Sample records for amygdala functional connectivity

  1. Sex-related differences in amygdala functional connectivity during resting conditions.

    PubMed

    Kilpatrick, L A; Zald, D H; Pardo, J V; Cahill, L F

    2006-04-01

    Recent neuroimaging studies have established a sex-related hemispheric lateralization of amygdala involvement in memory for emotionally arousing material. Here, we examine the possibility that sex-related differences in amygdala involvement in memory for emotional material develop from differential patterns of amygdala functional connectivity evident in the resting brain. Seed voxel partial least square analyses of regional cerebral blood flow data revealed significant sex-related differences in amygdala functional connectivity during resting conditions. The right amygdala was associated with greater functional connectivity in men than in women. In contrast, the left amygdala was associated with greater functional connectivity in women than in men. Furthermore, the regions displaying stronger functional connectivity with the right amygdala in males (sensorimotor cortex, striatum, pulvinar) differed from those displaying stronger functional connectivity with the left amygdala in females (subgenual cortex, hypothalamus). These differences in functional connectivity at rest may link to sex-related differences in medical and psychiatric disorders.

  2. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    PubMed

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p < 0.05). Similarly, when compared to extremely preterm neonates without exposure to prenatal stress, extremely preterm neonates with exposure to prenatal stress show significantly less connectivity between the left amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p < 0.05). Exploratory analysis of the combined cohorts suggests additive effects of prenatal stress on alterations in amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these

  3. Amygdala Functional Connectivity is Reduced After the Cold Pressor Task

    PubMed Central

    Clewett, David; Schoeke, Andrej; Mather, Mara

    2013-01-01

    The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370

  4. Amygdala subnuclei resting-state functional connectivity sex and estrogen differences.

    PubMed

    Engman, Jonas; Linnman, Clas; Van Dijk, Koene R A; Milad, Mohammed R

    2016-01-01

    The amygdala is a hub in emotional processing, including that of negative affect. Healthy men and women have distinct differences in amygdala responses, potentially setting the stage for the observed sex differences in the prevalence of fear, anxiety, and pain disorders. Here, we examined how amygdala subnuclei resting-state functional connectivity is affected by sex, as well as explored how the functional connectivity is related to estrogen levels. Resting-state functional connectivity was measured using functional magnetic resonance imaging (fMRI) with seeds placed in the left and right laterobasal (LB) and centromedial (CM) amygdala. Sex differences were studied in 48 healthy men and 48 healthy women, matched for age, while the association with estrogen was analyzed in a subsample of 24 women, for whom hormone levels had been assessed. For the hormone analyses, the subsample was further divided into a lower and higher estrogen levels group based on a median split. We found distinct sex differences in the LB and CM amygdala resting-state functional connectivity, as well as preliminary evidence for an association between estrogen levels and connectivity patterns. These results are potentially valuable in explaining why women are more afflicted by conditions of negative affect than are men, and could imply a mechanistic role for estrogen in modulating emotion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Altered task-based and resting-state amygdala functional connectivity following real-time fMRI amygdala neurofeedback training in major depressive disorder.

    PubMed

    Young, Kymberly D; Siegle, Greg J; Misaki, Masaya; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2018-01-01

    We have previously shown that in participants with major depressive disorder (MDD) trained to upregulate their amygdala hemodynamic response during positive autobiographical memory (AM) recall with real-time fMRI neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. Here, we assessed the effect of rtfMRI-nf on amygdala functional connectivity during both positive AM recall and rest. The current manuscript consists of a secondary analysis on data from our published clinical trial of neurofeedback. Patients with MDD completed two rtfMRI-nf sessions (18 received amygdala rtfMRI-nf, 16 received control parietal rtfMRI-nf). One-week prior-to and following training participants also completed a resting-state fMRI scan. A GLM-based functional connectivity analysis was applied using a seed ROI in the left amygdala. We compared amygdala functional connectivity changes while recalling positive AMs from the baseline run to the final transfer run during rtfMRI-nf training, as well during rest from the baseline to the one-week follow-up visit. Finally, we assessed the correlation between change in depression scores and change in amygdala connectivity, as well as correlations between amygdala regulation success and connectivity changes. Following training, amygdala connectivity during positive AM recall increased with widespread regions in the frontal and limbic network. During rest, amygdala connectivity increased following training within the fronto-temporal-limbic network. During both task and resting-state analyses, amygdala-temporal pole connectivity decreased. We identified increased amygdala-precuneus and amygdala-inferior frontal gyrus connectivity during positive memory recall and increased amygdala-precuneus and amygdala-thalamus connectivity during rest as functional connectivity changes that explained significant variance in symptom improvement. Amygdala-precuneus connectivity changes also explain a significant amount of variance in neurofeedback

  6. Multi-modal neuroimaging of adolescents with non-suicidal self-injury: Amygdala functional connectivity.

    PubMed

    Westlund Schreiner, Melinda; Klimes-Dougan, Bonnie; Mueller, Bryon A; Eberly, Lynn E; Reigstad, Kristina M; Carstedt, Patricia A; Thomas, Kathleen M; Hunt, Ruskin H; Lim, Kelvin O; Cullen, Kathryn R

    2017-10-15

    Non-suicidal self-injury (NSSI) is a significant mental health problem among adolescents. Research is needed to clarify the neurobiology of NSSI and identify candidate neurobiological targets for interventions. Based on prior research implicating heightened negative affect and amygdala hyperactivity in NSSI, we pursued a systems approach to characterize amygdala functional connectivity networks during rest (resting-state functional connectivity [RSFC)]) and a task (task functional connectivity [TFC]) in adolescents with NSSI. We examined amygdala networks in female adolescents with NSSI and healthy controls (n = 45) using resting-state fMRI and a negative emotion face-matching fMRI task designed to activate the amygdala. Connectivity analyses included amygdala RSFC, amygdala TFC, and psychophysiological interactions (PPI) between amygdala connectivity and task conditions. Compared to healthy controls, adolescents with NSSI showed atypical amygdala-frontal connectivity during rest and task; greater amygdala RSFC in supplementary motor area (SMA) and dorsal anterior cingulate; and differential amygdala-occipital connectivity between rest and task. After correcting for depression symptoms, amygdala-SMA RSFC abnormalities, among others, remained significant. This study's limitations include its cross-sectional design and its absence of a psychiatric control group. Using a multi-modal approach, we identified widespread amygdala circuitry anomalies in adolescents with NSSI. While deficits in amygdala-frontal connectivity (driven by depression symptoms) replicates prior work in depression, hyperconnectivity between amygdala and SMA (independent of depression symptoms) has not been previously reported. This circuit may represent an important mechanism underlying the link between negative affect and habitual behaviors. These abnormalities may represent intervention targets for adolescents with NSSI. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Intrinsic Amygdala-Cortical Functional Connectivity Predicts Social Network Size in Humans

    PubMed Central

    Bickart, Kevin C.; Hollenbeck, Mark C.; Barrett, Lisa Feldman; Dickerson, Bradford C.

    2012-01-01

    Using resting-state functional MRI data from two independent samples of healthy adults, we parsed the amygdala’s intrinsic connectivity into three partially-distinct large-scale networks that strongly resemble the known anatomical organization of amygdala connectivity in rodents and monkeys. Moreover, in a third independent sample, we discovered that people who fostered and maintained larger and more complex social networks not only had larger amygdala volumes, but also amygdalae with stronger intrinsic connectivity within two of these networks, one putatively subserving perceptual abilities and one subserving affiliative behaviors. Our findings were anatomically specific to amygdalar circuitry in that individual differences in social network size and complexity could not be explained by the strength of intrinsic connectivity between nodes within two networks that do not typically involve the amygdala (i.e., the mentalizing and mirror networks), and were behaviorally specific in that amygdala connectivity did not correlate with other self-report measures of sociality. PMID:23077058

  8. Self-Reported Sleep Correlates with Prefrontal-Amygdala Functional Connectivity and Emotional Functioning

    PubMed Central

    Killgore, William D. S.

    2013-01-01

    Study Objectives: Prior research suggests that sleep deprivation is associated with declines in some aspects of emotional intelligence and increased severity on indices of psychological disturbance. Sleep deprivation is also associated with reduced prefrontal-amygdala functional connectivity, potentially reflecting impaired top-down modulation of emotion. It remains unknown whether this modified connectivity may be observed in relation to more typical levels of sleep curtailment. We examined whether self-reported sleep duration the night before an assessment would be associated with these effects. Design: Participants documented their hours of sleep from the previous night, completed the Bar-On Emotional Quotient Inventory (EQ-i), Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), and Personality Assessment Inventory (PAI), and underwent resting-state functional magnetic resonance imaging (fMRI). Setting: Outpatient neuroimaging center at a private psychiatric hospital. Participants: Sixty-five healthy adults (33 men, 32 women), ranging in age from 18-45 y. Interventions: N/A. Measurements and Results: Greater self-reported sleep the preceding night was associated with higher scores on all scales of the EQ-i but not the MSCEIT, and with lower symptom severity scores on half of the psychopathology scales of the PAI. Longer sleep was also associated with stronger negative functional connectivity between the right ventromedial prefrontal cortex and amygdala. Moreover, greater negative connectivity between these regions was associated with higher EQ-i and lower symptom severity on the PAI. Conclusions: Self-reported sleep duration from the preceding night was negatively correlated with prefrontal-amygdala connectivity and the severity of subjective psychological distress, while positively correlated with higher perceived emotional intelligence. More sleep was associated with higher emotional and psychological strength. Citation: Killgore WDS. Self

  9. Amygdala habituation and prefrontal functional connectivity in youth with autism spectrum disorders.

    PubMed

    Swartz, Johnna R; Wiggins, Jillian Lee; Carrasco, Melisa; Lord, Catherine; Monk, Christopher S

    2013-01-01

    Amygdala habituation, the rapid decrease in amygdala responsiveness to the repeated presentation of stimuli, is fundamental to the nervous system. Habituation is important for maintaining adaptive levels of arousal to predictable social stimuli and decreased habituation is associated with heightened anxiety. Input from the ventromedial prefrontal cortex (vmPFC) regulates amygdala activity. Although previous research has shown abnormal amygdala function in youth with autism spectrum disorders (ASD), no study has examined amygdala habituation in a young sample or whether habituation is related to amygdala connectivity with the vmPFC. Data were analyzed from 32 children and adolescents with ASD and 56 typically developing controls who underwent functional magnetic resonance imaging while performing a gender identification task for faces that were fearful, happy, sad, or neutral. Habituation was tested by comparing amygdala activation to faces during the first half versus the second half of the session. VmPFC-amygdala connectivity was examined through psychophysiologic interaction analysis. Youth with ASD had decreased amygdala habituation to sad and neutral faces compared with controls. Moreover, decreased amygdala habituation correlated with autism severity as measured by the Social Responsiveness Scale. There was a group difference in vmPFC-amygdala connectivity while viewing sad faces, and connectivity predicted amygdala habituation to sad faces in controls. Sustained amygdala activation to faces suggests that repeated face presentations are processed differently in individuals with ASD, which could contribute to social impairments. Abnormal modulation of the amygdala by the vmPFC may play a role in decreased habituation. Copyright © 2013 American Academy of Child & Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis.

    PubMed

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan

    2017-12-01

    The amygdala is a large grey matter complex in the limbic system, and it may contribute in the neurolimbic pain network in migraine. However, the detailed neuromechanism remained to be elucidated. The objective of this study is to investigate the amygdala structural and functional changes in migraine and to elucidate the mechanism of neurolimbic pain-modulating in the migraine pathogenesis. Conventional MRI, 3D structure images and resting state functional MRI were performed in 18 normal controls (NC), 18 patients with episodic migraine (EM), and 16 patients with chronic migraine (CM). The amygdala volume was measured using FreeSurfer software and the functional connectivity (FC) of bilateral amygdala was computed over the whole brain. Analysis of covariance was performed on the individual FC maps among groups. The increased FC of left amygdala was observed in EM compared with NC, and the decreased of right amygdala was revealed in CM compared with NC. The increased FC of bilateral amygdala was observed in CM compared with EM. The correlation analysis showed a negative correlation between the score of sleep quality (0, normal; 1, mild sleep disturbance; 2, moderate sleep disturbance; 3, serious sleep disturbance) and the increased FC strength of left amygdala in EM compared with NC, and a positive correlation between the score of sleep quality and the increased FC strength of left amygdala in CM compared with EM, and other clinical variables showed no significant correlation with altered FC of amygdala. The altered functional connectivity of amygdala demonstrated that neurolimbic pain network contribute in the EM pathogenesis and CM chronicization.

  11. The Responsive Amygdala: Treatment-induced Alterations in Functional Connectivity in Pediatric Complex Regional Pain Syndrome

    PubMed Central

    Simons, LE; Pielech, M; Erpelding, N; Linnman, C; Moulton, E; Sava, S; Lebel, A; Serrano, P; Sethna, N; Berde, C; Becerra, L; Borsook, D

    2014-01-01

    The amygdala is a key brain region with efferent and afferent neural connections that involve complex behaviors such as pain, reward, fear and anxiety. This study evaluated resting state functional connectivity of the amygdala with cortical and subcortical regions in a group of chronic pain patients (pediatric complex regional pain syndrome) with age-gender matched controls before and after intensive physical-biobehavioral pain treatment. Our main findings include (1) enhanced functional connectivity from the amygdala to multiple cortical, subcortical, and cerebellar regions in patients compared to controls, with differences predominantly in the left amygdala in the pre-treated condition (disease state); (2) dampened hyperconnectivity from the left amygdala to the motor cortex, parietal lobe, and cingulate cortex after intensive pain rehabilitation treatment within patients with nominal differences observed among healthy controls from Time 1 to Time 2 (treatment effects); (3) functional connectivity to several regions key to fear circuitry (prefrontal cortex, bilateral middle temporal lobe, bilateral cingulate, hippocampus) correlated with higher pain-related fear scores and (4) decreases in pain-related fear associated with decreased connectivity between the amygdala and the motor and somatosensory cortex, cingulate, and frontal areas. Our data suggest that there are rapid changes in amygdala connectivity following an aggressive treatment program in children with chronic pain and intrinsic amygdala functional connectivity activity serving as a potential indicator of treatment response. PMID:24861582

  12. Amygdala functional connectivity as a longitudinal biomarker of symptom changes in generalized anxiety.

    PubMed

    Makovac, Elena; Watson, David R; Meeten, Frances; Garfinkel, Sarah N; Cercignani, Mara; Critchley, Hugo D; Ottaviani, Cristina

    2016-11-01

    Generalized anxiety disorder (GAD) is characterized by excessive worry, autonomic dysregulation and functional amygdala dysconnectivity, yet these illness markers have rarely been considered together, nor their interrelationship tested longitudinally. We hypothesized that an individual's capacity for emotion regulation predicts longer-term changes in amygdala functional connectivity, supporting the modification of GAD core symptoms. Sixteen patients with GAD (14 women) and individually matched controls were studied at two time points separated by 1 year. Resting-state fMRI data and concurrent measurement of vagally mediated heart rate variability were obtained before and after the induction of perseverative cognition. A greater rise in levels of worry following the induction predicted a stronger reduction in connectivity between right amygdala and ventromedial prefrontal cortex, and enhanced coupling between left amygdala and ventral tegmental area at follow-up. Similarly, amplified physiological responses to the induction predicted increased connectivity between right amygdala and thalamus. Longitudinal shifts in a distinct set of functional connectivity scores were associated with concomitant changes in GAD symptomatology over the course of the year. Results highlight the prognostic value of indices of emotional dysregulation and emphasize the integral role of the amygdala as a critical hub in functional neural circuitry underlying the progression of GAD symptomatology. © The Author (2016). Published by Oxford University Press.

  13. Altered Amygdala Resting-State Functional Connectivity in Maintenance Hemodialysis End-Stage Renal Disease Patients with Depressive Mood.

    PubMed

    Chen, Hui Juan; Wang, Yun Fei; Qi, Rongfeng; Schoepf, U Joseph; Varga-Szemes, Akos; Ball, B Devon; Zhang, Zhe; Kong, Xiang; Wen, Jiqiu; Li, Xue; Lu, Guang Ming; Zhang, Long Jiang

    2017-04-01

    The purpose of this study was to investigate patterns in the amygdala-based emotional processing circuit of hemodialysis patients using resting-state functional MR imaging (rs-fMRI). Fifty hemodialysis patients (25 with depressed mood and 25 without depressed mood) and 26 healthy controls were included. All subjects underwent neuropsychological tests and rs-fMRI, and patients also underwent laboratory tests. Functional connectivity of the bilateral amygdala was compared among the three groups. The relationship between functional connectivity and clinical markers was investigated. Depressed patients showed increased positive functional connectivity of the left amygdala with the left superior temporal gyrus and right parahippocampal gyrus (PHG) but decreased amygdala functional connectivity with the left precuneus, angular gyrus, posterior cingulate cortex (PCC), and left inferior parietal lobule compared with non-depressed patients (P < 0.05, AlphaSim corrected). Depressed patients had increased positive functional connectivity of the right amygdala with bilateral supplementary motor areas and PHG but decreased amygdala functional connectivity with the right superior frontal gyrus, superior parietal lobule, bilateral precuneus, and PCC (P < 0.05, AlphaSim corrected). After including anxiety as a covariate, we discovered additional decreased functional connectivity with anterior cingulate cortex (ACC) for bilateral amygdala (P < 0.05, AlphaSim corrected). For the depressed, neuropsychological test scores were correlated with functional connectivity of multiple regions (P < 0.05, AlphaSim corrected). In conclusion, functional connectivity in the amygdala-prefrontal-PCC-limbic circuits was impaired in depressive hemodialysis patients, with a gradual decrease in ACC between controls, non-depressed, and depressed patients for the right amygdala. This indicates that ACC plays a role in amygdala-based emotional regulatory circuits in these patients.

  14. Sex differences in the functional connectivity of the amygdalae in association with cortisol.

    PubMed

    Kogler, Lydia; Müller, Veronika I; Seidel, Eva-Maria; Boubela, Roland; Kalcher, Klaudius; Moser, Ewald; Habel, Ute; Gur, Ruben C; Eickhoff, Simon B; Derntl, Birgit

    2016-07-01

    Human amygdalae are involved in various behavioral functions such as affective and stress processing. For these behavioral functions, as well as for psychophysiological arousal including cortisol release, sex differences are reported. Here, we assessed cortisol levels and resting-state functional connectivity (rsFC) of left and right amygdalae in 81 healthy participants (42 women) to investigate potential modulation of amygdala rsFC by sex and cortisol concentration. Our analyses revealed that rsFC of the left amygdala significantly differed between women and men: Women showed stronger rsFC than men between the left amygdala and left middle temporal gyrus, inferior frontal gyrus, postcentral gyrus and hippocampus, regions involved in face processing, inner-speech, fear and pain processing. No stronger connections were detected for men and no sex difference emerged for right amygdala rsFC. Also, an interaction of sex and cortisol appeared: In women, cortisol was negatively associated with rsFC of the amygdalae with striatal regions, mid-orbital frontal gyrus, anterior cingulate gyrus, middle and superior frontal gyri, supplementary motor area and the parietal-occipital sulcus. Contrarily in men, positive associations of cortisol with rsFC of the left amygdala and these structures were observed. Functional decoding analyses revealed an association of the amygdalae and these regions with emotion, reward and memory processing, as well as action execution. Our results suggest that functional connectivity of the amygdalae as well as the regulatory effect of cortisol on brain networks differs between women and men. These sex-differences and the mediating and sex-dependent effect of cortisol on brain communication systems should be taken into account in affective and stress-related neuroimaging research. Thus, more studies including both sexes are required. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder

    PubMed Central

    Sripada, Rebecca K.; King, Anthony P.; Garfinkel, Sarah N.; Wang, Xin; Sripada, Chandra S.; Welsh, Robert C.; Liberzon, Israel

    2012-01-01

    Background Converging neuroimaging research suggests altered emotion neurocircuitry in individuals with posttraumatic stress disorder (PTSD). Emotion activation studies in these individuals have shown hyperactivation in emotion-related regions, including the amygdala and insula, and hypoactivation in emotion-regulation regions, including the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). However, few studies have examined patterns of connectivity at rest in individuals with PTSD, a potentially powerful method for illuminating brain network structure. Methods Using the amygdala as a seed region, we measured resting-state brain connectivity using 3 T functional magnetic resonance imaging in returning male veterans with PTSD and combat controls without PTSD. Results Fifteen veterans with PTSD and 14 combat controls enrolled in our study. Compared with controls, veterans with PTSD showed greater positive connectivity between the amygdala and insula, reduced positive connectivity between the amygdala and hippocampus, and reduced anticorrelation between the amygdala and dorsal ACC and rostral ACC. Limitations Only male veterans with combat exposure were tested, thus our findings cannot be generalized to women or to individuals with non–combat related PTSD. Conclusion These results demonstrate that studies of functional connectivity during resting state can discern aberrant patterns of coupling within emotion circuits and suggest a possible brain basis for emotion-processing and emotion-regulation deficits in individuals with PTSD. PMID:22313617

  16. Functional Connectivity of the Amygdala Is Disrupted in Preschool-Aged Children With Autism Spectrum Disorder.

    PubMed

    Shen, Mark D; Li, Deana D; Keown, Christopher L; Lee, Aaron; Johnson, Ryan T; Angkustsiri, Kathleen; Rogers, Sally J; Müller, Ralph-Axel; Amaral, David G; Nordahl, Christine Wu

    2016-09-01

    The objective of this study was to determine whether functional connectivity of the amygdala is altered in preschool-age children with autism spectrum disorder (ASD) and to assess the clinical relevance of observed alterations in amygdala connectivity. A resting-state functional connectivity magnetic resonance imaging study of the amygdala (and a parallel study of primary visual cortex) was conducted in 72 boys (mean age 3.5 years; n = 43 with ASD; n = 29 age-matched controls). The ASD group showed significantly weaker connectivity between the amygdala and several brain regions involved in social communication and repetitive behaviors, including bilateral medial prefrontal cortex, temporal lobes, and striatum (p < .05, corrected). Weaker connectivity between the amygdala and frontal and temporal lobes was significantly correlated with increased autism severity in the ASD group (p < .05). In a parallel analysis examining the functional connectivity of primary visual cortex, the ASD group showed significantly weaker connectivity between visual cortex and sensorimotor regions (p < .05, corrected). Weaker connectivity between visual cortex and sensorimotor regions was not correlated with core autism symptoms, but instead was correlated with increased sensory hypersensitivity in the visual/auditory domain (p < .05). These findings indicate that preschool-age children with ASD have disrupted functional connectivity between the amygdala and regions of the brain important for social communication and language, which might be clinically relevant because weaker connectivity was associated with increased autism severity. Moreover, although amygdala connectivity was associated with behavioral domains that are diagnostic of ASD, altered connectivity of primary visual cortex was related to sensory hypersensitivity. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Amygdala subnuclei response and connectivity during emotional processing.

    PubMed

    Hrybouski, Stanislau; Aghamohammadi-Sereshki, Arash; Madan, Christopher R; Shafer, Andrea T; Baron, Corey A; Seres, Peter; Beaulieu, Christian; Olsen, Fraser; Malykhin, Nikolai V

    2016-06-01

    The involvement of the human amygdala in emotion-related processing has been studied using functional magnetic resonance imaging (fMRI) for many years. However, despite the amygdala being comprised of several subnuclei, most studies investigated the role of the entire amygdala in processing of emotions. Here we combined a novel anatomical tracing protocol with event-related high-resolution fMRI acquisition to study the responsiveness of the amygdala subnuclei to negative emotional stimuli and to examine intra-amygdala functional connectivity. The greatest sensitivity to the negative emotional stimuli was observed in the centromedial amygdala, where the hemodynamic response amplitude elicited by the negative emotional stimuli was greater and peaked later than for neutral stimuli. Connectivity patterns converge with extant findings in animals, such that the centromedial amygdala was more connected with the nuclei of the basal amygdala than with the lateral amygdala. Current findings provide evidence of functional specialization within the human amygdala. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Functional Connectivity of the Amygdala in Early Childhood Onset Depression

    PubMed Central

    Luking, Katherine R.; Repovs, Grega; Belden, Andy C.; Gaffrey, Michael S.; Botteron, Kelly N.; Luby, Joan L.; Barch, Deanna M.

    2011-01-01

    Objective Adult major depressive disorder (MDD) is associated with reduced cortico-limbic functional connectivity thought to indicate decreased top-down control of emotion. However, it is unclear whether such connectivity alterations are also present in early childhood onset MDD. Method Fifty-one children ages 7–11 years, prospectively studied since preschool age, completed resting state fMRI and were assigned to four groups: 1) C-MDD (N=13) personal history of early childhood onset MDD; 2) M-MDD (N=11) a maternal history of affective disorders; 3) CM-MDD (N=13) both maternal and early childhood onset MDD or 4) CON (N=14) without either a personal or maternal history. We used seed-based resting state functional connectivity (rsfcMRI) analysis in an independent sample of adults to identify networks showing both positive (e.g., limbic regions) and negative (e.g., dorsal frontal/parietal regions) connectivity with the amygdala. These regions were then used in ROI based analyses of our child sample. Results We found a significant interaction between maternal affective disorder history and the child's MDD history for both positive and negative rsfcMRI networks. Specifically, when copared to CON, we found reduced connectivity between the amygdala and the “Negative Network” in children with C-MDD, M-MDD and CM-MDD. Children with either C-MDD or a maternal history of MDD (but not CM-MDD) displayed reduced connectivity between the amygdala and the “Positive Network”. Conclusions Our finding of an attenuated relationship between the amygdala, a region affected in MDD and involved in emotion processing, and cognitive control regions is consistent with a hypothesis of altered regulation of emotional processing in C-MDD suggesting developmental continuity of this alteration into early childhood. PMID:21961777

  19. Structural Connectivity of the Developing Human Amygdala

    PubMed Central

    Saygin, Zeynep M.; Osher, David E.; Koldewyn, Kami; Martin, Rebecca E.; Finn, Amy; Saxe, Rebecca; Gabrieli, John D.E.; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758

  20. Structural connectivity of the developing human amygdala.

    PubMed

    Saygin, Zeynep M; Osher, David E; Koldewyn, Kami; Martin, Rebecca E; Finn, Amy; Saxe, Rebecca; Gabrieli, John D E; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus' connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age.

  1. Functional connectivity between amygdala and facial regions involved in recognition of facial threat

    PubMed Central

    Harada, Tokiko; Ruffman, Ted; Sadato, Norihiro; Iidaka, Tetsuya

    2013-01-01

    The recognition of threatening faces is important for making social judgments. For example, threatening facial features of defendants could affect the decisions of jurors during a trial. Previous neuroimaging studies using faces of members of the general public have identified a pivotal role of the amygdala in perceiving threat. This functional magnetic resonance imaging study used face photographs of male prisoners who had been convicted of first-degree murder (MUR) as threatening facial stimuli. We compared the subjective ratings of MUR faces with those of control (CON) faces and examined how they were related to brain activation, particularly, the modulation of the functional connectivity between the amygdala and other brain regions. The MUR faces were perceived to be more threatening than the CON faces. The bilateral amygdala was shown to respond to both MUR and CON faces, but subtraction analysis revealed no significant difference between the two. Functional connectivity analysis indicated that the extent of connectivity between the left amygdala and the face-related regions (i.e. the superior temporal sulcus, inferior temporal gyrus and fusiform gyrus) was correlated with the subjective threat rating for the faces. We have demonstrated that the functional connectivity is modulated by vigilance for threatening facial features. PMID:22156740

  2. Serotonin transporter genotype modulates functional connectivity between amygdala and PCC/PCu during mood recovery

    PubMed Central

    Fang, Zhuo; Zhu, Senhua; Gillihan, Seth J.; Korczykowski, Marc; Detre, John A.; Rao, Hengyi

    2013-01-01

    The short (S) allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) has been associated with increased susceptibility to depression. Previous neuroimaging studies have consistently showed increased amygdala activity during the presentation of negative stimuli or regulation of negative emotion in the homozygous short allele carriers, suggesting the key role of amygdala response in mediating increased risk for depression. The brain default mode network (DMN) has also been shown to modulate amygdala activity. However, it remains unclear whether 5-HTTLPR genetic variation modulates functional connectivity (FC) between the amygdala and regions of DMN. In this study, we re-analyzed our previous imaging dataset and examined the effects of 5-HTTLPR genetic variation on amygdala connectivity. A total of 15 homozygous short (S/S) and 15 homozygous long individuals (L/L) were scanned in functional magnetic resonance imaging (fMRI) during four blocks: baseline, sad mood, mood recovery, and return to baseline. The S/S and L/L groups showed a similar pattern of FC and no differences were found between the two groups during baseline and sad mood scans. However, during mood recovery, the S/S group showed significantly reduced anti-correlation between amygdala and posterior cingulate cortex/precuneus (PCC/PCu) compared to the L/L group. Moreover, PCC/PCu-amygdala connectivity correlated with amygdala activity in the S/S group but not the L/L group. These results suggest that 5-HTTLPR genetic variation modulates amygdala connectivity which subsequently affects its activity during mood regulation, providing an additional mechanism by which the S allele confers depression risk. PMID:24198772

  3. Psilocybin modulates functional connectivity of the amygdala during emotional face discrimination.

    PubMed

    Grimm, O; Kraehenmann, R; Preller, K H; Seifritz, E; Vollenweider, F X

    2018-04-24

    Recent studies suggest that the antidepressant effects of the psychedelic 5-HT2A receptor agonist psilocybin are mediated through its modulatory properties on prefrontal and limbic brain regions including the amygdala. To further investigate the effects of psilocybin on emotion processing networks, we studied for the first-time psilocybin's acute effects on amygdala seed-to-voxel connectivity in an event-related face discrimination task in 18 healthy volunteers who received psilocybin and placebo in a double-blind balanced cross-over design. The amygdala has been implicated as a salience detector especially involved in the immediate response to emotional face content. We used beta-series amygdala seed-to-voxel connectivity during an emotional face discrimination task to elucidate the connectivity pattern of the amygdala over the entire brain. When we compared psilocybin to placebo, an increase in reaction time for all three categories of affective stimuli was found. Psilocybin decreased the connectivity between amygdala and the striatum during angry face discrimination. During happy face discrimination, the connectivity between the amygdala and the frontal pole was decreased. No effect was seen during discrimination of fearful faces. Thus, we show psilocybin's effect as a modulator of major connectivity hubs of the amygdala. Psilocybin decreases the connectivity between important nodes linked to emotion processing like the frontal pole or the striatum. Future studies are needed to clarify whether connectivity changes predict therapeutic effects in psychiatric patients. Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.

  4. Developmental sex differences in resting state functional connectivity of amygdala sub-regions

    PubMed Central

    Alarcón, Gabriela; Cservenka, Anita; Rudolph, Marc D.; Fair, Damien A.; Nagel, Bonnie J.

    2015-01-01

    During adolescence, considerable social and biological changes occur that interact with functional brain maturation, some of which are sex-specific. The amygdala is one brain area that has displayed sexual dimorphism, specifically in socio-affective (superficial amygdala [SFA]), stress (centromedial amygdala [CMA]), and learning and memory (basolateral amygdala [BLA]) processing. The amygdala has also been implicated in mood and anxiety disorders which also display sex-specific features, most prominently observed during adolescence. Using functional magnetic resonance imaging (fMRI), the present study examined the interaction of age and sex on resting state functional connectivity (RSFC) of amygdala sub-regions, BLA and SFA, in a sample of healthy adolescents between the ages 10-16 years (n=122, 71 boys). Whole-brain, voxel-wise partial correlation analyses were conducted to determine RSFC of bilateral BLA and SFA seed regions, created using the Eickhoff-Zilles maximum probability maps based on cytoarchitectonic mapping and FMRIB's Integrated Registration and Segmentation Tool (FIRST). Monte Carlo simulation was implemented to correct for multiple comparisons (threshold of 53 contiguous voxels with a z-value ≥ 2.25). Results indicated that with increasing age, there was a corresponding decrease in RSFC between both amygdala sub-regions and parieto-occipital cortices, with a concurrent increase in RSFC with medial prefrontal cortex (mPFC). Specifically, boys and girls demonstrated increased coupling of mPFC and left and right SFA with age, respectively; however, neither sex showed increased connectivity between mPFC and BLA, which could indicate relative immaturity of fronto-limbic networks that is similar across sex. A dissociation in connectivity between BLA- and SFA- parieto-occipital RSFC emerged, in which girls had weaker negative RSFC between SFA and parieto-occipital regions and boys had weaker negative RSFC of BLA and parieto-occipital regions with

  5. Developmental sex differences in resting state functional connectivity of amygdala sub-regions.

    PubMed

    Alarcón, Gabriela; Cservenka, Anita; Rudolph, Marc D; Fair, Damien A; Nagel, Bonnie J

    2015-07-15

    During adolescence, considerable social and biological changes occur that interact with functional brain maturation, some of which are sex-specific. The amygdala is one brain area that has displayed sexual dimorphism, specifically in socio-affective (superficial amygdala [SFA]), stress (centromedial amygdala [CMA]), and learning and memory (basolateral amygdala [BLA]) processing. The amygdala has also been implicated in mood and anxiety disorders which display sex-specific features, most prominently observed during adolescence. Using functional magnetic resonance imaging (fMRI), the present study examined the interaction of age and sex on resting state functional connectivity (RSFC) of amygdala sub-regions, BLA and SFA, in a sample of healthy adolescents between the ages 10 and 16 years (n = 122, 71 boys). Whole-brain, voxel-wise partial correlation analyses were conducted to determine RSFC of bilateral BLA and SFA seed regions, created using the Eickhoff-Zilles maximum probability maps based on cytoarchitectonic mapping and FMRIB's Integrated Registration and Segmentation Tool (FIRST). Monte Carlo simulation was implemented to correct for multiple comparisons (threshold of 53 contiguous voxels with a z-value ≥ 2.25). Results indicated that with increasing age, there was a corresponding decrease in RSFC between both amygdala sub-regions and parieto-occipital cortices, with a concurrent increase in RSFC with medial prefrontal cortex (mPFC). Specifically, boys and girls demonstrated increased coupling of mPFC and left and right SFA with age, respectively; however, neither sex showed increased connectivity between mPFC and BLA, which could indicate relative immaturity of fronto-limbic networks that is similar across sex. A dissociation in connectivity between BLA- and SFA-parieto-occipital RSFC emerged, in which girls had weaker negative RSFC between SFA and parieto-occipital regions and boys had weaker negative RSFC of BLA and parieto-occipital regions with

  6. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation

    PubMed Central

    Pagliaccio, David; Luby, Joan L.; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Belden, Andrew C.; Botteron, Kelly N.; Harms, Michael P.; Barch, Deanna M.

    2015-01-01

    Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within four hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9–14 year olds; N=120). Whole-brain regression analyses indicated that increasing genetic ‘risk’ predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic ‘risk’ and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. PMID:26595470

  7. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation.

    PubMed

    Pagliaccio, David; Luby, Joan L; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S; Belden, Andrew C; Botteron, Kelly N; Harms, Michael P; Barch, Deanna M

    2015-11-01

    Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within 4 hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9- to 14-year-olds; N = 120). Whole-brain regression analyses indicated that increasing genetic "risk" predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic "risk" and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. (c) 2015 APA, all rights reserved).

  8. Attention bias in older women with remitted depression is associated with enhanced amygdala activity and functional connectivity.

    PubMed

    Albert, Kimberly; Gau, Violet; Taylor, Warren D; Newhouse, Paul A

    2017-03-01

    Cognitive bias is a common characteristic of major depressive disorder (MDD) and is posited to remain during remission and contribute to recurrence risk. Attention bias may be related to enhanced amygdala activity or altered amygdala functional connectivity in depression. The current study examined attention bias, brain activity for emotional images, and functional connectivity in post-menopausal women with and without a history of major depression. Attention bias for emotionally valenced images was examined in 33 postmenopausal women with (n=12) and without (n=21) a history of major depression using an emotion dot probe task during fMRI. Group differences in amygdala activity and functional connectivity were assessed using fMRI and examined for correlations to attention performance. Women with a history of MDD showed greater attentional bias for negative images and greater activity in brain areas including the amygdala for both positive and negative images (pcorr <0.001) than women without a history of MDD. In all participants, amygdala activity for negative images was correlated with attention facilitation for emotional images. Women with a history of MDD had significantly greater functional connectivity between the amygdala and hippocampal complex. In all participants amygdala-hippocampal connectivity was positively correlated with attention facilitation for negative images. Small sample with unbalanced groups. These findings provide evidence for negative attentional bias in euthymic, remitted depressed individuals. Activity and functional connectivity in limbic and attention networks may provide a neurobiological basis for continued cognitive bias in remitted depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Altered amygdala-prefrontal connectivity during emotion perception in schizophrenia.

    PubMed

    Bjorkquist, Olivia A; Olsen, Emily K; Nelson, Brady D; Herbener, Ellen S

    2016-08-01

    Individuals with schizophrenia evidence impaired emotional functioning. Abnormal amygdala activity has been identified as an etiological factor underlying affective impairment in this population, but the exact nature remains unclear. The current study utilized psychophysiological interaction analyses to examine functional connectivity between the amygdala and medial prefrontal cortex (mPFC) during an emotion perception task. Participants with schizophrenia (SZ) and healthy controls (HC) viewed and rated positive, negative, and neutral images while undergoing functional neuroimaging. Results revealed a significant group difference in right amygdala-mPFC connectivity during perception of negative versus neutral images. Specifically, HC participants demonstrated positive functional coupling between the amygdala and mPFC, consistent with co-active processing of salient information. In contrast, SZ participants evidenced negative functional coupling, consistent with top-down inhibition of the amygdala by the mPFC. A significant positive correlation between connectivity strength during negative image perception and clinician-rated social functioning was also observed in SZ participants, such that weaker right amygdala-mPFC coupling during negative compared to neutral image perception was associated with poorer social functioning. Overall, results suggest that emotional dysfunction and associated deficits in functional outcome in schizophrenia may relate to abnormal interactions between the amygdala and mPFC during perception of emotional stimuli. This study adds to the growing literature on abnormal functional connections in schizophrenia and supports the functional disconnection hypothesis of schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Dynamic Changes in Amygdala Activation and Functional Connectivity in Children and Adolescents with Anxiety Disorders

    PubMed Central

    Swartz, Johnna R.; Phan, K. Luan; Angstadt, Mike; Fitzgerald, Kate D.; Monk, Christopher S.

    2015-01-01

    Anxiety disorders are associated with abnormalities in amygdala function and prefrontal cortex-amygdala connectivity. The majority of fMRI studies have examined mean group differences in amygdala activation or connectivity in children and adolescents with anxiety disorders relative to controls, but emerging evidence suggests that abnormalities in amygdala function are dependent on the timing of the task and may vary across the course of a scanning session. The goal of the present study was to extend our knowledge of the dynamics of amygdala dysfunction by examining whether changes in amygdala activation and connectivity over scanning differ in pediatric anxiety disorder patients relative to typically developing controls during an emotion processing task. Examining changes in activation over time allows for a comparison of how brain function differs during initial exposure to novel stimuli versus more prolonged exposure. Participants included 34 anxiety disorder patients and 19 controls 7 to 19 years old. Participants performed an emotional face matching task during fMRI scanning and the task was divided into thirds in order to examine change in activation over time. Results demonstrated that patients exhibited an abnormal pattern of amygdala activation characterized by an initially heightened amygdala response relative to controls at the beginning of scanning, followed by significant decreases in activation over time. In addition, controls evidenced greater prefrontal cortex-amygdala connectivity during the beginning of scanning relative to patients. These results indicate that differences in emotion processing between the groups vary from initial exposure to novel stimuli relative to more prolonged exposure. Implications are discussed regarding how this pattern of neural activation may relate to altered early-occurring or anticipatory emotion-regulation strategies and maladaptive later-occurring strategies in children and adolescents with anxiety disorders. PMID

  11. Opposing Amygdala and Ventral Striatum Connectivity During Emotion Identification

    PubMed Central

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James

    2011-01-01

    Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed a well-characterized emotion identification task. As expected, the amygdala responded to THREAT (angry or fearful) faces more than NON-THREAT (sad or happy) faces. A functional connectivity analysis of the time series from an anatomically defined amygdala seed revealed a strong anti-correlation between the amygdala and the ventral striatum /ventral pallidum, consistent with an opposing role for these regions in during emotion identification. A second functional connectivity analysis (psychophysiological interaction) investigating relative connectivity on THREAT vs. NON-THREAT trials demonstrated that the amygdala had increased connectivity with the orbitofrontal cortex during THREAT trials, whereas the ventral striatum demonstrated increased connectivity with the posterior hippocampus on NON-THREAT trials. These results indicate that activity in the amygdala and ventral striatum may be inversely related, and that both regions may provide opposing affective bias signals during emotion identification. PMID:21600684

  12. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: A pilot study.

