorporate MAO inhibition (usually irreversible) as well as iron chelation, antioxidant or neuroprotective properties. The main focus of drug design is the catalytic activity of MAO, but the imidazoline I2 site in the entrance cavity of MAO B is also a pharmacological target. Endogenous regulation of MAO B expression is discussed briefly in light of new studies measuring mRNA, protein, or activity in healthy and degenerative samples, including the effect of DNA methylation on the expression. Overall, this review focuses on examples of recent research on the molecular aspects of the expression, activity, and inhibition of MAO B. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Evidence for a role of transporter-mediated currents in the depletion of brain serotonin induced by serotonin transporter substrates.

    PubMed

    Baumann, Michael H; Bulling, Simon; Benaderet, Tova S; Saha, Kusumika; Ayestas, Mario A; Partilla, John S; Ali, Syed F; Stockner, Thomas; Rothman, Richard B; Sandtner, Walter; Sitte, Harald H

    2014-05-01

    Serotonin (5-HT) transporter (SERT) substrates like fenfluramine and 3,4-methylenedioxymethamphetamine cause long-term depletion of brain 5-HT, while certain other substrates do not. The 5-HT deficits produced by SERT substrates are dependent upon transporter proteins, but the exact mechanisms responsible are unclear. Here, we compared the pharmacology of several SERT substrates: fenfluramine, d-fenfluramine, 1-(m-chlorophenyl)piperazine (mCPP) and 1-(m-trifluoromethylphenyl)piperainze (TFMPP), to establish relationships between acute drug mechanisms and the propensity for long-term 5-HT depletions. In vivo microdialysis was carried out in rat nucleus accumbens to examine acute 5-HT release and long-term depletion in the same subjects. In vitro assays were performed to measure efflux of [(3)H]5-HT in rat brain synaptosomes and transporter-mediated ionic currents in SERT-expressing Xenopus oocytes. When administered repeatedly to rats (6 mg/kg, i.p., four doses), all drugs produce large sustained elevations in extracellular 5-HT (>5-fold) with minimal effects on dopamine. Importantly, 2 weeks after dosing, only rats exposed to fenfluramine and d-fenfluramine display depletion of brain 5-HT. All test drugs evoke fluoxetine-sensitive efflux of [(3)H]5-HT from synaptosomes, but d-fenfluramine and its bioactive metabolite d-norfenfluramine induce significantly greater SERT-mediated currents than phenylpiperazines. Our data confirm that drug-induced 5-HT release probably does not mediate 5-HT depletion. However, the magnitude of transporter-mediated inward current may be a critical factor in the cascade of events leading to 5-HT deficits. This hypothesis warrants further study, especially given the growing popularity of designer drugs that target SERT.

  8. Evidence for a Role of Transporter-Mediated Currents in the Depletion of Brain Serotonin Induced by Serotonin Transporter Substrates

    PubMed Central

    Baumann, Michael H; Bulling, Simon; Benaderet, Tova S; Saha, Kusumika; Ayestas, Mario A; Partilla, John S; Ali, Syed F; Stockner, Thomas; Rothman, Richard B; Sandtner, Walter; Sitte, Harald H

    2014-01-01

    Serotonin (5-HT) transporter (SERT) substrates like fenfluramine and 3,4-methylenedioxymethamphetamine cause long-term depletion of brain 5-HT, while certain other substrates do not. The 5-HT deficits produced by SERT substrates are dependent upon transporter proteins, but the exact mechanisms responsible are unclear. Here, we compared the pharmacology of several SERT substrates: fenfluramine, d-fenfluramine, 1-(m-chlorophenyl)piperazine (mCPP) and 1-(m-trifluoromethylphenyl)piperainze (TFMPP), to establish relationships between acute drug mechanisms and the propensity for long-term 5-HT depletions. In vivo microdialysis was carried out in rat nucleus accumbens to examine acute 5-HT release and long-term depletion in the same subjects. In vitro assays were performed to measure efflux of [3H]5-HT in rat brain synaptosomes and transporter-mediated ionic currents in SERT-expressing Xenopus oocytes. When administered repeatedly to rats (6 mg/kg, i.p., four doses), all drugs produce large sustained elevations in extracellular 5-HT (>5-fold) with minimal effects on dopamine. Importantly, 2 weeks after dosing, only rats exposed to fenfluramine and d-fenfluramine display depletion of brain 5-HT. All test drugs evoke fluoxetine-sensitive efflux of [3H]5-HT from synaptosomes, but d-fenfluramine and its bioactive metabolite d-norfenfluramine induce significantly greater SERT-mediated currents than phenylpiperazines. Our data confirm that drug-induced 5-HT release probably does not mediate 5-HT depletion. However, the magnitude of transporter-mediated inward current may be a critical factor in the cascade of events leading to 5-HT deficits. This hypothesis warrants further study, especially given the growing popularity of designer drugs that target SERT. PMID:24287719

  9. Monoamine Release in the Cat Lumbar Spinal Cord during Fictive Locomotion Evoked by the Mesencephalic Locomotor Region

    PubMed Central

    Noga, Brian R.; Turkson, Riza P.; Xie, Songtao; Taberner, Annette; Pinzon, Alberto; Hentall, Ian D.

    2017-01-01

    Spinal cord neurons active during locomotion are innervated by descending axons that release the monoamines serotonin (5-HT) and norepinephrine (NE) and these neurons express monoaminergic receptor subtypes implicated in the control of locomotion. The timing, level and spinal locations of release of these two substances during centrally-generated locomotor activity should therefore be critical to this control. These variables were measured in real time by fast-cyclic voltammetry in the decerebrate cat’s lumbar spinal cord during fictive locomotion, which was evoked by electrical stimulation of the mesencephalic locomotor region (MLR) and registered as integrated activity in bilateral peripheral nerves to hindlimb muscles. Monoamine release was observed in dorsal horn (DH), intermediate zone/ventral horn (IZ/VH) and adjacent white matter (WM) during evoked locomotion. Extracellular peak levels (all sites) increased above baseline by 138 ± 232.5 nM and 35.6 ± 94.4 nM (mean ± SD) for NE and 5-HT, respectively. For both substances, release usually began prior to the onset of locomotion typically earliest in the IZ/VH and peaks were positively correlated with net activity in peripheral nerves. Monoamine levels gradually returned to baseline levels or below at the end of stimulation in most trials. Monoamine oxidase and uptake inhibitors increased the release magnitude, time-to-peak (TTP) and decline-to-baseline. These results demonstrate that spinal monoamine release is modulated on a timescale of seconds, in tandem with centrally-generated locomotion and indicate that MLR-evoked locomotor activity involves concurrent activation of descending monoaminergic and reticulospinal pathways. These gradual changes in space and time of monoamine concentrations high enough to strongly activate various receptors subtypes on locomotor activated neurons further suggest that during MLR-evoked locomotion, monoamine action is, in part, mediated by extrasynaptic neurotransmission

  10. A study of monoamine oxidase activity in fetal membranes.

    PubMed

    Sekizawa, A; Ishikawa, H; Morimoto, T; Hirose, K; Suzuki, A; Saito, H; Yanaihara, T; Arai, Y; Oguchi, K

    1996-05-01

    To study the role of decidual monoamine oxidase (MAO)-A and -B activities before delivery, the relationship between MAO activity in fetal membranes and catecholamine (CA) concentration in amniotic fluid (AF) was determined. Fetal membranes and AF were obtained at the time of elective Cesarean section (CS group, n = 11) and Cesarean section due to fetal distress without labor pains (FD group, n = 5). MAO-A and -B activities were radiometrically measured using 14C-5-hydroxytriptamine for MAO-A substrate and 14C-benzylamine for MAO-B substrate. CA concentrations in AF were measured by high performance liquid chromatograph with an electro-chemical detector. Both MAO-A and -B activities in decidua obtained from CS were significantly lower than those obtained from FD. Both norepinephrine (NE) and epinephrine (EP) concentrations were significantly lower in the CS group than the FD group. A significant positive correlation between decidual MAO-A activity and NE concentration in AF was observed. No significant correlation was observed between MAO-B activity and the concentration of NE in AF. There was no correlation between EP concentrations and MAO activities. These results suggest that CA concentration in AF may be related to the activity of MAO in fetal membranes, determined by certain physiological processes during pregnancy. It has been suggested that metabolism of monoamines in fetal membranes also plays an important role in reducing monoamine influx into maternal myometrium from the AF.

  11. Monoamine oxidase inhibitors from Gentiana lutea.

    PubMed

    Haraguchi, Hiroyuki; Tanaka, Yasumasa; Kabbash, Amal; Fujioka, Toshihiro; Ishizu, Takashi; Yagi, Akira

    2004-08-01

    Three monoamine oxidase (MAO) inhibitors were isolated from Gentiana lutea. Their structures were elucidated to be 3-3''linked-(2'-hydroxy-4-O-isoprenylchalcone)-(2'''-hydroxy-4''-O-isoprenyldihydrochalcone) (1), 2-methoxy-3-(1,1'-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one and 5-hydroxyflavanone. These compounds, and the hydrolysis product of 1, displayed competitive inhibitory properties against MAO-B which was more effective than MAO-A.

  12. Renal Cortical Pyruvate Depletion during AKI

    PubMed Central

    Johnson, Ali C.M.; Becker, Kirsten

    2014-01-01

    Pyruvate is a key intermediary in energy metabolism and can exert antioxidant and anti-inflammatory effects. However, the fate of pyruvate during AKI remains unknown. Here, we assessed renal cortical pyruvate and its major determinants (glycolysis, gluconeogenesis, pyruvate dehydrogenase [PDH], and H2O2 levels) in mice subjected to unilateral ischemia (15–60 minutes; 0–18 hours of vascular reflow) or glycerol-induced ARF. The fate of postischemic lactate, which can be converted back to pyruvate by lactate dehydrogenase, was also addressed. Ischemia and glycerol each induced persistent pyruvate depletion. During ischemia, decreasing pyruvate levels correlated with increasing lactate levels. During early reperfusion, pyruvate levels remained depressed, but lactate levels fell below control levels, likely as a result of rapid renal lactate efflux. During late reperfusion and glycerol-induced AKI, pyruvate depletion corresponded with increased gluconeogenesis (pyruvate consumption). This finding was underscored by observations that pyruvate injection increased renal cortical glucose content in AKI but not normal kidneys. AKI decreased PDH levels, potentially limiting pyruvate to acetyl CoA conversion. Notably, pyruvate therapy mitigated the severity of AKI. This renoprotection corresponded with increases in cytoprotective heme oxygenase 1 and IL-10 mRNAs, selective reductions in proinflammatory mRNAs (e.g., MCP-1 and TNF-α), and improved tissue ATP levels. Paradoxically, pyruvate increased cortical H2O2 levels. We conclude that AKI induces a profound and persistent depletion of renal cortical pyruvate, which may induce additional injury. PMID:24385590

  13. Structure-Activity Relationship Analysis of 3-phenylcoumarin-Based Monoamine Oxidase B Inhibitors

    NASA Astrophysics Data System (ADS)

    Rauhamäki, Sanna; Postila, Pekka A.; Niinivehmas, Sanna; Kortet, Sami; Schildt, Emmi; Pasanen, Mira; Manivannan, Elangovan; Ahinko, Mira; Koskimies, Pasi; Nyberg, Niina; Huuskonen, Pasi; Multamäki, Elina; Pasanen, Markku; Juvonen, Risto O.; Raunio, Hannu; Huuskonen, Juhani; Pentikäinen, Olli T.

    2018-03-01

    Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson’s disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM - 1 µM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.

  14. Effects of high-dose fenfluramine treatment on monoamine uptake sites in rat brain: Assessment using quantitative autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, N.M.; Mitchell, W.M.; Contrera, J.F.

    1990-01-01

    Fenfluramine is an amphetamine derivative that in humans is used primarily as an anorectic agent in the treatment of obesity. In rats, subchronic high-dose d,l-fenfluramine treatment (24 mg/kg subcutaneously, twice daily for 4 days) causes long-lasting decreases in brain serotonin (5HT), its metabolite 5-hydroxyindoleacetic acid, and high-affinity 5HT uptake sites. Moreover, this high-dose treatment regimen causes both selective long-lasting decreases in fine-caliber 5HT-immunoreactive axons and appearance of other 5HT-immunoreactive axons with morphology characteristic of degenerating axons. Determination of the potential neurotoxic effects of fenfluramine treatment using immunohistochemistry is limited from the perspectives that staining is difficult to quantify and thatmore » it relies on presence of the antigen (in this case 5HT), and the 5HT-depleting effects of fenfluramine are well known. In the present study, we used quantitative in vitro autoradiography to assess, in detail, the density and regional distribution of (3H)paroxetine-labeled 5HT and (3H)mazindol-labeled catecholamine uptake sites in response to the high-dose fenfluramine treatment described above. Because monoamine uptake sites are concentrated on monoamine-containing nerve terminals, decreases in uptake site density would provide a quantitative assessment of potential neurotoxicity resulting from this fenfluramine treatment regimen. Marked decreases in densities of (3H)paroxetine-labeled 5HT uptake sites occurred in brain regions in which fenfluramine treatment decreased the density of 5HT-like immunostaining when compared to saline-treated control rats. These included cerebral cortex, caudate putamen, hippocampus, thalamus, and medial hypothalamus.« less

  15. Monoamine neurons in the human brain stem: anatomy, magnetic resonance imaging findings, and clinical implications.

    PubMed

    Sasaki, Makoto; Shibata, Eri; Tohyama, Koujiro; Kudo, Kohsuke; Endoh, Jin; Otsuka, Kotaro; Sakai, Akio

    2008-11-19

    By using high-resolution, conventional, and neuromelanin-sensitive magnetic resonance imaging techniques, we reviewed the normal anatomy of the nuclei consisting of monoamine neurons such as dopaminergic, noradrenergic, and serotoninergic neurons and noted the changes in these nuclei that occur in some degenerative and psychiatric disorders. Multimodal MR images can directly or indirectly help in identifying the substantia nigra, locus ceruleus, and raphe nuclei that contain monoamine neurons. Neuromelanin-sensitive magnetic resonance imaging can detect signal alterations in the substantia nigra pars compacta and/or locus ceruleus that occur in Parkinson's disease and psychiatric disorders such as depression and schizophrenia. This technique seems to be promising for the noninvasive evaluation of the pathological or functional changes in the monoamine system that occur in degenerative and psychiatric disorders.

  16. Ciproxifan, a histamine H3 receptor antagonist, reversibly inhibits monoamine oxidase A and B

    PubMed Central

    Hagenow, S.; Stasiak, A.; Ramsay, R. R.; Stark, H.

    2017-01-01

    Ciproxifan is a well-investigated histamine H3 receptor (H3R) inverse agonist/antagonist, showing an exclusively high species-specific affinity at rodent compared to human H3R. It is well studied as reference compound for H3R in rodent models for neurological diseases connected with neurotransmitter dysregulation, e.g. attention deficit hyperactivity disorder or Alzheimer’s disease. In a screening for potential monoamine oxidase A and B inhibition ciproxifan showed efficacy on both enzyme isoforms. Further characterization of ciproxifan revealed IC50 values in a micromolar concentration range for human and rat monoamine oxidases with slight preference for monoamine oxidase B in both species. The inhibition by ciproxifan was reversible for both human isoforms. Regarding inhibitory potency of ciproxifan on rat brain MAO, these findings should be considered, when using high doses in rat models for neurological diseases. As the H3R and monoamine oxidases are all capable of affecting neurotransmitter modulation in brain, we consider dual targeting ligands as interesting approach for treatment of neurological disorders. Since ciproxifan shows only moderate activity at human targets, further investigations in animals are not of primary interest. On the other hand, it may serve as starting point for the development of dual targeting ligands. PMID:28084411

  17. Trpc2 Depletion Protects RBC from Oxidative Stress-Induced Hemolysis

    PubMed Central

    Hirschler-Laszkiewicz, Iwona; Zhang, Wenyi; Keefer, Kerry; Conrad, Kathleen; Tong, Qin; Chen, Shu-jen; Bronson, Sarah; Cheung, Joseph Y.; Miller, Barbara A.

    2011-01-01

    Transient receptor potential channels Trpc2 and Trpc3 are expressed on normal murine erythroid precursors, and erythropoietin stimulates an increase in intracellular calcium ([Ca2+]i) through TRPC2 and TRPC3. Because modulation of [Ca2+]i is an important signaling pathway in erythroid proliferation and differentiation, Trpc2, Trpc3, and Trpc2/Trpc3 double knockout mice were utilized to explore the roles of these channels in erythropoiesis. Trpc2, Trpc3, and Trpc2/Trpc3 double knockout mice were not anemic, and had similar red blood cell counts, hemoglobins, and reticulocyte counts as wild type littermate controls. Although the erythropoietin induced increase in [Ca2+]i was reduced, these knockout mice showed no defects in red cell production. The major phenotypic difference at steady state was that the mean corpuscular volume, mean corpuscular hemoglobin, and hematocrit of red cells were significantly greater in Trpc2 and Trpc2/Trpc3 double knockout mice, and mean corpuscular hemoglobin concentration was significantly reduced. All hematological parameters in Trpc3 knockout mice were similar to controls. When exposed to phenyhydrazine, unlike the Trpc3 knockouts, Trpc2 and Trpc2/Trpc3 double knockout mice showed significant resistance to hemolysis. This was associated with significant reduction in hydrogen peroxide-induced calcium influx in erythroblasts. While erythropoietin induced calcium influx through TRPC2 or TRPC3 is not critical for erythroid production, these data demonstrate that TRPC2 plays an important role in oxidative stress-induced hemolysis which may be related to reduced calcium entry in red cells in the presence of Trpc2 depletion. PMID:21924222

  18. Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion.

    PubMed

    Sarkar, Parijat; Chakraborty, Hirak; Chattopadhyay, Amitabha

    2017-06-30

    Cholesterol plays a crucial role in cell membrane organization, dynamics and function. Depletion of cholesterol represents a popular approach to explore cholesterol-sensitivity of membrane proteins. An emerging body of literature shows that the consequence of membrane cholesterol depletion often depends on the actual process (acute or chronic), although the molecular mechanism underlying the difference is not clear. Acute depletion, using cyclodextrin-type carriers, is faster relative to chronic depletion, in which inhibitors of cholesterol biosynthesis are used. With the overall goal of addressing molecular differences underlying these processes, we monitored membrane dipole potential under conditions of acute and chronic cholesterol depletion in CHO-K1 cells, using a voltage-sensitive fluorescent dye in dual wavelength ratiometric mode. Our results show that the observed membrane dipole potential exhibits difference under acute and chronic cholesterol depletion conditions, even when cholesterol content was identical. To the best of our knowledge, these results provide, for the first time, molecular insight highlighting differences in dipolar reorganization in these processes. A comprehensive understanding of processes in which membrane cholesterol gets modulated would provide novel insight in its interaction with membrane proteins and receptors, thereby allowing us to understand the role of cholesterol in cellular physiology associated with health and disease.

  19. The use of monoamine pharmacological agents in the treatment of sexual dysfunction: evidence in the literature.

    PubMed

    Moll, Jennifer L; Brown, Candace S

    2011-04-01

    The monoamine neurotransmitters serotonin, dopamine, and norepinephrine play an important role in many medical and psychological conditions, including sexual responsiveness and behavior. Pharmacological agents that modulate monoamines may help alleviate sexual dysfunction. To provide an overview of pharmacological agents that modulate monoamines and their use in the treatment of sexual dysfunction. EMBASE and PubMed search for articles published between 1950 and 2010 using key words "sexual dysfunction,"monoamines,"monoaminergic receptors," and "generic names for pharmacological agents." To assess the literature evaluating the efficacy of monoamine pharmacologic agents used in the treatment of sexual dysfunction. The literature primarily cites the use of monoaminergic agents to treat sexual side effects from serotonergic reuptake inhibitors (SSRIs), with bupropion, buspirone and ropinirole providing the most convincing evidence. Controlled trials have shown that bupropion improves overall sexual dysfunction, but not frequency of sexual activity in depressed and nondepressed patients. Nefazodone and apomorphine have been used to treat sexual dysfunction, but their use is limited by significant side effect and safety profiles. New research on pharmacologic agents with subtype selectivity at dopaminergic and serotonergic receptors and those that possess dual mechanisms of action are being investigated. There has been tremendous progress over the past 50 years in understanding the role of monoamines in sexual function and the effect of pharmacologic agents which stimulate or antagonize monoaminergic receptors on sexual dysfunction. Nevertheless, large, double-blind, placebo-controlled studies evaluating the efficacy of currently available agents in populations without comorbid disorders are limited, preventing adequate interpretation of data. Continued research on sexual function and specific receptor subtypes will result in the development of more selective

  20. Song Competition Affects Monoamine Levels in Sensory and Motor Forebrain Regions of Male Lincoln's Sparrows (Melospiza lincolnii)

    PubMed Central

    Sewall, Kendra B.; Caro, Samuel P.; Sockman, Keith W.

    2013-01-01

    Male animals often change their behavior in response to the level of competition for mates. Male Lincoln's sparrows (Melospiza lincolnii) modulate their competitive singing over the period of a week as a function of the level of challenge associated with competitors' songs. Differences in song challenge and associated shifts in competitive state should be accompanied by neural changes, potentially in regions that regulate perception and song production. The monoamines mediate neural plasticity in response to environmental cues to achieve shifts in behavioral state. Therefore, using high pressure liquid chromatography with electrochemical detection, we compared levels of monoamines and their metabolites from male Lincoln's sparrows exposed to songs categorized as more or less challenging. We compared levels of norepinephrine and its principal metabolite in two perceptual regions of the auditory telencephalon, the caudomedial nidopallium and the caudomedial mesopallium (CMM), because this chemical is implicated in modulating auditory sensitivity to song. We also measured the levels of dopamine and its principal metabolite in two song control nuclei, area X and the robust nucleus of the arcopallium (RA), because dopamine is implicated in regulating song output. We measured the levels of serotonin and its principal metabolite in all four brain regions because this monoamine is implicated in perception and behavioral output and is found throughout the avian forebrain. After controlling for recent singing, we found that males exposed to more challenging song had higher levels of norepinephrine metabolite in the CMM and lower levels of serotonin in the RA. Collectively, these findings are consistent with norepinephrine in perceptual brain regions and serotonin in song control regions contributing to neuroplasticity that underlies socially-induced changes in behavioral state. PMID:23555809

  1. Dopamine depleters in the treatment of hyperkinetic movement disorders.

    PubMed

    Jankovic, Joseph

    2016-12-01

    Abnormal involuntary movements often improve in response to anti-dopaminergic drugs. In contrast to classic neuroleptics that block dopamine receptors, drugs that deplete presynaptic dopamine by blocking vesicular monoamine transporter type 2 (VMAT2) seem to be safer and have little or no risk of tardive dyskinesia. This is one reason why there has been a recent emergence of novel VMAT2 inhibitors. Areas covered: Since the approval of tetrabenazine, the classic VMAT2 inhibitor, in the treatment of chorea associated with Huntington disease (HD), other VMAT2 inhibitors (e.g. deutetrabenazine and valbenazine) have been studied in the treatment of HD-related chorea, tardive dyskinesia and tics associated with Tourette syndrome. This review, based largely on a detailed search of PubMed, will summarize the pharmacology and clinical experience with the various VMAT2 inhibitors. Expert commentary: Because of differences in pharmacology and pharmacokinetics these new VMAT2 inhibitors promise to be at least as effective as tetrabenazine but with a lower risk of adverse effects, such as sedation, insomnia, depression, parkinsonism, and akathisia.

  2. Depletion of CD20 B cells fails to inhibit relapsing mouse experimental autoimmune encephalomyelitis.

    PubMed

    Sefia, Eseberuo; Pryce, Gareth; Meier, Ute-Christiane; Giovannoni, Gavin; Baker, David

    2017-05-01

    Multiple sclerosis (MS) is often considered to be a CD4, T cell-mediated disease. This is largely based on the capacity of CD4 T cells to induce relapsing experimental autoimmune encephalomyelitis (EAE) in rodents. However, CD4-depletion using a monoclonal antibody was considered unsuccessful and relapsing MS responds well to B cell depletion via CD20 B cell depleting antibodies. The influence of CD20 B cell depletion in relapsing EAE was assessed. Relapsing EAE was induced in Biozzi ABH mice. These were treated with CD20-specific (18B12) antibody and the influence on CD45RA-B220 B cell depletion and clinical course was analysed. Relapsing EAE in Biozzi ABH failed to respond to the marked B cell depletion induced with a CD20-specific antibody. In contrast to CD20 and CD8-specific antibodies, CD4 T cell depletion inhibited EAE. Spinal cord antigen-induced disease in ABH mice is CD4 T cell-dependent. The lack of influence of CD20 B cell depletion in relapsing EAE, coupled with the relatively marginal and inconsistent results obtained in other mouse studies, suggests that rodents may have limited value in understanding the mechanism occurring following CD20 B cell depletion in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. alpha-Phenyl-N-tert-butyl nitrone attenuates methamphetamine-induced depletion of striatal dopamine without altering hyperthermia.

    PubMed

    Cappon, G D; Broening, H W; Pu, C; Morford, L; Vorhees, C V

    1996-10-01

    Methamphetamine (MA) administration to adult rats (4 x 10 mg/kg s.c.) induces neurotoxicity predominately characterized by a persistent reduction of neostriatal dopamine (DA) content. Hyperthermia following MA administration potentiates the resulting DA depletion. DA-derived free radicals are postulated to be a mechanism through which MA-induced neurotoxicity is produced. The spin trapping agent PBN reacts with free radicals to form nitroxyl adducts, thereby preventing damaging free radical reactions with cellular substrates. MA with saline pretreatment (Sal-MA) reduced neostriatal DA by 55% (P < 0.01 vs. Sal-Sal). MA with PBN pretreatment (PBN-MA) at 36 or 60 mg/kg reduced neostriatal DA by 36 and 22%, respectively (P < 0.05 and P < 0.01 vs Sal-MA) indicating partial protection. PBN pretreatment did not alter MA-induced hyperthermia. Thus, PBN does not attenuate MA-induced neurotoxicity by reducing MA-induced hyperthermia. These results support a role for free radicals in the generation of MA-induced dopaminergic neurotoxicity.

  4. Biological constraints limit the use of rapamycin-inducible FKBP12-Inp54p for depleting PIP2 in dorsal root ganglia neurons.

    PubMed

    Coutinho-Budd, Jaeda C; Snider, Samuel B; Fitzpatrick, Brendan J; Rittiner, Joseph E; Zylka, Mark J

    2013-09-08

    Rapamycin-induced translocation systems can be used to manipulate biological processes with precise temporal control. These systems are based on rapamycin-induced dimerization of FK506 Binding Protein 12 (FKBP12) with the FKBP Rapamycin Binding (FRB) domain of mammalian target of rapamycin (mTOR). Here, we sought to adapt a rapamycin-inducible phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphatase (Inp54p) system to deplete PIP2 in nociceptive dorsal root ganglia (DRG) neurons. We genetically targeted membrane-tethered CFP-FRBPLF (a destabilized FRB mutant) to the ubiquitously expressed Rosa26 locus, generating a Rosa26-FRBPLF knockin mouse. In a second knockin mouse line, we targeted Venus-FKBP12-Inp54p to the Calcitonin gene-related peptide-alpha (CGRPα) locus. We hypothesized that after intercrossing these mice, rapamycin treatment would induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in CGRP+ DRG neurons. In control experiments with cell lines, rapamycin induced translocation of Venus-FKBP12-Inp54p to the plasma membrane, and subsequent depletion of PIP2, as measured with a PIP2 biosensor. However, rapamycin did not induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in FRBPLF-expressing DRG neurons (in vitro or in vivo). Moreover, rapamycin treatment did not alter PIP2-dependent thermosensation in vivo. Instead, rapamycin treatment stabilized FRBPLF in cultured DRG neurons, suggesting that rapamycin promoted dimerization of FRBPLF with endogenous FKBP12. Taken together, our data indicate that these knockin mice cannot be used to inducibly deplete PIP2 in DRG neurons. Moreover, our data suggest that high levels of endogenous FKBP12 could compete for binding to FRBPLF, hence limiting the use of rapamycin-inducible systems to cells with low levels of endogenous FKBP12.

  5. Rat striatal monoamine oxidase-B inhibition by l-deprenyl and rasagiline: its relationship to 2-phenylethylamine-induced stereotypy and Parkinson's disease.

    PubMed

    Youdim, M B H; Tipton, K F

    2002-03-01

    Rats were injected intraperitoneally with varying doses of l-deprenyl (selegiline) followed 2h later by 30 mg kg(-1) 2-phenylethylamine (PEA), administered in the same way, and the stereotypic behavioural response elicited was assessed. l-Deprenyl alone at doses of up to 5 mg kg(-1) caused no significant behavioural response. Administration of PEA without prior l-deprenyl treatment resulted in only a modest increase in stereotypic behaviour and this was not significantly enhanced by the prior administration 1 mg kg(-1) l-deprenyl. When the administered dose of l-deprenyl was increased to 2.5 or 5 mgkg(-1), however, the stereotypic behavioural response to PEA was greatly potentiated and in the latter case persisted for 60 min. A dose of 2.5 mg kg(-1) l-deprenyl and 1 mg kg(-1) rasagiline was shown to result in over 90% inhibition of the monoamine oxidase (MAO)-B from rat liver and striatum, whereas the inhibition of MAO-A was about 60 and 40% in liver and striatum, respectively. The recovery of MAO-B activity in rat striatum and liver following a single i.p. injection of 5 mg kg(-1) l-deprenyl gave first-order rate constants of 1.80 and 7.15 h(-1), respectively, which corresponded to half-lives of 9.23 and 2.33 days. Similar results were obtained with rasagiline. The corresponding indices of stereotypic response to PEA (30 mg kg(-1); i.p.) during recovery from the single dose of l-deprenyl were initially high, but had started to decline by the third day after l-deprenyl treatment and was not significant after day 4. At that time, less than 20% of the striatal monoamine oxidase-B activity had been regained, whereas the recovery of the liver enzyme was about 65%. These data are discussed in terms of the suggested involvement of PEA potentiation in the anti-parkinsonian actions of l-deprenyl and rasagiline and the duration of the 'wash-out' period used in studies on the effects of l-deprenyl on patients with Parkinson's disease. The longer duration of the recovery of

  6. Effect of acute swim stress on plasma corticosterone and brain monoamine levels in bidirectionally selected DxH recombinant inbred mouse strains differing in fear recall and extinction.

    PubMed

    Browne, Caroline A; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F; Yilmazer-Hanke, Deniz

    2014-12-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder.

  7. Effect of Acute Swim Stress on Plasma Corticosterone and Brain Monoamine Levels in Bidirectionally Selected DxH Recombinant Inbred Mouse Strains Differing in Fear Recall and Extinction

    PubMed Central

    Browne, Caroline A.; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F.; Yilmazer-Hanke, Deniz

    2015-01-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus, and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 minutes after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or posttraumatic stress disorder. PMID:25117886

  8. Comparison of time-dependent effects of (+)-methamphetamine or forced swim on monoamines, corticosterone, glucose, creatine, and creatinine in rats.

    PubMed

    Herring, Nicole R; Schaefer, Tori L; Tang, Peter H; Skelton, Matthew R; Lucot, James P; Gudelsky, Gary A; Vorhees, Charles V; Williams, Michael T

    2008-05-30

    Methamphetamine (MA) use is a worldwide problem. Abusers can have cognitive deficits, monoamine reductions, and altered magnetic resonance spectroscopy findings. Animal models have been used to investigate some of these effects, however many of these experiments have not examined the impact of MA on the stress response. For example, numerous studies have demonstrated (+)-MA-induced neurotoxicity and monoamine reductions, however the effects of MA on other markers that may play a role in neurotoxicity or cell energetics such as glucose, corticosterone, and/or creatine have received less attention. In this experiment, the effects of a neurotoxic regimen of (+)-MA (4 doses at 2 h intervals) on brain monoamines, neostriatal GFAP, plasma corticosterone, creatinine, and glucose, and brain and muscle creatine were evaluated 1, 7, 24, and 72 h after the first dose. In order to compare MA's effects with stress, animals were subjected to a forced swim test in a temporal pattern similar to MA administration [i.e., (30 min/session) 4 times at 2 h intervals]. MA increased corticosterone from 1-72 h with a peak 1 h after the first treatment, whereas glucose was only increased 1 h post-treatment. Neostriatal and hippocampal monoamines were decreased at 7, 24, and 72 h, with a concurrent increase in GFAP at 72 h. There was no effect of MA on regional brain creatine, however plasma creatinine was increased during the first 24 h and decreased by 72 h. As with MA treatment, forced swim increased corticosterone more than MA initially. Unlike MA, forced swim reduced creatine in the cerebellum with no change in other brain regions while plasma creatinine was decreased at 1 and 7 h. Glucose in plasma was decreased at 7 h. Both MA and forced swim increase demand on energy substrates but in different ways, and MA has persistent effects on corticosterone that are not attributable to stress alone.

  9. Comparison of time-dependent effects of (+)-methamphetamine or forced swim on monoamines, corticosterone, glucose, creatine, and creatinine in rats

    PubMed Central

    Herring, Nicole R; Schaefer, Tori L; Tang, Peter H; Skelton, Matthew R; Lucot, James P; Gudelsky, Gary A; Vorhees, Charles V; Williams, Michael T

    2008-01-01

    Background Methamphetamine (MA) use is a worldwide problem. Abusers can have cognitive deficits, monoamine reductions, and altered magnetic resonance spectroscopy findings. Animal models have been used to investigate some of these effects, however many of these experiments have not examined the impact of MA on the stress response. For example, numerous studies have demonstrated (+)-MA-induced neurotoxicity and monoamine reductions, however the effects of MA on other markers that may play a role in neurotoxicity or cell energetics such as glucose, corticosterone, and/or creatine have received less attention. In this experiment, the effects of a neurotoxic regimen of (+)-MA (4 doses at 2 h intervals) on brain monoamines, neostriatal GFAP, plasma corticosterone, creatinine, and glucose, and brain and muscle creatine were evaluated 1, 7, 24, and 72 h after the first dose. In order to compare MA's effects with stress, animals were subjected to a forced swim test in a temporal pattern similar to MA administration [i.e., (30 min/session) 4 times at 2 h intervals]. Results MA increased corticosterone from 1–72 h with a peak 1 h after the first treatment, whereas glucose was only increased 1 h post-treatment. Neostriatal and hippocampal monoamines were decreased at 7, 24, and 72 h, with a concurrent increase in GFAP at 72 h. There was no effect of MA on regional brain creatine, however plasma creatinine was increased during the first 24 h and decreased by 72 h. As with MA treatment, forced swim increased corticosterone more than MA initially. Unlike MA, forced swim reduced creatine in the cerebellum with no change in other brain regions while plasma creatinine was decreased at 1 and 7 h. Glucose in plasma was decreased at 7 h. Conclusion Both MA and forced swim increase demand on energy substrates but in different ways, and MA has persistent effects on corticosterone that are not attributable to stress alone. PMID:18513404

  10. Effect of Zuogui Pill () on monoamine neurotransmitters and sex hormones in climacteric rats with panic attack.

    PubMed

    Li, Xiao-Yu; Wang, Xiao-Yun

    2017-03-01

    To explore the effects of Chinese medicine prescription Zuogui Pill (, ZGP) on monoamine neurotransmitters and sex hormones in climacteric rats with induced panic attacks. Forty-eight climacteric female rats were randomized into 6 groups with 8 rats in each group: the control group, the model group, the low-, medium- and high-dose ZGP groups and the alprazolam group. Rats in the low-, medium- and high-dose ZGP groups were administered 4.725, 9.45, or 18.9 g/kg ZGP by gastric perfusion, respectively. The alprazolam group was treated by gastric perfusion with 0.036 mg/kg alprazolam. The control and model groups were treated with distilled water. The animals were pretreated once daily for 8 consecutive weeks. The behaviors of rats in the open fifield test and the elevated T-maze (ETM) were observed after induced panic attack, and the levels of brain monoamine neurotransmitters and the plasma levels of sex hormones were measured. Compared with the control group, the mean ETM escape time and the levels of 5-hydroxytryptamine (5-HT) and noradrenalin (NE) of the model group were signifificantly reduced (P<0.05), Compared with the model group, the mean ETM escape time and the 5-HT and NE levels of all the ZGP groups increased signifificantly (P<0.05 or P<0.01). However, no signifificant difference was observed in the levels of sex hormones between the groups. Pretreatment with ZGP in climacteric rats may improve the behavior of panic attack, which may be related to increased 5-HT and NE in the brain.

  11. Simultaneous measurement of monoamine metabolites and 5-methyltetrahydrofolate in the cerebrospinal fluid of children.

    PubMed

    Akiyama, Tomoyuki; Hayashi, Yumiko; Hanaoka, Yoshiyuki; Shibata, Takashi; Akiyama, Mari; Nakamura, Kazuyuki; Tsuyusaki, Yu; Kubota, Masaya; Yoshinaga, Harumi; Kobayashi, Katsuhiro

    2017-02-01

    We describe a new method for simultaneous measurement of monoamine metabolites (3-O-methyldopa [3-OMD], 3-methoxy-4-hydroxyphenylethyleneglycol [MHPG], 5-hydroxyindoleacetic acid [5-HIAA], and homovanillic acid [HVA]) and 5-methyltetrahydrofolate (5-MTHF) and its use on cerebrospinal fluid (CSF) samples from pediatric patients. Monoamine metabolites and 5-MTHF were measured by high-performance liquid chromatography with fluorescence detection. CSF samples were prospectively collected from children according to a standardized collection protocol in which the first 1-ml fraction was used for analysis. Monoamine metabolites and 5-MTHF were separated within 10min. They showed linearity from the limit of detection to 1024nmol/l. The limit of quantification of each metabolite was sufficiently low for the CSF sample assay. In 42 CSF samples after excluding cases with possibly altered neurotransmitter profiles, the concentrations of 3-OMD, MHPG, 5-HIAA, HVA, and 5-MTHF showed significant age dependence and their ranges were comparable with the reference values in the literature. The metabolite profiles of aromatic l-amino acid decarboxylase deficiency, Segawa disease, and folate receptor α defect by this method were compatible with those in the literature. This method is a simple means of measuring CSF monoamine metabolites and 5-MTHF, and is especially useful for laboratories not equipped with electrochemical detectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors.

    PubMed

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt's method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts.

  13. Serum depletion induces changes in protein expression in the trophoblast-derived cell line HTR-8/SVneo.

    PubMed

    Novoa-Herran, Susana; Umaña-Perez, Adriana; Canals, Francesc; Sanchez-Gomez, Myriam

    2016-01-01

    depletion in a trophoblast cell model. Our results show that serum depletion induces specific changes in protein expression concordant with main cell metabolic adaptations and EMT, resembling the progression to a malignant phenotype.

  14. Transtelephonic home blood pressure to assess the monoamine oxidase-B inhibitor rasagiline in Parkinson disease.

    PubMed

    White, William B; Salzman, Phyllis; Schwid, Steven R

    2008-09-01

    Monoamine oxidase inhibitors are associated with dietary tyramine interactions that can induce hypertensive crises. Rasagiline mesylate is a novel irreversible selective monoamine oxidase type B inhibitor for Parkinson disease that may have a low risk of interaction with dietary tyramine because of its selectivity. To study interactions of rasagiline with diets unrestricted in tyramine-containing foods, we incorporated transtelephonic, self-monitoring of the blood pressure (BP) into a randomized, placebo-controlled trial of rasagiline 0.5 and 1.0 mg daily in 414 levodopa-treated Parkinson patients with motor fluctuations. The proportion of patients with a systolic BP increase of >30 mm Hg was the primary BP end point. In 13 968 self-measured readings at baseline, the proportion of systolic BP values that increased by >30 mm Hg after a meal ranged from 9.5% to 12.9% in the 3 treatment groups. In 25 733 BPs obtained postrandomization, the proportion of values with a >30-mm Hg systolic postprandial increase was 15% in the placebo group, 15% in the rasagiline 0.5-mg group, and 11% in the rasagiline 1-mg group after 3 weeks of double-blind therapy and 13%, 14%, and 12%, respectively, after 26 weeks of treatment (P value was not significant for all of the comparisons among treatment groups). A postprandial increase in systolic BP to >180 mm Hg at any time after randomization was seen in 3.3%, 2.6%, and 2.9% of the placebo, 0.5-mg, and 1.0-mg rasagiline groups, respectively. These data demonstrate that rasagiline did not induce postprandial hypertension in patients with Parkinson disease who were on an unrestricted diet.

  15. Vesicular monoamine transporter 2 (Vmat2) knockdown elicits anxiety-like behavior in zebrafish.

    PubMed

    Wang, Yali; Li, Siyue; Liu, Wenwen; Wang, Fen; Hu, Li-Fang; Zhong, Zhao-Min; Wang, Han; Liu, Chun-Feng

    2016-02-19

    Vesicular monoamine transporter 2 (Vmat2) is widely distributed in the central nervous system, and responsible for uptaking transmitters into the vesicles. However, whether Vmat2-deficiency is related to the anxiety is rarely investigated, especially in zebrafish. Here, we reported Vmat2 heterzygous mutant zebrafish displayed anxiety-like behavior. The mutants spent less time in the top area and took longer latency to the top in the novel tank test. Consistently, they showed dark avoidance in the light/dark box test, with longer duration in the light zone and increased number of crossing between the two zones. Monoamine concentration analysis showed that the levels of monoamine neurotransmitters including dopamine (DA), 5-hydroxy tryptamine (5-HT) and norepinephrine (NE), as well as their metabolites were decreased in VMAT mutants. Taken together, these findings suggest that Vmat2 heterzygous mutant zebrafish may serve as a new model of anxiety, which may be related with the low level of DA, 5-HT and NE. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Pneumococcal Polysaccharide Abrogates Conjugate-Induced Germinal Center Reaction and Depletes Antibody Secreting Cell Pool, Causing Hyporesponsiveness

    PubMed Central

    Bjarnarson, Stefania P.; Benonisson, Hreinn; Del Giudice, Giuseppe; Jonsdottir, Ingileif

    2013-01-01

    Background Plain pneumococcal polysaccharide (PPS) booster administered during second year of life has been shown to cause hyporesponsiveness. We assessed the effects of PPS booster on splenic memory B cell responses and persistence of PPS-specific long-lived plasma cells in the bone marrow (BM). Methods Neonatal mice were primed subcutanously (s.c.) or intranasally (i.n.) with pneumococcal conjugate (Pnc1-TT) and the adjuvant LT-K63, and boosted with PPS+LT-K63 or saline 1, 2 or 3 times with 16 day intervals. Seven days after each booster, spleens were removed, germinal centers (GC), IgM+, IgG+ follicles and PPS-specific antibody secreting cells (AbSC) in spleen and BM enumerated. Results PPS booster s.c., but not i.n., compromised the Pnc1-TT-induced PPS-specific Abs by abrogating the Pnc1-TT-induced GC reaction and depleting PPS-specific AbSCs in spleen and limiting their homing to the BM. There was no difference in the frequency of PPS-specific AbSCs in spleen and BM between mice that received 1, 2 or 3 PPS boosters s.c.. Repeated PPS+LT-K63 booster i.n. reduced the frequency of PPS-specific IgG+ AbSCs in BM. Conclusions PPS booster-induced hyporesponsiveness is caused by abrogation of conjugate-induced GC reaction and depletion of PPS-specific IgG+ AbSCs resulting in no homing of new PPS-specific long-lived plasma cells to the BM or survival. These results should be taken into account in design of vaccination schedules where polysaccharides are being considered. PMID:24069152

  17. TET1 Depletion Induces Aberrant CpG Methylation in Colorectal Cancer Cells

    PubMed Central

    Yamamoto, Eiichiro; Harada, Taku; Aoki, Hironori; Maruyama, Reo; Toyota, Mutsumi; Sasaki, Yasushi; Sugai, Tamotsu; Tokino, Takashi; Nakase, Hiroshi

    2016-01-01

    Aberrant DNA methylation is commonly observed in colorectal cancer (CRC), but the underlying mechanism is not fully understood. 5-hydroxymethylcytosine levels and TET1 expression are both reduced in CRC, while epigenetic silencing of TET1 is reportedly associated with the CpG island methylator phenotype. In the present study, we aimed to clarify the relationship between loss of TET1 and aberrant DNA methylation in CRC. Stable TET1 knockdown clones were established using Colo320DM cells, which express high levels of TET1, and HCT116 cells, which express TET1 at a level similar to that in normal colonic tissue. Infinium HumanMethylation450 BeadChip assays revealed increased levels of 5-methylcytosine at more than 10,000 CpG sites in TET1-depleted Colo320DM cells. Changes in DNA methylation were observed at various positions within the genome, including promoters, gene bodies and intergenic regions, and the altered methylation affected expression of a subset of genes. By contrast, TET1 knockdown did not significantly affect DNA methylation in HCT116 cells. However, TET1 depletion was associated with attenuated effects of 5-aza-2’-deoxycytidine on gene expression profiles in both cell lines. These results suggest that loss of TET1 may induce aberrant DNA methylation and may attenuate the effect of 5-aza-2’-deoxycytidine in CRC cells. PMID:27977763

  18. Depletion of macrophages in CD11b diphtheria toxin receptor mice induces brain inflammation and enhances inflammatory signaling during traumatic brain injury.

    PubMed

    Frieler, Ryan A; Nadimpalli, Sameera; Boland, Lauren K; Xie, Angela; Kooistra, Laura J; Song, Jianrui; Chung, Yutein; Cho, Kae W; Lumeng, Carey N; Wang, Michael M; Mortensen, Richard M

    2015-10-22

    Immune cells have important roles during disease and are known to contribute to secondary, inflammation-induced injury after traumatic brain injury. To delineate the functional role of macrophages during traumatic brain injury, we depleted macrophages using transgenic CD11b-DTR mice and subjected them to controlled cortical impact. We found that macrophage depletion had no effect on lesion size assessed by T2-weighted MRI scans 28 days after injury. Macrophage depletion resulted in a robust increase in proinflammatory gene expression in both the ipsilateral and contralateral hemispheres after controlled cortical impact. Interestingly, this sizeable increase in inflammation did not affect lesion development. We also showed that macrophage depletion resulted in increased proinflammatory gene expression in the brain and kidney in the absence of injury. These data demonstrate that depletion of macrophages in CD11b-DTR mice can significantly modulate the inflammatory response during brain injury without affecting lesion formation. These data also reveal a potentially confounding inflammatory effect in CD11b-DTR mice that must be considered when interpreting the effects of macrophage depletion in disease models. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Synthesis, characterization, and monoamine transporter activity of the new psychoactive substance 3',4'-methylenedioxy-4-methylaminorex (MDMAR).