    PubMed

    Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M

    2017-12-01

    Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.

  13. Development of White Matter Microstructure and Intrinsic Functional Connectivity Between the Amygdala and Ventromedial Prefrontal Cortex: Associations With Anxiety and Depression.

    PubMed

    Jalbrzikowski, Maria; Larsen, Bart; Hallquist, Michael N; Foran, William; Calabro, Finnegan; Luna, Beatriz

    2017-10-01

    Connectivity between the amygdala and ventromedial prefrontal cortex (vmPFC) is compromised in multiple psychiatric disorders, many of which emerge during adolescence. To identify to what extent the deviations in amygdala-vmPFC maturation contribute to the onset of psychiatric disorders, it is essential to characterize amygdala-vmPFC connectivity changes during typical development. Using an accelerated cohort longitudinal design (1-3 time points, 10-25 years old, n = 246), we characterized developmental changes of the amygdala-vmPFC subregion functional and structural connectivity using resting-state functional magnetic resonance imaging and diffusion-weighted imaging. Functional connectivity between the centromedial amygdala and rostral anterior cingulate cortex (rACC), anterior vmPFC, and subgenual cingulate significantly decreased from late childhood to early adulthood in male and female subjects. Age-associated decreases were also observed between the basolateral amygdala and the rACC. Importantly, these findings were replicated in a separate cohort (10-22 years old, n = 327). Similarly, structural connectivity, as measured by quantitative anisotropy, significantly decreased with age in the same regions. Functional connectivity between the centromedial amygdala and the rACC was associated with structural connectivity in these same regions during early adulthood (22-25 years old). Finally, a novel time-varying coefficient analysis showed that increased centromedial amygdala-rACC functional connectivity was associated with greater anxiety and depression symptoms during early adulthood, while increased structural connectivity in centromedial amygdala-anterior vmPFC white matter was associated with greater anxiety/depression during late childhood. Specific developmental periods of functional and structural connectivity between the amygdala and the prefrontal systems may contribute to the emergence of anxiety and depressive symptoms and may play a critical role in

  14. Amygdala Response and Functional Connectivity During Emotion Regulation: A Study of 14 Depressed Adolescents

    PubMed Central

    Perlman, Greg; Simmons, Alan N.; Wu, Jing; Hahn, Kevin S.; Tapert, Susan F.; Max, Jeffrey E.; Paulus, Martin P.; Brown, Gregory G.; Frank, Guido K.; Campbell-Sills, Laura; Yang, Tony T.

    2012-01-01

    Background Ineffective emotion regulation and abnormal amygdala activation have each been found in adolescent-onset major depressive disorder. However, amygdala activation during emotion regulation has not been studied in adolescent-onset major depressive disorder. Method Fourteen unmedicated adolescents diagnosed with current depression without comorbid psychiatric disorders and fourteen well-matched controls ages 13 to 17 years underwent an emotional regulation task during functional magnetic resonance imaging. During this task, participants viewed negatively-valence images and were asked to notice how they were feeling without trying to change it and maintain their emotional reaction (“Maintain”) or to interpret the image in such a way as minimize their emotional response (“Reduce”). Results Imaging analyses demonstrated that adolescents with depression showed: (1) greater right amygdala activation during the maintain condition relative to controls, (2) less connectivity during the maintain condition between the amygdala and both the insula and medial prefrontal cortex than controls, and (3) a significant positive correlation between amygdala-seeded connectivity during maintenance of emotion and psychosocial functioning. Limitations The current study is cross-sectional comparison and longitudinal investigations with larger sample sizes are needed to examine the association between amygdala reactivity and emotion regulation over time in adolescent MDD. Conclusions During the maintain condition, adolescents with depression showed a heightened amygdala response and less reciprocal activation in brain regions that may modulate the amygdala. A poorly modulated, overreactive amygdala may contribute to poor emotion regulation. PMID:22401827

  15. Neonatal Amygdala Functional Connectivity at Rest in Healthy and Preterm Infants and Early Internalizing Symptoms.

    PubMed

    Rogers, Cynthia E; Sylvester, Chad M; Mintz, Carrie; Kenley, Jeanette K; Shimony, Joshua S; Barch, Deanna M; Smyser, Christopher D

    2017-02-01

    Alterations in the normal developmental trajectory of amygdala resting state functional connectivity (rs-FC) have been associated with atypical emotional processes and psychopathology. Little is known, however, regarding amygdala rs-FC at birth or its relevance to outcomes. This study examined amygdala rs-FC in healthy, full-term (FT) infants and in very preterm (VPT) infants, and tested whether variability of neonatal amygdala rs-FC predicted internalizing symptoms at age 2 years. Resting state fMRI data were obtained shortly after birth from 65 FT infants (gestational age [GA] ≥36 weeks) and 57 VPT infants (GA <30 weeks) at term equivalent. Voxelwise correlation analyses were performed using individual-specific bilateral amygdala regions of interest. Total internalizing symptoms and the behavioral inhibition, depression/withdrawal, general anxiety, and separation distress subdomains were assessed in a subset (n = 44) at age 2 years using the Infant Toddler Social Emotional Assessment. In FT and VPT infants, the amygdala demonstrated positive correlations with subcortical and limbic structures and negative correlations with cortical regions, although magnitudes were decreased in VPT infants. Neonatal amygdala rs-FC predicted internalizing symptoms at age 2 years with regional specificity consistent with known pathophysiology in older populations: connectivity with the anterior insula related to depressive symptoms, with the dorsal anterior cingulate related to generalized anxiety, and with the medial prefrontal cortex related to behavioral inhibition. Amygdala rs-FC is well established in neonates. Variability in regional neonatal amygdala rs-FC predicted internalizing symptoms at 2 years, suggesting that risk for internalizing symptoms may be established in neonatal amygdala functional connectivity patterns. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Lifespan anxiety is reflected in human amygdala cortical connectivity

    PubMed Central

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  17. The Development of Human Amygdala Functional Connectivity at Rest from 4 to 23 Years: a cross-sectional study

    PubMed Central

    Gabard-Durnam, Laurel J.; Flannery, Jessica; Goff, Bonnie; Gee, Dylan G.; Humphreys, Kathryn L.; Telzer, Eva; Hare, Todd; Tottenham, Nim

    2014-01-01

    Functional connections (FC) between the amygdala and cortical and subcortical regions underlie a range of affective and cognitive processes. Despite the central role amygdala networks have in these functions, the normative developmental emergence of FC between the amygdala and the rest of the brain is still largely undefined. This study employed amygdala subregion maps and resting-state functional magnetic resonance imaging to characterize the typical development of human amygdala FC from age 4 to 23 years old (n = 58). Amygdala FC with subcortical and limbic regions was largely stable across this developmental period. However, three cortical regions exhibited age-dependent changes in FC: amygdala FC with the medial prefrontal cortex (mPFC) increased with age, while amygdala FC with a region including the insula and superior temporal sulcus decreased with age, and amygdala FC with a region encompassing the parahippocampal gyrus and posterior cingulate also decreased with age. The transition from childhood to adolescence (around age 10 years) marked an important change-point in the nature of amygdala-cortical FC. We distinguished unique developmental patterns of coupling for three amygdala subregions and found particularly robust convergence of FC for all subregions with the mPFC. These findings suggest that there are extensive changes in amygdala-cortical functional connectivity that emerge between childhood and adolescence. PMID:24662579

  18. Unique insula subregion resting-state functional connectivity with amygdala complexes in posttraumatic stress disorder and its dissociative subtype.

    PubMed

    Nicholson, Andrew A; Sapru, Iman; Densmore, Maria; Frewen, Paul A; Neufeld, Richard W J; Théberge, Jean; McKinnon, Margaret C; Lanius, Ruth A

    2016-04-30

    The insula and amygdala are implicated in the pathophysiology of posttraumatic stress disorder (PTSD), where both have been shown to be hyper/hypoactive in non-dissociative (PTSD-DS) and dissociative subtype (PTSD+DS) PTSD patients, respectively, during symptom provocation. However, the functional connectivity between individual insula subregions and the amygdala has not been investigated in persons with PTSD, with or without the dissociative subtype. We examined insula subregion (anterior, mid, and posterior) functional connectivity with the bilateral amygdala using a region-of-interest seed-based approach via PickAtlas and SPM8. Resting-state fMRI was conducted with (n=61) PTSD patients (n=44 PTSD-DS; n=17 PTSD+DS), and (n=40) age-matched healthy controls. When compared to controls, the PTSD-DS group displayed increased insula connectivity (bilateral anterior, bilateral mid, and left posterior) to basolateral amygdala clusters in both hemispheres, and the PTSD+DS group displayed increased insula connectivity (bilateral anterior, left mid, and left posterior) to the left basolateral amygdala complex. Moreover, as compared to PTSD-DS, increased insula subregion connectivity (bilateral anterior, left mid, and right posterior) to the left basolateral amygdala was found in PTSD+DS. Depersonalization/derealization symptoms and PTSD symptom severity correlated with insula subregion connectivity to the basolateral amygdala within PTSD patients. This study is an important first step in elucidating patterns of neural connectivity associated with unique symptoms of arousal/interoception, emotional processing, and awareness of bodily states, in PTSD and its dissociative subtype. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Amygdala-prefrontal cortex resting-state functional connectivity varies with first depressive or manic episode in bipolar disorder.

    PubMed

    Wei, Shengnan; Geng, Haiyang; Jiang, Xiaowei; Zhou, Qian; Chang, Miao; Zhou, Yifang; Xu, Ke; Tang, Yanqing; Wang, Fei

    2017-02-22

    Bipolar disorder (BD) is one of the most complex mental illnesses, characterized by interactive depressive and manic states that are 2 contrary symptoms of disease states. The bilateral amygdala and prefrontal cortex (PFC) appear to play critical roles in BD; however, abnormalities seem to manifest differently in the 2 states and may provide further insight into underlying mechanisms. Sixteen participants with first-episode depressive and 13 participants with first-episode manic states of bipolar disorder as well as 30 healthy control (HC) participants underwent resting-state functional magnetic resonance imaging (fMRI). Resting-state functional connectivity (rsFC) between the bilateral amygdala and PFC was compared among the 3 groups. Compared with depressive state participants of the BD group, manic state participants of the BD group showed a significant decrease in rsFC between the amygdala and right orbital frontal cortex (p<0.05, corrected). In addition, rsFC between the amygdala and left middle frontal cortex was significantly decreased in depressive and manic state participants of the BD group when compared with the HC group (p<0.05, corrected). Our findings suggest that mood state during the first episodes of BD may be related to abnormality in hemispheric lateralization. The abnormalities in amygdala- left PFC functional connectivity might present the trait feature for BD, while deficits in amygdala- right PFC functional connectivity might be specific to manic episode, compared to depressive episode. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Amygdala functional connectivity is associated with locus of control in the context of cognitive aging

    PubMed Central

    Ren, Ping; Anthony, Mia; Chapman, Benjamin P.; Heffner, Kathi; Lin, Feng

    2017-01-01

    Locus of control (LOC) measures the extent to which individuals perceive control over their lives. Those with a more “internal” LOC feel self-sufficient and able to determine important aspects of their own future, while those with a more “external” LOC feel that their lives are governed by events beyond their control. Reduced internal LOC and increased external LOC have been found in cognitive disorders, but the neural substrates of these control perceptions are yet unknown. In the present study, we explored the relationship between amygdala functional connectivity and LOC in 18 amnestic mild cognitive impairment (MCI) and age-, sex-, and education-matched, 22 cognitively healthy controls (HC). Participants completed cognitive challenge tasks (Stroop Word Color task and Dual 1-back) for 20 minutes, and underwent resting-state functional magnetic resonance imaging immediately before and after the tasks. We found significantly lower internal LOC and higher external LOC in the MCI group than the HC group. Compared to HC, MCI group showed significantly stronger positive associations between internal LOC and baseline right amygdala connections (including right middle frontal gyrus and anterior cingulate cortex), and stronger negative associations between internal LOC and change of these right amygdala connections. Across all participants, external LOC explained the relationships between associations of another set of right amygdala connections (including middle cingulate cortex and right superior frontal gyrus), both at baseline and for change, and performance in the cognitive challenge tasks. Our findings indicate that the right amygdala networks might be critical in understanding the neural mechanisms underlying LOC’s role in cognitive aging. PMID:28315366

  1. Task modulated brain connectivity of the amygdala: a meta-analysis of psychophysiological interactions.

    PubMed

    Di, Xin; Huang, Jia; Biswal, Bharat B

    2017-01-01

    Understanding functional connectivity of the amygdala with other brain regions, especially task modulated connectivity, is a critical step toward understanding the role of the amygdala in emotional processes and the interactions between emotion and cognition. The present study performed coordinate-based meta-analysis on studies of task modulated connectivity of the amygdala which used psychophysiological interaction (PPI) analysis. We first analyzed 49 PPI studies on different types of tasks using activation likelihood estimation (ALE) meta-analysis. Widespread cortical and subcortical regions showed consistent task modulated connectivity with the amygdala, including the medial frontal cortex, bilateral insula, anterior cingulate, fusiform gyrus, parahippocampal gyrus, thalamus, and basal ganglia. These regions were in general overlapped with those showed coactivations with the amygdala, suggesting that these regions and amygdala are not only activated together, but also show different levels of interactions during tasks. Further analyses with subsets of PPI studies revealed task specific functional connectivities with the amygdala that were modulated by fear processing, face processing, and emotion regulation. These results suggest a dynamic modulation of connectivity upon task demands, and provide new insights on the functions of the amygdala in different affective and cognitive processes. The meta-analytic approach on PPI studies may offer a framework toward systematical examinations of task modulated connectivity.

  2. A Developmental Shift from Positive to Negative Connectivity in Human Amygdala-Prefrontal Circuitry

    PubMed Central

    Gee, Dylan G.; Humphreys, Kathryn L.; Flannery, Jessica; Goff, Bonnie; Telzer, Eva H.; Shapiro, Mor; Hare, Todd A.; Bookheimer, Susan Y.; Tottenham, Nim

    2013-01-01

    Recent human imaging and animal studies highlight the importance of frontoamygdala circuitry in the regulation of emotional behavior and its disruption in anxiety-related disorders. While tracing studies have suggested changes in amygdala-cortical connectivity through the adolescent period in rodents, less is known about the reciprocal connections within this circuitry across human development, when these circuits are being fine-tuned and substantial changes in emotional control are observed. The present study examined developmental changes in amygdala-prefrontal circuitry across the ages of 4 to 22 years using task-based functional magnetic resonance imaging (fMRI). Results suggest positive amygdala-prefrontal connectivity in early childhood that switches to negative functional connectivity during the transition to adolescence. Amygdala-mPFC functional connectivity was significantly positive (greater than zero) among participants younger than ten, whereas functional connectivity was significantly negative (less than zero) among participants ten years and older, over and above the effect of amygdala reactivity. The developmental switch in functional connectivity was paralleled by a steady decline in amygdala reactivity. Moreover, the valence switch might explain age-related improvement in task performance and a developmentally normative decline in anxiety. Initial positive connectivity followed by a valence shift to negative connectivity provides a neurobiological basis for regulatory development and may present novel insight into a more general process of developing regulatory connections. PMID:23467374

  3. Abnormal amygdala connectivity in patients with primary insomnia: evidence from resting state fMRI.

    PubMed

    Huang, Zhaoyang; Liang, Peipeng; Jia, Xiuqin; Zhan, Shuqin; Li, Ning; Ding, Yan; Lu, Jie; Wang, Yuping; Li, Kuncheng

    2012-06-01

    Neurobiological mechanisms underlying insomnia are poorly understood. Previous findings indicated that dysfunction of the emotional circuit might contribute to the neurobiological mechanisms underlying insomnia. The present study will test this hypothesis by examining alterations in functional connectivity of the amygdala in patients with primary insomnia (PI). Resting-state functional connectivity analysis was used to examine the temporal correlation between the amygdala and whole-brain regions in 10 medication-naive PI patients and 10 age- and sex-matched healthy controls. Additionally, the relationship between the abnormal functional connectivity and insomnia severity was investigated. We found decreased functional connectivity mainly between the amygdala and insula, striatum and thalamus, and increased functional connectivity mainly between the amygdala and premotor cortex, sensorimotor cortex in PI patients as compared to healthy controls. The connectivity of the amygdala with the premotor cortex in PI patients showed significant positive correlation with the total score of the Pittsburgh Sleep Quality Index (PSQI). The decreased functional connectivity between the amygdala and insula, striatum, and thalamus suggests that dysfunction in the emotional circuit might contribute to the neurobiological mechanisms underlying PI. The increased functional connectivity of the amygdala with the premotor and sensorimotor cortex demonstrates a compensatory mechanism to overcome the negative effects of sleep deficits and maintain the psychomotor performances in PI patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Amygdala functional connectivity is associated with locus of control in the context of cognitive aging.

    PubMed

    Ren, Ping; Anthony, Mia; Chapman, Benjamin P; Heffner, Kathi; Lin, Feng

    2017-05-01

    Locus of control (LOC) measures the extent to which individuals perceive control over their lives. Those with a more "internal" LOC feel self-sufficient and able to determine important aspects of their own future, while those with a more "external" LOC feel that their lives are governed by events beyond their control. Reduced internal LOC and increased external LOC have been found in cognitive disorders, but the neural substrates of these control perceptions are yet unknown. In the present study, we explored the relationship between amygdala functional connectivity and LOC in 18 amnestic mild cognitive impairment (MCI) and age-, sex-, and education-matched, 22 cognitively healthy controls (HC). Participants completed cognitive challenge tasks (Stroop Word Color task and Dual 1-back) for 20min, and underwent resting-state functional magnetic resonance imaging immediately before and after the tasks. We found significantly lower internal LOC and higher external LOC in the MCI group than the HC group. Compared to HC, MCI group showed significantly stronger positive associations between internal LOC and baseline right amygdala connections (including right middle frontal gyrus and anterior cingulate cortex), and stronger negative associations between internal LOC and change of these right amygdala connections. Across all participants, external LOC explained the relationships between associations of another set of right amygdala connections (including middle cingulate cortex and right superior frontal gyrus), both at baseline and for change, and performance in the cognitive challenge tasks. Our findings indicate that the right amygdala networks might be critical in understanding the neural mechanisms underlying LOC's role in cognitive aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Oxytocin differentially alters resting state functional connectivity between amygdala subregions and emotional control networks: Inverse correlation with depressive traits.

    PubMed

    Eckstein, Monika; Markett, Sebastian; Kendrick, Keith M; Ditzen, Beate; Liu, Fang; Hurlemann, Rene; Becker, Benjamin

    2017-04-01

    The hypothalamic neuropeptide oxytocin (OT) has received increasing attention for its role in modulating social-emotional processes across species. Previous studies on using intranasal-OT in humans point to a crucial engagement of the amygdala in the observed neuromodulatory effects of OT under task and rest conditions. However, the amygdala is not a single homogenous structure, but rather a set of structurally and functionally heterogeneous nuclei that show distinct patterns of connectivity with limbic and frontal emotion-processing regions. To determine potential differential effects of OT on functional connectivity of the amygdala subregions, 79 male participants underwent resting-state fMRI following randomized intranasal-OT or placebo administration. In line with previous studies OT increased the connectivity of the total amygdala with dorso-medial prefrontal regions engaged in emotion regulation. In addition, OT enhanced coupling of the total amygdala with cerebellar regions. Importantly, OT differentially altered the connectivity of amygdala subregions with distinct up-stream cortical nodes, particularly prefrontal/parietal, and cerebellar down-stream regions. OT-induced increased connectivity with cerebellar regions were largely driven by effects on the centromedial and basolateral subregions, whereas increased connectivity with prefrontal regions were largely mediated by right superficial and basolateral subregions. OT decreased connectivity of the centromedial subregions with core hubs of the emotional face processing network in temporal, occipital and parietal regions. Preliminary findings suggest that effects on the superficial amygdala-prefrontal pathway were inversely associated with levels of subclinical depression, possibly indicating that OT modulation may be blunted in the context of increased pathological load. Together, the present findings suggest a subregional-specific modulatory role of OT on amygdala-centered emotion processing networks in

  6. Effects of aging on functional connectivity of the amygdala for subsequent memory of negative pictures: a network analysis of functional magnetic resonance imaging data.

    PubMed

    St Jacques, Peggy L; Dolcos, Florin; Cabeza, Roberto

    2009-01-01

    Aging is associated with preserved enhancement of emotional memory, as well as with age-related reductions in memory for negative stimuli, but the neural networks underlying such alterations are not clear. We used a subsequent-memory paradigm to identify brain activity predicting enhanced emotional memory in young and older adults. Activity in the amygdala predicted enhanced emotional memory, with subsequent-memory activity greater for negative stimuli than for neutral stimuli, across age groups, a finding consistent with an overall enhancement of emotional memory. However, older adults recruited greater activity in anterior regions and less activity in posterior regions in general for negative stimuli that were subsequently remembered. Functional connectivity of the amygdala with the rest of the brain was consistent with age-related reductions in memory for negative stimuli: Older adults showed decreased functional connectivity between the amygdala and the hippocampus, but increased functional connectivity between the amygdala and dorsolateral prefrontal cortices. These findings suggest that age-related differences in the enhancement of emotional memory might reflect decreased connectivity between the amygdala and typical subsequent-memory regions, as well as the engagement of regulatory processes that inhibit emotional responses.

  7. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress.

    PubMed

    de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J

    2017-01-01

    Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Extraversion and neuroticism related to the resting-state effective connectivity of amygdala

    PubMed Central

    Pang, Yajing; Cui, Qian; Wang, Yifeng; Chen, Yuyan; Wang, Xiaona; Han, Shaoqiang; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2016-01-01

    The amygdala plays a key role in emotion processing. Its functional connectivity with other brain regions has been extensively demonstrated to be associated with extraversion and neuroticism. However, how the amygdala affects other regions and is affected by others within these connectivity patterns associated with extraversion and neuroticism remains unclear. To address this issue, we investigated the effective connectivity of the amygdala using Granger causality analysis on the resting-state functional magnetic resonance imaging data of 70 participants. Results showed that extraversion was positively correlated with the influence from the right inferior occipital gyrus (IOG) to the left amygdala, and from the bilateral IOG to the right amygdala; such result may represent the neural correlates of social interactions in extraverts. Conversely, neuroticism was associated with an increased influence from right amygdala to right middle frontal gyrus and a decreased influence from right precuneus to right amygdala. This influence might affect the modulations of cognitive regulation function and self-referential processes in neurotic individuals. These findings highlight the importance of the causal influences of amygdala in explaining the individual differences in extraversion and neuroticism, and offer further insights into the specific neural networks underlying personality. PMID:27765947

  9. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo.

    PubMed

    Abivardi, Aslan; Bach, Dominik R

    2017-08-01

    Structural alterations in long-range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non-systematic. Harnessing diffusion-weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1-weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non-human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white-matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non-human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927-3940, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo

    PubMed Central

    2017-01-01

    Abstract Structural alterations in long‐range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non‐systematic. Harnessing diffusion‐weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1‐weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non‐human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white‐matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non‐human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927–3940, 2017. © 2017 Wiley Periodicals, Inc. PMID:28512761

  11. Sliding-window analysis tracks fluctuations in amygdala functional connectivity associated with physiological arousal and vigilance during fear conditioning.

    PubMed

    Baczkowski, Blazej M; Johnstone, Tom; Walter, Henrik; Erk, Susanne; Veer, Ilya M

    2017-06-01

    We evaluated whether sliding-window analysis can reveal functionally relevant brain network dynamics during a well-established fear conditioning paradigm. To this end, we tested if fMRI fluctuations in amygdala functional connectivity (FC) can be related to task-induced changes in physiological arousal and vigilance, as reflected in the skin conductance level (SCL). Thirty-two healthy individuals participated in the study. For the sliding-window analysis we used windows that were shifted by one volume at a time. Amygdala FC was calculated for each of these windows. Simultaneously acquired SCL time series were averaged over time frames that corresponded to the sliding-window FC analysis, which were subsequently regressed against the whole-brain seed-based amygdala sliding-window FC using the GLM. Surrogate time series were generated to test whether connectivity dynamics could have occurred by chance. In addition, results were contrasted against static amygdala FC and sliding-window FC of the primary visual cortex, which was chosen as a control seed, while a physio-physiological interaction (PPI) was performed as cross-validation. During periods of increased SCL, the left amygdala became more strongly coupled with the bilateral insula and anterior cingulate cortex, core areas of the salience network. The sliding-window analysis yielded a connectivity pattern that was unlikely to have occurred by chance, was spatially distinct from static amygdala FC and from sliding-window FC of the primary visual cortex, but was highly comparable to that of the PPI analysis. We conclude that sliding-window analysis can reveal functionally relevant fluctuations in connectivity in the context of an externally cued task. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Resting-state functional connectivity between amygdala and the ventromedial prefrontal cortex following fear reminder predicts fear extinction

    PubMed Central

    Feng, Pan; Zheng, Yong

    2016-01-01

    Investigations of fear conditioning have elucidated the neural mechanisms of fear acquisition, consolidation and extinction, but it is not clear how the neural activation following fear reminder influence the following extinction. To address this question, we measured human brain activity following fear reminder using resting-state functional magnetic resonance imaging, and investigated whether the extinction effect can be predicted by resting-state functional connectivity (RSFC). Behaviorally, we found no significant differences of fear ratings between the reminder group and the no reminder group at the fear acquisition and extinction stages, but spontaneous recovery during re-extinction stage appeared only in the no reminder group. Imaging data showed that functional connectivity between ventromedial prefrontal cortex (vmPFC) and amygdala in the reminder group was greater than that in the no reminder group after fear memory reactivation. More importantly, the functional connectivity between amygdala and vmPFC of the reminder group after fear memory reactivation was positively correlated with extinction effect. These results suggest RSFC between amygdala and the vmPFC following fear reminder can predict fear extinction, which provide important insight into the neural mechanisms of fear memory after fear memory reactivation. PMID:27013104

  13. Awareness of Emotional Stimuli Determines the Behavioral Consequences of Amygdala Activation and Amygdala-Prefrontal Connectivity

    PubMed Central

    Lapate, R. C.; Rokers, B.; Tromp, D. P. M.; Orfali, N. S.; Oler, J. A.; Doran, S. T.; Adluru, N.; Alexander, A. L.; Davidson, R. J.

    2016-01-01

    Conscious awareness of negative cues is thought to enhance emotion-regulatory capacity, but the neural mechanisms underlying this effect are unknown. Using continuous flash suppression (CFS) in the MRI scanner, we manipulated visual awareness of fearful faces during an affect misattribution paradigm, in which preferences for neutral objects can be biased by the valence of a previously presented stimulus. The amygdala responded to fearful faces independently of awareness. However, when awareness of fearful faces was prevented, individuals with greater amygdala responses displayed a negative bias toward unrelated novel neutral faces. In contrast, during the aware condition, inverse coupling between the amygdala and prefrontal cortex reduced this bias, particularly among individuals with higher structural connectivity in the major white matter pathway connecting the prefrontal cortex and amygdala. Collectively, these results indicate that awareness promotes the function of a critical emotion-regulatory network targeting the amygdala, providing a mechanistic account for the role of awareness in emotion regulation. PMID:27181344

  14. Sex-dependent correlations between the personality dimension of harm avoidance and the resting-state functional connectivity of amygdala subregions.

    PubMed

    Li, Ying; Qin, Wen; Jiang, Tianzi; Zhang, Yunting; Yu, Chunshui

    2012-01-01

    Harm avoidance (HA) is a personality dimension involving the tendency to respond intensely to signals of aversive stimuli. Many previous neuroimaging studies have associated HA scores with the structural and functional organization of the amygdala, but none of these studies have evaluated the correlation between HA score and amygdala resting-state functional connectivity (rsFC). Moreover, the amygdala is not a homogeneous structure, and it has been divided into several structurally and functionally distinct subregions. Investigating the associations between HA score and properties of subregions of the amygdala could greatly improve our understanding of HA. In the present study, using a large sample of 291 healthy young adults, we aimed to uncover correlations between HA scores and the rsFCs of each amygdala subregion and to uncover possible sex-based differences in these correlations. We found that subregions of the amygdala showed different rsFC patterns, which contributed differently to individual HA scores. More specifically, HA scores were correlated with rsFCs between the laterobasal amygdala subregion and temporal and occipital cortices related to emotional information input, between the centromedial subregion and the frontal cortices associated with emotional output control, and between the superficial subregion and the frontal and temporal areas involved in both functions. Moreover, significant gender-based differences were uncovered in these correlations. Our findings provide a more detailed model of association between HA scores and amygdala rsFC, extend our understanding of the connectivity of subregions of the amygdala, and confirm sex-based differences in HA associations.

  15. Resting-state functional connectivity of the amygdala in suicide attempters with major depressive disorder.

    PubMed

    Kang, Seung-Gul; Na, Kyoung-Sae; Choi, Jae-Won; Kim, Jeong-Hee; Son, Young-Don; Lee, Yu Jin

    2017-07-03

    In this study, we investigated the difference in resting-state functional connectivity (RSFC) of the amygdala between suicide attempters and non-suicide attempters with major depressive disorder (MDD) using functional magnetic resonance imaging (fMRI). This study included 19 suicide attempters with MDD and 19 non-suicide attempters with MDD. RSFC was compared between the two groups and the regression analyses were conducted to identify the correlation between RSFC and Scale for Suicide Ideation (SSI) scores in the suicide attempt group. Statistical significance was set at p-value (uncorrected) <0.005 with k≥28 voxels. Compared with non-suicide attempters, suicide attempters showed significantly increased RSFC of the left amygdala with the right insula and left superior orbitofrontal area, and increased RSFC of the right amygdala with the left middle temporal area. The regression analysis showed a significant correlation between the SSI total score and RSFC of the right amygdala with the right parahippocampal area in the suicide attempt group. The present RSFC findings provide evidence of a functional neural basis and will help reveal the pathophysiology underlying suicidality in subjects with MDD. Copyright © 2017. Published by Elsevier Inc.

  16. Resilience and amygdala function in older healthy and depressed adults.

    PubMed

    Leaver, Amber M; Yang, Hongyu; Siddarth, Prabha; Vlasova, Roza M; Krause, Beatrix; St Cyr, Natalie; Narr, Katherine L; Lavretsky, Helen

    2018-09-01

    Previous studies suggest that low emotional resilience may correspond with increased or over-active amygdala function. Complementary studies suggest that emotional resilience increases with age; older adults tend to have decreased attentional bias to negative stimuli compared to younger adults. Amygdala nuclei and related brain circuits have been linked to negative affect, and depressed patients have been demonstrated to have abnormal amygdala function. In the current study, we correlated psychological resilience measures with amygdala function measured with resting-state arterial spin-labelled (ASL) and blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in older adults with and without depression. Specifically, we targeted the basolateral, centromedial, and superficial nuclei groups of the amygdala, which have different functions and brain connections. High levels of psychological resilience correlated with lower basal levels of amygdala activity measured with ASL fMRI. High resilience also correlated with decreased connectivity between amygdala nuclei and the ventral default-mode network independent of depression status. Instead, lower depression symptoms were associated with higher connectivity between the amygdalae and dorsal frontal networks. Future multi-site studies with larger sample size and improved neuroimaging technologies are needed. Longitudinal studies that target resilience to naturalistic stressors will also be a powerful contribution to the field. Our results suggest that resilience in older adults is more closely related to function in ventral amygdala networks, while late-life depression is related to reduced connectivity between the amygdala and dorsal frontal regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity.

    PubMed

    Paret, Christian; Ruf, Matthias; Gerchen, Martin Fungisai; Kluetsch, Rosemarie; Demirakca, Traute; Jungkunz, Martin; Bertsch, Katja; Schmahl, Christian; Ende, Gabriele

    2016-01-15

    Down-regulation of the amygdala with real-time fMRI neurofeedback (rtfMRI NF) potentially allows targeting brain circuits of emotion processing and may involve prefrontal-limbic networks underlying effective emotion regulation. Little research has been dedicated to the effect of rtfMRI NF on the functional connectivity of the amygdala and connectivity patterns in amygdala down-regulation with neurofeedback have not been addressed yet. Using psychophysiological interaction analysis of fMRI data, we present evidence that voluntary amygdala down-regulation by rtfMRI NF while viewing aversive pictures was associated with increased connectivity of the right amygdala with the ventromedial prefrontal cortex (vmPFC) in healthy subjects (N=16). In contrast, a control group (N=16) receiving sham feedback did not alter amygdala connectivity (Group×Condition t-contrast: p<.05 at cluster-level). Task-dependent increases in amygdala-vmPFC connectivity were predicted by picture arousal (β=.59, p<.05). A dynamic causal modeling analysis with Bayesian model selection aimed at further characterizing the underlying causal structure and favored a bottom-up model assuming predominant information flow from the amygdala to the vmPFC (xp=.90). The results were complemented by the observation of task-dependent alterations in functional connectivity of the vmPFC with the visual cortex and the ventrolateral PFC in the experimental group (Condition t-contrast: p<.05 at cluster-level). Taken together, the results underscore the potential of amygdala fMRI neurofeedback to influence functional connectivity in key networks of emotion processing and regulation. This may be beneficial for patients suffering from severe emotion dysregulation by improving neural self-regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Resting-state functional connectivity between amygdala and the ventromedial prefrontal cortex following fear reminder predicts fear extinction.

    PubMed

    Feng, Pan; Zheng, Yong; Feng, Tingyong

    2016-06-01

    Investigations of fear conditioning have elucidated the neural mechanisms of fear acquisition, consolidation and extinction, but it is not clear how the neural activation following fear reminder influence the following extinction. To address this question, we measured human brain activity following fear reminder using resting-state functional magnetic resonance imaging, and investigated whether the extinction effect can be predicted by resting-state functional connectivity (RSFC). Behaviorally, we found no significant differences of fear ratings between the reminder group and the no reminder group at the fear acquisition and extinction stages, but spontaneous recovery during re-extinction stage appeared only in the no reminder group. Imaging data showed that functional connectivity between ventromedial prefrontal cortex (vmPFC) and amygdala in the reminder group was greater than that in the no reminder group after fear memory reactivation. More importantly, the functional connectivity between amygdala and vmPFC of the reminder group after fear memory reactivation was positively correlated with extinction effect. These results suggest RSFC between amygdala and the vmPFC following fear reminder can predict fear extinction, which provide important insight into the neural mechanisms of fear memory after fear memory reactivation. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial

    PubMed Central

    Taren, Adrienne A.; Gianaros, Peter J.; Greco, Carol M.; Lindsay, Emily K.; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K.; Ferris, Jennifer L.; Julson, Erica; Marsland, Anna L.; Bursley, James K.; Ramsburg, Jared

    2015-01-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. PMID:26048176

  20. The Dissociative Subtype of Posttraumatic Stress Disorder: Unique Resting-State Functional Connectivity of Basolateral and Centromedial Amygdala Complexes

    PubMed Central

    Nicholson, Andrew A; Densmore, Maria; Frewen, Paul A; Théberge, Jean; Neufeld, Richard WJ; McKinnon, Margaret C; Lanius, Ruth A

    2015-01-01

    Previous studies point towards differential connectivity patterns among basolateral (BLA) and centromedial (CMA) amygdala regions in patients with posttraumatic stress disorder (PTSD) as compared with controls. Here we describe the first study to compare directly connectivity patterns of the BLA and CMA complexes between PTSD patients with and without the dissociative subtype (PTSD+DS and PTSD−DS, respectively). Amygdala connectivity to regulatory prefrontal regions and parietal regions involved in consciousness and proprioception were expected to differ between these two groups based on differential limbic regulation and behavioral symptoms. PTSD patients (n=49) with (n=13) and without (n=36) the dissociative subtype and age-matched healthy controls (n=40) underwent resting-state fMRI. Bilateral BLA and CMA connectivity patterns were compared using a seed-based approach via SPM Anatomy Toolbox. Among patients with PTSD, the PTSD+DS group exhibited greater amygdala functional connectivity to prefrontal regions involved in emotion regulation (bilateral BLA and left CMA to the middle frontal gyrus and bilateral CMA to the medial frontal gyrus) as compared with the PTSD−DS group. In addition, the PTSD+DS group showed greater amygdala connectivity to regions involved in consciousness, awareness, and proprioception—implicated in depersonalization and derealization (left BLA to superior parietal lobe and cerebellar culmen; left CMA to dorsal posterior cingulate and precuneus). Differences in amygdala complex connectivity to specific brain regions parallel the unique symptom profiles of the PTSD subgroups and point towards unique biological markers of the dissociative subtype of PTSD. PMID:25790021

  1. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    PubMed

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Amygdala-prefrontal connectivity during appraisal of symptom-related stimuli in obsessive-compulsive disorder.

    PubMed

    Paul, Sandra; Beucke, Jan C; Kaufmann, Christian; Mersov, Anna; Heinzel, Stephan; Kathmann, Norbert; Simon, Daniela

    2018-04-06

    Cognitive models of obsessive-compulsive disorder (OCD) posit dysfunctional appraisal of disorder-relevant stimuli in patients, suggesting disturbances in the processes relying on amygdala-prefrontal connectivity. Recent neuroanatomical models add to the traditional view of dysfunction in corticostriatal circuits by proposing alterations in an affective circuit including amygdala-prefrontal connections. However, abnormalities in amygdala-prefrontal coupling during symptom provocation, and particularly during conditions that require stimulus appraisal, remain to be demonstrated directly. Amygdala-prefrontal connectivity was examined in unmedicated OCD patients during appraisal (v. distraction) of symptom-provoking stimuli compared with an emotional control condition. Subsequent analyses tested whether hypothesized connectivity alterations could be also identified during passive viewing and the resting state in two independent samples. During symptom provocation, reductions in positive coupling between amygdala and orbitofrontal cortex were observed in OCD patients relative to healthy control participants during appraisal and passive viewing of OCD-relevant stimuli, whereas abnormally high amygdala-ventromedial prefrontal cortex coupling was found when appraisal was distracted by a secondary task. In contrast, there were no group differences in amygdala connectivity at rest. Our finding of abnormal amygdala-prefrontal connectivity during appraisal of symptom-related (relative to generally aversive) stimuli is consistent with the involvement of affective circuits in the functional neuroanatomy of OCD. Aberrant connectivity can be assumed to impact stimulus appraisal and emotion regulation, but might also relate to fear extinction deficits, which have recently been described in OCD. Taken together, we propose to integrate abnormalities in amygdala-prefrontal coupling in affective models of OCD.