    PubMed

    McLaughlin, Gavin; Morris, Noreen; Kavanagh, Pierce V; Power, John D; Twamley, Brendan; O'Brien, John; Talbot, Brian; Dowling, Geraldine; Mahony, Olivia; Brandt, Simon D; Patrick, Julian; Archer, Roland P; Partilla, John S; Baumann, Michael H

    2015-07-01

    The recent occurrence of deaths associated with the psychostimulant cis-4,4'-dimethylaminorex (4,4'-DMAR) in Europe indicated the presence of a newly emerged psychoactive substance on the market. Subsequently, the existence of 3,4-methylenedioxy-4-methylaminorex (MDMAR) has come to the authors' attention and this study describes the synthesis of cis- and trans-MDMAR followed by extensive characterization by chromatographic, spectroscopic, mass spectrometric platforms and crystal structure analysis. MDMAR obtained from an online vendor was subsequently identified as predominantly the cis-isomer (90%). Exposure of the cis-isomer to the mobile phase conditions (acetonitrile/water 1:1 with 0.1% formic acid) employed for high performance liquid chromatography analysis showed an artificially induced conversion to the trans-isomer, which was not observed when characterized by gas chromatography. Monoamine release activities of both MDMAR isomers were compared with the non-selective monoamine releasing agent (+)-3,4-methylenedioxymethamphetamine (MDMA) as a standard reference compound. For additional comparison, both cis- and trans-4,4'-DMAR, were assessed under identical conditions. cis-MDMAR, trans-MDMAR, cis-4,4'-DMAR and trans-4,4'-DMAR were more potent than MDMA in their ability to function as efficacious substrate-type releasers at the dopamine (DAT) and norepinephrine (NET) transporters in rat brain tissue. While cis-4,4'-DMAR, cis-MDMAR and trans-MDMAR were fully efficacious releasing agents at the serotonin transporter (SERT), trans-4,4'-DMAR acted as a fully efficacious uptake blocker. Currently, little information is available about the presence of MDMAR on the market but the high potency of ring-substituted methylaminorex analogues at all three monoamine transporters investigated here might be relevant when assessing the potential for serious side-effects after high dose exposure. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    PubMed

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/-) mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/-) mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/-) mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  1. Thymidine Kinase 2 Deficiency-Induced mtDNA Depletion in Mouse Liver Leads to Defect β-Oxidation

    PubMed Central

    von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2−/−) that progressively loses its mtDNA. The TK2−/− mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2−/− mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2−/− mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2−/− mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2−/− mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies. PMID:23505564

  2. Brief mindfulness induction could reduce aggression after depletion.

    PubMed

    Yusainy, Cleoputri; Lawrence, Claire

    2015-05-01

    Many experiments have shown that one's ability to refrain from acting on aggressive impulses is likely to decrease following a prior act of self-control. This temporary state of self-control failure is known as ego-depletion. Although mindfulness is increasingly used to treat and manage aggressive behaviour, the extent to which mindfulness may counteract the depletion effect on aggression is yet to be determined. This study (N=110) investigated the effect of a laboratory induced one-time mindfulness meditation session on aggression following depletion. Aggression was assessed by the intensity of aversive noise blast participants delivered to an opponent on a computerised task. Depleted participants who received mindfulness induction behaved less aggressively than depleted participants with no mindfulness induction. Mindfulness also improved performance on a second measure of self-control (i.e., handgrip perseverance); however, this effect was independent of depletion condition. Motivational factors may help explain the dynamics of mindfulness, self-control, and aggression. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors

    PubMed Central

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt’s method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts. PMID:27610153

  4. Metabolism of phenylethylamine in rat isolated perfused lung: evidence for monoamine oxidase 'type B' in lung.

    PubMed Central

    Bakhle, Y S; Youdim, M B

    1976-01-01

    Phenylethylamine is inactivated in a single passage through rat lung tissue by a process of uptake and deamination by a monoamine oxidase 'type B'. This enzyme is particularly susceptible to inhibition by deprenil and less sensitive to clorgyline. The monoamine oxidase of the lung, like that of other rat tissues, can be differentiated into 'type A' and 'type B' which appear to operate independently in the organized tissue. PMID:1252659

  5. Regret causes ego-depletion and finding benefits in the regrettable events alleviates ego-depletion.

    PubMed

    Gao, Hongmei; Zhang, Yan; Wang, Fang; Xu, Yan; Hong, Ying-Yi; Jiang, Jiang

    2014-01-01

    This study tested the hypotheses that experiencing regret would result in ego-depletion, while finding benefits (i.e., "silver linings") in the regret-eliciting events counteracted the ego-depletion effect. Using a modified gambling paradigm (Experiments 1, 2, and 4) and a retrospective method (Experiments 3 and 5), five experiments were conducted to induce regret. Results revealed that experiencing regret undermined performance on subsequent tasks, including a paper-and-pencil calculation task (Experiment 1), a Stroop task (Experiment 2), and a mental arithmetic task (Experiment 3). Furthermore, finding benefits in the regret-eliciting events improved subsequent performance (Experiments 4 and 5), and this improvement was mediated by participants' perceived vitality (Experiment 4). This study extended the depletion model of self-regulation by considering emotions with self-conscious components (in our case, regret). Moreover, it provided a comprehensive understanding of how people felt and performed after experiencing regret and after finding benefits in the events that caused the regret.

  6. Menadione induces the formation of reactive oxygen species and depletion of GSH-mediated apoptosis and inhibits the FAK-mediated cell invasion.

    PubMed

    Kim, Yun Jeong; Shin, Yong Kyoo; Sohn, Dong Suep; Lee, Chung Soo

    2014-09-01

    Menadione induces apoptosis in tumor cells. However, the mechanism of apoptosis in ovarian cancer cells exposed to menadione is not clear. In addition, it is unclear whether menadione-induced apoptosis is mediated by the depletion of glutathione (GSH) contents that is associated with the formation of reactive oxygen species. Furthermore, the effect of menadione on the invasion and migration of human epithelial ovarian cancer cells has not been studied. Therefore, we investigated the effects of menadione exposure on apoptosis, cell adhesion, and cell migration using the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. The results suggest that menadione may induce apoptotic cell death in ovarian carcinoma cell lines by activating the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The apoptotic effect of menadione appears to be mediated by the formation of reactive oxygen species and the depletion of GSH. Menadione inhibited fetal-bovine-serum-induced cell adhesion and migration of OVCAR-3 cells, possibly through the suppression the focal adhesion kinase (FAK)-dependent activation of cytoskeletal-associated components. Therefore, menadione might be beneficial in the treatment of epithelial ovarian adenocarcinoma and combination therapy.

  7. Protective effect of grape seed and skin extract against high-fat diet-induced liver steatosis and zinc depletion in rat.

    PubMed

    Charradi, Kamel; Elkahoui, Salem; Karkouch, Ines; Limam, Ferid; Ben Hassine, Fethy; El May, Michèle Veronique; Aouani, Ezzedine

    2014-08-01

    Obesity is a tremendous public health problem, characterized by ectopic deposition of fat into non-adipose tissues as liver generating an oxidative stress that could lead to steato-hepatitis. Grape seed and skin extract (GSSE) is a complex mixture of polyphenolics exhibiting robust antioxidative properties. We hypothesize that GSSE could protect the liver from fat-induced lipotoxicity and have a beneficial effect on liver function. Hepatoprotective effect of GSSE was measured by using an experimental model of fat-induced rat liver steatosis. Male rats were fed a standard diet or a high-fat diet (HFD) during 6 weeks and treated or not with 500 mg/kg bw GSSE. Lipid deposition into the liver was assessed by triglyceride, cholesterol and phospholipid measurements. Fat-induced lipoperoxidation, carbonylation, depletion of glutathione and of antioxidant enzyme activities were used as oxidative stress markers with a special emphasis on transition metal distribution. HFD induced liver hypertrophy and inflammation as assessed by high liver transaminases. HFD also induced an oxidative stress characterized by increased lipid and protein oxidation, a drop in glutathione and antioxidant enzyme activities as glutathione peroxidase and superoxide dismutase and a drastic depletion in liver zinc. Importantly, GSSE prevented all the deleterious effects of HFD treatment. Data suggest that GSSE could be used as a safe preventive agent against fat-induced liver lipotoxicity which could also have potential applications in other non-alcoholic liver diseases.

  8. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression.

    PubMed

    Kushal, Swati; Wang, Weijun; Vaikari, Vijaya Pooja; Kota, Rajesh; Chen, Kevin; Yeh, Tzu-Shao; Jhaveri, Niyati; Groshen, Susan L; Olenyuk, Bogdan Z; Chen, Thomas C; Hofman, Florence M; Shih, Jean C

    2016-03-22

    Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis.

  9. Social isolation alters central nervous system monoamine content in prairie voles following acute restraint.

    PubMed

    McNeal, Neal; Anderson, Eden M; Moenk, Deirdre; Trahanas, Diane; Matuszewich, Leslie; Grippo, Angela J

    2018-04-01

    Animal models have shown that social isolation and other forms of social stress lead to depressive- and anxiety-relevant behaviors, as well as neuroendocrine and physiological dysfunction. The goal of this study was to investigate the effects of prior social isolation on neurotransmitter content following acute restraint in prairie voles. Animals were either paired with a same-sex sibling or isolated for 4 weeks. Plasma adrenal hormones and ex vivo tissue concentrations of monoamine neurotransmitters and their metabolites were measured following an acute restraint stressor in all animals. Isolated prairie voles displayed significantly increased circulating adrenocorticotropic hormone levels, as well as elevated serotonin and dopamine levels in the hypothalamus, and potentially decreased levels of serotonin in the frontal cortex. However, no group differences in monoamine levels were observed in the hippocampus or raphe. The results suggest that social stress may bias monoamine neurotransmission and stress hormone function to subsequent acute stressors, such as restraint. These findings improve our understanding of the neurobiological mechanisms underlying the consequences of social stress.

  10. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ -ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation

    PubMed Central

    Jobe, Timothy O.; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2015-01-01

    Summary Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M2 seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione

  11. Monoamines and assessment of risks.

    PubMed

    Takahashi, Hidehiko

    2012-12-01

    Over the past decade, neuroeconomics studies utilizing neurophysiology methods (fMRI or EEG) have flourished, revealing the neural basis of 'boundedly rational' or 'irrational' decision-making that violates normative theory. The next question is how modulatory neurotransmission is involved in these central processes. Here I focused on recent efforts to understand how central monoamine transmission is related to nonlinear probability weighting and loss aversion, central features of prospect theory, which is a leading alternative to normative theory for decision-making under risk. Circumstantial evidence suggests that dopamine tone might be related to distortion of subjective reward probability and noradrenaline and serotonin tone might influence aversive emotional reaction to potential loss. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Ly6G-mediated depletion of neutrophils is dependent on macrophages.

    PubMed

    Bruhn, Kevin W; Dekitani, Ken; Nielsen, Travis B; Pantapalangkoor, Paul; Spellberg, Brad

    2016-01-01

    Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings.

  13. Immunotherapy of murine retrovirus-induced acquired immunodeficiency by CD4 T regulatory cell depletion and PD-1 blockade.

    PubMed

    Li, Wen; Green, William R

    2011-12-01

    LP-BM5 retrovirus induces a complex disease featuring an acquired immunodeficiency syndrome termed murine AIDS (MAIDS) in susceptible strains of mice, such as C57BL/6 (B6). CD4 T helper effector cells are required for MAIDS induction and progression of viral pathogenesis. CD8 T cells are not needed for viral pathogenesis, but rather, are essential for protection from disease in resistant strains, such as BALB/c. We have discovered an immunodominant cytolytic T lymphocyte (CTL) epitope encoded in a previously unrecognized LP-BM5 retroviral alternative (+1 nucleotide [nt]) gag translational open reading frame. CTLs specific for this cryptic gag epitope are the basis of protection from LP-BM5-induced immunodeficiency in BALB/c mice, and the inability of B6 mice to mount an anti-gag CTL response appears critical to the initiation and progression of LP-BM5-induced MAIDS. However, uninfected B6 mice primed by LP-BM5-induced tumors can generate CTL responses to an LP-BM5 retrovirus infection-associated epitope(s) that is especially prevalent on such MAIDS tumor cells, indicating the potential to mount a protective CD8 T-cell response. Here, we utilized this LP-BM5 retrovirus-induced disease system to test whether modulation of normal immune down-regulatory mechanisms can alter retroviral pathogenesis. Thus, following in vivo depletion of CD4 T regulatory (Treg) cells and/or selective interruption of PD-1 negative signaling in the CD8 T-cell compartment, retroviral pathogenesis was significantly decreased, with the combined treatment of CD4 Treg cell depletion and PD-1 blockade working in a synergistic fashion to substantially reduce the induction of MAIDS.

  14. Oxymatrine induces apoptosis in human cervical cancer cells through guanine nucleotide depletion.

    PubMed

    Li, Mu; Su, Bao-Shan; Chang, Li-Hua; Gao, Qing; Chen, Kun-Lun; An, Peng; Huang, Chen; Yang, Jun; Li, Zong-Fang

    2014-02-01

    Oxymatrine is an alkaloid obtained primarily from Sophora roots and has been shown to show anticancer effects in various cancers. However, the cellular and molecular effects of this agent on cervical cancer have been poorly characterized. Here, we investigated the antitumor effect of oxymatrine on a human cervical cancer cell line (HeLa). Our results showed that application of oxymatrine significantly inhibited the cell growth and tumorigenesis in a dose-dependent manner and induced apoptosis through caspase-dependent pathways as determined using flow cytometry and TUNEL staining analysis. To define the proteins potentially related to the mechanisms of action, proteomic analysis was utilized to detect proteins altered by oxymatrine. As the downregulated gene, inosine monophosphate dehydrogenase type II (IMPDH2) was responsible for oxymatrine-induced mitochondrial-related apoptosis. Moreover, oxymatrine depleted intracellular guanosine 5'-triphosphate (GTP) levels by effective IMPDH inhibition. Functional analyses further showed that oxymatrine and tiazofurin, an inhibitor of IMPDH2, sensitized resistant HeLa/DDP cells to cisplatin. In addition, the expression of IMPDH2 in cervical cancer was significantly higher than that in the normal cervical epithelium. Taken together, these findings suggest that targeting of IMPDH2 by potential pharmacological inhibitors, oxymatrine in combination with chemotherapy, might be a promising means of overcoming chemoresistance in cervical cancer with high IMPDH2 expression, and may thus provide new insights into the mechanism of oxyamtrine-induced anticancer effects.

  15. Nonmotor symptoms of Parkinson's disease revealed in an animal model with reduced monoamine storage capacity.

    PubMed

    Taylor, Tonya N; Caudle, W Michael; Shepherd, Kennie R; Noorian, AliReza; Jackson, Chad R; Iuvone, P Michael; Weinshenker, David; Greene, James G; Miller, Gary W

    2009-06-24

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the loss of dopamine neurons in the substantia nigra pars compacta, culminating in severe motor symptoms, including resting tremor, rigidity, bradykinesia, and postural instability. In addition to motor deficits, there are a variety of nonmotor symptoms associated with PD. These symptoms generally precede the onset of motor symptoms, sometimes by years, and include anosmia, problems with gastrointestinal motility, sleep disturbances, sympathetic denervation, anxiety, and depression. Previously, we have shown that mice with a 95% genetic reduction in vesicular monoamine transporter expression (VMAT2-deficient, VMAT2 LO) display progressive loss of striatal dopamine, L-DOPA-responsive motor deficits, alpha-synuclein accumulation, and nigral dopaminergic cell loss. We hypothesized that since these animals exhibit deficits in other monoamine systems (norepinephrine and serotonin), which are known to regulate some of these behaviors, the VMAT2-deficient mice may display some of the nonmotor symptoms associated with PD. Here we report that the VMAT2-deficient mice demonstrate progressive deficits in olfactory discrimination, delayed gastric emptying, altered sleep latency, anxiety-like behavior, and age-dependent depressive behavior. These results suggest that the VMAT2-deficient mice may be a useful model of the nonmotor symptoms of PD. Furthermore, monoamine dysfunction may contribute to many of the nonmotor symptoms of PD, and interventions aimed at restoring monoamine function may be beneficial in treating the disease.

  16. Depleted uranium induces neoplastic transformation in human lung epithelial cells.

    PubMed

    Xie, Hong; LaCerte, Carolyne; Thompson, W Douglas; Wise, John Pierce

    2010-02-15

    Depleted uranium (DU) is commonly used in military armor and munitions, and thus, exposure of soldiers and noncombatants is frequent and widespread. Previous studies have shown that DU has both chemical and radiological toxicity and that the primary route of exposure of DU to humans is through inhalation and ingestion. However, there is limited research information on the potential carcinogenicity of DU in human bronchial cells. Accordingly, we determined the neoplastic transforming ability of particulate DU to human bronchial epithelial cells (BEP2D). We observed the loss of contact inhibition and anchorage independent growth in cells exposed to DU after 24 h. We also characterized these DU-induced transformed cell lines and found that 40% of the cell lines exhibit alterations in plating efficiency and no significant changes in the cytotoxic response to DU. Cytogenetic analyses showed that 53% of the DU-transformed cell lines possess a hypodiploid phenotype. These data indicate that human bronchial cells are transformed by DU and exhibit significant chromosome instability consistent with a neoplastic phenotype.

  17. The role of monoamines in the changes in body temperature induced by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and its derivatives

    PubMed Central

    Docherty, JR; Green, AR

    2010-01-01

    Hyperthermia is probably the most widely known acute adverse event that can follow ingestion of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) by recreational users. The effect of MDMA on body temperature is complex because the drug has actions on all three major monoamine neurotransmitters [5-hydroxytryptamine (5-HT), dopamine and noradrenaline], both by amine release and by direct receptor activation. Hyperthermia and hypothermia can be induced in laboratory animals by MDMA, depending on the ambient temperature, and involve both central thermoregulation and peripheral changes in blood flow and thermogenesis. Acute 5-HT release is not directly responsible for hyperthermia, but 5-HT receptors are involved in modulating the hyperthermic response. Impairing 5-HT function with a neurotoxic dose of MDMA or p-chlorophenylalanine alters the subsequent MDMA-induced hyperthermic response. MDMA also releases dopamine, and evidence suggests that this transmitter is involved in both the hyperthermic and hypothermic effects of MDMA in rats. The noradrenergic system is also involved in the hyperthermic response to MDMA. MDMA activates central α2A-adrenoceptors and peripheral α1-adrenoceptors to produce cutaneous vasoconstriction to restrict heat loss, and β3-adrenoceptors in brown adipose tissue to increase heat generation. The hyperthermia occurring in recreational users of MDMA can be fatal, but data reviewed here indicate that it is unlikely that any single pharmaceutical agent will be effective in reversing the hyperthermia, so careful body cooling remains the principal clinical approach. Crucially, educating recreational users about the potential dangers of hyperthermia and the control of ambient temperature should remain key approaches to prevent this potentially fatal problem. PMID:20590597

  18. The monoamine reuptake inhibitor BTS 74 398 fails to evoke established dyskinesia but does not synergise with levodopa in MPTP-treated primates.

    PubMed

    Hansard, Matthew J; Smith, Lance A; Jackson, Michael J; Cheetham, Sharon C; Jenner, Peter

    2004-01-01

    Long-term treatment of Parkinson's disease (PD) with levodopa (L-dopa) induces dyskinesia that, once established, is provoked by each dose of L-dopa or a dopamine (DA) agonist. In contrast, monoamine reuptake inhibitors may reverse motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated primates without provoking established involuntary movements. We now examine whether the potent monoamine reuptake blocker BTS 74 398 induces established dyskinesia in MPTP-treated common marmosets primed previously with L-dopa and whether co-administration of BTS 74 398 with L-dopa potentiates motor behaviour and dyskinesia induced by acute L-dopa treatment. Administration of BTS 74 398 (2.5, 5.0, or 10.0 mg/kg, p.o.) in MPTP-treated common marmosets increased locomotor activity and reduced motor disability in a dose-related manner but did not provoke involuntary movements. BTS 74 398 (2.5, 5.0, or 10.0 mg/kg p.o.) co-administered with a threshold dose of L-dopa (2.5 mg/kg p.o.) did not evoke a motor response or induce dyskinesia. Similarly, concomitant administration of BTS 74 398 (5.0 mg/kg p.o.) with a submaximal L-dopa dose (12.5 mg/kg p.o.) did not potentiate the motor response produced by L-dopa alone and there was no alteration in the dyskinesia provoked by L-dopa challenge. BTS 74 398 reverses motor abnormalities in MPTP-treated marmosets without evoking established dyskinesia but no additive improvement occurs when administered in combination with L-dopa. The lack of synergy with L-dopa may suggest different sites of drug action. Copyright 2003 Movement Disorder Society

  19. Late-life effects of chronic methamphetamine exposure during puberty on behaviour and corticostriatal mono-amines in social isolation-reared rats.

    PubMed

    Strauss, Laetitia; Brink, Christiaan B; Möller, Marisa; Stein, Dan J; Harvey, Brian H

    2014-01-01

    Chronic methamphetamine (MA) abuse results in an acute psychosis indistinguishable from paranoid schizophrenia. However, less is known of the interaction between MA use and environmental insults, and how this contributes to late-onset psychopathology. Using social isolation rearing (SIR), a neurodevelopmental animal model of schizophrenia, we investigated the association between changes in corticostriatal mono-amines and putative behaviours related to MA-induced psychosis in isolation and group-housed rats following chronic MA or saline exposure. Weaned male offspring of MA-naive female Wistar rats, either group- or isolation-housed from postnatal day (PND) +21, received saline (2 ml/kg s.c. b.i.d.) or an escalating dose of MA (0.2-6 mg/kg s.c. b.i.d.) for 16 days from PND +35 to +50. On PND +78, offspring were tested for deficits in social interactive behaviour (SIB) and prepulse inhibition (PPI) of startle, with frontal cortex and striatum harvested for the assessment of mono-amine concentrations. SIR significantly reduced rearing time, staying together, approaching and anogenital sniffing (outward-directed SIB), but increased self-grooming and locomotor activity (self-directed SIB), and also induced profound deficits in PPI. Pubertal MA exposure in group-housed animals also induced similar alterations in outward- and self-directed SIB and reduced PPI. Combined MA+SIR exposure evoked a similarly intense behavioural response as SIR or MA separately, with no exacerbation evident. Neither treatment separately nor together affected corticostriatal serotonin or noradrenaline levels, although frontal cortical dopamine (DA) levels were significantly increased in SIR and MA+group-housed animals. A trend towards further elevated frontal cortical DA was noted in the MA+SIR treatment group. Striatal DA was unaltered by all treatments. This study provides the first evidence that chronic pubertal MA exposure evokes postpubertal psychosis-like behaviours in rats of similar

  20. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury.

    PubMed

    Kaludercic, Nina; Carpi, Andrea; Menabò, Roberta; Di Lisa, Fabio; Paolocci, Nazareno

    2011-07-01

    Recent evidence highlights monoamine oxidases (MAO) as another prominent source of oxidative stress. MAO are a class of enzymes located in the outer mitochondrial membrane, deputed to the oxidative breakdown of key neurotransmitters such as norepinephrine, epinephrine and dopamine, and in the process generate H(2)O(2). All these monoamines are endowed with potent modulatory effects on myocardial function. Thus, when the heart is subjected to chronic neuro-hormonal and/or peripheral hemodynamic stress, the abundance of circulating/tissue monoamines can make MAO-derived H(2)O(2) production particularly prominent. This is the case of acute cardiac damage due to ischemia/reperfusion injury or, on a more chronic stand, of the transition from compensated hypertrophy to overt ventricular dilation/pump failure. Here, we will first briefly discuss mitochondrial status and contribution to acute and chronic cardiac disorders. We will illustrate possible mechanisms by which MAO activity affects cardiac biology and function, along with a discussion as to their role as a prominent source of reactive oxygen species. Finally, we will speculate on why MAO inhibition might have a therapeutic value for treating cardiac affections of ischemic and non-ischemic origin. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Structures and Mechanism of the Monoamine Oxidase Family

    PubMed Central

    Gaweska, Helena; Fitzpatrick, Paul F.

    2011-01-01

    Members of the monoamine oxidase family of flavoproteins catalyze the oxidation of primary and secondary amines, polyamines, amino acids, and methylated lysine side chains in proteins. The enzymes have similar overall structures, with conserved FAD-binding domains and varied substrate-binding sites. Multiple mechanisms have been proposed for the catalytic reactions of these enzymes. The present review compares the structures of different members of the family and the various mechanistic proposals. PMID:22022344

  2. Cue-induced smoking urges deplete cigarette smokers' self-control resources.

    PubMed

    Hagger, Martin S; Leaver, Eamonn; Esser, Kerstin; Leung, Chung-Ming; Te Pas, Nina; Keatley, David A; Chan, Derwin K-C; Chatzisarantis, Nikos L D

    2013-12-01

    Exposure to smoking-related cues leads to increased urge to smoke in regular cigarette smokers and resisting these urges requires considerable self-control. Adopting a resource depletion model, two studies tested the hypothesis that resisting smoking urges depletes self-control resources. Adopting a within-participants randomized cross-over design, participants (study 1, N = 19; study 2, N = 32) were exposed to smoking-related (study 1: smoking images; study 2: cigarette cue-exposure task) and neutral (study 1: neutral images; study 2: drinking-straw task) cues with presentation order randomized. After each cue set, participants completed self-control tasks (study 1: handgrip task; study 2: handgrip and Stroop tasks), performance on which constituted dependent measures of self-control. Self-control task performance was significantly impaired when exposed to smoking-related cues compared to neutral cues. No significant presentation-order effects, or interaction effects between stimulus and presentation order, were found. Findings corroborate our hypothesis that resisting smoking urges depletes cigarette smokers' self-control resources and suggests that self-control capacity is governed by a limited resource.

  3. Neutrophil depletion improves diet-induced non-alcoholic fatty liver disease in mice.

    PubMed

    Ou, Rongying; Liu, Jia; Lv, Mingfen; Wang, Jingying; Wang, Jinmeng; Zhu, Li; Zhao, Liang; Xu, Yunsheng

    2017-07-01

    Non-alcoholic fatty liver disease is highly associated with morbidity and mortality in population. Although studies have already demonstrated that the immune response plays a pivotal role in the development of non-alcoholic fatty liver disease, the comprehensive regulation is unclear. Therefore, present study was carried out to investigate the non-alcoholic fatty liver disease development under neutrophil depletion. To achieve the aim of the study, C57BL/6 J mice were fed with high fat diet for 6 weeks before treated with neutrophil deplete antibody 1A8 or isotype control (200 μg/ mouse every week) for another 4 weeks. Treated with 1A8 antibody, obese mice exhibited better whole body metabolic parameters, including reduction of body weight gain and fasting blood glucose levels. Neutrophil depletion also effectively reduced hepatic structural disorders, dysfunction and lipid accumulation. Lipid β-oxidative markers, phosphorylated-AMP-activated protein kinase α and phosphorylated-acetyl-CoA carboxylase levels were increased in 1A8 antibody-treated obese mouse group. The mitochondrial number and function were also reversed after 1A8 antibody treatment, including increased mitochondrial number, reduced lipid oxidative damage and enhanced mitochondrial activity. Furthermore, the expression of inflammatory cytokines, tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 were obviously reduced after neutrophil depletion, accompanied with decreased F4/80 mRNA level and macrophage percentage in liver. The decreased NF-κB signaling activity was also involved in the beneficial effect of neutrophil depletion. Taken together, neutrophil depletion could attenuate metabolic syndromes and hepatic dysfunction.

  4. Tremorolytic effects of safinamide in animal models of drug-induced parkinsonian tremor.

    PubMed

    Podurgiel, Samantha; Collins-Praino, Lyndsey E; Yohn, Samantha; Randall, Patrick A; Roach, Arthur; Lobianco, Christophe; Salamone, John D

    2013-04-01

    Safinamide is an α-aminoamide derivative that is currently in Phase III clinical trial development as an add-on therapy to levodopa or dopamine agonists for patients with Parkinson's disease. Safinamide is a monoamine oxidase B inhibitor with additional non-dopaminergic actions. The present experiments were performed to evaluate the ability of safinamide to attenuate parkinsonian motor impairments using the tremulous jaw movement model, an animal model of parkinsonian tremor. In rats, tremulous jaw movements can be induced with dopamine (DA) antagonists, DA depletion, and cholinomimetics, and can be reversed by various antiparkinsonian drugs, including L-DOPA, DA agonists, anticholinergics and adenosine A2A antagonists. In these present experiments, tremulous jaw movements were induced with the anticholinesterase galantamine (3.0mg/kg IP), the muscarinic agonist pilocarpine (0.5mg/kg IP), and the dopamine D2 antagonist pimozide (1.0mg/kg IP). Safinamide significantly reduced the number of tremulous jaw movements induced by galantamine, pilocarpine, and pimozide, with consistent effects across all three drugs at a dose range of 5.0-10.0mg/kg. The results of this study support the use of safinamide as a treatment for parkinsonian tremor. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. From aggression to autism: new perspectives on the behavioral sequelae of monoamine oxidase deficiency.

    PubMed

    Bortolato, Marco; Floris, Gabriele; Shih, Jean C

    2018-05-10

    The two monoamine oxidase (MAO) enzymes, A and B, catalyze the metabolism of monoamine neurotransmitters, such as serotonin, norepinephrine, and dopamine. The phenotypic outcomes of MAO congenital deficiency have been studied in humans and animal models, to explore the role of these enzymes in behavioral regulation. The clinical condition caused by MAOA deficiency, Brunner syndrome, was first described as a disorder characterized by overt antisocial and aggressive conduct. Building on this discovery, subsequent studies were focused on the characterization of the role of MAOA in the neurobiology of antisocial conduct. MAO A knockout mice were found to display high levels of intermale aggression; however, further analyses of these mutants unveiled additional behavioral abnormalities mimicking the core symptoms of autism-spectrum disorder. These findings were strikingly confirmed in newly reported cases of Brunner syndrome. The role of MAOB in behavioral regulation remains less well-understood, even though Maob-deficient mice have been found to exhibit greater behavioral disinhibition and risk-taking responses, supporting previous clinical studies showing associations between low MAO B activity and impulsivity. Furthermore, lack of MAOB was found to exacerbate the severity of psychopathological deficits induced by concurrent MAOA deficiency. Here, we summarize how the convergence of clinical reports and behavioral phenotyping in mutant mice has helped frame a complex picture of psychopathological features in MAO-deficient individuals, which encompass a broad spectrum of neurodevelopmental problems. This emerging knowledge poses novel conceptual challenges towards the identification of the endophenotypes shared by autism-spectrum disorder, antisocial behavior and impulse-control problems, as well as their monoaminergic underpinnings.

  6. Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta.

    PubMed

    Sturza, Adrian; Leisegang, Matthias S; Babelova, Andrea; Schröder, Katrin; Benkhoff, Sebastian; Loot, Annemarieke E; Fleming, Ingrid; Schulz, Rainer; Muntean, Danina M; Brandes, Ralf P

    2013-07-01

    Monoamine oxidases (MAOs) generate H(2)O(2) as a by-product of their catalytic cycle. Whether MAOs are mediators of endothelial dysfunction is unknown and was determined here in the angiotensin II and lipopolysaccharide-models of vascular dysfunction in mice. Quantitative real-time polymerase chain reaction revealed that mouse aortas contain enzymes involved in catecholamine generation and MAO-A and MAO-B mRNA. MAO-A and -B proteins could be detected by Western blot not only in mouse aortas but also in human umbilical vein endothelial cells. Ex vivo incubation of mouse aorta with recombinant MAO-A increased H(2)O(2) formation and induced endothelial dysfunction that was attenuated by polyethylene glycol-catalase and MAO inhibitors. In vivo lipopolysaccharide (8 mg/kg IP overnight) or angiotensin II (1 mg/kg per day, 2 weeks, minipump) treatment induced vascular MAO-A and -B expressions and resulted in attenuated endothelium-dependent relaxation of the aorta in response to acetylcholine. MAO inhibitors reduced the lipopolysaccharide- and angiotensin II-induced aortic reactive oxygen species formation by 50% (ferrous oxidation xylenol orange assay) and partially normalized endothelium-dependent relaxation. MAO-A and MAO-B inhibitors had an additive effect; combined application completely restored endothelium-dependent relaxation. To determine how MAO-dependent H(2)O(2) formation induces endothelial dysfunction, cyclic GMP was measured. Histamine stimulation of human umbilical vein endothelial cells to activate endothelial NO synthase resulted in an increase in cyclic GMP, which was almost abrogated by MAO-A exposure. MAO inhibition prevented this effect, suggesting that MAO-induced H(2)O(2) formation is sufficient to attenuate endothelial NO release. Thus, MAO-A and MAO-B are both expressed in the mouse aorta, induced by in vivo lipopolysaccharide and angiotensin II treatment and contribute via the generation of H(2)O(2) to endothelial dysfunction in vascular disease

  7. Both cladribine and alemtuzumab may effect MS via B-cell depletion.

    PubMed

    Baker, David; Herrod, Samuel S; Alvarez-Gonzalez, Cesar; Zalewski, Lukasz; Albor, Christo; Schmierer, Klaus

    2017-07-01

    To understand the efficacy of cladribine (CLAD) treatment in MS through analysis of lymphocyte subsets collected, but not reported, in the pivotal phase III trials of cladribine and alemtuzumab induction therapies. The regulatory submissions of the CLAD Tablets Treating Multiple Sclerosis Orally (CLARITY) (NCT00213135) cladribine and Comparison of Alemtuzumab and Rebif Efficacy in Multiple Sclerosis, study one (CARE-MS I) (NCT00530348) alemtuzumab trials were obtained from the European Medicine Agency through Freedom of Information requests. Data were extracted and statistically analyzed. Either dose of cladribine (3.5 mg/kg; 5.25 mg/kg) tested in CLARITY reduced the annualized relapse rate to 0.16-0.18 over 96 weeks, and both doses were similarly effective in reducing the risk of MRI lesions and disability. Surprisingly, however, T-cell depletion was rather modest. Cladribine 3.5 mg/kg depleted CD4 + cells by 40%-45% and CD8 + cells by 15%-30%, whereas alemtuzumab suppressed CD4 + cells by 70%-95% and CD8 + cells by 47%-55%. However, either dose of cladribine induced 70%-90% CD19 + B-cell depletion, similar to alemtuzumab (90%). CD19 + cells slowly repopulated to 15%-25% of baseline before cladribine redosing. However, alemtuzumab induced hyperrepopulation of CD19 + B cells 6-12 months after infusion, which probably forms the substrate for B-cell autoimmunities associated with alemtuzumab. Cladribine induced only modest depletion of T cells, which may not be consistent with a marked influence on MS, based on previous CD4 + T-cell depletion studies. The therapeutic drug-response relationship with cladribine is more consistent with lasting B-cell depletion and, coupled with the success seen with monoclonal CD20 + depletion, suggests that B-cell suppression could be the major direct mechanism of action.

  8. Serotonin Reuptake Transporter Deficiency Modulates the Acute Thermoregulatory and Locomotor Activity Response to 3,4-(±)-Methylenedioxymethamphetamine, and Attenuates Depletions in Serotonin Levels in SERT-KO Rats

    PubMed Central

    Lizarraga, Lucina E.; Phan, Andy V.; Cholanians, Aram B.; Herndon, Joseph M.; Lau, Serrine S.; Monks, Terrence J.

    2014-01-01

    3,4-(±)-Methylenedioxymethamphetamine (MDMA) is a ring-substituted amphetamine derivative with potent psychostimulant properties. The neuropharmacological effects of MDMA are biphasic in nature, initially causing synaptic monoamine release, primarily of serotonin (5-HT), inducing thermogenesis and hyperactivity (5-HT syndrome). The long-term effects of MDMA manifest as a prolonged depletion in 5-HT, and structural damage to 5-HT nerve terminals. MDMA toxicity is in part mediated by an ability to inhibit the presynaptic 5-HT reuptake transporter (SERT). Using a SERT-knockout (SERT-KO) rat model, we determined the impact of SERT deficiency on thermoregulation, locomotor activity, and neurotoxicity in SERT-KO or Wistar-based wild-type (WT) rats exposed to MDMA. WT and SERT-KO animals exhibited the highest thermogenic responses to MDMA (four times 10 mg/kg, sc at 12 h intervals) during the diurnal (first and third) doses according to peak body temperature and area under the curve (∑°C × h) analysis. Although no differences in peak body temperature were observed between MDMA-treated WT and SERT-KO animals, ∑°C × h following the first MDMA dose was reduced in SERT-KO rats. Exposure to a single dose of MDMA stimulated horizontal velocity in both WT and SERT-KO rats, however, this effect was delayed and attenuated in the KO animals. Finally, SERT-KO rats were insensitive to MDMA-induced long-term (7 days) depletions in 5-HT and its metabolite, 5-hydroxyindole acetic acid, in both cortex and striatum. In conclusion, SERT deficiency modulated MDMA-mediated thermogenesis, hyperactivity and neurotoxicity in KO rats. The data confirm that the SERT is essential for the manifestation of the acute and long-term toxicities of MDMA. PMID:24595820

  9. Serotonin produces monoamine oxidase-dependent oxidative stress in human heart valves.

    PubMed

    Peña-Silva, Ricardo A; Miller, Jordan D; Chu, Yi; Heistad, Donald D

    2009-10-01

    Heart valve disease and pulmonary hypertension, in patients with carcinoid tumors and people who used the fenfluramine-phentermine combination for weight control, have been associated with high levels of serotonin in blood. The mechanism by which serotonin induces valvular changes is not well understood. We recently reported that increased oxidative stress is associated with valvular changes in aortic valve stenosis in humans and mice. In this study, we tested the hypothesis that serotonin induces oxidative stress in human heart valves, and examined mechanisms by which serotonin may increase reactive oxygen species. Superoxide (O2*.-) was measured in heart valves from explanted human hearts that were not used for transplantation. (O2*.-) levels (lucigenin-enhanced chemoluminescence) were increased in homogenates of cardiac valves and blood vessels after incubation with serotonin. A nonspecific inhibitor of flavin-oxidases (diphenyliodonium), or inhibitors of monoamine oxidase [MAO (tranylcypromine and clorgyline)], prevented the serotonin-induced increase in (O2*.-). Dopamine, another MAO substrate that is increased in patients with carcinoid syndrome, also increased (O2*.-) levels in heart valves, and this effect was attenuated by clorgyline. Apocynin [an inhibitor of NAD(P)H oxidase] did not prevent increases in (O2*.-) during serotonin treatment. Addition of serotonin to recombinant human MAO-A generated (O2*.-), and this effect was prevented by an MAO inhibitor. In conclusion, we have identified a novel mechanism whereby MAO-A can contribute to increased oxidative stress in human heart valves and pulmonary artery exposed to serotonin and dopamine.

  10. Zinc Oxide Nanoparticle Induces Microglial Death by NADPH-Oxidase-Independent Reactive Oxygen Species as well as Energy Depletion.

    PubMed

    Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata

    2017-10-01

    Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC 50 ) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.

  11. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation.

    PubMed

    Jobe, Timothy O; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I

    2012-06-01

    Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion

  12. Forced swimming stress does not affect monoamine levels and neurodegeneration in rats.

    PubMed

    Abbas, Ghulam; Naqvi, Sabira; Mehmood, Shahab; Kabir, Nurul; Dar, Ahsana

    2011-10-01

    The current study was aimed to investigate the correlations between immobility time in the forced swimming test (FST, a behavioral indicator of stress level) and hippocampal monoamine levels (markers of depression), plasma adrenalin level (a peripheral marker of stress) as well as fluoro-jade C staining (a marker of neurodegeneration). Male Sprague-Dawley rats were subjected to acute, sub-chronic (7 d) or chronic (14 d) FSTs and immobility time was recorded. Levels of noradrenalin, serotonin and dopamine in the hippocampus, and adrenalin level in the plasma were quantified by high-performance liquid chromatography with electrochemical detection. Brain sections from rats after chronic forced swimming or rotenone treatment (3 mg/kg subcutaneously for 4 d) were stained with fluoro-jade C. The rats subjected to swimming stress (acute, sub-chronic and chronic) showed long immobility times [(214 +/- 5), (220 +/- 4) and (231 +/- 7) s, respectively], indicating that the animals were under stress. However, the rats did not exhibit significant declines in hippocampal monoamine levels, and the plasma adrenalin level was not significantly increased compared to that in unstressed rats. The rats that underwent chronic swimming stress did not manifest fluoro-jade C staining in brain sections, while degenerating neurons were evident after rotenone treatment. The immobility time in the FST does not correlate with markers of depression (monoamine levels) and internal stress (adrenalin levels and neurodegeneration), hence this parameter may not be a true indicator of stress level.

  13. D-deprenyl protects nigrostriatal neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity.

    PubMed

    Muralikrishnan, Dhanasekharan; Samantaray, Supriti; Mohanakumar, Kochupurackal P

    2003-10-01

    Selegiline (L-deprenyl) is believed to render protection against l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-neurotoxicity to a significant extent via a free radical scavenging mechanism, which is independent of its ability to inhibit monoamine oxidase-B (MAO-B) in the brain. We investigated the hydroxyl radical (.OH) scavenging action and neuroprotective effect of D-deprenyl, its less active isomer, in MPTP-induced dopaminergic neurotoxicity in mice to test whether the chemical structure of the molecule or its biological effects contribute to this property. To achieve this goal we studied the effects of D-deprenyl on: (1).OH production in a Fenton reaction; (2) MPTP-induced.OH generation and dopamine (DA) depletion in vivo, employing a sensitive HPLC-electrochemical procedure; and (3) formation of MPP(+) in vivo in the striatum following systemic administration of MPTP, employing an HPLC-photodiode array detection system. D-deprenyl inhibited ferrous citrate-induced.OH in vitro (0.45 microM) and MPTP-induced.OH in vivo in substantia nigra (SN) and in the striatum (1.0 mg/kg, i.p.). D-deprenyl did not, but L-deprenyl (0.5 mg/kg dose) did significantly inhibit formation of MPP(+) in the striatum 90 min following systemic MPTP injection. It failed to affect MAO-B activity at 0.5 mg/kg in the striatum, but effectively blocked MPTP-induced striatal DA depletion. The potency of D-deprenyl to scavenge MPTP-induced.OH in vivo and to render protection against the dopaminergic neurotoxicity without affecting dopamine turnover, MAO-B activity, or formation of MPP(+) in the brain indicates a direct involvement of.OH in the neurotoxic action of MPTP and antioxidant effect in the neuroprotective action of deprenyl. Copyright 2003 Wiley-Liss, Inc.

  14. Grape seed and skin extract alleviates high-fat diet-induced renal lipotoxicity and prevents copper depletion in rat.

    PubMed

    Charradi, Kamel; Elkahoui, Salem; Karkouch, Ines; Limam, Ferid; Hamdaoui, Ghaith; Ben Hassine, Fethy; El May, Michèle Veronique; El May, Ahmed; Aouani, Ezzedine

    2013-03-01

    Obesity is a public health problem that contributes to morbidity and mortality from diabetes, heart disease, stroke, and cancers. The purpose of this investigation was to analyse the link between obesity-induced oxidative stress, renal steatosis, and kidney dysfunction, as well as the protective effect of grape seed and skin extract. Rats were fed a standard diet or a high-fat diet for 6 weeks and were either treated or not treated with grape seed and skin extract. Fat-induced oxidative stress was evaluated in the kidney with a special emphasis on transition metals. High-fat diet induced triglyceride deposition and disturbances in kidney function parameters, which are linked to an oxidative stress status and depletion of copper from the kidney. Grape seed and skin extract abrogated almost all fat-induced kidney disturbances. Grape seed and skin extract exerted potential protection against fat-induced kidney lipotoxicity and should find potential application in other kidney-related diseases.

  15. Altered Cerebellar Organization and Function in Monoamine Oxidase A Hypomorphic Mice

    PubMed Central

    Alzghoul, Loai; Bortolato, Marco; Delis, Foteini; Thanos, Panayotis K.; Darling, Ryan D.; Godar, Sean C; Zhang, Junlin; Grant, Samuel; Wang, Gene-Jack; Simpson, Kimberly L.; Chen, Kevin; Volkow, Nora D.; Lin, Rick C.S.; Shih, Jean C.

    2012-01-01

    Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-ANeo), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-ANeo mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO- ANeo mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO- ANeo mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum. PMID:22971542

  16. Methamphetamine Induces Anhedonic-Like Behavior and Impairs Frontal Cortical Energetics in Mice.

    PubMed

    Fonseca, Raquel; Carvalho, Rui A; Lemos, Cristina; Sequeira, Ana C; Pita, Inês R; Carvalho, Fábio; Silva, Carlos D; Prediger, Rui D S; Jarak, Ivana; Cunha, Rodrigo A; Fontes Ribeiro, Carlos A; Köfalvi, Attila; Pereira, Frederico C

    2017-02-01

    We recently showed that a single high dose of methamphetamine (METH) induces a persistent frontal cortical monoamine depletion that is accompanied by helpless-like behavior in mice. However, brain metabolic alterations underlying both neurochemical and mood alterations remain unknown. Herein, we aimed at characterizing frontal cortical metabolic alterations associated with early negative mood behavior triggered by METH. Adult C57BL/6 mice were injected with METH (30 mg/kg, i.p.), and their frontal cortical metabolic status was characterized after probing their mood and anxiety-related phenotypes 3 days postinjection. Methamphetamine induced depressive-like behavior, as indicated by the decreased grooming time in the splash test and by a transient decrease in sucrose preference. At this time, METH did not alter anxiety-like behavior or motor functions. Depolarization-induced glucose uptake was reduced in frontocortical slices from METH-treated mice compared to controls. Consistently, astrocytic glucose transporter (GluT1) density was lower in the METH group. A proton high rotation magic angle spinning (HRMAS) spectroscopic approach revealed that METH induced a significant decrease in N-acetyl aspartate (NAA) and glutamate levels, suggesting that METH decreased neuronal glutamatergic function in frontal cortex. We report, for the first time, that a single METH injection triggers early self-care and hedonic deficits and impairs frontal cortical energetics in mice. © 2016 John Wiley & Sons Ltd.

  17. Neuroprotective Effects and Mechanisms of Action of Multifunctional Agents Targeting Free Radicals, Monoamine Oxidase B and Cholinesterase in Parkinson's Disease Model.

    PubMed

    Liu, Zheng; Cai, Wei; Lang, Ming; Yan, Ruizuo; Li, Zhenshen; Zhang, Gaoxiao; Yu, Pei; Wang, Yuqiang; Sun, Yewei; Zhang, Zaijun

    2017-04-01

    Parkinson's disease (PD) is a complex neurodegenerative disorder with multifactorial pathologies, including progressive loss of dopaminergic (DA) neurons, oxidative stress, mitochondrial dysfunction, and increased monoamine oxidase (MAO) enzyme activity. There are currently only a few agents approved to ameliorate the symptoms of PD; however, no agent is able to reverse the progression of the disease. Due to the multifactorial pathologies, it is necessary to develop multifunctional agents that can affect more than one target involved in the disease pathology. We have designed and synthesized a series of new multifunctional anti-Parkinson's compounds which can protect cerebral granular neurons from 1-methyl-4-phenylpyridinium (MPP + ) insult, scavenge free radicals, and inhibit monoamine oxidase (MAO)/cholinesterase (ChE) activities. Among them, MT-20R exhibited the most potent MAO-B inhibition both in vitro and in vivo. We further investigated the neuroprotective effects of MT-20R using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. In vivo, MT-20R alleviated MPTP-induced motor deficits, raised the striatal contents of dopamine and its metabolites, and restored the expression of tyrosine hydroxylase (TH) and the number of TH-positive DA neurons in the substantia nigra. Additionally, MT-20R enhanced the expression of Bcl-2, decreased the expression of Bax and Caspase 3, and activated the AKT/Nrf2/HO-1 signaling pathway. These findings suggest that MT-20R may be a novel therapeutic candidate for treatment of PD.

  18. The transdermal delivery system of monoamine oxidase inhibitors.

    PubMed

    VanDenBerg, Chad M

    2012-01-01

    Monoamine oxidase inhibitors (MAOIs) were once widely used as effective treatments for major depressive disorder, particularly for patients with atypical or treatment-resistant depression. Today, MAOIs have largely been replaced by newer antidepressants because of concerns over potential serious side effects due to their mechanism of action. Monoamine oxidase (MAO) is an enzyme that metabolizes serotonin, norepinephrine, and dopamine, the neurotransmitters that are most associated with depression; inhibiting MAO, therefore, makes more of these neurotransmitters available for synaptic action. However, MAO also metabolizes tyramine, a trace amine found in some foods that acts as a sympathomimetic. Allowing excess tyramine to accumulate via MAO inhibition can result in hypertensive crisis due to the release of norepinephrine; therefore, patients taking an MAOI have had to follow dietary restrictions to avoid tyramine-rich foods. Hypertensive crisis may also be precipitated by using MAOIs in conjunction with other drugs that have vasoconstrictive properties, that act as sympathomimetics, or that inhibit the reuptake of norepinephrine. Serotonin syndrome is another serious adverse effect that can potentially occur when using an MAOI with another drug that inhibits the reuptake of serotonin. In this article, the mechanism of action of MAOIs is reviewed, along with that of a newer MAOI formulation that lessens the need for dietary restrictions and has a greater safety and tolerability profile than the older oral formulations. © Copyright 2012 Physicians Postgraduate Press, Inc.

  19. Monoamine oxidase inhibitory activity in tobacco particulate matter: Are harman and norharman the only physiologically relevant inhibitors?

    PubMed

    Truman, Penelope; Grounds, Peter; Brennan, Katharine A

    2017-03-01

    Monoamine oxidase inhibition is significant in smokers, but it is still unclear how the inhibition that is seen in the brains and bodies of smokers is brought about. Our aim was to test the contribution of the harman and norharman in tobacco smoke to MAO-A inhibition from tobacco smoke preparations, as part of a re-examination of harman and norharman as the cause of the inhibition of MAO-A inhibition in the brain. Tobacco smoke particulate matter and cigarette smoke particulate matter were prepared and the amounts of harman and norharman measured. The results were compared with the total monoamine oxidase-A inhibitory activity. At a nicotine concentration of 0.6μM (a "physiological" concentration in blood) the total monoamine oxidase-A inhibitory activity measured in these samples was sufficient to inhibit the enzyme by approximately 10%. Of this inhibitory activity, only a small proportion of the total was found to be due to harman and norharman. These results show that harman and norharman provide only a moderate contribution to the total monoamine oxidase-A inhibitory activity of tobacco smoke, perhaps under 10%. This suggests that other inhibitors (either known or unknown) may be more significant contributors to total inhibitory activity than has yet been established, and deserve closer examination. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cognitive abnormalities and hippocampal alterations in monoamine oxidase A and B knockout mice

    PubMed Central

    Singh, Chanpreet; Bortolato, Marco; Bali, Namrata; Godar, Sean C.; Scott, Anna L.; Chen, Kevin; Thompson, Richard F.; Shih, Jean C.

    2013-01-01

    The monoamine oxidase isoenzymes (MAOs) A and B play important roles in the homeostasis of monoaminergic neurotransmitters. The combined deficiency of MAO A and B results in significantly elevated levels of serotonin (5-hydroxytryptamine), norepinephrine, dopamine, and β-phenylethylamine; in humans and mice, these neurochemical changes are accompanied by neurodevelopmental perturbations as well as autistic-like responses. Ample evidence indicates that normal levels of monoamines in the hippocampus, amygdala, frontal cortex, and cerebellum are required for the integrity of learning and memory. Thus, in the present study, the cognitive status of MAO A/B knockout (KO) mice was examined with a wide array of behavioral tests. In comparison with male wild-type littermates, MAO A/B KO mice exhibited abnormally high and overgeneralized fear conditioning and enhanced eye-blink conditioning. These alterations were accompanied by significant increases in hippocampal long-term potentiation and alterations in the relative expression of NMDA glutamate receptor subunits. Our data suggest that chronic elevations of monoamines, because of the absence of MAO A and MAO B, cause functional alterations that are accompanied with changes in the cellular mechanisms underlying learning and memory. The characteristics exhibited by MAO A/B KO mice highlight the potential of these animals as a useful tool to provide further insight into the molecular bases of disorders associated with abnormal monoaminergic profiles. PMID:23858446

  1. Cognitive abnormalities and hippocampal alterations in monoamine oxidase A and B knockout mice.

    PubMed

    Singh, Chanpreet; Bortolato, Marco; Bali, Namrata; Godar, Sean C; Scott, Anna L; Chen, Kevin; Thompson, Richard F; Shih, Jean C

    2013-07-30

    The monoamine oxidase isoenzymes (MAOs) A and B play important roles in the homeostasis of monoaminergic neurotransmitters. The combined deficiency of MAO A and B results in significantly elevated levels of serotonin (5-hydroxytryptamine), norepinephrine, dopamine, and β-phenylethylamine; in humans and mice, these neurochemical changes are accompanied by neurodevelopmental perturbations as well as autistic-like responses. Ample evidence indicates that normal levels of monoamines in the hippocampus, amygdala, frontal cortex, and cerebellum are required for the integrity of learning and memory. Thus, in the present study, the cognitive status of MAO A/B knockout (KO) mice was examined with a wide array of behavioral tests. In comparison with male wild-type littermates, MAO A/B KO mice exhibited abnormally high and overgeneralized fear conditioning and enhanced eye-blink conditioning. These alterations were accompanied by significant increases in hippocampal long-term potentiation and alterations in the relative expression of NMDA glutamate receptor subunits. Our data suggest that chronic elevations of monoamines, because of the absence of MAO A and MAO B, cause functional alterations that are accompanied with changes in the cellular mechanisms underlying learning and memory. The characteristics exhibited by MAO A/B KO mice highlight the potential of these animals as a useful tool to provide further insight into the molecular bases of disorders associated with abnormal monoaminergic profiles.

  2. Effects of Macrophage Depletion on Sleep in Mice

    PubMed Central

    Ames, Conner; Boland, Erin; Szentirmai, Éva

    2016-01-01

    The reciprocal interaction between the immune system and sleep regulation has been widely acknowledged but the cellular mechanisms that underpin this interaction are not completely understood. In the present study, we investigated the role of macrophages in sleep loss- and cold exposure-induced sleep and body temperature responses. Macrophage apoptosis was induced in mice by systemic injection of clodronate-containing liposomes (CCL). We report that CCL treatment induced an immediate and transient increase in non-rapid-eye movement sleep (NREMS) and fever accompanied by decrease in rapid-eye movement sleep, motor activity and NREMS delta power. Chronically macrophage-depleted mice had attenuated NREMS rebound after sleep deprivation compared to normal mice. Cold-induced increase in wakefulness and decrease in NREMS, rapid-eye movement sleep and body temperature were significantly enhanced in macrophage-depleted mice indicating increased cold sensitivity. These findings provide further evidence for the reciprocal interaction among the immune system, sleep and metabolism, and identify macrophages as one of the key cellular elements in this interplay. PMID:27442442

  3. Monoamine Oxidases.

    PubMed

    Edmondson, Dale E; Binda, Claudia

    2018-01-01

    Monoamine oxidases A and B (MAO A and B) are mammalian flavoenzymes bound to the outer mitochondrial membrane. They were discovered almost a century ago and they have been the subject of many biochemical, structural and pharmacological investigations due to their central role in neurotransmitter metabolism. Currently, the treatment of Parkinson's disease involves the use of selective MAO B inhibitors such as rasagiline and safinamide. MAO inhibition was shown to exert a general neuroprotective effect as a result of the reduction of oxidative stress produced by these enzymes, which seems to be relevant also in non-neuronal contexts. MAOs were successfully expressed as recombinant proteins in Pichia pastoris, which allowed a thorough biochemical and structural characterization. These enzymes are characterized by a globular water-soluble main body that is anchored to the mitochondrial membrane through a C-terminal α-helix, similar to other bitopic membrane proteins. In both MAO A and MAO B the enzyme active site consists of a hydrophobic cavity lined by residues that are conserved in the two isozymes, except for few details that determine substrate and inhibitor specificity. In particular, human MAO B features a dual-cavity active site whose conformation depends on the size of the bound ligand. This article provides a comprehensive and historical review of MAOs and the state-of-the-art of these enzymes as membrane drug targets.

  4. Distribution of ULF energy (f is less than 80 mHz) in the inner magnetosphere - A statistical analysis of AMPTE CCE magnetic field data

    NASA Technical Reports Server (NTRS)

    Takahashi, Kazue; Anderson, Brian J.

    1992-01-01

    Magnetic field measurements made with the AMPTE CCE spacecraft are used to investigate the distribution of ULF energy in the inner magnetosphere. The data base is employed to examine the spatial distribution of ULF energy. The spatial distribution of wave power and spectral structures are used to identify several pulsation types, including multiharmonic toroidal oscillations; equatorial compressional Pc 3 oscillations; second harmonic poloidal oscillations; and nightside compressional oscillations. The frequencies of the toroidal oscillations are applied to determine the statistical radial profile of the plasma mass density and Alfven velocity. A clear signature of the plasma pause in the profiles of these average parameters is found.

  5. Monoamine receptor interaction profiles of 4-thio-substituted phenethylamines (2C-T drugs).

    PubMed

    Luethi, Dino; Trachsel, Daniel; Hoener, Marius C; Liechti, Matthias E

    2018-05-15

    4-Thio-substituted phenethylamines (2C-T drugs) are potent psychedelics with poorly defined pharmacological properties. Because of their psychedelic effects, 2C-T drugs are sometimes sold as new psychoactive substances (NPSs). The aim of the present study was to characterize the monoamine receptor and transporter interaction profiles of a series of 2C-T drugs. We determined the binding affinities of 2C-T drugs at monoamine receptors and transporters in human cells that were transfected with the respective receptors or transporters. We also investigated the functional activation of serotonergic 5-hydroxytryptamine 2A (5-HT 2A ) and 5-HT 2B receptors, activation of human trace amine-associated receptor 1 (TAAR 1 ), and inhibition of monoamine uptake transporters. 2C-T drugs had high affinity for 5-HT 2A and 5-HT 2C receptors (1-54 nM and 40-350 nM, respectively). With activation potencies of 1-53 nM and 44-370 nM, the drugs were potent 5-HT 2A receptor and 5-HT 2B receptor, respectively, partial agonists. An exception to this were the benzylthiophenethylamines, which did not potently activate the 5-HT 2B receptor (EC 50  > 3000 nM). Furthermore, the compounds bound to serotonergic 5-HT 1A and adrenergic receptors. The compounds had high affinity for the rat TAAR 1 (5-68 nM) and interacted with the mouse but not human TAAR 1 . The 2C-T drugs did not potently interact with monoamine transporters (K i  > 4000 nM). The receptor binding profile of 2C-T drugs predicts psychedelic effects that are mediated by potent 5-HT 2 receptor interactions. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Is Slow-Onset Long-Acting Monoamine Transport Blockade to Cocaine as Methadone is to Heroin? Implication for Anti-Addiction Medications

    PubMed Central

    Peng, Xiao-Qing; Xi, Zheng-Xiong; Li, Xia; Spiller, Krista; Li, Jie; Chun, Lauren; Wu, Kuo-Ming; Froimowitz, Mark; Gardner, Eliot L

    2010-01-01

    The success of methadone in treating opiate addiction has suggested that long-acting agonist therapies may be similarly useful for treating cocaine addiction. Here, we examined this hypothesis, using the slow-onset long-acting monoamine reuptake inhibitor 31,345, a trans-aminotetralin analog, in a variety of addiction-related animal models, and compared it with methadone's effects on heroin's actions in the same animal models. Systemic administration of 31,345 produced long-lasting enhancement of electrical brain-stimulation reward (BSR) and extracellular nucleus accumbens (NAc) dopamine (DA). Pretreatment with 31,345 augmented cocaine-enhanced BSR, prolonged cocaine-enhanced NAc DA, and produced a long-term (24-48 h) reduction in cocaine self-administration rate without obvious extinction pattern, suggesting an additive effect of 31,345 with cocaine. In contrast, methadone pretreatment not only dose-dependently inhibited heroin self-administration with an extinction pattern but also dose-dependently inhibited heroin-enhanced BSR and NAc DA, suggesting functional antagonism by methadone of heroin's actions. In addition, 31,345 appears to possess significant abuse liability, as it produces dose-dependent enhancement of BSR and NAc DA, maintains a low rate of self-administration behavior, and dose-dependently reinstates drug-seeking behavior. In contrast, methadone only partially maintains self-administration with an extinction pattern, and fails to induce reinstatement of drug-seeking behavior. These findings suggest that 31,345 is a cocaine-like slow-onset long-acting monoamine transporter inhibitor that may act as an agonist therapy for cocaine addiction. However, its pattern of action appears to be significantly different from that of methadone. Ideal agonist substitutes for cocaine should fully emulate methadone's actions, that is, functionally antagonizing cocaine's action while blocking monoamine transporters to augment synaptic DA. PMID:20827272

  7. Targeting monoamine oxidase A in advanced prostate cancer.

    PubMed

    Flamand, Vincent; Zhao, Hongjuan; Peehl, Donna M

    2010-11-01

    Inhibitors of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades neurotransmitters including serotonin and norepinephrine, are commonly used to treat neurological conditions including depression. Recently, we and others identified high expression of MAOA in normal basal prostatic epithelium and high-grade primary prostate cancer (PCa). In contrast, MAOA is low in normal secretory prostatic epithelium and low-grade PCa. An irreversible inhibitor of MAOA, clorgyline, induced secretory differentiation in primary cultures of normal basal epithelial cells and high-grade PCa. Furthermore, clorgyline inhibited several oncogenic pathways in PCa cells, suggesting clinical value of MAOA inhibitors as a pro-differentiation and anti-oncogenic therapy for high-risk PCa. Here, we extended our studies to a model of advanced PCa, VCaP cells, which were derived from castration-resistant metastatic PCa and express a high level of MAOA. Growth of VCaP cells in the presence or absence of clorgyline was evaluated in vitro and in vivo. Gene expression changes in response to clorgyline were determined by microarray and validated by quantitative real-time polymerase chain reaction. Treatment with clorgyline in vitro inhibited growth and altered the transcriptional pattern of VCaP cells in a manner consistent with the pro-differentiation and anti-oncogenic effects seen in treated primary PCa cells. Src, beta-catenin, and MAPK oncogenic pathways, implicated in androgen-independent growth and metastasis, were significantly downregulated. Clorgyline treatment of mice bearing VCaP xenografts slowed tumor growth and induced transcriptome changes similar to those noted in vitro. Our results support the possibility that anti-depressant drugs that target MAOA might find a new application in treating PCa.

  8. Monoamine levels in the nucleus accumbens correlate with male sexual behavior in middle-aged rats.

    PubMed

    Tsai, Houng-Wei; Shui, Hao-Ai; Liu, Hang-Shen; Tai, Mei-Yun; Tsai, Yuan-Feen

    2006-02-01

    The correlation between monoamine levels in the nucleus accumbens (NAcc) and male sexual behavior was studied in middle-aged rats. Male rats (18-19months) were assigned to three groups: (1) Group MIE consisted of rats showing mounts, intromissions, and ejaculations; (2) Group MI was composed of rats showing mounts and intromissions, but no ejaculation; and (3) Group NC were non-copulators showing no sexual behavior. Young adult rats (4-5months), displaying complete copulatory behavior, were used as the control group. Levels of dopamine (DA), serotonin, and norepinephrine and their metabolites in the NAcc were measured by high-pressure liquid chromatography with electrochemical detection. No difference was seen in DA levels between MIE rats and young controls, whereas DA levels in NC rats were significantly lower than those in both MIE and MI rats. Serotonin levels in NC rats were significantly higher than those in MIE and MI rats. Conversely, norepinephrine levels in NC rats were lower than those in MIE rats. These results suggest that monoamine levels in the NAcc correlate with sexual performance in male rats and that changes in NAcc monoamine levels might affect male sexual behavior in middle-aged rats.

  9. Effect of Progressive Heart Failure on Cerebral Hemodynamics and Monoamine Metabolism in CNS.

    PubMed

    Mamalyga, M L; Mamalyga, L M

    2017-07-01

    Compensated and decompensated heart failure are characterized by different associations of disorders in the brain and heart. In compensated heart failure, the blood flow in the common carotid and basilar arteries does not change. Exacerbation of heart failure leads to severe decompensation and is accompanied by a decrease in blood flow in the carotid and basilar arteries. Changes in monoamine content occurring in the brain at different stages of heart failure are determined by various factors. The functional exercise test showed unequal monoamine-synthesizing capacities of the brain in compensated and decompensated heart failure. Reduced capacity of the monoaminergic systems in decompensated heart failure probably leads to overstrain of the central regulatory mechanisms, their gradual exhaustion, and failure of the compensatory mechanisms, which contributes to progression of heart failure.

  10. (/sup 11/C)clorgyline and (/sup 11/C)-L-deprenyl and their use in measuring functional monoamine oxidase activity in the brain using positron emission tomography

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1986-04-17

    This invention involves a new strategy for imaging the activity of the enzyme monoamine oxidase in the living body by using /sup 11/C-labeled enzyme inhibitors which bind irreversibly to an enzyme as a result of catalysis. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  11. Multiple metal exposures and their correlation with monoamine neurotransmitter metabolism in Chinese electroplating workers.

    PubMed

    Wu, Lin-Lin; Gong, Wei; Shen, Si-Peng; Wang, Zhong-He; Yao, Jia-Xi; Wang, Jun; Yu, Jing; Gao, Rong; Wu, Gang

    2017-09-01

    Excessive metal exposure has been recognized as one of the detrimental factors for brain damage. However, the potential adverse effects induced by heavy metals on monoamine neurotransmitter pathways remains poorly understood. Our study aimed to investigate the possible association between metal exposure and neurotransmitter metabolism. By a cross-sectional investigation, 224 electroplating workers and 213 non-electroplating exposure workers were recruited in the exposure and control groups. Metal exposure levels were analyzed using inductively-coupled plasma mass spectrometry and monoamine neurotransmitter pathway metabolites were measured by ultra-performance liquid chromatography tandem mass spectrometry in human urine samples. Multivariate linear regression model was used to assess the dose-response relationships of urinary metals and neurotransmitter pathway metabolites. Significant dose-dependent trends of urinary vanadium quartiles with all metabolites were observed, and the trends demonstrated significance after multiple testing correction. It also showed that urinary chromium levels were significantly associated with decreased serotonin level and cadmium was positively associated with norepinephrine and epinephrine. In addition, arsenic was positively associated with tryptophan, serotonin, dopamine and norepinephrine. Iron was positively associated with increased homovanillic acid (HVA) and epinephrine while nickel was negatively associated with increased epinephrine levels. Zinc was positively related to tryptophan, kynurenin (KYN), 5-hydroxyindole acetic acid (5-HIAA), dopamine, HVA and norepinephrine. There was no significant association between urinary copper with any other metabolites after adjusting of multiple metal models. Metal exposure may be associated with neurotransmitter metabolism disturbances. The present work is expected to provide some support in the prevention and management of metal-associated neurological diseases. Copyright © 2017

  12. Cocaine-like discriminative stimulus effects of "norepinephrine-preferring" monoamine releasers: time course and interaction studies in rhesus monkeys.

    PubMed

    Kohut, Stephen J; Jacobs, David S; Rothman, Richard B; Partilla, John S; Bergman, Jack; Blough, Bruce E

    2017-12-01

    The therapeutic potential of monoamine releasers with prominent dopaminergic effects is hindered by their high abuse liability. The present study examined the effects of several novel "norepinephrine (NE)-preferring" monoamine releasers relative to non-selective monoamine releasers, d-amphetamine and d-methamphetamine, in rhesus monkeys trained to discriminate cocaine. NE-preferring releasers were approximately 13-fold more potent for NE compared to dopamine release and ranged in potency for serotonin release (PAL-329 < l-methamphetamine < PAL-169). Adult rhesus macaques were trained to discriminate 0.4 mg/kg, IM cocaine on a 30-response fixed ratio schedule of food reinforcement. Substitution studies determined the extent to which test drugs produced cocaine-like discriminative stimulus effects and their time course. Drug interaction studies determined whether pretreatment with test drugs altered the discriminable effects of cocaine. Results show that cocaine, d-amphetamine, and d-methamphetamine dose-dependently substituted for cocaine with similar potencies. Among the "NE-preferring" releasers, PAL-329 and l-methamphetamine also dose-dependently substituted for cocaine but differed in potency. PAL-169 failed to substitute for cocaine up to a dose that disrupted responding. When administered prior to cocaine, only d-amphetamine and PAL-329 significantly shifted the cocaine dose-effect function leftward indicating enhancement of cocaine's discriminative stimulus effects. These data suggest that greater potency for NE relative to dopamine release (up to 13-fold) does not interfere with the ability of a monoamine releaser to produce cocaine-like discriminative effects but that increased serotonin release may have an inhibitory effect. Further characterization of these and other "NE-preferring" monoamine releasers should provide insight into their potential for the management of cocaine addiction.

  13. High-mesembrine Sceletium extract (Trimesemine™) is a monoamine releasing agent, rather than only a selective serotonin reuptake inhibitor.

    PubMed

    Coetzee, Dirk D; López, Víctor; Smith, Carine

    2016-01-11

    Extracts from and alkaloids contained in plants in the genus Sceletium have been reported to inhibit ligand binding to serotonin transporter. From this, the conclusion was made that Sceletium products act as selective serotonin-reuptake inhibitors. However, other mechanisms which may similarly result in the anxiolytic or anti-depressant effect ascribed to Sceletium, such as monoamine release, have not been investigated. The current study investigated simultaneously and at two consecutive time points, the effect of high-mesembrine Sceletium extract on both monoamine release and serotonin reuptake into both human astrocytes and mouse hippocampal neurons, as well as potential inhibitory effects on relevant enzyme activities. Human astrocytes and mouse hippocampal cells were treated with citalopram or Sceletium extract for 15 and 30min, after which protein expression levels of serotonin transporter (SERT) and vesicular monoamine transporter-2 (VAMT-2) was assessed using fluorescent immunocytochemistry and digital image analysis. Efficacy of inhibition of acetylcholinesterase (AChE) and monoamine oxidate-A (MAO-A) activity were assessed using the Ellman and Olsen methods (and appropriate controls) respectively. We report the first investigation of mechanism of action of Sceletium extract in the context of serotonin transport, release and reuptake in a cellular model. Cell viability was not affected by Sceletium treatment. High-mesembrine Sceletium extract down-regulated SERT expression similarly to citalopram. In addition, VMAT-2 was upregulated significantly in response to Sceletium treatment. The extract showed only relatively mild inhibition of AChE and MAO-A. We conclude that the serotonin reuptake inhibition activity ascribed to the Sceletium plant, is a secondary function to the monoamine-releasing activity of high-mesembrine Sceletium extract (Trimesemine(TM)). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Ego Depletion Does Not Interfere With Working Memory Performance.

    PubMed

    Singh, Ranjit K; Göritz, Anja S

    2018-01-01

    Ego depletion happens if exerting self-control reduces a person's capacity to subsequently control themselves. Previous research has suggested that ego depletion not only interferes with subsequent self-control but also with working memory. However, recent meta-analytical evidence casts doubt onto this. The present study tackles the question if ego depletion does interfere with working memory performance. We induced ego depletion in two ways: using an e-crossing task and using a Stroop task. We then measured working memory performance using the letter-number sequencing task. There was no evidence of ego depletion interfering with working memory performance. Several aspects of our study render this null finding highly robust. We had a large and heterogeneous sample of N = 1,385, which provided sufficient power. We deployed established depletion tasks from two task families (e-crossing task and Stroop), thus making it less likely that the null finding is due to a specific depletion paradigm. We derived several performance scores from the working memory task and ran different analyses to maximize the chances of finding an effect. Lastly, we controlled for two potential moderators, the implicit theories about willpower and dispositional self-control capacity, to ensure that a possible effect on working memory is not obscured by an interaction effect. In sum, this experiment strengthens the position that ego depletion works but does not affect working memory performance.

  15. Ego Depletion Does Not Interfere With Working Memory Performance

    PubMed Central

    Singh, Ranjit K.; Göritz, Anja S.

    2018-01-01

    Ego depletion happens if exerting self-control reduces a person’s capacity to subsequently control themselves. Previous research has suggested that ego depletion not only interferes with subsequent self-control but also with working memory. However, recent meta-analytical evidence casts doubt onto this. The present study tackles the question if ego depletion does interfere with working memory performance. We induced ego depletion in two ways: using an e-crossing task and using a Stroop task. We then measured working memory performance using the letter-number sequencing task. There was no evidence of ego depletion interfering with working memory performance. Several aspects of our study render this null finding highly robust. We had a large and heterogeneous sample of N = 1,385, which provided sufficient power. We deployed established depletion tasks from two task families (e-crossing task and Stroop), thus making it less likely that the null finding is due to a specific depletion paradigm. We derived several performance scores from the working memory task and ran different analyses to maximize the chances of finding an effect. Lastly, we controlled for two potential moderators, the implicit theories about willpower and dispositional self-control capacity, to ensure that a possible effect on working memory is not obscured by an interaction effect. In sum, this experiment strengthens the position that ego depletion works but does not affect working memory performance. PMID:29706923

  16. Review of analytical models to stream depletion induced by pumping: Guide to model selection

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Sheng; Yang, Tao; Yeh, Hund-Der

    2018-06-01

    Stream depletion due to groundwater extraction by wells may cause impact on aquatic ecosystem in streams, conflict over water rights, and contamination of water from irrigation wells near polluted streams. A variety of studies have been devoted to addressing the issue of stream depletion, but a fundamental framework for analytical modeling developed from aquifer viewpoint has not yet been found. This review shows key differences in existing models regarding the stream depletion problem and provides some guidelines for choosing a proper analytical model in solving the problem of concern. We introduce commonly used models composed of flow equations, boundary conditions, well representations and stream treatments for confined, unconfined, and leaky aquifers. They are briefly evaluated and classified according to six categories of aquifer type, flow dimension, aquifer domain, stream representation, stream channel geometry, and well type. Finally, we recommend promising analytical approaches that can solve stream depletion problem in reality with aquifer heterogeneity and irregular geometry of stream channel. Several unsolved stream depletion problems are also recommended.

  17. Tryptophan depletion disinhibits punishment but not reward prediction: implications for resilience.

    PubMed

    Robinson, Oliver J; Cools, Roshan; Sahakian, Barbara J

    2012-01-01

    We have previously shown that tryptophan depletion enhances punishment but not reward prediction (Cools et al. in Neuropsychopharmacology 33:2291-2299, 2008b). This provided evidence for a valence-specific role of serotonin (which declines under depleted tryptophan) in aversive processing. Recent theoretical (Dayan and Huys in PLoS Comput Biol 4:e4, 2008) and experimental (Crockett et al. in J Neurosci 29:11993-11999, 2009) approaches have, however, further specified this role by showing that serotonin is critical for punishment-induced inhibition. We sought to examine the role of serotonin in punishment-induced inhibition. We also examined the impact of induced mood on this effect to assess whether effects of tryptophan depletion on affective inhibition are moderated by mood. Healthy females consumed a balanced amino acid mixture with (N = 20) or without (N = 21) the serotonin precursor tryptophan. Each subject completed either negative or neutral mood induction. All subjects completed the reward and punishment reversal learning task adopted in the previous study. We demonstrate a punishment prediction impairment in individuals who consumed tryptophan which was absent in individuals who were depleted of tryptophan. This effect was impervious to mood state. Our results suggest that serotonin promotes the inhibition of responses to punishing outcomes. This may lead to reduced punishment prediction accuracy in the presence of tryptophan and may contribute to resilience to affective disorders. Reduction of serotonin via tryptophan depletion then removes this inhibition. As such, we highlight a mechanism by which reduced serotonin can contribute to disorders of impulsivity and compulsivity as well as disorders of emotion.

  18. Association of monoamine oxidase A gene polymorphism with Alzheimer's disease and Lewy body variant.

    PubMed

    Takehashi, Masanori; Tanaka, Seigo; Masliah, Eliezer; Ueda, Kunihiro

    2002-07-19

    The association between (GT)n dinucleotide repeats in monoamine oxidase gene loci, monoamine oxidase A (MAOA) and B (MAOB), and Parkinson's disease (PD), Alzheimer's disease (AD), and Lewy body variant (LBV) of AD were determined. MAOA-GT polymorphisms were significantly associated with pure AD and LBV. MAOA-GT allele 113 was excessively represented in pure AD and LBV compared with controls. Furthermore, the frequency of females homozygous for MAOA-GT allele 113 was higher in pure AD and LBV than controls by 2.79- and 2.77-fold, respectively. In contrast, there was no association between MAOA-GT or MAOB-GT polymorphisms and PD. These results suggest that polymorphisms within the MAOA gene may have implication in AD pathology shared by pure AD and LBV.

  19. Interactions of Monoamine Oxidases with the Antiepileptic Drug Zonisamide: Specificity of Inhibition and Structure of the Human Monoamine oxidase B Complex

    PubMed Central

    Binda, Claudia; Aldeco, Milagros; Mattevi, Andrea; Edmondson, Dale E.

    2010-01-01

    The binding of zonisamide to purified, recombinant monoamine oxidases (MAOs) has been investigated. It is a competitive inhibitor of human MAO B (Ki = 3.1 ± 0.3 μM), of rat MAO B (Ki = 2.9 ± 0.5 μM), and of zebrafish MAO (Ki = 30.8 ± 5.3 μM). No inhibition is observed with purified human or rat MAO A. The 1.8 Å structure of the MAO B complex demonstrates that it binds within the substrate cavity. PMID:21175212

  20. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment

    PubMed Central

    Zhou, Minghai; Ottenberg, Gregory; Sferrazza, Gian Franco; Hubbs, Christopher; Fallahi, Mohammad; Rumbaugh, Gavin; Brantley, Alicia F.

    2015-01-01

    The mechanisms of neuronal death in protein misfolding neurodegenerative diseases such as Alzheimer’s, Parkinson’s and prion diseases are poorly understood. We used a highly toxic misfolded prion protein (TPrP) model to understand neurotoxicity induced by prion protein misfolding. We show that abnormal autophagy activation and neuronal demise is due to severe, neuron-specific, nicotinamide adenine dinucleotide (NAD+) depletion. Toxic prion protein-exposed neuronal cells exhibit dramatic reductions of intracellular NAD+ followed by decreased ATP production, and are completely rescued by treatment with NAD+ or its precursor nicotinamide because of restoration of physiological NAD+ levels. Toxic prion protein-induced NAD+ depletion results from PARP1-independent excessive protein ADP-ribosylations. In vivo, toxic prion protein-induced degeneration of hippocampal neurons is prevented dose-dependently by intracerebral injection of NAD+. Intranasal NAD+ treatment of prion-infected sick mice significantly improves activity and delays motor impairment. Our study reveals NAD+ starvation as a novel mechanism of autophagy activation and neurodegeneration induced by a misfolded amyloidogenic protein. We propose the development of NAD+ replenishment strategies for neuroprotection in prion diseases and possibly other protein misfolding neurodegenerative diseases. PMID:25678560

  1. Individual differences in pavlovian autoshaping of lever pressing in rats predict stress-induced corticosterone release and mesolimbic levels of monoamines.

    PubMed

    Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D

    2000-03-01

    Pavlovian autoshaping CRs are directed and reflexive consummatory responses targeted at objects repeatedly paired with rewarding substances. To evaluate the hypothesis that autoshaping may provide an animal learning model of vulnerability to drug abuse, this study relates individual differences in lever-press autoshaping CR performance in rats to stress-induced corticosterone release and tissue monoamine levels in the mesolimbic dopamine tract. Long-Evans rats (n = 14) were given 20 sessions of Pavlovian autoshaping training wherein the insertion of a retractable lever CS was followed by the response-independent presentation of food US. Large between-subjects differences in lever-press autoshaping CR performance were observed, with group high CR frequency (n = 5) performing many more lever press CRs than group low CR frequency (n = 9). Tail-blood samples were obtained before and after the 20th autoshaping session, then 24 h later the rats were sacrificed and dissection yielded tissue samples of nucleus accumbens (NAC), prefrontal cortex (PFC), caudate putamen (CP), and ventral tegmental area (VTA). Serum levels of postsession corticosterone were elevated in group high CR frequency. HPLC revealed that group high CR frequency had higher tissue levels of dopamine and DOPAC in NAC, lower levels of DOPAC/DA turnover in CP, and lower levels of 5-HIAA and lower 5-HIAA/5-HT turnover in VTA. The neurochemical profile of rats that perform more autoshaping CRs share some features of vulnerability to drug abuse.

  2. Heart rate dynamics in monoamine oxidase-A- and -B-deficient mice

    PubMed Central

    HOLSCHNEIDER, D. P.; SCREMIN, O. U.; CHIALVO, D. R.; CHEN, K.; SHIH, J. C.

    2014-01-01

    Heart rate (HR) dynamics were investigated in mice deficient in monoamine oxidase A and B, whose phenotype includes elevated tissue levels of norepinephrine, serotonin, dopamine, and phenylethylamine. In their home cages, spectral analysis of R-R intervals revealed more pronounced fluctuations at all frequencies in the mutants compared with wild-type controls, with a particular enhancement at 1–4 Hz. No significant genotypic differences in HR variability (HRV) or entropies calculated from Poincaré plots of the R-R intervals were noted. During exposure to the stress of a novel environment, HR increased and HRV decreased in both genotypes. However, mutants, unlike controls, demonstrated a rapid return to baseline HR during the 10-min exposure. Such modulation may result from an enhanced vagal tone, as suggested by the observation that mutants responded to cholinergic blockade with a decrease in HRV and a prolonged tachycardia greater than controls. Monoamine oxidase-deficient mice may represent a useful experimental model for studying compensatory mechanisms responsible for changes in HR dynamics in chronic states of high sympathetic tone. PMID:11959640

  3. Monoamine Oxidase-A Occupancy by Moclobemide and Phenelzine: Implications for the Development of Monoamine Oxidase Inhibitors.

    PubMed

    Chiuccariello, Lina; Cooke, Robert G; Miler, Laura; Levitan, Robert D; Baker, Glen B; Kish, Stephen J; Kolla, Nathan J; Rusjan, Pablo M; Houle, Sylvain; Wilson, Alan A; Meyer, Jeffrey H

    2015-08-27

    Monoamine oxidase inhibitors (MAOIs) are being developed for major depressive disorder, Alzheimer's, and Parkinson's Disease. Newer MAOIs have minimal sensitivity to tyramine, but a key limitation for optimizing their development is that standards for in vivo monoamine oxidase-A (MAO-A) occupancy in humans are not well established. The objectives were to determine the dose-occupancy relationship of moclobemide and the occupancy of phenelzine at typical clinical dosing. Major depressive episode (MDE) subjects underwent [(11)C]harmine positron emission tomography scanning prior to and following 6 weeks of treatment with moclobemide or phenelzine. Mean brain MAO-A occupancies were 74.23±8.32% for moclobemide at 300-600 mg daily (n = 11), 83.75±5.52% for moclobemide at 900-1200 mg daily (n = 9), and 86.82±6.89% for phenelzine at 45-60 mg daily (n = 4). The regional dose-occupancy relationship of moclobemide fit a hyperbolic function [F(x) = a(x/[b + x]); F(1,18) = 5.57 to 13.32, p = 0.002 to 0.03, mean 'a': 88.62±2.38%, mean 'b': 69.88±4.36 mg]. Multivariate analyses of variance showed significantly greater occupancy of phenelzine (45-60mg) and higher-dose moclobemide (900-1200 mg) compared to lower-dose moclobemide [300-600 mg; F(7,16) = 3.94, p = 0.01]. These findings suggest that for first-line MDE treatment, daily moclobemide doses of 300-600mg correspond to a MAO-A occupancy of 74%, whereas for treatment-resistant MDE, either phenelzine or higher doses of moclobemide correspond to a MAO-A occupancy of at least 84%. Therefore, novel MAO inhibitor development should aim for similar thresholds. The findings provide a rationale in treatment algorithm design to raise moclobemide doses to inhibit more MAO-A sites, but suggest switching from high-dose moclobemide to phenelzine is best justified by binding to additional targets. © The Author 2015. Published by Oxford University Press on behalf of the American Association for Public Opinion Research.

  4. Monoamine Oxidase-A Occupancy by Moclobemide and Phenelzine: Implications for the Development of Monoamine Oxidase Inhibitors

    PubMed Central

    Chiuccariello, Lina; Cooke, Robert G; Miler, Laura; Levitan, Robert D; Baker, Glen B; Kish, Stephen J; Kolla, Nathan J; Rusjan, Pablo M; Houle, Sylvain; Wilson, Alan A

    2016-01-01

    Background: Monoamine oxidase inhibitors (MAOIs) are being developed for major depressive disorder, Alzheimer’s, and Parkinson’s Disease. Newer MAOIs have minimal sensitivity to tyramine, but a key limitation for optimizing their development is that standards for in vivo monoamine oxidase-A (MAO-A) occupancy in humans are not well established. The objectives were to determine the dose-occupancy relationship of moclobemide and the occupancy of phenelzine at typical clinical dosing. Methods: Major depressive episode (MDE) subjects underwent [11C]harmine positron emission tomography scanning prior to and following 6 weeks of treatment with moclobemide or phenelzine. Results: Mean brain MAO-A occupancies were 74.23±8.32% for moclobemide at 300–600mg daily (n = 11), 83.75±5.52% for moclobemide at 900–1200mg daily (n = 9), and 86.82±6.89% for phenelzine at 45–60mg daily (n = 4). The regional dose-occupancy relationship of moclobemide fit a hyperbolic function [F(x) = a(x/[b + x]); F(1,18) = 5.57 to 13.32, p = 0.002 to 0.03, mean ‘a’: 88.62±2.38%, mean ‘b’: 69.88±4.36 mg]. Multivariate analyses of variance showed significantly greater occupancy of phenelzine (45–60mg) and higher-dose moclobemide (900–1200mg) compared to lower-dose moclobemide [300–600mg; F(7,16) = 3.94, p = 0.01]. Conclusions: These findings suggest that for first-line MDE treatment, daily moclobemide doses of 300–600mg correspond to a MAO-A occupancy of 74%, whereas for treatment-resistant MDE, either phenelzine or higher doses of moclobemide correspond to a MAO-A occupancy of at least 84%. Therefore, novel MAO inhibitor development should aim for similar thresholds. The findings provide a rationale in treatment algorithm design to raise moclobemide doses to inhibit more MAO-A sites, but suggest switching from high-dose moclobemide to phenelzine is best justified by binding to additional targets. PMID:26316187

  5. X-linked borderline mental retardation with prominent behavioral disturbance: Phenotype, genetic localization, and evidence for disturbed monoamine metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, H.G.; Nelen, M.R.; Zandvoort, P. van

    The authors have identified a large Dutch kindred with a new form of X-linked nondysmorphic mild mental retardation. All affected males in this family show very characteristic abnormal behavior, in particular aggressive and sometimes violent behavior. Other types of impulsive behavior include arson, attempted rape, and exhibitionism. Attempted suicide has been reported in a single case. The locus for this disorder could be assigned to the Xp11-21 interval between DXS7 and DXS77 by linkage analysis using markers spanning the X chromosome. A maximal multipoint lod score of 3.69 was obtained at the monoamine oxidase type A (MAOA) monoamine metabolism. Thesemore » data are compatible with a primary defect in the structural gene for MAOA and/or monoamine oxidase type B (MAOB). Normal platelet MAOB activity suggests that the unusual behavior pattern in this family may be caused by isolated MAOA deficiency. 34 refs., 4 figs., 4 tabs.« less

  6. Nonantibiotic macrolides prevent human neutrophil elastase-induced mucus stasis and airway surface liquid volume depletion.

    PubMed

    Tarran, Robert; Sabater, Juan R; Clarke, Tainya C; Tan, Chong D; Davies, Catrin M; Liu, Jia; Yeung, Arthur; Garland, Alaina L; Stutts, M Jackson; Abraham, William M; Phillips, Gary; Baker, William R; Wright, Clifford D; Wilbert, Sibylle

    2013-06-01

    Mucus clearance is an important component of the lung's innate defense system. A failure of this system brought on by mucus dehydration is common to both cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Mucus clearance rates are regulated by the volume of airway surface liquid (ASL) and by ciliary beat frequency (CBF). Chronic treatment with macrolide antibiotics is known to be beneficial to both CF and COPD patients. However, chronic macrolide usage may induce bacterial resistance. We have developed a novel macrolide, 2'-desoxy-9-(S)-erythromycylamine (GS-459755), that has significantly diminished antibiotic activity against Staphylococcus aureus, Streptococcus pneumonia, Moraxella catarrhalis, and Haemophilus influenzae. Since neutrophilia frequently occurs in chronic lung disease and human neutrophil elastase (HNE) induces mucus stasis by activating the epithelial sodium channel (ENaC), we tested the ability of GS-459755 to protect against HNE-induced mucus stasis. GS-459755 had no effect on HNE activity. However, GS-459755 pretreatment protected against HNE-induced ASL volume depletion in human bronchial epithelial cells (HBECs). The effect of GS-459755 on ASL volume was dose dependent (IC₅₀ ~3.9 μM) and comparable to the antibacterial macrolide azithromycin (IC₅₀ ~2.4 μM). Macrolides had no significant effect on CBF or on transepithelial water permeability. However, the amiloride-sensitive transepithelial voltage, a marker of ENaC activity, was diminished by macrolide pretreatment. We conclude that GS-459755 may limit HNE-induced activation of ENaC and may be useful for the treatment of mucus dehydration in CF and COPD without inducing bacterial resistance.

  7. Parvovirus-Induced Depletion of Cyclin B1 Prevents Mitotic Entry of Infected Cells

    PubMed Central

    Adeyemi, Richard O.; Pintel, David J.

    2014-01-01

    Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication. PMID:24415942

  8. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells.

    PubMed

    Adeyemi, Richard O; Pintel, David J

    2014-01-01

    Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication.

  9. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer.

    PubMed

    Que, Ri-Sheng; Lin, Cheng; Ding, Guo-Ping; Wu, Zheng-Rong; Cao, Li-Ping

    2016-05-01

    Tumor-derived exosomes were considered to be potential candidates for tumor vaccines because they are abundant in immune-regulating proteins, whereas tumor exosomal miRNAs may induce immune tolerance, thereby having an opposite immune function. This study was designed to separate exosomal protein and depleted exosomal microRNAs (miRNAs), increasing the immune activity of exosomes for activating dendritic cell/cytokine-induced killer cells (DC/CIKs) against pancreatic cancer (PC). PC-derived exosomes (PEs) were extracted from cultured PANC-1 cell supernatants and then ruptured; this was followed by ultrafiltered exosome lysates (UELs). DCs were stimulated with lipopolysaccharide (LPS), PE, and UEL, followed by co-culture with CIKs. The anti-tumor effects of DC/CIKs against PC were evaluated by proliferation and killing rates, tumor necrosis factor-α (TNF-α) and perforin secretion. Exosomal miRNAs were depleted after lysis and ultrafiltration, while 128 proteins were retained, including several immune-activating proteins. UEL-stimulated DC/CIKs showed a higher killing rate than LPS- and PE-stimulated DC/CIKs. miRNA-depleted exosome proteins may be promising agonists for specifically activating DC/CIKs against PC.

  10. Developmentally regulated GTP-binding protein 2 depletion leads to mitochondrial dysfunction through downregulation of dynamin-related protein 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vo, Mai-Tram; Ko, Myoung Seok; Lee, Unn Hwa

    Mitochondrial dynamics, including constant fusion and fission, play critical roles in maintaining mitochondrial morphology and function. Here, we report that developmentally regulated GTP-binding protein 2 (DRG2) regulates mitochondrial morphology by modulating the expression of the mitochondrial fission gene dynamin-related protein 1 (Drp1). shRNA-mediated silencing of DRG2 induced mitochondrial swelling, whereas expression of an shRNA-resistant version of DRG2 decreased mitochondrial swelling in DRG2-depleted cells. Analysis of the expression levels of genes involved in mitochondrial fusion and fission revealed that DRG2 depletion significantly decreased the level of Drp1. Overexpression of Drp1 rescued the defect in mitochondrial morphology induced by DRG2 depletion. DRG2more » depletion reduced the mitochondrial membrane potential, oxygen consumption rate (OCR), and amount of mitochondrial DNA (mtDNA), whereas it increased reactive oxygen species (ROS) production and apoptosis. Taken together, our data demonstrate that DRG2 acts as a regulator of mitochondrial fission by controlling the expression of Drp1. - Highlights: • DRG2 depletion increased mitochondrial swelling. • DRG2 depletion inhibited the expression of Drp1. • Overexpression of DRG2 or Drp1 rescued mitochondrial shape in DRG2 depleted cells. • DRG2 depletion induced mitochondrial dysfunction.« less

  11. Monoamine Oxidase A Gene Methylation and Its Role in Posttraumatic Stress Disorder: First Evidence from the South Eastern Europe (SEE)-PTSD Study

    PubMed Central

    Ziegler, Christiane; Wolf, Christiane; Schiele, Miriam A; Feric Bojic, Elma; Kucukalic, Sabina; Sabic Dzananovic, Emina; Goci Uka, Aferdita; Hoxha, Blerina; Haxhibeqiri, Valdete; Haxhibeqiri, Shpend; Kravic, Nermina; Muminovic Umihanic, Mirnesa; Cima Franc, Ana; Jaksic, Nenad; Babic, Romana; Pavlovic, Marko; Warrings, Bodo; Bravo Mehmedbasic, Alma; Rudan, Dusko; Aukst-Margetic, Branka; Kucukalic, Abdulah; Marjanovic, Damir; Babic, Dragan; Bozina, Nada; Jakovljevic, Miro; Sinanovic, Osman; Avdibegovic, Esmina; Agani, Ferid; Dzubur-Kulenovic, Alma; Deckert, Jürgen; Domschke, Katharina

    2018-01-01

    Abstract Background Posttraumatic stress disorder is characterized by an overactive noradrenergic system conferring core posttraumatic stress disorder symptoms such as hyperarousal and reexperiencing. Monoamine oxidase A is one of the key enzymes mediating the turnover of noradrenaline. Here, DNA methylation of the monoamine oxidase A gene exonI/intronI region was investigated for the first time regarding its role in posttraumatic stress disorder risk and severity. Methods Monoamine oxidase A methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells in a total sample of N=652 (441 male) patients with current posttraumatic stress disorder, patients with remitted posttraumatic stress disorder, and healthy probands (comparison group) recruited at 5 centers in Bosnia-Herzegovina, Croatia, and the Republic of Kosovo. Posttraumatic stress disorder severity was measured by means of the Clinician-Administered Posttraumatic Stress Disorder Scale and its respective subscores representing distinct symptom clusters. Results In the male, but not the female sample, patients with current posttraumatic stress disorder displayed hypermethylation of 3 CpGs (CpG3=43656362; CpG12=43656514; CpG13=43656553, GRCh38.p2 Assembly) as compared with remitted Posttraumatic Stress Disorder patients and healthy probands. Symptom severity (Clinician-Administered Posttraumatic Stress Disorder Scale scores) in male patients with current posttraumatic stress disorder significantly correlated with monoamine oxidase A methylation. This applied particularly to symptom clusters related to reexperiencing of trauma (cluster B) and hyperarousal (cluster D). Conclusions The present findings suggest monoamine oxidase A gene hypermethylation, potentially resulting in enhanced noradrenergic signalling, as a disease status and severity marker of current posttraumatic stress disorder in males. If replicated, monoamine oxidase A hypermethylation might serve as a

  12. Monoamine Oxidase A Gene Methylation and Its Role in Posttraumatic Stress Disorder: First Evidence from the South Eastern Europe (SEE)-PTSD Study.