  3. Preschool Anxiety Disorders Predict Different Patterns of Amygdala-Prefrontal Connectivity at School-Age

    PubMed Central

    Carpenter, Kimberly L. H.; Angold, Adrian; Chen, Nan-Kuei; Copeland, William E.; Gaur, Pooja; Pelphrey, Kevin; Song, Allen W.; Egger, Helen L.

    2015-01-01

    Objective In this prospective, longitudinal study of young children, we examined whether a history of preschool generalized anxiety, separation anxiety, and/or social phobia is associated with amygdala-prefrontal dysregulation at school-age. As an exploratory analysis, we investigated whether distinct anxiety disorders differ in the patterns of this amygdala-prefrontal dysregulation. Methods Participants were children taking part in a 5-year study of early childhood brain development and anxiety disorders. Preschool symptoms of generalized anxiety, separation anxiety, and social phobia were assessed with the Preschool Age Psychiatric Assessment (PAPA) in the first wave of the study when the children were between 2 and 5 years old. The PAPA was repeated at age 6. We conducted functional MRIs when the children were 5.5 to 9.5 year old to assess neural responses to viewing of angry and fearful faces. Results A history of preschool social phobia predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces. Preschool generalized anxiety predicted less functional connectivity between the amygdala and dorsal prefrontal cortices in response to fearful faces. Finally, a history of preschool separation anxiety predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces and greater school-age functional connectivity between the amygdala and dorsal prefrontal cortices to angry faces. Conclusions Our results suggest that there are enduring neurobiological effects associated with a history of preschool anxiety, which occur over-and-above the effect of subsequent emotional symptoms. Our results also provide preliminary evidence for the neurobiological differentiation of specific preschool anxiety disorders. PMID:25625285

  4. Segregation of face sensitive areas within the fusiform gyrus using global signal regression? A study on amygdala resting-state functional connectivity.

    PubMed

    Kruschwitz, Johann D; Meyer-Lindenberg, Andreas; Veer, Ilya M; Wackerhagen, Carolin; Erk, Susanne; Mohnke, Sebastian; Pöhland, Lydia; Haddad, Leila; Grimm, Oliver; Tost, Heike; Romanczuk-Seiferth, Nina; Heinz, Andreas; Walter, Martin; Walter, Henrik

    2015-10-01

    The application of global signal regression (GSR) to resting-state functional magnetic resonance imaging data and its usefulness is a widely discussed topic. In this article, we report an observation of segregated distribution of amygdala resting-state functional connectivity (rs-FC) within the fusiform gyrus (FFG) as an effect of GSR in a multi-center-sample of 276 healthy subjects. Specifically, we observed that amygdala rs-FC was distributed within the FFG as distinct anterior versus posterior clusters delineated by positive versus negative rs-FC polarity when GSR was performed. To characterize this effect in more detail, post hoc analyses revealed the following: first, direct overlays of task-functional magnetic resonance imaging derived face sensitive areas and clusters of positive versus negative amygdala rs-FC showed that the positive amygdala rs-FC cluster corresponded best with the fusiform face area, whereas the occipital face area corresponded to the negative amygdala rs-FC cluster. Second, as expected from a hierarchical face perception model, these amygdala rs-FC defined clusters showed differential rs-FC with other regions of the visual stream. Third, dynamic connectivity analyses revealed that these amygdala rs-FC defined clusters also differed in their rs-FC variance across time to the amygdala. Furthermore, subsample analyses of three independent research sites confirmed reliability of the effect of GSR, as revealed by similar patterns of distinct amygdala rs-FC polarity within the FFG. In this article, we discuss the potential of GSR to segregate face sensitive areas within the FFG and furthermore discuss how our results may relate to the functional organization of the face-perception circuit. © 2015 Wiley Periodicals, Inc.

  5. The influence of 5-HTTLPR transporter genotype on amygdala-subgenual anterior cingulate cortex connectivity in autism spectrum disorder.

    PubMed

    Velasquez, Francisco; Wiggins, Jillian Lee; Mattson, Whitney I; Martin, Donna M; Lord, Catherine; Monk, Christopher S

    2017-04-01

    Social deficits in autism spectrum disorder (ASD) are linked to amygdala functioning and functional connection between the amygdala and subgenual anterior cingulate cortex (sACC) is involved in the modulation of amygdala activity. Impairments in behavioral symptoms and amygdala activation and connectivity with the sACC seem to vary by serotonin transporter-linked polymorphic region (5-HTTLPR) variant genotype in diverse populations. The current preliminary investigation examines whether amygdala-sACC connectivity differs by 5-HTTLPR genotype and relates to social functioning in ASD. A sample of 108 children and adolescents (44 ASD) completed an fMRI face-processing task. Youth with ASD and low expressing 5-HTTLPR genotypes showed significantly greater connectivity than youth with ASD and higher expressing genotypes as well as typically developing (TD) individuals with both low and higher expressing genotypes, in the comparison of happy vs. baseline faces and happy vs. neutral faces. Moreover, individuals with ASD and higher expressing genotypes exhibit a negative relationship between amygdala-sACC connectivity and social dysfunction. Altered amygdala-sACC coupling based on 5-HTTLPR genotype may help explain some of the heterogeneity in neural and social function observed in ASD. This is the first ASD study to combine genetic polymorphism analyses and functional connectivity in the context of a social task. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Age-Related Changes in Amygdala-Frontal Connectivity during Emotional Face Processing from Childhood into Young Adulthood

    PubMed Central

    Wu, Minjie; Kujawa, Autumn; Lu, Lisa H.; Fitzgerald, Daniel A.; Klumpp, Heide; Fitzgerald, Kate D.; Monk, Christopher S.; Phan, K. Luan

    2016-01-01

    The ability to process and respond to emotional facial expressions is a critical skill for healthy social and emotional development. There has been growing interest in understanding the neural circuitry underlying development of emotional processing, with previous research implicating functional connectivity between amygdala and frontal regions. However, existing work has focused on threatening emotional faces, raising questions regarding the extent to which these developmental patterns are specific to threat or to emotional face processing more broadly. In the current study, we examined age-related changes in brain activity and amygdala functional connectivity during an fMRI emotional face matching task (including angry, fearful and happy faces) in 61 healthy subjects aged 7–25 years. We found age-related decreases in ventral medial prefrontal cortex (vmPFC) activity in response to happy faces but not to angry or fearful faces, and an age-related change (shifting from positive to negative correlation) in amygdala-anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) functional connectivity to all emotional faces. Specifically, positive correlations between amygdala and ACC/mPFC in children changed to negative correlations in adults, which may suggest early emergence of bottom-up amygdala excitatory signaling to ACC/mPFC in children and later development of top-down inhibitory control of ACC/mPFC over amygdala in adults. Age-related changes in amygdala-ACC/mPFC connectivity did not vary for processing of different facial emotions, suggesting changes in amygdala-ACC/mPFC connectivity may underlie development of broad emotional processing, rather than threat-specific processing. PMID:26931629

  7. Amygdala task-evoked activity and task-free connectivity independently contribute to feelings of arousal.

    PubMed

    Touroutoglou, Alexandra; Bickart, Kevin C; Barrett, Lisa Feldman; Dickerson, Bradford C

    2014-10-01

    Individual differences in the intensity of feelings of arousal while viewing emotional pictures have been associated with the magnitude of task-evoked blood-oxygen dependent (BOLD) response in the amygdala. Recently, we reported that individual differences in feelings of arousal are associated with task-free (resting state) connectivity within the salience network. There has not yet been an investigation of whether these two types of functional magnetic resonance imaging (MRI) measures are redundant or independent in their relationships to behavior. Here we tested the hypothesis that a combination of task-evoked amygdala activation and task-free amygdala connectivity within the salience network relate to individual differences in feelings of arousal while viewing of negatively potent images. In 25 young adults, results revealed that greater task-evoked amygdala activation and stronger task-free amygdala connectivity within the salience network each contributed independently to feelings of arousal, predicting a total of 45% of its variance. Individuals who had both increased task-evoked amygdala activation and stronger task-free amygdala connectivity within the salience network had the most heightened levels of arousal. Task-evoked amygdala activation and task-free amygdala connectivity within the salience network were not related to each other, suggesting that resting-state and task-evoked dynamic brain imaging measures may provide independent and complementary information about affective experience, and likely other kinds of behaviors as well. Copyright © 2014 Wiley Periodicals, Inc.

  8. Two Days' Sleep Debt Causes Mood Decline During Resting State Via Diminished Amygdala-Prefrontal Connectivity.

    PubMed

    Motomura, Yuki; Katsunuma, Ruri; Yoshimura, Michitaka; Mishima, Kazuo

    2017-10-01

    Sleep debt (SD) has been suggested to evoke emotional instability by diminishing the suppression of the amygdala by the medial prefrontal cortex (MPFC). Here, we investigated how short-term SD affects resting-state functional connectivity between the amygdala and MPFC, self-reported mood, and sleep parameters. Eighteen healthy adult men aged 29 ± 8.24 years participated in a 2-day sleep control session (SC; time in bed [TIB], 9 hours) and 2-day SD session (TIB, 3 hours). On day 2 of each session, resting-state functional magnetic resonance imaging was performed, followed immediately by measuring self-reported mood on the State-Trait Anxiety Inventory-State subscale (STAI-S). STAI-S score was significantly increased, and functional connectivity between the amygdala and MPFC was significantly decreased in SD compared with SC. Significant correlations were observed between reduced rapid eye movement (REM) sleep and reduced left amygdala-MPFC functional connectivity (FCL_amg-MPFC) and between reduced FCL_amg-MPFC and increased STAI-S score in SD compared with SC. These findings suggest that reduced MPFC functional connectivity of amygdala activity is involved in mood deterioration under SD, and that REM sleep reduction is involved in functional changes in the corresponding brain regions. Having adequate REM sleep may be important for mental health maintenance. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. Age-related changes in amygdala-frontal connectivity during emotional face processing from childhood into young adulthood.

    PubMed

    Wu, Minjie; Kujawa, Autumn; Lu, Lisa H; Fitzgerald, Daniel A; Klumpp, Heide; Fitzgerald, Kate D; Monk, Christopher S; Phan, K Luan

    2016-05-01

    The ability to process and respond to emotional facial expressions is a critical skill for healthy social and emotional development. There has been growing interest in understanding the neural circuitry underlying development of emotional processing, with previous research implicating functional connectivity between amygdala and frontal regions. However, existing work has focused on threatening emotional faces, raising questions regarding the extent to which these developmental patterns are specific to threat or to emotional face processing more broadly. In the current study, we examined age-related changes in brain activity and amygdala functional connectivity during an fMRI emotional face matching task (including angry, fearful, and happy faces) in 61 healthy subjects aged 7-25 years. We found age-related decreases in ventral medial prefrontal cortex activity in response to happy faces but not to angry or fearful faces, and an age-related change (shifting from positive to negative correlation) in amygdala-anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) functional connectivity to all emotional faces. Specifically, positive correlations between amygdala and ACC/mPFC in children changed to negative correlations in adults, which may suggest early emergence of bottom-up amygdala excitatory signaling to ACC/mPFC in children and later development of top-down inhibitory control of ACC/mPFC over amygdala in adults. Age-related changes in amygdala-ACC/mPFC connectivity did not vary for processing of different facial emotions, suggesting changes in amygdala-ACC/mPFC connectivity may underlie development of broad emotional processing, rather than threat-specific processing. Hum Brain Mapp 37:1684-1695, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression.

    PubMed

    Connolly, Colm G; Ho, Tiffany C; Blom, Eva Henje; LeWinn, Kaja Z; Sacchet, Matthew D; Tymofiyeva, Olga; Simmons, Alan N; Yang, Tony T

    2017-01-01

    The incidence of major depressive disorder (MDD) rises during adolescence, yet the neural mechanisms of MDD during this key developmental period are unclear. Altered amygdala resting-state functional connectivity (RSFC) has been associated with both adolescent and adult MDD, as well as symptom improvement in response to treatment in adults. However, no study to date has examined whether amygdala RSFC is associated with changes in depressive symptom severity in adolescents. We examined group differences in amygdala RSFC between medication-naïve depressed adolescents (N=48) and well-matched healthy controls (N=53) cross-sectionally. We then longitudinally examined whether baseline amygdala RSFC was associated with change in depression symptoms three months later in a subset of the MDD group (N=24). Compared to healthy controls, depressed adolescents showed reduced amygdala-based RSFC with the dorsolateral prefrontal cortex (DLPFC)and the ventromedial prefrontal cortex (VMPFC). Within the depressed group, more positive baseline RSFC between the amygdala and insulae was associated with greater reduction in depression symptoms three months later. Only a subset of depressed participants was assessed at follow-up and treatment type and delivery were not standardized. Adolescent depression may be characterized by dysfunction of frontolimbic circuits (amygdala-DLPFC, amygdala-VMPFC) underpinning emotional regulation, whereas those circuits (amygdala-insula) subserving affective integration may index changes in depression symptom severity and may therefore potentially serve as a candidate biomarker for treatment response. Furthermore, these results suggest that the biomarkers of MDD presence are distinct from those associated with change in depression symptoms over time. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a nonforensic sample.

    PubMed

    Yoder, Keith J; Porges, Eric C; Decety, Jean

    2015-04-01

    Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a nonforensic sample are linked to amygdala response to violence, this study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. © 2014 Wiley Periodicals, Inc.

  12. Self-esteem modulates amygdala-ventrolateral prefrontal cortex connectivity in response to mortality threats.

    PubMed

    Yanagisawa, Kuniaki; Abe, Nobuhito; Kashima, Emiko S; Nomura, Michio

    2016-03-01

    Reminders of death often elicit defensive responses in individuals, especially among those with low self-esteem. Although empirical evidence indicates that self-esteem serves as a buffer against mortality threats, the precise neural mechanism underlying this effect remains unknown. We used functional magnetic resonance imaging (fMRI) to test the hypothesis that self-esteem modulates neural responses to death-related stimuli, especially functional connectivity within the limbic-frontal circuitry, thereby affecting subsequent defensive reactions. As predicted, individuals with high self-esteem subjected to a mortality threat exhibited increased amygdala-ventrolateral prefrontal cortex (VLPFC) connectivity during the processing of death-related stimuli compared with individuals who have low self-esteem. Further analysis revealed that stronger functional connectivity between the amygdala and the VLPFC predicted a subsequent decline in responding defensively to those who threaten one's beliefs. These results suggest that the amygdala-VLPFC interaction, which is modulated by self-esteem, can reduce the defensiveness caused by death-related stimuli, thereby providing a neural explanation for why individuals with high self-esteem exhibit less defensive reactions to mortality threats. (c) 2016 APA, all rights reserved).

  13. Reduced amygdala-orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits

    PubMed Central

    Marsh, Abigail A.; Finger, Elizabeth C.; Fowler, Katherine A.; Jurkowitz, Ilana T.N.; Schechter, Julia C.; Yu, Henry H.; Pine, Daniel S.; Blair, R. J. R.

    2011-01-01

    We used functional magnetic resonance imaging (fMRI) to investigate dysfunction in the amygdala and orbitofrontal cortex in adolescents with disruptive behavior disorders and psychopathic traits during a moral judgment task. Fourteen adolescents with psychopathic traits and 14 healthy controls were assessed using fMRI while they categorized illegal and legal behaviors in a moral judgment implicit association task. fMRI data were then analyzed using random-effects analysis of variance and functional connectivity. Youths with psychopathic traits showed reduced amygdala activity when making judgments about legal actions and reduced functional connectivity between the amygdala and orbitofrontal cortex during task performance. These results suggest that psychopathic traits are associated with amygdala and orbitofrontal cortex dysfunction. This dysfunction may relate to previous findings of disrupted moral judgment in this population. PMID:22047730

  14. Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age

    PubMed Central

    Graham, Alice M.; Buss, Claudia; Rasmussen, Jerod M.; Rudolph, Marc D.; Demeter, Damion V.; Gilmore, John H.; Styner, Martin; Entringer, Sonja; Wadhwa, Pathik D.; Fair, Damien A.

    2015-01-01

    The first year of life is an important period for emergence of fear in humans. While animal models have revealed developmental changes in amygdala circuitry accompanying emerging fear, human neural systems involved in early fear development remain poorly understood. To increase understanding of the neural foundations of human fear, it is important to consider parallel cognitive development, which may modulate associations between typical development of early fear and subsequent risk for fear-related psychopathology. We, therefore, examined amygdala functional connectivity with rs-fcMRI in 48 neonates (M=3.65 weeks, SD=1.72), and measured fear and cognitive development at 6-months-of-age. Stronger, positive neonatal amygdala connectivity to several regions, including bilateral anterior insula and ventral striatum, was prospectively associated with higher fear at 6-months. Stronger amygdala connectivity to ventral anterior cingulate/anterior medial prefrontal cortex predicted a specific phenotype of higher fear combined with more advanced cognitive development. Overall, findings demonstrate unique profiles of neonatal amygdala functional connectivity related to emerging fear and cognitive development, which may have implications for normative and pathological fear in later years. Consideration of infant fear in the context of cognitive development will likely contribute to a more nuanced understanding of fear, its neural bases, and its implications for future mental health. PMID:26499255

  15. Altered gray matter density and disrupted functional connectivity of the amygdala in adults with Internet gaming disorder.

    PubMed

    Ko, Chih-Hung; Hsieh, Tsyh-Jyi; Wang, Peng-Wei; Lin, Wei-Chen; Yen, Cheng-Fang; Chen, Cheng-Sheng; Yen, Ju-Yu

    2015-03-03

    The aim of this study was to evaluate the altered brain structure and functional connectivity (FC) among subjects with Internet gaming disorder (IGD). We recruited 30 males with IGD and 30 controls and evaluated their gray matter density (GMD) and FC using resting fMRI. The severities of IGD, gaming urge, and impulsivity were also assessed. The results demonstrated that the subjects with IGD had a higher impulsivity and a greater severity of IGD. The subjects with IGD had a lower GMD over the bilateral amygdala than the controls. Further, the subjects with IGD had lower FC with the left amygdala over the left dorsolateral prefrontal lobe (DLPFC) and with the right amygdala over the left DLPFC and orbital frontal lobe (OFL). They also had higher FC with the bilateral amygdala over the contralateral insula than the controls. The FC between the left amygdala and DLPFC was negatively correlated with impulsivity. The FC of the right amygdala to the left DLPFC and orbital frontal lobe was also negatively correlated with impulsivity. Our results indicated that the altered GMD over the amygdala might represent vulnerability to IGD, such as impulsivity. Further analysis of the amygdala demonstrated impaired FC to the frontal lobe, which represents impulsivity. The results of this study suggested that the amygdala plays a very influential role in the mechanism of IGD. Its detailed role should be further evaluated in future study and should be considered in the treatment of IGD. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a non-forensic sample

    PubMed Central

    Yoder, Keith J.; Porges, Eric C.; Decety, Jean

    2016-01-01

    Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a non-forensic sample are linked to amygdala response to violence, the current study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. PMID:25557777

  17. FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network

    PubMed Central

    Qin, Wei; Tian, Jie; Bai, Lijun; Pan, Xiaohong; Yang, Lin; Chen, Peng; Dai, Jianping; Ai, Lin; Zhao, Baixiao; Gong, Qiyong; Wang, Wei; von Deneen, Karen M; Liu, Yijun

    2008-01-01

    Background Recently, increasing evidence has indicated that the primary acupuncture effects are mediated by the central nervous system. However, specific brain networks underpinning these effects remain unclear. Results In the present study using fMRI, we employed a within-condition interregional covariance analysis method to investigate functional connectivity of brain networks involved in acupuncture. The fMRI experiment was performed before, during and after acupuncture manipulations on healthy volunteers at an acupuncture point, which was previously implicated in a neural pathway for pain modulation. We first identified significant fMRI signal changes during acupuncture stimulation in the left amygdala, which was subsequently selected as a functional reference for connectivity analyses. Our results have demonstrated that there is a brain network associated with the amygdala during a resting condition. This network encompasses the brain structures that are implicated in both pain sensation and pain modulation. We also found that such a pain-related network could be modulated by both verum acupuncture and sham acupuncture. Furthermore, compared with a sham acupuncture, the verum acupuncture induced a higher level of correlations among the amygdala-associated network. Conclusion Our findings indicate that acupuncture may change this amygdala-specific brain network into a functional state that underlies pain perception and pain modulation. PMID:19014532

  18. Bipolar mood state reflected in cortico-amygdala resting state connectivity: A cohort and longitudinal study.

    PubMed

    Brady, Roscoe O; Margolis, Allison; Masters, Grace A; Keshavan, Matcheri; Öngür, Dost

    2017-08-01

    Using resting-state functional magnetic resonance imaging (rsfMRI), we previously compared cohorts of bipolar I subjects in a manic state to those in a euthymic state to identify mood state-specific patterns of cortico-amygdala connectivity. Our results suggested that mania is reflected in the disruption of emotion regulation circuits. We sought to replicate this finding in a group of subjects with bipolar disorder imaged longitudinally across states of mania and euthymia METHODS: We divided our subjects into three groups: 26 subjects imaged in a manic state, 21 subjects imaged in a euthymic state, and 10 subjects imaged longitudinally across both mood states. We measured differences in amygdala connectivity between the mania and euthymia cohorts. We then used these regions of altered connectivity to examine connectivity in the longitudinal bipolar group using a within-subjects design. Our findings in the mania vs euthymia cohort comparison were replicated in the longitudinal analysis. Bipolar mania was differentiated from euthymia by decreased connectivity between the amygdala and pre-genual anterior cingulate cortex. Mania was also characterized by increased connectivity between amygdala and the supplemental motor area, a region normally anti-correlated to the amygdala in emotion regulation tasks. Stringent controls for movement effects limited the number of subjects in the longitudinal sample. In this first report of rsfMRI conducted longitudinally across mood states, we find that previously observed between-group differences in amygdala connectivity are also found longitudinally within subjects. These results suggest resting state cortico-amygdala connectivity is a biomarker of mood state in bipolar disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Reduced amygdala-orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits.

    PubMed

    Marsh, Abigail A; Finger, Elizabeth C; Fowler, Katherine A; Jurkowitz, Ilana T N; Schechter, Julia C; Yu, Henry H; Pine, Daniel S; Blair, R J R

    2011-12-30

    We used functional magnetic resonance imaging (fMRI) to investigate dysfunction in the amygdala and orbitofrontal cortex in adolescents with disruptive behavior disorders and psychopathic traits during a moral judgment task. Fourteen adolescents with psychopathic traits and 14 healthy controls were assessed using fMRI while they categorized illegal and legal behaviors in a moral judgment implicit association task. fMRI data were then analyzed using random-effects analysis of variance and functional connectivity. Youths with psychopathic traits showed reduced amygdala activity when making judgments about legal actions and reduced functional connectivity between the amygdala and orbitofrontal cortex during task performance. These results suggest that psychopathic traits are associated with amygdala and orbitofrontal cortex dysfunction. This dysfunction may relate to previous findings of disrupted moral judgment in this population. 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Electroconvulsive therapy selectively enhanced feedforward connectivity from fusiform face area to amygdala in major depressive disorder.

    PubMed

    Wang, Jiaojian; Wei, Qiang; Bai, Tongjian; Zhou, Xiaoqin; Sun, Hui; Becker, Benjamin; Tian, Yanghua; Wang, Kai; Kendrick, Keith

    2017-12-01

    Electroconvulsive therapy (ECT) has been widely used to treat the major depressive disorder (MDD), especially for treatment-resistant depression. However, the neuroanatomical basis of ECT remains an open problem. In our study, we combined the voxel-based morphology (VBM), resting-state functional connectivity (RSFC) and granger causality analysis (GCA) to identify the longitudinal changes of structure and function in 23 MDD patients before and after ECT. In addition, multivariate pattern analysis using linear support vector machine (SVM) was applied to classify 23 depressed patients from 25 gender, age and education matched healthy controls. VBM analysis revealed the increased gray matter volume of left superficial amygdala after ECT. The following RSFC and GCA analyses further identified the enhanced functional connectivity between left amygdala and left fusiform face area (FFA) and effective connectivity from FFA to amygdala after ECT, respectively. Moreover, SVM-based classification achieved an accuracy of 83.33%, a sensitivity of 82.61% and a specificity of 84% by leave-one-out cross-validation. Our findings indicated that ECT may facilitate the neurogenesis of amygdala and selectively enhance the feedforward cortical-subcortical connectivity from FFA to amygdala. This study may shed new light on the pathological mechanism of MDD and may provide the neuroanatomical basis for ECT. © The Author (2017). Published by Oxford University Press.

  1. Functionally distinct amygdala subregions identified using DTI and high-resolution fMRI

    PubMed Central

    Balderston, Nicholas L.; Schultz, Douglas H.; Hopkins, Lauren

    2015-01-01

    Although the amygdala is often directly linked with fear and emotion, amygdala neurons are activated by a wide variety of emotional and non-emotional stimuli. Different subregions within the amygdala may be engaged preferentially by different aspects of emotional and non-emotional tasks. To test this hypothesis, we measured and compared the effects of novelty and fear on amygdala activity. We used high-resolution blood oxygenation level-dependent (BOLD) imaging and streamline tractography to subdivide the amygdala into three distinct functional subunits. We identified a laterobasal subregion connected with the visual cortex that responds generally to visual stimuli, a non-projecting region that responds to salient visual stimuli, and a centromedial subregion connected with the diencephalon that responds only when a visual stimulus predicts an aversive outcome. We provide anatomical and functional support for a model of amygdala function where information enters through the laterobasal subregion, is processed by intrinsic circuits in the interspersed tissue, and is then passed to the centromedial subregion, where activation leads to behavioral output. PMID:25969533

  2. Depression alters maternal extended amygdala response and functional connectivity during distress signals in attachment relationship

    PubMed Central

    Ho, S. Shaun; Swain, James E.

    2017-01-01

    Maternal attachment-related parenting behaviors require mothers to regulate self-related and child-related distress. Emotion regulation is, in turn, influenced by maternal mood and personal developmental history. In the current study we examined how depressive mood may alter maternal limbic system function and functional connectivity underlying defensive and hedonic motivations. Twenty nine mothers were recruited to undergo a baby-cry task during a functional magnetic resonance imaging (fMRI) scan. Based on self-reported depression symptoms and clinical interview, the participants were grouped as healthy controls (n = 15) and currently depressed (n = 14). In the baby-cry task, 30s-long auditory stimuli of baby-cry sounds were presented to simulate four conditions: generic baby-cry (Just-Listen), baby-cry as if it were their own child’s cry (Your-Baby), baby-cry as if it were themselves (Self), and matched control sounds (Noise). Depressed mothers, as compared to healthy controls, showed greater Self versus Just-Listen responses in left extended amygdala and decreased functional coupling between this left extended amygdala as the seed and nucleus accumbens (NAc) in self-oriented (Self versus Just-Listen) and child-oriented (Your-Baby versus Just-Listen) distress signals. Moreover, the extended amygdala’s differential functional connectivity with dorsomedial prefrontal cortex (dmPFC) during the Your-Baby versus Self was increased for depressed mothers and decreased for healthy controls. Thus, depression may affect mothers by increasing baby-cry threat responses and dysregulating associations between threat and heathy child-oriented parenting motivations. These results are discussed in the context of attachment and self-psychology. PMID:28263829

  3. Enhanced prefrontal-amygdala connectivity following childhood adversity as a protective mechanism against internalizing in adolescence.

    PubMed

    Herringa, Ryan J; Burghy, Cory A; Stodola, Diane E; Fox, Michelle E; Davidson, Richard J; Essex, Marilyn J

    2016-07-01

    Much research has focused on the deleterious neurobiological effects of childhood adversity that may underlie internalizing disorders. While most youth show emotional adaptation following adversity, the corresponding neural mechanisms remain poorly understood. In this longitudinal community study, we examined the associations among childhood family adversity, adolescent internalizing symptoms, and their interaction on regional brain activation and amygdala/hippocampus functional connectivity during emotion processing in 132 adolescents. Consistent with prior work, childhood adversity predicted heightened amygdala reactivity to negative, but not positive, images in adolescence. However, amygdala reactivity was not related to internalizing symptoms. Furthermore, childhood adversity predicted increased fronto-amygdala connectivity to negative, but not positive, images, yet only in lower internalizing adolescents. Childhood adversity also predicted increased fronto-hippocampal connectivity to negative images, but was not moderated by internalizing. These findings were unrelated to adolescence adversity or externalizing symptoms, suggesting specificity to childhood adversity and adolescent internalizing. Together, these findings suggest that adaptation to childhood adversity is associated with augmentation of fronto-subcortical circuits specifically for negative emotional stimuli. Conversely, insufficient enhancement of fronto-amygdala connectivity, with increasing amygdala reactivity, may represent a neural signature of vulnerability for internalizing by late adolescence. These findings implicate early childhood as a critical period in determining the brain's adaptation to adversity, and suggest that even normative adverse experiences can have significant impact on neurodevelopment and functioning. These results offer potential neural mechanisms of adaptation and vulnerability which could be used in the prediction of risk for psychopathology following childhood

  4. Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions.

    PubMed

    Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso

    2017-03-27

    The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.

  5. Sleep deprivation affects fear memory consolidation: bi-stable amygdala connectivity with insula and ventromedial prefrontal cortex.

    PubMed

    Feng, Pan; Becker, Benjamin; Zheng, Yong; Feng, Tingyong

    2018-02-01

    Sleep plays an important role for successful fear memory consolidation. Growing evidence suggests that sleep disturbances might contribute to the development and the maintenance of posttraumatic stress disorder (PTSD), a disorders characterized by dysregulations in fear learning mechanisms, as well as exaggerated arousal and salience processing. Against this background, the present study examined the effects of sleep deprivation (SD) on the acquisition of fear and the subsequent neural consolidation. To this end, the present study assessed fear acquisition and associated changes in fMRI-based amygdala-functional connectivity following 24 h of SD. Relative to non-sleep deprived controls, SD subjects demonstrated increased fear ratings and skin conductance responses (SCR) during fear acquisition. During fear consolidation SD inhibited increased amygdala-ventromendial prefrontal cortex (vmPFC) connectivity and concomitantly increased changes in amygdala-insula connectivity. Importantly, whereas in controls fear indices during acquisition were negatively associated with amygdala-vmPFC connectivity during consolidation, fear indices were positively associated with amygdala-insula coupling following SD. Together the findings suggest that SD may interfere with vmPFC control of the amygdala and increase bottom-up arousal signaling in the amygdala-insula pathway during fear consolidation, which might mediate the negative impact of sleep disturbances on PSTD symptomatology.

  6. Effect of Hippocampal and Amygdala Connectivity on the Relationship Between Preschool Poverty and School-Age Depression.

    PubMed

    Barch, Deanna; Pagliaccio, David; Belden, Andy; Harms, Michael P; Gaffrey, Michael; Sylvester, Chad M; Tillman, Rebecca; Luby, Joan

    2016-06-01

    In this study, the authors tested the hypothesis that poverty experienced in early childhood, as measured by income-to-needs ratio, has an impact on functional brain connectivity at school age, which in turn mediates influences on child negative mood/depression. Participants were from a prospective longitudinal study of emotion development. Preschoolers 3-5 years of age were originally ascertained from primary care and day care sites in the St. Louis area and then underwent annual behavioral assessments for up to 12 years. Healthy preschoolers and those with a history of depression symptoms underwent neuroimaging at school age. Using functional MRI, the authors examined whole brain resting-state functional connectivity with the left and right hippocampus and amygdala. Lower income-to-needs ratio at preschool age was associated with reduced connectivity between hippocampus and amygdala and a number of regions at school age, including the superior frontal cortex, lingual gyrus, posterior cingulate, and putamen. Lower income-to-needs ratio predicted greater negative mood/depression severity at school age, as did connectivity between the left hippocampus and the right superior frontal cortex and between the right amygdala and the right lingual gyrus. Connectivity mediated the relationship between income-to-needs ratio and negative mood/depression at the time of scanning. These findings suggest that poverty in early childhood, as assessed by at least one measure, may influence the development of hippocampal and amygdala connectivity in a manner leading to negative mood symptoms during later childhood.

  7. Perturbed connectivity of the amygdala and its subregions with the central executive and default mode networks in chronic pain.

    PubMed

    Jiang, Ying; Oathes, Desmond; Hush, Julia; Darnall, Beth; Charvat, Mylea; Mackey, Sean; Etkin, Amit

    2016-09-01

    Maladaptive responses to pain-related distress, such as pain catastrophizing, amplify the impairments associated with chronic pain. Many of these aspects of chronic pain are similar to affective distress in clinical anxiety disorders. In light of the role of the amygdala in pain and affective distress, disruption of amygdalar functional connectivity in anxiety states, and its implication in the response to noxious stimuli, we investigated amygdala functional connectivity in 17 patients with chronic low back pain and 17 healthy comparison subjects, with respect to normal targets of amygdala subregions (basolateral vs centromedial nuclei), and connectivity to large-scale cognitive-emotional networks, including the default mode network, central executive network, and salience network. We found that patients with chronic pain had exaggerated and abnormal amygdala connectivity with central executive network, which was most exaggerated in patients with the greatest pain catastrophizing. We also found that the normally basolateral-predominant amygdala connectivity to the default mode network was blunted in patients with chronic pain. Our results therefore highlight the importance of the amygdala and its network-level interaction with large-scale cognitive/affective cortical networks in chronic pain, and help link the neurobiological mechanisms of cognitive theories for pain with other clinical states of affective distress.

  8. Neural traces of stress: cortisol related sustained enhancement of amygdala-hippocampal functional connectivity

    PubMed Central

    Vaisvaser, Sharon; Lin, Tamar; Admon, Roee; Podlipsky, Ilana; Greenman, Yona; Stern, Naftali; Fruchter, Eyal; Wald, Ilan; Pine, Daniel S.; Tarrasch, Ricardo; Bar-Haim, Yair; Hendler, Talma

    2013-01-01

    Stressful experiences modulate neuro-circuitry function, and the temporal trajectory of these alterations, elapsing from early disturbances to late recovery, heavily influences resilience and vulnerability to stress. Such effects of stress may depend on processes that are engaged during resting-state, through active recollection of past experiences and anticipation of future events, all known to involve the default mode network (DMN). By inducing social stress and acquiring resting-state functional magnetic resonance imaging (fMRI) before stress, immediately following it, and 2 h later, we expanded the time-window for examining the trajectory of the stress response. Throughout the study repeated cortisol samplings and self-reports of stress levels were obtained from 51 healthy young males. Post-stress alterations were investigated by whole brain resting-state functional connectivity (rsFC) of two central hubs of the DMN: the posterior cingulate cortex (PCC) and hippocampus. Results indicate a ’recovery’ pattern of DMN connectivity, in which all alterations, ascribed to the intervening stress, returned to pre-stress levels. The only exception to this pattern was a stress-induced rise in amygdala-hippocampal connectivity, which was sustained for as long as 2 h following stress induction. Furthermore, this sustained enhancement of limbic connectivity was inversely correlated to individual stress-induced cortisol responsiveness (AUCi) and characterized only the group lacking such increased cortisol (i.e., non-responders). Our observations provide evidence of a prolonged post-stress response profile, characterized by both the comprehensive balance of most DMN functional connections and the distinct time and cortisol dependent ascent of intra-limbic connectivity. These novel insights into neuro-endocrine relations are another milestone in the ongoing search for individual markers in stress-related psychopathologies. PMID:23847492

  9. A network of amygdala connections predict individual differences in trait anxiety.

    PubMed

    Greening, Steven G; Mitchell, Derek G V

    2015-12-01

    In this study we demonstrate that the pattern of an amygdala-centric network contributes to individual differences in trait anxiety. Individual differences in trait anxiety were predicted using maximum likelihood estimates of amygdala structural connectivity to multiple brain targets derived from diffusion-tensor imaging (DTI) and probabilistic tractography on 72 participants. The prediction was performed using a stratified sixfold cross validation procedure using a regularized least square regression model. The analysis revealed a reliable network of regions predicting individual differences in trait anxiety. Higher trait anxiety was associated with stronger connections between the amygdala and dorsal anterior cingulate cortex, an area implicated in the generation of emotional reactions, and inferior temporal gyrus and paracentral lobule, areas associated with perceptual and sensory processing. In contrast, higher trait anxiety was associated with weaker connections between amygdala and regions implicated in extinction learning such as medial orbitofrontal cortex, and memory encoding and environmental context recognition, including posterior cingulate cortex and parahippocampal gyrus. Thus, trait anxiety is not only associated with reduced amygdala connectivity with prefrontal areas associated with emotion modulation, but also enhanced connectivity with sensory areas. This work provides novel anatomical insight into potential mechanisms behind information processing biases observed in disorders of emotion. © 2015 Wiley Periodicals, Inc.

  10. Guanfacine Modulates the Emotional Biasing of Amygdala-Prefrontal Connectivity for Cognitive Control

    PubMed Central

    Schulz, Kurt P.; Clerkin, Suzanne M.; Newcorn, Jeffrey H.; Halperin, Jeffrey M.; Fan, Jin

    2014-01-01

    Functional interactions between amygdala and prefrontal cortex provide a cortical entry point for emotional cues to bias cognitive control. Stimulation of α2 adrenoceptors enhances the prefrontal control functions and blocks the amygdala-dependent encoding of emotional cues. However, the impact of this stimulation on amygdala-prefrontal interactions and the emotional biasing of cognitive control have not been established. We tested the effect of the α2 adrenoceptor agonist guanfacine on psychophysiological interactions of amygdala with prefrontal cortex for the emotional biasing of response execution and inhibition. Fifteen healthy adults were scanned twice with event-related functional magnetic resonance imaging while performing an emotional go/no-go task following administration of oral guanfacine (1 mg) and placebo in a double-blind, counterbalanced design. Happy, sad, and neutral faces served as trial cues. Guanfacine moderated the effect of face emotion on the task-related functional connectivity of left and right amygdala with left inferior frontal gyrus compared to placebo, by selectively reversing the functional co-activation of the two regions for response execution cued by sad faces. This shift from positively to negatively correlated activation for guanfacine was associated with selective improvements in the relatively low accuracy of responses to sad faces seen for placebo. These results demonstrate the importance of functional interactions between amygdala and inferior frontal gyrus to both bottom-up biasing of cognitive control and top-down control of emotional processing, as well as for the α2 adrenoceptor-mediated modulation of these processes. These mechanisms offer a possibile method to address the emotional reactivity that is common to several psychiatric disorders. PMID:25059532

  11. Guanfacine modulates the emotional biasing of amygdala-prefrontal connectivity for cognitive control.

    PubMed

    Schulz, Kurt P; Clerkin, Suzanne M; Newcorn, Jeffrey H; Halperin, Jeffrey M; Fan, Jin

    2014-09-01

    Functional interactions between amygdala and prefrontal cortex provide a cortical entry point for emotional cues to bias cognitive control. Stimulation of α2 adrenoceptors enhances the prefrontal control functions and blocks the amygdala-dependent encoding of emotional cues. However, the impact of this stimulation on amygdala-prefrontal interactions and the emotional biasing of cognitive control have not been established. We tested the effect of the α2 adrenoceptor agonist guanfacine on psychophysiological interactions of amygdala with prefrontal cortex for the emotional biasing of response execution and inhibition. Fifteen healthy adults were scanned twice with event-related functional magnetic resonance imaging while performing an emotional go/no-go task following administration of oral guanfacine (1mg) and placebo in a double-blind, counterbalanced design. Happy, sad, and neutral faces served as trial cues. Guanfacine moderated the effect of face emotion on the task-related functional connectivity of left and right amygdala with left inferior frontal gyrus compared to placebo, by selectively reversing the functional co-activation of the two regions for response execution cued by sad faces. This shift from positively to negatively correlated activation for guanfacine was associated with selective improvements in the relatively low accuracy of responses to sad faces seen for placebo. These results demonstrate the importance of functional interactions between amygdala and inferior frontal gyrus to both bottom-up biasing of cognitive control and top-down control of emotional processing, as well as for the α2 adrenoceptor-mediated modulation of these processes. These mechanisms offer a possibile method to address the emotional reactivity that is common to several psychiatric disorders. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  12. Connectivity-Based Parcellation of the Amygdala Predicts Social Skills in Adolescents with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Rausch, Annika; Zhang, Wei; Beckmann, Christian F.; Buitelaar, Jan K.; Groen, Wouter B.; Haak, Koen V.

    2018-01-01

    Amygdala dysfunction plays a role in the social impairments in autism spectrum disorders (ASD), but it is unclear which of its subregions are abnormal in ASD. This study compared the volume and functional connectivity (FC) strength of three FC-defined amygdala subregions between ASD and controls, and assessed their relation to social skills in…

  13. Amygdala-cingulate intrinsic connectivity is associated with degree of social inhibition

    PubMed Central

    Blackford, Jennifer Urbano; Clauss, Jacqueline A.; Avery, Suzanne N.; Cowan, Ronald L.; Benningfield, Margaret M.; VanDerKlok, Ross M.

    2014-01-01

    The tendency to approach or avoid novel people is a fundamental human behavior and is a core dimension of social anxiety. Resting state fMRI was used to test for an association between social inhibition and intrinsic connectivity in 40 young adults ranging from low to high in social inhibition. Higher levels of social inhibition were associated with specific patterns of reduced amygdala-cingulate cortex connectivity. Connectivity was reduced between the superficial amygdala and the rostral cingulate cortex and between the centromedial amygdala and the dorsal anterior cingulate cortex. Social inhibition also modulated connectivity in several well-established intrinsic networks; higher social inhibition correlated with reduced connectivity with default mode and dorsal attention networks and enhanced connectivity in salience and executive control networks. These findings provide important preliminary evidence that social inhibition reflects differences in the underlying intrinsic connectivity of the brain in the absence of social stimuli or stressors. PMID:24534162

  14. Chemosensory function of the amygdala.

    PubMed

    Gutiérrez-Castellanos, Nicolás; Martínez-Marcos, Alino; Martínez-García, Fernando; Lanuza, Enrique

    2010-01-01

    The chemosensory amygdala has been traditionally divided into two divisions based on inputs from the main (olfactory amygdala) or accessory (vomeronasal amygdala) olfactory bulbs, supposedly playing different and independent functional roles detecting odors and pheromones, respectively. Recently, there has been increased anatomical evidence of convergence inputs from the main and accessory bulbs in some areas of the amygdala, and this is correlated with functional evidence of interrelationships between the olfactory and the vomeronasal systems. This has lead to the characterization of a third division of the chemosensory amygdala, the mixed chemosensory amygdala, providing a new perspective of how chemosensory information is processed in the amygdaloid complex, in particular in relation to emotional behaviors. In this chapter, we analyze the anatomical and functional organization of the chemosensory amygdala from this new perspective. Finally, the evolutionary changes of the chemosensory nuclei of the mammalian amygdala are discussed, paying special attention to the case of primates, including humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Asymmetric Engagement of Amygdala and Its Gamma Connectivity in Early Emotional Face Processing

    PubMed Central

    Liu, Tai-Ying; Chen, Yong-Sheng; Hsieh, Jen-Chuen; Chen, Li-Fen

    2015-01-01

    The amygdala has been regarded as a key substrate for emotion processing. However, the engagement of the left and right amygdala during the early perceptual processing of different emotional faces remains unclear. We investigated the temporal profiles of oscillatory gamma activity in the amygdala and effective connectivity of the amygdala with the thalamus and cortical areas during implicit emotion-perceptual tasks using event-related magnetoencephalography (MEG). We found that within 100 ms after stimulus onset the right amygdala habituated to emotional faces rapidly (with duration around 20–30 ms), whereas activity in the left amygdala (with duration around 50–60 ms) sustained longer than that in the right. Our data suggest that the right amygdala could be linked to autonomic arousal generated by facial emotions and the left amygdala might be involved in decoding or evaluating expressive faces in the early perceptual emotion processing. The results of effective connectivity provide evidence that only negative emotional processing engages both cortical and subcortical pathways connected to the right amygdala, representing its evolutional significance (survival). These findings demonstrate the asymmetric engagement of bilateral amygdala in emotional face processing as well as the capability of MEG for assessing thalamo-cortico-limbic circuitry. PMID:25629899

  16. Lithium monotherapy associated clinical improvement effects on amygdala-ventromedial prefrontal cortex resting state connectivity in bipolar disorder.

    PubMed

    Altinay, Murat; Karne, Harish; Anand, Amit

    2018-01-01

    This study, for the first time, investigated lithium monotherapy associated effects on amygdala- ventromedial prefrontal cortex (vMPFC) resting-state functional connectivity and correlation with clinical improvement in bipolar disorder (BP) METHODS: Thirty-six medication-free subjects - 24 BP (12 hypomanic BPM) and 12 depressed (BPD)) and 12 closely matched healthy controls (HC), were included. BP subjects were treated with lithium and scanned at baseline, after 2 weeks and 8 weeks. HC were scanned at same time points but were not treated. The effect of lithium was studied for the BP group as a whole using two way (group, time) ANOVA while regressing out effects of state. Next, correlation between changes in amygdala-vMPFC resting-state connectivity and clinical global impression (CGI) of severity and improvement scale scores for overall BP illness was calculated. An exploratory analysis was also conducted for the BPD and BPM subgroups separately. Group by time interaction revealed that lithium monotherapy in patients was associated with increase in amygdala-medial OFC connectivity after 8 weeks of treatment (p = 0.05 (cluster-wise corrected)) compared to repeat testing in healthy controls. Increased amygdala-vMPFC connectivity correlated with clinical improvement at week 2 and week 8 as measured with the CGI-I scale. The results pertain to open-label treatment and do not account for non-treatment related improvement effects. Only functional connectivity was measured which does not give information regarding one regions effect on the other. Lithium monotherapy in BP is associated with modulation of amygdala-vMPFC connectivity which correlates with state-independent global clinical improvement. Copyright © 2017. Published by Elsevier B.V.

  17. Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety

    PubMed Central

    Clewett, David; Bachman, Shelby; Mather, Mara

    2014-01-01

    Objective A current neuroanatomical model of anxiety posits that greater structural connectivity between the amygdala and ventral prefrontal cortex (vPFC) facilitates regulatory control over the amygdala and helps reduce anxiety. However, some neuroimaging studies have reported contradictory findings, demonstrating a positive rather than negative association between trait anxiety and amygdala-vPFC white matter integrity. To help reconcile these findings, we tested the regulatory hypothesis of anxiety circuitry using aging as a model of white matter decline in the amygdala-vPFC pathway. Methods We used probabilistic tractography to trace connections between the amygdala and vPFC in 21 younger, 18 middle-aged, and 15 healthy older adults. The resulting tract estimates were used to extract three indices of white-matter integrity: fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD). The relationship between these amygdala-vPFC structural connectivity measures and age and State-Trait Anxiety Inventory (STAI) scores were assessed. Results The tractography results revealed age-related decline in the FA (p = .005) and radial diffusivity (p = .002) of the amygdala-vPFC pathway. Contrary to the regulatory hypothesis, we found a positive rather than negative association between trait anxiety and right amygdala-vPFC FA (p = .01). Conclusion These findings argue against the notion that greater amygdala-vPFC structural integrity facilitates better anxiety outcomes in healthy adults. Instead, our results suggest that white matter degeneration in this network relates to lower anxiety in older adults. PMID:24635708

  18. Resting-state functional connectivity in combat veterans suffering from impulsive aggression

    PubMed Central

    Heesink, Lieke; van Honk, Jack; Geuze, Elbert

    2017-01-01

    Abstract Impulsive aggression is common among military personnel after deployment and may arise because of impaired top-down regulation of the amygdala by prefrontal regions. This study sought to further explore this hypothesis via resting-state functional connectivity analyses in impulsively aggressive combat veterans. Male combat veterans with (n = 28) and without (n = 30) impulsive aggression problems underwent resting-state functional magnetic resonance imaging. Functional connectivity analyses were conducted with the following seed-regions: basolateral amygdala (BLA), centromedial amygdala, anterior cingulate cortex (ACC), and anterior insular cortex (AIC). Regions-of-interest analyses focused on the orbitofrontal cortex and periaqueductal gray, and yielded no significant results. In exploratory cluster analyses, we observed reduced functional connectivity between the (bilateral) BLA and left dorsolateral prefrontal cortex in the impulsive aggression group, relative to combat controls. This finding indicates that combat-related impulsive aggression may be marked by weakened functional connectivity between the amygdala and prefrontal regions, already in the absence of explicit emotional stimuli. Group differences in functional connectivity were also observed between the (bilateral) ACC and left cuneus, which may be related to heightened vigilance to potentially threatening visual cues, as well as between the left AIC and right temporal pole, possibly related to negative memory association in impulsive aggression. PMID:29040723

  19. Amygdala-prefrontal cortical functional connectivity during implicit emotion processing differentiates youth with bipolar spectrum from youth with externalizing disorders.

    PubMed

    Hafeman, Danella; Bebko, Genna; Bertocci, Michele A; Fournier, Jay C; Chase, Henry W; Bonar, Lisa; Perlman, Susan B; Travis, Michael; Gill, Mary Kay; Diwadkar, Vaibhav A; Sunshine, Jeffrey L; Holland, Scott K; Kowatch, Robert A; Birmaher, Boris; Axelson, David; Horwitz, Sarah M; Arnold, L Eugene; Fristad, Mary A; Frazier, Thomas W; Youngstrom, Eric A; Findling, Robert L; Phillips, Mary L

    2017-01-15

    Both bipolar spectrum disorders (BPSD) and attention deficit hyperactivity disorder (ADHD) present with emotion-regulation deficits, but require different clinical management. We examined how the neurobiological underpinnings of emotion regulation might differentiate youth with BPSD versus ADHD (and healthy controls, HCs), specifically assessing functional connectivity (FxC) of amygdala-prefrontal circuitry during an implicit emotion processing task. We scanned a subset of the Longitudinal Assessment of Manic Symptoms (LAMS) sample, a clinically recruited cohort with elevated behavioral and emotional dysregulation, and age/sex-ratio matched HCs. Our sample consisted of 22 youth with BPSD, 30 youth with ADHD/no BPSD, and 26 HCs. We used generalized psychophysiological interaction (gPPI) to calculate group differences to emerging emotional faces vs. morphing shapes in FxC between bilateral amygdala and ventral prefrontal cortex/anterior cingulate cortex. FxC between amygdala and left ventrolateral prefrontal cortex (VLPFC) in response to emotions vs. shapes differed by group (p=.05): while BPSD showed positive FxC (emotions>shapes), HC and ADHD showed inverse FxC (emotionsamygdala-subgenual cingulate FxC (p=.025), explained by differences in FxC in response to negative emotions. While BPSD showed positive FxC, HC showed inverse FxC; ADHD were intermediate. Amygdala-subgenual FxC was also positively associated with depressive symptoms and stimulant medication. Co-morbidity and relatively small sample size. Youth with BPSD showed abnormally positive FxC between amygdala and regions in the ventral prefrontal cortex during emotion processing. In particular, the amygdala-VLPFC finding was specific to BPSD, and not influenced by other diagnoses or medications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Off-label intranasal oxytocin use in adults is associated with increased amygdala-cingulate resting-state connectivity.

    PubMed

    Kovács, B; Kéri, S

    2015-06-01

    Intranasally administered oxytocin gained popularity as a hormone facilitating trust, cooperation, and affiliation. However, the long-term consequences of oxytocin use are not known. Given that intensive media attention and advertisements of the "love hormone" might lead to a new form of misuse, we conducted an online survey and identified 41 individuals with oxytocin misuse. Misuse will be proposed throughout the manuscript instead of the more accurate "off-label use" for reasons of simplicity. We compared the social functions of oxytocin users with that of 41 matched control volunteers. We administered the "Reading the Mind in the Eyes Test" (RMET) and the National Institute of Health (NIH) Toolbox Adult Social Relationship Scales (NIH-ASRS) to delineate affective "theory of mind" and real-life social functions, respectively. Resting-state functional brain connectivity analyses were also carried out. Results revealed no significant differences between individuals with oxytocin misuse and control participants on the RMET and NIH-ASRS. However, individuals with oxytocin misuse showed an increased connectivity between the right amygdala and dorsal anterior cingulate cortex relative to the control group. Higher estimated cumulative doses of oxytocin were associated with enhanced amygdala-cingulate connectivity. These results show that individuals who have self-selected for and pursued oxytocin use have increased amygdala-cingulate resting connectivity, compared to individuals who have not used oxytocin, despite the lack of differences in RMET and NIH-ASRS scores. Further longitudinal studies are warranted to investigate the cause-effect relationship between oxytocin use and brain connectivity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Conservatism and the neural circuitry of threat: economic conservatism predicts greater amygdala-BNST connectivity during periods of threat vs safety.

    PubMed

    Pedersen, Walker S; Muftuler, L Tugan; Larson, Christine L

    2018-01-01

    Political conservatism is associated with an increased negativity bias, including increased attention and reactivity toward negative and threatening stimuli. Although the human amygdala has been implicated in the response to threatening stimuli, no studies to date have investigated whether conservatism is associated with altered amygdala function toward threat. Furthermore, although an influential theory posits that connectivity between the amygdala and bed nucleus of the stria terminalis (BNST) is important in initiating the response to sustained or uncertain threat, whether individual differences in conservatism modulate this connectivity is unknown. To test whether conservatism is associated with increased reactivity in neural threat circuitry, we measured participants' self-reported social and economic conservatism and asked them to complete high-resolution fMRI scans while under threat of an unpredictable shock and while safe. We found that economic conservatism predicted greater connectivity between the BNST and a cluster of voxels in the left amygdala during threat vs safety. These results suggest that increased amygdala-BNST connectivity during threat may be a key neural correlate of the enhanced negativity bias found in conservatism. © The Author (2017). Published by Oxford University Press.

  2. Amygdala activity and prefrontal cortex-amygdala effective connectivity to emerging emotional faces distinguish remitted and depressed mood states in bipolar disorder.

    PubMed

    Perlman, Susan B; Almeida, Jorge R C; Kronhaus, Dina M; Versace, Amelia; Labarbara, Edmund J; Klein, Crystal R; Phillips, Mary L

    2012-03-01

    Few studies have employed effective connectivity (EC) to examine the functional integrity of neural circuitry supporting abnormal emotion processing in bipolar disorder (BD), a key feature of the illness. We used Granger Causality Mapping (GCM) to map EC between the prefrontal cortex (PFC) and bilateral amygdala and a novel paradigm to assess emotion processing in adults with BD. Thirty-one remitted adults with BD [(remitted BD), mean age = 32 years], 21 adults with BD in a depressed episode [(depressed BD), mean age = 33 years], and 25 healthy control participants [(HC), mean age = 31 years] performed a block-design emotion processing task requiring color-labeling of a color flash superimposed on a task-irrelevant face morphing from neutral to emotional (happy, sad, angry, or fearful). GCM measured EC preceding (top-down) and following (bottom-up) activity between the PFC and the left and right amygdalae. Our findings indicated patterns of abnormally elevated bilateral amygdala activity in response to emerging fearful, sad, and angry facial expressions in remitted-BD subjects versus HC, and abnormally elevated right amygdala activity to emerging fearful faces in depressed-BD subjects versus HC. We also showed distinguishable patterns of abnormal EC between the amygdala and dorsomedial and ventrolateral PFC, especially to emerging happy and sad facial expressions in remitted-BD and depressed-BD subjects. EC measures of neural system level functioning can further understanding of neural mechanisms associated with abnormal emotion processing and regulation in BD. Our findings suggest major differences in recruitment of amygdala-PFC circuitry, supporting implicit emotion processing between remitted-BD and depressed-BD subjects, which may underlie changes from remission to depression in BD. © 2012 John Wiley and Sons A/S.

  3. Functional and neurochemical interactions within the amygdala-medial prefrontal cortex circuit and their relevance to emotional processing.

    PubMed

    Delli Pizzi, Stefano; Chiacchiaretta, Piero; Mantini, Dante; Bubbico, Giovanna; Ferretti, Antonio; Edden, Richard A; Di Giulio, Camillo; Onofrj, Marco; Bonanni, Laura

    2017-04-01

    The amygdala-medial prefrontal cortex (mPFC) circuit plays a key role in emotional processing. GABA-ergic inhibition within the mPFC has been suggested to play a role in the shaping of amygdala activity. However, the functional and neurochemical interactions within the amygdala-mPFC circuits and their relevance to emotional processing remain unclear. To investigate this circuit, we obtained resting-state functional magnetic resonance imaging (rs-fMRI) and proton MR spectroscopy in 21 healthy subjects to assess the potential relationship between GABA levels within mPFC and the amygdala-mPFC functional connectivity. Trait anxiety was assessed using the State-Trait Anxiety Inventory (STAI-Y2). Partial correlations were used to measure the relationships among the functional connectivity outcomes, mPFC GABA levels and STAI-Y2 scores. Age, educational level and amount of the gray and white matters within 1 H-MRS volume of interest were included as nuisance variables. The rs-fMRI signals of the amygdala and the vmPFC were significantly anti-correlated. This negative functional coupling between the two regions was inversely correlated with the GABA+/tCr level within the mPFC and the STAI-Y2 scores. We suggest a close relationship between mPFC GABA levels and functional interactions within the amygdala-vmPFC circuit, providing new insights in the physiology of emotion.

  4. Intrinsic Functional Connectivity of Amygdala-Based Networks in Adolescent Generalized Anxiety Disorder

    ERIC Educational Resources Information Center

    Roy, Amy K.; Fudge, Julie L.; Kelly, Clare; Perry, Justin S. A.; Daniele, Teresa; Carlisi, Christina; Benson, Brenda; Castellanos, F. Xavier; Milham, Michael P.; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Generalized anxiety disorder (GAD) typically begins during adolescence and can persist into adulthood. The pathophysiological mechanisms underlying this disorder remain unclear. Recent evidence from resting state functional magnetic resonance imaging (R-fMRI) studies in adults suggests disruptions in amygdala-based circuitry; the…

  5. Role of Amygdala Connectivity in the Persistence of Emotional Memories Over Time: An Event-Related fMRI Investigation

    PubMed Central

    Dolcos, Florin; Cabeza, Roberto

    2008-01-01

    According to the consolidation hypothesis, enhanced memory for emotional information reflects the modulatory effect of the amygdala on the medial temporal lobe (MTL) memory system during consolidation. Although there is evidence that amygdala–MTL connectivity enhances memory for emotional stimuli, it remains unclear whether this enhancement increases over time, as consolidation processes unfold. To investigate this, we used functional magnetic resonance imaging to measure encoding activity predicting memory for emotionally negative and neutral pictures after short (20-min) versus long (1-week) delays. Memory measures distinguished between vivid remembering (recollection) and feelings of knowing (familiarity). Consistent with the consolidation hypothesis, the persistence of recollection over time (long divided by short) was greater for emotional than neutral pictures. Activity in the amygdala predicted subsequent memory to a greater extent for emotional than neutral pictures. Although this advantage did not vary with delay, the contribution of amygdala–MTL connectivity to subsequent memory for emotional items increased over time. Moreover, both this increase in connectivity and amygdala activity itself were correlated with individual differences in recollection persistence for emotional but not neutral pictures. These results suggest that the amygdala and its connectivity with the MTL are critical to sustaining emotional memories over time, consistent with the consolidation hypothesis. PMID:18375529

  6. Intrinsic functional connectivity of the central nucleus of the amygdala and bed nucleus of the stria terminalis.

    PubMed

    Gorka, Adam X; Torrisi, Salvatore; Shackman, Alexander J; Grillon, Christian; Ernst, Monique

    2018-03-01

    The central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST), two nuclei within the central extended amygdala, function as critical relays within the distributed neural networks that coordinate sensory, emotional, and cognitive responses to threat. These structures have overlapping anatomical projections to downstream targets that initiate defensive responses. Despite these commonalities, researchers have also proposed a functional dissociation between the CeA and BNST, with the CeA promoting responses to discrete stimuli and the BNST promoting responses to diffuse threat. Intrinsic functional connectivity (iFC) provides a means to investigate the functional architecture of the brain, unbiased by task demands. Using ultra-high field neuroimaging (7-Tesla fMRI), which provides increased spatial resolution, this study compared the iFC networks of the CeA and BNST in 27 healthy individuals. Both structures were coupled with areas of the medial prefrontal cortex, hippocampus, thalamus, and periaqueductal gray matter. Compared to the BNST, the bilateral CeA was more strongly coupled with the insula and regions that support sensory processing, including thalamus and fusiform gyrus. In contrast, the bilateral BNST was more strongly coupled with regions involved in cognitive and motivational processes, including the dorsal paracingulate gyrus, posterior cingulate cortex, and striatum. Collectively, these findings suggest that responses to sensory stimulation are preferentially coordinated by the CeA and cognitive and motivational responses are preferentially coordinated by the BNST. Published by Elsevier Inc.

  7. Familial Risk and a Genome-Wide Supported DRD2 Variant for Schizophrenia Predict Lateral Prefrontal-Amygdala Effective Connectivity During Emotion Processing.

    PubMed

    Quarto, Tiziana; Paparella, Isabella; De Tullio, Davide; Viscanti, Giovanna; Fazio, Leonardo; Taurisano, Paolo; Romano, Raffaella; Rampino, Antonio; Masellis, Rita; Popolizio, Teresa; Selvaggi, Pierluigi; Pergola, Giulio; Bertolino, Alessandro; Blasi, Giuseppe

    2017-09-16

    The brain functional mechanisms translating genetic risk into emotional symptoms in schizophrenia (SCZ) may include abnormal functional integration between areas key for emotion processing, such as the amygdala and the lateral prefrontal cortex (LPFC). Indeed, investigation of these mechanisms is also complicated by emotion processing comprising different subcomponents and by disease-associated state variables. Here, our aim was to investigate the relationship between risk for SCZ and effective connectivity between the amygdala and the LPFC during different subcomponents of emotion processing. Thus, we first characterized with dynamic causal modeling (DCM) physiological patterns of LPFC-amygdala effective connectivity in healthy controls (HC) during implicit and explicit emotion processing. Then, we compared DCM patterns in a subsample of HC, in patients with SCZ and in healthy siblings of patients (SIB), matched for demographics. Finally, we investigated in HC association of LPFC-amygdala effective connectivity with a genome-wide supported variant increasing genetic risk for SCZ and possibly relevant to emotion processing (DRD2 rs2514218). In HC, we found that a "bottom-up" amygdala-to-LPFC pattern during implicit processing and a "top-down" LPFC-to-amygdala pattern during explicit processing were the most likely directional models of effective connectivity. Differently, implicit emotion processing in SIB, SCZ, and HC homozygous for the SCZ risk rs2514218 C allele was associated with decreased probability for the "bottom-up" as well as with increased probability for the "top-down" model. These findings suggest that task-specific anomaly in the directional flow of information or disconnection between the amygdala and the LPFC is a good candidate endophenotype of SCZ. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice

    PubMed Central

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  10. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.

    PubMed

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  11. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity

    PubMed Central

    Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H.; Seifritz, Erich; Vollenweider, Franz X.

    2015-01-01

    Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual–limbic–prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders. PMID:26909323

  12. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity.

    PubMed

    Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H; Seifritz, Erich; Vollenweider, Franz X

    2016-01-01

    Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual-limbic-prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

  13. The Superior Temporal Sulcus Is Causally Connected to the Amygdala: A Combined TBS-fMRI Study.

    PubMed

    Pitcher, David; Japee, Shruti; Rauth, Lionel; Ungerleider, Leslie G

    2017-02-01

    Nonhuman primate neuroanatomical studies have identified a cortical pathway from the superior temporal sulcus (STS) projecting into dorsal subregions of the amygdala, but whether this same pathway exists in humans is unknown. Here, we addressed this question by combining theta burst transcranial magnetic stimulation (TBS) with fMRI to test the prediction that the STS and amygdala are functionally connected during face perception. Human participants (N = 17) were scanned, over two sessions, while viewing 3 s video clips of moving faces, bodies, and objects. During these sessions, TBS was delivered over the face-selective right posterior STS (rpSTS) or over the vertex control site. A region-of-interest analysis revealed results consistent with our hypothesis. Namely, TBS delivered over the rpSTS reduced the neural response to faces (but not to bodies or objects) in the rpSTS, right anterior STS (raSTS), and right amygdala, compared with TBS delivered over the vertex. By contrast, TBS delivered over the rpSTS did not significantly reduce the neural response to faces in the right fusiform face area or right occipital face area. This pattern of results is consistent with the existence of a cortico-amygdala pathway in humans for processing face information projecting from the rpSTS, via the raSTS, into the amygdala. This conclusion is consistent with nonhuman primate neuroanatomy and with existing face perception models. Neuroimaging studies have identified multiple face-selective regions in the brain, but the functional connections between these regions are unknown. In the present study, participants were scanned with fMRI while viewing movie clips of faces, bodies, and objects before and after transient disruption of the face-selective right posterior superior temporal sulcus (rpSTS). Results showed that TBS disruption reduced the neural response to faces, but not to bodies or objects, in the rpSTS, right anterior STS (raSTS), and right amygdala. These results are

  14. Subcortical afferent connections of the amygdala in the monkey

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1980-01-01

    The cells of origin of the afferent connections of the amygdala in the rhesus and squirrel monkeys are determined according to the retrograde axonal transport of the enzyme horseradish peroxidase injected into various quadrants of the amygdala. Analysis of the distribution of enzyme-labeled cells reveals afferent amygdalar connections with the ipsilateral halves of the midline nucleus paraventricularis thalami and both the parvo- and magnocellular parts of the nucleus subparafascicularis in the dorsal thalamus, all the subdivisions of the midline nucleus centralis complex, the nucleus reuniens ventralis and the nucleus interventralis. The largest populations of enzyme-labeled cells in the hypothalamus are found to lie in the middle and posterior parts of the ipsilateral, lateral hypothalamus and the ventromedial hypothalamic nucleus, with scattered cells in the supramammillary and dorsomedial nuclei and the posterior hypothalamic area, Tsai's ventral tegmental area, the rostral and caudal subdivisions of the nucleus linearis in the midbrain and the dorsal raphe nucleus. The most conspicuous subdiencephalic source of amygdalar afferent connections is observed to be the pars lateralis of the nucleus parabrachialis in the dorsolateral pontine tegmentum, with a few labeled cells differentiated from pigmented cells in the locus coeruleus.

  15. From circuits to behaviour in the amygdala

    PubMed Central

    Janak, Patricia H.; Tye, Kay M.

    2015-01-01

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits. PMID:25592533

  16. Disconnection Between Amygdala and Medial Prefrontal Cortex in Psychotic Disorders

    PubMed Central

    Mukherjee, Prerona; Sabharwal, Amri; Kotov, Roman; Szekely, Akos; Parsey, Ramin; Barch, Deanna M.; Mohanty, Aprajita

    2016-01-01

    Distracting emotional information impairs attention more in schizophrenia (SCZ) than in never-psychotic individuals. However, it is unclear whether this impairment and its neural circuitry is indicative generally of psychosis, or specifically of SCZ, and whether it is even more specific to certain SCZ symptoms (eg, deficit syndrome). It is also unclear if this abnormality contributes to impaired behavioral performance and real-world functioning. Functional imaging data were recorded while individuals with SCZ, bipolar disorder with psychosis (BDP) and no history of psychotic disorders (CON) attended to identity of faces while ignoring their emotional expressions. We examined group differences in functional connectivity between amygdala, involved in emotional evaluation, and sub-regions of medial prefrontal cortex (MPFC), involved in emotion regulation and cognitive control. Additionally, we examined correlation of this connectivity with deficit syndrome and real-world functioning. Behaviorally, SCZ showed the worst accuracy when matching the identity of emotional vs neutral faces. Neurally, SCZ showed lower amygdala-MPFC connectivity than BDP and CON. BPD did not differ from CON, neurally or behaviorally. In patients, reduced amygdala-MPFC connectivity during emotional distractors was related to worse emotional vs neutral accuracy, greater deficit syndrome severity, and unemployment. Thus, reduced amygdala-MPFC functional connectivity during emotional distractors reflects a deficit that is specific to SCZ. This reduction in connectivity is associated with worse clinical and real-world functioning. Overall, these findings provide support for the specificity and clinical utility of amygdala-MPFC functional connectivity as a potential neural marker of SCZ. PMID:26908926

  17. Mesial temporal lobe epilepsy diminishes functional connectivity during emotion perception.

    PubMed

    Steiger, Bettina K; Muller, Angela M; Spirig, Esther; Toller, Gianina; Jokeit, Hennric

    2017-08-01

    Unilateral mesial temporal lobe epilepsy (MTLE) has been associated with impaired recognition of emotional facial expressions. Correspondingly, imaging studies showed decreased activity of the amygdala and cortical face processing regions in response to emotional faces. However, functional connectivity among regions involved in emotion perception has not been studied so far. To address this, we examined intrinsic functional connectivity (FC) modulated by the perception of dynamic fearful faces among the amygdala and limbic, frontal, temporal and brainstem regions. Regions of interest were identified in an activation analysis by presenting a block-design with dynamic fearful faces and dynamic landscapes to 15 healthy individuals. This led to 10 predominately right-hemispheric regions. Functional connectivity between these regions during the perception of fearful faces was examined in drug-refractory patients with left- (n=16) or right-sided (n=17) MTLE, epilepsy patients with extratemporal seizure onset (n=15) and a second group of 15 healthy controls. Healthy controls showed a widespread functional network modulated by the perception of fearful faces that encompassed bilateral amygdalae, limbic, cortical, subcortical and brainstem regions. In patients with left MTLE, a downsized network of frontal and temporal regions centered on the right amygdala was present. Patients with right MTLE showed almost no significant functional connectivity. A maintained network in the epilepsy control group indicates that findings in mesial temporal lobe epilepsy could not be explained by clinical factors such as seizures and antiepileptic medication. Functional networks underlying facial emotion perception are considerably changed in left and right MTLE. Alterations are present for both hemispheres in either MTLE group, but are more pronounced in right MTLE. Disruption of the functional network architecture possibly contributes to deficits in facial emotion recognition frequently

  18. Amygdala functional disconnection with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood.

    PubMed

    Chen, Yu-Chen; Bo, Fan; Xia, Wenqing; Liu, Shenghua; Wang, Peng; Su, Wen; Xu, Jin-Jing; Xiong, Zhenyu; Yin, Xindao

    2017-10-03

    Chronic tinnitus is often accompanied with depressive symptom, which may arise from aberrant functional coupling between the amygdala and cerebral cortex. To explore this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the disrupted amygdala-cortical functional connectivity (FC) in chronic tinnitus patients with depressive mood. Chronic tinnitus patients with depressive mood (n=20), without depressive mood (n=20), and well-matched healthy controls (n=23) underwent resting-state fMRI scanning. Amygdala-cortical FC was characterized using a seed-based whole-brain correlation method. The bilateral amygdala FC was compared among the three groups. Compared to non-depressed patients, depressive tinnitus patients showed decreased amygdala FC with the prefrontal cortex and anterior cingulate cortex as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. Relative to healthy controls, depressive tinnitus patients revealed decreased amygdala FC with the superior and middle temporal gyrus, anterior and posterior cingulate cortex, and prefrontal cortex, as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. The current study identified for the first time abnormal resting-state amygdala-cortical FC with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood, which will provide novel insight into the underlying neuropathological mechanisms of tinnitus-induced depressive disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Insensitive parenting may accelerate the development of the amygdala-medial prefrontal cortex circuit.

    PubMed

    Thijssen, Sandra; Muetzel, Ryan L; Bakermans-Kranenburg, Marian J; Jaddoe, Vincent W V; Tiemeier, Henning; Verhulst, Frank C; White, Tonya; Van Ijzendoorn, Marinus H

    2017-05-01

    This study examined whether the association between age and amygdala-medial prefrontal cortex (mPFC) connectivity in typically developing 6- to 10-year-old children is correlated with parental care. Resting-state functional magnetic resonance imaging scans were acquired from 124 children of the Generation R Study who at 4 years old had been observed interacting with their parents to assess maternal and paternal sensitivity. Amygdala functional connectivity was assessed using a general linear model with the amygdalae time series as explanatory variables. Higher level analyses assessing Sensitivity × Age as well as exploratory Sensitivity × Age × Gender interaction effects were performed restricted to voxels in the mPFC. We found significant Sensitivity × Age interaction effects on amygdala-mPFC connectivity. Age was related to stronger amygdala-mPFC connectivity in children with a lower combined parental sensitivity score (b = 0.11, p = .004, b = 0.06, p = .06, right and left amygdala, respectively), but not in children with a higher parental sensitivity score, (b = -0.07, p = .12, b = -0.06, p = .12, right and left amygdala, respectively). A similar effect was found for maternal sensitivity, with stronger amygdala-mPFC connectivity in children with less sensitive mothers. Exploratory (parental, maternal, paternal) Sensitivity × Age × Gender interaction analyses suggested that this effect was especially pronounced in girls. Amygdala-mPFC resting-state functional connectivity has been shown to increase from age 10.5 years onward, implying that the positive association between age and amygdala-mPFC connectivity in 6- to 10-year-old children of less sensitive parents represents accelerated development of the amygdala-mPFC circuit.

  20. Distinct phasic and sustained brain responses and connectivity of amygdala and bed nucleus of the stria terminalis during threat anticipation in panic disorder.

    PubMed

    Brinkmann, L; Buff, C; Feldker, K; Tupak, S V; Becker, M P I; Herrmann, M J; Straube, T

    2017-11-01

    Panic disorder (PD) patients are constantly concerned about future panic attacks and exhibit general hypersensitivity to unpredictable threat. We aimed to reveal phasic and sustained brain responses and functional connectivity of the amygdala and the bed nucleus of the stria terminalis (BNST) during threat anticipation in PD. Using functional magnetic resonance imaging (fMRI), we investigated 17 PD patients and 19 healthy controls (HC) during anticipation of temporally unpredictable aversive and neutral sounds. We used a phasic and sustained analysis model to disentangle temporally dissociable brain activations. PD patients compared with HC showed phasic amygdala and sustained BNST responses during anticipation of aversive v. neutral stimuli. Furthermore, increased phasic activation was observed in anterior cingulate cortex (ACC), insula and prefrontal cortex (PFC). Insula and PFC also showed sustained activation. Functional connectivity analyses revealed partly distinct phasic and sustained networks. We demonstrate a role for the BNST during unpredictable threat anticipation in PD and provide first evidence for dissociation between phasic amygdala and sustained BNST activation and their functional connectivity. In line with a hypersensitivity to uncertainty in PD, our results suggest time-dependent involvement of brain regions related to fear and anxiety.

  1. Preschool negative emotionality predicts activity and connectivity of the fusiform face area and amygdala in later childhood.

    PubMed

    Kann, Sarah J; O'Rawe, Jonathan F; Huang, Anna S; Klein, Daniel N; Leung, Hoi-Chung

    2017-09-01

    Negative emotionality (NE) refers to individual differences in the propensity to experience and react with negative emotions and is associated with increased risk of psychological disorder. However, research on the neural bases of NE has focused almost exclusively on amygdala activity during emotional face processing. This study broadened this framework by examining the relationship between observed NE in early childhood and subsequent neural responses to emotional faces in both the amygdala and the fusiform face area (FFA) in a late childhood/early adolescent sample. Measures of NE were obtained from children at age 3 using laboratory observations, and functional magnetic resonance imaging (fMRI) data were collected when these children were between the ages of 9 and 12 while performing a visual stimulus identity matching task with houses and emotional faces as stimuli. Multiple regression analyses revealed that higher NE at age 3 is associated with significantly greater activation in the left amygdala and left FFA but lower functional connectivity between these two regions during the face conditions. These findings suggest that those with higher early NE have subsequent alterations in both activity and connectivity within an extended network during face processing. © The Author (2017). Published by Oxford University Press.

  2. Childhood trauma and emotional processing circuits in schizophrenia: A functional connectivity study.

    PubMed

    Cancel, Aïda; Comte, Magali; Boutet, Claire; Schneider, Fabien C; Rousseau, Pierre-François; Boukezzi, Sarah; Gay, Aurélia; Sigaud, Torrance; Massoubre, Catherine; Berna, Fabrice; Zendjidjian, Xavier Y; Azorin, Jean-Michel; Blin, Olivier; Fakra, Eric

    2017-06-01

    Childhood trauma strongly impacts emotional responses in schizophrenia. We have explored an association between early trauma and the amygdala functional connectivity using generalized psychophysiological interaction during an emotional task. Twenty-one schizophrenia patients and twenty-five controls were included. In schizophrenia patients, higher levels of sexual abuse and physical neglect during childhood were associated with decreased connectivity between the amygdala and the posterior cingulate/precuneus region. Additionally, patients showed decreased coupling between the amygdala and the posterior cingulate/precuneus region compared to controls. These findings suggest that early trauma could impact later connectivity in specific stress-related circuits affecting self-consciousness and social cognition in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. How functional connectivity between emotion regulation structures can be disrupted: preliminary evidence from adolescents with moderate to severe traumatic brain injury.

    PubMed

    Newsome, Mary R; Scheibel, Randall S; Mayer, Andrew R; Chu, Zili D; Wilde, Elisabeth A; Hanten, Gerri; Steinberg, Joel L; Lin, Xiaodi; Li, Xiaoqi; Merkley, Tricia L; Hunter, Jill V; Vasquez, Ana C; Cook, Lori; Lu, Hanzhang; Vinton, Kami; Levin, Harvey S

    2013-09-01

    Outcome of moderate to severe traumatic brain injury (TBI) includes impaired emotion regulation. Emotion regulation has been associated with amygdala and rostral anterior cingulate (rACC). However, functional connectivity between the two structures after injury has not been reported. A preliminary examination of functional connectivity of rACC and right amygdala was conducted in adolescents 2 to 3 years after moderate to severe TBI and in typically developing (TD)control adolescents, with the hypothesis that the TBI adolescents would demonstrate altered functional connectivity in the two regions. Functional connectivity was determined by correlating fluctuations in the blood oxygen level dependent(BOLD) signal of the rACC and right amygdala with that of other brain regions. In the TBI adolescents, the rACC was found to be significantly less functionally connected to medial prefrontal cortices and to right temporal regions near the amygdala (height threshold T = 2.5, cluster level p < .05, FDR corrected), while the right amygdala showed a trend in reduced functional connectivity with the rACC (height threshold T = 2.5, cluster level p = .06, FDR corrected). Data suggest disrupted functional connectivity in emotion regulation regions. Limitations include small sample sizes. Studies with larger sample sizes are necessary to characterize the persistent neural damage resulting from moderate to severe TBI during development.

  4. Amygdala Habituation and Prefrontal Functional Connectivity in Youth with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Swartz, Johnna R.; Wiggins, Jillian Lee; Carrasco, Melissa; Lord, Catherine; Monk, Christopher S.