    PubMed

    Ziegler, Christiane; Wolf, Christiane; Schiele, Miriam A; Feric Bojic, Elma; Kucukalic, Sabina; Sabic Dzananovic, Emina; Goci Uka, Aferdita; Hoxha, Blerina; Haxhibeqiri, Valdete; Haxhibeqiri, Shpend; Kravic, Nermina; Muminovic Umihanic, Mirnesa; Cima Franc, Ana; Jaksic, Nenad; Babic, Romana; Pavlovic, Marko; Warrings, Bodo; Bravo Mehmedbasic, Alma; Rudan, Dusko; Aukst-Margetic, Branka; Kucukalic, Abdulah; Marjanovic, Damir; Babic, Dragan; Bozina, Nada; Jakovljevic, Miro; Sinanovic, Osman; Avdibegovic, Esmina; Agani, Ferid; Dzubur-Kulenovic, Alma; Deckert, Jürgen; Domschke, Katharina

    2018-05-01

    Posttraumatic stress disorder is characterized by an overactive noradrenergic system conferring core posttraumatic stress disorder symptoms such as hyperarousal and reexperiencing. Monoamine oxidase A is one of the key enzymes mediating the turnover of noradrenaline. Here, DNA methylation of the monoamine oxidase A gene exonI/intronI region was investigated for the first time regarding its role in posttraumatic stress disorder risk and severity. Monoamine oxidase A methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells in a total sample of N=652 (441 male) patients with current posttraumatic stress disorder, patients with remitted posttraumatic stress disorder, and healthy probands (comparison group) recruited at 5 centers in Bosnia-Herzegovina, Croatia, and the Republic of Kosovo. Posttraumatic stress disorder severity was measured by means of the Clinician-Administered Posttraumatic Stress Disorder Scale and its respective subscores representing distinct symptom clusters. In the male, but not the female sample, patients with current posttraumatic stress disorder displayed hypermethylation of 3 CpGs (CpG3=43656362; CpG12=43656514; CpG13=43656553, GRCh38.p2 Assembly) as compared with remitted Posttraumatic Stress Disorder patients and healthy probands. Symptom severity (Clinician-Administered Posttraumatic Stress Disorder Scale scores) in male patients with current posttraumatic stress disorder significantly correlated with monoamine oxidase A methylation. This applied particularly to symptom clusters related to reexperiencing of trauma (cluster B) and hyperarousal (cluster D). The present findings suggest monoamine oxidase A gene hypermethylation, potentially resulting in enhanced noradrenergic signalling, as a disease status and severity marker of current posttraumatic stress disorder in males. If replicated, monoamine oxidase A hypermethylation might serve as a surrogate marker of a hyperadrenergic subtype of

  13. Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages

    PubMed Central

    Cathcart, Martha K.; Bhattacharjee, Ashish

    2015-01-01

    Monocytes/macrophages are versatile cells centrally involved in host defense and immunity. Th1 cytokines induce a classical activation program in monocytes/macrophages leading to a proinflammatory M1 macrophage phenotype while Th2 cytokines IL-4 and IL-13 promote monocyte differentiation into an alternatively activated, anti-inflammatory M2 macrophage phenotype. Although monoamine oxidase A (MAO-A) is primarily known for its action in the nervous system, several recent studies have identified MAO-A as a signature marker of alternative activation of monocytes/macrophages. In this brief review we explore the signaling pathways/molecules that regulate MAO-A expression in alternatively activated monocytes/macrophages. We further discuss the contribution of MAO-A to the resolution of inflammation and identify potential therapeutic targets for controlling inflammation. Altogether this review provides deeper insight into the role of MAO-A in alternative activation of monocytes/macrophages and their participation in the inflammatory response. PMID:26052543

  14. Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages.

    PubMed

    Cathcart, Martha K; Bhattacharjee, Ashish

    Monocytes/macrophages are versatile cells centrally involved in host defense and immunity. Th1 cytokines induce a classical activation program in monocytes/macrophages leading to a proinflammatory M1 macrophage phenotype while Th2 cytokines IL-4 and IL-13 promote monocyte differentiation into an alternatively activated, anti-inflammatory M2 macrophage phenotype. Although monoamine oxidase A (MAO-A) is primarily known for its action in the nervous system, several recent studies have identified MAO-A as a signature marker of alternative activation of monocytes/macrophages. In this brief review we explore the signaling pathways/molecules that regulate MAO-A expression in alternatively activated monocytes/macrophages. We further discuss the contribution of MAO-A to the resolution of inflammation and identify potential therapeutic targets for controlling inflammation. Altogether this review provides deeper insight into the role of MAO-A in alternative activation of monocytes/macrophages and their participation in the inflammatory response.

  15. Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains.

    PubMed

    Naoi, Makoto; Maruyama, Wakako; Nagy, Georgy M

    2004-01-01

    Salsolinol, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, is an endogenous catechol isoquinoline detected in humans by M. Sandler. In human brain, a series of catechol isoquinolines were identified as the condensation products of dopamine or other monoamines with aldehydes or keto-acids. Recently selective occurrence of the (R)enantiomers of salsolinol derivatives was confirmed in human brain, and they are synthesized by enzymes in situ, but not by the non-enzymatic Pictet-Spengler reaction. A (R)salsolinol synthase catalyzes the enantio-specific synthesis of (R)salsolinol from dopamine and acetaldehyde, and (R)salsolinol N-methyltransferase synthesizes N-methyl(R)salsolinol, which is further oxidized into 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion by non-enzymatic and enzymatic oxidation. The step-wise reactions, N-methylation and oxidation, induce the specified distribution of the N-methylated and oxidized derivatives in the human nigro-striatum, suggesting that these derivatives may be involved in the function of dopamine neurons under physiological and pathological conditions. As shown by in vivo and in vitro experiments, salsolinol derivatives affect the levels of monoamine neurotransmitters though the inhibition of enzymes related in the metabolism of catechol- and indoleamines. In addition, the selective neurotoxicity of N-methyl(R)salsolinol to dopamine neurons was confirmed by preparation of an animal model of Parkinson's disease in rats. The involvement of N-methyl(R)salsolinol in the pathogenesis of Parkinson's disease was further indicated by the increase in the N-methyl(R)salsolinol levels in the cerebrospinal fluid and that in the activity of its synthesizing enzyme, a neural (R)salsolinol N-methyltransferase, in the lymphocytes prepared from parkinsonian patients. N-methyl(R)salsolinol induces apoptosis in dopamine neurons, which is mediated by death signal transduction in mitochondria. In addition, salsolinol was found to function as a

  16. IL-7 receptor blockade following T cell depletion promotes long-term allograft survival

    PubMed Central

    Mai, Hoa-Le; Boeffard, Françoise; Longis, Julie; Danger, Richard; Martinet, Bernard; Haspot, Fabienne; Vanhove, Bernard; Brouard, Sophie; Soulillou, Jean-Paul

    2014-01-01

    T cell depletion is commonly used in organ transplantation for immunosuppression; however, a restoration of T cell homeostasis following depletion leads to increased memory T cells, which may promote transplant rejection. The cytokine IL-7 is important for controlling lymphopoiesis under both normal and lymphopenic conditions. Here, we investigated whether blocking IL-7 signaling with a mAb that targets IL-7 receptor α (IL-7Rα) alone or following T cell depletion confers an advantage for allograft survival in murine transplant models. We found that IL-7R blockade alone induced indefinite pancreatic islet allograft survival if anti–IL-7R treatment was started 3 weeks before graft. IL-7R blockade following anti-CD4– and anti-CD8–mediated T cell depletion markedly prolonged skin allograft survival. Furthermore, IL-7 inhibition in combination with T cell depletion synergized with either CTLA-4Ig administration or suboptimal doses of tacrolimus to induce long-term skin graft acceptance in this stringent transplant model. Together, these therapies inhibited T cell reconstitution, decreased memory T cell numbers, increased the relative frequency of Tregs, and abrogated both cellular and humoral alloimmune responses. Our data suggest that IL-7R blockade following T cell depletion has potential as a robust, immunosuppressive therapy in transplantation. PMID:24569454

  17. Are monoaminergic systems involved in the lethargy induced by a parasitoid wasp in the cockroach prey?

    PubMed

    Weisel-Eichler, A; Libersat, F

    2002-05-01

    The venom of the parasitoid wasp Ampulex compressa induces long-lasting hypokinesia in the cockroach prey. Previous work indicates that the venom acts in the subesophageal ganglion to indirectly affect modulation of thoracic circuits for locomotion. However, the target of the venom in the subesophageal ganglion, and the mechanism by which the venom achieves its effects are as yet unknown. While the stung cockroaches appear generally lethargic, not all behaviors were affected, indicating that the venom targets specific motor systems and not behavior in general. Stung cockroaches were observed "freezing" in abnormal positions. Reserpine, which depletes monoamines, mimics the behavioral effects of the venom. We treated cockroaches with antagonists to dopamine and octopamine receptors, and found that the dopamine system is required for normal escape response. Dopamine injection induces prolonged grooming in normal cockroaches, but not in stung, suggesting that the venom is affecting dopamine receptors, or targets downstream of these receptors, in the subesophageal ganglion. This dopamine blocking effect fades slowly over the course of several weeks, similar to the time course of recovery from hypokinesia. The similarity in the time courses suggests that the mechanism underlying the hypokinesia may be the block of the dopamine receptors.

  18. Metabolite profiling of antidepressant drug action reveals novel drug targets beyond monoamine elevation.

    PubMed

    Webhofer, C; Gormanns, P; Tolstikov, V; Zieglgänsberger, W; Sillaber, I; Holsboer, F; Turck, C W

    2011-12-13

    Currently used antidepressants elevate monoamine levels in the synaptic cleft. There is good reason to assume that this is not the only source for antidepressant therapeutic activities and that secondary downstream effects may be relevant for alleviating symptoms of depression. We attempted to elucidate affected biochemical pathways downstream of monoamine reuptake inhibition by interrogating metabolomic profiles in DBA/2Ola mice after chronic paroxetine treatment. Metabolomic changes were investigated using gas chromatography-mass spectrometry profiling and group differences were analyzed by univariate and multivariate statistics. Pathways affected by antidepressant treatment were related to energy metabolism, amino acid metabolism and hormone signaling. The identified pathways reveal further antidepressant therapeutic action and represent targets for drug development efforts. A comparison of the central nervous system with blood plasma metabolite alterations identified GABA, galactose-6-phosphate and leucine as biomarker candidates for assessment of antidepressant treatment effects in the periphery.

  19. Antibiotic-Induced Depletion of Anti-inflammatory Clostridia Is Associated with the Development of Graft-versus-Host Disease in Pediatric Stem Cell Transplantation Patients.

    PubMed

    Simms-Waldrip, Tiffany R; Sunkersett, Gauri; Coughlin, Laura A; Savani, Milan R; Arana, Carlos; Kim, Jiwoong; Kim, Minsoo; Zhan, Xiaowei; Greenberg, David E; Xie, Yang; Davies, Stella M; Koh, Andrew Y

    2017-05-01

    Adult stem cell transplantation (SCT) patients with graft-versus-host-disease (GVHD) exhibit significant disruptions in gut microbial communities. These changes are associated with higher overall mortality and appear to be driven by specific antibiotic therapies. It is unclear whether pediatric SCT patients who develop GVHD exhibit similar antibiotic-induced gut microbiota community changes. Here, we show that pediatric SCT patients (from Children's Medical Center Dallas, n = 8, and Cincinnati Children's Hospital, n = 7) who developed GVHD showed a significant decline, up to 10-log fold, in gut anti-inflammatory Clostridia (AIC) compared with those without GVHD. In fact, the development of GVHD is significantly associated with this AIC decline and with cumulative antibiotic exposure, particularly antibiotics effective against anaerobic bacteria (P = .003, Firth logistic regression analysis). Using metagenomic shotgun sequencing analysis, we were able to identify specific commensal bacterial species, including AIC, that were significantly depleted in GVHD patients. We then used a preclinical GVHD model to verify our clinical observations. Clindamycin depleted AIC and exacerbated GVHD in mice, whereas oral AIC supplementation increased gut AIC levels and mitigated GVHD in mice. Together, these data suggest that an antibiotic-induced AIC depletion in the gut microbiota is associated with the development of GVHD in pediatric SCT patients. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  20. Tyramine-induced noradrenaline release from rat brain slices: prevention by (-)-deprenyl.

    PubMed Central

    Glover, V.; Pycock, C. J.; Sandler, M.

    1983-01-01

    Clorgyline (1 and 10 microM) and (+)-deprenyl (10 microM) both significantly potentiated the tyramine (100 microM)-induced release of [3H]-noradrenaline from rat cerebral cortex slices. (-)-Deprenyl (50 microM) significantly reduced it, while lower concentrations had no effect on noradrenaline release. However, in combination, 1 microM (-)-deprenyl blocked the release-facilitating action of 1 microM clorgyline, and 10 microM (-)-deprenyl that of 10 microM (+)-deprenyl. Low concentrations of (+)- and (-)-deprenyl (1 and 10 microM), both selectively inhibited phenylethylamine oxidation by monoamine oxidase B. Higher concentrations of (-)-deprenyl (20 and 50 microM) also inhibited 5-hydroxytryptamine oxidation by monoamine oxidase A. Clorgyline (1 and 10 microM) inhibited both enzymes. Thus, the effects of these drugs on noradrenaline-release cannot be explained solely in terms of irreversible inhibition of monoamine oxidase A and B, and other possible mechanisms are discussed. If the brain-slice model faithfully mirrors the sequence of events manifesting peripherally as the tyramine hypertensive response ('cheese effect'), then it is possible that low doses of (-)-deprenyl, administered with antidepressant monoamine oxidase inhibitors, can prevent this adverse reaction. PMID:6418254

  1. Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway.

    PubMed

    Ou, Xiao-Ming; Chen, Kevin; Shih, Jean C

    2006-07-18

    Monoamine oxidase A (MAO A) degrades serotonin, norepinephrine, and dopamine and produces reactive oxygen that may cause neuronal cell death. We have previously reported that a novel transcription factor R1 (RAM2/CDCA7L/JPO2) inhibits the MAO A promoter and enzymatic activities. This study reports the roles of MAO A and R1 in apoptosis and proliferation. We have found that in serum starvation-induced apoptosis, p38 kinase, MAO A, and caspase-3 were increased, whereas Bcl-2 and R1 were reduced. Using a p38 kinase inhibitor, R1 overexpression, and MAO A inhibitor, we have shown that MAO A and R1 are downstream of p38 kinase and Bcl-2, but upstream of caspase-3. Inhibition of MAO A prevents cell apoptosis. This notion was further supported by the finding that serum starvation-induced apoptosis is reduced in cortical brain cells from MAO A-deficient mice compared with WT. In addition, we found that MAO A and R1 are involved in the c-Myc-induced proliferative signaling pathway in the presence of serum. Immunoprecipitation and immunohistochemistry experiments indicate that the oncogene c-Myc colocalizes with R1 and induces R1 gene expression. Using R1 overexpression, R1 small interfering RNA, and a MAO A inhibitor, we found that R1 and MAO A act upstream of cyclin D1 and E2F1. In summary, this study demonstrates the functions of MAO A and its repressor R1 in apoptotic signaling pathways.

  2. Profound CD4+/CCR5+ T cell expansion is induced by CD8+ lymphocyte depletion but does not account for accelerated SIV pathogenesis

    PubMed Central

    Okoye, Afam; Park, Haesun; Rohankhedkar, Mukta; Coyne-Johnson, Lia; Lum, Richard; Walker, Joshua M.; Planer, Shannon L.; Legasse, Alfred W.; Sylwester, Andrew W.; Piatak, Michael; Lifson, Jeffrey D.; Sodora, Donald L.; Villinger, Francois; Axthelm, Michael K.; Schmitz, Joern E.

    2009-01-01

    Depletion of CD8+ lymphocytes during acute simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) results in irreversible prolongation of peak-level viral replication and rapid disease progression, consistent with a major role for CD8+ lymphocytes in determining postacute-phase viral replication set points. However, we report that CD8+ lymphocyte depletion is also associated with a dramatic induction of proliferation among CD4+ effector memory T (TEM) cells and, to a lesser extent, transitional memory T (TTrM) cells, raising the question of whether an increased availability of optimal (activated/proliferating), CD4+/CCR5+ SIV “target” cells contributes to this accelerated pathogenesis. In keeping with this, depletion of CD8+ lymphocytes in SIV− RMs led to a sustained increase in the number of potential CD4+ SIV targets, whereas such depletion in acute SIV infection led to increased target cell consumption. However, we found that the excess CD4+ TEM cell proliferation of CD8+ lymphocyte–depleted, acutely SIV-infected RMs was completely inhibited by interleukin (IL)-15 neutralization, and that this inhibition did not abrogate the rapidly progressive infection in these RMs. Moreover, although administration of IL-15 during acute infection induced robust CD4+ TEM and TTrM cell proliferation, it did not recapitulate the viral dynamics of CD8+ lymphocyte depletion. These data suggest that CD8+ lymphocyte function has a larger impact on the outcome of acute SIV infection than the number and/or activation status of target cells available for infection and viral production. PMID:19546246

  3. Profound CD4+/CCR5+ T cell expansion is induced by CD8+ lymphocyte depletion but does not account for accelerated SIV pathogenesis.

    PubMed

    Okoye, Afam; Park, Haesun; Rohankhedkar, Mukta; Coyne-Johnson, Lia; Lum, Richard; Walker, Joshua M; Planer, Shannon L; Legasse, Alfred W; Sylwester, Andrew W; Piatak, Michael; Lifson, Jeffrey D; Sodora, Donald L; Villinger, Francois; Axthelm, Michael K; Schmitz, Joern E; Picker, Louis J

    2009-07-06

    Depletion of CD8(+) lymphocytes during acute simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) results in irreversible prolongation of peak-level viral replication and rapid disease progression, consistent with a major role for CD8(+) lymphocytes in determining postacute-phase viral replication set points. However, we report that CD8(+) lymphocyte depletion is also associated with a dramatic induction of proliferation among CD4(+) effector memory T (T(EM)) cells and, to a lesser extent, transitional memory T (T(TrM)) cells, raising the question of whether an increased availability of optimal (activated/proliferating), CD4(+)/CCR5(+) SIV "target" cells contributes to this accelerated pathogenesis. In keeping with this, depletion of CD8(+) lymphocytes in SIV(-) RMs led to a sustained increase in the number of potential CD4(+) SIV targets, whereas such depletion in acute SIV infection led to increased target cell consumption. However, we found that the excess CD4(+) T(EM) cell proliferation of CD8(+) lymphocyte-depleted, acutely SIV-infected RMs was completely inhibited by interleukin (IL)-15 neutralization, and that this inhibition did not abrogate the rapidly progressive infection in these RMs. Moreover, although administration of IL-15 during acute infection induced robust CD4(+) T(EM) and T(TrM) cell proliferation, it did not recapitulate the viral dynamics of CD8(+) lymphocyte depletion. These data suggest that CD8(+) lymphocyte function has a larger impact on the outcome of acute SIV infection than the number and/or activation status of target cells available for infection and viral production.

  4. Treatment of Tardive Dyskinesia: A General Overview with Focus on the Vesicular Monoamine Transporter 2 Inhibitors.

    PubMed

    Niemann, Nicki; Jankovic, Joseph

    2018-04-01

    Tardive dyskinesia (TD) encompasses the spectrum of iatrogenic hyperkinetic movement disorders following exposure to dopamine receptor-blocking agents (DRBAs). Despite the advent of atypical or second- and third-generation antipsychotics with a presumably lower risk of complications, TD remains a persistent and challenging problem. Prevention is the first step in mitigating the risk of TD, but early recognition, gradual withdrawal of offending medications, and appropriate treatment are also critical. As TD is often a persistent and troublesome disorder, specific antidyskinetic therapies are often needed for symptomatic relief. The vesicular monoamine transporter 2 (VMAT2) inhibitors, which include tetrabenazine, deutetrabenazine, and valbenazine, are considered the treatment of choice for most patients with TD. Deutetrabenazine-a deuterated version of tetrabenazine-and valbenazine, the purified parent product of one of the main tetrabenazine metabolites, are novel VMAT2 inhibitors and the only drugs to receive approval from the US FDA for the treatment of TD. VMAT2 inhibitors deplete presynaptic dopamine and reduce involuntary movements in many hyperkinetic movement disorders, particularly TD, Huntington disease, and Tourette syndrome. The active metabolites of the VMAT2 inhibitors have high affinity for VMAT2 and minimal off-target binding. Compared with tetrabenazine, deutetrabenazine and valbenazine have pharmacokinetic advantages that translate into less frequent dosing and better tolerability. However, no head-to-head studies have compared the various VMAT2 inhibitors. One of the major advantages of VMAT2 inhibitors over DRBAs, which are still being used by some clinicians in the treatment of some hyperkinetic disorders, including TD, is that they are not associated with the development of TD. We also briefly discuss other treatment options for TD, including amantadine, clonazepam, Gingko biloba, zolpidem, botulinum toxin, and deep brain stimulation. Treatment

  5. Activity of a new hydrogen sulfide-releasing aspirin (ACS14) on pathological cardiovascular alterations induced by glutathione depletion in rats.

    PubMed

    Rossoni, Giuseppe; Manfredi, Barbara; Tazzari, Valerio; Sparatore, Anna; Trivulzio, Silvio; Del Soldato, Piero; Berti, Ferruccio

    2010-12-01

    We investigated the effects of the hydrogen sulfide (H₂S)-releasing derivatives of aspirin (ACS14) and salicylic acid (ACS21) in a rat model of metabolic syndrome induced by glutathione (GSH) depletion, causing hypertension and other pathological cardiovascular alterations. GSH depletion was induced in normal rats by the GSH-synthase inhibitor buthionine sulfoximine (BSO, 30 mmol/L day for seven days in the drinking water). Systolic blood pressure and heart rate were measured daily by the tail-cuff method, and plasma thromboxane B₂, 6-keto-prostaglandin F(2α), 8-isoprostane, GSH, insulin and glucose were determined at the end of the seven-day BSO schedule. In addition, ischemia/reperfusion-induced myocardial dysfunction and endothelial dysfunction were assayed on isolated heart and aortic rings, respectively. Unlike aspirin and salicylic acid, ACS14 and ACS21 reduced BSO-induced hypertension, also lowering plasma levels of thromboxane B₂, 8-isoprostane and insulin, while GSH remained in the control range. Neither ACS14 nor ACS21 caused gastric lesions. Both restored the endothelial dysfunction observed in aortic rings from BSO-treated rats, and in ischemia/reperfusion experiments they lowered left ventricular end-diastolic pressure, consequently improving the developed pressure and the maximum rise and fall of left ventricular pressure. Together with this improvement of heart mechanics there were reductions in the activity of creatine kinase and lactate dehydrogenase in the cardiac perfusate. This implies that H₂S released by both ACS14 and ACS21 was involved in protecting the heart from ischemia/reperfusion, and significantly limited vascular endothelial dysfunction in aortic tissue and the related hypertension. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, H.G.; Nelen, M.; Ropers, H.H.

    1993-10-22

    Genetic and metabolic studies have been done on a large kindred in which several males are affected by a syndrome of borderline mental retardation and abnormal behavior. The types of behavior that occurred include impulsive aggression, arson, attempted rape, and exhibitionism. Analysis of 24-hour urine samples indicated markedly disturbed monoamine metabolism. This syndrome was associated with a complete and selective deficiency of enzymatic activity of monoamine oxidase A (MAOA). In each of five affected males, a point mutation was identified in the eighth exon of the MAOA structural gene, which changes a glutamine to a termination codon. Thus, isolated completemore » MAOA deficiency in this family is associated with a recognizable behavioral phenotype that includes disturbed regulation of impulsive aggression.« less

  7. Brain Monoamine Oxidase-A Activity Predicts Trait Aggression

    PubMed Central

    Alia-Klein, Nelly; Goldstein, Rita Z.; Kriplani, Aarti; Logan, Jean; Tomasi, Dardo; Williams, Benjamin; Telang, Frank; Shumay, Elena; Biegon, Anat; Craig, Ian W.; Henn, Fritz; Wang, Gene-Jack; Volkow, Nora D.; Fowler, Joanna S.

    2008-01-01

    The genetic deletion of monoamine oxidase A (MAO A, an enzyme which breaks down the monoamine neurotransmitters norepinephrine, serotonin and dopamine) produces aggressive phenotypes across species. Therefore, a common polymorphism in the MAO A gene (MAOA, MIM 309850, referred to as high or low based on transcription in non-neuronal cells) has been investigated in a number of externalizing behavioral and clinical phenotypes. These studies provide evidence linking the low MAOA genotype and violent behavior but only through interaction with severe environmental stressors during childhood. Here, we hypothesized that in healthy adult males the gene product of MAO A in the brain, rather than the gene per se, would be associated with regulating the concentration of brain amines involved in trait aggression. Brain MAO A activity was measured in-vivo in healthy non-smoking men with positron emission tomography using a radioligand specific for MAO A (clorgyline labeled with carbon 11). Trait aggression was measured with the Multidimensional Personality Questionnaire (MPQ). Here we report for the first time that brain MAO A correlates inversely with the MPQ trait measure of aggression (but not with other personality traits) such that the lower the MAO A activity in cortical and subcortical brain regions the higher the self-reported aggression (in both MAOA genotype groups) contributing to more than a third of the variability. Since trait aggression is a measure used to predict antisocial behavior, these results underscore the relevance of MAO A as a neurochemical substrate of aberrant aggression. PMID:18463263

  8. Assessing the threat that anthropogenic calcium depletion poses to forest health and productivity

    Treesearch

    Paul G. Schaberg; Eric K. Miller; Christopher Eagar

    2010-01-01

    Growing evidence from around the globe indicates that anthropogenic factors including pollution-induced acidification, associated aluminum mobility, and nitrogen saturation are disrupting natural nutrient cycles and depleting base cations from forest ecosystems. Although cation depletion can have varied and interacting influences on ecosystem function, it is the loss...

  9. Nonantibiotic macrolides prevent human neutrophil elastase-induced mucus stasis and airway surface liquid volume depletion

    PubMed Central

    Sabater, Juan R.; Clarke, Tainya C.; Tan, Chong D.; Davies, Catrin M.; Liu, Jia; Yeung, Arthur; Garland, Alaina L.; Stutts, M. Jackson; Abraham, William M.; Phillips, Gary; Baker, William R.; Wright, Clifford D.; Wilbert, Sibylle

    2013-01-01

    Mucus clearance is an important component of the lung's innate defense system. A failure of this system brought on by mucus dehydration is common to both cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Mucus clearance rates are regulated by the volume of airway surface liquid (ASL) and by ciliary beat frequency (CBF). Chronic treatment with macrolide antibiotics is known to be beneficial to both CF and COPD patients. However, chronic macrolide usage may induce bacterial resistance. We have developed a novel macrolide, 2′-desoxy-9-(S)-erythromycylamine (GS-459755), that has significantly diminished antibiotic activity against Staphylococcus aureus, Streptococcus pneumonia, Moraxella catarrhalis, and Haemophilus influenzae. Since neutrophilia frequently occurs in chronic lung disease and human neutrophil elastase (HNE) induces mucus stasis by activating the epithelial sodium channel (ENaC), we tested the ability of GS-459755 to protect against HNE-induced mucus stasis. GS-459755 had no effect on HNE activity. However, GS-459755 pretreatment protected against HNE-induced ASL volume depletion in human bronchial epithelial cells (HBECs). The effect of GS-459755 on ASL volume was dose dependent (IC50 ∼3.9 μM) and comparable to the antibacterial macrolide azithromycin (IC50 ∼2.4 μM). Macrolides had no significant effect on CBF or on transepithelial water permeability. However, the amiloride-sensitive transepithelial voltage, a marker of ENaC activity, was diminished by macrolide pretreatment. We conclude that GS-459755 may limit HNE-induced activation of ENaC and may be useful for the treatment of mucus dehydration in CF and COPD without inducing bacterial resistance. PMID:23542952

  10. [Effect of Kaixinsan on monoamine oxidase activity].

    PubMed

    Wang, Shi; Dong, Xian-Zhe; Tan, Xiao; Wang, Yu-Ning; Liu, Ping

    2016-05-01

    To observe the effect of antidepressant medicine prescription, Kaixinsan (KXS) on monoamine oxidase (MAO) activity, and explore the mechanism of KXS in elevating the levels of monoamine neurotransmitter from the perspective of metabolism, in vitro enzyme reaction system and C6 neuroglial cells, the effect of KXS at different concentrations on MAO-A and MAO-B activity was observed. In animal studies, the effect of KXS at different concentrations on MAO-A and MAO-B activities of brain mitochondrialin normal rats and solitary chronic unpredictable moderate stress (CMS) model rats after intragastric administration for 1, 2, 3 weeks. Results showed that 10 g•L⁻¹ KXS could significantly reduce the activity of MAO-A and MAO-B in enzyme reaction system; and in C6 cells, KXS within 0.625-10 g•L⁻¹ concentration range had no significant effect on the activity of MAO-A, but had obvious inhibitory effect on the activity of MAO-B in a dose dependent manner. KXS had no significant effect on the activity of MAO-A and MAO-B in brains of normal rats after action for 1, 2, 3 weeks. After 2 and 3 weeks treatment with 338 mg•kg⁻¹ dose KXS, MAO-A activity in the brain of CMS rats was decreased as compared with the model group (P<0.05), while KXS had no significant effect on MAO-B activity after 1, 2, 3 weeks of treatment. The results indicated that KXS had certain effect on in vitro MAO-A and MAO-B activity, had no effect on brain MAO-A and MAO-B activity in vivo in normal rats, and had certain inhibitory effect on MAO-A activity in brains of CMS rats. Copyright© by the Chinese Pharmaceutical Association.

  11. Glutathione Depletion Induced by c-Myc Downregulation Triggers Apoptosis on Treatment with Alkylating Agents1

    PubMed Central

    Biroccio, Annamaria; Benassi, Barbara; Fiorentino, Francesco; Zupi, Gabriella

    2004-01-01

    Abstract Here we investigate the mechanism(s) involved in the c-Myc-dependent drug response of melanoma cells. By using three M14-derived c-Myc low-expressing clones, we demonstrate that alkylating agents, cisplatin and melphalan, trigger apoptosis in the c-Myc antisense transfectants, but not in the parental line. On the contrary, topoisomerase inhibitors, adriamycin and camptothecin, induce apoptosis to the same extent regardless of c-Myc expression. Because we previously demonstrated that c-Myc downregulation decreases glutathione (GSH) content, we evaluated the role of GSH in the apoptosis induced by the different drugs. In control cells treated with one of the alkylating agents or the others, GSH depletion achieved by l-buthionine-sulfoximine preincubation opens the apoptotic pathway. The apoptosis proceeded through early Bax relocalization, cytochrome c release, and concomitant caspase-9 activation, whereas reactive oxygen species production and alteration of mitochondria membrane potential were late events. That GSH was determining in the c-Myc-dependent drug-induced apoptosis was demonstrated by altering the intracellular GSH content of the c-Myc low-expressing cells up to the level of controls. Indeed, GSH ethyl ester-mediated increase of GSH abrogated apoptosis induced by cisplatin and melphalan by inhibition of Bax/cytochrome c redistribution. The relationship among c-Myc, GSH content, and the response to alkylating agent has been also evaluated in the M14 Myc overexpressing clones as well as in the melanoma JR8 c-Myc antisense transfectants. All together, these results demonstrate that GSH plays a key role in governing c-Myc-dependent drug-induced apoptosis. PMID:15153331

  12. [Effects of acrylonitrile in drinking water on monoamine neurotransmitters and its metabolites in male rat brains].

    PubMed

    Lu, Rong-zhu; Chen, Zi-qiang; Jin, Fu-sheng

    2005-03-01

    To elucidate the possible involvement of monoamine neurotransmitters in the development of neurobehavioral damage produced by acrylonitrile in drinking water in male rat brains. Totally 30 male SD rats were randomly divided into three groups, the control group (n = 10), low dosage group (n = 10), and high dosage group (n = 10), which were respectively administered 0 mg/L, 50 mg/L, 200 mg/L acrylonitrile (AN) in drinking water. The treatment was lasted for 12 weeks. Seven animals were randomly selected from each group for determination of monoamine neurotransmitters in striatum and cerebellum by high performance liquid chromatography with electrochemical detector and activities of monoamine oxidase in cortex. The contents of dopamine in the striatum of low and high dosage groups were decreased to (2.2 +/- 0.7) and (3.2 +/- 2.0) microg/g wet tissue, respectively, and compared with that of control group (9.0 +/- 4.2) microg/g wet tissue, the differences were statistically significant. There were no statistical differences among the contents of dopamine in the cerebellum of all rats, and the levels of 3,4-dihydroxyphenylacetic acid (DOPAC), the major metabolite of dopamine in the cerebellum were (186 +/- 41), (245 +/- 90) and (115 +/- 65) ng/g wet tissue in the control, low and high dosage groups, respectively and in low-dosage group they were significantly higher than those in other groups. There was dosage-dependently decreasing of the contents of serotonin of striatum in the control (249 +/- 34) ng/g wet tissue, low dosage (155 +/- 95) ng/g wet tissue and high dosage groups (128 +/- 101) ng/g wet tissue. This study underlines the importance of alterations in the monoamine neurotransmitters system as a possible causative mechanism behind the behavioural and functional changes produced by acrylonitrile.

  13. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models

    PubMed Central

    Céspedes, María Virtudes; Guillén, María José; López-Casas, Pedro Pablo; Sarno, Francesca; Gallardo, Alberto; Álamo, Patricia; Cuevas, Carmen; Hidalgo, Manuel; Galmarini, Carlos María; Allavena, Paola; Avilés, Pablo; Mangues, Ramón

    2016-01-01

    ABSTRACT We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop ‘molecularly targeted’ combination strategies. PMID:27780828

  14. Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function

    PubMed Central

    Cano-Peñalver, José Luis; Griera, Mercedes; García-Jerez, Andrea; Hatem-Vaquero, Marco; Ruiz-Torres, María Piedad; Rodríguez-Puyol, Diego; de Frutos, Sergio; Rodríguez-Puyol, Manuel

    2015-01-01

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis–related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage. PMID:26562149

  15. Modification of 5-methoxy-N,N-dimethyltryptamine-induced hyperactivity by monoamine oxidase A inhibitor harmaline in mice and the underlying serotonergic mechanisms.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2016-06-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are indolealkylamine (IAA) drugs often abused together. Our recent studies have revealed the significant effects of co-administered harmaline, a monoamine oxidase inhibitor (MAOI), on 5-MeO-DMT pharmacokinetics and thermoregulation. This study was to delineate the impact of harmaline and 5-MeO-DMT on home-cage activity in mouse models, as well as the contribution of serotonin (5-HT) receptors. Home-cage activities of individual animals were monitored automatically in the home cages following implantation of telemetry transmitters and administration of various doses of IAA drugs and 5-HT receptor antagonists. Area under the effect curve (AUEC) of mouse activity values were calculated by trapezoidal rule. High dose of harmaline (15mg/kg, ip) alone caused an early-phase (0-45min) hypoactivity in mice that was fully attenuated by 5-HT1A receptor antagonist WAY-100635, whereas a late-phase (45-180min) hyperactivity that was reduced by 5-HT2A receptor antagonist MDL-100907. 5-MeO-DMT (10 and 20mg/kg, ip) alone induced biphasic effects, an early-phase (0-45min) hypoactivity that was completely attenuated by WAY-100635, and a late-phase (45-180min) hyperactivity that was fully suppressed by MDL-100907. Interestingly, co-administration of MAOI harmaline (2-15mg/kg) with a subthreshold dose of 5-MeO-DMT (2mg/kg) induced excessive hyperactivities at late phase (45-180min) that could be abolished by either WAY-100635 or MDL-100907. Co-administration of MAOI with 5-MeO-DMT provokes excessive late-phase hyperactivity, which involves the activation of both 5-HT1A and 5-HT2A receptors. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Modification of 5-methoxy-N,N-dimethyltryptamine-induced hyperactivity by monoamine oxidase A inhibitor harmaline in mice and the underlying serotonergic mechanisms

    PubMed Central

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2016-01-01

    Background 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are indolealkylamine (IAA) drugs often abused together. Our recent studies have revealed the significant effects of co-administered harmaline, a monoamine oxidase inhibitor (MAOI), on 5-MeO-DMT pharmacokinetics and thermoregulation. This study was to delineate the impact of harmaline and 5-MeO-DMT on home-cage activity in mouse models, as well as the contribution of serotonin (5-HT) receptors. Methods Home-cage activities of individual animals were monitored automatically in the home cages following implantation of telemetry transmitters and administration of various doses of IAA drugs and 5-HT receptor antagonists. Area under the effect curve (AUEC) of mouse activity values were calculated by trapezoidal rule. Results High dose of harmaline (15 mg/kg, ip) alone caused an early-phase (0–45 min) hypoactivity in mice that was fully attenuated by 5-HT1A receptor antagonist WAY-100635, whereas a late-phase (45–180 min) hyperactivity that was reduced by 5-HT2A receptor antagonist MDL-100907. 5-MeO-DMT (10 and 20 mg/kg, ip) alone induced biphasic effects, an early-phase (0–45 min) hypoactivity that was completely attenuated by WAY-100635, and a late-phase (45–180 min) hyperactivity that was fully suppressed by MDL-100907. Interestingly, co-administration of MAOI harmaline (2–15 mg/kg) with a subthreshold dose of 5-MeO-DMT (2 mg/kg) induced excessive hyperactivities at late phase (45–180 min) that could be abolished by either WAY-100635 or MDL-100907. Conclusions Co-administration of MAOI with 5-MeO-DMT provokes excessive late-phase hyperactivity, which involves the activation of both 5-HT1A and 5-HT2A receptors. PMID:26977821

  17. In vivo T cell depletion regulates resistance and morbidity in murine schistosomiasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.M.; Linette, G.P.; Doughty, B.L.

    1987-08-01

    These studies assessed the roles of subpopulations of T lymphocytes in inducing and modulating resistance to schistosomiasis and thereby influencing subsequent morbidity. C57BL/6 mice were depleted in vivo of Lyt-1+, Lyt-2+, and L3T4+ cells by the daily administration of monoclonal antibodies. The development of protective immunity, induced by exposure to irradiated Schistosoma mansoni cercariae as expressed in depleted animals, was compared to that demonstrated in undepleted, normal, and congenitally athymic C57BL/6 mice. The development of morbidity was determined by spleen weight, portal pressure and reticuloendothelial system activity. The results indicated that depletion of specific subpopulations of T lymphocytes minimally affectedmore » the primary development of parasites; however, depletion strongly influenced the development of resistance to the parasite and subsequent morbidity due to infection. Depletion of T lymphocytes by anti-Lyt-1+ or anti-L3T4+ antibody decreased the development of resistance, antibody and delayed-type hypersensitivity directed against schistosome antigens. Morbidity due to disease was increased. Depletion of Lyt-2+ cells produced opposite changes with augmented resistance and reduced morbidity. Congenitally athymic mice developed minimal resistance and morbidity. Moreover, resistance was inversely related to the morbidity shown by a given animal. These studies indicate that the development of protective immunity to S. mansoni cercariae is regulated by discrete subpopulations of T lymphocytes. The feasibility of decreasing morbidity by increasing specific immunologically mediated resistance is suggested.« less

  18. Cocaine action on peripheral, non-monoamine neural substrates as a trigger of EEG desynchronization and EMG activation following intravenous administration in freely moving rats

    PubMed Central

    Smirnov, Michael S.; Kiyatkin, Eugene A.

    2009-01-01

    Many important physiological, behavioral and subjective effects of intravenous (iv) cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed EEG and EMG recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of iv COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by iv COC methiodide, a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC methiodide had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by iv procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, iv saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, iv COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such an action might play a crucial role in the

  19. Isoform selectivity of harmine-conjugated 1,2,3-triazoles against human monoamine oxidase.

    PubMed

    Haider, Saqlain; Alhusban, Manal; Chaurasiya, Narayan D; Tekwani, Babu L; Chittiboyina, Amar G; Khan, Ikhlas A

    2018-05-23

    There is little information available on the monoamine oxidase isoform selectivity of N-alkyl harmine analogs, which exhibit a myriad of activities including monoamine oxidase isoform A (MAO-A), tyrosine-phosphorylation-regulated kinase (DYRK1A) and cytotoxicity to several select cancer cell lines. Compounds 3e and 4c exhibited an IC 50 of 0.83 ± 0.03 and 0.43 ± 0.002 μM against MAO-A and an IC 50 of 0.26 ± 0.04 and 0.36 ± 0.001 μM against MAO-B, respectively. Molecular docking studies revealed π-π interactions between the synthesized molecules and aromatic amino acid residues. Conclusion & future perspective: The current study delineates the structural requirements for MAO-A selectivity and such information may be helpful in designing selective analogs for kinase, DYRK1A and harmine-based cytotoxics without apparent MAO enzyme inhibition.

  20. Changes in Brain Monoamines Underlie Behavioural Disruptions after Zebrafish Diet Exposure to Polycyclic Aromatic Hydrocarbons Environmental Mixtures

    PubMed Central

    Vignet, Caroline; Trenkel, Verena M.; Vouillarmet, Annick; Bricca, Giampiero; Bégout, Marie-Laure; Cousin, Xavier

    2017-01-01

    Zebrafish were exposed through diet to two environmentally relevant polycyclic aromatic hydrocarbons (PAHs) mixtures of contrasted compositions, one of pyrolytic (PY) origin and one from light crude oil (LO). Monoamine concentrations were quantified in the brains of the fish after six month of exposure. A significant decrease in noradrenaline (NA) was observed in fish exposed to both mixtures, while a decrease in serotonin (5HT) and dopamine (DA) was observed only in LO-exposed fish. A decrease in metabolites of 5HT and DA was observed in fish exposed to both mixtures. Several behavioural disruptions were observed that depended on mixtures, and parallels were made with changes in monoamine concentrations. Indeed, we observed an increase in anxiety in fish exposed to both mixtures, which could be related to the decrease in 5HT and/or NA, while disruptions of daily activity rhythms were observed in LO fish, which could be related to the decrease in DA. Taken together, these results showed that (i) chronic exposures to PAHs mixtures disrupted brain monoamine contents, which could underlie behavioural disruptions, and that (ii) the biological responses depended on mixture compositions. PMID:28273853

  1. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro, Ruy M

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating thatmore » immune activation and T cell prolifeation are key factors in AIDS pathogenesis.« less

  2. Relationship of gonadal hormone administration, sex, reproductive status and age to monoamine oxidase activity within the hypothalamus.

    PubMed

    Luine, V; Hearns, M

    1990-08-01

    Abstract Activity of Type A monoamine oxidase (MAO) was measured in microdissected samples from preoptic-hypothalamic and hindbrain areas of young male and female rats, and aged female rats. Administration of estradiol and progesterone, in doses sufficient to facilitate lordosis behavior and induce a luteinizing hormone surge in ovariectomized, but not castrated rats, was associated with sexually dimorphic changes of MAO activity within the hypothalamus. Forty-two h following estradiol benzoate administration, increased MAO activity was measured in the ventromedial nucleus (VML) and midbrain central gray of females, while decreased MAO activity was measured in the VML and arcuate-median eminence (ArME) of males. Progesterone administration to estradiol benzoate-primed rats was associated with decreased MAO activity in the VML and medial preoptic nucleus (mPOA) of females and decreased activity in the dorsal raphe nucleus of males. Activity of MAO on diestrus, proestrus and estrus was assessed in ten preoptic-hypothalamic and hindbrain sites. Differences between days of the cycle were limited to the mPOA, ArME and VML. While activities were generally lowest at estrus, these areas exhibited different patterns of activity across the cycle. Activity was highest at proestrus in the mPOA and highest at diestrus in the VML and ArME. Activity of MAO in some areas of 25-month old, diestrus rats was altered as compared to young, cycling rats; however, ageing was not associated with widespread changes in MAO activity. In the suprachiasmatic nucleus, aged rats showed approximately 30% less activity than young rats. In the mPOA, VML and ArME, activity in aged females was different from some, but not all, days of the estrous cycle. These results show that MAO activity changes within specific hypothalamic sites when the neuroendocrine axis is altered. Since the changes are present in areas where activity of rnonoaminergic systems is critical for initiating gonadotrophin surges

  3. Effects of L-histidine depletion and L-tyrosine/L-phenylalanine depletion on sensory and motor processes in healthy volunteers

    PubMed Central

    van Ruitenbeek, P; Sambeth, A; Vermeeren, A; Young, SN; Riedel, WJ

    2009-01-01

    Background and purpose: Animal studies show that histamine plays a role in cognitive functioning and that histamine H3-receptor antagonists, which increase histaminergic function through presynaptic receptors, improve cognitive performance in models of clinical cognitive deficits. In order to test such new drugs in humans, a model for cognitive impairments induced by low histaminergic functions would be useful. Studies with histamine H1-receptor antagonists have shown limitations as a model. Here we evaluated whether depletion of L-histidine, the precursor of histamine, was effective in altering measures associated with histamine in humans and the behavioural and electrophysiological (event-related-potentials) effects. Experimental approach: Seventeen healthy volunteers completed a three-way, double-blind, crossover study with L-histidine depletion, L-tyrosine/L-phenylalanine depletion (active control) and placebo as treatments. Interactions with task manipulations in a choice reaction time task were studied. Task demands were increased using visual stimulus degradation and increased response complexity. In addition, subjective and objective measures of sedation and critical tracking task performance were assessed. Key results: Measures of sedation and critical tracking task performance were not affected by treatment. L-histidine depletion was effective and enlarged the effect of response complexity as measured with the response-locked lateralized readiness potential onset latency. Conclusions and implications: L-histidine depletion affected response- but not stimulus-related processes, in contrast to the effects of H1-receptor antagonists which were previously found to affect primarily stimulus-related processes. L-histidine depletion is promising as a model for histamine-based cognitive impairment. However, these effects need to be confirmed by further studies. PMID:19413574

  4. Interaction of chronic reatine depletion and muscle unloading effects on postural and locomotor muscles

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Haddad, Fadia; Baldwin, Kenneth M.

    1994-01-01

    In this study, creatine depletion was induced separately and in combination with non-weight-bearing activity to determine if the response to lowering this metabolite would counter the MHC transitions expected from non-weight-bearing. Creatine depletion was induced by feeding rats a diet supplemented with the creatine analogue beta-guanidinopropionic acid (beta-GPA). Animals were fed a diet containing the creatine analogue for 68 days. Hindlimb non-weight-bearing in BS and NS animals was accomplished by tail suspension for the final 30 days of this period. Beta-GPA feeding lowered the creatine content of muscles sampled by 65%. Creatine depletion resulted in a 16% increase in citrate synthase activity in the soleus (SOL) and a 24% increase in the plantaris (PLN). In two postural muscles, the SOL and vastus intermedius (VI), tail suspension resulted in large decreases in the type I MHC expression and increases in type IIx and IIb MHCs. In two locomotor muscles, the PLN and medial gastrocnemius, type I MHC declined and type IIb increased with suspension. Creatine depletion did not prevent the suspension-induced decline in type I MHC in any of these muscles. The increase in type IIb MHC was either prevented or reduced by creatine depletion before and during suspension in the SOL, VI, and PLN. Creatine depletion alone resulted in small increases in type I and IIa MHCs in the two locomotor muscles, but it had no effect on the MHC profile of the postural muscles studied. These results indicate that the mechanical signal generated by the hindlimb non-weight-bearing state dominated over the metabolic stimulus of creatine depletion with respect to the primary adaptation involving a reduction in type I MHC.

  5. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect.

    PubMed

    Salmon, Stefanie J; Adriaanse, Marieke A; De Vet, Emely; Fennis, Bob M; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion.

  6. Age-related behavioral phenotype of an astrocytic monoamine oxidase-B transgenic mouse model of Parkinson's disease.

    PubMed

    Lieu, Christopher A; Chinta, Shankar J; Rane, Anand; Andersen, Julie K

    2013-01-01

    We have previously shown that increases in astrocytic monoamine oxidase-B (MAO-B) expression, mimicking that which occurs with aging and in neurodegenerative disease, in a doxycycline (dox)-inducible transgenic mouse model evokes neuropathological similarities to what is observed in the human parkinsonian brain. Additional behavioral and neuropathological studies could provide further validation for its usage as a model for Parkinson's disease (PD). In the present study, we utilized a battery of behavioral tests to evaluate age-related phenotype in this model. In the open field test, we found that dox-induction impaired motor ability with decreases in movement and ambulatory function as well as diminished stereotypical, repetitive movement episodes in both young and old mice. Older mice also showed decreased motor performance in the pole test when compared to younger mice. Furthermore, dox-induced older mice displayed severe hindlimb clasping and the most significant loss of dopamine (DA) in the striatum when compared to young and non-induced animals. Additionally, increased MAO-B activity significantly correlated with decreased expression of striatal DA. The results of our study further confirms that the dox-inducible astrocytic MAO-B transgenic mouse displays similar age-related behavioral and neuropathological features to other models of PD, and could serve as a useful tool to study PD pathophysiology and for the evaluation of therapeutic interventions.

  7. Multitarget-Directed Ligands Combining Cholinesterase and Monoamine Oxidase Inhibition with Histamine H3 R Antagonism for Neurodegenerative Diseases.

    PubMed

    Bautista-Aguilera, Óscar M; Hagenow, Stefanie; Palomino-Antolin, Alejandra; Farré-Alins, Víctor; Ismaili, Lhassane; Joffrin, Pierre-Louis; Jimeno, María L; Soukup, Ondřej; Janočková, Jana; Kalinowsky, Lena; Proschak, Ewgenij; Iriepa, Isabel; Moraleda, Ignacio; Schwed, Johannes S; Romero Martínez, Alejandro; López-Muñoz, Francisco; Chioua, Mourad; Egea, Javier; Ramsay, Rona R; Marco-Contelles, José; Stark, Holger

    2017-10-02

    The therapy of complex neurodegenerative diseases requires the development of multitarget-directed drugs (MTDs). Novel indole derivatives with inhibitory activity towards acetyl/butyrylcholinesterases and monoamine oxidases A/B as well as the histamine H 3 receptor (H3R) were obtained by optimization of the neuroprotectant ASS234 by incorporating generally accepted H3R pharmacophore motifs. These small-molecule hits demonstrated balanced activities at the targets, mostly in the nanomolar concentration range. Additional in vitro studies showed antioxidative neuroprotective effects as well as the ability to penetrate the blood-brain barrier. With this promising in vitro profile, contilisant (at 1 mg kg -1 i.p.) also significantly improved lipopolysaccharide-induced cognitive deficits. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effects of the Monoamine Uptake Inhibitors RTI-112 and RTI-113 on Cocaine- and Food-Maintained Responding in Rhesus Monkeys

    PubMed Central

    SS, Negus; NK, Mello; HL, Kimmel; LL, Howell; FI, Carroll

    2009-01-01

    Cocaine blocks uptake of the monoamines dopamine, serotonin and norepinephrine, and monoamine uptake inhibitors constitute one class of drugs under consideration as candidate “agonist” medications for the treatment of cocaine abuse and dependence. The pharmacological selectivity of monoamine uptake inhibitors to block uptake of dopamine, serotonin and norepinephrine is one factor that may influence the efficacy and/or safety of these compounds as drug abuse treatment medications. To address this issue, the present study compared the effects of 7-day treatment with a non-selective monoamine uptake inhibitor (RTI-112) and a dopamine-selective uptake inhibitor (RTI-113) on cocaine- and food-maintained responding in rhesus monkeys. Monkeys (N=3) were trained to respond for cocaine injections (0.01 mg/kg/inj) and food pellets under a second-order schedule [FR2(VR16:S)] during alternating daily components of cocaine and food availability. Both RTI-112 (0.0032–0.01 mg/kg/hr) and RTI-113 (0.01–0.056 mg/kg/hr) produced dose-dependent, sustained and nearly complete elimination of cocaine self-administration. However, for both drugs, the potency to reduce cocaine self-administration was similar to the potency to reduce food-maintained responding. These findings do not support the hypothesis that pharmacological selectivity to block dopamine uptake is associated with behavioral selectivity to decrease cocaine- vs. food-maintained responding in rhesus monkeys. PMID:18755212

  9. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  10. Interplay between aggression, brain monoamines and fur color mutation in the American mink.

    PubMed

    Kulikov, A V; Bazhenova, E Y; Kulikova, E A; Fursenko, D V; Trapezova, L I; Terenina, E E; Mormede, P; Popova, N K; Trapezov, O V

    2016-11-01

    Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (-2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild-type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (-1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (-2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5-hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  11. Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics.

    PubMed

    Riba, Jordi; Valle, Marta; Urbano, Gloria; Yritia, Mercedes; Morte, Adelaida; Barbanoj, Manel J

    2003-07-01

    The effects of the South American psychotropic beverage ayahuasca on subjective and cardiovascular variables and urine monoamine metabolite excretion were evaluated, together with the drug's pharmacokinetic profile, in a double-blind placebo-controlled clinical trial. This pharmacologically complex tea, commonly obtained from Banisteriopsis caapi and Psychotria viridis, combines N,N-dimethyltryptamine (DMT), an orally labile psychedelic agent showing 5-hydroxytryptamine2A agonist activity, with monoamine oxidase (MAO)-inhibiting beta-carboline alkaloids (harmine, harmaline, and tetrahydroharmine). Eighteen volunteers with prior experience in the use of psychedelics received single oral doses of encapsulated freeze-dried ayahuasca (0.6 and 0.85 mg of DMT/kg of body weight) and placebo. Ayahuasca produced significant subjective effects, peaking between 1.5 and 2 h, involving perceptual modifications and increases in ratings of positive mood and activation. Diastolic blood pressure showed a significant increase at the high dose (9 mm Hg at 75 min), whereas systolic blood pressure and heart rate were moderately and nonsignificantly increased. Cmax values for DMT after the low and high ayahuasca doses were 12.14 ng/ml and 17.44 ng/ml, respectively. Tmax (median) was observed at 1.5 h after both doses. The Tmax for DMT coincided with the peak of subjective effects. Drug administration increased urinary normetanephrine excretion, but, contrary to the typical MAO-inhibitor effect profile, deaminated monoamine metabolite levels were not decreased. This and the negligible harmine plasma levels found suggest a predominantly peripheral (gastrointestinal and liver) site of action for harmine. MAO inhibition at this level would suffice to prevent first-pass metabolism of DMT and allow its access to systemic circulation and the central nervous system.

  12. High dose sapropterin dihydrochloride therapy improves monoamine neurotransmitter turnover in murine phenylketonuria (PKU).

    PubMed

    Winn, Shelley R; Scherer, Tanja; Thöny, Beat; Harding, Cary O

    2016-01-01

    Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Carbon and nitrogen depletion-induced nucleophagy and selective autophagic sequestration of a whole nucleus in multinucleate cells of the filamentous fungus Aspergillus oryzae.

    PubMed

    Kikuma, Takashi; Mitani, Takahiro; Kohara, Takahiro; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2017-05-12

    Autophagy is a conserved cellular degradation process in eukaryotes, in which cytoplasmic components and organelles are digested in vacuoles/lysosomes. Recently, autophagic degradation of nuclear materials, termed "nucleophagy", has been reported. In the multinucleate filamentous fungus Aspergillus oryzae, a whole nucleus is degraded by nucleophagy after prolonged culture. While developing an H2B-EGFP processing assay for the evaluation of nucleophagy in A. oryzae, we found that nucleophagy is efficiently induced by carbon or nitrogen depletion. Microscopic observations in a carbon depletion condition clearly demonstrated that autophagosomes selectively sequester a particular nucleus, despite the presence of multiple nuclei in the same cell. Furthermore, AoNsp1, the A. oryzae homolog of the yeast nucleoporin Nsp1p, mainly localized at the nuclear periphery, but its localization was restricted to the opposite side of the autophagosome being formed around a nucleus. In contrast, the perinuclear ER visualized with the calnexin AoClxA was not morphologically affected by nucleophagy. The findings of nucleophagy-inducing conditions enabled us to characterize the morphological process of autophagic degradation of a whole nucleus in multinucleate cells.

  14. Age dependence of myosin heavy chain transitions induced by creatine depletion in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Baldwin, Kenneth M.

    1995-01-01

    This study was designed to test the hypothesis that myosin heavy chain (MHC) plasticity resulting from creatine depletion is an age-dependent process. At weaning (age 28 days), rat pups were placed on either standard rat chow (normal diet juvenile group) or the same chow supplemented with 1% wt/wt of the creatine analogue beta-guanidinopropionic acid (creatine depletion juvenile (CDJ) group). Two groups of adult rats (age approximately 8 wk) were placed on the same diet regimens (normal diet adult and creatine depletion adult (CDA) groups). After 40 days (CDJ and normal diet juvenile groups) and 60 days (CDA and normal diet adult groups), animals were killed and several skeletal muscles were removed for analysis of creatine content or MHC ditribution. In the CDJ group, creatine depletion (78%) was accompanied by significant shifts toward expression of slower MHC isoforms in two slow and three fast skeletal muscles. In contrast, creatine depletion in adult animals did not result in similar shifts toward slow MHC isoform expression in either muscle type. The results of this study indicate that there is a differential effect of creatine depletion on MHC tranitions that appears to be age dependent. These results strongly suggest that investigators contemplating experimental designs involving the use of the creatine analogue beta-guanidinopropionic acid should consider the age of the animals to be used.

  15. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders.

    PubMed

    Tong, Junchao; Rathitharan, Gausiha; Meyer, Jeffrey H; Furukawa, Yoshiaki; Ang, Lee-Cyn; Boileau, Isabelle; Guttman, Mark; Hornykiewicz, Oleh; Kish, Stephen J

    2017-09-01

    See Jellinger (doi:10.1093/awx190) for a scientific commentary on this article. The enzyme monoamine oxidases (B and A subtypes, encoded by MAOB and MAOA, respectively) are drug targets in the treatment of Parkinson's disease. Inhibitors of MAOB are used clinically in Parkinson's disease for symptomatic purposes whereas the potential disease-modifying effect of monoamine oxidase inhibitors is debated. As astroglial cells express high levels of MAOB, the enzyme has been proposed as a brain imaging marker of astrogliosis, a cellular process possibly involved in Parkinson's disease pathogenesis as elevation of MAOB in astrocytes might be harmful. Since brain monoamine oxidase status in Parkinson's disease is uncertain, our objective was to measure, by quantitative immunoblotting in autopsied brain homogenates, protein levels of both monoamine oxidases in three different degenerative parkinsonian disorders: Parkinson's disease (n = 11), multiple system atrophy (n = 11), and progressive supranuclear palsy (n = 16) and in matched controls (n = 16). We hypothesized that if MAOB is 'substantially' localized to astroglial cells, MAOB levels should be generally associated with standard astroglial protein measures (e.g. glial fibrillary acidic protein). MAOB levels were increased in degenerating putamen (+83%) and substantia nigra (+10%, non-significant) in multiple system atrophy; in caudate (+26%), putamen (+27%), frontal cortex (+31%) and substantia nigra (+23%) of progressive supranuclear palsy; and in frontal cortex (+33%), but not in substantia nigra of Parkinson's disease, a region we previously reported no increase in astrocyte protein markers. Although the magnitude of MAOB increase was less than those of standard astrocytic markers, significant positive correlations were observed amongst the astrocyte proteins and MAOB. Despite suggestions that MAOA (versus MAOB) is primarily responsible for metabolism of dopamine in dopamine neurons, there was no loss of the

  16. Particle signatures of magnetic topology at the magnetopause: AMPTE/CCE observations

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Anderson, B. J.; Onsager, T. G.

    1995-01-01

    Electron distributions at energies above 50 eV have been found to be a sensitive indicator of magnetic topology for magnetopause crossings of the AMPTE/CCE spacecraft. Progressing from the magnetosheath to the magnetosphere two abrupt transitions occur. First, the magnetosheath electron population directed either parallel or antiparallel to the magnetic field is replaced by a streaming, heated magnetosheath electron population. The other half of the distribution is unchanged. The region with unidirectional, heated magnetosheath electrons is identified as the magnetosheath boundary layer (MSBL). Second, the unheated magnetosheath electron population is replaced by a heated population nearly identical to the population encountered in the MSBL, resulting in a symmetric counterstreaming distribution. The region populated by the bidirectional heated magnetosheath electrons is identified as the low-latitude boundary layer (LLBL). The MSBL and LLBL identified by the electron transitions are the same as the regions identified using ion composition measurements. The magnetosheath-MSBL transition reflects a change in magnetic topology from a solar wind field line to one that threads the magnetopause, and the existence of a magnetosheath-MSBL transition implies that the magnetopause is open. When the current layer is easily identified, the MSBL-LLBL transition coincides with the magnetopause current layer, indicating that the magnetosheath electrons are heated in the current layer. Both magnetosheath-MSBL and MSBL-LLBL transitions are observed for low as well as high magnetic shears. Moreover, the transitions are particularly clear for low shear implying that magnetic topology boundaries are sharp even when abrupt changes in the field and other plasma parameters are absent. Furthermore, for low magnetic shear, solar wind ions with low parallel drift speeds make up the majority of the LLBL population indicating that the magnetosheath plasma has convected directly across the

  17. Redox-Sensitive Cerium Oxide Nanoparticles Protect Human Keratinocytes from Oxidative Stress Induced by Glutathione Depletion.

    PubMed

    Singh, Ragini; Karakoti, Ajay S; Self, William; Seal, Sudipta; Singh, Sanjay

    2016-11-22

    Cerium oxide nanoparticles (CeNPs) have gathered much attention in the biomedical field due to its unique antioxidant property. It can protect cells and tissues from oxidative stress induced damage due to its autoregenerative redox cycle. Our study explores the antioxidant and antigenotoxic behavior of PEGylated CeNPs toward oxidative insult produced by buthionine sulfoximine (BSO) in human keratinocytes (HaCaT cells). BSO inhibits the γ-glutamylcysteinesynthetase (γ-GCS) enzyme and thus acts as a glutathione (GSH) depleting agent to modulate the cellular redox potential. GSH is a natural ROS scavenger present in the mammalian cells, and its depletion causes generation of reactive oxygen species (ROS). In this study, we challenged HaCaT cells (keratinocytes) with BSO to alter the redox potential within the cell and monitored toxicity, ROS generation, and nuclear fragmentation. We also followed changes in expressions of related proteins and genes. We found that PEGylated CeNPs can protect HaCaT cells from BSO-induced oxidative damage. BSO-exposed cells, preincubated with PEGylated CeNPs, showed better cell survival and significant decrease in the intracellular levels of ROS. We also observed decrease in lactate dehydrogenase (LDH) release and nuclear fragmentation in CeNP-treated cells that were challenged with BSO as compared to treatment with BSO alone. Exposure of HaCaT cells with BSO leads to altered expression of antioxidant genes and proteins, i.e., thioredoxin reductase (TrxR) and peroxiredoxin 6 (Prx6) whereas, in our study, pretreatment of PEGylated CeNPs reduces the need for induction of genes that produce enzymes involved in the defense against oxidative stress. Since, growing evidence argued the involvement of ROS in mediating death of mammalian cells in several ailments, our finding reinforces the use of PEGylated CeNPs as a potent pharmacological agent under the lower cellular GSH/GSSG ratios for the treatment of diseases mediated by free radicals.

  18. Cocaine action on peripheral, non-monoamine neural substrates as a trigger of electroencephalographic desynchronization and electromyographic activation following i.v. administration in freely moving rats.

    PubMed

    Smirnov, M S; Kiyatkin, E A

    2010-01-20

    Many important physiological, behavioral and subjective effects of i.v. cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed electroencephalographic (EEG) and electromyographic (EMG) recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of i.v. COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by i.v. COC methiodide (COC-MET), a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC-MET had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by i.v. procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, i.v. saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, i.v. COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such

  19. Search for the Chiral Magnetic Effect in Heavy-Ion Collisions and Quantification of the Background with the AMPT Model

    NASA Astrophysics Data System (ADS)

    Bryon, Jacob

    2017-09-01

    The chiral magnetic effect (CME) arises from the chirality imbalance of quarks and its interaction to the strong magnetic field generated in non-central heavy-ion collisions. Possible formation of domains of quarks with chirality imbalances is an intrinsic property of the Quantum ChromoDynamics (QCD), which describes the fundamental strong interactions among quarks and gluons. Azimuthal-angle correlations have been used to measure the magnitude of charge- separation across the reaction plane, which was predicted to arise from the CME. However, backgrounds from collective motion (flow) of the collision system can also contribute to the correlation observable. In this poster, we investigate the magnitude of the background utilizing the AMPT model, which contains no CME signals. We demonstrate, for Au +Au collisions at 200 and 39 GeV, a scheme to remove the flow background via the event-shape engineering with the vanishing magnitude of the flow vector. We also calculate the ensemble average of the charge-separation observable, and provide a background baseline for the experimental data.

  20. Viscoelasticity of Depletion-Induced Emulsion Gels

    NASA Astrophysics Data System (ADS)

    Meller, Amit; Stavans, Joel; Gisler, Thomas; Weitz, David A.

    1997-03-01

    The presence of non-adsorbing polymer in an oil-in-water emulsion results in a depletion attraction between the emulsion droplets, causing a phase separation into an droplet-rich phase and a polymer-rich phase largely devoid of emulsion droplets. At high enough droplet concentration, however, this phase separation is kinetically arrested to a gel-like state where large (diameter>50 μm) clusters of droplets are weakly connected via ramifications, leading to a measurable elastic modulus. We measure the mean-square displacement <Δ r ^2 (t)> of a droplet of size a inside a cluster using diffusing wave spectroscopy (DWS); by means of a generalized Stokes-Einstein relation we obtain frequency dependent storage and loss moduli G'(ω) and G''(ω), respectively. G'(ω) reaches a plateau at frequencies between 1 rad/s and 100 rad/s; this plateau modulus is found to scale with the hard-sphere energy density k_BT/a^3; within the clusters the droplets are densely packed, yet remain undeformed, the droplet volume fraction being determined by the osmotic pressure exerted by the polymer.

  1. Serotonin depletion induces pessimistic-like behavior in a cognitive bias paradigm in pigs.

    PubMed

    Stracke, Jenny; Otten, Winfried; Tuchscherer, Armin; Puppe, Birger; Düpjan, Sandra

    2017-05-15

    Cognitive and affective processes are highly interrelated. This has implications for neuropsychiatric disorders such as major depressive disorder in humans but also for the welfare of non-human animals. The brain serotonergic system might play a key role in mediating the relationship between cognitive functions and affective regulation. The aim of our study was to examine the influence of serotonin depletion on the affective state and cognitive processing in pigs, an important farm animal species but also a potential model species for biomedical research in humans. For this purpose, we modified a serotonin depletion model using para-chlorophenylalanine (pCPA) to decrease serotonin levels in brain areas involved in cognitive and affective processing (part 1). The consequences of serotonin depletion were then measured in two behavioral tests (part 2): the spatial judgement task (SJT), providing information about the effects of the affective state on cognitive processing, and the open field/novel object (OFNO) test, which measures behavioral reactions to novelty that are assumed to reflect affective state. In part 1, 40 pigs were treated with either pCPA or saline for six consecutive days. Serotonin levels were assessed in seven different brain regions 4, 5, 6, 11 and 13days after the first injection. Serotonin was significantly depleted in all analyzed brain regions up to 13days after the first application. In part 2, the pCPA model was applied to 48 animals in behavioral testing. Behavioral tests, the OFNO test and the SJT, were conducted both before and after pCPA/saline injections. While results from the OFNO tests were inconclusive, an effect of treatment as well as an effect of the phase (before and after treatment) was observed in the SJT. Animals treated with pCPA showed more pessimistic-like behavior, suggesting a more negative affective state due to serotonin depletion. Thus, our results confirm that the serotonergic system is a key player in cognitive

  2. A search for relativistic electron induced stratospheric ozone depletion

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.

  3. Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes.

    PubMed

    Deshwal, Soni; Forkink, Marleen; Hu, Chou-Hui; Buonincontri, Guido; Antonucci, Salvatore; Di Sante, Moises; Murphy, Michael P; Paolocci, Nazareno; Mochly-Rosen, Daria; Krieg, Thomas; Di Lisa, Fabio; Kaludercic, Nina

    2018-02-19

    Monoamine oxidase (MAO) inhibitors ameliorate contractile function in diabetic animals, but the mechanisms remain unknown. Equally elusive is the interplay between the cardiomyocyte alterations induced by hyperglycemia and the accompanying inflammation. Here we show that exposure of primary cardiomyocytes to high glucose and pro-inflammatory stimuli leads to MAO-dependent increase in reactive oxygen species that causes permeability transition pore opening and mitochondrial dysfunction. These events occur upstream of endoplasmic reticulum (ER) stress and are abolished by the MAO inhibitor pargyline, highlighting the role of these flavoenzymes in the ER/mitochondria cross-talk. In vivo, streptozotocin administration to mice induced oxidative changes and ER stress in the heart, events that were abolished by pargyline. Moreover, MAO inhibition prevented both mast cell degranulation and altered collagen deposition, thereby normalizing diastolic function. Taken together, these results elucidate the mechanisms underlying MAO-induced damage in diabetic cardiomyopathy and provide novel evidence for the role of MAOs in inflammation and inter-organelle communication. MAO inhibitors may be considered as a therapeutic option for diabetic complications as well as for other disorders in which mast cell degranulation is a dominant phenomenon.

  4. Nitric oxide production and monoamine oxidase activity in cancer patients during interferon-alpha therapy.

    PubMed

    Fekkes, Durk; Van Gool, Arthur R; Bannink, Marjolein; Sleijfer, Stefan; Kruit, Wim H J; van der Holt, Bronno; Eggermont, Alexander M M; Hengeveld, Michiel W; Stoter, Gerrit

    2009-10-01

    Both increased and decreased nitric oxide (NO) synthesis have been reported in patients treated with interferon-alpha (IFN-alpha). Animal studies showed that IFN-alpha administration results in increased levels of biogenic amines, subsequent activation of monoamine oxidases (MAOs), and finally in a change in NO production due to the H(2)O(2) generated by MAOs. We examined the potential relationship between NO production in plasma and MAO-B activity in platelets of 43 cancer patients during 8 weeks of treatment with IFN-alpha. NO synthesis was quantitated by measuring both the ratio of citrulline and arginine (CIT/ARG-ratio) and total nitrite/nitrate (NOx) levels. Compared to baseline, MAO activity and NOx increased, while the CIT/ARG-ratio decreased. No associations were found between NOx, MAO and CIT/ARG-ratio. Only few associations were observed between changes in the biochemical parameters and changes in psychopathology induced by IFN-alpha, of which the association between changes in CIT and lassitude was the most consistent. The results suggest that peripheral NO production and MAO activity are unrelated to each other, and that peripheral changes in these biochemical parameters induced by IFN-alpha are unlikely to contribute to definite psychiatric disturbance.

  5. The N Terminus of Monoamine Transporters Is a Lever Required for the Action of Amphetamines*

    PubMed Central

    Sucic, Sonja; Dallinger, Stefan; Zdrazil, Barbara; Weissensteiner, René; Jørgensen, Trine N.; Holy, Marion; Kudlacek, Oliver; Seidel, Stefan; Cha, Joo Hwan; Gether, Ulrik; Newman, Amy H.; Ecker, Gerhard F.; Freissmuth, Michael; Sitte, Harald H.

    2010-01-01

    The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). We explored the functional importance of the N terminus in mediating the action of amphetamines by focusing initially on the highly conserved threonine residue at position 81, a candidate site for phosphorylation by protein kinase C. Molecular dynamics simulations of the wild type SERT, compared with its mutations SERTT81A and SERTT81D, suggested structural changes in the inner vestibule indicative of an opening of the inner vestibule. Predictions from this model (e.g. the preferential accumulation of SERTT81A in the inward conformation, its reduced turnover number, and a larger distance between its N and C termini) were verified. Most importantly, SERTT81A (and the homologous mutations in noradrenaline and dopamine) failed to support amphetamine-induced efflux, and this was not remedied by aspartate at this position. Amphetamine-induced currents through SERTT81A were comparable with those through the wild type transporter. Both abundant Na+ entry and accumulation of SERTT81A in the inward facing conformation ought to favor amphetamine-induced efflux. Thus, we surmised that the N terminus must play a direct role in driving the transporter into a state that supports amphetamine-induced efflux. This hypothesis was verified by truncating the first 64 amino acids and by tethering the N terminus to an additional transmembrane helix. Either modification abolished amphetamine-induced efflux. We therefore conclude that the N terminus of monoamine transporters acts as a lever that sustains reverse transport. PMID:20118234

  6. Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultra-high performance liquid chromatography and electrochemical detection.

    PubMed

    Ferry, Barbara; Gifu, Elena-Patricia; Sandu, Ioana; Denoroy, Luc; Parrot, Sandrine

    2014-03-01

    Electrochemical methods are very often used to detect catecholamine and indolamine neurotransmitters separated by conventional reverse-phase high performance liquid chromatography (HPLC). The present paper presents the development of a chromatographic method to detect monoamines present in low-volume brain dialysis samples using a capillary column filled with sub-2μm particles. Several parameters (repeatability, linearity, accuracy, limit of detection) for this new ultrahigh performance liquid chromatography (UHPLC) method with electrochemical detection were examined after optimization of the analytical conditions. Noradrenaline, adrenaline, serotonin, dopamine and its metabolite 3-methoxytyramine were separated in 1μL of injected sample volume; they were detected above concentrations of 0.5-1nmol/L, with 2.1-9.5% accuracy and intra-assay repeatability equal to or less than 6%. The final method was applied to very low volume dialysates from rat brain containing monoamine traces. The study demonstrates that capillary UHPLC with electrochemical detection is suitable for monitoring dialysate monoamines collected at high sampling rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Novel arylalkenylpropargylamines as neuroprotective, potent, and selective monoamine oxidase B inhibitors for the treatment of Parkinson's disease.

    PubMed

    Huleatt, Paul B; Khoo, Mui Ling; Chua, Yi Yuan; Tan, Tiong Wei; Liew, Rou Shen; Balogh, Balázs; Deme, Ruth; Gölöncsér, Flóra; Magyar, Kalman; Sheela, David P; Ho, Han Kiat; Sperlágh, Beáta; Mátyus, Péter; Chai, Christina L L

    2015-02-12

    To develop novel neuroprotective agents, a library of novel arylalkenylpropargylamines was synthesized and tested for inhibitory activities against monoamine oxidases. From this, a number of highly potent and selective monoamine oxidase B inhibitors were identified. Selected compounds were also tested for neuroprotection in in vitro studies with PC-12 cells treated with 6-OHDA and rotenone, respectively. It was observed that some of the compounds tested yielded a marked increase in survival in PC-12 cells treated with the neurotoxins. This indicates that these propargylamines are able to confer protection against the effects of the toxins and may also be considered as novel disease-modifying anti-Parkinsonian agents, which are much needed for the therapy of Parkinson's disease.

  8. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.

    PubMed

    Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel

    2018-02-01

    Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  9. Repeated administration of the monoamine reuptake inhibitor BTS 74 398 induces ipsilateral circling in the 6-hydroxydopamine lesioned rat without sensitizing motor behaviours.

    PubMed

    Lane, E L; Cheetham, S C; Jenner, P

    2005-01-01

    BTS 74 398 (1-[1-(3,4-dichlorophenyl)cyclobutyl]-2-(3-diaminethylaminopropylthio)ethanone monocitrate) is a monoamine reuptake inhibitor that reverses motor deficits in MPTP-treated (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) common marmosets without provoking established dyskinesia. However, it is not known whether BTS 74 398 primes the basal ganglia for dyskinesia induction. In this study, the ability of BTS 74 398 to sensitize 6-hydroxydopamine (6-OHDA)-lesioned rats for the production of abnormal motor behaviours and the induction of striatal DeltaFosB were determined in comparison with l-3,4-dihydroxyphenylalanine methyl ester (L-dopa). Acute administration of BTS 74 398 induced a dose-dependent ipsilateral circling response in unilaterally 6-OHDA-lesioned rats whereas L-dopa produced dose-dependent contraversive rotation. The ipsilateral circling response to BTS 74 398 did not alter during 21 days of administration. In contrast, L-dopa treatment for 21 days caused a marked increase in rotational response. Repeated administration of both L-dopa and BTS 74 398 increased general motor activity and stereotypic behaviour. In L-dopa-treated rats, orolingual, locomotive, forelimb and axial abnormal movements developed whereas BTS 74 398 produced only locomotion with a side bias but no other abnormal movements. Sensitization of circling responses and the development of abnormal movements in 6-OHDA-lesioned rats have been associated with the potential of dopaminergic drugs to induce dyskinesia. Furthermore, striatal DeltaFosB immunoreactivity, shown to correlate with dyskinesia induction, was increased by L-dopa but was unaffected by repeated BTS 74 398 administration. The lack of such changes following repeated BTS 74 398 treatment suggests that it may be an effective antiparkinsonian therapy that is unlikely to produce involuntary movements.

  10. [Effects of aluminum on neurobehavioral function and metabolism of monoamine neurotransmitter].

    PubMed

    Yang, H; Zheng, Y; Liang, Y

    1998-03-01

    To evaluate the effects of occupational exposure to aluminum on neurobahavioral function and metabolism of monoamine neurotransmitter. Thirty-three workers exposed to aluminum and 40 controls were studied. Air aluminum concentrations in workplace environment were detected with an atomic absorption spectrophotometer, homovanillic acid (HVA) and vanilylmandellic acid (VMA) in urine and aluminum in serum and urine were detected with high perfolmance liquid chromatography. Neurobehavioral function was tested with Neurobehavioral Core Test Battery recommended by WHO. Geometric time-weighted average of aluminum in workplace environment was 0.95 mg/m3, ranging from 0.31 to 4.12 mg/m3, and urine aluminum levels in workers exposed to aluminum averaged 12.25 micrograms/L, significantly higher than that in controls (5.78 micrograms/L). There was no significant difference in serum aluminum between the exposed and controls. Both urine VMA and HVA levels were higher in the workers exposed to aluminum, and urine VMA level in the exposed was significantly higher than that in controls. There was significant difference in neurobehavioral test, including Santa Ana, digit symbol and Benton tests between the exposed and control workers. It suggests that occupational exposure to low level of aluminum can affect the neurobehavioral function and metabolism of monoamine neurotransmitter.

  11. Clonal evolution following chemotherapy-induced stem cell depletion in cats heterozygous for glucose-6-phosphate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abkowitz, J.L.; Ott, R.M.; Holly, R.D.

    The number of hematopoietic stem cells necessary to support normal hematopoiesis is not known but may be small. If so, the depletion or damage of such cells could result in apparent clonal dominance. To test this hypothesis, dimethylbusulfan (2 to 4 mg/kg intravenously (IV) x 3) was given to cats heterozygous for the X-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD). These cats were the daughters of domestic X Geoffroy parents. After the initial drug-induced cytopenias (2 to 4 weeks), peripheral blood counts and the numbers of marrow progenitors detected in culture remained normal, although the percentages of erythroid burst-forming cells (BFU-E) andmore » granulocyte/macrophage colony-forming cells (CFU-GM) in DNA synthesis increased, as determined by the tritiated thymidine suicide technique. In three of six cats treated, a dominance of Geoffroy-type G-6-PD emerged among the progenitor cells, granulocytes, and RBCs. These skewed ratios of domestic to Geoffroy-type G-6-PD have persisted greater than 3 years. No changes in cell cycle kinetics or G-6-PD phenotypes were noted in similar studies in six control cats. These data suggest that clonal evolution may reflect the depletion or damage of normal stem cells and not only the preferential growth and dominance of neoplastic cells.« less

  12. Serotonergic modulation of nicotine-induced kinetic tremor in mice.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Nomura, Yuji; Onishi, Misaki; Matsubara, Nami; Shimizu, Saki; Ohno, Yukihiro

    2017-06-01

    We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh) receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT 1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT), significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT 1A antagonist). In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT 2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT 2 antagonist). The 5-HT 3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT 3 antagonist) or SB-258585 (5-HT 6 antagonist). These results suggest that postsynaptic 5-HT 1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT 2 receptors have an inhibitory modulatory role in induction of nicotine tremor. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  13. Measuring inhibition of monoamine reuptake transporters by new psychoactive substances (NPS) in real-time using a high-throughput, fluorescence-based assay.

    PubMed

    Zwartsen, Anne; Verboven, Anouk H A; van Kleef, Regina G D M; Wijnolts, Fiona M J; Westerink, Remco H S; Hondebrink, Laura

    2017-12-01

    The prevalence and use of new psychoactive substances (NPS) is increasing and currently over 600 NPS exist. Many illicit drugs and NPS increase brain monoamine levels by inhibition and/or reversal of monoamine reuptake transporters (DAT, NET and SERT). This is often investigated using labor-intensive, radiometric endpoint measurements. We investigated the applicability of a novel and innovative assay that is based on a fluorescent monoamine mimicking substrate. DAT, NET or SERT-expressing human embryonic kidney (HEK293) cells were exposed to common drugs (cocaine, dl-amphetamine or MDMA), NPS (4-fluoroamphetamine, PMMA, α-PVP, 5-APB, 2C-B, 25B-NBOMe, 25I-NBOMe or methoxetamine) or the antidepressant fluoxetine. We demonstrate that this fluorescent microplate reader-based assay detects inhibition of different transporters by various drugs and discriminates between drugs. Most IC 50 values were in line with previous results from radiometric assays and within estimated human brain concentrations. However, phenethylamines showed higher IC 50 values on hSERT, possibly due to experimental differences. Compared to radiometric assays, this high-throughput fluorescent assay is uncomplicated, can measure at physiological conditions, requires no specific facilities and allows for kinetic measurements, enabling detection of transient effects. This assay is therefore a good alternative for radiometric assays to investigate effects of illicit drugs and NPS on monoamine reuptake transporters. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction

    PubMed Central

    Kazak, Lawrence; Chouchani, Edward T.; Stavrovskaya, Irina G.; Lu, Gina Z.; Jedrychowski, Mark P.; Egan, Daniel F.; Kumari, Manju; Kong, Xingxing; Erickson, Brian K.; Szpyt, John; Rosen, Evan D.; Murphy, Michael P.; Kristal, Bruce S.; Gygi, Steven P.; Spiegelman, Bruce M.

    2017-01-01

    Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology. PMID:28630339

  15. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction.

    PubMed

    Kazak, Lawrence; Chouchani, Edward T; Stavrovskaya, Irina G; Lu, Gina Z; Jedrychowski, Mark P; Egan, Daniel F; Kumari, Manju; Kong, Xingxing; Erickson, Brian K; Szpyt, John; Rosen, Evan D; Murphy, Michael P; Kristal, Bruce S; Gygi, Steven P; Spiegelman, Bruce M

    2017-07-25

    Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology.

  16. The effects of monoamine oxidase inhibitors on the ejaculatory response induced by 5-methoxy-N,N-dimethyltryptamine in the rat.

    PubMed Central

    Rényi, L.

    1986-01-01

    The ejaculatory response and other components of the 5-hydroxytryptamine (5-HT) behavioural syndrome induced by 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) (3 mg kg-1, i.p.) were studied following single and repeated treatment of rats with eight different monoamine oxidase (MAO) inhibitors. Single and repeated treatment with the 5-HT agonist 5-MeODMT, and with low doses of the potent releaser of 5-HT, p-chloroamphetamine (PCA) were also included in the study. Repeated but not single treatment with 5-MeODMT reduced strongly but reversibly the ejaculatory response and the behavioural responses. Repeated but not single treatment with the nonselective and irreversible MAO inhibitors nialamide and pargyline reduced markedly the ejaculatory response but only slightly the 5-HT behavioural responses. Repeated treatment with the irreversible MAO-B inhibitor (-)-deprenyl, with the irreversible MAO-A inhibitor, clorgyline, with the reversible MAO-A inhibitor moclobemide, and with low doses of PCA did not affect either of the responses. Repeated but not single combined treatment with clorgyline plus PCA caused an almost complete blockade of all the four responses. The selective and reversible MAO-A inhibitors (as well as 5-HT releasers) amiflamine, alpha-ethyltryptamine, and alpha-methyltryptamine reduced markedly the ejaculatory response after both single and repeated treatments. The behavioural responses were blocked only after repeated treatment. It is concluded that single and repeated treatments of rats with different MAO inhibitors do not produce a common alteration in 5-HT2 receptor functions. Repeated treatment with 5-MeODMT caused a blockade of 75-95% of the ejaculatory response and 5-HT behavioural responses.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3091132

  17. Pancreatitis-Induced Depletion of Syntaxin 2 Promotes Autophagy and Increases Basolateral Exocytosis.

    PubMed

    Dolai, Subhankar; Liang, Tao; Orabi, Abrahim I; Holmyard, Douglas; Xie, Li; Greitzer-Antes, Dafna; Kang, Youhou; Xie, Huanli; Javed, Tanveer A; Lam, Patrick P; Rubin, Deborah C; Thorn, Peter; Gaisano, Herbert Y

    2018-05-01

    Pancreatic acinar cells are polarized epithelial cells that store enzymes required for digestion as inactive zymogens, tightly packed at the cell apex. Stimulation of acinar cells causes the zymogen granules to fuse with the apical membrane, and the cells undergo exocytosis to release proteases into the intestinal lumen. Autophagy maintains homeostasis of pancreatic acini. Syntaxin 2 (STX2), an abundant soluble N-ethyl maleimide sensitive factor attachment protein receptor in pancreatic acini, has been reported to mediate apical exocytosis. Using human pancreatic tissues and STX2-knockout (KO) mice, we investigated the functions of STX2 in zymogen granule-mediated exocytosis and autophagy. We obtained pancreatic tissues from 5 patients undergoing surgery for pancreatic cancer and prepared 80-μm slices; tissues were exposed to supramaximal cholecystokinin octapeptide (CCK-8) or ethanol and a low concentration of CCK-8 and analyzed by immunoblot and immunofluorescence analyses. STX2-KO mice and syntaxin 2 +/+ C57BL6 mice (controls) were given intraperitoneal injections of supramaximal caerulein (a CCK-8 analogue) or fed ethanol and then given a low dose of caerulein to induce acute pancreatitis, or saline (controls); pancreata were isolated and analyzed by histology and immunohistochemistry. Acini were isolated from mice, incubated with CCK-8, and analyzed by immunofluorescence microscopy or used in immunoprecipitation experiments. Exocytosis was quantified using live-cell exocytosis and Ca 2+ imaging analyses and based on formation of exocytotic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes. Dysregulations in autophagy were identified using markers, electron and immunofluorescence microscopy, and protease activation assays. Human pancreatic tissues and dispersed pancreatic acini from control mice exposed to CCK-8 or ethanol plus CCK-8 were depleted of STX2. STX2-KO developed more severe pancreatitis after administration of

  18. Age-Related Behavioral Phenotype of an Astrocytic Monoamine Oxidase-B Transgenic Mouse Model of Parkinson’s Disease

    PubMed Central

    Lieu, Christopher A.; Chinta, Shankar J.; Rane, Anand; Andersen, Julie K.

    2013-01-01

    We have previously shown that increases in astrocytic monoamine oxidase-B (MAO-B) expression, mimicking that which occurs with aging and in neurodegenerative disease, in a doxycycline (dox)-inducible transgenic mouse model evokes neuropathological similarities to what is observed in the human parkinsonian brain. Additional behavioral and neuropathological studies could provide further validation for its usage as a model for Parkinson’s disease (PD). In the present study, we utilized a battery of behavioral tests to evaluate age-related phenotype in this model. In the open field test, we found that dox-induction impaired motor ability with decreases in movement and ambulatory function as well as diminished stereotypical, repetitive movement episodes in both young and old mice. Older mice also showed decreased motor performance in the pole test when compared to younger mice. Furthermore, dox-induced older mice displayed severe hindlimb clasping and the most significant loss of dopamine (DA) in the striatum when compared to young and non-induced animals. Additionally, increased MAO-B activity significantly correlated with decreased expression of striatal DA. The results of our study further confirms that the dox-inducible astrocytic MAO-B transgenic mouse displays similar age-related behavioral and neuropathological features to other models of PD, and could serve as a useful tool to study PD pathophysiology and for the evaluation of therapeutic interventions. PMID:23326597

  19. Mammalian monoamine-oxidizing enzymes, with special reference to benzylamine oxidase in human tissues.

    PubMed

    Lewinsohn, R

    1984-01-01

    A review is presented of the monoamine-oxidizing enzymes with special reference to the activity of benzylamine oxidase (BzAO) in human tissues. Methods of study of amine oxidases, properties (chiefly of BzAO) and some problems concerning substrate and inhibitor specificity and multiple forms of monoamine oxidase (MAO) are surveyed. The substrate specificity of human plasma BzAO is compared with that of amine-oxidizing enzymes in plasma or serum of other species. Correlations of plasma BzAO and platelet MAO activity with clinical findings are discussed. The distribution of amine oxidase activities in solid human tissues is reviewed, in particular BzAO in blood vessels and richly-vascularized tissues, as well as kinetic constants and altered patterns of activity of BzAO in human atherosclerosis. Activities of the amine oxidases in non-vascular smooth muscle, in cultured cells, and in various tissues related to human gestation, are discussed. The present knowledge of BzAO is discussed in terms of its possible clinical relevance to several human disease states, and the importance of the enzyme in the human body.

  20. Monoamines differentially modulate neuropeptide release from distinct sites within a single neuron pair.

    PubMed

    Clark, Tobias; Hapiak, Vera; Oakes, Mitchell; Mills, Holly; Komuniecki, Richard

    2018-01-01

    Monoamines and neuropeptides often modulate the same behavior, but monoaminergic-peptidergic crosstalk remains poorly understood. In Caenorhabditis elegans, the adrenergic-like ligands, tyramine (TA) and octopamine (OA) require distinct subsets of neuropeptides in the two ASI sensory neurons to inhibit nociception. TA selectively increases the release of ASI neuropeptides encoded by nlp-14 or nlp-18 from either synaptic/perisynaptic regions of ASI axons or the ASI soma, respectively, and OA selectively increases the release of ASI neuropeptides encoded by nlp-9 asymmetrically, from only the synaptic/perisynaptic region of the right ASI axon. The predicted amino acid preprosequences of genes encoding either TA- or OA-dependent neuropeptides differed markedly. However, these distinct preprosequences were not sufficient to confer monoamine-specificity and additional N-terminal peptide-encoding sequence was required. Collectively, our results demonstrate that TA and OA specifically and differentially modulate the release of distinct subsets of neuropeptides from different subcellular sites within the ASIs, highlighting the complexity of monoaminergic/peptidergic modulation, even in animals with a relatively simple nervous system.

  1. Monoamines differentially modulate neuropeptide release from distinct sites within a single neuron pair

    PubMed Central

    Oakes, Mitchell; Mills, Holly; Komuniecki, Richard

    2018-01-01

    Monoamines and neuropeptides often modulate the same behavior, but monoaminergic-peptidergic crosstalk remains poorly understood. In Caenorhabditis elegans, the adrenergic-like ligands, tyramine (TA) and octopamine (OA) require distinct subsets of neuropeptides in the two ASI sensory neurons to inhibit nociception. TA selectively increases the release of ASI neuropeptides encoded by nlp-14 or nlp-18 from either synaptic/perisynaptic regions of ASI axons or the ASI soma, respectively, and OA selectively increases the release of ASI neuropeptides encoded by nlp-9 asymmetrically, from only the synaptic/perisynaptic region of the right ASI axon. The predicted amino acid preprosequences of genes encoding either TA- or OA-dependent neuropeptides differed markedly. However, these distinct preprosequences were not sufficient to confer monoamine-specificity and additional N-terminal peptide-encoding sequence was required. Collectively, our results demonstrate that TA and OA specifically and differentially modulate the release of distinct subsets of neuropeptides from different subcellular sites within the ASIs, highlighting the complexity of monoaminergic/peptidergic modulation, even in animals with a relatively simple nervous system. PMID:29723289

  2. Capsaicin-induced activation of ERK1/2 and its involvement in GAP-43 expression and CGRP depletion in organotypically cultured DRG neurons.

    PubMed

    Li, Yunfeng; Liu, Guixiang; Li, Hao; Xu, Youzheng; Zhang, Hong; Liu, Zhen

    2013-04-01

    Low concentrations of capsaicin (CAP) stimulate and high concentrations of CAP can be toxic to the primary sensory neurons of the dorsal root ganglion (DRG). CAP induces the phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in DRG neurons. The effect of the activation of ERK1/2 by different concentrations of CAP on growth-associated protein 43 (GAP-43) expression and calcitonin gene-related peptide (CGRP) depletion in DRG neurons remains unknown. In the present study, organotypic embryonic 15-day-old rat DRG explants were used to determine the effect of different concentrations of CAP on GAP-43 expression and CGRP depletion. The results showed that, compared to unstimulated control cultures, GAP-43 and pERK1/2 protein levels increased at a low concentration (2 μmol/L) of CAP and decreased at a higher concentration (10 μmol/L). The number of CGRP-immunoreactive (IR) migrating neurons also decreased in CAP-treated cultures. The increase in GAP-43 levels and CGRP depletion could be blocked by the administration of ERK1/2 inhibitor PD98059. The results of the present study imply that CAP at different concentrations has different effects on GAP-43 expression and CGRP depletion. These effects were involved in the activation of ERK1/2 in organotypically cultured DRG neurons stimulated with CAP. These data may provide new insights for further development potential therapeutic applications of CAP with moderate dose on neurogenic inflammation.

  3. Ropren® treatment reverses anxiety-like behavior and monoamines levels in gonadectomized rat model of Alzheimer's disease.

    PubMed

    Fedotova, Julia; Soultanov, Vagif; Nikitina, Tamara; Roschin, Victor; Ordyan, Natalia; Hritcu, Lucian

    2016-10-01

    Previous studies indicated that reduced androgen levels may contribute to both physical and cognitive disorders in men, including Alzheimer's disease. New drug candidates for Alzheimer's disease in patients with androgen deficiency should ideally be able to act not only on multiple brain targets but also to correct impaired endocrine functions in hypogonadal men with Alzheimer's disease. Ropren ® is one such candidate for the treatment of Alzheimer's disease in men with an imbalance of androgens. Accordingly, the aim of the current study was to examine the effects of long-term Ropren ® administration (8.6mg/kg, orally, once daily, for 28 days) on the anxiety-like behavior and monoamines levels in the rat hippocampus using a β-amyloid (25-35) rat model of Alzheimer's disease following gonadectomy. Ropren ® was administered to the gonadectomized (GDX) rats and GDX rats treated with testosterone propionate (TP, 0.5mg/kg, subcutaneous, once daily, for 28 days). Anxiety-like behavior was assessed in the elevated plus maze (EPM) and the light-dark test (LDT), locomotor and grooming activities were assessed in the open field test (OFT). Ropren ® alone or in combination with TP-induced anxiolytic effects as evidenced in the EPM and in the LDT and increased locomotor activity in the OFT. Additionally, it was observed that dopamine (DA) and serotonin (5-HT) levels increased while 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio in the hippocampus decreased. Our results indicate that Ropren ® has a marked anxiolytic-like action due to an increase in the monoamines levels in the experimental rat model of Alzheimer's disease with altered levels of androgens. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Depletion of enteric bacteria diminishes leukocyte infiltration following doxorubicin-induced small intestinal damage in mice.