    2013-01-01

    Objective: Amygdala habituation, the rapid decrease in amygdala responsiveness to the repeated presentation of stimuli, is fundamental to the nervous system. Habituation is important for maintaining adaptive levels of arousal to predictable social stimuli and decreased habituation is associated with heightened anxiety. Input from the ventromedial…

  5. Role of habenula and amygdala dysfunction in Parkinson disease patients with punding.

    PubMed

    Markovic, Vladana; Agosta, Federica; Canu, Elisa; Inuggi, Alberto; Petrovic, Igor; Stankovic, Iva; Imperiale, Francesca; Stojkovic, Tanja; Kostic, Vladimir S; Filippi, Massimo

    2017-06-06

    To assess whether a functional dysregulation of the habenula and amygdala, as modulators of the reward brain circuit, contributes to Parkinson disease (PD) punding. Structural and resting-state functional MRI were obtained from 22 patients with PD punding, 30 patients with PD without any impulsive-compulsive behavior (ICB) matched for disease stage and duration, motor impairment, and cognitive status, and 30 healthy controls. Resting-state functional connectivity of the habenula and amygdala bilaterally was assessed using a seed-based approach. Habenula and amygdala volumes and cortical thickness measures were obtained. Compared to both healthy controls and PD cases without any ICB (PD-no ICB), PD-punding patients showed higher functional connectivity of habenula and amygdala with thalamus and striatum bilaterally, and lower connectivity between bilateral habenula and left frontal and precentral cortices. In PD-punding relative to PD-no ICB patients, a lower functional connectivity between right amygdala and hippocampus was also observed. Habenula and amygdala volumes were not different among groups. PD-punding patients showed a cortical thinning of the left superior frontal and precentral gyri and right middle temporal gyrus and isthmus cingulate compared to healthy controls, and of the right inferior frontal gyrus compared to both controls and PD-no ICB patients. A breakdown of the connectivity among the crucial nodes of the reward circuit (i.e., habenula, amygdala, basal ganglia, frontal cortex) might be a contributory factor to punding in PD. This study provides potential instruments to detect and monitor punding in patients with PD. © 2017 American Academy of Neurology.

  6. Altered resting state functional connectivity of fear and reward circuitry in comorbid PTSD and major depression.

    PubMed

    Zhu, Xi; Helpman, Liat; Papini, Santiago; Schneier, Franklin; Markowitz, John C; Van Meter, Page E; Lindquist, Martin A; Wager, Tor D; Neria, Yuval

    2017-07-01

    Individuals with comorbid posttraumatic stress disorder and major depressive disorder (PTSD-MDD) often exhibit greater functional impairment and poorer treatment response than individuals with PTSD alone. Research has not determined whether PTSD-MDD is associated with different network connectivity abnormalities than PTSD alone. We used functional magnetic resonance imaging (fMRI) to measure resting state functional connectivity (rs-FC) patterns of brain regions involved in fear and reward processing in three groups: patients with PTSD-alone (n = 27), PTSD-MDD (n = 21), and trauma-exposed healthy controls (TEHCs, n = 34). Based on previous research, seeds included basolateral amygdala (BLA), centromedial amygdala (CMA), and nucleus accumbens (NAcc). Regardless of MDD comorbidity, PTSD was associated with decreased connectivity of BLA-orbitalfrontal cortex (OFC) and CMA-thalamus pathways, key to fear processing, and fear expression, respectively. PTSD-MDD, compared to PTSD-alone and TEHC, was associated with decreased connectivity across multiple amygdala and striatal-subcortical pathways: BLA-OFC, NAcc-thalamus, and NAcc-hippocampus. Further, while both the BLA-OFC and the NAcc-thalamus pathways were correlated with MDD symptoms, PTSD symptoms correlated with the amygdala pathways (BLA-OFC; CMA-thalamus) only. Comorbid PTSD-MDD may be associated with multifaceted functional connectivity alterations in both fear and reward systems. Clinical implications are discussed. © 2016 Wiley Periodicals, Inc.

  7. Differences in resting corticolimbic functional connectivity in bipolar I euthymia

    PubMed Central

    Torrisi, Salvatore; Moody, Teena D; Vizueta, Nathalie; Thomason, Moriah E; Monti, Martin M; Townsend, Jennifer D; Bookheimer, Susan Y; Altshuler, Lori L

    2012-01-01

    Objective We examined resting state functional connectivity in the brain between key emotion regulation regions in bipolar I disorder to delineate differences in coupling from healthy subjects. Methods Euthymic subjects with bipolar I disorder (n = 20) and matched healthy subjects (n = 20) participated in a resting state functional magnetic resonance imaging scan. Low frequency fluctuations in blood oxygen level-dependent (BOLD) signal were correlated in the six connections between four anatomically-defined nodes: left and right amygdala and left and right ventrolateral prefrontal cortex (vlPFC). Seed-to-voxel connectivity results were probed for commonly coupled regions. Following this, an identified region was included in a mediation analysis to determine the potential of mediation. Results The bipolar I disorder group exhibited significant hyperconnectivity between right amygdala and right vlPFC relative to healthy subjects. The connectivity between these regions in the bipolar I disorder group was partially mediated by activity in the anterior cingulate cortex (ACC). Conclusions Greater coupling between right amygdala and right vlPFC and their partial mediation by the ACC were found in bipolar I disorder subjects in remission and in the absence of a psychological task. These findings have implications for a trait-related and clinically-important imaging biomarker. PMID:23347587

  8. Intranasal Oxytocin Affects Amygdala Functional Connectivity after Trauma Script-Driven Imagery in Distressed Recently Trauma-Exposed Individuals.

    PubMed

    Frijling, Jessie L; van Zuiden, Mirjam; Koch, Saskia B J; Nawijn, Laura; Veltman, Dick J; Olff, Miranda

    2016-04-01

    Approximately 10% of trauma-exposed individuals go on to develop post-traumatic stress disorder (PTSD). Neural emotion regulation may be etiologically involved in PTSD development. Oxytocin administration early post-trauma may be a promising avenue for PTSD prevention, as intranasal oxytocin has previously been found to affect emotion regulation networks in healthy individuals and psychiatric patients. In a randomized double-blind placebo-controlled between-subjects functional magnetic resonance (fMRI) study, we assessed the effects of a single intranasal oxytocin administration (40 IU) on seed-based amygdala resting-state FC with emotion regulation areas (ventromedial prefrontal cortex (vmPFC), ventrolateral prefrontal cortex (vlPFC)), and salience processing areas (insula, dorsal anterior cingulate cortex (dACC)) in 37 individuals within 11 days post trauma. Two resting-state scans were acquired; one after neutral- and one after trauma-script-driven imagery. We found that oxytocin administration reduced amygdala-left vlPFC FC after trauma script-driven imagery, compared with neutral script-driven imagery, whereas in PL-treated participants enhanced amygdala-left vlPFC FC was observed following trauma script-driven imagery. Irrespective of script condition, oxytocin increased amygdala-insula FC and decreased amygdala-vmPFC FC. These neural effects were accompanied by lower levels of sleepiness and higher flashback intensity in the oxytocin group after the trauma script. Together, our findings show that oxytocin administration may impede emotion regulation network functioning in response to trauma reminders in recently trauma-exposed individuals. Therefore, caution may be warranted in administering oxytocin to prevent PTSD in distressed, recently trauma-exposed individuals.

  9. Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function

    PubMed Central

    Evans, Gary W.; Swain, James E.; King, Anthony P.; Wang, Xin; Javanbakht, Arash; Ho, S. Shaun; Angstadt, Michael; Phan, K. Luan; Xie, Hong; Liberzon, Israel

    2015-01-01

    Considerable work indicates that early cumulative risk exposure is aversive to human development, but very little research has examined neurological underpinnings of these robust findings. We investigated amygdala volume and reactivity to facial stimuli among adults (M = 23.7 years, n = 54) as a function of cumulative risk exposure during childhood (ages 9 and 13). In addition, we tested whether expected, cumulative risk elevations in amygdala volume would mediate functional reactivity of the amygdala during socio-emotional processing. Risks included substandard housing quality, noise, crowding, family turmoil, child separation from family, and violence. Total and left hemisphere adult amygdala volumes, respectively were positively related to cumulative risk exposure during childhood. The links between childhood cumulative risk exposure and elevated amygdala responses to emotionally neutral facial stimuli in adulthood were mediated by the respective amygdala volumes. Cumulative risk exposure in later adolescence (17 years), however, was unrelated to subsequent, adult amygdala volume or function. Physical and socioemotional risk exposures early in life appear to alter amygdala development, rendering adults more reactive to ambiguous stimuli such as neutral faces. These stress-related differences in childhood amygdala development might contribute to well-documented psychological distress as a function of early risk exposure. PMID:26469872

  10. Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function.

    PubMed

    Evans, Gary W; Swain, James E; King, Anthony P; Wang, Xin; Javanbakht, Arash; Ho, S Shaun; Angstadt, Michael; Phan, K Luan; Xie, Hong; Liberzon, Israel

    2016-06-01

    Considerable work indicates that early cumulative risk exposure is aversive to human development, but very little research has examined the neurological underpinnings of these robust findings. This study investigates amygdala volume and reactivity to facial stimuli among adults (mean 23.7 years of age, n = 54) as a function of cumulative risk exposure during childhood (9 and 13 years of age). In addition, we test to determine whether expected cumulative risk elevations in amygdala volume would mediate functional reactivity of the amygdala during socioemotional processing. Risks included substandard housing quality, noise, crowding, family turmoil, child separation from family, and violence. Total and left hemisphere adult amygdala volumes were positively related to cumulative risk exposure during childhood. The links between childhood cumulative risk exposure and elevated amygdala responses to emotionally neutral facial stimuli in adulthood were mediated by the corresponding amygdala volumes. Cumulative risk exposure in later adolescence (17 years of age), however, was unrelated to subsequent adult amygdala volume or function. Physical and socioemotional risk exposures early in life appear to alter amygdala development, rendering adults more reactive to ambiguous stimuli such as neutral faces. These stress-related differences in childhood amygdala development might contribute to the well-documented psychological distress as a function of early risk exposure. © 2015 Wiley Periodicals, Inc.

  11. Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression.

    PubMed

    Yuan, Han; Young, Kymberly D; Phillips, Raquel; Zotev, Vadim; Misaki, Masaya; Bodurka, Jerzy

    2014-11-01

    Amygdala hemodynamic responses to positive stimuli are attenuated in major depressive disorder (MDD) and normalize with remission. Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) training with the goal of upregulating amygdala activity during recall of happy autobiographical memories (AMs) has been suggested, and recently explored, as a novel therapeutic approach that resulted in improvement in self-reported mood in depressed subjects. In this study, we assessed the possibility of sustained brain changes as well as the neuromodulatory effects of rtfMRI-nf training of the amygdala during recall of positive AMs in MDD and matched healthy subjects. MDD and healthy subjects went through one visit of rtfMRI-nf training. Subjects were assigned to receive active neurofeedback from the left amygdale (LA) or from a control region putatively not modulated by AM recall or emotion regulation, that is, the left horizontal segment of the intraparietal sulcus. To assess lasting effects of neurofeedback in MDD, the resting-state functional connectivity before and after rtfMRI-nf in 27 depressed subjects, as well as in 27 matched healthy subjects before rtfMRI-nf was measured. Results show that abnormal hypo-connectivity with LA in MDD is reversed after rtfMRI-nf training by recalling positive AMs. Although such neuromodulatory changes are observed in both MDD groups receiving feedback from respective active and control brain regions, only in the active group are larger decreases of depression severity associated with larger increases of amygdala connectivity and a significant, positive correlation is found between the connectivity changes and the days after neurofeedback. In addition, active neurofeedback training of the amygdala enhances connectivity with temporal cortical regions, including the hippocampus. These results demonstrate lasting brain changes induced by amygdala rtfMRI-nf training and suggest the importance of reinforcement learning in

  12. Resting-State Functional Connectivity Modulation and Sustained Changes After Real-Time Functional Magnetic Resonance Imaging Neurofeedback Training in Depression

    PubMed Central

    Young, Kymberly D.; Phillips, Raquel; Zotev, Vadim; Misaki, Masaya

    2014-01-01

    Abstract Amygdala hemodynamic responses to positive stimuli are attenuated in major depressive disorder (MDD) and normalize with remission. Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) training with the goal of upregulating amygdala activity during recall of happy autobiographical memories (AMs) has been suggested, and recently explored, as a novel therapeutic approach that resulted in improvement in self-reported mood in depressed subjects. In this study, we assessed the possibility of sustained brain changes as well as the neuromodulatory effects of rtfMRI-nf training of the amygdala during recall of positive AMs in MDD and matched healthy subjects. MDD and healthy subjects went through one visit of rtfMRI-nf training. Subjects were assigned to receive active neurofeedback from the left amygdale (LA) or from a control region putatively not modulated by AM recall or emotion regulation, that is, the left horizontal segment of the intraparietal sulcus. To assess lasting effects of neurofeedback in MDD, the resting-state functional connectivity before and after rtfMRI-nf in 27 depressed subjects, as well as in 27 matched healthy subjects before rtfMRI-nf was measured. Results show that abnormal hypo-connectivity with LA in MDD is reversed after rtfMRI-nf training by recalling positive AMs. Although such neuromodulatory changes are observed in both MDD groups receiving feedback from respective active and control brain regions, only in the active group are larger decreases of depression severity associated with larger increases of amygdala connectivity and a significant, positive correlation is found between the connectivity changes and the days after neurofeedback. In addition, active neurofeedback training of the amygdala enhances connectivity with temporal cortical regions, including the hippocampus. These results demonstrate lasting brain changes induced by amygdala rtfMRI-nf training and suggest the importance of reinforcement learning

  13. No laughing matter: intranasal oxytocin administration changes functional brain connectivity during exposure to infant laughter.

    PubMed

    Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J

    2012-04-01

    Infant laughter is a rewarding experience. It activates neural reward circuits and promotes parental proximity and care, thus facilitating parent-infant attachment. The neuropeptide oxytocin might enhance the incentive salience of infant laughter by modulating neural circuits related to the perception of infant cues. In a randomized controlled trial with functional magnetic resonance imaging we investigated the influence of intranasally administered oxytocin on functional brain connectivity in response to infant laughter. Blood oxygenation level-dependent responses to infant laughter were measured in 22 nulliparous women who were administered oxytocin and 20 nulliparous women who were administered a placebo. Elevated oxytocin levels reduced activation in the amygdala during infant laughter and enhanced functional connectivity between the amygdala and the orbitofrontal cortex, the anterior cingulate, the hippocampus, the precuneus, the supramarginal gyri, and the middle temporal gyrus. Increased functional connectivity between the amygdala and regions involved in emotion regulation may reduce negative emotional arousal while enhancing the incentive salience of the infant laughter.

  14. No Laughing Matter: Intranasal Oxytocin Administration Changes Functional Brain Connectivity during Exposure to Infant Laughter

    PubMed Central

    Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J

    2012-01-01

    Infant laughter is a rewarding experience. It activates neural reward circuits and promotes parental proximity and care, thus facilitating parent–infant attachment. The neuropeptide oxytocin might enhance the incentive salience of infant laughter by modulating neural circuits related to the perception of infant cues. In a randomized controlled trial with functional magnetic resonance imaging we investigated the influence of intranasally administered oxytocin on functional brain connectivity in response to infant laughter. Blood oxygenation level-dependent responses to infant laughter were measured in 22 nulliparous women who were administered oxytocin and 20 nulliparous women who were administered a placebo. Elevated oxytocin levels reduced activation in the amygdala during infant laughter and enhanced functional connectivity between the amygdala and the orbitofrontal cortex, the anterior cingulate, the hippocampus, the precuneus, the supramarginal gyri, and the middle temporal gyrus. Increased functional connectivity between the amygdala and regions involved in emotion regulation may reduce negative emotional arousal while enhancing the incentive salience of the infant laughter. PMID:22189289

  15. Reduced functional connectivity within and between ‘social’ resting state networks in autism spectrum conditions

    PubMed Central

    Stoyanova, Raliza S.; Baron-Cohen, Simon; Calder, Andrew J.

    2013-01-01

    Individuals with Autism Spectrum Conditions (ASC) have difficulties in social interaction and communication, which is reflected in hypoactivation of brain regions engaged in social processing, such as medial prefrontal cortex (mPFC), amygdala and insula. Resting state studies in ASC have identified reduced connectivity of the default mode network (DMN), which includes mPFC, suggesting that other resting state networks incorporating ‘social’ brain regions may also be abnormal. Using Seed-based Connectivity and Group Independent Component Analysis (ICA) approaches, we looked at resting functional connectivity in ASC between specific ‘social’ brain regions, as well as within and between whole networks incorporating these regions. We found reduced functional connectivity within the DMN in individuals with ASC, using both ICA and seed-based approaches. Two further networks identified by ICA, the salience network, incorporating the insula and a medial temporal lobe network, incorporating the amygdala, showed reduced inter-network connectivity. This was underlined by reduced seed-based connectivity between the insula and amygdala. The results demonstrate significantly reduced functional connectivity within and between resting state networks incorporating ‘social’ brain regions. This reduced connectivity may result in difficulties in communication and integration of information across these networks, which could contribute to the impaired processing of social signals in ASC. PMID:22563003

  16. Bidirectional communication between amygdala and fusiform gyrus during facial recognition.

    PubMed

    Herrington, John D; Taylor, James M; Grupe, Daniel W; Curby, Kim M; Schultz, Robert T

    2011-06-15

    Decades of research have documented the specialization of fusiform gyrus (FG) for facial information processes. Recent theories indicate that FG activity is shaped by input from amygdala, but effective connectivity from amygdala to FG remains undocumented. In this fMRI study, 39 participants completed a face recognition task. 11 participants underwent the same experiment approximately four months later. Robust face-selective activation of FG, amygdala, and lateral occipital cortex were observed. Dynamic causal modeling and Bayesian Model Selection (BMS) were used to test the intrinsic connections between these structures, and their modulation by face perception. BMS results strongly favored a dynamic causal model with bidirectional, face-modulated amygdala-FG connections. However, the right hemisphere connections diminished at time 2, with the face modulation parameter no longer surviving Bonferroni correction. These findings suggest that amygdala strongly influences FG function during face perception, and that this influence is shaped by experience and stimulus salience. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Altered amygdala and hippocampus effective connectivity in mild cognitive impairment patients with depression: a resting-state functional MR imaging study with granger causality analysis

    PubMed Central

    Zhang, Xin Yuan; Wang, Yun Fei; Liu, Ya; Zheng, Gang; Lu, Guang Ming; Zhang, Long Jiang; Han, Ying

    2017-01-01

    Neuroimaging studies have demonstrated that the major depression disorder would increase the risk of dementia in the older with amnestic cognitive impairment. We used granger causality analysis algorithm to explore the amygdala- and hippocampus-based directional connectivity patterns in 12 patients with major depression disorder and amnestic cognitive impairment (mean age: 69.5 ± 10.3 years), 13 amnestic cognitive impairment patients (mean age: 72.7 ± 8.5 years) and 14 healthy controls (mean age: 64.7 ± 7.0 years). Compared with amnestic cognitive impairment patients and control groups respectively, the patients with both major depression disorder and amnestic cognitive impairment displayed increased effective connectivity from the right amygdala to the right lingual and calcarine gyrus, as well as to the bilateral supplementary motor areas. Meanwhile, the patients with both major depression disorder and amnestic cognitive impairment had enhanced effective connectivity from the left superior parietal gyrus, superior and middle occipital gyrus to the left hippocampus, the z values of which was also correlated with the scores of mini-mental state examination and auditory verbal learning test-immediate recall. Our findings indicated that the directional effective connectivity of right amygdala - occipital-parietal lobe – left hippocampus might be the pathway by which major depression disorder inhibited the brain activity in patients with amnestic cognitive impairment. PMID:28212570

  18. Altered amygdala and hippocampus effective connectivity in mild cognitive impairment patients with depression: a resting-state functional MR imaging study with granger causality analysis.

    PubMed

    Zheng, Li Juan; Yang, Gui Fen; Zhang, Xin Yuan; Wang, Yun Fei; Liu, Ya; Zheng, Gang; Lu, Guang Ming; Zhang, Long Jiang; Han, Ying

    2017-04-11

    Neuroimaging studies have demonstrated that the major depression disorder would increase the risk of dementia in the older with amnestic cognitive impairment. We used granger causality analysis algorithm to explore the amygdala- and hippocampus-based directional connectivity patterns in 12 patients with major depression disorder and amnestic cognitive impairment (mean age: 69.5 ± 10.3 years), 13 amnestic cognitive impairment patients (mean age: 72.7 ± 8.5 years) and 14 healthy controls (mean age: 64.7 ± 7.0 years). Compared with amnestic cognitive impairment patients and control groups respectively, the patients with both major depression disorder and amnestic cognitive impairment displayed increased effective connectivity from the right amygdala to the right lingual and calcarine gyrus, as well as to the bilateral supplementary motor areas. Meanwhile, the patients with both major depression disorder and amnestic cognitive impairment had enhanced effective connectivity from the left superior parietal gyrus, superior and middle occipital gyrus to the left hippocampus, the z values of which was also correlated with the scores of mini-mental state examination and auditory verbal learning test-immediate recall. Our findings indicated that the directional effective connectivity of right amygdala - occipital-parietal lobe - left hippocampus might be the pathway by which major depression disorder inhibited the brain activity in patients with amnestic cognitive impairment.

  19. Association between heart rate variability and fluctuations in resting-state functional connectivity

    PubMed Central

    Chang, Catie; Metzger, Coraline D.; Glover, Gary H.; Duyn, Jeff H.; Heinze, Hans-Jochen; Walter, Martin

    2012-01-01

    Functional connectivity has been observed to fluctuate across the course of a resting state scan, though the origins and functional relevance of this phenomenon remain to be shown. The present study explores the link between endogenous dynamics of functional connectivity and autonomic state in an eyes-closed resting condition. Using a sliding window analysis on resting state fMRI data from 35 young, healthy male subjects, we examined how heart rate variability (HRV) covaries with temporal changes in whole-brain functional connectivity with seed regions previously described to mediate effects of vigilance and arousal (amygdala and dorsal anterior cingulate cortex; dACC). We identified a set of regions, including brainstem, thalamus, putamen, and dorsolateral prefrontal cortex, that became more strongly coupled with the dACC and amygdala seeds during states of elevated HRV. Effects differed between high and low frequency components of HRV, suggesting specific contributions of parasympathetic and sympathetic tone on individual connections. Furthermore, dynamics of functional connectivity could be separated from those primarily related to BOLD signal fluctuations. The present results contribute novel information about the neural basis of transient changes of autonomic nervous system states, and suggest physiological and psychological components of the recently observed non-stationarity in resting state functional connectivity. PMID:23246859

  20. Functional and neurochemical interactions within the amygdala-medial prefrontal cortex circuit and their relevance to emotional processing

    PubMed Central

    Pizzi, Stefano Delli; Chiacchiaretta, Piero; Mantini, Dante; Bubbico, Giovanna; Ferretti, Antonio; Edden, Richard A.; Di Giulio, Camillo; Onofrj, Marco

    2017-01-01

    The amygdala–medial prefrontal cortex (mPFC) circuit plays a key role in emotional processing. GABA-ergic inhibition within the mPFC has been suggested to play a role in the shaping of amygdala activity. However, the functional and neurochemical interactions within the amygdala–mPFC circuits and their relevance to emotional processing remain unclear. To investigate this circuit, we obtained resting-state functional magnetic resonance imaging (rs-fMRI) and proton MR spectroscopy in 21 healthy subjects to assess the potential relationship between GABA levels within mPFC and the amygdala–mPFC functional connectivity. Trait anxiety was assessed using the State-Trait Anxiety Inventory (STAI-Y2). Partial correlations were used to measure the relationships among the functional connectivity outcomes, mPFC GABA levels and STAI-Y2 scores. Age, educational level and amount of the gray and white matters within 1H-MRS volume of interest were included as nuisance variables. The rs-fMRI signals of the amygdala and the vmPFC were significantly anti-correlated. This negative functional coupling between the two regions was inversely correlated with the GABA+/tCr level within the mPFC and the STAI-Y2 scores. We suggest a close relationship between mPFC GABA levels and functional interactions within the amygdala-vmPFC circuit, providing new insights in the physiology of emotion. PMID:27566606

  1. Progesterone modifies the responsivity of the amygdala-mPFC connection in male but not female Wistar rats.

    PubMed

    Contreras, Carlos M; Gutiérrez-García, Ana G

    2017-05-10

    Amygdala-medial prefrontal cortex (mPFC) connections partially regulate fear, anxiety, and the acquisition of conditioned fear. Progesterone exerts some effects on anxiety and fear. Currently unknown, however, are the actions of progesterone on the responsivity of amygdala-mPFC connections and possible sex differences. We performed single-unit extracellular recordings from the prelimbic (PL) and infralimbic (IL) cortices of the mPFC during stimulation of the basal amygdala (BA) in anesthetized male and diestrus female rats. Basal amygdala stimulation produced an initial excitatory paucisynaptic response that was similar between sexes and unaffected by progesterone. A long-lasting inhibitory response followed the initial brief excitatory response, which was more pronounced in the PL region in males. The unit activity ratio analysis indicated that progesterone negated the sex difference in the PL region response to BA stimulation. The results suggest that progesterone decreases the responsivity to amygdala stimulation, particularly in males compared with diestrus females, which may be related to sex differences in the strategies to cope with threatening situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Synapse-specific astrocyte gating of amygdala-related behavior.

    PubMed

    Martin-Fernandez, Mario; Jamison, Stephanie; Robin, Laurie M; Zhao, Zhe; Martin, Eduardo D; Aguilar, Juan; Benneyworth, Michael A; Marsicano, Giovanni; Araque, Alfonso

    2017-11-01

    The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A 1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A 2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.

  3. The structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety

    PubMed Central

    Kim, M. Justin; Loucks, Rebecca A.; Palmer, Amy L.; Brown, Annemarie C.; Solomon, Kimberly M.; Marchante, Ashley N.; Whalen, Paul J.

    2011-01-01

    The dynamic interactions between the amygdala and the medial prefrontal cortex (mPFC) are usefully conceptualized as a circuit that both allows us to react automatically to biologically relevant predictive stimuli as well as regulate these reactions when the situation calls for it. In this review, we will begin by discussing the role of this amygdala-mPFC circuitry in the conditioning and extinction of aversive learning in animals. We will then relate these data to emotional regulation paradigms in humans. Finally, we will consider how these processes are compromised in normal and pathological anxiety. We conclude that the capacity for efficient crosstalk between the amygdala and the mPFC, which is represented as the strength of the amygdala-mPFC circuitry, is crucial to beneficial outcomes in terms of reported anxiety. PMID:21536077

  4. The amygdala and decision-making.

    PubMed

    Gupta, Rupa; Koscik, Timothy R; Bechara, Antoine; Tranel, Daniel

    2011-03-01

    Decision-making is a complex process that requires the orchestration of multiple neural systems. For example, decision-making is believed to involve areas of the brain involved in emotion (e.g., amygdala, ventromedial prefrontal cortex) and memory (e.g., hippocampus, dorsolateral prefrontal cortex). In this article, we will present findings related to the amygdala's role in decision-making, and differentiate the contributions of the amygdala from those of other structurally and functionally connected neural regions. Decades of research have shown that the amygdala is involved in associating a stimulus with its emotional value. This tradition has been extended in newer work, which has shown that the amygdala is especially important for decision-making, by triggering autonomic responses to emotional stimuli, including monetary reward and punishment. Patients with amygdala damage lack these autonomic responses to reward and punishment, and consequently, cannot utilize "somatic marker" type cues to guide future decision-making. Studies using laboratory decision-making tests have found deficient decision-making in patients with bilateral amygdala damage, which resembles their real-world difficulties with decision-making. Additionally, we have found evidence for an interaction between sex and laterality of amygdala functioning, such that unilateral damage to the right amygdala results in greater deficits in decision-making and social behavior in men, while left amygdala damage seems to be more detrimental for women. We have posited that the amygdala is part of an "impulsive," habit type system that triggers emotional responses to immediate outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex.

    PubMed

    Chen, Yu-Chen; Xia, Wenqing; Chen, Huiyou; Feng, Yuan; Xu, Jin-Jing; Gu, Jian-Ping; Salvi, Richard; Yin, Xindao

    2017-05-01

    The phantom sound of tinnitus is believed to be triggered by aberrant neural activity in the central auditory pathway, but since this debilitating condition is often associated with emotional distress and anxiety, these comorbidities likely arise from maladaptive functional connections to limbic structures such as the amygdala and hippocampus. To test this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to identify aberrant effective connectivity of the amygdala and hippocampus in tinnitus patients and to determine the relationship with tinnitus characteristics. Chronic tinnitus patients (n = 26) and age-, sex-, and education-matched healthy controls (n = 23) were included. Both groups were comparable for hearing level. Granger causality analysis utilizing the amygdala and hippocampus as seed regions were used to investigate the directional connectivity and the relationship with tinnitus duration or distress. Relative to healthy controls, tinnitus patients demonstrated abnormal directional connectivity of the amygdala and hippocampus, including primary and association auditory cortex, and other non-auditory areas. Importantly, scores on the Tinnitus Handicap Questionnaires were positively correlated with increased connectivity from the left amygdala to left superior temporal gyrus (r = 0.570, P = 0.005), and from the right amygdala to right superior temporal gyrus (r = 0.487, P = 0.018). Moreover, enhanced effective connectivity from the right hippocampus to left transverse temporal gyrus was correlated with tinnitus duration (r = 0.452, P = 0.030). The results showed that tinnitus distress strongly correlates with enhanced effective connectivity that is directed from the amygdala to the auditory cortex. The longer the phantom sensation, the more likely acute tinnitus becomes permanently encoded by memory traces in the hippocampus. Hum Brain Mapp 38:2384-2397, 2017. © 2017 Wiley Periodicals, Inc.

  6. The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety.

    PubMed

    Kim, M Justin; Loucks, Rebecca A; Palmer, Amy L; Brown, Annemarie C; Solomon, Kimberly M; Marchante, Ashley N; Whalen, Paul J

    2011-10-01

    The dynamic interactions between the amygdala and the medial prefrontal cortex (mPFC) are usefully conceptualized as a circuit that both allows us to react automatically to biologically relevant predictive stimuli as well as regulate these reactions when the situation calls for it. In this review, we will begin by discussing the role of this amygdala-mPFC circuitry in the conditioning and extinction of aversive learning in animals. We will then relate these data to emotional regulation paradigms in humans. Finally, we will consider how these processes are compromised in normal and pathological anxiety. We conclude that the capacity for efficient crosstalk between the amygdala and the mPFC, which is represented as the strength of the amygdala-mPFC circuitry, is crucial to beneficial outcomes in terms of reported anxiety. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Stimulus-Elicited Connectivity Influences Resting-State Connectivity Years Later in Human Development: A Prospective Study.

    PubMed

    Gabard-Durnam, Laurel Joy; Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim

    2016-04-27

    Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we posit and test the long

  8. Stimulus-Elicited Connectivity Influences Resting-State Connectivity Years Later in Human Development: A Prospective Study

    PubMed Central

    Gee, Dylan Grace; Goff, Bonnie; Flannery, Jessica; Telzer, Eva; Humphreys, Kathryn Leigh; Lumian, Daniel Stephen; Fareri, Dominic Stephen; Caldera, Christina; Tottenham, Nim

    2016-01-01

    Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years. SIGNIFICANCE STATEMENT A fundamental issue in understanding the ontogeny of brain function is how resting-state (intrinsic) functional networks emerge and relate to stimulus-elicited functional connectivity. Here, we

  9. Functional Connectivity of the Amygdala in Early-Childhood-Onset Depression

    ERIC Educational Resources Information Center

    Luking, Katherine R.; Repovs, Grega; Belden, Andy C.; Gaffrey, Michael S.; Botteron, Kelly N.; Luby, Joan L.; Barch, Deanna M.

    2011-01-01

    Objective: Adult major depressive disorder (MDD) is associated with reduced cortico-limbic functional connectivity thought to indicate decreased top-down control of emotion. However, it is unclear whether such connectivity alterations are also present in early-childhood-onset MDD. Method: A total of 51 children 7 through 11 years of age who had…

  10. Decreased functional connectivity in schizophrenia: The relationship between social functioning, social cognition and graph theoretical network measures.

    PubMed

    Erdeniz, Burak; Serin, Emin; İbadi, Yelda; Taş, Cumhur

    2017-12-30

    Schizophrenia is a complex disorder in which abnormalities in brain connectivity and social functioning play a central role. The aim of this study is to explore small-world network properties, and understand their relationship with social functioning and social cognition in the context of schizophrenia, by testing functional connectivity differences in network properties and its relation to clinical behavioral measures. Resting-state fMRI time series data were acquired from 23 patients diagnosed with schizophrenia and 23 healthy volunteers. The results revealed that patients with schizophrenia show significantly decreased connectivity between a range of brain regions, particularly involving connections among the right orbitofrontal cortex, bilateral putamen and left amygdala. Furthermore, topological properties of functional brain networks in patients with schizophrenia were characterized by reduced path length compared to healthy controls; however, no significant difference was found for clustering coefficient, local efficiency or global efficiency. Additionally, we found that nodal efficiency of the amygdala and the putamen were significantly correlated with the independence-performance subscale of social functioning scale (SFC), and Reading the Mind in the Eyes test; however, the correlations do not survive correction for multiple comparison. The current results help to clarify the relationship between social functioning deficits and topological brain measures in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Direction of Amygdala-Neocortex Interaction During Dynamic Facial Expression Processing.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshikawa, Sakiko; Toichi, Motomi

    2017-03-01

    Dynamic facial expressions of emotion strongly elicit multifaceted emotional, perceptual, cognitive, and motor responses. Neuroimaging studies revealed that some subcortical (e.g., amygdala) and neocortical (e.g., superior temporal sulcus and inferior frontal gyrus) brain regions and their functional interaction were involved in processing dynamic facial expressions. However, the direction of the functional interaction between the amygdala and the neocortex remains unknown. To investigate this issue, we re-analyzed functional magnetic resonance imaging (fMRI) data from 2 studies and magnetoencephalography (MEG) data from 1 study. First, a psychophysiological interaction analysis of the fMRI data confirmed the functional interaction between the amygdala and neocortical regions. Then, dynamic causal modeling analysis was used to compare models with forward, backward, or bidirectional effective connectivity between the amygdala and neocortical networks in the fMRI and MEG data. The results consistently supported the model of effective connectivity from the amygdala to the neocortex. Further increasing time-window analysis of the MEG demonstrated that this model was valid after 200 ms from the stimulus onset. These data suggest that emotional processing in the amygdala rapidly modulates some neocortical processing, such as perception, recognition, and motor mimicry, when observing dynamic facial expressions of emotion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Structural and functional connectivity of the subthalamic nucleus during vocal emotion decoding

    PubMed Central

    Frühholz, Sascha; Ceravolo, Leonardo; Grandjean, Didier

    2016-01-01

    Our understanding of the role played by the subthalamic nucleus (STN) in human emotion has recently advanced with STN deep brain stimulation, a neurosurgical treatment for Parkinson’s disease and obsessive-compulsive disorder. However, the potential presence of several confounds related to pathological models raises the question of how much they affect the relevance of observations regarding the physiological function of the STN itself. This underscores the crucial importance of obtaining evidence from healthy participants. In this study, we tested the structural and functional connectivity between the STN and other brain regions related to vocal emotion in a healthy population by combining diffusion tensor imaging and psychophysiological interaction analysis from a high-resolution functional magnetic resonance imaging study. As expected, we showed that the STN is functionally connected to the structures involved in emotional prosody decoding, notably the orbitofrontal cortex, inferior frontal gyrus, auditory cortex, pallidum and amygdala. These functional results were corroborated by probabilistic fiber tracking, which revealed that the left STN is structurally connected to the amygdala and the orbitofrontal cortex. These results confirm, in healthy participants, the role played by the STN in human emotion and its structural and functional connectivity with the brain network involved in vocal emotions. PMID:26400857

  13. Altered amygdala-prefrontal response to facial emotion in offspring of parents with bipolar disorder.

    PubMed

    Manelis, Anna; Ladouceur, Cecile D; Graur, Simona; Monk, Kelly; Bonar, Lisa K; Hickey, Mary Beth; Dwojak, Amanda C; Axelson, David; Goldstein, Benjamin I; Goldstein, Tina R; Bebko, Genna; Bertocci, Michele A; Hafeman, Danella M; Gill, Mary Kay; Birmaher, Boris; Phillips, Mary L

    2015-09-01

    This study aimed to identify neuroimaging measures associated with risk for, or protection against, bipolar disorder by comparing youth offspring of parents with bipolar disorder versus youth offspring of non-bipolar parents versus offspring of healthy parents in (i) the magnitude of activation within emotional face processing circuitry; and (ii) functional connectivity between this circuitry and frontal emotion regulation regions. The study was conducted at the University of Pittsburgh Medical Centre. Participants included 29 offspring of parents with bipolar disorder (mean age = 13.8 years; 14 females), 29 offspring of non-bipolar parents (mean age = 13.8 years; 12 females) and 23 healthy controls (mean age = 13.7 years; 11 females). Participants were scanned during implicit processing of emerging happy, sad, fearful and angry faces and shapes. The activation analyses revealed greater right amygdala activation to emotional faces versus shapes in offspring of parents with bipolar disorder and offspring of non-bipolar parents than healthy controls. Given that abnormally increased amygdala activation during emotion processing characterized offspring of both patient groups, and that abnormally increased amygdala activation has often been reported in individuals with already developed bipolar disorder and those with major depressive disorder, these neuroimaging findings may represent markers of increased risk for affective disorders in general. The analysis of psychophysiological interaction revealed that offspring of parents with bipolar disorder showed significantly more negative right amygdala-anterior cingulate cortex functional connectivity to emotional faces versus shapes, but significantly more positive right amygdala-left ventrolateral prefrontal cortex functional connectivity to happy faces (all P-values corrected for multiple tests) than offspring of non-bipolar parents and healthy controls. Taken together with findings of increased amygdala

  14. COMT Val158Met polymorphism influences the susceptibility to framing in decision-making: OFC-amygdala functional connectivity as a mediator.

    PubMed

    Gao, Xiaoxue; Gong, Pingyuan; Liu, Jinting; Hu, Jie; Li, Yue; Yu, Hongbo; Gong, Xiaoliang; Xiang, Yang; Jiang, Changjun; Zhou, Xiaolin

    2016-05-01

    Individuals tend to avoid risk in a gain frame, in which options are presented in a positive way, but seek risk in a loss frame, in which the same options are presented negatively. Previous studies suggest that emotional responses play a critical role in this "framing effect." Given that the Met allele of COMT Val158Met polymorphism (rs4680) is associated with the negativity bias during emotional processing, this study investigated whether this polymorphism is associated with individual susceptibility to framing and which brain areas mediate this gene-behavior association. Participants were genotyped, scanned in resting state, and completed a monetary gambling task with options (sure vs risky) presented as potential gains or losses. The Met allele carriers showed a greater framing effect than the Val/Val homozygotes as the former gambled more than the latter in the loss frame. Moreover, the gene-behavior association was mediated by resting-state functional connectivity (RSFC) between orbitofrontal cortex (OFC) and bilateral amygdala. Met allele carriers showed decreased RSFC, thereby demonstrating higher susceptibility to framing than Val allele carriers. These findings demonstrate the involvement of COMT Val158Met polymorphism in the framing effect in decision-making and suggest RSFC between OFC and amygdala as a neural mediator underlying this gene-behavior association. Hum Brain Mapp 37:1880-1892, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Individualized Functional Parcellation of the Human Amygdala Using a Semi-supervised Clustering Method: A 7T Resting State fMRI Study.