    PubMed

    Carr, Jacquelyn S; King, Stephanie; Dekaney, Christopher M

    2017-01-01

    While enteric bacteria have been shown to play a critical role in other forms of intestinal damage, their role in mediating the response to the chemotherapeutic drug Doxorubicin (Doxo) is unclear. In this study, we used a mouse model of intestinal bacterial depletion to evaluate the role enteric bacteria play in mediating Doxo-induced small intestinal damage and, more specifically, in mediating chemokine expression and leukocyte infiltration following Doxo treatment. An understanding of this pathway may allow for development of intervention strategies to reduce chemotherapy-induced small intestinal damage. Mice were treated with (Abx) or without (NoAbx) oral antibiotics in drinking water for four weeks and then with Doxo. Jejunal tissues were collected at various time points following Doxo treatment and stained and analyzed for apoptosis, crypt damage and restitution, and macrophage and neutrophil number. In addition, RNA expression of inflammatory markers (TNFα, IL1-β, IL-10) and cytokines (CCL2, CC7, KC) was assessed by qRT-PCR. In NoAbx mice Doxo-induced damage was associated with rapid induction of apoptosis in jejunal crypt epithelium and an increase weight loss and crypt loss. In addition, we observed an increase in immune-modulating chemokines CCL2, CCL7 and KC and infiltration of macrophages and neutrophils. In contrast, while still positive for induction of apoptosis following Doxo treatment, Abx mice showed neither the overall weight loss nor crypt loss seen in NoAbx mice nor the increased chemokine expression and leukocyte infiltration. Enteric bacteria play a critical role in Doxo-induced small intestinal damage and are associated with an increase in immune-modulating chemokines and cells. Manipulation of enteric bacteria or the damage pathway may allow for prevention or treatment of chemotherapy-induced small intestinal damage.

  5. In Vitro and in Vivo Neuroprotective Effects of Walnut (Juglandis Semen) in Models of Parkinson’s Disease

    PubMed Central

    Choi, Jin Gyu; Park, Gunhyuk; Kim, Hyo Geun; Oh, Dal-Seok; Kim, Hocheol; Oh, Myung Sook

    2016-01-01

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines including dopamine (DA). MAO expression is elevated in Parkinson’s disease (PD). An increase in MAO activity is closely related to age, and this may induce neuronal degeneration in the brain due to oxidative stress. MAO (and particularly monoamine oxidase B (MAO-B)) participates in the generation of reactive oxygen species (ROS), such as hydrogen peroxide that are toxic to dopaminergic cells and their surroundings. Although the polyphenol-rich aqueous walnut extract (JSE; an extract of Juglandis Semen) has been shown to have various beneficial bioactivities, no study has been dedicated to see if JSE is capable to protect dopaminergic neurons against neurotoxic insults in models of PD. In the present study we investigated the neuroprotective potential of JSE against 1-methyl-4-phenylpyridinium (MPP+)- or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicities in primary mesencephalic cells and in a mouse model of PD. Here we show that JSE treatment suppressed ROS and nitric oxide productions triggered by MPP+ in primary mesencephalic cells. JSE also inhibited depletion of striatal DA and its metabolites in vivo that resulted in significant improvement in PD-like movement impairment. Altogether our results indicate that JSE has neuroprotective effects in PD models and may have potential for the prevention or treatment of PD. PMID:26784178

  6. Monoamine Oxidase A: A Novel Target for Progression and Metastasis of Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    Paik, J.H. 2011. FoxO family members in cancer. Cancer biology & therapy 12:253-259. 31. Myatt, S.S., and Lam , E.W. 2007. The emerging roles of...J.B., Chen, K., Li, Y., Lau , Y.F., and Shih, J.C. 2009. Regulation of monoamine oxidase A by the SRY gene on the Y chromosome. FASEB journal

  7. Ego depletion in visual perception: Ego-depleted viewers experience less ambiguous figure reversal.

    PubMed

    Wimmer, Marina C; Stirk, Steven; Hancock, Peter J B

    2017-10-01

    This study examined the effects of ego depletion on ambiguous figure perception. Adults (N = 315) received an ego depletion task and were subsequently tested on their inhibitory control abilities that were indexed by the Stroop task (Experiment 1) and their ability to perceive both interpretations of ambiguous figures that was indexed by reversal (Experiment 2). Ego depletion had a very small effect on reducing inhibitory control (Cohen's d = .15) (Experiment 1). Ego-depleted participants had a tendency to take longer to respond in Stroop trials. In Experiment 2, ego depletion had small to medium effects on the experience of reversal. Ego-depleted viewers tended to take longer to reverse ambiguous figures (duration to first reversal) when naïve of the ambiguity and experienced less reversal both when naïve and informed of the ambiguity. Together, findings suggest that ego depletion has small effects on inhibitory control and small to medium effects on bottom-up and top-down perceptual processes. The depletion of cognitive resources can reduce our visual perceptual experience.

  8. Adenosine signaling in reserpine-induced depression in rats.

    PubMed

    Minor, Thomas R; Hanff, Thomas C

    2015-06-01

    A single, 6 mg/kg intraperitoneal injection of reserpine increased floating time during forced swim testing 24h after administration in rats in five experiments. Although such behavioral depression traditionally is attributed to drug-induced depletion of brain monoamines, we examined the potential contribution of adenosine signaling, which is plausibly activated by reserpine treatment and contributes to behavioral depression in other paradigms. Whereas peripheral administration of the highly selective A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.5, 1.0, or 5.0mg/kg i.p.) 15 min before swim testing failed to improve performance in reserpine-treated rats, swim deficits were completely reversed by 7 mg/kg of the nonselective receptor antagonist caffeine. Performance deficits were also reversed by the nonselective A2 antagonist 3,7-dimethylxanthine (0, 0.5, 1.0mg/kg i.p.), and the highly selective A2A receptor antagonist (CSC: 8-(3 chlorostyral)caffeine) (0.01, 0.1, or 1.0mg/kg i.p.) in a dose-dependent manner. The highly selective A2B antagonist alloxazine had no beneficial effect on swim performance at any dose under study (0.1, 1.0, and 5.0mg/kg i.p.). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Development of an animal model of nephrocalcinosis via selective dietary sodium and chloride depletion

    PubMed Central

    Tuchman, Shamir; Asico, Laureano D.; Escano, Crisanto; Bobb, Daniel A.; Ray, Patricio E.

    2013-01-01

    Background Nephrocalcinosis (NC) is an important clinical problem seen in critically ill pre-term neonates treated with loop diuretics. No reliable animal models are available to study the pathogenesis of NC in preterm infants. The purpose of this study was to develop a reproducible and clinically relevant animal model of NC for these patients, and to explore the impact of extracellular fluid (ECF) volume contraction induced by sodium and chloride depletion in this process. Methods Three-week old weanling Sprague-Dawley rats were fed diets deficient in either chloride or sodium and chloride. A sub-group of rats from each dietary group was injected daily with furosemide (40 mg/kg; i.p.). Results Rats fed a control diet, with or without furosemide, or a chloride depleted diet alone, did not develop NC. In contrast, 50% of the rats injected with furosemide and fed the chloride depleted diet developed NC. Moreover, 94% of the rats fed the combined sodium/chloride depleted diet developed NC, independently of furosemide use. NC was associated with the development of severe ECF volume contraction, hypochloremic, hypokalemic metabolic alkalosis, increased phosphaturia, and growth retardation. Conclusion Severe ECF volume contraction induced by chronic sodium and chloride depletion appears to play an important role in the pathogenesis of NC. PMID:23174703

  10. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    PubMed

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  11. Inhibition of monoamine oxidase by moclobemide: effects on monoamine metabolism and secretion of anterior pituitary hormones and cortisol in healthy volunteers.

    PubMed Central

    Koulu, M; Scheinin, M; Kaarttinen, A; Kallio, J; Pyykkö, K; Vuorinen, J; Zimmer, R H

    1989-01-01

    1. Single oral doses (100, 200 and 300 mg) of moclobemide, a reversible inhibitor of monoamine oxidase (MAO) with predominant effects on the A-type of the enzyme, were administered to eight young, healthy male volunteers in a double-blind, random-order, placebo-controlled study. The investigation was thereafter continued in an open fashion by administering a single 10 mg dose of the MAO-B inhibitor deprenyl to the same subjects. 2. Deamination of catecholamines was powerfully and dose-dependently inhibited by moclobemide, as evidenced by up to 40% decreases in the urinary excretion of deaminated catecholamine metabolites, corresponding increases in the excretion of non-deaminated, methylated metabolites, and up to 79% average decreases in the plasma concentration of 3,4-dihydroxyphenylglycol (DHPG), a deaminated metabolite of noradrenaline (NA), and up to 75% average decreases in the plasma concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC), a deaminated metabolite of dopamine. The urinary excretion of 5-hydroxyindoleacetic acid (5-HIAA) was only slightly reduced. In contrast, deprenyl, in a dose which almost totally inhibited MAO-B activity in blood platelets, did not appreciably affect the plasma concentrations of DHPG or DOPAC. 3. Due to the rapid, reversible, dose-dependent and MAO-A specific effect of moclobemide on plasma concentrations of DHPG, it is suggested that DHPG in plasma may be a useful indicator of the magnitude and duration of MAO-A inhibition in man. 4. Sympatho-adrenal function at rest was not significantly altered by moclobemide, as judged by unchanged plasma catecholamine concentrations and stable blood pressure and heart rate recordings. 5. Monoamine oxidase type B activity in blood platelets was slightly (less than 30%) and transiently inhibited after moclobemide. 6. The secretion of prolactin was dose-dependently stimulated by moclobemide, whereas the plasma concentrations of growth hormone (hGH) and cortisol remained unchanged. PMID

  12. Neuroendocrine tests of monoamine function in man: a review of basic theory and its application to the study of depressive illness.

    PubMed

    Checkley, S A

    1980-02-01

    Neuroendocrine tests are now available for studying monoamine function in the brains of patients with mental illness. Great care is required in the selection of drugs which act upon specific monoamine receptors to produce specific hormonal responses. Equal care is required in the control of biological variables which may influence hormonal release. Recently reported neuroendocrine studies of depressive illness are assessed in these terms. The results of these studies support the hypothesis that there is defective noradrenergic function in the brains of some patients with depressive illness.

  13. Escitalopram reversed the traumatic stress-induced depressed and anxiety-like symptoms but not the deficits of fear memory.

    PubMed

    Lin, Chen-Cheng; Tung, Che-Se; Liu, Yia-Ping

    2016-04-01

    Posttraumatic stress disorder (PTSD) is a trauma-induced mental disorder characterised by fear extinction dysfunction in which fear circuit monoamines are possibly associated. PTSD often coexists with depressive/anxiety symptoms, and selective serotonin reuptake inhibitors (SSRIs) are recommended to treat PTSD. However, therapeutic mechanisms of SSRIs underlying the PTSD fear symptoms remain unclear. Using a rodent PTSD model, we examined the effects of early SSRI intervention in mood and fear dysfunctions with associated changes of monoamines within the fear circuit areas. A 14-day escitalopram (ESC) regimen (5 mg/kg/day) was undertaken in two separate experiments in rats which previously received a protocol of single prolonged stress (SPS). In experiment 1, sucrose preference and elevated T-maze were used to index anhedonia depression and avoidance/escape anxiety profiles. In experiment 2, the percentage of freezing time was measured in a 3-day fear conditioning paradigm. At the end of our study, tissue levels of serotonin (5-HT) in the medial prefrontal cortex, amygdala, hippocampus, and striatum were measured in experiment 1, and the efflux levels of infralimbic (IL) monoamines were measured in experiment 2. In experiment 1, ESC corrected both behavioural (depression/anxiety) and neurochemical (reduced 5-HT tissue levels in amygdala/hippocampus) abnormalities. In experiment 2, ESC was unable to correct the SPS-impaired retrieval of fear extinction. In IL, ESC increased the efflux level of 5-HT but failed to reverse SPS-reduced dopamine (DA) and noradrenaline (NA). PTSD-induced mood dysfunction is psychopathologically different from PTSD-induced fear disruption in terms of disequilibrium of monoamines within the fear circuit areas.

  14. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  15. Ammonia causes decreased brain monoamines in fathead minnows (Pimephales promelas)

    USGS Publications Warehouse

    Ronan, Patrick J.; Gaikowski, Mark P.; Hamilton, Steven J.; Buhl, Kevin J.; Summers, Cliff H.

    2007-01-01

    Hyperammonemia, arising from variety of disorders, leads to severe neurological dysfunction. The mechanisms of ammonia toxicity in brain are not completely understood. This study investigated the effects of ammonia on monoaminergic systems in brains of fathead minnows (Pimephales promelas). Fish serve as a good model system to investigate hyperammonemic effects on brain function since no liver manipulations are necessary to increase endogenous ammonia concentrations. Using high performance liquid chromatography with electrochemical detection, monoamines and some associated metabolites were measured from whole brain homogenate. Adult males were exposed for 48 h to six different concentrations of ammonia (0.01–2.36 mg/l unionized) which bracketed the 96-h LC50 for this species. Ammonia concentration-dependent decreases were found for the catecholamines (norepinephrine and dopamine) and the indoleamine serotonin (5-HT). After an initial increase in the 5-HT precursor 5-hydroxytryptophan it too decreased with increasing ammonia concentrations. There were also significant increases in the 5-HIAA/5-HT and DOPAC/DA ratios, often used as measures of turnover. There were no changes in epinephrine (Epi) or monoamine catabolites (DOPAC, 5-HIAA) at any ammonia concentrations tested. Results suggest that ammonia causes decreased synthesis while also causing increased release and degradation. Increased release may underlie behavioral reactions to ammonia exposure in fish. This study adds weight to a growing body of evidence demonstrating that ammonia leads to dysfunctional monoaminergic systems in brain which may underlie neurological symptoms associated with human disorders such as hepatic encephalopathy.

  16. BEHAVIORAL OUTCOMES OF MONOAMINE OXIDASE DEFICIENCY: PRECLINICAL AND CLINICAL EVIDENCE

    PubMed Central

    Bortolato, Marco; Shih, Jean C.

    2012-01-01

    Monoamine oxidase (MAO) isoenzymes A and B are mitochondrial-bound proteins, catalyzing the oxidative deamination of monoamine neurotransmitters as well as xenobiotic amines. Although they derive from a common ancestral progenitor gene, are located at X-chromosome and display 70% structural identity, their substrate preference, regional distribution, and physiological role are divergent. In fact, while MAO-A has high affinity for serotonin and norepinephrine, MAO-B primarily serves the catabolism of 2-phenylethylamine (PEA) and contributes to the degradation of other trace amines and dopamine. Convergent lines of preclinical and clinical evidence indicate that variations in MAO enzymatic activity—due to either genetic or environmental factors—can exert a profound influence on behavioral regulation and play a role in the pathophysiology of a large spectrum of mental and neurodegenerative disorders, ranging from antisocial personality disorder to Parkinson’s disease. Over the past few years, numerous advances have been made in our understanding of the phenotypical variations associated with genetic polymorphisms and mutations of the genes encoding for both isoenzymes. In particular, novel findings on the phenotypes of MAO-deficient mice are highlighting novel potential implications of both isoenzymes in a broad spectrum of mental disorders, ranging from autism and anxiety to impulse-control disorders and ADHD. These studies will lay the foundation for future research on the neurobiological and neurochemical bases of these pathological conditions, as well as the role of gene × environment interactions in the vulnerability to several mental disorders. PMID:21971001

  17. Origin, transport, and losses of energetic He(+) and He(2+) ions in the magnetosphere of the Earth - AMPTE/CCE observations

    NASA Technical Reports Server (NTRS)

    Kremser, G.; Wilken, B.; Gloeckler, G.; Hamilton, D. C.; Ipavich, F. M.; Kistler, L. M.; Tanskanen, P.

    1993-01-01

    Data from the ion charge-energy-mass spectrometer CHEM flown on AMPTE/CCE spacecraft are used to investigate the origin, transport, and losses of energetic He(+) and He(2+) ions in the earth's magnetosphere. The L profiles of the average ion phase space density f were determined as a function of the magnetic momentum. It is shown that the L profiles have an inner part, where f increases with L for both He(+) adn He(2+) and where steady-state conditions are fulfilled. The outer boundary L(lim) of this region is located at a distance that depends on the ion species and the geomagnetic activity level. Steady-state conditions continue outside L(lim) for He(+) ions, while the He(2+) ion distribution outside L(lim) is strongly influenced by ion convection causing a lack of steady-state conditions. It is concluded that solar wind is the origin of the He(2+), while a mixed origin is suggested for the He(+) ions, in which the major contribution is from the solar wind via charge exchange production from the He(2+) ions.

  18. Brain monoamine levels and behaviour of young and adult chickens genetically selected on feather pecking.

    PubMed

    Kops, M S; Kjaer, J B; Güntürkün, O; Westphal, K G C; Korte-Bouws, G A H; Olivier, B; Korte, S M; Bolhuis, J E

    2017-06-01

    Severe feather pecking (SFP) in chickens is a detrimental behaviour with possibly neurochemical deficits at its base. Recent neurological studies depicted conflicting results on the role of serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA) in the development and display of feather pecking. We studied brain monoamine levels and behaviour in domestic chickens divergently genetically selected on feather pecking behaviour, the Low Feather Pecking (LFP) and High Feather Pecking (HFP) lines, both at a young age and when adult, to elucidate the role of 5-HT and DA in feather pecking. Also pecking behaviour and the behavioural response to challenging test situations was determined. At 8 weeks of age, HFP had lower 5-HT and DA turnover in several brain areas than LFP, whereas these differences had disappeared or were even reversed at 25 weeks of age. Line differences in central monoamine activity were found both in emotion-regulating and motor-regulating areas. As expected from previous generations, HFP exceeded LFP in most types of pecking at other birds, including severe feather pecking. Furthermore, HFP responded more actively in most behavioural tests conducted, and seem more impulsive or (hyper)active in their way of coping with challenges. This paper shows different developmental trajectories of the neurochemical systems (5-HT and DA) for chickens divergently selected on feather pecking behaviour, and a remarkable reversion of differences in monoamine activity at a later stage of life. Whether this is a cause or consequence of SFP needs further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. “When the going gets tough, who keeps going?” Depletion sensitivity moderates the ego-depletion effect

    PubMed Central

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion. PMID:25009523

  20. p53-PGC-1α Pathway Mediates Oxidative Mitochondrial Damage and Cardiomyocyte Necrosis Induced by Monoamine Oxidase-A Upregulation: Role in Chronic Left Ventricular Dysfunction in Mice

    PubMed Central

    Villeneuve, Christelle; Guilbeau-Frugier, Céline; Sicard, Pierre; Lairez, Olivier; Ordener, Catherine; Duparc, Thibaut; De Paulis, Damien; Couderc, Bettina; Spreux-Varoquaux, Odile; Tortosa, Florence; Garnier, Anne; Knauf, Claude; Valet, Philippe; Borchi, Elisabetta; Nediani, Chiara; Gharib, Abdallah; Ovize, Michel; Delisle, Marie-Bernadette; Mialet-Perez, Jeanne

    2013-01-01

    Abstract Aims: Oxidative stress and mitochondrial dysfunction participate together in the development of heart failure (HF). mRNA levels of monoamine oxidase-A (MAO-A), a mitochondrial enzyme that produces hydrogen peroxide (H2O2), increase in several models of cardiomyopathies. Therefore, we hypothesized that an increase in cardiac MAO-A could cause oxidative stress and mitochondrial damage, leading to cardiac dysfunction. In the present study, we evaluated the consequences of cardiac MAO-A augmentation on chronic oxidative damage, cardiomyocyte survival, and heart function, and identified the intracellular pathways involved. Results: We generated transgenic (Tg) mice with cardiac-specific MAO-A overexpression. Tg mice displayed cardiac MAO-A activity levels similar to those found in HF and aging. As expected, Tg mice showed a significant decrease in the cardiac amounts of the MAO-A substrates serotonin and norepinephrine. This was associated with enhanced H2O2 generation in situ and mitochondrial DNA oxidation. As a consequence, MAO-A Tg mice demonstrated progressive loss of cardiomyocytes by necrosis and ventricular failure, which were prevented by chronic treatment with the MAO-A inhibitor clorgyline and the antioxidant N-acetyl-cystein. Interestingly, Tg hearts exhibited p53 accumulation and downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial function. This was concomitant with cardiac mitochondrial ultrastructural defects and ATP depletion. In vitro, MAO-A adenovirus transduction of neonatal cardiomyocytes mimicked the results in MAO-A Tg mice, triggering oxidative stress-dependent p53 activation, leading to PGC-1α downregulation, mitochondrial impairment, and cardiomyocyte necrosis. Innovation and Conclusion: We provide the first evidence that MAO-A upregulation in the heart causes oxidative mitochondrial damage, p53-dependent repression of PGC-1α, cardiomyocyte necrosis, and

  1. Chemotherapy-induced B-cell depletion in hepatoblastoma patients undergoing ABO-incompatible living donor liver transplantation.

    PubMed

    Kanazawa, Hiroyuki; Fukuda, Akinari; Mali, Vidyadhar Padmakar; Rahayatri, Tri Hening; Hirata, Yoshihiro; Sasaki, Kengo; Uchida, Hajime; Shigeta, Takanobu; Sakamoto, Seisuke; Matsumoto, Kimikazu; Kasahara, Mureo

    2016-05-01

    LT from ABO-I donors requires preconditioning regimens to prevent postoperative catastrophic AMR. NAC for HBL is known to cause myelosuppression leading to a reduction in the number and function of lymphocytes. We investigated this chemotherapy-induced myelosuppression in HBL patients listed for LT from ABO-I donors with reference to the kinetics of B, T cells, and anti-ABO blood type isoagglutinin titers. Between 2005 and 2015, of the 319 patients who underwent LDLT at our institute, 12 were indicated for unresectable HBL. Three patients with unresectable HBL who underwent LDLT from ABO-I donors are included in this study. Immunosuppression consisted of a standard regime of tacrolimus and low-dose steroids as in ABO compatible/identical LDLT. No additional preoperative therapies for B-cell depletion were used. Absolute lymphocyte counts, lymphocyte subsets (including CD20+ B cells, CD3+CD4+ T cells and CD3+CD8+ T cells), and anti-ABO blood type isoagglutinin titers were measured before LDLT and postoperatively. The median age at diagnosis was 19 months (range, 3-31 months). The median follow-up was seven months (range, 6-15 months). The median interval from the last NAC to LDLT was 33 days (range, 25-52 days). The median interval from LDLT to adjuvant chemotherapy was 28 days (range, 22-36 days). The counts of CD20+ B cells before LDLT were depleted to median 5 cells/mm(3) (range, 0-6 cells/mm(3)). There was a transient rebound in the CD20+ B cell counts on day seven (maximum of 82 cells/mm(3)) followed by a decline starting at 14 days after LDLT that was sustained for the duration of adjuvant chemotherapy. Anti-ABO blood type isoagglutinin titers were lowered to between 1:1 and 1:16 before LDLT and remained low for the duration of follow-up in this study. All of the three patients remained in good health without either acute cellular or AMR after LDLT. The B-cell depletion that occurs after cisplatin-based chemotherapy for HBL may help accomplish safe ABO-I LDLT

  2. Islet-specific monoamine oxidase A and B expression depends on MafA transcriptional activity and is compromised in type 2 diabetes.

    PubMed

    Ganic, Elvira; Johansson, Jenny K; Bennet, Hedvig; Fex, Malin; Artner, Isabella

    2015-12-25

    Lack or dysfunction of insulin producing β cells results in the development of type 1 and type 2 diabetes mellitus, respectively. Insulin secretion is controlled by metabolic stimuli (glucose, fatty acids), but also by monoamine neurotransmitters, like dopamine, serotonin, and norepinephrine. Intracellular monoamine levels are controlled by monoamine oxidases (Mao) A and B. Here we show that MaoA and MaoB are expressed in mouse islet β cells and that inhibition of Mao activity reduces insulin secretion in response to metabolic stimuli. Moreover, analysis of MaoA and MaoB protein expression in mouse and human type 2 diabetic islets shows a significant reduction of MaoB in type 2 diabetic β cells suggesting that loss of Mao contributes to β cell dysfunction. MaoB expression was also reduced in β cells of MafA-deficient mice, a mouse model for β cell dysfunction, and biochemical studies showed that MafA directly binds to and activates MaoA and MaoB transcriptional control sequences. Taken together, our results show that MaoA and MaoB expression in pancreatic islets is required for physiological insulin secretion and lost in type 2 diabetic mouse and human β cells. These findings demonstrate that regulation of monoamine levels by Mao activity in β cells is pivotal for physiological insulin secretion and that loss of MaoB expression may contribute to the β cell dysfunction in type 2 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Impaired Monoamine and Organic Cation Uptake in Choroid Plexus in Mice with Targeted Disruption of the Plasma Membrane Monoamine Transporter (Slc29a4) Gene*

    PubMed Central

    Duan, Haichuan; Wang, Joanne

    2013-01-01

    The choroid plexus (CP) forms the blood-cerebrospinal fluid (CSF) barrier and protects the brain from circulating metabolites, drugs, and toxins. The plasma membrane monoamine transporter (PMAT, SLC29A4) is a new polyspecific organic cation transporter that transports a wide variety of organic cations including biogenic amines, cationic drugs, and neurotoxins. PMAT is known to be expressed in the CP, but its specific role in CP transport of organic cations has not been clearly defined. Here we showed that PMAT transcript is highly expressed in human and mouse CPs, whereas transcripts of other functionally related transporters are minimally expressed in the CPs. Immunofluorescence staining further revealed that PMAT protein is localized to the apical (CSF-facing) membrane of the CP epithelium, consistent with a role of transporting organic cations from the CSF into CP epithelial cells. To further evaluate the role of PMAT in the CP, mice with targeted deletion of the Slc29a4 gene were generated and validated. Although Pmat−/− mice showed no overt abnormalities, the uptake of monoamines and the neurotoxin 1-methyl-4-phenylpyridinium was significantly reduced in CP tissues isolated from the knock-out mice. Together, our data demonstrated that PMAT is a major transporter for CP uptake of bioactive amines and xenobiotic cations. By removing its substrates from the CSF, PMAT may play an important role in protecting the brain from cationic neurotoxins and other potentially toxic organic cations. PMID:23255610

  4. Monoamine oxidase inhibitory naphthoquinones from the roots of Lithospermum erythrorhizon.

    PubMed

    Choi, Woo Hoi; Hong, Seong Su; Lee, Seon A; Han, Xiang Hua; Lee, Kyong Soon; Lee, Myung Koo; Hwang, Bang Yeon; Ro, Jai Seup

    2005-04-01

    Activity-guided fractionation of a hexane-soluble extract of the roots of Lithospermum erythrorhizon, using a mouse brain monoamine oxidase (MAO) inhibition assay, led to the isolation of two known naphthoquinones, acetylshikonin and shikonin, and a furylhydroquinone, shikonofuran E. These compounds were shown to inhibit MAO with IC50 values of 10.0, 13.3, and 59.1 microM, respectively. Although no specificity for MAO-A and MAO-B was shown by acetylshikonin and shikonin, a Lineweaver-Burk plot analysis indicated that the inhibition was competitive for both MAO-A and MAO-B activity.

  5. Serotonin Depletion Induces ‘Waiting Impulsivity' on the Human Four-Choice Serial Reaction Time Task: Cross-Species Translational Significance

    PubMed Central

    Worbe, Yulia; Savulich, George; Voon, Valerie; Fernandez-Egea, Emilio; Robbins, Trevor W

    2014-01-01

    Convergent results from animal and human studies suggest that reducing serotonin neurotransmission promotes impulsive behavior. Here, serotonin depletion was induced by the dietary tryptophan depletion procedure (TD) in healthy volunteers to examine the role of serotonin in impulsive action and impulsive choice. We used a novel translational analog of a rodent 5-choice serial reaction time task (5-CSRTT)— the human 4-CSRTT—and a reward delay-discounting questionnaire to measure effects on these different forms of ‘waiting impulsivity'. There was no effect of TD on impulsive choice as indexed by the reward delay-discounting questionnaire. However, TD significantly increased 4-CSRTT premature responses (or impulsive action), which is remarkably similar to the previous findings of effect of serotonin depletion on rodent 5-CSRTT performance. Moreover, the increased premature responding in TD correlated significantly with individual differences on the motor impulsivity subscale of the Barratt Impulsivity Scale. TD also improved the accuracy of performance and speeded responding, possibly indicating enhanced attention and reward processing. The results suggest: (i) the 4-CSRTT will be a valuable addition to the tests already available to measure impulsivity in humans in a direct translational analog of a test extensively used in rodents; (ii) TD in humans produces a qualitatively similar profile of effects to those in rodents (ie, enhancing premature responding), hence supporting the conclusion that TD in humans exerts at least some of its effects on central serotonin; and (iii) this manipulation of serotonin produces dissociable effects on different measures of impulsivity, suggesting considerable specificity in its modulatory role. PMID:24385133

  6. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice*

    PubMed Central

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M.; Piganelli, Jon D.; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H. Henry

    2015-01-01

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. PMID:25944898

  7. Sweetened blood sweetens behavior. Ego depletion, glucose, guilt, and prosocial behavior.

    PubMed

    Xu, Hanyi; Bègue, Laurent; Sauve, Laure; Bushman, Brad J

    2014-10-01

    Although guilt feels bad to the individual, it is good for society because guilty feelings can prompt people to perform good deeds. Previous research shows that fatigue decreases guilty feelings and helpful behavior. This present research tests whether glucose restores guilty feelings and increases helpful behavior. Depleted participants watched a movie about butchering animals for their meat or skin and were told to express no emotions, whereas non-depleted participants watched the same movie, but could express their emotions. Afterwards they drank a glucose or placebo beverage. Having participants play a game in which another person was punished for their errors induced guilt. Finally, participants played a dictator game in which they could leave lottery tickets for the next participant. Depleted participants felt less guilty and helped less than non-depleted participants, and those who consumed a placebo beverage felt less guilt and helped less than those who consumed a glucose beverage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of spinal monoaminergic neuronal system dysfunction on pain threshold in rats, and the analgesic effect of serotonin and norepinephrine reuptake inhibitors.

    PubMed

    Tamano, Ryuta; Ishida, Mitsuhiro; Asaki, Toshiyuki; Hasegawa, Minoru; Shinohara, Shunji

    2016-02-26

    Dysfunction in the central serotonin (5-HT) and norepinephrine (NE) systems cause depression and pain. Descending spinal pain modulatory pathways are important in the analgesic mechanisms of antidepressants, particularly serotonin and norepinephrine reuptake inhibitors (SNRIs). While many non-clinical studies have demonstrated the roles of central monoaminergic systems in pain, there is little evidence to illuminate the direct contribution of spinal descending pain modulatory systems independently of depressive-like behavior. To examine the effects of dysfunction of spinal monoaminergic systems on pain sensitivity, we established a rat chronic pain model by administering lumbar-intrathecal reserpine to minimize its influence on brain. Lumbar-intrathecal reserpine evoked persistent mechanical hypersensitivity and corresponding reductions in spinal 5-HT and NE concentrations (from 767.2 to 241.6ng/g and from 455.9 to 41.7ng/g, respectively after reserpine 30nmol). Lumbar-intrathecal reserpine did not deplete brain monoamines or bring about depressive-like behavior in the forced swim test. Spinal monoamines depletion-induced pain sensitivity was ameliorated by lumbar-intrathecal administration of the SNRIs (duloxetine and milnacipran) in dose-dependent manners. These suggest that increased pain sensitivity could be induced by dysfunction solely of the descending pain modulatory system, regardless of depressive-like behavior, and lumbar-intrathecal administration of SNRIs could ameliorate the pain sensitivity which might be mediated by affecting the descending pain modulatory system in the spinal cord, not via their antidepressant effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Hong Shik; Hong, Eun-Hee; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotypemore » of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.« less

  10. Attenuation of smoke induced neuronal and physiological changes by bacoside rich extract in Wistar rats via down regulation of HO-1 and iNOS.

    PubMed

    Pandareesh, M D; Anand, T

    2014-01-01

    Bacopa monniera is well known herbal medicine for its neuropharmacological effects. It alleviates variety of disorders including neuronal and physiological changes. Crackers smoke is a potent risk factor that leads to free radical mediated oxidative stress in vivo. The aim of the current study is to evaluate the protective efficacy of B. monniera extract (BME) against crackers smoke induced neuronal and physiological changes via modulating inducible nitric oxide synthase (iNOS) and hemeoxygenase-1 (HO-1) expression in rats. Rats were exposed to smoke for 1h for a period of 3 weeks and consecutively treated with BME at three different dosages (i.e., 10, 20 and 40 mg/kg b.wt.). Our results elucidate that BME treatment ameliorates histopathalogical changes, reactive oxygen species levels, lipid peroxidation, acetylcholine esterase activity and brain neurotransmitter levels to normal. BME supplementation efficiently inhibited HO-1 expression and nitric oxide generation by down-regulating iNOS expression. Smoke induced depletion of antioxidant enzyme status, monoamine oxidase activity was also replenished by BME supplementation. Thus the present study indicates that BME ameliorates various impairments associated with neuronal and physiological changes in rats exposed to crackers smoke by its potent neuromodulatory, antioxidant and adaptogenic propensity. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Release of (/sup 3/H)-monoamines from superfused rat striatal slices by methylenedioxymethamphetamine (MDMA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.A.; Schmidt, C.J.; Lovenberg, W.

    1986-03-05

    MDMA is a phenylisopropylamine which is reported to have unique behavioral effects in man. Because of its structural similarities to the amphetamines the authors have compared the effects of MDMA and two related amphetamines on the spontaneous release of tritiated dopamine (DA) and serotonin (5HT) from superfused rat striatal slices. At concentrations of 10/sup -7/ - 10/sup -5/M MDMA and the serotonergic neurotoxin, p-chloroamphetamine, were equipotent releasers of (/sup 3/H)5HT being approximately 10x more potent than methamphetamine. However, methamphetamine was the more potent releaser of (/sup 3/H)DA by a factor of approximately 10x. MDMA-induced release of both (/sup 5/H)5HT andmore » (/sup 3/H)DA was Ca/sup 2 +/-independent and inhibited by selective monoamine uptake blockers suggesting a carrier-dependent release mechanism. Synaptosomal uptake experiments with (+)(/sup 3/H)MDMA indicated no specific uptake of the drug further suggesting the effect of uptake blockers may be to inhibit the carrier-mediated export of amines displaced by MDMA.« less

  12. Micelle-induced depletion interaction and resultant structure in charged colloidal nanoparticle system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, D.; Aswal, V. K., E-mail: vkaswal@barc.gov.in; Kohlbrecher, J.

    2015-04-28

    The evolution of the interaction and the resultant structure in the mixed system of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactant decaethylene glycol monododecylether (C12E10), undergoing phase separation, have been studied using small-angle neutron scattering and dynamic light scattering. The measurements have been carried out for a fixed concentration of nanoparticle (1 wt. %) with varying concentration of surfactant (0 to 1 wt. %), in the absence and presence of an electrolyte. It is found that the micelles of non-ionic surfactant adsorb on the nanoparticle in the absence of electrolyte (form stable system), whereas these micelles become non-adsorbing in the presence of electrolytemore » (show phase separation). The phase separation arises because of C12E10 micelles, causing depletion interaction between nanoparticles and leading to their aggregation. The interaction is modeled by double Yukawa potential accounting for attractive depletion as well as repulsive electrostatic forces. Both the interactions (attraction and repulsion) are found to be of long-range. The nanoparticle aggregation (phase separation) is governed by the increase in the magnitude and the range of the depletion attraction with the increase in the surfactant concentration. The nanoparticle aggregates formed are quite large in size (order of micron) and are characterized by the surface fractal having simple cubic packing of nanoparticles within the aggregates.« less

  13. Tryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathways.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Sounidaki, Maria; Antoniadi, Georgia; Rountas, Christos; Liakopoulos, Vassilios; Stefanidis, Loannis

    2017-04-01

    In atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, L-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation.

  14. 12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM CASTING OPERATIONS CEASED IN 1988. (11/14/57) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  15. Effect of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice.

    PubMed

    Abdel-Salam, Omar M E; Salem, Neveen A; Hussein, Jihan Seid

    2012-04-01

    This study aimed at investigating the effect of the sweetener aspartame on oxidative stress and brain monoamines in normal circumstances and after intraperitoneal (i.p.) administration of lipopolysaccharide (LPS; 100 μg/kg) in mice. Aspartame (0.625-45 mg/kg) was given via subcutaneous route at the time of endotoxin administration. Mice were euthanized 4 h later. Reduced glutathione (GSH), lipid peroxidation (thiobarbituric acid-reactive substances; TBARS), and nitrite concentrations were measured in brain and liver. Tumor necrosis factor-alpha (TNF-α) and glucose were determined in brain. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were measured in liver. The administration of only aspartame (22.5 and 45 mg/kg) increased brain TBARS by 17.7-32.8%, decreased GSH by 25.6-31.6%, and increased TNF-α by 16.7-44%. Aspartame caused dose-dependent inhibition of brain serotonin, noradrenaline, and dopamine. Aspartame did not alter liver TBARS, nitrite, GSH, AST, ALT, or ALP. The administration of LPS increased nitrite in brain and liver by 26.8 and 37.1%, respectively; decreased GSH in brain and liver by 21.6 and 31.1%, respectively; increased brain TNF-α by 340.4%, and glucose by 39.9%, and caused marked increase in brain monoamines. LPS increased AST, ALT, and ALP in liver tissue by 84.4, 173.7, and 258.9%, respectively. Aspartame given to LPS-treated mice at 11.25 and 22.5 mg/kg increased brain TBARS by 15.5-16.9%, nitrite by 12.6-20.1%, and mitigated the increase in monoamines. Aspartame did not alter liver TBARS, nitrite, GSH, ALT, AST, or ALP. Thus, the administration of aspartame alone or in the presence of mild systemic inflammatory response increases oxidative stress and inflammation in the brain, but not in the liver.

  16. Investigation of properties of the Ca2+ influx and of the Ca2+-activated K+ efflux (Gárdos effect) in vanadate-treated and ATP-depleted human red blood cells.

    PubMed

    Kaiserová, K; Lakatos, B; Peterajová, E; Orlický, J; Varecka, L'

    2002-12-01

    In this study the properties of the 45Ca2+ influx in human red blood cells (RBC) induced by NaVO3 or ATP-depletion were compared. Both NaVO3-induced and ATP-depletion-induced 45Ca2+ influxes were in the range 10(-6)-10(-5) mol Ca2+ x l(-1)cells x h(-1). The saturatability of ATP-depletion-induced 45Ca2+ influx with Ca2+ was much less pronounced than that of NaVO3-induced 45Ca2+ influx. The NaVO3-induced Ca2+ influx was sensitive to nifedipine (IC50 = 50 micromol/l) and Cu2+ (IC50 = 9 micromol/l) but these inhibitors had only a marginal effect when ATP-depletion was used as the Ca2+ influx inducer. On the other hand, polymyxin B (PXB) (1-5 mg/ml) strongly stimulated the ATP-depletion-induced 45Ca2+ influx whereas its effect on the NaVO3-induced Ca2+ influx was biphasic, with about 10% stimulation at lower PXB concentrations and an inhibition of 40% at higher concentrations. SDS-PAGE revealed that both NaVO3 and PXB induced changes in the protein phosphorylation pattern in the presence of Ca2+. NaVO3 stimulated the phosphorylation of several proteins and this effect was counteracted by PXB. The comparison of the kinetics and temperature dependencies of the Gárdos effect induced by NaVO3 and the ATP-depletion showed marked differences. The ability of NaVO3 to induce the Gárdos effect dramatically increased in ATP-depleted cells. These findings indicate that the 45Ca2+ influxes preceding the activation of the Ca2+-activated K+ efflux (Gárdos effect) stimulated by NaVO3 and by ATP-depletion, are mediated by different transport pathways. In addition, obtained results demonstrate that ATP-depletion and NaVO3-treatment exert additive action in triggering the Gárdos effect.

  17. Development of uncoupling between D1- and D2-mediated motor behavior in rats depleted of dopamine as neonates.

    PubMed

    Byrnes, E M; Bruno, J P

    1994-09-01

    The D1- and D2-mediation of stimulated motor behavior was studied in pups (Days 10-11) and weanlings (Days 20-21) that had been depleted of dopamine (DA) on postnatal Day 3. Administration of the D1-like agonist SKF 38393 (30.0 mg/kg) or the D2-like agonist quinpirole (3.0 mg/kg) increased the incidence of sniffing and locomotion in intact and DA-depleted animals tested at either age. However, the ability of selective DA antagonists to reduce these stimulated responses interacted with both the depletion and the age at the time of testing. When tested as pups, both the D1 antagonist SCH 23390 (0.2 or 0.4 mg/kg) and the D2 antagonist clebopride (10.0 mg/kg) suppressed the behaviors induced by either class of DA agonist. When tested as weanlings, intact animals exhibited the profile of pups (i.e., either antagonist blocked each agonist). In DA-depleted weanlings, however, only the D1 antagonist blocked the D1 agonist-induced responses and only the D2 antagonist blocked the D2 agonist-induced responses. These data demonstrate that the interactions between D1 and D2 receptors in the expression of stimulated motor behaviors are altered following DA depletions in neonates. Moreover, this change in receptor function occurs sometime between 7 and 13 days after the DA depletion.

  18. Effects of depletion of dihydropyrimidine dehydrogenase on focus formation and RPA phosphorylation.

    PubMed

    Someya, Masanori; Sakata, Koh-ichi; Matsumoto, Yoshihisa; Tauchi, Hiroshi; Kai, Masahiro; Hareyama, Masato; Fukushima, Masakazu

    2012-01-01

    Gimeracil, an inhibitor of dihydropyrimidine dehydrogenase (DPYD), partially inhibits homologous recombination (HR) repair and has a radiosensitizing effect as well as enhanced sensitivity to Camptothecin (CPT). DPYD is the target protein for radiosensitization by Gimeracil. We investigated the mechanisms of sensitization of radiation and CPT by DPYD inhibition using DLD-1 cells treated with siRNA for DPYD. We investigated the focus formation of various kinds of proteins involved in HR and examined the phosphorylation of RPA by irradiation using Western blot analysis. DPYD depletion by siRNA significantly restrained the formation of radiation-induced foci of Rad51 and RPA, whereas it increased the number of foci of NBS1. The numbers of colocalization of NBS1 and RPA foci in DPYD-depleted cells after radiation were significantly smaller than in the control cells. These results suggest that DPYD depletion is attributable to decreased single-stranded DNA generated by the Mre11/Rad50/NBS1 complex-dependent resection of DNA double-strand break ends. The phosphorylation of RPA by irradiation was partially suppressed in DPYD-depleted cells, suggesting that DPYD depletion may partially inhibit DNA repair with HR by suppressing phosphorylation of RPA. DPYD depletion showed a radiosensitizing effect as well as enhanced sensitivity to CPT. The radiosensitizing effect of DPYD depletion plus CPT was the additive effect of DPYD depletion and CPT. DPYD depletion did not have a cell-killing effect, suggesting that DPYD depletion may not be so toxic. Considering these results, the combination of CPT and drugs that inhibit DPYD may prove useful for radiotherapy as a method of radiosensitization.

  19. Antithymocyte globulins in renal transplantation-from lymphocyte depletion to lymphocyte activation: The doubled-edged sword.

    PubMed

    Bamoulid, Jamal; Crépin, Thomas; Courivaud, Cécile; Rebibou, Jean-Michel; Saas, Philippe; Ducloux, Didier

    2017-07-01

    Compelling data suggest that lymphocyte depletion following T cell depleting therapy may induce prolonged CD4 T cell lymphopenia and trigger lymphocyte activation in some patients. These profound and non-reversible immune changes in T cell pool subsets are the consequence of both impaired thymic renewal and peripheral homeostatic proliferation. Chronic viral challenges by CMV play a major role in these immune alterations. Even when the consequences of CD4 T cell lymphopenia have been now well described, recent studies shed new light on the clinical consequences of immune activation. In this review, we will first focus on the mechanisms involved in T cell pool reconstitution after T cell depletion and further consider the clinical consequences of ATG-induced T cell activation and senescence in renal transplant recipients. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The Toxicity of Depleted Uranium

    PubMed Central

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447

  1. Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence.

    PubMed

    Bortolato, Marco; Shih, Jean C

    2011-01-01

    Monoamine oxidase (MAO) isoenzymes A and B are mitochondrial-bound proteins, catalyzing the oxidative deamination of monoamine neurotransmitters as well as xenobiotic amines. Although they derive from a common ancestral progenitor gene, are located at X-chromosome and display 70% structural identity, their substrate preference, regional distribution, and physiological role are divergent. In fact, while MAO-A has high affinity for serotonin and norepinephrine, MAO-B primarily serves the catabolism of 2-phenylethylamine (PEA) and contributes to the degradation of other trace amines and dopamine. Convergent lines of preclinical and clinical evidence indicate that variations in MAO enzymatic activity--due to either genetic or environmental factors--can exert a profound influence on behavioral regulation and play a role in the pathophysiology of a large spectrum of mental and neurodegenerative disorders, ranging from antisocial personality disorder to Parkinson's disease. Over the past few years, numerous advances have been made in our understanding of the phenotypical variations associated with genetic polymorphisms and mutations of the genes encoding for both isoenzymes. In particular, novel findings on the phenotypes of MAO-deficient mice are highlighting novel potential implications of both isoenzymes in a broad spectrum of mental disorders, ranging from autism and anxiety to impulse-control disorders and ADHD. These studies will lay the foundation for future research on the neurobiological and neurochemical bases of these pathological conditions, as well as the role of gene × environment interactions in the vulnerability to several mental disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Changes of brain monoamine levels and physiological indexes during heat acclimation in rats.

    PubMed

    Nakagawa, Hikaru; Matsumura, Takeru; Suzuki, Kota; Ninomiya, Chisa; Ishiwata, Takayuki

    2016-05-01

    Brain monoamines, such as noradrenaline (NA), dopamine (DA), and serotonin (5-HT), regulate many important physiological functions including thermoregulation. The purpose of this study was to clarify changes in NA, DA, and 5-HT levels in several brain regions in response to heat acclimation while also recording body temperature (Tb), heart rate (HR), and locomotor activity (Act). Rats were exposed to a heated environment (32°C) for 3h (3H), 1 day (1D), 7 days, 14 days (14D), 21 days, or 28 days (28D). After heat exposure, each of the following brain regions were immediately extracted and homogenized: the caudate putamen (CPu), preoptic area (PO), dorsomedial hypothalamus (DMH), frontal cortex (FC), and hippocampus (Hip). NA, DA, and 5-HT levels in the extract were measured by high performance liquid chromatography. Although Tb increased immediately after heat exposure, it decreased about 14D later. HR was maintained at a low level throughout heat exposure, and Act tended to increase near the end of heat exposure. After 3H, we observed a marked increase in NA level in the CPu. Although this response vanished after 1D, the level increased again after 28D. DA level in the CPu decreased significantly from 1D to 28D. 5-HT level in the PO and DMH decreased from 1D to 14D. It returned to control levels after 28D with increment of DA level. 5-HT level in the FC decreased at the start of heat exposure, but recovered after 28D; a time point at which DA level also increased. Monoamine levels in the Hip were unchanged after early heat exposure, but both 5-HT and DA levels increased after 28D. These results provide definitive evidence of changes in monoamines in individual brain regions involved in thermoregulation and behavioral, cognitive, and memory function during both acute and chronic heat exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Quinolinic Carboxylic Acid Derivatives as Potential Multi-target Compounds for Neurodegeneration: Monoamine Oxidase and Cholinesterase Inhibition.

    PubMed

    Khan, Nehal A; Khan, Imtiaz; Abid, Syed M A; Zaib, Sumera; Ibrar, Aliya; Andleeb, Hina; Hameed, Shahid; Iqbal, Jamshed

    2018-01-01

    Parkinson's disease (PD), a debilitating and progressive disorder, is among the most challenging and devastating neurodegenerative diseases predominantly affecting the people over 60 years of age. To confront PD, an advanced and operational strategy is to design single chemical functionality able to control more than one target instantaneously. In this endeavor, for the exploration of new and efficient inhibitors of Parkinson's disease, we synthesized a series of quinoline carboxylic acids (3a-j) and evaluated their in vitro monoamine oxidase and cholinesterase inhibitory activities. The molecular docking and in silico studies of the most potent inhibitors were performed to identify the probable binding modes in the active site of the monoamine oxidase enzymes. Moreover, molecular properties were calculated to evaluate the druglikeness of the compounds. The biological evaluation results revealed that the tested compounds were highly potent against monoamine oxidase (A & B), 3c targeted both the isoforms of MAO with IC50 values of 0.51 ± 0.12 and 0.51 ± 0.03 µM, respectively. The tested compounds also demonstrated high and completely selective inhibitory action against acetylcholinesterase (AChE) with IC50 values ranging from 4.36 to 89.24 µM. Among the examined derivatives, 3i was recognized as the most potent inhibitor of AChE with an IC50 value of 4.36 ± 0.12 ±µM. The compounds appear to be promising inhibitors and could be used for the future development of drugs targeting neurodegenerative disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis.

    PubMed

    Zhang, Yong Q; Friedman, David B; Wang, Zhe; Woodruff, Elvin; Pan, Luyuan; O'donnell, Janis; Broadie, Kendal

    2005-03-01

    Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.

  5. Independent mediation of unconditioned motor behavior by striatal D1 and D2 receptors in rats depleted of dopamine as neonates.

    PubMed

    Bruno, J P; Byrnes, E M; Johnson, B J

    1995-11-01

    The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.

  6. Monoamine Oxidase a Promoter Gene Associated with Problem Behavior in Adults with Intellectual/Developmental Disabilities

    ERIC Educational Resources Information Center

    May, Michael E.; Srour, Ali; Hedges, Lora K.; Lightfoot, David A.; Phillips, John A., III; Blakely, Randy D.; Kennedy, Craig H.

    2009-01-01

    A functional polymorphism in the promoter of the gene encoding monoamine oxidase A has been associated with problem behavior in various populations. We examined the association of MAOA alleles in adult males with intellectual/developmental disabilities with and without established histories of problem behavior. These data were compared with a…

  7. Will amitriptyline prevent the "cheese" reaction of monoamine-oxidase inhibitors?

    PubMed

    Pare, C M; Kline, N; Hallstrom, C; Cooper, T B

    1982-07-24

    Administration of amitriptyline greatly diminished the pressor response to intravenous tyramine in patients receiving monoamine-oxidase inhibitors (MAOIs). Dothiepin and trimipramine, however, produced little change in sensitivity to tyramine. It is suggested that a combination of amitriptyline and an MAOI, started together in a modest dose that is then increased, may protect patients against the potential dangers of eating tyramine-containing foods. However, because MAOIs allow a high proportion of ingested tyramine to be absorbed into the systemic circulation, patients treated with MAOIs, even in combination with amitriptyline, should not be encouraged to eat foods containing tyramine.

  8. Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance.

    PubMed

    Jiang, Qian; Meng, Xing; Meng, Lingwei; Chang, Nannan; Xiong, Jingwei; Cao, Huiqing; Liang, Zicai

    2014-01-01

    MicroRNA knockout by genome editing technologies is promising. In order to extend the application of the technology and to investigate the function of a specific miRNA, we used CRISPR/Cas9 to deplete human miR-93 from a cluster by targeting its 5' region in HeLa cells. Various small indels were induced in the targeted region containing the Drosha processing site and seed sequences. Interestingly, we found that even a single nucleotide deletion led to complete knockout of the target miRNA with high specificity. Functional knockout was confirmed by phenotype analysis. Furthermore, de novo microRNAs were not found by RNA-seq. Nevertheless, expression of the pri-microRNAs was increased. When combined with structural analysis, the data indicated that biogenesis was impaired. Altogether, we showed that small indels in the 5' region of a microRNA result in sequence depletion as well as Drosha processing retard.

  9. The modality effect of ego depletion: Auditory task modality reduces ego depletion.

    PubMed

    Li, Qiong; Wang, Zhenhong

    2016-08-01

    An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  10. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice.

    PubMed

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M; Piganelli, Jon D; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H Henry

    2015-06-19

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Neutral-depletion-induced axially asymmetric density in a helicon source and imparted thrust

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Takao, Yoshinori; Ando, Akira

    2016-02-01

    The high plasma density downstream of the source is observed to be sustained only for a few hundreds of microsecond at the initial phase of the discharge, when pulsing the radiofrequency power of a helicon plasma thruster. Measured relative density of argon neutrals inside the source implies that the neutrals are significantly depleted there. A position giving a maximum plasma density temporally moves to the upstream side of the source due to the neutral depletion and then the exhausted plasma density significantly decreases. The direct thrust measurement demonstrates that the higher thrust-to-power ratio is obtained by using only the initial phase of the high density plasma, compared with the steady-state operation.

  12. Adiabatic wavelength redshift by dynamic carrier depletion using p -i -n -diode-loaded photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Baba, T.

    2018-03-01

    We demonstrate an adiabatic wavelength redshift using dynamic carrier depletion. Free carriers are first induced through two-photon absorption of a control pulse and then extracted by a reverse-biased p-i-n diode formed on a Si photonic crystal waveguide, resulting in rapid carrier depletion. A copropagating signal pulse is redshifted by the consequent increase in refractive index. We experimentally evaluated the dynamics of the carrier depletion by the pump-probe method and explored suitable conditions for adiabatic redshift. The signal's redshift was observed, and was confirmed to originate in the dynamic carrier depletion. The redshift was experimentally determined as 0.21 nm.

  13. Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway.

    PubMed

    Pavlou, Demetria; Kirmizis, Antonis

    2016-03-01

    Protein N-terminal acetylation is an abundant post-translational modification in eukaryotes implicated in various fundamental cellular and biochemical processes. This modification is catalysed by evolutionarily conserved N-terminal acetyltransferases (NATs) whose deregulation has been linked to cancer development and thus, are emerging as useful diagnostic and therapeutic targets. Naa40 is a highly selective NAT that acetylates the amino-termini of histones H4 and H2A and acts as a sensor of cell growth in yeast. In the present study, we examine the role of Naa40 in cancer cell survival. We demonstrate that depletion of Naa40 in HCT116 and HT-29 colorectal cancer cells decreases cell survival by enhancing apoptosis, whereas Naa40 reduction in non-cancerous mouse embryonic fibroblasts has no effect on cell viability. Specifically, Naa40 knockdown in colon cancer cells activates the mitochondrial caspase-9-mediated apoptotic cascade. Consistent with this, we show that caspase-9 activation is required for the induced apoptosis because treatment of cells with an irreversible caspase-9 inhibitor impedes apoptosis when Naa40 is depleted. Furthermore, the effect of Naa40-depletion on cell-death is mediated through a p53-independent mechanism since p53-null HCT116 cells still undergo apoptosis upon reduction of the acetyltransferase. Altogether, these findings reveal an anti-apoptotic role for Naa40 and exhibit its potential as a therapeutic target in colorectal cancers.

  14. Depletion of pulmonary glutathione using diethylmaleic acid accelerates the development of oxygen-induced lung injury in term and preterm guinea-pig neonates.

    PubMed

    Langley, S C; Kelly, F J

    1994-02-01

    Dietary or chemical depletion of pulmonary glutathione in adult rats and mice, has been demonstrated to exacerbate the toxic effects of high oxygen concentrations. The present paper has examined this phenomenon in a guinea-pig model of prematurity, using the electrophilic agent diethylmaleic acid (DEM) to provide a transient (up to 12 h) pulmonary glutathione depletion. Full-term and 3-days preterm guinea-pig pups were studied to assess the possible role for glutathione deficiency as a mechanism mediating the increased susceptibility of the immature lung to oxygen free-radical damage. The administration of DEM to guinea-pig neonates depleted lung glutathione by 90% (term) or 68% (preterm) over 2 h. On exposure of pups to 95% oxygen for 48 h, DEM increased the incidence of oxygen-related death to 31% in term pups and 100% in preterm pups. Term pups exposed to hyperoxia and treated with DEM showed evidence of pulmonary injury, indicated by an influx of neutrophils into the lung airspaces, and elevated microvascular permeability. Control pups exposed to 95% oxygen were found to have uninjured lungs after 48 h. We conclude that glutathione is an essential component of the pulmonary antioxidant array in neonates. Glutathione may be of particular importance in the early phase of oxygen exposure. The deficiency of lung glutathione observed in preterm animals may account for their increased susceptibility to oxygen-induced pulmonary injury.

  15. Differences in Monoamine Oxidase Activity in the Brain of Wistar and August Rats with High and Low Locomotor Activity: A Cytochemical Study.

    PubMed

    Sergutina, A V; Rakhmanova, V I

    2016-06-01

    Monoamine oxidase activity was quantitatively assessed by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampal CA3 field) of rats of August line and Wistar population with high and low locomotor activity in the open fi eld test. Monoamine oxidase activity (substrate tryptamine) predominated in the nucleus accumbens of Wistar rats with high motor activity in comparison with rats with low locomotor activity. In August rats, enzyme activity (substrates tryptamine and serotonin) predominated in the hippocampus of animals with high motor activity. Comparison of August rats with low locomotor activity and Wistar rats with high motor activity (i.e. animals demonstrating maximum differences in motor function) revealed significantly higher activity of the enzyme (substrates tryptamine and serotonin) in the hippocampus of Wistar rats. The study demonstrates clear-cut morphochemical specificity of monoaminergic metabolism based on the differences in the cytochemical parameter "monoamine oxidase activity", in the studied brain structures, responsible for the formation and realization of goal-directed behavior in Wistar and August rats.

  16. Chromenylchalcones with inhibitory effects on monoamine oxidase B.

    PubMed

    Jo, Geunhyeong; Ahn, Seunghyun; Kim, Bong-Gyu; Park, Hye Ri; Kim, Young Hwa; Choo, Hyun Ah; Koh, Dongsoo; Chong, Youhoon; Ahn, Joong-Hoon; Lim, Yoongho

    2013-12-15

    Structure-activity relationship (SAR) calculations were used to find monoamine oxidase-B (MAO-B) inhibitors by identifying pharmacophores exhibiting high inhibitory activities. Several such chromenylchalcones were designed and synthesized accordingly. Their inhibitory effects on MAO-B were determined using an HPLC-based method and an MAO-B enzyme assay kit. (E)-3-(6-Methoxy-2H-chromen-3-yl)-1-(2-methoxyphenyl)prop-2-en-1-one exhibited a half-maximal inhibitory concentration of 320 nM. Its molecular-level binding mode with the three-dimensional structure of MAO-B was elucidated using an in silico docking study. The chromenylchalcone scaffold, which is derived from natural products including isoflavonoids and chalcones, had not been previously reported as an MAO-B inhibitor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Amphetamine manipulates monoamine oxidase-A level and behavior using theranostic aptamers of transcription factors AP-1/NF-kB.

    PubMed

    Liu, Christina H; Ren, Jiaqian; Liu, Philip K

    2016-02-03

    Monoamine oxidase (MAO) enzymes play a critical role in controlling the catabolism of monoamine neurotransmitters and biogenic trace amines and behavior in humans. However, the mechanisms that regulate MAO are unclear. Several transcription factor proteins are proposed to modulate the transcription of MAO gene, but evidence supporting these hypotheses is controversial. We aimed to investigate the mechanism of gene transcription regulator proteins on amphetamine-induced behavior. We applied aptamers containing a DNA binding sequence, as well as a random sequence (without target) to study the modulation of amphetamine-induced MAO levels and hyperactivity in living mice. We pretreated in adult male C57black6 mice (Taconic Farm, Germantown, NY) (n ≥ 3 litters at a time), 2 to 3 months of age (23 ± 2 gm body weight) with double-stranded (ds) DNA aptamers with sequence specific to activator protein-1 (5ECdsAP1), nuclear factor-kappa beta (5ECdsNF-kB), special protein-1 (5ECdsSP-1) or cyclicAMP responsive element binding (5ECdsCreB) protein binding regions, 5ECdsRan [a random sequence without target], single-stranded AP-1 (5ECssAP-1) (8 nmol DNA per kg) or saline (5 μl, intracerebroventricular [icv] injection) control before amphetamine administration (4 mg/kg, i.p.). We then measured and analyzed locomotor activities and the level of MAO-A and MAO-B activity. In the pathological condition of amphetamine exposure, we showed here that pretreatment with 5ECdsAP1 and 5ECdsNF-kB reversed the decrease of MAO-A activity (p < 0.05, t test), but not activity of the B isomer (MAO-B), in the ventral tegmental area (VTA) and substantia nigra (SN) of C57black6 mice. The change in MAO-A level coincided with a reversed amphetamine-induced restless behavior of mice. Pretreatments with saline, 5ECdsCreB, 5ECdsSP-1, 5ECdsRan or 5ECssAP-1 had no effect. Our data lead us to conclude that elevation of AP-1 or NF-kB indirectly decreases MAO-A protein levels which, in turn

  18. Emotional disorders induced by Hemopressin and RVD-hemopressin(α) administration in rats.

    PubMed

    Leone, Sheila; Recinella, Lucia; Chiavaroli, Annalisa; Martinotti, Sara; Ferrante, Claudio; Mollica, Adriano; Macedonio, Giorgia; Stefanucci, Azzurra; Dvorácskó, Szabolcs; Tömböly, Csaba; De Petrocellis, Luciano; Vacca, Michele; Brunetti, Luigi; Orlando, Giustino

    2017-12-01

    The endocannabinoid (eCB) system plays an important role in regulating emotional disorders, and is involved, directly or indirectly, in psychiatric diseases, such as anxiety and depression. Hemopressin, a hemoglobin α chain-derived peptide, and RVD-hemopressin(α), a N-terminally extended form of hemopressin, act as antagonist/inverse agonist and negative allosteric modulator of the cannabinoid 1 (CB1) receptor, respectively. Considering the possible involvement of these peptides on emotional behaviour, the aim of our study was to investigate the behavioural effects of a single intraperitoneal (ip) injection of hemopressin (0.05mg/kg) and RVD-hemopressin(α) (0.05mg/kg), using a series of validated behavioural tests (locomotor activity/open field test, light-dark exploration test, forced swim test) in rats. Prefrontal cortex levels of norepinephrine (NE), dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and the gene expression of monoamine oxidase (MAO-B) and catechol-O-methyltransferase (COMT) were measured by high performance liquid chromatography (HPLC) analysis and real-time reverse transcription polymerase chain reaction (RT-PCR), respectively. Hemopressin administration induced anxiogenic and depressive behaviour, decreased monoamine steady state levels in prefrontal cortex, and increased the gene expression of the enzymes involved in their catabolism. By contrast, RVD- hemopressin(α) induced anxiolytic and antidepressive effects, increased monoamines and decreased the enzymes in prefrontal cortex. In conclusion, in the present study we demonstrated behavioral effects induced by peripheral hemopressin and RVD-hemopressin(α) injections, that could involve modulatory effects on monoaminergic signaling, in the prefrontal cortex. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Impact of experimental hypothyroidism on monoamines level in discrete brain regions and other peripheral tissues of young and adult male rats.

    PubMed

    Hassan, Wafaa A; Aly, Mona S; Rahman, Taghride Abdel; Shahat, Asmaa S

    2013-06-01

    The levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in different brain regions as well as in blood plasma, cardiac muscle and adrenal gland of young and adult male albino rats were measured following experimentally induced hypothyroidism. Hypothyroidism induced by daily oral administration of propylthiouracil (PTU, 5mg/kg body wt) caused a significant reduction in DA levels in most of the tissues examined of both young and adult rats after 21 and 28 days, in NE levels after all the time intervals studied in young rats, and after 21 and 28 days in adult rats. 5-HT exhibited a significant reduction in the selected brain regions and blood plasma after 21 and 28 days and in cardiac muscle after all the time intervals in the two age groups of animals. It may be suggested that the changes in monoamine levels induced by hypothyroidism may be due to disturbance in the synthesis and release of these amines through the neurons impairment or may be due to an alteration pattern of their synthesizing and/or degradative enzymes. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Electrophysiological effects of monoamine oxidase inhibition on rat midbrain dopaminergic neurones: an in vitro study.

    PubMed Central

    Mercuri, N. B.; Bonci, A.; Siniscalchi, A.; Stefani, A.; Calabresi, P.; Bernardi, G.

    1996-01-01

    1 The effects of the inhibition of monoamine oxidase (MAO) type A and B have been evaluated on the spontaneous firing activity of the dopaminergic (principal) neurones of the rat midbrain intracellularly recorded from a slice preparation. 2 The non-specific MAO inhibitor, pargyline, superfused at a concentration of 10-100 microM, decreased or abolished the spontaneous firing discharge of the principal neurons in the subtantia nigra pars compacta and ventral tegmental area. This effect had a slow onset and appeared to be sustained. 3 The administration of the dopamine D2/3 receptor antagonist, sulpiride (100-300 nM), antagonized the pargyline-induced effect, while the superfusion of the dopamine D1 receptor antagonist, SCH 23390 (1-3 microM) did not counteract the induced inhibition of the firing rate. 4 The inhibitor for the MAO A, clorgyline (30-100 microM), reduced the firing rate of the dopaminergic neurones. A similar depressant effect was also observed when a MAO B inhibitor, deprenyl (30-100 microM), was applied. Lower concentrations of both drugs (300 nM-10 microM) did not produce consistent effects on neuronal discharge. 5 Our data suggest that only the blockade of both types of MAO enzymes favours the inhibitory action of endogenous dopamine on somato-dendritic D2/3 autoreceptors. PMID:8821544

  1. Ego depletion increases risk-taking.

    PubMed

    Fischer, Peter; Kastenmüller, Andreas; Asal, Kathrin

    2012-01-01

    We investigated how the availability of self-control resources affects risk-taking inclinations and behaviors. We proposed that risk-taking often occurs from suboptimal decision processes and heuristic information processing (e.g., when a smoker suppresses or neglects information about the health risks of smoking). Research revealed that depleted self-regulation resources are associated with reduced intellectual performance and reduced abilities to regulate spontaneous and automatic responses (e.g., control aggressive responses in the face of frustration). The present studies transferred these ideas to the area of risk-taking. We propose that risk-taking is increased when individuals find themselves in a state of reduced cognitive self-control resources (ego-depletion). Four studies supported these ideas. In Study 1, ego-depleted participants reported higher levels of sensation seeking than non-depleted participants. In Study 2, ego-depleted participants showed higher levels of risk-tolerance in critical road traffic situations than non-depleted participants. In Study 3, we ruled out two alternative explanations for these results: neither cognitive load nor feelings of anger mediated the effect of ego-depletion on risk-taking. Finally, Study 4 clarified the underlying psychological process: ego-depleted participants feel more cognitively exhausted than non-depleted participants and thus are more willing to take risks. Discussion focuses on the theoretical and practical implications of these findings.

  2. Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: evidence for direct 5-HT receptor modulation.

    PubMed

    Jensen, Jesper Bornø; du Jardin, Kristian Gaarn; Song, Dekun; Budac, David; Smagin, Gennady; Sanchez, Connie; Pehrson, Alan Lars

    2014-01-01

    Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and 5-HT transporter (SERT) inhibitor that enhances memory in normal rats in novel object recognition (NOR) and conditioned fear (Mørk et al., 2013). We hypothesized that vortioxetine's 5-HT receptor mechanisms are involved in its memory effects, and therefore investigated these effects in 5-HT depleted rats. Four injections of the irreversible tryptophan hydroxylase inhibitor 4-chloro-dl-phenylalanine methyl ester hydrochloride (PCPA, 86mg/kg, s.c.) induced 5-HT depletion, as measured in hippocampal homogenate and microdialysate. The effects of acute challenge with vortioxetine or the 5-HT releaser fenfluramine on extracellular 5-HT were measured in PCPA-treated and control rats. PCPA's effects on NOR and spontaneous alternation (SA) performance were assessed along with the effects of acute treatment with 5-hydroxy-l-tryptophan (5-HTP), vortioxetine, the selective 5-HT reuptake inhibitor escitalopram, or the 5-HT norepinephrine reuptake inhibitor duloxetine. SERT occupancies were estimated by ex vivo autoradiography. PCPA depleted central 5-HT by >90% in tissue and microdialysate, and impaired NOR and SA performance. Restoring central 5-HT with 5-HTP reversed these deficits. At similar SERT occupancies (>90%) vortioxetine, but not escitalopram or duloxetine, restored memory performance. Acute fenfluramine significantly increased extracellular 5-HT in control and PCPA-treated rats, while vortioxetine did so only in control rats. Thus, vortioxetine restores 5-HT depletion impaired memory performance in rats through one or more of its receptor activities. © 2013 Published by Elsevier B.V. and ECNP.

  3. Enriched but not depleted uranium affects central nervous system in long-term exposed rat.

    PubMed

    Houpert, Pascale; Lestaevel, Philippe; Bussy, Cyrill; Paquet, François; Gourmelon, Patrick

    2005-12-01

    Uranium is well known to induce chemical toxicity in kidneys, but several other target organs, such as central nervous system, could be also affected. Thus in the present study, the effects on sleep-wake cycle and behavior were studied after chronic oral exposure to enriched or depleted uranium. Rats exposed to 4% enriched uranium for 1.5 months through drinking water, accumulated twice as much uranium in some key areas such as the hippocampus, hypothalamus and adrenals than did control rats. This accumulation was correlated with an increase of about 38% of the amount of paradoxical sleep, a reduction of their spatial working memory capacities and an increase in their anxiety. Exposure to depleted uranium for 1.5 months did not induce these effects, suggesting that the radiological activity induces the primary events of these effects of uranium.

  4. Time-dependent slowly-reversible inhibition of monoamine oxidase A by N-substituted 1,2,3,6-tetrahydropyridines.

    PubMed

    Wichitnithad, Wisut; O'Callaghan, James P; Miller, Diane B; Train, Brian C; Callery, Patrick S

    2011-12-15

    A novel class of N-substituted tetrahydropyridine derivatives was found to have multiple kinetic mechanisms of monoamine oxidase A inhibition. Eleven structurally similar tetrahydropyridine derivatives were synthesized and evaluated as inhibitors of MAO-A and MAO-B. The most potent MAO-A inhibitor in the series, 2,4-dichlorophenoxypropyl analog 12, displayed time-dependent mixed noncompetitive inhibition. The inhibition was reversed by dialysis, indicating reversible enzyme inhibition. Evidence that the slow-binding inhibition of MAO-A with 12 involves a covalent bond was gained from stabilizing a covalent reversible intermediate product by reduction with sodium borohydride. The reduced enzyme complex was not reversible by dialysis. The results are consistent with slowly reversible, mechanism-based inhibition. Two tetrahydropyridine analogs that selectively inhibited MAO-A were characterized by kinetic mechanisms differing from the kinetic mechanism of 12. As reversible inhibitors of MAO-A, tetrahydropyridine analogs are at low risk of having an adverse effect of tyramine-induced hypertension. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The Effects of Volcano-Induced Ozone Depletion on Short-lived Climate Forcing in the Arctic

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2012-12-01

    Photodissociation of oxygen maintains the stratopause ~50°C warmer than the tropopause. Photodissociation of ozone warms the lower stratosphere, preventing most of this high-energy DNA-damaging solar radiation from reaching the troposphere. Ozone depletion allows more UV energy to reach the lower troposphere causing photodissociation of anthropogenic ozone and nitrogen dioxide. UV energy also penetrates the ocean >10 m where it is absorbed more efficiently than infrared radiation that barely penetrates the surface. Manmade chlorofluorocarbons caused ozone depletion from 1965 to 1994 with slow recovery predicted over the next 50+ years. But the lowest levels of ozone followed the eruptions of Pinatubo (1991 VEI=6), Eyjafjallajökull (2010 VEI=4), and Grímsvötn (2011 VEI=4). Each of the relatively small, basaltic eruptions in Iceland caused more ozone depletion than the long-term effects of chlorofluorocarbons, although total ozone appears to return to pre-eruption levels within a decade. Ozone depletion by 20% increases energy flux thru the lowermost troposphere by 0.7 W m-2 for overhead sun causing temperatures in the lower stratosphere to drop >2°C since 1958 in steps after the 3 largest volcanic eruptions: Agung 1963, El Chichón 1982, and Pinatubo. Temperatures at the surface increased primarily in the regions and at the times of the greatest observed ozone depletion. The greatest warming observed was along the Western Antarctic Peninsula (65.4°S) where minimum temperatures rose 6.7°C from 1951 to 2003 while maximum temperatures remained relatively constant. Minimum total column ozone in September-October was 40-56% lower than in 1972 almost every year since 1987, strongly anti-correlated with observed minimum temperatures. Sea ice decreased 10%, 7 ice shelves separated, 87% of the glaciers retreated and the Antarctic Circumpolar Current warmed. Elsewhere under the ozone hole, warming of continental Antarctica was limited by the high albedo (0.86) of

  6. Depletion force induced collective motion of microtubules driven by kinesin

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md. Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-10-01

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being

  7. In vitro monoamine oxidase inhibition potential of alpha-methyltryptamine analog new psychoactive substances for assessing possible toxic risks.

    PubMed

    Wagmann, Lea; Brandt, Simon D; Kavanagh, Pierce V; Maurer, Hans H; Meyer, Markus R

    2017-04-15

    Tryptamines have emerged as new psychoactive substances (NPS), which are distributed and consumed recreationally without preclinical studies or safety tests. Within the alpha-methylated tryptamines, some of the psychoactive effects of the prototypical alpha-methyltryptamine (AMT) have been described decades ago and a contributing factor of its acute toxicity appears to involve the inhibition of monoamine oxidase (MAO). However, detailed information about analogs is scarce. Therefore, thirteen AMT analogs were investigated for their potential to inhibit MAO. An in vitro assay analyzed using hydrophilic interaction liquid chromatography-high resolution-tandem mass spectrometry was developed and validated. The AMT analogs were incubated with recombinant human MAO-A or B and kynuramine, a non-selective MAO substrate to determine the IC 50 values. The known MAO-A inhibitors 5-(2-aminopropyl)indole (5-IT), harmine, harmaline, yohimbine, and the MAO-B inhibitor selegiline were tested for comparison. AMT and all analogs showed MAO-A inhibition properties with IC 50 values between 0.049 and 166μM, whereas four analogs inhibited also MAO-B with IC 50 values between 82 and 376μM. 7-Me-AMT provided the lowest IC 50 value against MAO-A comparable to harmine and harmaline and was identified as a competitive MAO-A inhibitor. Furthermore, AMT, 7-Me-AMT, and nine further analogs inhibited MAO activity in human hepatic S9 fraction used as model for the human liver which expresses both isoforms. The obtained results suggested that MAO inhibition induced by alpha-methylated tryptamines might be clinically relevant concerning possible serotonergic and adrenergic effects and interactions with drugs (of abuse) particularly acting as monoamine reuptake inhibitors. However, as in vitro assays have only limited conclusiveness, further studies are needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Apoptosis inducing factor (AIF) mediates lethal redox stress induced by menadione.

    PubMed

    Wiraswati, Hesti Lina; Hangen, Emilie; Sanz, Ana Belén; Lam, Ngoc-Vy; Reinhardt, Camille; Sauvat, Allan; Mogha, Ariane; Ortiz, Alberto; Kroemer, Guido; Modjtahedi, Nazanine

    2016-11-22

    Mitochondrial apoptosis inducing factor (AIF) is a redox-active enzyme that participates to the biogenesis/maintenance of complex I of the respiratory chain, yet also contributes to catabolic reactions in the context of regulated cell death when AIF translocates to the cytosol and to the nucleus. Here we explore the contribution of AIF to cell death induced by menadione (2-methyl-1,4-naphtoquinone; also called vitamin K3) in conditions in which this pro-oxidant does not cause the mitochondrial release of AIF, yet causes caspase-independent cell killing. Depletion of AIF from human cancer cells reduced the cytotoxicity of menadione. This cytoprotective effect was accompanied by the maintenance of high levels of reduced glutathione (GSH), which are normally depleted by menadione. In addition, AIF depletion reduced the arylation of cellular proteins induced by menadione. This menadione-triggered arylation, which can be measured by a fluorescence assay, is completely suppressed by addition of exogenous glutathione or N-acetyl cysteine. Complex I inhibition by Rotenone did not mimic the cytoprotective action of AIF depletion. Altogether, these results are compatible with the hypothesis that mitochondrion-sessile AIF facilitates lethal redox cycling of menadione, thereby precipitating protein arylation and glutathione depletion.

  9. Serotonin Receptor 6 Mediates Defective Brain Development in Monoamine Oxidase A-deficient Mouse Embryos

    PubMed Central

    Wang, Chi Chiu; Man, Gene Chi Wai; Chu, Ching Yan; Borchert, Astrid; Ugun-Klusek, Aslihan; Billett, E. Ellen; Kühn, Hartmut; Ufer, Christoph

    2014-01-01

    Monoamine oxidases A and B (MAO-A and MAO-B) are enzymes of the outer mitochondrial membrane that metabolize biogenic amines. In the adult central nervous system, MAOs have important functions for neurotransmitter homeostasis. Expression of MAO isoforms has been detected in the developing embryo. However, suppression of MAO-B does not induce developmental alterations. In contrast, targeted inhibition and knockdown of MAO-A expression (E7.5–E10.5) caused structural abnormalities in the brain. Here we explored the molecular mechanisms underlying defective brain development induced by MAO-A knockdown during in vitro embryogenesis. The developmental alterations were paralleled by diminished apoptotic activity in the affected neuronal structures. Moreover, dysfunctional MAO-A expression led to elevated levels of embryonic serotonin (5-hydroxytryptamine (5-HT)), and we found that knockdown of serotonin receptor-6 (5-Htr6) expression or pharmacologic inhibition of 5-Htr6 activity rescued the MAO-A knockdown phenotype and restored apoptotic activity in the developing brain. Our data suggest that excessive 5-Htr6 activation reduces activation of caspase-3 and -9 of the intrinsic apoptotic pathway and enhances expression of antiapoptotic proteins Bcl-2 and Bcl-XL. Moreover, we found that elevated 5-HT levels in MAO-A knockdown embryos coincided with an enhanced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and a reduction of proliferating cell numbers. In summary, our findings suggest that excessive 5-HT in MAO-A-deficient mouse embryos triggers cellular signaling cascades via 5-Htr6, which suppresses developmental apoptosis in the brain and thus induces developmental retardations. PMID:24497636

  10. Mesoscopic Field-Effect-Induced Devices in Depleted Two-Dimensional Electron Systems

    NASA Astrophysics Data System (ADS)

    Bachsoliani, N.; Platonov, S.; Wieck, A. D.; Ludwig, S.

    2017-12-01

    Nanoelectronic devices embedded in the two-dimensional electron system (2DES) of a GaAs /(Al ,Ga )As heterostructure enable a large variety of applications ranging from fundamental research to high-speed transistors. Electrical circuits are thereby commonly defined by creating barriers for carriers by the selective depletion of a preexisting 2DES. We explore an alternative approach: we deplete the 2DES globally by applying a negative voltage to a global top gate and screen the electric field of the top gate only locally using nanoscale gates placed on the wafer surface between the plane of the 2DES and the top gate. Free carriers are located beneath the screen gates, and their properties can be controlled by means of geometry and applied voltages. This method promises considerable advantages for the definition of complex circuits by the electric-field effect, as it allows us to reduce the number of gates and simplify gate geometries. Examples are carrier systems with ring topology or large arrays of quantum dots. We present a first exploration of this method pursuing field effect, Hall effect, and Aharonov-Bohm measurements to study electrostatic, dynamic, and coherent properties.

  11. Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity.

    PubMed

    Tao, Guoxin; Irie, Yoshifumi; Li, Dian-Jun; Keung, Wing Ming

    2005-08-01

    Eugenol (1) is an active principle of Rhizoma acori graminei, a medicinal herb used in Asia for the treatment of symptoms reminiscent of Alzheimer's disease (AD). It has been shown to protect neuronal cells from the cytotoxic effect of amyloid beta peptides (Abetas) in cell cultures and exhibit antidepressant-like activity in mice. Results from this study show that eugenol inhibits monoamine oxidase A (MAOA) preferentially with a K(i)=26 microM. It also inhibits MAOB but at much higher concentrations (K(i)=211 microM). In both cases, inhibition is competitive with respect to the monoamine substrate. Survey of compounds structurally related to eugenol has identified a few that inhibit MAOs more potently. Structure activity relationship reveals structural features important for MAOA and MAOB inhibition. Molecular docking experiments were performed to help explain the SAR outcomes. Four of these compounds, two (1, 24) inhibiting MAOA selectively and the other two (19, 21) inhibiting neither MAOA nor MAOB, were tested for antidepressant-like activity using the forced swim test in mice. Results suggest a potential link between the antidepressant activity of eugenol and its MAOA inhibitory activity.

  12. B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model.

    PubMed

    Da Rosa, Larissa C; Boldison, Joanne; De Leenheer, Evy; Davies, Joanne; Wen, Li; Wong, F Susan

    2018-06-01

    Type 1 diabetes is a T cell-mediated autoimmune disease characterised by the destruction of beta cells in the islets of Langerhans, resulting in deficient insulin production. B cell depletion therapy has proved successful in preventing diabetes and restoring euglycaemia in animal models of diabetes, as well as in preserving beta cell function in clinical trials in the short term. We aimed to report a full characterisation of B cell kinetics post B cell depletion, with a focus on pancreatic islets. Transgenic NOD mice with a human CD20 transgene expressed on B cells were injected with an anti-CD20 depleting antibody. B cells were analysed using multivariable flow cytometry. There was a 10 week delay in the onset of diabetes when comparing control and experimental groups, although the final difference in the diabetes incidence, following prolonged observation, was not statistically significant (p = 0.07). The co-stimulatory molecules CD80 and CD86 were reduced on stimulation of B cells during B cell depletion and repopulation. IL-10-producing regulatory B cells were not induced in repopulated B cells in the periphery, post anti-CD20 depletion. However, the early depletion of B cells had a marked effect on T cells in the local islet infiltrate. We demonstrated a lack of T cell activation, specifically with reduced CD44 expression and effector function, including IFN-γ production from both CD4 + and CD8 + T cells. These CD8 + T cells remained altered in the pancreatic islets long after B cell depletion and repopulation. Our findings suggest that B cell depletion can have an impact on T cell regulation, inducing a durable effect that is present long after repopulation. We suggest that this local effect of reducing autoimmune T cell activity contributes to delay in the onset of autoimmune diabetes.

  13. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis.

    PubMed

    Andrabi, Shaida A; Umanah, George K E; Chang, Calvin; Stevens, Daniel A; Karuppagounder, Senthilkumar S; Gagné, Jean-Philippe; Poirier, Guy G; Dawson, Valina L; Dawson, Ted M

    2014-07-15

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated "parthanatos" in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD(+) and energetic collapse, which have been thought to be caused by the consumption of cellular NAD(+) by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD(+) depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD(+) depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1-mediated mitochondrial dysfunction. Depleting neurons of NAD(+) with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase.

  14. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Weihua; Mizukawa, Yumiko; Nakatsu, Noriyuki

    Chemical-induced glutathione depletion is thought to be caused by two types of toxicological mechanisms: PHO-type glutathione depletion [glutathione conjugated with chemicals such as phorone (PHO) or diethyl maleate (DEM)], and BSO-type glutathione depletion [i.e., glutathione synthesis inhibited by chemicals such as L-buthionine-sulfoximine (BSO)]. In order to identify mechanism-based biomarker gene sets for glutathione depletion in rat liver, male SD rats were treated with various chemicals including PHO (40, 120 and 400 mg/kg), DEM (80, 240 and 800 mg/kg), BSO (150, 450 and 1500 mg/kg), and bromobenzene (BBZ, 10, 100 and 300 mg/kg). Liver samples were taken 3, 6, 9 andmore » 24 h after administration and examined for hepatic glutathione content, physiological and pathological changes, and gene expression changes using Affymetrix GeneChip Arrays. To identify differentially expressed probe sets in response to glutathione depletion, we focused on the following two courses of events for the two types of mechanisms of glutathione depletion: a) gene expression changes occurring simultaneously in response to glutathione depletion, and b) gene expression changes after glutathione was depleted. The gene expression profiles of the identified probe sets for the two types of glutathione depletion differed markedly at times during and after glutathione depletion, whereas Srxn1 was markedly increased for both types as glutathione was depleted, suggesting that Srxn1 is a key molecule in oxidative stress related to glutathione. The extracted probe sets were refined and verified using various compounds including 13 additional positive or negative compounds, and they established two useful marker sets. One contained three probe sets (Akr7a3, Trib3 and Gstp1) that could detect conjugation-type glutathione depletors any time within 24 h after dosing, and the other contained 14 probe sets that could detect glutathione depletors by any mechanism. These two sets, with appropriate

  15. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    PubMed

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.

  16. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  17. Double Knockout of the Na+-Driven Cl-/HCO3- Exchanger and Na+/Cl- Cotransporter Induces Hypokalemia and Volume Depletion.

    PubMed

    Sinning, Anne; Radionov, Nikita; Trepiccione, Francesco; López-Cayuqueo, Karen I; Jayat, Maximilien; Baron, Stéphanie; Cornière, Nicolas; Alexander, R Todd; Hadchouel, Juliette; Eladari, Dominique; Hübner, Christian A; Chambrey, Régine

    2017-01-01

    We recently described a novel thiazide-sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl - /HCO 3 - exchanger pendrin and the Na + -driven Cl - /2HCO 3 - exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na + balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na + balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na + homeostasis and provide evidence that the Na + /Cl - cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double-knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K + concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca 2+ -activated K + channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K + concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients. Copyright © 2016 by the American Society of Nephrology.

  18. Transequatorial Propagation and Depletion Precursors

    NASA Astrophysics Data System (ADS)

    Miller, E. S.; Bust, G. S.; Kaeppler, S. R.; Frissell, N. A.; Paxton, L. J.

    2014-12-01

    The bottomside equatorial ionosphere in the afternoon and evening sector frequently evolves rapidly from smoothly stratified to violently unstable with large wedges of depleted plasma growing through to the topside on timescales of a few tens of minutes. These depletions have numerous practical impacts on radio propagation, including amplitude scintillation, field-aligned irregularity scatter, HF blackouts, and long-distance transequatorial propagation at frequencies above the MUF. Practical impacts notwithstanding, the pathways and conditions under which depletions form remain a topic of vigorous inquiry some 80 years after their first report. Structuring of the pre-sunset ionosphere---morphology of the equatorial anomalies and long-wavelength undulations of the isodensity contours on the bottomside---are likely to hold some clues to conditions that are conducive to depletion formation. The Conjugate Depletion Experiment is an upcoming transequatorial forward-scatter HF/VHF experiment to investigate pre-sunset undulations and their connection with depletion formation. We will present initial results from the Conjugate Depletion Experiment, as well as a companion analysis of a massive HF propagation data set.

  19. Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats

    PubMed Central

    Gonzalez, M. M. C.; Aston-Jones, G.

    2008-01-01

    Light is an important environmental factor for regulation of mood. There is a high frequency of seasonal affective disorder in high latitudes where light exposure is limited, and bright light therapy is a successful antidepressant treatment. We recently showed that rats kept for 6 weeks in constant darkness (DD) have anatomical and behavioral features similar to depressed patients, including dysregulation of circadian sleep–waking rhythms and impairment of the noradrenergic (NA)-locus coeruleus (LC) system. Here, we analyzed the cell viability of neural systems related to the pathophysiology of depression after DD, including NA-LC, serotoninergic-raphe nuclei and dopaminergic-ventral tegmental area neurons, and evaluated the depressive behavioral profile of light-deprived rats. We found increased apoptosis in the three aminergic systems analyzed when compared with animals maintained for 6 weeks in 12:12 light-dark conditions. The most apoptosis was observed in NA-LC neurons, associated with a significant decrease in the number of cortical NA boutons. Behaviorally, DD induced a depression-like condition as measured by increased immobility in a forced swim test (FST). DD did not appear to be stressful (no effect on adrenal or body weights) but may have sensitized responses to subsequent stressors (increased fecal number during the FST). We also found that the antidepressant desipramine decreases these neural and behavioral effects of light deprivation. These findings indicate that DD induces neural damage in monoamine brain systems and this damage is associated with a depressive behavioral phenotype. Our results suggest a mechanism whereby prolonged limited light intensity could negatively impact mood. PMID:18347342

  20. Monoamine Oxidase B Prompts Mitochondrial and Cardiac Dysfunction in Pressure Overloaded Hearts

    PubMed Central

    Kaludercic, Nina; Carpi, Andrea; Nagayama, Takahiro; Sivakumaran, Vidhya; Zhu, Guangshuo; Lai, Edwin W.; Bedja, Djahida; De Mario, Agnese; Chen, Kevin; Gabrielson, Kathleen L.; Lindsey, Merry L.; Pacak, Karel; Takimoto, Eiki; Shih, Jean C.; Kass, David A.; Di Lisa, Fabio

    2014-01-01

    Abstract Aims: Monoamine oxidases (MAOs) are mitochondrial flavoenzymes responsible for neurotransmitter and biogenic amines catabolism. MAO-A contributes to heart failure progression via enhanced norepinephrine catabolism and oxidative stress. The potential pathogenetic role of the isoenzyme MAO-B in cardiac diseases is currently unknown. Moreover, it is has not been determined yet whether MAO activation can directly affect mitochondrial function. Results: In wild type mice, pressure overload induced by transverse aortic constriction (TAC) resulted in enhanced dopamine catabolism, left ventricular (LV) remodeling, and dysfunction. Conversely, mice lacking MAO-B (MAO-B−/−) subjected to TAC maintained concentric hypertrophy accompanied by extracellular signal regulated kinase (ERK)1/2 activation, and preserved LV function, both at early (3 weeks) and late stages (9 weeks). Enhanced MAO activation triggered oxidative stress, and dropped mitochondrial membrane potential in the presence of ATP synthase inhibitor oligomycin both in neonatal and adult cardiomyocytes. The MAO-B inhibitor pargyline completely offset this change, suggesting that MAO activation induces a latent mitochondrial dysfunction, causing these organelles to hydrolyze ATP. Moreover, MAO-dependent aldehyde formation due to inhibition of aldehyde dehydrogenase 2 activity also contributed to alter mitochondrial bioenergetics. Innovation: Our study unravels a novel role for MAO-B in the pathogenesis of heart failure, showing that both MAO-driven reactive oxygen species production and impaired aldehyde metabolism affect mitochondrial function. Conclusion: Under conditions of chronic hemodynamic stress, enhanced MAO-B activity is a major determinant of cardiac structural and functional disarrangement. Both increased oxidative stress and the accumulation of aldehyde intermediates are likely liable for these adverse morphological and mechanical changes by directly targeting mitochondria. Antioxid. Redox

  1. Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls.

    PubMed

    Neumeister, Alexander; Nugent, Allison C; Waldeck, Tracy; Geraci, Marilla; Schwarz, Markus; Bonne, Omer; Bain, Earle E; Luckenbaugh, David A; Herscovitch, Peter; Charney, Dennis S; Drevets, Wayne C

    2004-08-01

    An instructive paradigm for investigating the relationship between brain serotonin function and major depressive disorder (MDD) is the response to tryptophan depletion (TD) induced by oral loading with all essential amino acids except the serotonin precursor tryptophan. To determine whether serotonin dysfunction represents a trait abnormality in MDD in the context of specific neural circuitry abnormalities involved in the pathogenesis of MDD. Randomized double-blind crossover study. Outpatient clinic. Twenty-seven medication-free patients with remitted MDD (18 women and 9 men; mean +/- SD age, 39.8 +/- 12.7 years) and 19 controls (10 women and 9 men; mean +/- SD age, 34.4 +/- 11.5 years). We induced TD by administering capsules containing an amino acid mixture without tryptophan. Sham depletion used identical capsules containing hydrous lactose. Fluorodeoxyglucose F 18 positron emission tomography studies were performed 6 hours after TD. Magnetic resonance images were obtained for all participants. Quantitative positron emission tomography of regional cerebral glucose utilization to study the neural effects of sham depletion and TD. Behavioral assessments used a modified (24-item) version of the Hamilton Depression Rating Scale. Tryptophan depletion induced a transient return of depressive symptoms in patients with remitted MDD but not in controls (P<.001). Compared with sham depletion, TD was associated with an increase in regional cerebral glucose utilization in the orbitofrontal cortex, medial thalamus, anterior and posterior cingulate cortices, and ventral striatum in patients with remitted MDD but not in controls. The pattern of TD-induced regional cerebral glucose utilization changes in patients with remitted MDD suggests that TD unmasks a disease-specific, serotonin system-related trait dysfunction and identifies a circuit that probably plays a key role in the pathogenesis of MDD.

  2. Cholesterol depletion by methyl-β-cyclodextrin enhances cell proliferation and increases the number of desmin-positive cells in myoblast cultures.

    PubMed

    Portilho, Débora M; Soares, Carolina P; Morrot, Alexandre; Thiago, Leandro S; Butler-Browne, Gillian; Savino, Wilson; Costa, Manoel L; Mermelstein, Cláudia

    2012-11-05

    Skeletal myogenesis comprises myoblast replication and differentiation into striated multinucleated myotubes. Agents that interfere with myoblast replication are important tools for the understanding of myogenesis. Recently, we showed that cholesterol depletion by methyl-β-cyclodextrin (MCD) enhances the differentiation step in chick-cultured myogenic cells, involving the activation of the Wnt/β-catenin signaling pathway. However, the effects of cholesterol depletion on myoblast replication have not been carefully studied. Here we show that MCD treatment increases cell proliferation in primary chick myogenic cell cultures. Treatment of myogenic cells with the anti-mitotic reagent cytosine arabinoside, immediately following cholesterol depletion, blocks the MCD-induced effects on proliferation. Cholesterol depletion induced an increase in the number of desmin-positive mononucleated cells, and an increase in desmin expression. MCD induces an increase in the expression of the cell cycle regulator p53 and the master switch gene MyoD1. Treatment with BIO, a specific inhibitor of GSK3β, induced effects similar to MCD on cell proliferation; while treatment with Dkk1, a specific inhibitor of the Wnt/β-catenin pathway, neutralized the effects of MCD. These findings indicate that rapid changes in the cholesterol content in cell membranes of myoblasts can induce cell proliferation, possibly by the activation of the Wnt/β-catenin signaling pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Monoamine metabolites, iron induced seizures, and the anticonvulsant effect of tannins.

    PubMed

    Kabuto, H; Yokoi, I; Mori, A

    1992-06-01

    Intracortical injections of iron ions have been shown to induce recurrent seizures and epileptic discharges in the EEG. (-)-Epigallocatechin (EGC) and (-)-epigallocatechin-3-O-gallate (EGCG), isolated from green tea leaves, have been reported to prevent or diminish the occurrence of epileptic discharges induced by iron ions, and to inhibit catechol-O-methyltransferase. Iron ions significantly increased DOPAC and HVA levels in the intrastriatal perfusate 140 and 180 minutes, respectively, after injection. EGC and EGCG inhibited the increases induced by iron ions. Furthermore, EGCG decreased the HVA level in the perfusate 200 minutes after injection whether or not iron ions were injected. Iron ions had no effect on the 5-HIAA level, and EGC and EGCG raised it. These results suggest that formation of an epileptic focus induced by iron ions might be accompanied by activation of dopaminergic neurons, and that EGC and EGCG inhibit that hyperactivity.