    PubMed

    Zhang, Xianchang; Cheng, Hewei; Zuo, Zhentao; Zhou, Ke; Cong, Fei; Wang, Bo; Zhuo, Yan; Chen, Lin; Xue, Rong; Fan, Yong

    2018-01-01

    The amygdala plays an important role in emotional functions and its dysfunction is considered to be associated with multiple psychiatric disorders in humans. Cytoarchitectonic mapping has demonstrated that the human amygdala complex comprises several subregions. However, it's difficult to delineate boundaries of these subregions in vivo even if using state of the art high resolution structural MRI. Previous attempts to parcellate this small structure using unsupervised clustering methods based on resting state fMRI data suffered from the low spatial resolution of typical fMRI data, and it remains challenging for the unsupervised methods to define subregions of the amygdala in vivo . In this study, we developed a novel brain parcellation method to segment the human amygdala into spatially contiguous subregions based on 7T high resolution fMRI data. The parcellation was implemented using a semi-supervised spectral clustering (SSC) algorithm at an individual subject level. Under guidance of prior information derived from the Julich cytoarchitectonic atlas, our method clustered voxels of the amygdala into subregions according to similarity measures of their functional signals. As a result, three distinct amygdala subregions can be obtained in each hemisphere for every individual subject. Compared with the cytoarchitectonic atlas, our method achieved better performance in terms of subregional functional homogeneity. Validation experiments have also demonstrated that the amygdala subregions obtained by our method have distinctive, lateralized functional connectivity (FC) patterns. Our study has demonstrated that the semi-supervised brain parcellation method is a powerful tool for exploring amygdala subregional functions.

  16. How Human Amygdala and Bed Nucleus of the Stria Terminalis May Drive Distinct Defensive Responses.

    PubMed

    Klumpers, Floris; Kroes, Marijn C W; Baas, Johanna M P; Fernández, Guillén

    2017-10-04

    The ability to adaptively regulate responses to the proximity of potential danger is critical to survival and imbalance in this system may contribute to psychopathology. The bed nucleus of the stria terminalis (BNST) is implicated in defensive responding during uncertain threat anticipation whereas the amygdala may drive responding upon more acute danger. This functional dissociation between the BNST and amygdala is however controversial, and human evidence scarce. Here we used data from two independent functional magnetic resonance imaging studies [ n = 108 males and n = 70 (45 females)] to probe how coordination between the BNST and amygdala may regulate responses during shock anticipation and actual shock confrontation. In a subset of participants from Sample 2 ( n = 48) we demonstrate that anticipation and confrontation evoke bradycardic and tachycardic responses, respectively. Further, we show that in each sample when going from shock anticipation to the moment of shock confrontation neural activity shifted from a region anatomically consistent with the BNST toward the amygdala. Comparisons of functional connectivity during threat processing showed overlapping yet also consistently divergent functional connectivity profiles for the BNST and amygdala. Finally, childhood maltreatment levels predicted amygdala, but not BNST, hyperactivity during shock anticipation. Our results support an evolutionary conserved, defensive distance-dependent dynamic balance between BNST and amygdala activity. Shifts in this balance may enable shifts in defensive reactions via the demonstrated differential functional connectivity. Our results indicate that early life stress may tip the neural balance toward acute threat responding and via that route predispose for affective disorder. SIGNIFICANCE STATEMENT Previously proposed differential contributions of the BNST and amygdala to fear and anxiety have been recently debated. Despite the significance of understanding their

  17. Recovery from Unrecognized Sleep Loss Accumulated in Daily Life Improved Mood Regulation via Prefrontal Suppression of Amygdala Activity

    PubMed Central

    Motomura, Yuki; Kitamura, Shingo; Nakazaki, Kyoko; Oba, Kentaro; Katsunuma, Ruri; Terasawa, Yuri; Hida, Akiko; Moriguchi, Yoshiya; Mishima, Kazuo

    2017-01-01

    Many modern people suffer from sleep debt that has accumulated in everyday life but is not subjectively noticed [potential sleep debt (PSD)]. Our hypothesis for this study was that resolution of PSD through sleep extension optimizes mood regulation by altering the functional connectivity between the amygdala and prefrontal cortex. Fifteen healthy male participants underwent an experiment consisting of a baseline (BL) evaluation followed by two successive interventions, namely, a 9-day sleep extension followed by one night of total sleep deprivation (TSD). Tests performed before and after the interventions included a questionnaire on negative mood and neuroimaging with arterial spin labeling MRI for evaluating regional cerebral blood flow (rCBF) and functional connectivity. Negative mood and amygdala rCBF were significantly reduced after sleep extension compared with BL. The amygdala had a significant negative functional connectivity with the medial prefrontal cortex (FCamg–MPFC), and this negative connectivity was greater after sleep extension than at BL. After TSD, these indices reverted to the same level as at BL. An additional path analysis with structural equation modeling showed that the FCamg–MPFC significantly explained the amygdala rCBF and that the amygdala rCBF significantly explained the negative mood. These findings suggest that the use of our sleep extension protocol normalized amygdala activity via negative amygdala–MPFC functional connectivity. The resolution of unnoticed PSD may improve mood by enhancing frontal suppression of hyperactivity in the amygdala caused by PSD accumulating in everyday life. PMID:28713328

  18. The Influence of Work-Related Chronic Stress on the Regulation of Emotion and on Functional Connectivity in the Brain

    PubMed Central

    Golkar, Armita; Johansson, Emilia; Kasahara, Maki; Osika, Walter; Perski, Aleksander; Savic, Ivanka

    2014-01-01

    Despite mounting reports about the negative effects of chronic occupational stress on cognitive and emotional functions, the underlying mechanisms are unknown. Recent findings from structural MRI raise the question whether this condition could be associated with a functional uncoupling of the limbic networks and an impaired modulation of emotional stress. To address this, 40 subjects suffering from burnout symptoms attributed to chronic occupational stress and 70 controls were investigated using resting state functional MRI. The participants' ability to up- regulate, down-regulate, and maintain emotion was evaluated by recording their acoustic startle response while viewing neutral and negatively loaded images. Functional connectivity was calculated from amygdala seed regions, using explorative linear correlation analysis. Stressed subjects were less capable of down-regulating negative emotion, but had normal acoustic startle responses when asked to up-regulate or maintain emotion and when no regulation was required. The functional connectivity between the amygdala and the anterior cingulate cortex correlated with the ability to down-regulate negative emotion. This connectivity was significantly weaker in the burnout group, as was the amygdala connectivity with the dorsolateral prefrontal cortex and the motor cortex, whereas connectivity from the amygdala to the cerebellum and the insular cortex were stronger. In subjects suffering from chronic occupational stress, the functional couplings within the emotion- and stress-processing limbic networks seem to be altered, and associated with a reduced ability to down-regulate the response to emotional stress, providing a biological substrate for a further facilitation of the stress condition. PMID:25184294

  19. Disorganized Amygdala Networks in Conduct-Disordered Juvenile Offenders With Callous-Unemotional Traits.

    PubMed

    Aghajani, Moji; Klapwijk, Eduard T; van der Wee, Nic J; Veer, Ilya M; Rombouts, Serge A R B; Boon, Albert E; van Beelen, Peter; Popma, Arne; Vermeiren, Robert R J M; Colins, Olivier F

    2017-08-15

    The developmental trajectory of psychopathy seemingly begins early in life and includes the presence of callous-unemotional (CU) traits (e.g., deficient emotional reactivity, callousness) in conduct-disordered (CD) youth. Though subregion-specific anomalies in amygdala function have been suggested in CU pathophysiology among antisocial populations, system-level studies of CU traits have typically examined the amygdala as a unitary structure. Hence, nothing is yet known of how amygdala subregional network function may contribute to callous-unemotionality in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral amygdala (BLA) and centromedial amygdala (CMA) networks across three matched groups of juveniles: CD offenders with CU traits (CD/CU+; n = 25), CD offenders without CU traits (CD/CU-; n = 25), and healthy control subjects (n = 24). We additionally examined whether perturbed amygdala subregional connectivity coincides with altered volume and shape of the amygdaloid complex. Relative to CD/CU- and healthy control youths, CD/CU+ youths showed abnormally increased BLA connectivity with a cluster that included both dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices, along with posterior cingulate, sensory associative, and striatal regions. In contrast, compared with CD/CU- and healthy control youths, CD/CU+ youths showed diminished CMA connectivity with ventromedial/orbitofrontal regions. Critically, these connectivity changes coincided with local hypotrophy of BLA and CMA subregions (without being statistically correlated) and were associated to more severe CU symptoms. These findings provide unique insights into a putative mechanism for perturbed attention-emotion interactions, which could bias salience processing and associative learning in youth with CD/CU+. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  20. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala.

    PubMed

    Wood, J; Verma, D; Lach, G; Bonaventure, P; Herzog, H; Sperk, G; Tasan, R O

    2016-09-01

    The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.

  1. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    PubMed

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We

  2. Functional connectivity dynamics during film viewing reveal common networks for different emotional experiences.

    PubMed

    Raz, Gal; Touroutoglou, Alexandra; Wilson-Mendenhall, Christine; Gilam, Gadi; Lin, Tamar; Gonen, Tal; Jacob, Yael; Atzil, Shir; Admon, Roee; Bleich-Cohen, Maya; Maron-Katz, Adi; Hendler, Talma; Barrett, Lisa Feldman

    2016-08-01

    Recent theoretical and empirical work has highlighted the role of domain-general, large-scale brain networks in generating emotional experiences. These networks are hypothesized to process aspects of emotional experiences that are not unique to a specific emotional category (e.g., "sadness," "happiness"), but rather that generalize across categories. In this article, we examined the dynamic interactions (i.e., changing cohesiveness) between specific domain-general networks across time while participants experienced various instances of sadness, fear, and anger. We used a novel method for probing the network connectivity dynamics between two salience networks and three amygdala-based networks. We hypothesized, and found, that the functional connectivity between these networks covaried with the intensity of different emotional experiences. Stronger connectivity between the dorsal salience network and the medial amygdala network was associated with more intense ratings of emotional experience across six different instances of the three emotion categories examined. Also, stronger connectivity between the dorsal salience network and the ventrolateral amygdala network was associated with more intense ratings of emotional experience across five out of the six different instances. Our findings demonstrate that a variety of emotional experiences are associated with dynamic interactions of domain-general neural systems.

  3. GABA content within medial prefrontal cortex predicts the variability of fronto-limbic effective connectivity

    PubMed Central

    Pizzi, Stefano Delli; Chiacchieretta, Piero; Mantini, Dante; Bubbico, Giovanna; Edden, Richard A.; Onofrj, Marco; Ferretti, Antonio

    2017-01-01

    The amygdala-medial prefrontal cortex (mPFC) circuit plays a key role in social behavior. The amygdala and mPFC are bidirectionally connected, functionally and anatomically, via the uncinate fasciculus. Recent evidence suggests that GABA-ergic neurotransmission within the mPFC could be central to the regulation of amygdala activity related to emotions and anxiety processing. However, the functional and neurochemical interactions within amygdala-mPFC circuits are unclear. In the current study, multimodal magnetic resonance imaging techniques were combined to investigate effective connectivity within the amygdala-mPFC network and its relationship with mPFC neurotransmission in 22 healthy subjects aged between 41 and 88 years. Effective connectivity in the amygdala-mPFC circuit was assessed on resting-state functional magnetic resonance imaging data using spectral dynamic causal modelling. State and trait anxiety were also assessed. The mPFC was shown to be the target of incoming outputs from the amygdalae and the source of exciting inputs to the limbic system. The amygdalae were reciprocally connected by excitatory projections. About half of the variance relating to the strength of top–down endogenous connection between right amygdala and mPFC was explained by mPFC GABA levels. State anxiety was correlated with the strength of the endogenous connections between right amygdala and mPFC. We suggest that mPFC GABA content predicts variability in the effective connectivity within the mPFC-amygdala circuit, providing new insights on emotional physiology and the underlying functional and neurochemical interactions. PMID:28386778

  4. Childhood Poverty Predicts Adult Amygdala and Frontal Activity and Connectivity in Response to Emotional Faces.

    PubMed

    Javanbakht, Arash; King, Anthony P; Evans, Gary W; Swain, James E; Angstadt, Michael; Phan, K Luan; Liberzon, Israel

    2015-01-01

    Childhood poverty negatively impacts physical and mental health in adulthood. Altered brain development in response to social and environmental factors associated with poverty likely contributes to this effect, engendering maladaptive patterns of social attribution and/or elevated physiological stress. In this fMRI study, we examined the association between childhood poverty and neural processing of social signals (i.e., emotional faces) in adulthood. Fifty-two subjects from a longitudinal prospective study recruited as children, participated in a brain imaging study at 23-25 years of age using the Emotional Faces Assessment Task. Childhood poverty, independent of concurrent adult income, was associated with higher amygdala and medial prefrontal cortical (mPFC) responses to threat vs. happy faces. Also, childhood poverty was associated with decreased functional connectivity between left amygdala and mPFC. This study is unique, because it prospectively links childhood poverty to emotional processing during adulthood, suggesting a candidate neural mechanism for negative social-emotional bias. Adults who grew up poor appear to be more sensitive to social threat cues and less sensitive to positive social cues.

  5. Sad mood induction has an opposite effect on amygdala response to emotional stimuli in euthymic patients with bipolar disorder and healthy controls.

    PubMed

    Horacek, Jiri; Mikolas, Pavol; Tintera, Jaroslav; Novak, Tomas; Palenicek, Tomas; Brunovsky, Martin; Höschl, Cyril; Alda, Martin

    2014-12-16

    Aberrant amygdala reactivity to affective stimuli represents a candidate factor predisposing patients with bipolar disorder (BD) to relapse, but it is unclear to what extent amygdala reactivity is state-dependent. We evaluated the modulatory influence of mood on amygdala reactivity and functional connectivity in patients with remitted BD and healthy controls. Amygdala response to sad versus neutral faces was investigated using fMRI during periods of normal and sad mood induced by autobiographical scripts. We assessed the functional connectivity of the amygdala to characterize the influence of mood state on the network responsible for the amygdala response. We included 20 patients with remitted BD and 20 controls in our study. The sad and normal mood exerted opposite effects on the amygdala response to emotional faces in patients compared with controls ( F 1,38 = 5.85, p = 0.020). Sad mood amplified the amygdala response to sad facial stimuli in controls but attenuated the amygdala response in patients. The groups differed in functional connectivity between the amygdala and the inferior prefrontal gyrus ( p ≤ 0.05, family-wise error-corrected) of ventrolateral prefrontal cortex (vlPFC) corresponding to Brodmann area 47. The sad mood challenge increased connectivity during the period of processing sad faces in patients but decreased connectivity in controls. Limitations to our study included long-term medication use in the patient group and the fact that we mapped only depressive (not manic) reactivity. Our results support the role of the amygdala-vlPFC as the system of dysfunctional contextual affective processing in patients with BD. Opposite amygdala reactivity unmasked by the mood challenge paradigm could represent a trait marker of altered mood regulation in patients with BD.

  6. Sad mood induction has an opposite effect on amygdala response to emotional stimuli in euthymic patients with bipolar disorder and healthy controls.

    PubMed

    Horacek, Jiri; Mikolas, Pavol; Tintera, Jaroslav; Novak, Tomas; Palenicek, Tomas; Brunovsky, Martin; Höschl, Cyril; Alda, Martin

    2015-03-01

    Aberrant amygdala reactivity to affective stimuli represents a candidate factor predisposing patients with bipolar disorder (BD) to relapse, but it is unclear to what extent amygdala reactivity is state-dependent. We evaluated the modulatory influence of mood on amygdala reactivity and functional connectivity in patients with remitted BD and healthy controls. Amygdala response to sad versus neutral faces was investigated using fMRI during periods of normal and sad mood induced by autobiographical scripts. We assessed the functional connectivity of the amygdala to characterize the influence of mood state on the network responsible for the amygdala response. We included 20 patients with remitted BD and 20 controls in our study. The sad and normal mood exerted opposite effects on the amygdala response to emotional faces in patients compared with controls (F1,38 = 5.85, p = 0.020). Sad mood amplified the amygdala response to sad facial stimuli in controls but attenuated the amygdala response in patients. The groups differed in functional connectivity between the amygdala and the inferior prefrontal gyrus (p ≤ 0.05, family-wise error-corrected) of ventrolateral prefrontal cortex (vlPFC) corresponding to Brodmann area 47. The sad mood challenge increased connectivity during the period of processing sad faces in patients but decreased connectivity in controls. Limitations to our study included long-term medication use in the patient group and the fact that we mapped only depressive (not manic) reactivity. Our results support the role of the amygdala-vlPFC as the system of dysfunctional contextual affective processing in patients with BD. Opposite amygdala reactivity unmasked by the mood challenge paradigm could represent a trait marker of altered mood regulation in patients with BD.

  7. Subregional differences in intrinsic amygdala hyperconnectivity and hypoconnectivity in autism spectrum disorder.

    PubMed

    Kleinhans, Natalia M; Reiter, Maya A; Neuhaus, Emily; Pauley, Greg; Martin, Nathalie; Dager, Stephen; Estes, Annette

    2016-07-01

    The amygdala is a complex structure with distinct subregions and dissociable functional networks. The laterobasal subregion of the amygdala is hypothesized to mediate the presentation and severity of autism symptoms, although very little data are available regarding amygdala dysfunction at the subregional level. In this study, we investigated the relationship between abnormal amygdalar intrinsic connectivity, autism symptom severity, and anxiety and depressive symptoms. We collected resting state fMRI data on 31 high functioning adolescents and adults with autism spectrum disorder and 38 typically developing (TD) controls aged 14-45. Twenty-five participants with ASD and 28 TD participants were included in the final analyses. ASD participants were administered the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule. Adult participants were administered the Beck Depression Inventory II and the Beck Anxiety Inventory. Functional connectivity analyses were conducted from three amygdalar subregions: centromedial (CM), laterobasal (LB) and superficial (SF). In addition, correlations with the behavioral measures were tested in the adult participants. In general, the ASD group showed significantly decreased connectivity from the LB subregion and increased connectivity from the CM and SF subregions compared to the TD group. We found evidence that social symptoms are primarily associated with under-connectivity from the LB subregion whereas over-connectivity and under-connectivity from the CM, SF and LB subregions are related to co-morbid depression and anxiety in ASD, in brain regions that were distinct from those associated with social dysfunction, and in different patterns than were observed in mildly symptomatic TD participants. Our findings provide new evidence for functional subregional differences in amygdala pathophysiology in ASD. Autism Res 2016, 9: 760-772. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  8. A Rapid Subcortical Amygdala Route for Faces Irrespective of Spatial Frequency and Emotion.

    PubMed

    McFadyen, Jessica; Mermillod, Martial; Mattingley, Jason B; Halász, Veronika; Garrido, Marta I

    2017-04-05

    There is significant controversy over the existence and function of a direct subcortical visual pathway to the amygdala. It is thought that this pathway rapidly transmits low spatial frequency information to the amygdala independently of the cortex, and yet the directionality of this function has never been determined. We used magnetoencephalography to measure neural activity while human participants discriminated the gender of neutral and fearful faces filtered for low or high spatial frequencies. We applied dynamic causal modeling to demonstrate that the most likely underlying neural network consisted of a pulvinar-amygdala connection that was uninfluenced by spatial frequency or emotion, and a cortical-amygdala connection that conveyed high spatial frequencies. Crucially, data-driven neural simulations revealed a clear temporal advantage of the subcortical connection over the cortical connection in influencing amygdala activity. Thus, our findings support the existence of a rapid subcortical pathway that is nonselective in terms of the spatial frequency or emotional content of faces. We propose that that the "coarseness" of the subcortical route may be better reframed as "generalized." SIGNIFICANCE STATEMENT The human amygdala coordinates how we respond to biologically relevant stimuli, such as threat or reward. It has been postulated that the amygdala first receives visual input via a rapid subcortical route that conveys "coarse" information, namely, low spatial frequencies. For the first time, the present paper provides direction-specific evidence from computational modeling that the subcortical route plays a generalized role in visual processing by rapidly transmitting raw, unfiltered information directly to the amygdala. This calls into question a widely held assumption across human and animal research that fear responses are produced faster by low spatial frequencies. Our proposed mechanism suggests organisms quickly generate fear responses to a wide range

  9. The CB1 Neutral Antagonist Tetrahydrocannabivarin Reduces Default Mode Network and Increases Executive Control Network Resting State Functional Connectivity in Healthy Volunteers.

    PubMed

    Rzepa, Ewelina; Tudge, Luke; McCabe, Ciara

    2015-09-10

    The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  10. Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography

    PubMed Central

    Koller, Kristin; Bultitude, Janet H.; Mullins, Paul; Ward, Robert; Mitchell, Anna S.; Bell, Andrew H.

    2015-01-01

    It has been suggested that some cortically blind patients can process the emotional valence of visual stimuli via a fast, subcortical pathway from the superior colliculus (SC) that reaches the amygdala via the pulvinar. We provide in vivo evidence for connectivity between the SC and the amygdala via the pulvinar in both humans and rhesus macaques. Probabilistic diffusion tensor imaging tractography revealed a streamlined path that passes dorsolaterally through the pulvinar before arcing rostrally to traverse above the temporal horn of the lateral ventricle and connect to the lateral amygdala. To obviate artifactual connectivity with crossing fibers of the stria terminalis, the stria was also dissected. The putative streamline between the SC and amygdala traverses above the temporal horn dorsal to the stria terminalis and is positioned medial to it in humans and lateral to it in monkeys. The topography of the streamline was examined in relation to lesion anatomy in five patients who had previously participated in behavioral experiments studying the processing of emotionally valenced visual stimuli. The pulvinar lesion interrupted the streamline in two patients who had exhibited contralesional processing deficits and spared the streamline in three patients who had no deficit. Although not definitive, this evidence supports the existence of a subcortical pathway linking the SC with the amygdala in primates. It also provides a necessary bridge between behavioral data obtained in future studies of neurological patients, and any forthcoming evidence from more invasive techniques, such as anatomical tracing studies and electrophysiological investigations only possible in nonhuman species. PMID:26224780

  11. Opposing Amygdala and Ventral Striatum Connectivity during Emotion Identification

    ERIC Educational Resources Information Center

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James

    2011-01-01

    Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed…

  12. Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function.

    PubMed

    Di Iorio, Christina R; Carey, Caitlin E; Michalski, Lindsay J; Corral-Frias, Nadia S; Conley, Emily Drabant; Hariri, Ahmad R; Bogdan, Ryan

    2017-06-01

    Early life stress may precipitate psychopathology, at least in part, by influencing amygdala function. Converging evidence across species suggests that links between childhood stress and amygdala function may be dependent upon hypothalamic-pituitary-adrenal (HPA) axis function. Using data from college-attending non-Hispanic European-Americans (n=308) who completed the Duke Neurogenetics Study, we examined whether early life stress (ELS) and HPA axis genetic variation interact to predict threat-related amygdala function as well as psychopathology symptoms. A biologically-informed multilocus profile score (BIMPS) captured HPA axis genetic variation (FKBP5 rs1360780, CRHR1 rs110402; NR3C2 rs5522/rs4635799) previously associated with its function (higher BIMPS are reflective of higher HPA axis activity). BOLD fMRI data were acquired while participants completed an emotional face matching task. ELS and depression and anxiety symptoms were measured using the childhood trauma questionnaire and the mood and anxiety symptom questionnaire, respectively. The interaction between HPA axis BIMPS and ELS was associated with right amygdala reactivity to threat-related stimuli, after accounting for multiple testing (empirical-p=0.016). Among individuals with higher BIMPS (i.e., the upper 21.4%), ELS was positively coupled with threat-related amygdala reactivity, which was absent among those with average or low BIMPS. Further, higher BIMPS were associated with greater self-reported anxious arousal, though there was no evidence that amygdala function mediated this relationship. Polygenic variation linked to HPA axis function may moderate the effects of early life stress on threat-related amygdala function and confer risk for anxiety symptomatology. However, what, if any, neural mechanisms may mediate the relationship between HPA axis BIMPS and anxiety symptomatology remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    PubMed

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are

  14. Community violence exposure in early adolescence: Longitudinal associations with hippocampal and amygdala volume and resting state connectivity.

    PubMed

    Saxbe, Darby; Khoddam, Hannah; Piero, Larissa Del; Stoycos, Sarah A; Gimbel, Sarah I; Margolin, Gayla; Kaplan, Jonas T

    2018-06-11

    Community violence exposure is a common stressor, known to compromise youth cognitive and emotional development. In a diverse, urban sample of 22 adolescents, participants reported on community violence exposure (witnessing a beating or illegal drug use, hearing gun shots, or other forms of community violence) in early adolescence (average age 12.99), and underwent a neuroimaging scan 3-5 years later (average age 16.92). Community violence exposure in early adolescence predicted smaller manually traced left and right hippocampal and amygdala volumes in a model controlling for age, gender, and concurrent community violence exposure, measured in late adolescence. Community violence continued to predict hippocampus (but not amygdala) volumes after we also controlled for family aggression exposure in early adolescence. Community violence exposure was also associated with stronger resting state connectivity between the right hippocampus (using the manually traced structure as a seed region) and bilateral frontotemporal regions including the superior temporal gyrus and insula. These resting state connectivity results held after controlling for concurrent community violence exposure, SES, and family aggression. Although this is the first study focusing on community violence in conjunction with brain structure and function, these results dovetail with other research linking childhood adversity with smaller subcortical volumes in adolescence and adulthood, and with altered frontolimbic resting state connectivity. Our findings suggest that even community-level exposure to neighborhood violence can have detectable neural correlates in adolescents. © 2018 John Wiley & Sons Ltd.

  15. Functional connectivity in the resting brain as biological correlate of the Affective Neuroscience Personality Scales.

    PubMed

    Deris, Nadja; Montag, Christian; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2017-02-15

    According to Jaak Panksepp's Affective Neuroscience Theory and the derived self-report measure, the Affective Neuroscience Personality Scales (ANPS), differences in the responsiveness of primary emotional systems form the basis of human personality. In order to investigate neuronal correlates of personality, the underlying neuronal circuits of the primary emotional systems were analyzed in the present fMRI-study by associating the ANPS to functional connectivity in the resting brain. N=120 healthy participants were invited for the present study. The results were reinvestigated in an independent, smaller sample of N=52 participants. A seed-based whole brain approach was conducted with seed-regions bilaterally in the basolateral and superficial amygdalae. The selection of seed-regions was based on meta-analytic data on affective processing and the Juelich histological atlas. Multiple regression analyses on the functional connectivity maps revealed associations with the SADNESS-scale in both samples. Functional resting-state connectivity between the left basolateral amygdala and a cluster in the postcentral gyrus, and between the right basolateral amygdala and clusters in the superior parietal lobe and subgyral in the parietal lobe was associated with SADNESS. No other ANPS-scale revealed replicable results. The present findings give first insights into the neuronal basis of the SADNESS-scale of the ANPS and support the idea of underlying neuronal circuits. In combination with previous research on genetic associations of the ANPS functional resting-state connectivity is discussed as a possible endophenotype of personality. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effect of relevance on amygdala activation and association with the ventral striatum.

    PubMed

    Ousdal, Olga Therese; Reckless, Greg E; Server, Andres; Andreassen, Ole A; Jensen, Jimmy

    2012-08-01

    While the amygdala historically has been implicated in emotional stimuli processing, recent data suggest a general role in parceling out the relevance of stimuli, regardless of their emotional properties. Using functional magnetic resonance imaging, we tested the relevance hypothesis by investigating human amygdala responses to emotionally neutral stimuli while manipulating their relevance. The task was operationalized as highly relevant if a subsequent opportunity to respond for a reward depended on response accuracy of the task, and less relevant if the reward opportunity was independent of task performance. A region of interest analysis revealed bilateral amygdala activations in response to the high relevance condition compared to the low relevance condition. An exploratory whole-brain analysis yielded robust similar results in bilateral ventral striatum. A subsequent functional connectivity analysis demonstrated increased connectivity between amygdala and ventral striatum for the highly relevant stimuli compared to the less relevant stimuli. These findings suggest that the amygdala's processing profile goes beyond detection of emotions per se, and directly support the proposed role in relevance detection. In addition, the findings suggest a close relationship between amygdala and ventral striatal activity when processing relevant stimuli. Thus, the results may indicate that human amygdala modulates ventral striatum activity and subsequent behaviors beyond that observed for emotional cues, to encompass a broader range of relevant stimuli. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Disrupted functional connectivity of the pain network in fibromyalgia.

    PubMed

    Cifre, Ignacio; Sitges, Carolina; Fraiman, Daniel; Muñoz, Miguel Ángel; Balenzuela, Pablo; González-Roldán, Ana; Martínez-Jauand, Mercedes; Birbaumer, Niels; Chialvo, Dante R; Montoya, Pedro

    2012-01-01

    To investigate the impact of chronic pain on brain dynamics at rest. Functional connectivity was examined in patients with fibromyalgia (FM) (n = 9) and healthy controls (n = 11) by calculating partial correlations between low-frequency blood oxygen level-dependent fluctuations extracted from 15 brain regions. Patients with FM had more positive and negative correlations within the pain network than healthy controls. Patients with FM displayed enhanced functional connectivity of the anterior cingulate cortex (ACC) with the insula (INS) and basal ganglia (p values between .01 and .05), the secondary somatosensory area with the caudate (CAU) (p = .012), the primary motor cortex with the supplementary motor area (p = .007), the globus pallidus with the amygdala and superior temporal sulcus (both p values < .05), and the medial prefrontal cortex with the posterior cingulate cortex (PCC) and CAU (both p values < .05). Functional connectivity of the ACC with the amygdala and periaqueductal gray (PAG) matter (p values between .001 and .05), the thalamus with the INS and PAG (both p values < .01), the INS with the putamen (p = .038), the PAG with the CAU (p = .038), the secondary somatosensory area with the motor cortex and PCC (both p values < .05), and the PCC with the superior temporal sulcus (p = .002) was also reduced in FM. In addition, significant negative correlations were observed between depression and PAG connectivity strength with the thalamus (r = -0.64, p = .003) and ACC (r = -0.60, p = .004). These findings demonstrate that patients with FM display a substantial imbalance of the connectivity within the pain network during rest, suggesting that chronic pain may also lead to changes in brain activity during internally generated thought processes such as occur at rest.

  18. Sad mood induction has an opposite effect on amygdala response to emotional stimuli in euthymic patients with bipolar disorder and healthy controls

    PubMed Central

    Horacek, Jiri; Mikolas, Pavol; Tintera, Jaroslav; Novak, Tomas; Palenicek, Tomas; Brunovsky, Martin; Höschl, Cyril; Alda, Martin

    2015-01-01

    Background Aberrant amygdala reactivity to affective stimuli represents a candidate factor predisposing patients with bipolar disorder (BD) to relapse, but it is unclear to what extent amygdala reactivity is state-dependent. We evaluated the modulatory influence of mood on amygdala reactivity and functional connectivity in patients with remitted BD and healthy controls. Methods Amygdala response to sad versus neutral faces was investigated using fMRI during periods of normal and sad mood induced by autobiographical scripts. We assessed the functional connectivity of the amygdala to characterize the influence of mood state on the network responsible for the amygdala response. Results We included 20 patients with remitted BD and 20 controls in our study. The sad and normal mood exerted opposite effects on the amygdala response to emotional faces in patients compared with controls (F1,38 = 5.85, p = 0.020). Sad mood amplified the amygdala response to sad facial stimuli in controls but attenuated the amygdala response in patients. The groups differed in functional connectivity between the amygdala and the inferior prefrontal gyrus (p ≤ 0.05, family-wise error–corrected) of ventrolateral prefrontal cortex (vlPFC) corresponding to Brodmann area 47. The sad mood challenge increased connectivity during the period of processing sad faces in patients but decreased connectivity in controls. Limitations Limitations to our study included long-term medication use in the patient group and the fact that we mapped only depressive (not manic) reactivity. Conclusion Our results support the role of the amygdala–vlPFC as the system of dysfunctional contextual affective processing in patients with BD. Opposite amygdala reactivity unmasked by the mood challenge paradigm could represent a trait marker of altered mood regulation in patients with BD. PMID:25703646

  19. Altered hippocampal volume and functional connectivity in males with Internet gaming disorder comparing to those with alcohol use disorder.

    PubMed

    Yoon, Eun Jin; Choi, Jung-Seok; Kim, Heejung; Sohn, Bo Kyung; Jung, Hee Yeon; Lee, Jun-Young; Kim, Dai-Jin; Park, Sun-Won; Kim, Yu Kyeong

    2017-07-18

    Internet gaming disorder (IGD) has been conceptualized as a behavioral addiction and shares clinical, neuropsychological, and personality characteristics with alcohol use disorder (AUD), but IGD dose not entail brain exposure to toxic agents, which renders it different from AUD. To achieve a clear understanding of the neurobiological features of IGD, we aimed to identify morphological and functional changes in IGD and compare them with those in AUD. Individuals with IGD showed larger volume in the hippocampus/amygdala and precuneus than healthy controls (HCs). The volume in the hippocampus positively correlated with the symptom severity of IGD. Moreover, functional connectivity analysis with the hippocampus/amygdala cluster revealed that the left ventromedial prefrontal cortex showed stronger functional connectivity in individuals with IGD compared to those with AUD. In contrast, individuals with AUD exhibited the smaller cerebellar volume and thinner medial frontal cortex than HCs. The volume in the cerebellum correlated with impaired working memory function as well as duration of illness in AUD group. Findings suggested that altered volume and functional connectivity in the hippocampus/amygdala in IGD might be associated with abnormally enhanced memory process of gaming-related cues, while abnormal cortical changes and cognitive impairments in AUD might be associated with neurotoxic effects of alcohol.

  20. Dissociable relations between amygdala subregional networks and psychopathy trait dimensions in conduct‐disordered juvenile offenders

    PubMed Central

    Colins, Olivier F.; Klapwijk, Eduard T.; Veer, Ilya M.; Andershed, Henrik; Popma, Arne; van der Wee, Nic J.; Vermeiren, Robert R.J.M.

    2016-01-01

    Abstract Psychopathy is a serious psychiatric phenomenon characterized by a pathological constellation of affective (e.g., callous, unemotional), interpersonal (e.g., manipulative, egocentric), and behavioral (e.g., impulsive, irresponsible) personality traits. Though amygdala subregional defects are suggested in psychopathy, the functionality and connectivity of different amygdala subnuclei is typically disregarded in neurocircuit‐level analyses of psychopathic personality. Hence, little is known of how amygdala subregional networks may contribute to psychopathy and its underlying trait assemblies in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral (BLA) and centromedial (CMA) amygdala networks in relation to affective, interpersonal, and behavioral traits of psychopathy, in conduct‐disordered juveniles with a history of serious delinquency (N = 50, mean age = 16.83 ± 1.32). As predicted, amygdalar connectivity profiles exhibited dissociable relations with different traits of psychopathy. Interpersonal psychopathic traits not only related to increased connectivity of BLA and CMA with a corticostriatal network formation accommodating reward processing, but also predicted stronger CMA connectivity with a network of cortical midline structures supporting sociocognitive processes. In contrast, affective psychopathic traits related to diminished CMA connectivity with a frontolimbic network serving salience processing and affective responding. Finally, behavioral psychopathic traits related to heightened BLA connectivity with a frontoparietal cluster implicated in regulatory executive functioning. We suggest that these trait‐specific shifts in amygdalar connectivity could be particularly relevant to the psychopathic phenotype, as they may fuel a self‐centered, emotionally cold, and behaviorally disinhibited profile. Hum Brain Mapp 37:4017–4033, 2016. © 2016

  1. Blocking the mineralocorticoid receptor in humans prevents the stress-induced enhancement of centromedial amygdala connectivity with the dorsal striatum.

    PubMed

    Vogel, Susanne; Klumpers, Floris; Krugers, Harm J; Fang, Zhou; Oplaat, Krista T; Oitzl, Melly S; Joëls, Marian; Fernández, Guillén

    2015-03-01

    Two research lines argue for rapid stress-induced reallocations of neural network activity involving the amygdala. One focuses on the role of norepinephrine (NE) in mediating a shift towards the salience network and improving vigilance processing, whereas the other focuses on the role of cortisol in enhancing automatic, habitual responses. It has been suggested that the mineralocorticoid receptor (MR) is critical in shifting towards habitual responses, which are supported by the dorsal striatum. However, until now it remained unclear whether these two reallocations of neural recourses might be part of the same phenomenon and develop immediately after stress onset. We combined methods used in both approaches and hypothesized specifically that stress would lead to rapidly enhanced involvement of the striatum as assessed by amygala-striatal connectivity. Furthermore, we tested the hypothesis that this shift depends on cortisol interacting with the MR, by using a randomized, placebo-controlled, full-factorial, between-subjects design with the factors stress and MR-blockade (spironolactone). We investigated 101 young, healthy men using functional magnetic resonance imaging after stress induction, which led to increased negative mood, heart rate, and cortisol levels. We confirmed our hypothesis by revealing a stress-by-MR-blockade interaction on the functional connectivity between the centromedial amygdala (CMA) and the dorsal striatum. Stress rapidly enhanced CMA-striatal connectivity and this effect was correlated with the stress-induced cortisol response, but required MR availability. This finding might suggest that the stress-induced shift described by distinct research lines might capture different aspects of the same phenomenon, ie, a reallocation of neural resources coordinated by both NE and cortisol.

  2. The amygdala and ventromedial prefrontal cortex: functional contributions and dysfunction in psychopathy.

    PubMed

    Blair, R J R

    2008-08-12

    The current paper examines the functional contributions of the amygdala and ventromedial prefrontal cortex (vmPFC) and the evidence that the functioning of these systems is compromised in individuals with psychopathy. The amygdala is critical for the formation of stimulus-reinforcement associations, both punishment and reward based, and the processing of emotional expressions. vmPFC is critical for the representation of reinforcement expectancies and, owing to this, decision making. Neuropsychological and neuroimaging data from individuals with psychopathy are examined. It is concluded that these critical functions of the amygdala and vmPFC, and their interaction, are compromised in individuals with the disorder. It is argued that these impairments lead to the development of psychopathy.

  3. Dispositional use of emotion regulation strategies and resting-state cortico-limbic functional connectivity.

    PubMed

    Picó-Pérez, Maria; Alonso, Pino; Contreras-Rodríguez, Oren; Martínez-Zalacaín, Ignacio; López-Solà, Clara; Jiménez-Murcia, Susana; Verdejo-García, Antonio; Menchón, José M; Soriano-Mas, Carles

    2017-09-02

    Neuroimaging functional connectivity (FC) analyses have shown that the negative coupling between the amygdala and cortical regions is linked to better emotion regulation in experimental settings. Nevertheless, no studies have examined the association between resting-state cortico-amygdalar FC and the dispositional use of emotion regulation strategies. We aim at assessing the relationship between the resting-state FC patterns of two different amygdala territories, with different functions in the emotion response process, and trait-like measures of cognitive reappraisal and expressive suppression. Forty-eight healthy controls completed the Emotion Regulation Questionnaire (ERQ) and underwent a resting-state functional magnetic resonance imaging acquisition. FC maps of basolateral and centromedial amygdala (BLA/CMA) with different cortical areas were estimated with a seed-based approach, and were then correlated with reappraisal and suppression scores from the ERQ. FC between left BLA and left insula and right BLA and the supplementary motor area (SMA) correlated inversely with reappraisal scores. Conversely, FC between left BLA and the dorsal anterior cingulate cortex correlated directly with suppression scores. Finally, FC between left CMA and the SMA was inversely correlated with suppression. Top-down regulation from the SMA seems to account for the dispositional use of both reappraisal and suppression depending on the specific amygdala nucleus being modulated. In addition, modulation of amygdala activity from cingulate and insular cortices seem to also account for the habitual use of the different emotion regulation strategies.

  4. Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits.

    PubMed

    Finger, Elizabeth Carrie; Marsh, Abigail; Blair, Karina Simone; Majestic, Catherine; Evangelou, Iordanis; Gupta, Karan; Schneider, Marguerite Reid; Sims, Courtney; Pope, Kayla; Fowler, Katherine; Sinclair, Stephen; Tovar-Moll, Fernanda; Pine, Daniel; Blair, Robert James

    2012-06-30

    Youths with conduct disorder or oppositional defiant disorder and psychopathic traits (CD/ODD+PT) are at high risk of adult antisocial behavior and psychopathy. Neuroimaging studies demonstrate functional abnormalities in orbitofrontal cortex and the amygdala in both youths and adults with psychopathic traits. Diffusion tensor imaging in psychopathic adults demonstrates disrupted structural connectivity between these regions (uncinate fasiculus). The current study examined whether functional neural abnormalities present in youths with CD/ODD+PT are associated with similar white matter abnormalities. Youths with CD/ODD+PT and comparison participants completed 3.0 T diffusion tensor scans and functional magnetic resonance imaging scans. Diffusion tensor imaging did not reveal disruption in structural connections within the uncinate fasiculus or other white matter tracts in youths with CD/ODD+PT, despite the demonstration of disrupted amygdala-prefrontal functional connectivity in these youths. These results suggest that disrupted amygdala-frontal white matter connectivity as measured by fractional anisotropy is less sensitive than imaging measurements of functional perturbations in youths with psychopathic traits. If white matter tracts are intact in youths with this disorder, childhood may provide a critical window for intervention and treatment, before significant structural brain abnormalities solidify. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Dissociable relations between amygdala subregional networks and psychopathy trait dimensions in conduct-disordered juvenile offenders.

    PubMed

    Aghajani, Moji; Colins, Olivier F; Klapwijk, Eduard T; Veer, Ilya M; Andershed, Henrik; Popma, Arne; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-11-01

    Psychopathy is a serious psychiatric phenomenon characterized by a pathological constellation of affective (e.g., callous, unemotional), interpersonal (e.g., manipulative, egocentric), and behavioral (e.g., impulsive, irresponsible) personality traits. Though amygdala subregional defects are suggested in psychopathy, the functionality and connectivity of different amygdala subnuclei is typically disregarded in neurocircuit-level analyses of psychopathic personality. Hence, little is known of how amygdala subregional networks may contribute to psychopathy and its underlying trait assemblies in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral (BLA) and centromedial (CMA) amygdala networks in relation to affective, interpersonal, and behavioral traits of psychopathy, in conduct-disordered juveniles with a history of serious delinquency (N = 50, mean age = 16.83 ± 1.32). As predicted, amygdalar connectivity profiles exhibited dissociable relations with different traits of psychopathy. Interpersonal psychopathic traits not only related to increased connectivity of BLA and CMA with a corticostriatal network formation accommodating reward processing, but also predicted stronger CMA connectivity with a network of cortical midline structures supporting sociocognitive processes. In contrast, affective psychopathic traits related to diminished CMA connectivity with a frontolimbic network serving salience processing and affective responding. Finally, behavioral psychopathic traits related to heightened BLA connectivity with a frontoparietal cluster implicated in regulatory executive functioning. We suggest that these trait-specific shifts in amygdalar connectivity could be particularly relevant to the psychopathic phenotype, as they may fuel a self-centered, emotionally cold, and behaviorally disinhibited profile. Hum Brain Mapp 37:4017-4033, 2016. © 2016 The Authors Human

  6. Anxiety and social deficits have distinct relationships with amygdala function in autism spectrum disorder

    PubMed Central

    Miller, Judith S.; Pandey, Juhi; Schultz, Robert T.

    2016-01-01

    Current neural models of autism spectrum disorder (ASD) and anxiety disorders suggest hyperactivation of amygdala in anxiety, but hypoactivation of amygdala in ASD. The objectives of this study were to (i) test the hypothesis that amygdala activity measured by functional magnetic resonance imaging (fMRI) represents a hybrid signal of opposing social functions and anxiety symptoms, and (ii) determine whether longstanding findings of decreased amygdala activation in ASD apply only to those individuals with ASD and low levels of anxiety. During fMRI scanning, 81 youth with ASD and 67 non-ASD control participants completed a face recognition paradigm that elicits robust amygdala activation. Only individuals with ASD and low anxiety levels (a subsample of 28 participants) showed decreased amygdala activation relative to controls. In the ASD group, anxiety symptoms were positively correlated with amygdala activity across the full ASD group, whereas core ASD symptoms (including social deficits) were negatively correlated. Results indicate that hypoactivation of amygdala in ASD, a suggestive finding first reported nearly 20 years ago, can be masked by comorbid anxiety—thus bringing enhanced clarity to this line of work. Amygdala activity represents a hybrid signal of emotion and social processes that cannot be reduced to either alone. PMID:26865425

  7. Sex-related functional asymmetry of the amygdala: preliminary evidence using a case-matched lesion approach.

    PubMed

    Tranel, Daniel; Bechara, Antoine

    2009-06-01

    We have reported previously that there appears to be an intriguing sex-related functional asymmetry of the prefrontal cortices, especially the ventromedial sector, in regard to social conduct, emotional processing, and decision-making, whereby the right-sided sector is important in men but not women and the left-sided sector is important in women but not men. The amygdala is another structure that has been widely implicated in emotion processing and social decision-making, and the question arises as to whether the amygdala, in a manner akin to what has been observed for the prefrontal cortex, might have sex-related functional asymmetry in regard to social and emotional functions. A preliminary test of this question was carried out in the current study, where we used a case-matched lesion approach and contrasted a pair of men cases and a pair of women cases, where in each pair one patient had left amygdala damage and the other had right amygdala damage. We investigated the domains of social conduct, emotional processing and personality, and decision-making. The results provide support for the notion that there is sex-related functional asymmetry of the amygdala in regard to these functions - in the male pair, the patient with right-sided amygdala damage was impaired in these functions, and the patient with left-sided amygdala damage was not, whereas in the female pair, the opposite pattern obtained, with the left-sided woman being impaired and the right-sided woman being unimpaired. These data provide preliminary support for the notion that sex-related functional asymmetry of the amygdala may entail functions such as social conduct, emotional processing, and decision-making, a finding that in turn could reflect (as either a cause or effect) differences in the manner in which men and women apprehend, process, and execute emotion-related information.

  8. Amygdala subsystems and control of feeding behavior by learned cues.

    PubMed

    Petrovich, Gorica D; Gallagher, Michela

    2003-04-01

    A combination of behavioral studies and a neural systems analysis approach has proven fruitful in defining the role of the amygdala complex and associated circuits in fear conditioning. The evidence presented in this chapter suggests that this approach is also informative in the study of other adaptive functions that involve the amygdala. In this chapter we present a novel model to study learning in an appetitive context. Furthermore, we demonstrate that long-recognized connections between the amygdala and the hypothalamus play a crucial role in allowing learning to modulate feeding behavior. In the first part we describe a behavioral model for motivational learning. In this model a cue that acquires motivational properties through pairings with food delivery when an animal is hungry can override satiety and promote eating in sated rats. Next, we present evidence that a specific amygdala subsystem (basolateral area) is responsible for allowing such learned cues to control eating (override satiety and promote eating in sated rats). We also show that basolateral amygdala mediates these actions via connectivity with the lateral hypothalamus. Lastly, we present evidence that the amygdalohypothalamic system is specific for the control of eating by learned motivational cues, as it does not mediate another function that depends on intact basolateral amygdala, namely, the ability of a conditioned cue to support new learning based on its acquired value. Knowledge about neural systems through which food-associated cues specifically control feeding behavior provides a defined model for the study of learning. In addition, this model may be informative for understanding mechanisms of maladaptive aspects of learned control of eating that contribute to eating disorders and more moderate forms of overeating.

  9. Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study.

    PubMed

    Rausch, Annika; Zhang, Wei; Haak, Koen V; Mennes, Maarten; Hermans, Erno J; van Oort, Erik; van Wingen, Guido; Beckmann, Christian F; Buitelaar, Jan K; Groen, Wouter B

    2016-01-01

    Amygdala dysfunction is hypothesized to underlie the social deficits observed in autism spectrum disorders (ASD). However, the neurobiological basis of this hypothesis is underspecified because it is unknown whether ASD relates to abnormalities of the amygdaloid input or output nuclei. Here, we investigated the functional connectivity of the amygdaloid social-perceptual input nuclei and emotion-regulation output nuclei in ASD versus controls. We collected resting state functional magnetic resonance imaging (fMRI) data, tailored to provide optimal sensitivity in the amygdala as well as the neocortex, in 20 adolescents and young adults with ASD and 25 matched controls. We performed a regular correlation analysis between the entire amygdala (EA) and the whole brain and used a partial correlation analysis to investigate whole-brain functional connectivity uniquely related to each of the amygdaloid subregions. Between-group comparison of regular EA correlations showed significantly reduced connectivity in visuospatial and superior parietal areas in ASD compared to controls. Partial correlation analysis revealed that this effect was driven by the left superficial and right laterobasal input subregions, but not the centromedial output nuclei. These results indicate reduced connectivity of specifically the amygdaloid sensory input channels in ASD, suggesting that abnormal amygdalo-cortical connectivity can be traced down to the socio-perceptual pathways.

  10. Variation in CACNA1C is Associated with Amygdala Structure and Function in Adolescents

    PubMed Central

    Sheridan, Margaret A.; Drury, Stacy S.; Esteves, Kyle C.; Walsh, Kate; Koenen, Karestan C.; McLaughlin, Katie A.

    2015-01-01

    Abstract Objective: Genome-wide association studies have identified allelic variation in CACNA1C as a risk factor for multiple psychiatric disorders associated with limbic system dysfunction, including bipolar disorder, schizophrenia, and depression. The CACNA1C gene codes for a subunit of L-type voltage-gated calcium channels, which modulate amygdala function. Although CACNA1C genotype appears to be associated with amygdala morphology and function in adults with and without psychopathology, whether genetic variation influences amygdala structure and function earlier in development has not been examined. Methods: In this first investigation of the neural correlates of CACNA1C in young individuals, we examined associations between two single nucleotide polymorphisms in CACNA1C (rs1006737 and rs4765914) with amygdala volume and activation during an emotional processing task in 58 adolescents and young adults 13–20 years of age. Results: Minor (T) allele carriers of rs4765914 exhibited smaller amygdala volume than major (C) allele homozygotes (β=−0.33, p=0.006). Furthermore, minor (A) allele homozygotes of rs1006737 exhibited increased blood–oxygen-level-dependent (BOLD) signal in the amygdala when viewing negative (vs. neutral) stimuli (β=0.29, p=0.040) and decreased BOLD signal in the amygdala when instructed to downregulate their emotional response to negative stimuli (β=−0.38, p=0.009). Follow-up analyses indicated that childhood trauma did not moderate the associations of CACNA1C variation with amygdala structure and function (ps>0.170). Conclusions: Findings indicate that CACNA1C-related differences in amygdala structure and function are present by adolescence. However, population stratification is a concern, given the racial/ethnic heterogeneity of our sample, and our findings do not have direct clinical implications currently. Nevertheless, these results suggest that developmentally informed research can begin to shed light on the time course by

  11. The neurobiology of emotion regulation in posttraumatic stress disorder: Amygdala downregulation via real-time fMRI neurofeedback.

    PubMed

    Nicholson, Andrew A; Rabellino, Daniela; Densmore, Maria; Frewen, Paul A; Paret, Christian; Kluetsch, Rosemarie; Schmahl, Christian; Théberge, Jean; Neufeld, Richard W J; McKinnon, Margaret C; Reiss, Jim; Jetly, Rakesh; Lanius, Ruth A

    2017-01-01

    Amygdala dysregulation has been shown to be central to the pathophysiology of posttraumatic stress disorder (PTSD) representing a critical treatment target. Here, amygdala downregulation was targeted using real-time fMRI neurofeedback (rt-fMRI-nf) in patients with PTSD, allowing us to examine further the regulation of emotional states during symptom provocation. Patients (n = 10) completed three sessions of rt-fMRI-nf with the instruction to downregulate activation in the amygdala, while viewing personalized trauma words. Amygdala downregulation was assessed by contrasting (a) regulate trials, with (b) viewing trauma words and not attempting to regulate. Training was followed by one transfer run not involving neurofeedback. Generalized psychophysiological interaction (gPPI) and dynamic causal modeling (DCM) analyses were also computed to explore task-based functional connectivity and causal structure, respectively. It was found that PTSD patients were able to successfully downregulate both right and left amygdala activation, showing sustained effects within the transfer run. Increased activation in the dorsolateral and ventrolateral prefrontal cortex (PFC), regions related to emotion regulation, was observed during regulate as compared with view conditions. Importantly, activation in the PFC, rostral anterior cingulate cortex, and the insula, were negatively correlated to PTSD dissociative symptoms in the transfer run. Increased functional connectivity between the amygdala- and both the dorsolateral and dorsomedial PFC was found during regulate, as compared with view conditions during neurofeedback training. Finally, our DCM analysis exploring directional structure suggested that amygdala downregulation involves both top-down and bottom-up information flow with regard to observed PFC-amygdala connectivity. This is the first demonstration of successful downregulation of the amygdala using rt-fMRI-nf in PTSD, which was critically sustained in a subsequent

  12. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference

    PubMed Central

    Szekely, Akos; Silton, Rebecca L.; Heller, Wendy; Miller, Gregory A.

    2017-01-01

    Abstract The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. PMID:27998997

  13. Effects of electroconvulsive therapy on amygdala function in major depression - a longitudinal functional magnetic resonance imaging study.

    PubMed

    Redlich, R; Bürger, C; Dohm, K; Grotegerd, D; Opel, N; Zaremba, D; Meinert, S; Förster, K; Repple, J; Schnelle, R; Wagenknecht, C; Zavorotnyy, M; Heindel, W; Kugel, H; Gerbaulet, M; Alferink, J; Arolt, V; Zwanzger, P; Dannlowski, U

    2017-09-01

    Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depression. However, little is known regarding brain functional processes mediating ECT effects. In a non-randomized prospective study, functional magnetic resonance imaging data during the automatic processing of subliminally presented emotional faces were obtained twice, about 6 weeks apart, in patients with major depressive disorder (MDD) before and after treatment with ECT (ECT, n = 24). Additionally, a control sample of MDD patients treated solely with pharmacotherapy (MED, n = 23) and a healthy control sample (HC, n = 22) were obtained. Before therapy, both patient groups equally showed elevated amygdala reactivity to sad faces compared with HC. After treatment, a decrease in amygdala activity to negative stimuli was discerned in both patient samples indicating a normalization of amygdala function, suggesting mechanisms potentially unspecific for ECT. Moreover, a decrease in amygdala activity to sad faces was associated with symptomatic improvements in the ECT sample (r spearman = -0.48, p = 0.044), and by tendency also for the MED sample (r spearman = -0.38, p = 0.098). However, we did not find any significant association between pre-treatment amygdala function to emotional stimuli and individual symptom improvement, neither for the ECT sample, nor for the MED sample. In sum, the present study provides first results regarding functional changes in emotion processing due to ECT treatment using a longitudinal design, thus validating and extending our knowledge gained from previous treatment studies. A limitation was that ECT patients received concurrent medication treatment.

  14. Dopamine in the medial amygdala network mediates human bonding.

    PubMed

    Atzil, Shir; Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M; Dickerson, Bradford C; Catana, Ciprian; Barrett, Lisa Feldman

    2017-02-28

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers' dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the "medial amygdala network") that supports social functioning. We also measured the mothers' behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother's infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted.

  15. Dopamine in the medial amygdala network mediates human bonding

    PubMed Central

    Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M.; Dickerson, Bradford C.; Catana, Ciprian; Barrett, Lisa Feldman

    2017-01-01

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers’ dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the “medial amygdala network”) that supports social functioning. We also measured the mothers’ behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother’s infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted. PMID:28193868

  16. Fear processing and social networking in the absence of a functional amygdala.

    PubMed

    Becker, Benjamin; Mihov, Yoan; Scheele, Dirk; Kendrick, Keith M; Feinstein, Justin S; Matusch, Andreas; Aydin, Merve; Reich, Harald; Urbach, Horst; Oros-Peusquens, Ana-Maria; Shah, Nadim J; Kunz, Wolfram S; Schlaepfer, Thomas E; Zilles, Karl; Maier, Wolfgang; Hurlemann, René

    2012-07-01

    The human amygdala plays a crucial role in processing social signals, such as face expressions, particularly fearful ones, and facilitates responses to them in face-sensitive cortical regions. This contributes to social competence and individual amygdala size correlates with that of social networks. While rare patients with focal bilateral amygdala lesion typically show impaired recognition of fearful faces, this deficit is variable, and an intriguing possibility is that other brain regions can compensate to support fear and social signal processing. To investigate the brain's functional compensation of selective bilateral amygdala damage, we performed a series of behavioral, psychophysiological, and functional magnetic resonance imaging experiments in two adult female monozygotic twins (patient 1 and patient 2) with equivalent, extensive bilateral amygdala pathology as a sequela of lipoid proteinosis due to Urbach-Wiethe disease. Patient 1, but not patient 2, showed preserved recognition of fearful faces, intact modulation of acoustic startle responses by fear-eliciting scenes, and a normal-sized social network. Functional magnetic resonance imaging revealed that patient 1 showed potentiated responses to fearful faces in her left premotor cortex face area and bilaterally in the inferior parietal lobule. The premotor cortex face area and inferior parietal lobule are both implicated in the cortical mirror-neuron system, which mediates learning of observed actions and may thereby promote both imitation and empathy. Taken together, our findings suggest that despite the pre-eminent role of the amygdala in processing social information, the cortical mirror-neuron system may sometimes adaptively compensate for its pathology. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience.

    PubMed

    Wijngaarden, M A; Veer, I M; Rombouts, S A R B; van Buchem, M A; Willems van Dijk, K; Pijl, H; van der Grond, J

    2015-01-01

    We hypothesized that brain circuits involved in reward and salience respond differently to fasting in obese versus lean individuals. We compared functional connectivity networks related to food reward and saliency after an overnight fast (baseline) and after a prolonged fast of 48 h in lean versus obese subjects. We included 13 obese (2 males, 11 females, BMI 35.4 ± 1.2 kg/m(2), age 31 ± 3 years) and 11 lean subjects (2 males, 9 females, BMI 23.2 ± 0.5 kg/m(2), age 28 ± 3 years). Resting-state functional magnetic resonance imaging scans were made after an overnight fast (baseline) and after a prolonged 48 h fast. Functional connectivity of the amygdala, hypothalamus and posterior cingulate cortex (default-mode) networks was assessed using seed-based correlations. At baseline, we found a stronger connectivity between hypothalamus and left insula in the obese subjects. This effect diminished upon the prolonged fast. After prolonged fasting, connectivity of the hypothalamus with the dorsal anterior cingulate cortex (dACC) increased in lean subjects and decreased in obese subjects. Amygdala connectivity with the ventromedial prefrontal cortex was stronger in lean subjects at baseline, which did not change upon the prolonged fast. No differences in posterior cingulate cortex connectivity were observed. In conclusion, obesity is marked by alterations in functional connectivity networks involved in food reward and salience. Prolonged fasting differentially affected hypothalamic connections with the dACC and the insula between obese and lean subjects. Our data support the idea that food reward and nutrient deprivation are differently perceived and/or processed in obesity. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.

    PubMed

    Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís

    2015-11-01

    Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with

  19. Neural mechanisms of social decision-making in the primate amygdala.

    PubMed

    Chang, Steve W C; Fagan, Nicholas A; Toda, Koji; Utevsky, Amanda V; Pearson, John M; Platt, Michael L

    2015-12-29

    Social decisions require evaluation of costs and benefits to oneself and others. Long associated with emotion and vigilance, the amygdala has recently been implicated in both decision-making and social behavior. The amygdala signals reward and punishment, as well as facial expressions and the gaze of others. Amygdala damage impairs social interactions, and the social neuropeptide oxytocin (OT) influences human social decisions, in part, by altering amygdala function. Here we show in monkeys playing a modified dictator game, in which one individual can donate or withhold rewards from another, that basolateral amygdala (BLA) neurons signaled social preferences both across trials and across days. BLA neurons mirrored the value of rewards delivered to self and others when monkeys were free to choose but not when the computer made choices for them. We also found that focal infusion of OT unilaterally into BLA weakly but significantly increased both the frequency of prosocial decisions and attention to recipients for context-specific prosocial decisions, endorsing the hypothesis that OT regulates social behavior, in part, via amygdala neuromodulation. Our findings demonstrate both neurophysiological and neuroendocrinological connections between primate amygdala and social decisions.

  20. Neural mechanisms of social decision-making in the primate amygdala

    PubMed Central

    Chang, Steve W. C.; Fagan, Nicholas A.; Toda, Koji; Utevsky, Amanda V.; Pearson, John M.; Platt, Michael L.

    2015-01-01

    Social decisions require evaluation of costs and benefits to oneself and others. Long associated with emotion and vigilance, the amygdala has recently been implicated in both decision-making and social behavior. The amygdala signals reward and punishment, as well as facial expressions and the gaze of others. Amygdala damage impairs social interactions, and the social neuropeptide oxytocin (OT) influences human social decisions, in part, by altering amygdala function. Here we show in monkeys playing a modified dictator game, in which one individual can donate or withhold rewards from another, that basolateral amygdala (BLA) neurons signaled social preferences both across trials and across days. BLA neurons mirrored the value of rewards delivered to self and others when monkeys were free to choose but not when the computer made choices for them. We also found that focal infusion of OT unilaterally into BLA weakly but significantly increased both the frequency of prosocial decisions and attention to recipients for context-specific prosocial decisions, endorsing the hypothesis that OT regulates social behavior, in part, via amygdala neuromodulation. Our findings demonstrate both neurophysiological and neuroendocrinological connections between primate amygdala and social decisions. PMID:26668400

  1. Sustained deep-tissue pain alters functional brain connectivity.

    PubMed

    Kim, Jieun; Loggia, Marco L; Edwards, Robert R; Wasan, Ajay D; Gollub, Randy L; Napadow, Vitaly

    2013-08-01

    Recent functional brain connectivity studies have contributed to our understanding of the neurocircuitry supporting pain perception. However, evoked-pain connectivity studies have employed cutaneous and/or brief stimuli, which induce sensations that differ appreciably from the clinical pain experience. Sustained myofascial pain evoked by pressure cuff affords an excellent opportunity to evaluate functional connectivity change to more clinically relevant sustained deep-tissue pain. Connectivity in specific networks known to be modulated by evoked pain (sensorimotor, salience, dorsal attention, frontoparietal control, and default mode networks: SMN, SLN, DAN, FCN, and DMN) was evaluated with functional-connectivity magnetic resonance imaging, both at rest and during a sustained (6-minute) pain state in healthy adults. We found that pain was stable, with no significant changes of subjects' pain ratings over the stimulation period. Sustained pain reduced connectivity between the SMN and the contralateral leg primary sensorimotor (S1/M1) representation. Such SMN-S1/M1 connectivity decreases were also accompanied by and correlated with increased SLN-S1/M1 connectivity, suggesting recruitment of activated S1/M1 from SMN to SLN. Sustained pain also increased DAN connectivity to pain processing regions such as mid-cingulate cortex, posterior insula, and putamen. Moreover, greater connectivity during pain between contralateral S1/M1 and posterior insula, thalamus, putamen, and amygdala was associated with lower cuff pressures needed to reach the targeted pain sensation. These results demonstrate that sustained pain disrupts resting S1/M1 connectivity by shifting it to a network known to process stimulus salience. Furthermore, increased connectivity between S1/M1 and both sensory and affective processing areas may be an important contribution to interindividual differences in pain sensitivity. Copyright © 2013 International Association for the Study of Pain. Published by

  2. Sustained deep-tissue pain alters functional brain connectivity

    PubMed Central

    Kim, Jieun; Loggia, Marco L.; Edwards, Robert; Wasan, Ajay D.; Gollub, Randy L.; Napadow, Vitaly

    2013-01-01

    Recent functional brain connectivity studies have contributed to our understanding of the neurocircuitry supporting pain perception. However, evoked-pain connectivity studies have employed cutaneous and/or brief stimuli, which induce sensations that differ appreciably from the clinical pain experience. Sustained myofascial pain evoked by pressure cuff affords an excellent opportunity to evaluate functional connectivity change to more clinically-relevant sustained deep-tissue pain. Connectivity in specific networks known to be modulated by evoked pain (sensorimotor, salience, dorsal attention, fronto-parietal control and default mode networks; SMN, SLN, DAN, FCN and DMN) was evaluated with functional-connectivity MRI, both at rest and during a sustained (6-minute) pain state in healthy adults. We found that pain was stable with no significant changes of subjects’ pain ratings over the stimulation period. Sustained pain reduced connectivity between the SMN and the contralateral leg primary sensorimotor (S1/M1) representation. Such SMN-S1/M1 connectivity decreases were also accompanied by and correlated with increased SLN-S1/M1 connectivity, suggesting recruitment of activated S1/M1 from SMN to SLN. Sustained pain also increased DAN connectivity to pain processing regions such as mid-cingulate cortex, posterior insula and putamen. Moreover, greater connectivity during pain between contralateral S1/M1 and posterior insula, thalamus, putamen, and amygdala, was associated with lower cuff pressures needed to reach the targeted pain sensation. These results demonstrate that sustained pain disrupts resting S1/M1 connectivity by shifting it to a network known to process stimulus salience. Furthermore, increased connectivity between S1/M1 and both sensory and affective processing areas may be an important contribution to inter-individual differences in pain sensitivity. PMID:23718988

  3. Networks of phobic fear: Functional connectivity shifts in two subtypes of specific phobia.

    PubMed

    Stefanescu, Maria R; Endres, Ralph J; Hilbert, Kevin; Wittchen, Hans-Ulrich; Lueken, Ulrike

    2018-01-01

    Anxiety disorders can be conceptualized by an abnormal interplay of emotion-processing brain circuits; however, knowledge of brain connectivity measures in specific phobia is still limited. To explore functional interactions within selected fear-circuitry structures (anterior cingulate cortex (ACC), amygdala, insula), we re-examined three task-based fMRI studies using a symptom provocation approach (n=94 subjects in total) on two different phobia subtypes (animal subtype as represented by snake phobia (SP) and blood-injection-injury subtype as represented by dental phobia (DP)), and a non-phobic healthy control group (HC). Functional connectivity (FC) analyses detected a negative coupling between the amygdala and the ACC in HC for both classes of phobic stimuli, while SP and DP lacked this inhibitory relationship during visual stimulus presentation. However, a negative FC between the insula and the amygdala was observed in DP during visual symptom provocation, which reversed to a positive FC under auditory symptom provocation pointing to effects depending on stimulus modality in DP. SP showed significantly higher FC towards snake-anxiety eliciting stimuli than HC on an average measure of FC, while DP showed a similar pattern under auditory stimulation only. These findings altogether indicate FC shifts during symptom provocation in specific phobia possibly reflecting impaired emotion regulation processes within fear-circuitry networks. FC hence could represent a prime target for neuroscience-informed augmentation strategies when treating pathological forms of fear. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. White matter integrity deficits in prefrontal-amygdala pathways in Williams syndrome.

    PubMed

    Avery, Suzanne N; Thornton-Wells, Tricia A; Anderson, Adam W; Blackford, Jennifer Urbano

    2012-01-16

    Williams syndrome is a neurodevelopmental disorder associated with significant non-social fears. Consistent with this elevated non-social fear, individuals with Williams syndrome have an abnormally elevated amygdala response when viewing threatening non-social stimuli. In typically-developing individuals, amygdala activity is inhibited through dense, reciprocal white matter connections with the prefrontal cortex. Neuroimaging studies suggest a functional uncoupling of normal prefrontal-amygdala inhibition in individuals with Williams syndrome, which might underlie both the extreme amygdala activity and non-social fears. This functional uncoupling might be caused by structural deficits in underlying white matter pathways; however, prefrontal-amygdala white matter deficits have yet to be explored in Williams syndrome. We used diffusion tensor imaging to investigate prefrontal-amygdala white matter integrity differences in individuals with Williams syndrome and typically-developing controls with high levels of non-social fear. White matter pathways between the amygdala and several prefrontal regions were isolated using probabilistic tractography. Within each pathway, we tested for between-group differences in three measures of white matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and parallel diffusivity (λ(1)). Individuals with Williams syndrome had lower FA, compared to controls, in several of the prefrontal-amygdala pathways investigated, indicating a reduction in white matter integrity. Lower FA in Williams syndrome was explained by significantly higher RD, with no differences in λ(1), suggestive of lower fiber density or axon myelination in prefrontal-amygdala pathways. These results suggest that deficits in the structural integrity of prefrontal-amygdala white matter pathways might underlie the increased amygdala activity and extreme non-social fears observed in Williams syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Increased amygdala reactivity following early life stress: a potential resilience enhancer role.

    PubMed

    Yamamoto, Tetsuya; Toki, Shigeru; Siegle, Greg J; Takamura, Masahiro; Takaishi, Yoshiyuki; Yoshimura, Shinpei; Okada, Go; Matsumoto, Tomoya; Nakao, Takashi; Muranaka, Hiroyuki; Kaseda, Yumiko; Murakami, Tsuneji; Okamoto, Yasumasa; Yamawaki, Shigeto

    2017-01-18

    Amygdala hyper-reactivity is sometimes assumed to be a vulnerability factor that predates depression; however, in healthy people, who experience early life stress but do not become depressed, it may represent a resilience mechanism. We aimed to test these hypothesis examining whether increased amygdala activity in association with a history of early life stress (ELS) was negatively or positively associated with depressive symptoms and impact of negative life event stress in never-depressed adults. Twenty-four healthy participants completed an individually tailored negative mood induction task during functional magnetic resonance imaging (fMRI) assessment along with evaluation of ELS. Mood change and amygdala reactivity were increased in never-depressed participants who reported ELS compared to participants who reported no ELS. Yet, increased amygdala reactivity lowered effects of ELS on depressive symptoms and negative life events stress. Amygdala reactivity also had positive functional connectivity with the bilateral DLPFC, motor cortex and striatum in people with ELS during sad memory recall. Increased amygdala activity in those with ELS was associated with decreased symptoms and increased neural features, consistent with emotion regulation, suggesting that preservation of robust amygdala reactions may reflect a stress buffering or resilience enhancing factor against depression and negative stressful events.

  6. Dynamic Amygdala Influences on the Fronto-Striatal Brain Mechanisms Involved in Self-Control of Impulsive Desires.

    PubMed

    Krämer, Bernd; Gruber, Oliver

    2015-01-01

    Human decisions are guided by a variety of motivational factors, such as immediate rewards, long-term goals, and emotions. We used functional magnetic resonance imaging to investigate the dynamic functional interactions between the amygdala, the nucleus accumbens, and the prefrontal cortex that underlie the influences of emotions, desires, and rationality on human decisions. We found that increased functional connectivity between the amygdala and the nucleus accumbens facilitated the approach of an immediate reward in the presence of emotional information. Further, increased functional interactions of the anteroventral prefrontal cortex with the amygdala and the nucleus accumbens were associated with rational decisions in dilemma situations. These findings support previous animal studies by demonstrating that emotional signals from the amygdala and goal-oriented information from prefrontal cortices interface in the nucleus accumbens to guide human decisions and reward-directed actions. © 2015 S. Karger AG, Basel.

  7. Optogenetic Examination of Prefrontal-Amygdala Synaptic Development.

    PubMed

    Arruda-Carvalho, Maithe; Wu, Wan-Chen; Cummings, Kirstie A; Clem, Roger L

    2017-03-15

    A brain network comprising the medial prefrontal cortex (mPFC) and amygdala plays important roles in developmentally regulated cognitive and emotional processes. However, very little is known about the maturation of mPFC-amygdala circuitry. We conducted anatomical tracing of mPFC projections and optogenetic interrogation of their synaptic connections with neurons in the basolateral amygdala (BLA) at neonatal to adult developmental stages in mice. Results indicate that mPFC-BLA projections exhibit delayed emergence relative to other mPFC pathways and establish synaptic transmission with BLA excitatory and inhibitory neurons in late infancy, events that coincide with a massive increase in overall synaptic drive. During subsequent adolescence, mPFC-BLA circuits are further modified by excitatory synaptic strengthening as well as a transient surge in feedforward inhibition. The latter was correlated with increased spontaneous inhibitory currents in excitatory neurons, suggesting that mPFC-BLA circuit maturation culminates in a period of exuberant GABAergic transmission. These findings establish a time course for the onset and refinement of mPFC-BLA transmission and point to potential sensitive periods in the development of this critical network. SIGNIFICANCE STATEMENT Human mPFC-amygdala functional connectivity is developmentally regulated and figures prominently in numerous psychiatric disorders with a high incidence of adolescent onset. However, it remains unclear when synaptic connections between these structures emerge or how their properties change with age. Our work establishes developmental windows and cellular substrates for synapse maturation in this pathway involving both excitatory and inhibitory circuits. The engagement of these substrates by early life experience may support the ontogeny of fundamental behaviors but could also lead to inappropriate circuit refinement and psychopathology in adverse situations. Copyright © 2017 the authors 0270-6474/17/372976-10$15.00/0.

  8. The correlated network of acupuncture effect: a functional connectivity study.

    PubMed

    Qin, Wei; Tian, Jie; Pan, Xiaohong; Yang, Lin; Zhen, Zonglei

    2006-01-01

    A functional connectivity, which are temporally correlated in functionally related brain regions, before and after acupuncture manipulation was measured by MRI. Amygdala, as the control system of endogenetic analgesia, was selected for "seed" point. We found that compelling similarity existed in the network of resting state before and after acupuncture manipulation. A paired student t-test was implemented to investigate under the different conditions. The main difference was found in the limbic system, brainstem and cerebellum. We conclude that the default endogenous analgesia functional network exists in human brain at a low level, and it could be increased to a higher level by acupuncture modulation.

  9. Amygdala in action: relaying biological and social significance to autobiographical memory.

    PubMed

    Markowitsch, Hans J; Staniloiu, Angelica

    2011-03-01

    The human amygdala is strongly embedded in numerous other structures of the limbic system, but is also a hub for a multitude of other brain regions it is connected with. Its major involvement in various kinds of integrative sensory and emotional functions makes it a cornerstone for self-relevant biological and social appraisals of the environment and consequently also for the processing of autobiographical events. Given its contribution to the integration of emotion, perception and cognition (including memory for past autobiographical events) the amygdala also forges the establishment and maintenance of an integrated self. Damage or disturbances of amygdalar connectivity may therefore lead to disconnection syndromes, in which the synchronous processing of affective and cognitive aspects of memory is impaired. We will provide support for this thesis by reviewing data from patients with a rare experiment of nature - Urbach-Wiethe disease - as well as other conditions associated with amygdala abnormalities. With respect to memory processing, we propose that the amygdala's role is to charge cues so that mnemonic events of a specific emotional significance can be successfully searched within the appropriate neural nets and re-activated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference.

    PubMed

    Szekely, Akos; Silton, Rebecca L; Heller, Wendy; Miller, Gregory A; Mohanty, Aprajita

    2017-03-01

    The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Phenotypic Variability in Resting-State Functional Connectivity: Current Status

    PubMed Central

    Gordon, Evan M.

    2013-01-01

    Abstract We reviewed the extant literature with the goal of assessing the extent to which resting-state functional connectivity is associated with phenotypic variability in healthy and disordered populations. A large corpus of work has accumulated to date (125 studies), supporting the association between intrinsic functional connectivity and individual differences in a wide range of domains—not only in cognitive, perceptual, motoric, and linguistic performance, but also in behavioral traits (e.g., impulsiveness, risky decision making, personality, and empathy) and states (e.g., anxiety and psychiatric symptoms) that are distinguished by cognitive and affective functioning, and in neurological conditions with cognitive and motor sequelae. Further, intrinsic functional connectivity is sensitive to remote (e.g., early-life stress) and enduring (e.g., duration of symptoms) life experience, and it exhibits plasticity in response to recent experience (e.g., learning and adaptation) and pharmacological treatment. The most pervasive associations were observed with the default network; associations were also widespread between the cingulo-opercular network and both cognitive and affective behaviors, while the frontoparietal network was associated primarily with cognitive functions. Associations of somatomotor, frontotemporal, auditory, and amygdala networks were relatively restricted to the behaviors linked to their respective putative functions. Surprisingly, visual network associations went beyond visual function to include a variety of behavioral traits distinguished by affective function. Together, the reviewed evidence sets the stage for testing causal hypothesis about the functional role of intrinsic connectivity and augments its potential as a biomarker for healthy and disordered brain function. PMID:23294010

  12. Previous Institutionalization Is Followed by Broader Amygdala-Hippocampal-PFC Network Connectivity during Aversive Learning in Human Development.

    PubMed

    Silvers, Jennifer A; Lumian, Daniel S; Gabard-Durnam, Laurel; Gee, Dylan G; Goff, Bonnie; Fareri, Dominic S; Caldera, Christina; Flannery, Jessica; Telzer, Eva H; Humphreys, Kathryn L; Tottenham, Nim

    2016-06-15

    Early institutional care can be profoundly stressful for the human infant, and, as such, can lead to significant alterations in brain development. In animal models, similar variants of early adversity have been shown to modify amygdala-hippocampal-prefrontal cortex development and associated aversive learning. The current study examined this rearing aberration in human development. Eighty-nine children and adolescents who were either previously institutionalized (PI youth; N = 46; 33 females and 13 males; age range, 7-16 years) or were raised by their biological parents from birth (N = 43; 22 females and 21 males; age range, 7-16 years) completed an aversive-learning paradigm while undergoing functional neuroimaging, wherein visual cues were paired with either an aversive sound (CS+) or no sound (CS-). For the PI youth, better aversive learning was associated with higher concurrent trait anxiety. Both groups showed robust learning and amygdala activation for CS+ versus CS- trials. However, PI youth also exhibited broader recruitment of several regions and increased hippocampal connectivity with prefrontal cortex. Stronger connectivity between the hippocampus and ventromedial PFC predicted significant improvements in future anxiety (measured 2 years later), and this was particularly true within the PI group. These results suggest that for humans as well as for other species, early adversity alters the neurobiology of aversive learning by engaging a broader prefrontal-subcortical circuit than same-aged peers. These differences are interpreted as ontogenetic adaptations and potential sources of resilience. Prior institutionalization is a significant form of early adversity. While nonhuman animal research suggests that early adversity alters aversive learning and associated neurocircuitry, no prior work has examined this in humans. Here, we show that youth who experienced prior institutionalization, but not comparison youth, recruit the hippocampus during aversive

  13. Differential reward network functional connectivity in cannabis dependent and non-dependent users☆

    PubMed Central

    Filbey, Francesca M.; Dunlop, Joseph

    2015-01-01

    Background Emergent studies show that similar to other substances of abuse, cue-reactivity to cannabis is also associated with neural response in the brain’s reward pathway (Filbey et al., 2009). However, the inter-relatedness of brain regions during cue-reactivity in cannabis users remains unknown. Methods In this study, we conducted a series of investigations to determine functional connectivity during cue-reactivity in 71 cannabis users. First, we used psychophysiological interaction (PPI) analysis to examine coherent neural response to cannabis cues. Second, we evaluated whether these patterns of network functional connectivity differentiated dependent and non-dependent users. Finally, as an exploratory analysis, we determined the directionality of these connections via Granger connectivity analyses. Results PPI analyses showed reward network functional connectivity with the nucleus accumbens (NAc) seed region during cue exposure. Between-group contrasts found differential effects of dependence status. Dependent users (N = 31) had greater functional connectivity with amygdala and anterior cingulate gyrus (ACG) seeds while the non-dependent users (N = 24) had greater functional connectivity with the NAc, orbitofrontal cortex (OFC) and hippocampus seeds. Granger analyses showed that hippocampal and ACG activation preceded neural response in reward areas. Conclusions Both PPI and Granger analyses demonstrated strong functional coherence in reward regions during exposure to cannabis cues in current cannabis users. Functional connectivity (but not regional activation) in the reward network differentiated dependent from non-dependent cannabis users. Our findings suggest that repeated cannabis exposure causes observable changes in functional connectivity in the reward network and should be considered in intervention strategies. PMID:24838032

  14. Representation of economic preferences in the structure and function of the amygdala and prefrontal cortex

    PubMed Central

    Fermin, Alan S. R.; Sakagami, Masamichi; Kiyonari, Toko; Li, Yang; Matsumoto, Yoshie; Yamagishi, Toshio

    2016-01-01

    Social value orientations (SVOs) are economic preferences for the distribution of resources – prosocial individuals are more cooperative and egalitarian than are proselfs. Despite the social and economic implications of SVOs, no systematic studies have examined their neural correlates. We investigated the amygdala and dorsolateral prefrontal cortex (DLPFC) structures and functions in prosocials and proselfs by functional magnetic resonance imaging and evaluated cooperative behavior in the Prisoner’s Dilemma game. We found for the first time that amygdala volume was larger in prosocials and positively correlated with cooperation, while DLPFC volume was larger in proselfs and negatively correlated with cooperation. Proselfs’ decisions were marked by strong DLPFC and weak amygdala activity, and prosocials’ decisions were marked by strong amygdala activity, with the DLPFC signal increasing only in defection. Our findings suggest that proselfs’ decisions are controlled by DLPFC-mediated deliberative processes, while prosocials’ decisions are initially guided by automatic amygdala processes. PMID:26876988

  15. Amygdala Activity During Autobiographical Memory Recall in Depressed and Vulnerable Individuals: Association With Symptom Severity and Autobiographical Overgenerality.