  4. Relationships of Cerebrospinal Fluid Monoamine Metabolite Levels With Clinical Variables in Major Depressive Disorder.

    PubMed

    Yoon, Hyung Shin; Hattori, Kotaro; Ogawa, Shintaro; Sasayama, Daimei; Ota, Miho; Teraishi, Toshiya; Kunugi, Hiroshi

    Many studies have investigated cerebrospinal fluid (CSF) monoamine metabolite levels in depressive disorders. However, their clinical significance is still unclear. We tried to determine whether CSF monoamine metabolite levels could be a state-dependent marker for major depressive disorder (MDD) based on analyses stratified by clinical variables in a relatively large sample. Subjects were 75 patients with MDD according to DSM-IV criteria and 87 healthy controls, matched for age, sex, and ethnicity (Japanese). They were recruited between May 2010 and November 2013. We measured homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) in CSF samples by high-performance liquid chromatography. We analyzed the relationships of the metabolite levels with age, sex, diagnosis, psychotropic medication use, and depression severity. There was a weak positive correlation between age and 5-HIAA levels in controls (ρ = 0.26, P < .016) and a similar trend in patients, while sex was unrelated to any metabolite. All monoamine metabolites in moderately to severely depressed patients (17-item Hamilton Depression Rating Scale score > 12) were significantly lower than those in controls (P < .0005 for all 3 metabolites). We found that antidepressants decreased the levels of 5-HIAA (ρ = -0.39, P < .001) and MHPG (ρ = -0.49, P < .0001) and that antipsychotics increased levels of HVA (ρ = 0.24, P < .05). There was a strong correlation between HVA and 5-HIAA levels (controls: ρ = 0.79, P = .000001; MDD: ρ = 0.66, P = .000001). HVA levels (ρ = -0.43, P < .001) and 5-HIAA levels (ρ = -0.23, P < .05), but not MHPG levels (ρ = -0.18, P > .1), were related to depression severity. CSF 5-HIAA and HVA levels could be state-dependent markers in MDD patients. Since 5-HIAA levels greatly decrease with the use of antidepressants, HVA levels might be more useful in the clinical setting. © Copyright 2017 Physicians Postgraduate Press, Inc.

  5. Charge state distributions of oxygen and carbon in the energy range 1 to 300 keV/e observed with AMPTE/CCE in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Kremser, G.; Stuedemann, W.; Wilken, B.; Gloeckler, G.; Hamilton, D. C.

    1985-01-01

    Observations of charge state distributions of oxygen and carbon are presented that were obtained with the charge-energy-mass spectrometer onboard the AMPTE/CCE spacecraft. Data were selected for two different local time sectors (apogee at 1300 LT and 0300 LT, respectively), three L-ranges (4-6, 6-8, and greater than 8), and quiet to moderately disturbed days (Kp less than or equal to 4). The charge state distributions reveal the existence of all charge states of oxygen and carbon in the magnetosphere. The relative importance of the different charge states strongly depends on L and much less on local time. The observations confirm that the solar wind and the ionosphere contribute to the oxygen population, whereas carbon only originates from the solar wind. The L-dependence of the charge state distributions can be interpreted in terms of these different ion sources and of charge exchange and diffusion processes that largely influence the distribution of oxygen and carbon in the magnetosphere.

  6. Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson's disease.

    PubMed

    Naoi, Makoto; Maruyama, Wakako

    2009-08-01

    Neuroprotective therapy has been proposed for age-related neurodegenerative disorders, including Parkinson's disease. Inhibitors of type B monoamine oxidase (MAOB-Is), rasagiline and (-)deprenyl, are the most promising candidate neuroprotective drugs. Clinical trials of rasagiline in patients with Parkinson's disease suggest that rasagiline may have some disease-modifying effects. Results using animal and cellular models have proved that the MAOB-Is protect neurons by the intervention of 'intrinsic' mitochondrial apoptotic cascade and the induction of prosurvival antiapoptotic Bcl-2 and neurotrophic factors. Rasagiline-related MAOB-Is prevent mitochondrial permeability transition induced by various insults and activation of subsequent apoptotic cascades: cytochrome c release, casapase activation, and condensation and fragmentation of nuclear DNA. MAOB-Is increase transcription of prosurvival genes through activating the nuclear transcription factor-(NF) system. Rasagiline increases the protein and mRNA levels of GDNF in dopaminergic SH-SY5Y cells, whereas (-)deprenyl increases those of BDNF. Systemic administration of (-)deprenyl and rasagiline increases these neurotrophic factors in the cerebrospinal fluid from patients with Parkinson's disease and nonhuman primates. This review presents recent advances in our understanding of the neuroprotection offered by MAOB-Is and possible evaluation of neuroprotective efficacy in clinical samples is discussed.

  7. Too exhausted to see the truth: ego depletion and the ability to detect deception.

    PubMed

    Reinhard, Marc-André; Scharmach, Martin; Stahlberg, Dagmar

    2013-12-01

    In two experiments, recent findings showing the detrimental role of regulatory depletion in decision making are extended to the field of deception detection. In both experiments, the state of ego depletion was induced by having judges inhibit versus non-inhibit a dominant response while transcribing a text. Subsequently they judged true or deceptive messages of different stimulus persons with regard to their truthfulness. In both experiments, ego-depleted judges scored significantly lower on detection accuracy than control judges. Signal detection measures showed that this effect was not due to differences in judgmental bias between the two conditions. In Experiment 2, it was shown that the lower detection accuracy in the state of ego depletion was due to a feeling of difficulty of relying on verbal content information. Practical implications of the current findings are discussed. © 2012 The British Psychological Society.

  8. Depletion of Regulatory T Cells Augments a Vaccine-Induced T Effector Cell Response against the Liver-Stage of Malaria but Fails to Increase Memory

    PubMed Central

    Espinoza Mora, Maria del Rosario; Steeg, Christiane; Tartz, Susanne; Heussler, Volker; Sparwasser, Tim; Link, Andreas; Fleischer, Bernhard; Jacobs, Thomas

    2014-01-01

    Regulatory T cells (Treg) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4+CD25+ Treg were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3+CD25− Treg. To obtain more insights in the specific function of Treg during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when Treg are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed. PMID:25115805

  9. Positron annihilation studies in the field induced depletion regions of metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Asoka-Kumar, P.; Leung, T. C.; Lynn, K. G.; Nielsen, B.; Forcier, M. P.; Weinberg, Z. A.; Rubloff, G. W.

    1992-06-01

    The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions.

  10. HIV-1 infection depletes human CD34+CD38- hematopoietic progenitor cells via pDC-dependent mechanisms.

    PubMed

    Li, Guangming; Zhao, Juanjuan; Cheng, Liang; Jiang, Qi; Kan, Sheng; Qin, Enqiang; Tu, Bo; Zhang, Xin; Zhang, Liguo; Su, Lishan; Zhang, Zheng

    2017-07-01

    Chronic human immunodeficiency virus-1 (HIV-1) infection in patients leads to multi-lineage hematopoietic abnormalities or pancytopenia. The deficiency in hematopoietic progenitor cells (HPCs) induced by HIV-1 infection has been proposed, but the relevant mechanisms are poorly understood. We report here that both human CD34+CD38- early and CD34+CD38+ intermediate HPCs were maintained in the bone marrow (BM) of humanized mice. Chronic HIV-1 infection preferentially depleted CD34+CD38- early HPCs in the BM and reduced their proliferation potential in vivo in both HIV-1-infected patients and humanized mice, while CD34+CD38+ intermediate HSCs were relatively unaffected. Strikingly, depletion of plasmacytoid dendritic cells (pDCs) prevented human CD34+CD38- early HPCs from HIV-1 infection-induced depletion and functional impairment and restored the gene expression profile of purified CD34+ HPCs in humanized mice. These findings suggest that pDCs contribute to the early hematopoietic suppression induced by chronic HIV-1 infection and provide a novel therapeutic target for the hematopoiesis suppression in HIV-1 patients.

  11. The effect of pulsed electromagnetic radiation from mobile phone on the levels of monoamine neurotransmitters in four different areas of rat brain.

    PubMed

    Aboul Ezz, H S; Khadrawy, Y A; Ahmed, N A; Radwan, N M; El Bakry, M M

    2013-07-01

    The use of mobile phones is rapidly increasing all over the world. Few studies deal with the effect of electromagnetic radiation (EMR) on monoamine neurotransmitters in the different brain areas of adult rat. The aim of the present study was to investigate the effect of EMR on the concentrations of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the hippocampus, hypothalamus, midbrain and medulla oblongata of adult rats. Adult rats were exposed daily to EMR (frequency 1800 MHz, specific absorption rate 0.843 W/kg, power density 0.02 mW/cm2, modulated at 217 Hz) and sacrificed after 1, 2 and 4 months of daily EMR exposure as well as after stopping EMR for 1 month (after 4 months of daily EMR exposure). Monoamines were determined by high performance liquid chromatography coupled with fluorescence detection (HPLC-FD) using their native properties. The exposure to EMR resulted in significant changes in DA, NE and 5-HT in the four selected areas of adult rat brain. The exposure of adult rats to EMR may cause disturbances in monoamine neurotransmitters and this may underlie many of the adverse effects reported after EMR including memory, learning, and stress.

  12. Treatment with the MAO-A inhibitor clorgyline elevates monoamine neurotransmitter levels and improves affective phenotypes in a mouse model of Huntington disease.

    PubMed

    Garcia-Miralles, Marta; Ooi, Jolene; Ferrari Bardile, Costanza; Tan, Liang Juin; George, Maya; Drum, Chester L; Lin, Rachel Yanping; Hayden, Michael R; Pouladi, Mahmoud A

    2016-04-01

    Abnormal monoamine oxidase A and B (MAO-A/B) activity and an imbalance in monoamine neurotransmitters have been suggested to underlie the pathobiology of depression, a major psychiatric symptom observed in patients with neurodegenerative diseases, such as Huntington disease (HD). Increased MAO-A/B activity has been observed in brain tissue from patients with HD and in human and rodent HD neural cells. Using the YAC128 mouse model of HD, we studied the effect of an irreversible MAO-A inhibitor, clorgyline, on the levels of select monoamine neurotransmitters associated with affective function. We observed a decrease in striatal levels of the MAO-A/B substrates, dopamine and norepinephrine, in YAC128 HD mice compared with wild-type mice, which was accompanied by increased anxiety- and depressive-like behaviour at five months of age. Treatment for 26 days with clorgyline restored dopamine, serotonin, and norepinephrine neurotransmitter levels in the striatum and reduced anxiety- and depressive-like behaviour in YAC128 HD mice. This study supports a potential therapeutic use for MAO-A inhibitors in the treatment of depression and anxiety in patients with HD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Frequent Truncating Mutation of TFAM Induces Mitochondrial DNA Depletion and Apoptotic Resistance in Microsatellite-Unstable Colorectal Cancer

    PubMed Central

    Guo, Jianhui; Zheng, Li; Liu, Wenyong; Wang, Xianshu; Wang, Zemin; Wang, Zehua; French, Amy J.; Kang, Dongchon; Chen, Lin; Thibodeau, Stephen N.; Liu, Wanguo

    2013-01-01

    The mitochondrial transcription factor A (TFAM) is required for mitochondrial DNA (mtDNA) replication and transcription. Disruption of TFAM results in heart failure and premature aging in mice. But very little is known about the role of TFAM in cancer development. Here, we report the identification of frequent frameshift mutations in the coding mononucleotide repeat of TFAM in sporadic colorectal cancer (CRC) cell lines and in primary tumors with microsatellite instability (MSI), but not in microsatellite stable (MSS) CRC cell lines and tumors. The presence of the TFAM truncating mutation, in CRC cells with MSI, reduced the TFAM protein level in vivo and in vitro and correlated with mtDNA depletion. Furthermore, forced overexpression of wild-type TFAM in RKO cells carrying a TFAM truncating mutation suppressed cell proliferation and inhibited RKO cell-induced xenograft tumor growth. Moreover, these cells showed more susceptibility to cisplatin-induced apoptosis due to an increase of cytochrome b (Cyt b) expression and its release from mitochondria. An interaction assay between TFAM and the heavy-strand promoter (HSP) of mitochondria revealed that mutant TFAM exhibited reduced binding to HSP, leading to reduction in Cyt b transcription. Collectively, these data provide evidence that a high incidence of TFAM truncating mutations leads to mitochondrial copy number reduction and mitochondrial instability, distinguishing most CRC with MSI from MSS CRC. These mutations may play an important role in tumorigenesis and cisplatin-induced apoptotic resistance of most microsatellite-unstable CRCs. PMID:21467167

  14. α-Synuclein stimulation of monoamine oxidase-B and legumain protease mediates the pathology of Parkinson's disease.

    PubMed

    Kang, Seong Su; Ahn, Eun Hee; Zhang, Zhentao; Liu, Xia; Manfredsson, Fredric P; Sandoval, Ivette M; Dhakal, Susov; Iuvone, P Michael; Cao, Xuebing; Ye, Keqiang

    2018-06-15

    Dopaminergic neurodegeneration in Parkinson's disease (PD) is associated with abnormal dopamine metabolism by MAO-B (monoamine oxidase-B) and intracellular α-Synuclein (α-Syn) aggregates, called the Lewy body. However, the molecular relationship between α-Syn and MAO-B remains unclear. Here, we show that α-Syn directly binds to MAO-B and stimulates its enzymatic activity, which triggers AEP (asparagine endopeptidase; legumain) activation and subsequent α-Syn cleavage at N103, leading to dopaminergic neurodegeneration. Interestingly, the dopamine metabolite, DOPAL, strongly activates AEP, and the N103 fragment of α-Syn binds and activates MAO-B. Accordingly, overexpression of AEP in SNCA transgenic mice elicits α-Syn N103 cleavage and accelerates PD pathogenesis, and inhibition of MAO-B by Rasagiline diminishes α-Syn-mediated PD pathology and motor dysfunction. Moreover, virally mediated expression of α-Syn N103 induces PD pathogenesis in wild-type, but not MAO-B-null mice. Our findings thus support that AEP-mediated cleavage of α-Syn at N103 is required for the association and activation of MAO-B, mediating PD pathogenesis. © 2018 The Authors.

  15. Apoptosis inducing factor (AIF) mediates lethal redox stress induced by menadione

    PubMed Central

    Wiraswati, Hesti Lina; Hangen, Emilie; Sanz, Ana Belén; Lam, Ngoc-Vy; Reinhardt, Camille; Sauvat, Allan; Mogha, Ariane; Ortiz, Alberto

    2016-01-01

    Mitochondrial apoptosis inducing factor (AIF) is a redox-active enzyme that participates to the biogenesis/maintenance of complex I of the respiratory chain, yet also contributes to catabolic reactions in the context of regulated cell death when AIF translocates to the cytosol and to the nucleus. Here we explore the contribution of AIF to cell death induced by menadione (2-methyl-1,4-naphtoquinone; also called vitamin K3) in conditions in which this pro-oxidant does not cause the mitochondrial release of AIF, yet causes caspase-independent cell killing. Depletion of AIF from human cancer cells reduced the cytotoxicity of menadione. This cytoprotective effect was accompanied by the maintenance of high levels of reduced glutathione (GSH), which are normally depleted by menadione. In addition, AIF depletion reduced the arylation of cellular proteins induced by menadione. This menadione-triggered arylation, which can be measured by a fluorescence assay, is completely suppressed by addition of exogenous glutathione or N-acetyl cysteine. Complex I inhibition by Rotenone did not mimic the cytoprotective action of AIF depletion. Altogether, these results are compatible with the hypothesis that mitochondrion-sessile AIF facilitates lethal redox cycling of menadione, thereby precipitating protein arylation and glutathione depletion. PMID:27738311

  16. Chlorogenic Acid from Hawthorn Berry (Crataegus pinnatifida Fruit) Prevents Stress Hormone-Induced Depressive Behavior, Through Monoamine Oxidase B-reactive Oxygen Species Signaling in Hippocampal Astrocytes of Mice.

    PubMed

    Lim, Dong Wook; Han, Taewon; Jung, Jonghoon; Song, Yuri; Um, Min Young; Yoon, Minseok; Kim, Yun Tai; Cho, Seungmok; Kim, In-Ho; Han, Daeseok; Lee, Changho; Lee, Jaekwang

    2018-06-12

    Oxidative stress has been implicated in mental disorders, including depression. Chlorogenic acid (CGA), a phenolic compound abundant in herbs and fruits, has been reported to have antioxidant and free-radical scavenging properties. In this study, we investigated the antidepressant-like effects and active mechanisms of CGA from the extract of Crataegus pinnatifida (CP) fruit. Depression-like phenotypes were induced in mice by daily injection of stress hormone for 1-2 weeks. The brains of these animals exhibited reduced brain-derived neurotrophic factor (BDNF) expression and increased astrocytic hypertrophy, which are typical markers of depression in animal models. Stress hormone injection 1) upregulated monoamine oxidase B (MAOB) expression and 2) reduced spine numbers along neuronal dendrites, which indicates synaptic depression. The oral administration of CGA (30 mg/kg) or CP (300 mg/kg) prevented MAOB activation following reactive oxygen species (ROS) production and had an ameliorative effect on depressive behavioral tests (e.g., tail suspension and forced swim tests). In vitro assays performed on cultured C8-D1A cells revealed that CGA and CP inhibited MAOB activity and ROS production. Our study indicates that CGA and CP extracts prevented depressive behavior and thereby have potential as natural antidepressants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Specificity of the Acute Tryptophan and Tyrosine Plus Phenylalanine Depletion and Loading Tests I. Review of Biochemical Aspects and Poor Specificity of Current Amino Acid Formulations

    PubMed Central

    Badawy, Abdulla A.-B.; Dougherty, Donald M.; Richard, Dawn M.

    2010-01-01

    The acute tryptophan or tyrosine plus phenylalanine depletion and loading tests are powerful tools for studying the roles of serotonin, dopamine and noradrenaline in normal subjects and those with behavioural disorders. The current amino acid formulations for these tests, however, are associated with undesirable decreases in ratios of tryptophan or tyrosine plus phenylalanine to competing amino acids resulting in loss of specificity. This could confound biochemical and behavioural findings. Compositions of current formulations are reviewed, the biochemical principles underpinning the tests are revisited and examples of unintended changes in the above ratios and their impact on monoamine function and behaviour will be demonstrated from data in the literature. The presence of excessive amounts of the 3 branched-chain amino acids Leu, Ile and Val is responsible for these unintended decreases and the consequent loss of specificity. Strategies for enhancing the specificity of the different formulations are proposed. PMID:20676231

  18. Specificity of the acute tryptophan and tyrosine plus phenylalanine depletion and loading tests I. Review of biochemical aspects and poor specificity of current amino Acid formulations.

    PubMed

    Badawy, Abdulla A-B; Dougherty, Donald M; Richard, Dawn M

    2010-01-01

    The acute tryptophan or tyrosine plus phenylalanine depletion and loading tests are powerful tools for studying the roles of serotonin, dopamine and noradrenaline in normal subjects and those with behavioural disorders. The current amino acid formulations for these tests, however, are associated with undesirable decreases in ratios of tryptophan or tyrosine plus phenylalanine to competing amino acids resulting in loss of specificity. This could confound biochemical and behavioural findings. Compositions of current formulations are reviewed, the biochemical principles underpinning the tests are revisited and examples of unintended changes in the above ratios and their impact on monoamine function and behaviour will be demonstrated from data in the literature. The presence of excessive amounts of the 3 branched-chain amino acids Leu, Ile and Val is responsible for these unintended decreases and the consequent loss of specificity. Strategies for enhancing the specificity of the different formulations are proposed.

  19. [Changes in the monoamine content in different parts of hypothalamus depending on the stages of the estrous cycle].

    PubMed

    Babichev, V N; Adamskaia, E I

    1976-01-01

    Fluorimetric determination of monoamines in various regions of the hypothalamus and at different stages of the estral cycle in rats showed that the serotonin, noradrenaline, and particularly dophamine content changed both in the course of the cycle and at different time (10, 15 and 18 hours) of the same stage of the cycle. Dophamine concentration in the arcuate area--the centre of the tonic activity--reached its maximum at 18 hours of the diestrus-2 (D2) and fell to the minimum at 10 hours of the proestrus (P). Noradrenaline level in the preoptic area increased at 18 hours of the D2 and fell at 10 hours of the P. It is supposed that in the hypothalamic regulation of the estral cycle at least two monoamines (dopamine and noradrenaline) took part; the trigger role belongs to noradrenaline of the preoptic area (the cyclic centre).

  20. Monoamine oxidase A and A/B knockout mice display autistic-like features

    PubMed Central

    Bortolato, Marco; Godar, Sean C.; Alzghoul, Loai; Zhang, Junlin; Darling, Ryan D.; Simpson, Kimberly L.; Bini, Valentina; Chen, Kevin; Wellman, Cara L.; Lin, Rick C. S.; Shih, Jean C.

    2012-01-01

    Converging lines of evidence show that a sizable subset of autism-spectrum disorders (ASDs) is characterized by increased blood levels of serotonin (5-hydroxytryptamine, 5-HT), yet the mechanistic link between these two phenomena remains unclear. The enzymatic degradation of brain 5-HT is mainly mediated by monoamine oxidase (MAO)A and, in the absence of this enzyme, by its cognate isoenzyme MAOB. MAOA and A/B knockout (KO) mice display high 5-HT levels, particularly during early developmental stages. Here we show that both mutant lines exhibit numerous behavioural hallmarks of ASDs, such as social and communication impairments, perseverative and stereotypical responses, behavioural inflexibility, as well as subtle tactile and motor deficits. Furthermore, both MAOA and A/B KO mice displayed neuropathological alterations reminiscent of typical ASD features, including reduced thickness of the corpus callosum, increased dendritic arborization of pyramidal neurons in the prefrontal cortex and disrupted microarchitecture of the cerebellum. The severity of repetitive responses and neuropathological aberrances was generally greater in MAOA/B KO animals. These findings suggest that the neurochemical imbalances induced by MAOAdeficiency (either by itself or in conjunction with lack of MAOB) may result in an array of abnormalities similar to those observed in ASDs. Thus, MAOA and A/B KO mice may afford valuable models to help elucidate the neurobiological bases of these disorders and related neurodevelopmental problems. PMID:22850464

  1. Increased reactivity and monoamine dysregulation following stress in triploid Atlantic salmon (Salmo salar).

    PubMed

    Fraser, Thomas William Kenneth; Vindas, Marco Antonio; Fjelldal, Per Gunnar; Winberg, Svante; Thörnqvist, Per-Ove; Øverli, Øyvind; Skjæraasen, Jon-Egil; Hansen, Tom Jonny; Mayer, Ian

    2015-07-01

    Artificial triploid salmonids are sterile and therefore commercially bred to prevent genetic interactions between wild and domestic fish strains. The full biological effects of having an extra chromosome set are largely unknown, but triploids are considered to be more sensitive to sub-optimal environmental conditions and to be stressed by the presence of diploid conspecifics. Brain serotonergic and dopaminergic activity are known to regulate the stress response in vertebrates, but monoamine systems in diploid and triploid fish have yet to be compared. Here we study monoamine neurochemistry in the telencephalon and brain stem of juvenile diploid and triploid Atlantic salmon (Salmo salar) in response to stress (unstressed vs stressed individuals) and holding (separate- vs mixed-ploidy) conditions. Both diploids and triploids showed an increase in serotonergic activity following stress, but the increase was significantly greater in the telencephalon of triploids compared to diploids. Furthermore, while telencephalic dopaminergic activity was significantly increased in diploids following stress, there was no response in triploids. Holding conditions had a significant effect on dopaminergic activity in the brain stem of diploids only, with lower values in mixed- compared to separate-ploidy conditions. These results suggest artificially produced triploids experience increased reactivity and monoaminergic dysregulation following stress that may impede their welfare and performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival.

    PubMed

    Özdemir, Berna C; Pentcheva-Hoang, Tsvetelina; Carstens, Julienne L; Zheng, Xiaofeng; Wu, Chia-Chin; Simpson, Tyler R; Laklai, Hanane; Sugimoto, Hikaru; Kahlert, Christoph; Novitskiy, Sergey V; De Jesus-Acosta, Ana; Sharma, Padmanee; Heidari, Pedram; Mahmood, Umar; Chin, Lynda; Moses, Harold L; Weaver, Valerie M; Maitra, Anirban; Allison, James P; LeBleu, Valerie S; Kalluri, Raghu

    2014-06-16

    Pancreatic ductal adenocarcinoma (PDAC) is associated with marked fibrosis and stromal myofibroblasts, but their functional contribution remains unknown. Transgenic mice with the ability to delete αSMA(+) myofibroblasts in pancreatic cancer were generated. Depletion starting at either noninvasive precursor (pancreatic intraepithelial neoplasia) or the PDAC stage led to invasive, undifferentiated tumors with enhanced hypoxia, epithelial-to-mesenchymal transition, and cancer stem cells, with diminished animal survival. In PDAC patients, fewer myofibroblasts in their tumors also correlated with reduced survival. Suppressed immune surveillance with increased CD4(+)Foxp3(+) Tregs was observed in myofibroblast-depleted mouse tumors. Although myofibroblast-depleted tumors did not respond to gemcitabine, anti-CTLA4 immunotherapy reversed disease acceleration and prolonged animal survival. This study underscores the need for caution in targeting carcinoma-associated fibroblasts in PDAC. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Clumping factor A-mediated virulence during Staphylococcus aureus infection is retained despite fibrinogen depletion.

    PubMed

    Palmqvist, Niklas; Josefsson, Elisabet; Tarkowski, Andrzej

    2004-02-01

    Clumping factor A (ClfA), a fibrinogen-binding protein expressed on the Staphylococcus aureus cell surface, has previously been shown to act as a virulence factor in experimental septic arthritis. Although the interaction between ClfA and fibrinogen is assumed to be of importance for the virulence of S. aureus, this has not been demonstrated in any in vivo model of infection. Therefore, the objective of this study was to investigate the contribution of this interaction to ClfA-mediated virulence in murine S. aureus-induced arthritis. Ancrod, a serine protease with thrombin-like activity, was used to induce in vivo depletion of fibrinogen in mice. Ancrod treatment significantly aggravated septic arthritis following inoculation with a ClfA-expressing strain (Newman) compared to control treatment. Also, ancrod treatment tended to enhance the arthritis induced by a clfA mutant strain (DU5876), indicating that fibrinogen depletion exacerbates septic arthritis in a ClfA-independent manner. Most importantly, the ClfA-expressing strain was much more arthritogenic than the isogenic clfA mutant, following inoculation of fibrinogen-depleted mice. This finding indicates that the interaction between ClfA and free fibrinogen is not required for ClfA-mediated functions contributing to S. aureus virulence. It is conceivable that ClfA contributes to the virulence of S. aureus through interactions with other host ligands than fibrinogen.

  4. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    PubMed Central

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  5. Septal serotonin depletion in rats facilitates working memory in the radial arm maze and increases hippocampal high-frequency theta activity.

    PubMed

    López-Vázquez, Miguel Ángel; López-Loeza, Elisa; Lajud Ávila, Naima; Gutiérrez-Guzmán, Blanca Erika; Hernández-Pérez, J Jesús; Reyes, Yoana Estrada; Olvera-Cortés, María Esther

    2014-07-05

    Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The Stream Depletion Model Paradox and a First Solution

    NASA Astrophysics Data System (ADS)

    Malama, B.

    2017-12-01

    Hitherto, stream depletion models available in the hydrogeology literature use the xed head Dirichletboundary condition at the stream, and as such do not account for groundwater pumping induced streamdrawdown. They simply treat stream depletion as the decrease in stream discharge due capture by pumping,the groundwater that would discharge to the stream without pumping. We refer to this model predictedstream depletion without stream drawdown as the depletion paradox. It is intuitively clear, however, thatadverse impacts of long-term groundwater abstraction in the neighborhood of a stream include streamdrawdown, which has led to many a dry streambed in the American west and other arid regions. Streamdrawdown is especially acute for low stream ows. A mathematical model that allows for transient streamdrawdown is proposed by introducing the concept of stream storage. The model simply extends the constanthead model at the stream by including a mass-balance condition. The model is developed for a fullypenetrating stream and groundwater abstraction in a conned aquifer. The dependence of model predictedstream depletion and drawdown on stream storage, streambed conductance, aquifer anisotropy, and radialdistance to the pumping well is evaluated. The model is shown to reduce to that of Hantush in the limitas stream storage becomes innitely large, and to the Theis solution with a no- ow boundary at the streamlocation when stream storage gets vanishingly small. The results suggest that using xed stream stage modelsleads to an underestimation the late-time aquifer drawdwon response to pumping in the neighborhood of astream because it correspond to innite stream storage. This is especially critical for management of surfacewater and groundwater resources in systems subjected to prolonged groundwater abstraction and measurablestream drawdown. The model also shows a maximum stream depletion rate, beyond which stream ow to thewell diminishes and eventually vanishes. This suggests

  7. Cholesterol depletion in cell membranes of human airway epithelial cells suppresses MUC5AC gene expression.

    PubMed

    Song, Kee Jae; Kim, Na Hyun; Lee, Gi Bong; Kim, Ji Hoon; Kwon, Jin Ho; Kim, Kyung-Su

    2013-05-01

    If cholesterol in the cell membrane is depleted by treating cells with methyl-β-cyclodextrin (MβCD), the activities of transmembrane receptors are altered in a cell-specific and/or receptor-specific manner. The proinflammatory cytokines, IL-1β is potent inducers of MUC5AC mRNA and protein synthesis in human airway epithelial cells. Cells activated by IL-1β showed increased phosphorylation of extracellular signal regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Thus, we investigated the effects of cholesterol depletion on the expression of MUC5AC in human airway epithelial cells and whether these alterations to MUC5AC expression were related to MAPK activity. After NCI-H292 cells were pretreated with 1% MβCD before adding IL-1β for 24 hours, MUC5AC mRNA expression was determined by reverse transcription- polymerase chain reaction (RT-PCR) and real time-PCR. Cholesterol depletion by MβCD was measured by modified microenzymatic fluorescence assay and filipin staining. The phosphorylation of IL-1 receptor, ERK and p38 MAPK, was analyzed by western blot. Cholesterol in the cell membrane was significantly depleted by treatment with MβCD on cells. IL-1β-induced MUC5AC mRNA expression was decreased by MβCD and this decrease occurred IL-1-receptor- specifically. Moreover, we have shown that MβCD suppressed the activation of ERK1/2 and p38 MAPK in cells activated with IL-1β. This result suggests that MβCD-mediated suppression of IL-1β-induced MUC5AC mRNA operated via the ERK- and p38 MAPK-dependent pathway. Cholesterol depletion in NCI-H292 cell membrane may be considered an anti-hypersecretory method since it effectively inhibits mucus secretion of respiratory epithelial cells.

  8. Bioenergetic reprogramming plasticity under nitrogen depletion by the unicellular green alga Scenedesmus obliquus.

    PubMed

    Papazi, Aikaterini; Korelidou, Anna; Andronis, Efthimios; Parasyri, Athina; Stamatis, Nikolaos; Kotzabasis, Kiriakos

    2018-03-01

    Simultaneous nitrogen depletion and 3,4-dichlorophenol addition induce a bioenergetic microalgal reprogramming, through strong Cyt b 6 f synthesis, that quench excess electrons from dichlorophenol's biodegradation to an overactivated photosynthetic electron flow and H 2 -productivity. Cellular energy management includes "rational" planning and operation of energy production and energy consumption units. Microalgae seem to have the ability to calculate their energy reserves and select the most profitable bioenergetic pathways. Under oxygenic mixotrophic conditions, microalgae invest the exogenously supplied carbon source (glucose) to biomass increase. If 3,4-dichlorophenol is added in the culture medium, then glucose is invested more to biodegradation rather than to growth. The biodegradation yield is enhanced in nitrogen-depleted conditions, because of an increase in the starch accumulation and a delay in the establishment of oxygen-depleted conditions in a closed system. In nitrogen-depleted conditions, starch cannot be invested in PSII-dependent and PSII-independent pathways for H 2 -production, mainly because of a strong decrease of the cytochrome b 6 f complex of the photosynthetic electron flow. For this reason, it seems more profitable for the microalga under these conditions to direct the metabolism to the synthesis of lipids as cellular energy reserves. Nitrogen-depleted conditions with exogenously supplied 3,4-dichlorophenol induce reprogramming of the microalgal bioenergetic strategy. Cytochrome b 6 f is strongly synthesized (mainly through catabolism of polyamines) to manage the electron bypass from the dichlorophenol biodegradation procedure to the photosynthetic electron flow (at the level of PQ pool) and consequently through cytochrome b 6 f and PSI to hydrogenase and H 2 -production. All the above showed that the selection of the appropriate cultivation conditions is the key for the manipulation of microalgal bioenergetic strategy that leads to

  9. Ego depletion impairs implicit learning.

    PubMed

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  10. Ego Depletion Impairs Implicit Learning

    PubMed Central

    Thompson, Kelsey R.; Sanchez, Daniel J.; Wesley, Abigail H.; Reber, Paul J.

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent. PMID:25275517

  11. Triple crossings of a string of magnetic islands at duskside magnetopause encountered by AMPTE/IRM satellite on 8 August 1985

    NASA Astrophysics Data System (ADS)

    Teh, W.-L.; Hau, L.-N.

    2007-08-01

    There have been a number of reports on the existence of pearl-like magnetic island structures at the magnetopause current layer based on the analyses of single spacecraft data and two-dimensional reconstruction method of solving the Grad-Shafranov equation as a spatial initial value problem. This paper presents an unusual event of multiple magnetopause crossings encountered by AMPTE/IRM satellite at the duskside equatorial plane on 8 August, 1985. In a total of 11 magnetopause crossings spanning for nearly 2 hours, crossing 3, 4, and 9 display similar features of a string of magnetic islands imbedded within the overall tangential discontinuity-like current layers. In these crossings, the deHoffmann-Teller velocities form approximately 90° from the magnetopause normal that the in-and-out magnetopause motion becomes subsiding for the satellite to pick up the pearl-like plasmoids with island width of about 6-12 ion inertial length. In particular, crossing 3 and 9 are 1 hour apart but have almost the same magnetopause normal and deHoffmann-Teller velocity as well as similar invariant axis. A region of cold plasma adjacent to the magnetopause within the magnetosphere, the low-latitude boundary layer, is seen in all three crossings.

  12. Double Knockout of the Na+-Driven Cl−/HCO3− Exchanger and Na+/Cl− Cotransporter Induces Hypokalemia and Volume Depletion

    PubMed Central

    Sinning, Anne; Radionov, Nikita; Trepiccione, Francesco; López-Cayuqueo, Karen I.; Jayat, Maximilien; Baron, Stéphanie; Cornière, Nicolas; Alexander, R. Todd; Hadchouel, Juliette; Eladari, Dominique; Hübner, Christian A.

    2017-01-01

    We recently described a novel thiazide–sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl−/HCO3− exchanger pendrin and the Na+–driven Cl−/2HCO3− exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na+ balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na+ balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na+ homeostasis and provide evidence that the Na+/Cl− cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double–knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K+ concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca2+–activated K+ channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K+ concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients. PMID:27151921

  13. Exposure to nature counteracts aggression after depletion.

    PubMed

    Wang, Yan; She, Yihan; Colarelli, Stephen M; Fang, Yuan; Meng, Hui; Chen, Qiuju; Zhang, Xin; Zhu, Hongwei

    2018-01-01

    Acts of self-control are more likely to fail after previous exertion of self-control, known as the ego depletion effect. Research has shown that depleted participants behave more aggressively than non-depleted participants, especially after being provoked. Although exposure to nature (e.g., a walk in the park) has been predicted to replenish resources common to executive functioning and self-control, the extent to which exposure to nature may counteract the depletion effect on aggression has yet to be determined. The present study investigated the effects of exposure to nature on aggression following depletion. Aggression was measured by the intensity of noise blasts participants delivered to an ostensible opponent in a competition reaction-time task. As predicted, an interaction occurred between depletion and environmental manipulations for provoked aggression. Specifically, depleted participants behaved more aggressively in response to provocation than non-depleted participants in the urban condition. However, provoked aggression did not differ between depleted and non-depleted participants in the natural condition. Moreover, within the depletion condition, participants in the natural condition had lower levels of provoked aggression than participants in the urban condition. This study suggests that a brief period of nature exposure may restore self-control and help depleted people regain control over aggressive urges. © 2017 Wiley Periodicals, Inc.

  14. Macroinvertebrate short-term responses to flow variation and oxygen depletion: A mesocosm approach.

    PubMed

    Calapez, Ana R; Branco, Paulo; Santos, José M; Ferreira, Teresa; Hein, Thomas; Brito, António G; Feio, Maria João

    2017-12-01

    In Mediterranean rivers, water scarcity is a key stressor with direct and indirect effects on other stressors, such as water quality decline and inherent oxygen depletion associated with pollutants inputs. Yet, predicting the responses of macroinvertebrates to these stressors combination is quite challenging due to the reduced available information, especially if biotic and abiotic seasonal variations are taken under consideration. This study focused on the response of macroinvertebrates by drift to single and combined effects of water scarcity and dissolved oxygen (DO) depletion over two seasons (winter and spring). A factorial design of two flow velocity levels - regular and low (vL) - with three levels of oxygen depletion - normoxia, medium depletion (dM) and higher depletion (dH) - was carried out in a 5-artificial channels system, in short-term experiments. Results showed that both stressors individually and together had a significant effect on macroinvertebrate drift ratio for both seasons. Single stressor effects showed that macroinvertebrate drift decreased with flow velocity reduction and increased with DO depletion, in both winter and spring experiments. Despite single stressors opposing effects in drift ratio, combined stressors interaction (vL×dM and vL×dH) induced a positive synergistic drift effect for both seasons, but only in winter the drift ratio was different between the levels of DO depletion. Stressors interaction in winter seemed to intensify drift response when reached lower oxygen saturation. Also, drift patterns were different between seasons for all treatments, which may depend on individual's life stage and seasonal behaviour. Water scarcity seems to exacerbate the oxygen depletion conditions resulting into a greater drifting of invertebrates. The potential effects of oxygen depletion should be evaluated when addressing the impacts of water scarcity on river ecosystems, since flow reductions will likely contribute to a higher oxygen

  15. Association of 24 h maternal deprivation with a saline injection in the neonatal period alters adult stress response and brain monoamines in a sex-dependent fashion.

    PubMed

    Cabbia, Rafael; Consoli, Amanda; Suchecki, Deborah

    2018-04-01

    Maternal deprivation (MD) disinhibits the adrenal glands, rendering them responsive to various stressors, including saline injection, and this increased corticosterone (CORT) response can last for as long as 2 h. In the present study, we tested the hypothesis that association of MD on day 11 with a saline injection would alter emotional behavior, CORT response, and brain monoamine levels, in male and female adult rats. Rats were submitted to the novelty suppressed feeding (NSF), the sucrose negative contrast test (SNCT), social investigation test (SIT), and the elevated plus maze (EPM). One quarter of each group was not tested (providing basal values of CORT and brain monoamines) and the remainder was decapitated 15, 45, or 75 min after the EPM, to assess CORT reactivity. Monoamine levels were determined in the hypothalamus (HPT), frontal cortex (FC), amygdala (AMY), ventral, and dorsal hippocampus (vHPC, dHPC, respectively). MD reduced food intake, in the home-cage, and latency to eat in the NSF in both sexes; females explored less the target animal in the SIT and explored more the open arms of the EPM than males; the CORT response to the EPM was greater in maternally-deprived males and females than in their control counterparts, and this response was further elevated in maternally-deprived females injected with saline. Regarding monoamine levels, females were less affected, showing isolated effects of the stressors, while in males, MD increased 5-HT levels in the HPT and decreased this monoamine in the FC, MD associated with saline reduced dopamine levels in all brain regions, except the HPT. MD at 11 days did not alter emotional behaviors in adult rats, but had an impact in neurobiological parameters associated with this class of behaviors. The impact of MD associated with saline on dopamine levels suggests that males may be vulnerable to motivation-related disorders.

  16. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing.

    PubMed

    Liang, Xue-Hai; Crooke, Stanley T

    2011-06-01

    Little is known about whether components of the RNA-induced silencing complex (RISC) mediate the biogenesis of RNAs other than miRNA. Here, we show that depletion of key proteins of the RISC pathway by antisense oligonucleotides significantly impairs pre-rRNA processing in human cells. In cells depleted of Drosha or Dicer, different precursors to 5.8S rRNA strongly accumulated, without affecting normal endonucleolytic cleavages. Moderate yet distinct processing defects were also observed in Ago2-depleted cells. Physical links between pre-rRNA and these proteins were identified by co-immunoprecipitation analyses. Interestingly, simultaneous depletion of Dicer and Drosha led to a different processing defect, causing slower production of 28S rRNA and its precursor. Both Dicer and Ago2 were detected in the nuclear fraction, and reduction of Dicer altered the structure of the nucleolus, where pre-rRNA processing occurs. Together, these results suggest that Drosha and Dicer are implicated in rRNA biogenesis.

  17. Pathogenic lysosomal depletion in Parkinson's disease.

    PubMed

    Dehay, Benjamin; Bové, Jordi; Rodríguez-Muela, Natalia; Perier, Celine; Recasens, Ariadna; Boya, Patricia; Vila, Miquel

    2010-09-15

    Mounting evidence suggests a role for autophagy dysregulation in Parkinson's disease (PD). The bulk degradation of cytoplasmic proteins (including α-synuclein) and organelles (such as mitochondria) is mediated by macroautophagy, which involves the sequestration of cytosolic components into autophagosomes (AP) and its delivery to lysosomes. Accumulation of AP occurs in postmortem brain samples from PD patients, which has been widely attributed to an induction of autophagy. However, the cause and pathogenic significance of these changes remain unknown. Here we found in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD that AP accumulation and dopaminergic cell death are preceded by a marked decrease in the amount of lysosomes within dopaminergic neurons. Lysosomal depletion was secondary to the abnormal permeabilization of lysosomal membranes induced by increased mitochondrial-derived reactive oxygen species. Lysosomal permeabilization resulted in a defective clearance and subsequent accumulation of undegraded AP and contributed directly to neurodegeneration by the ectopic release of lysosomal proteases into the cytosol. Lysosomal breakdown and AP accumulation also occurred in PD brain samples, where Lewy bodies were strongly immunoreactive for AP markers. Induction of lysosomal biogenesis by genetic or pharmacological activation of lysosomal transcription factor EB restored lysosomal levels, increased AP clearance and attenuated 1-methyl-4-phenylpyridinium-induced cell death. Similarly, the autophagy-enhancer compound rapamycin attenuated PD-related dopaminergic neurodegeneration, both in vitro and in vivo, by restoring lysosomal levels. Our results indicate that AP accumulation in PD results from defective lysosomal-mediated AP clearance secondary to lysosomal depletion. Restoration of lysosomal levels and function may thus represent a novel neuroprotective strategy in PD.

  18. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of variants of monoamine oxidase from Aspergillus niger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkin, Kate E.; Reiss, Renate; Turner, Nicholas J.

    2008-03-01

    Crystals of A. niger monoamine oxidase variants display P2{sub 1} or P4{sub 1}2{sub 1}2/P4{sub 3}2{sub 1}2 symmetry, with eight or two molecules in the asymmetric unit, respectively. Monoamine oxidase from Aspergillus niger (MAO-N) is an FAD-dependent enzyme that catalyses the conversion of terminal amines to their corresponding aldehydes. Variants of MAO-N produced by directed evolution have been shown to possess altered substrate specificity. Crystals of two of these variants (MAO-N-3 and MAO-N-5) have been obtained; the former displays P2{sub 1} symmetry with eight molecules per asymmetric unit and the latter has P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 symmetry andmore » two molecules per asymmetric unit. Solution of these structures will help shed light on the molecular determinants of improved activity and high enantioselectivity towards a broad range of substrates.« less

  19. Effect of dopaminergic drugs on the reserpine-induced lowering of hippocampal theta wave frequency in rats.

    PubMed

    Nakagawa, T; Ukai, K; Ohyama, T; Gomita, Y; Okamura, H

    2000-05-01

    The effects of dopaminergic drugs on the lowering of hippocampal theta wave frequency induced by reserpine 1 mg/kg s.c. were examined. Sibutramine (monoamine reuptake inhibitor) 10 mg/kg p.o., methamphetamine (monoamine releaser) 1 mg/kg, quinpirole (dopamine D2 receptor agonist) 10 mg/kg i.p., and SKF 38393 (dopamine D1 receptor agonist) 10 mg/kg i.p. each antagonized the reserpine-induced lowering of hippocampal theta wave frequency in rats. Moreover, the combined administration of SKF 38393 1 mg/kg i.p. and quinpirole 1 mg/kg i.p. synergistically antagonized a reserpine-induced lowering of this frequency. Dosulepin, amitriptyline, and desipramine, which are weak inhibitors of dopamine reuptake, each had little effect on the reserpine-induced lowering of theta wave frequency at a dose of 40 mg/kg p.o. Furthermore, atropine (muscarinic anticholinergic drug) 20 mg/kg p.o. decreased theta wave power in the low-frequency range following a shift to the lower range by reserpine. A positive correlation was observed for each of the above drugs between a reversal of reserpine-induced lowering of theta wave frequency and a reversal of impairment of reserpine-induced conditioned avoidance responses (ACAR) in rats. These results suggest that the reserpine-induced lowering of hippocampal theta wave frequency plays a role in the impairment of reserpine-induced ACAR, and that dopamine D1 and D2 receptors play important roles in antagonizing this lowering of frequency.

  20. Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells.

    PubMed

    Guilluy, Christophe; Rolli-Derkinderen, Malvyne; Tharaux, Pierre-Louis; Melino, Gerry; Pacaud, Pierre; Loirand, Gervaise

    2007-02-02

    The small G protein RhoA plays a major role in several vascular processes and cardiovascular disorders. Here we analyze the mechanisms of RhoA regulation by serotonin (5-HT) in arterial smooth muscle. 5-HT (0.1-10 microM) induced activation of RhoA followed by RhoA depletion at 24-72 h. Inhibition of 5-HT1 receptors reduced the early phase of RhoA activation but had no effect on 5-HT-induced delayed RhoA activation and depletion, which were suppressed by the 5-HT transporter inhibitor fluoxetine and the transglutaminase inhibitor monodansylcadaverin and in type 2 transglutaminase-deficient smooth muscle cells. Coimmunoprecipitations demonstrated that 5-HT associated with RhoA both in vitro and in vivo. This association was calcium-dependent and inhibited by fluoxetine and monodansylcadaverin. 5-HT promotes the association of RhoA with the E3 ubiquitin ligase Smurf1, and 5-HT-induced RhoA depletion was inhibited by the proteasome inhibitor MG132 and the RhoA inhibitor Tat-C3. Simvastatin, the Rho kinase inhibitor Y-27632, small interfering RNA-mediated RhoA gene silencing, and long-term 5-HT stimulation induced Akt activation. In contrast, inhibition of 5-HT-mediated RhoA degradation by MG132 prevented 5-HT-induced Akt activation. Long-term 5-HT stimulation also led to the inhibition of the RhoA/Rho kinase component of arterial contraction. Our data provide evidence that 5-HT, internalized through the 5-HT transporter, is transamidated to RhoA by transglutaminase. Transamidation of RhoA leads to RhoA activation and enhanced proteasomal degradation, which in turn is responsible for Akt activation and contraction inhibition. The observation of transamidation of 5-HT to RhoA in pulmonary artery of hypoxic rats suggests that this process could participate in pulmonary artery remodeling and hypertension.