    PubMed

    Young, Kymberly D; Siegle, Greg J; Bodurka, Jerzy; Drevets, Wayne C

    2016-01-01

    In healthy individuals, autobiographical memory recall is biased toward positive and away from negative events, while the opposite is found in depressed individuals. This study examined amygdala activity during autobiographical memory recall as a putative mechanism underlying biased memory recall and depressive symptoms in currently depressed adults and two vulnerable populations: individuals remitted from depression and otherwise healthy individuals at high familial risk of developing depression. Identification of such vulnerability factors could enable interception strategies that prevent depression onset. Sixty healthy control subjects, 45 unmedicated currently depressed individuals, 25 unmedicated remitted depressed individuals, and 30 individuals at high familial risk of developing depression underwent functional MRI while recalling autobiographical memories in response to emotionally valenced cue words. Amygdala reactivity and connectivity with anatomically defined amygdala regions were examined. During positive recall, depressed participants exhibited significantly decreased left amygdala activity and decreased connectivity with regions of the salience network compared with the other groups. During negative recall, control subjects had significantly decreased left amygdala activity compared with the other groups, while depressed participants exhibited increased amygdala connectivity with the salience network. In depressed participants, left amygdala activity during positive recall correlated significantly with depression severity (r values >-0.38) and percent of positive specific memories recalled (r values >0.59). The results suggest that left amygdala hyperactivity during negative autobiographical recall is a trait-like marker of depression, as both vulnerable groups showed activity similar to the depressed group, while amygdala hypoactivity during positive autobiographical recall is a state marker of depression manifesting in active disease. Treatments

  16. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas.

    PubMed

    Saygin, Z M; Kliemann, D; Iglesias, J E; van der Kouwe, A J W; Boyd, E; Reuter, M; Stevens, A; Van Leemput, K; McKee, A; Frosch, M P; Fischl, B; Augustinack, J C

    2017-07-15

    The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high resolution (100-150µm) at 7T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE) with standard resolution T1 data, used individual volumetric data of the amygdala nuclei as the measure and found that our atlas i) discriminates between Alzheimer's disease participants and age-matched control participants with 84% accuracy (AUC=0.915), and ii) discriminates between individuals with autism and age-, sex- and IQ-matched neurotypically developed control participants with 59.5% accuracy (AUC=0.59). For both datasets, the new ex vivo atlas significantly outperformed (all p < .05) estimations of the whole amygdala derived from the segmentation in FreeSurfer 5.1 (ADNI: 75%, ABIDE: 54% accuracy), as well as classification based on whole amygdala volume (using the sum of all amygdala nuclei volumes; ADNI: 81%, ABIDE: 55% accuracy). This new atlas and the segmentation tools that utilize it will provide neuroimaging researchers with the ability to explore the function and connectivity of the human amygdala nuclei with unprecedented detail in healthy adults as well as those with neurodevelopmental and neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All

  17. Aberrant Neural Connectivity during Emotional Processing Associated with Posttraumatic Stress

    PubMed Central

    Sadeh, Naomi; Spielberg, Jeffrey M.; Warren, Stacie L.; Miller, Gregory A.; Heller, Wendy

    2014-01-01

    Given the complexity of the brain, characterizing relations among distributed brain regions is likely essential to describing the neural instantiation of posttraumatic stress symptoms. This study examined patterns of functional connectivity among key brain regions implicated in the pathophysiology of posttraumatic stress disorder (PTSD) in 35 trauma-exposed adults using an emotion-word Stroop task. PTSD symptom severity (particularly hyperarousal symptoms) moderated amygdala-mPFC coupling during the processing of unpleasant words, and this moderation correlated positively with reported real-world impairment and amygdala reactivity. Reexperiencing severity moderated hippocampus-insula coupling during pleasant and unpleasant words. Results provide evidence that PTSD symptoms differentially moderate functional coupling during emotional interference and underscore the importance of examining network connectivity in research on PTSD. They suggest that hyperarousal is associated with negative mPFC-amygdala coupling and that reexperiencing is associated with altered insula-hippocampus function, patterns of connectivity that may represent separable indicators of dysfunctional inhibitory control during affective processing. PMID:25419500

  18. Aberrant Neural Connectivity during Emotional Processing Associated with Posttraumatic Stress.

    PubMed

    Sadeh, Naomi; Spielberg, Jeffrey M; Warren, Stacie L; Miller, Gregory A; Heller, Wendy

    2014-11-01

    Given the complexity of the brain, characterizing relations among distributed brain regions is likely essential to describing the neural instantiation of posttraumatic stress symptoms. This study examined patterns of functional connectivity among key brain regions implicated in the pathophysiology of posttraumatic stress disorder (PTSD) in 35 trauma-exposed adults using an emotion-word Stroop task. PTSD symptom severity (particularly hyperarousal symptoms) moderated amygdala-mPFC coupling during the processing of unpleasant words, and this moderation correlated positively with reported real-world impairment and amygdala reactivity. Reexperiencing severity moderated hippocampus-insula coupling during pleasant and unpleasant words. Results provide evidence that PTSD symptoms differentially moderate functional coupling during emotional interference and underscore the importance of examining network connectivity in research on PTSD. They suggest that hyperarousal is associated with negative mPFC-amygdala coupling and that reexperiencing is associated with altered insula-hippocampus function, patterns of connectivity that may represent separable indicators of dysfunctional inhibitory control during affective processing.

  19. Amygdala lesions do not compromise the cortical network for false-belief reasoning.

    PubMed

    Spunt, Robert P; Elison, Jed T; Dufour, Nicholas; Hurlemann, René; Saxe, Rebecca; Adolphs, Ralph

    2015-04-14

    The amygdala plays an integral role in human social cognition and behavior, with clear links to emotion recognition, trust judgments, anthropomorphization, and psychiatric disorders ranging from social phobia to autism. A central feature of human social cognition is a theory-of-mind (ToM) that enables the representation other people's mental states as distinct from one's own. Numerous neuroimaging studies of the best studied use of ToM--false-belief reasoning--suggest that it relies on a specific cortical network; moreover, the amygdala is structurally and functionally connected with many components of this cortical network. It remains unknown whether the cortical implementation of any form of ToM depends on amygdala function. Here we investigated this question directly by conducting functional MRI on two patients with rare bilateral amygdala lesions while they performed a neuroimaging protocol standardized for measuring cortical activity associated with false-belief reasoning. We compared patient responses with those of two healthy comparison groups that included 480 adults. Based on both univariate and multivariate comparisons, neither patient showed any evidence of atypical cortical activity or any evidence of atypical behavioral performance; moreover, this pattern of typical cortical and behavioral response was replicated for both patients in a follow-up session. These findings argue that the amygdala is not necessary for the cortical implementation of ToM in adulthood and suggest a reevaluation of the role of the amygdala and its cortical interactions in human social cognition.

  20. Amygdala lesions do not compromise the cortical network for false-belief reasoning

    PubMed Central

    Elison, Jed T.; Dufour, Nicholas; Hurlemann, René; Saxe, Rebecca; Adolphs, Ralph

    2015-01-01

    The amygdala plays an integral role in human social cognition and behavior, with clear links to emotion recognition, trust judgments, anthropomorphization, and psychiatric disorders ranging from social phobia to autism. A central feature of human social cognition is a theory-of-mind (ToM) that enables the representation other people's mental states as distinct from one's own. Numerous neuroimaging studies of the best studied use of ToM—false-belief reasoning—suggest that it relies on a specific cortical network; moreover, the amygdala is structurally and functionally connected with many components of this cortical network. It remains unknown whether the cortical implementation of any form of ToM depends on amygdala function. Here we investigated this question directly by conducting functional MRI on two patients with rare bilateral amygdala lesions while they performed a neuroimaging protocol standardized for measuring cortical activity associated with false-belief reasoning. We compared patient responses with those of two healthy comparison groups that included 480 adults. Based on both univariate and multivariate comparisons, neither patient showed any evidence of atypical cortical activity or any evidence of atypical behavioral performance; moreover, this pattern of typical cortical and behavioral response was replicated for both patients in a follow-up session. These findings argue that the amygdala is not necessary for the cortical implementation of ToM in adulthood and suggest a reevaluation of the role of the amygdala and its cortical interactions in human social cognition. PMID:25825732

  1. Sociability Deficits and Altered Amygdala Circuits in Mice Lacking Pcdh10, an Autism Associated Gene.

    PubMed

    Schoch, Hannah; Kreibich, Arati S; Ferri, Sarah L; White, Rachel S; Bohorquez, Dominique; Banerjee, Anamika; Port, Russell G; Dow, Holly C; Cordero, Lucero; Pallathra, Ashley A; Kim, Hyong; Li, Hongzhe; Bilker, Warren B; Hirano, Shinji; Schultz, Robert T; Borgmann-Winter, Karin; Hahn, Chang-Gyu; Feldmeyer, Dirk; Carlson, Gregory C; Abel, Ted; Brodkin, Edward S

    2017-02-01

    Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated PCDH10, a member of the δ2 subfamily of nonclustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD. Previous reports indicate that Pcdh10 plays a role in axon outgrowth and glutamatergic synapse elimination, but its roles in social behaviors and amygdala neuronal connectivity are unknown. We hypothesized that haploinsufficiency of Pcdh10 would reduce social approach behavior and alter the structure and function of amygdala circuits. Mice lacking one copy of Pcdh10 (Pcdh10 +/- ) and wild-type littermates were assessed for social approach and other behaviors. The lateral/basolateral amygdala was assessed for dendritic spine number and morphology, and amygdala circuit function was studied using voltage-sensitive dye imaging. Expression of Pcdh10 and N-methyl-D-aspartate receptor (NMDAR) subunits was assessed in postsynaptic density fractions of the amygdala. Male Pcdh10 +/- mice have reduced social approach behavior, as well as impaired gamma synchronization, abnormal spine morphology, and reduced levels of NMDAR subunits in the amygdala. Social approach deficits in Pcdh10 +/- male mice were rescued with acute treatment with the NMDAR partial agonist d-cycloserine. Our studies reveal that male Pcdh10 +/- mice have synaptic and behavioral deficits, and establish Pcdh10 +/- mice as a novel genetic model for investigating neural circuitry and behavioral changes relevant to ASD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Sex-specific neural circuits of emotion regulation in the centromedial amygdala.

    PubMed

    Wu, Yan; Li, Huandong; Zhou, Yuan; Yu, Jian; Zhang, Yuanchao; Song, Ming; Qin, Wen; Yu, Chunshui; Jiang, Tianzi

    2016-03-23

    Sex-related differences in emotion regulation (ER) in the frequency power distribution within the human amygdala, a brain region involved in emotion processing, have been reported. However, how sex differences in ER are manifested in the brain networks which are seeded on the amygdala subregions is unclear. The goal of this study was to investigate this issue from a brain network perspective. Utilizing resting-state functional connectivity (RSFC) analysis, we found that the sex-specific functional connectivity patterns associated with ER trait level were only seeded in the centromedial amygdala (CM). Women with a higher trait-level ER had a stronger negative RSFC between the right CM and the medial superior frontal gyrus (mSFG), and stronger positive RSFC between the right CM and the anterior insula (AI) and the superior temporal gyrus (STG). But men with a higher trait-level ER was associated with weaker negative RSFC of the right CM-mSFG and positive RSFCs of the right CM-left AI, right CM-right AI/STG, and right CM-left STG. These results provide evidence for the sex-related effects in ER based on CM and indicate that men and women may differ in the neural circuits associated with emotion representation and integration.

  3. Impaired cortico-limbic functional connectivity in schizophrenia patients during emotion processing

    PubMed Central

    Comte, Magali; Zendjidjian, Xavier Y; Coull, Jennifer T; Cancel, Aïda; Boutet, Claire; Schneider, Fabien C; Sage, Thierry; Lazerges, Pierre-Emmanuel; Jaafari, Nematollah; Ibrahim, El Chérif; Azorin, Jean-Michel; Blin, Olivier; Fakra, Eric

    2018-01-01

    Abstract Functional dysconnection is increasingly recognized as a core pathological feature in schizophrenia. Aberrant interactions between regions of the cortico-limbic circuit may underpin the abnormal emotional processing associated with this illness. We used a functional magnetic resonance imaging paradigm designed to dissociate the various components of the cortico-limbic circuit (i.e. a ventral automatic circuit that is intertwined with a dorsal cognitive circuit), to explore bottom-up appraisal as well as top-down control during emotion processing. In schizophrenia patients compared with healthy controls, bottom-up processes were associated with reduced interaction between the amygdala and both the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex. Contrariwise, top-down control processes led to stronger connectivity between the ventral affective and the dorsal cognitive circuits, i.e. heightened interactions between the ventral ACC and the dorsolateral prefrontal cortex as well as between dorsal and ventral ACC. These findings offer a comprehensive view of the cortico-limbic dysfunction in schizophrenia. They confirm previous results of impaired propagation of information between the amygdala and the prefrontal cortex and suggest a defective functional segregation in the dorsal cognitive part of the cortico-limbic circuit. PMID:29069508

  4. Self-Regulation of Amygdala Activation Using Real-Time fMRI Neurofeedback

    PubMed Central

    Phillips, Raquel; Alvarez, Ruben P.; Simmons, W. Kyle; Bellgowan, Patrick; Drevets, Wayne C.; Bodurka, Jerzy

    2011-01-01

    Real-time functional magnetic resonance imaging (rtfMRI) with neurofeedback allows investigation of human brain neuroplastic changes that arise as subjects learn to modulate neurophysiological function using real-time feedback regarding their own hemodynamic responses to stimuli. We investigated the feasibility of training healthy humans to self-regulate the hemodynamic activity of the amygdala, which plays major roles in emotional processing. Participants in the experimental group were provided with ongoing information about the blood oxygen level dependent (BOLD) activity in the left amygdala (LA) and were instructed to raise the BOLD rtfMRI signal by contemplating positive autobiographical memories. A control group was assigned the same task but was instead provided with sham feedback from the left horizontal segment of the intraparietal sulcus (HIPS) region. In the LA, we found a significant BOLD signal increase due to rtfMRI neurofeedback training in the experimental group versus the control group. This effect persisted during the Transfer run without neurofeedback. For the individual subjects in the experimental group the training effect on the LA BOLD activity correlated inversely with scores on the Difficulty Identifying Feelings subscale of the Toronto Alexithymia Scale. The whole brain data analysis revealed significant differences for Happy Memories versus Rest condition between the experimental and control groups. Functional connectivity analysis of the amygdala network revealed significant widespread correlations in a fronto-temporo-limbic network. Additionally, we identified six regions — right medial frontal polar cortex, bilateral dorsomedial prefrontal cortex, left anterior cingulate cortex, and bilateral superior frontal gyrus — where the functional connectivity with the LA increased significantly across the rtfMRI neurofeedback runs and the Transfer run. The findings demonstrate that healthy subjects can learn to regulate their amygdala

  5. Priming stimulation of basal but not lateral amygdala affects long-term potentiation in the rat dentate gyrus in vivo.

    PubMed

    Li, Z; Richter-Levin, G

    2013-08-29

    The amygdaloid complex, or amygdala, has been implicated in assigning emotional significance to sensory information and producing appropriate behavioral responses to external stimuli. The lateral and basal nuclei (lateral and basal amygdala), which are termed together as basolateral amygdala, play a critical role in emotional and motivational learning and memory. It has been established that the basolateral amygdala activation by behavioral manipulations or direct electrical stimulation can modulate hippocampal long-term potentiation (LTP), a putative cellular mechanism of memory. However, the specific functional role of each subnucleus in the modulation of hippocampal LTP has not been studied yet, even though studies have shown cytoarchitectural differences between the basal and lateral amygdala and differences in the connections of each one of them to other brain areas. In this study we have tested the effects of lateral or basal amygdala pre-stimulation on hippocampal dentate gyrus LTP, induced by theta burst stimulation of the perforant path, in anesthetized rats. We found that while priming stimulation of the lateral amygdala did not affect LTP of the dentate gyrus, priming stimulation of the basal amygdala enhanced the LTP response when the priming stimulation was relatively weak, but impaired it when it was relatively strong. These results show that the basal and lateral nuclei of the amygdala, which have been already shown to differ in their anatomy and connectivity, may also have different functional roles. These findings raise the possibility that the lateral and basal amygdala differentially modulate memory processes in the hippocampus under emotional and motivational situations. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Resting state functional connectivity in primary insomnia, generalized anxiety disorder and controls.

    PubMed

    Pace-Schott, Edward F; Zimmerman, Jared P; Bottary, Ryan M; Lee, Erik G; Milad, Mohammed R; Camprodon, Joan A

    2017-07-30

    Sleep abnormalities are extremely common in anxiety disorders and may contribute to their development and persistence. Their shared pathophysiological mechanisms could thus serve as biomarkers or targets for novel therapeutics. Individuals with Primary Insomnia were age- and sex-matched to controls and to persons with Generalized Anxiety Disorder. All underwent fMRI resting-state scans at 3-T. In Primary Insomnia and controls, sleep was recorded for 2 weeks using diaries and actigraphy. All participants completed state-anxiety and neuroticism inventories. Whole-brain connectivity of 6 fear- and extinction-related seeds were compared between the 3 groups using ANOVA. The only significant between-group main effect was seen for connectivity between the left amygdala seed and a bilateral cluster in the rostral anterior cingulate cortex. The latter is believed to exert top-down control over amygdala activity and their interaction may thus constitute an emotion regulatory circuit. This connectivity was significantly greatest in controls while Primary Insomnia was intermediate between that of controls and Generalized Anxiety Disorder. Across Primary Insomnia and control subjects, mean connectivity decreased with poorer sleep. Across all 3 groups, connectivity decreased with greater neuroticism and pre-scan anxiety. Decreased top-down control of the amygdala may increase risk of developing an anxiety disorder with preexisting Primary Insomnia. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. Menthol enhances nicotine-induced locomotor sensitization and in vivo functional connectivity in adolescence.

    PubMed

    Thompson, Matthew F; Poirier, Guillaume L; Dávila-García, Martha I; Huang, Wei; Tam, Kelly; Robidoux, Maxwell; Dubuke, Michelle L; Shaffer, Scott A; Colon-Perez, Luis; Febo, Marcelo; DiFranza, Joseph R; King, Jean A

    2018-03-01

    Mentholated cigarettes capture a quarter of the US market, and are disproportionately smoked by adolescents. Menthol allosterically modulates nicotinic acetylcholine receptor function, but its effects on the brain and nicotine addiction are unclear. To determine if menthol is psychoactive, we assessed locomotor sensitization and brain functional connectivity. Adolescent male Sprague Dawley rats were administered nicotine (0.4 mg/kg) daily with or without menthol (0.05 mg/kg or 5.38 mg/kg) for nine days. Following each injection, distance traveled in an open field was recorded. One day after the sensitization experiment, functional connectivity was assessed in awake animals before and after drug administration using magnetic resonance imaging. Menthol (5.38 mg/kg) augmented nicotine-induced locomotor sensitization. Functional connectivity was compared in animals that had received nicotine with or without the 5.38 mg/kg dosage of menthol. Twenty-four hours into withdrawal after the last drug administration, increased functional connectivity was observed for ventral tegmental area and retrosplenial cortex with nicotine+menthol compared to nicotine-only exposure. Upon drug re-administration, the nicotine-only, but not the menthol groups, exhibited altered functional connectivity of the dorsal striatum with the amygdala. Menthol, when administered with nicotine, showed evidence of psychoactive properties by affecting brain activity and behavior compared to nicotine administration alone.

  8. Whole brain resting-state analysis reveals decreased functional connectivity in major depression.

    PubMed

    Veer, Ilya M; Beckmann, Christian F; van Tol, Marie-José; Ferrarini, Luca; Milles, Julien; Veltman, Dick J; Aleman, André; van Buchem, Mark A; van der Wee, Nic J; Rombouts, Serge A R B

    2010-01-01

    Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within 6 months before inclusion) and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxel-wise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: (1) decreased bilateral amygdala and left anterior insula connectivity in an affective network, (2) reduced connectivity of the left frontal pole in a network associated with attention and working memory, and (3) decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or gray matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder.

  9. Whole Brain Resting-State Analysis Reveals Decreased Functional Connectivity in Major Depression

    PubMed Central

    Veer, Ilya M.; Beckmann, Christian F.; van Tol, Marie-José; Ferrarini, Luca; Milles, Julien; Veltman, Dick J.; Aleman, André; van Buchem, Mark A.; van der Wee, Nic J.; Rombouts, Serge A.R.B.

    2010-01-01

    Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within 6 months before inclusion) and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxel-wise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: (1) decreased bilateral amygdala and left anterior insula connectivity in an affective network, (2) reduced connectivity of the left frontal pole in a network associated with attention and working memory, and (3) decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or gray matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder. PMID:20941370

  10. A case of hyperthymesia: Rethinking the role of the amygdala in autobiographical memory

    PubMed Central

    Ally, Brandon A.; Hussey, Erin P.; Donahue, Manus J.

    2012-01-01

    Much controversy has been focused on the extent to which the amygdala belongs to the autobiographical memory core network. Early evidence suggested the amygdala played a vital role in emotional processing, likely helping to encode emotionally charged stimuli. However, recent work has highlighted the amygdala’s role in social and self-referential processing, leading to speculation that the amygdala likely supports the encoding and retrieval of autobiographical memory. Here, cognitive as well as structural and functional magnetic resonance imaging data was collected from an extremely rare individual with near-perfect autobiographical memory, or hyperthymesia. Right amygdala hypertrophy (approximately 20%) and enhanced amygdala-to-hippocampus connectivity (> 10 standard deviations) was observed in this volunteer relative to controls. Based on these findings and previous literature, we speculate that the amygdala likely charges autobiographical memories with emotional, social, and self-relevance. In heightened memory, this system may be hyperactive, allowing for many types of autobiographical information, including emotionally benign, to be more efficiently processed as self-relevant for encoding and storage. PMID:22519463

  11. Can theories of visual representation help to explain asymmetries in amygdala function?

    PubMed

    McMenamin, Brenton W; Marsolek, Chad J

    2013-06-01

    Emotional processing differs between the left and right hemispheres of the brain, and functional differences have been reported more specifically between the left and right amygdalae, subcortical structures heavily implicated in emotional processing. However, the empirical pattern of amygdalar asymmetries is inconsistent with extant theories of emotional asymmetries. Here we review this discrepancy, and we hypothesize that hemispheric differences in visual object processing help to explain the previously reported functional differences between the left and right amygdalae. The implication that perceptual factors play a large role in determining amygdalar asymmetries may help to explain amygdalar dysfunction in the development and maintenance of posttraumatic stress disorder.

  12. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity.

    PubMed

    Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian

    2016-07-01

    Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Normalizing effect of heroin maintenance treatment on stress-induced brain connectivity

    PubMed Central

    Walter, Marc; Gerber, Hana; Seifritz, Erich; Brenneisen, Rudolf; Wiesbeck, Gerhard A.; Riecher-Rössler, Anita; Lang, Undine E.; Borgwardt, Stefan

    2015-01-01

    Recent evidence has shown that a single maintenance dose of heroin attenuates psychophysiological stress responses in heroin-dependent patients, probably reflecting the effectiveness of heroin-assisted therapies for the treatment of severe heroin addiction. However, the underlying neural circuitry of these effects has not yet been investigated. Using a cross-over, double-blind, vehicle-controlled design, 22 heroin-dependent and heroin-maintained outpatients from the Centre of Substance Use Disorders at the University Hospital of Psychiatry in Basel were studied after heroin and placebo administration, while 17 healthy controls from the general population were included for placebo administration only. Functional magnetic resonance imaging was used to detect brain responses to fearful faces and dynamic causal modelling was applied to compute fear-induced modulation of connectivity within the emotional face network. Stress responses were assessed by hormone releases and subjective ratings. Relative to placebo, heroin acutely reduced the fear-induced modulation of connectivity from the left fusiform gyrus to the left amygdala and from the right amygdala to the right orbitofrontal cortex in dependent patients. Both of these amygdala-related connectivity strengths were significantly increased in patients after placebo treatment (acute withdrawal) compared to healthy controls, whose connectivity estimates did not differ from those of patients after heroin injection. Moreover, we found positive correlations between the left fusiform gyrus to amygdala connectivity and different stress responses, as well as between the right amygdala to orbitofrontal cortex connectivity and levels of craving. Our findings indicate that the increased amygdala-related connectivity during fearful face processing after the placebo treatment in heroin-dependent patients transiently normalizes after acute heroin maintenance treatment. Furthermore, this study suggests that the assessment of

  14. Altered Resting State Functional Connectivity in Young Survivors of Acute Lymphoblastic Leukemia

    PubMed Central

    Kesler, Shelli R.; Gugel, Meike; Pritchard-Berman, Mika; Lee, Clement; Kutner, Emily; Hosseini, S.M. Hadi; Dahl, Gary; Lacayo, Norman

    2014-01-01

    Background Chemotherapy treatment for pediatric acute lymphoblastic leukemia (ALL) has been associated with long-term cognitive impairments in some patients. However, the neurobiologic mechanisms underlying these impairments, particularly in young survivors, are not well understood. This study aimed to examine intrinsic functional brain connectivity in pediatric ALL and its relationship with cognitive status. Procedure We obtained resting state functional magnetic resonance imaging (rsfMRI) and cognitive testing data from 15 ALL survivors age 8–15 years and 14 matched healthy children. The ALL group had a history of intrathecal chemotherapy treatment but were off-therapy for at least 6 months at the time of enrollment. We used seed-based analyses to compare intrinsic functional brain network connectivity between the groups. We also explored correlations between connectivity and cognitive performance, demographic, medical, and treatment variables. Results We demonstrated significantly reduced connectivity between bilateral hippocampus, left inferior occipital, left lingual gyrus, bilateral calcarine sulcus, and right amygdala in the ALL group compared to controls. The ALL group also showed regions of functional hyperconnectivity including right lingual gyrus, precuneus, bilateral superior occipital lobe, and right inferior occipital lobe. Functional hypoconnectivity was associated with reduced cognitive function as well as younger age at diagnosis in the ALL group. Conclusions This is the first study to demonstrate that intrinsic functional brain connectivity is disrupted in pediatric ALL following chemotherapy treatment. These results help explain cognitive dysfunction even when objective test performance is seemingly normal. Children diagnosed at a younger age may show increased vulnerability to altered functional brain connectivity. PMID:24619953

  15. The effect of anticipation and the specificity of sex differences for amygdala and hippocampus function in emotional memory.

    PubMed

    Mackiewicz, Kristen L; Sarinopoulos, Issidoros; Cleven, Krystal L; Nitschke, Jack B

    2006-09-19

    Prior research has shown memory is enhanced for emotional events. Key brain areas involved in emotional memory are the amygdala and hippocampus, which are also recruited during aversion and its anticipation. This study investigated whether anticipatory processes signaling an upcoming aversive event contribute to emotional memory. In an event-related functional MRI paradigm, 40 healthy participants viewed aversive and neutral pictures preceded by predictive warning cues. Participants completed a surprise recognition task directly after functional MRI scanning or 2 weeks later. In anticipation of aversive pictures, bilateral dorsal amygdala and anterior hippocampus activations were associated with better immediate recognition memory. Similar associations with memory were observed for activation of those areas in response to aversive pictures. Anticipatory activation predicted immediate memory over and above these associations for picture viewing. Bilateral ventral amygdala activations in response to aversive pictures predicted delayed memory only. We found that previously reported sex differences of memory associations with left amygdala for women and with right amygdala for men were confined to the ventral amygdala during picture viewing and delayed memory. Results support an established animal model elucidating the functional neuroanatomy of the amygdala and hippocampus in emotional memory, highlight the importance of anticipatory processes in such memory for aversive events, and extend neuroanatomical evidence of sex differences for emotional memory.

  16. Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome.

    PubMed

    Pujol, Jesus; del Hoyo, Laura; Blanco-Hinojo, Laura; de Sola, Susana; Macià, Dídac; Martínez-Vilavella, Gerard; Amor, Marta; Deus, Joan; Rodríguez, Joan; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

    2015-03-01

    Research in Down syndrome has substantially progressed in the understanding of the effect of gene overexpression at the molecular level, but there is a paucity of information on the ultimate consequences on overall brain functional organization. We have assessed the brain functional status in Down syndrome using functional connectivity MRI. Resting-state whole-brain connectivity degree maps were generated in 20 Down syndrome individuals and 20 control subjects to identify sites showing anomalous synchrony with other areas. A subsequent region-of-interest mapping served to detail the anomalies and to assess their potential contribution to poor adaptive behavior. Down syndrome individuals showed higher regional connectivity in a ventral brain system involving the amygdala/anterior temporal region and the ventral aspect of both the anterior cingulate and frontal cortices. By contrast, lower functional connectivity was identified in dorsal executive networks involving dorsal prefrontal and anterior cingulate cortices and posterior insula. Both functional connectivity increases and decreases contributed to account for patient scoring on adaptive behavior related to communication skills. The data overall suggest a distinctive functional organization with system-specific anomalies associated with reduced adaptive efficiency. Opposite effects were identified on distinct frontal and anterior temporal structures and relative sparing of posterior brain areas, which is generally consistent with Down syndrome cognitive profile. Relevantly, measurable connectivity changes, as a marker of the brain functional anomaly, could have a role in the development of therapeutic strategies addressed to improve the quality of life in Down syndrome individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Impaired cortico-limbic functional connectivity in schizophrenia patients during emotion processing.

    PubMed

    Comte, Magali; Zendjidjian, Xavier Y; Coull, Jennifer T; Cancel, Aïda; Boutet, Claire; Schneider, Fabien C; Sage, Thierry; Lazerges, Pierre-Emmanuel; Jaafari, Nematollah; Ibrahim, El Chérif; Azorin, Jean-Michel; Blin, Olivier; Fakra, Eric

    2017-10-23

    Functional dysconnection is increasingly recognized as a core pathological feature in schizophrenia. Aberrant interactions between regions of the cortico-limbic circuit may underpin the abnormal emotional processing associated with this illness. We used a functional magnetic resonance imaging (fMRI) paradigm designed to dissociate the various components of the cortico-limbic circuit (i.e. a ventral automatic circuit that is intertwined with a dorsal cognitive circuit), in order to explore bottom-up appraisal as well as top-down control during emotion processing. In schizophrenia patients compared to healthy controls, bottom-up processes were associated with reduced interaction between the amygdala and both the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC). Contrariwise, top-down control processes led to stronger connectivity between the ventral affective and the dorsal cognitive circuits, i.e. heightened interactions between the ventral ACC and the DLPFC as well as between dorsal and ventral ACC. These findings offer a comprehensive view of the cortico-limbic dysfunction in schizophrenia. They confirm previous results of impaired propagation of information between the amygdala and the prefrontal cortex and suggest a defective functional segregation in the dorsal cognitive part of the cortico-limbic circuit. © The Author (2017). Published by Oxford University Press.

  18. Cumulative activation during positive and negative events and state anxiety predicts subsequent inertia of amygdala reactivity

    PubMed Central

    Miendlarzewska, Ewa A.; Eryilmaz, Hamdi; Vuilleumier, Patrik

    2015-01-01

    Inertia, together with intensity and valence, is an important component of emotion. We tested whether positive and negative events generate lingering changes in subsequent brain responses to unrelated threat stimuli and investigated the impact of individual anxiety. We acquired fMRI data while participants watched positive or negative movie-clips and subsequently performed an unrelated task with fearful and neutral faces. We quantified changes in amygdala reactivity to fearful faces as a function of the valence of preceding movies and cumulative neural activity evoked during them. We demonstrate that amygdala responses to emotional movies spill over to subsequent processing of threat information in a valence-specific manner: negative movies enhance later amygdala activation whereas positive movies attenuate it. Critically, the magnitude of such changes is predicted by a measure of cumulative amygdala responses to the preceding positive or negative movies. These effects appear independent of overt attention, are regionally limited to amygdala, with no changes in functional connectivity. Finally, individuals with higher state anxiety displayed stronger modulation of amygdala reactivity by positive movies. These results suggest that intensity and valence of emotional events as well as anxiety levels promote local changes in amygdala sensitivity to threat, highlighting the importance of past experience in shaping future affective reactivity. PMID:24603023

  19. Emotion-induced loss aversion and striatal-amygdala coupling in low-anxious individuals

    PubMed Central

    Charpentier, Caroline J.; Martino, Benedetto De; Sim, Alena L.; Sharot, Tali; Roiser, Jonathan P.

    2016-01-01

    Adapting behavior to changes in the environment is a crucial ability for survival but such adaptation varies widely across individuals. Here, we asked how humans alter their economic decision-making in response to emotional cues, and whether this is related to trait anxiety. Developing an emotional decision-making task for functional magnetic resonance imaging, in which gambling decisions were preceded by emotional and non-emotional primes, we assessed emotional influences on loss aversion, the tendency to overweigh potential monetary losses relative to gains. Our behavioral results revealed that only low-anxious individuals exhibited increased loss aversion under emotional conditions. This emotional modulation of decision-making was accompanied by a corresponding emotion-elicited increase in amygdala-striatal functional connectivity, which correlated with the behavioral effect across participants. Consistent with prior reports of ‘neural loss aversion’, both amygdala and ventral striatum tracked losses more strongly than gains, and amygdala loss aversion signals were exaggerated by emotion, suggesting a potential role for this structure in integrating value and emotion cues. Increased loss aversion and striatal-amygdala coupling induced by emotional cues may reflect the engagement of adaptive harm-avoidance mechanisms in low-anxious individuals, possibly promoting resilience to psychopathology. PMID:26589451

  20. Basolateral amygdala-ventromedial prefrontal cortex connectivity predicts cognitive behavioural therapy outcome in adults with obsessive-compulsive disorder.

    PubMed

    Fullana, Miquel A; Zhu, Xi; Alonso, Pino; Cardoner, Narcís; Real, Eva; López-Solà, Clara; Segalàs, Cinto; Subirà, Marta; Galfalvy, Hanga; Menchón, José M; Simpson, H Blair; Marsh, Rachel; Soriano-Mas, Carles

    2017-11-01

    Cognitive behavioural therapy (CBT), including exposure and ritual prevention, is a first-line treatment for obsessive-compulsive disorder (OCD), but few reliable predictors of CBT outcome have been identified. Based on research in animal models, we hypothesized that individual differences in basolateral amygdala-ventromedial prefrontal cortex (BLA-vmPFC) communication would predict CBT outcome in patients with OCD. We investigated whether BLA-vmPFC resting-state functional connectivity (rs-fc) predicts CBT outcome in patients with OCD. We assessed BLA-vmPFC rs-fc in patients with OCD on a stable dose of a selective serotonin reuptake inhibitor who then received CBT and in healthy control participants. We included 73 patients with OCD and 84 healthy controls in our study. Decreased BLA-vmPFC rs-fc predicted a better CBT outcome in patients with OCD and was also detected in those with OCD compared with healthy participants. Additional analyses revealed that decreased BLA-vmPFC rs-fc uniquely characterized the patients with OCD who responded to CBT. We used a sample of convenience, and all patients were receiving pharmacological treatment for OCD. In this large sample of patients with OCD, BLA-vmPFC functional connectivity predicted CBT outcome. These results suggest that future research should investigate the potential of BLA-vmPFC pathways to inform treatment selection for CBT across patients with OCD and anxiety disorders.

  1. Changes in cortico-subcortical and subcortico-subcortical connectivity impact cognitive control to emotional cues across development

    PubMed Central

    Cohen, Alexandra O.; Dreyfuss, Michael F. W.; Casey, B. J.

    2016-01-01

    The capacity to suppress inappropriate thoughts, emotions and actions in favor of appropriate ones shows marked changes throughout childhood and adolescence. Most research has focused on pre-frontal circuit development to explain these changes. Yet, subcortical circuitry involving the amygdala and ventral striatum (VS) has been shown to modulate cue-triggered motivated behaviors in rodents. The nature of the interaction between these two subcortical regions in humans is less well understood, especially during development when there appears to be heightened sensitivity to emotional cues. In the current study, we tested how task-based cortico-subcortical and subcortico-subcortical functional connectivity in 155 participants ages from 5 to 32 impacted cognitive control performance on an emotional go/nogo task. Functional connectivity between the amygdala and VS was inversely correlated with age and predicted cognitive control to emotional cues, when controlling for performance to neutral cues. In contrast, increased medial pre-frontal-amygdala connectivity was associated with better cognitive control to emotional cues and this cortical-subcortical connectivity mediated the association between amygdala-VS connectivity and emotional cognitive control. These findings suggest a dissociation in how subcortical-subcortical and cortical-subcortical connectivity impact cognitive control across development. PMID:27445212

  2. Functional cliques in the amygdala and related brain networks driven by fear assessment acquired during movie viewing.

    PubMed

    Kinreich, Sivan; Intrator, Nathan; Hendler, Talma

    2011-01-01

    One of the greatest challenges involved in studying the brain mechanisms of fear is capturing the individual's unique instantaneous experience. Brain imaging studies to date commonly sacrifice valuable information regarding the individual real-time conscious experience, especially when focusing on elucidating the amygdala's activity. Here, we assumed that by using a minimally intrusive cue along with applying a robust clustering approach to probe the amygdala, it would be possible to rate fear in real time and to derive the related network of activation. During functional magnetic resonance imaging scanning, healthy volunteers viewed two excerpts from horror movies and were periodically auditory cued to rate their instantaneous experience of "I'm scared." Using graph theory and community mathematical concepts, data-driven clustering of the fear-related functional cliques in the amygdala was performed guided by the individually marked periods of heightened fear. Individually tailored functions derived from these amygdala activation cliques were subsequently applied as general linear model predictors to a whole-brain analysis to reveal the correlated networks. Our results suggest that by using a localized robust clustering approach, it is possible to probe activation in the right dorsal amygdala that is directly related to individual real-time emotional experience. Moreover, this fear-evoked amygdala revealed two opposing networks of co-activation and co-deactivation, which correspond to vigilance and rest-related circuits, respectively.

  3. Community structure in networks of functional connectivity: resolving functional organization in the rat brain with pharmacological MRI.

    PubMed

    Schwarz, Adam J; Gozzi, Alessandro; Bifone, Angelo

    2009-08-01

    In the study of functional connectivity, fMRI data can be represented mathematically as a network of nodes and links, where image voxels represent the nodes and the connections between them reflect a degree of correlation or similarity in their response. Here we show that, within this framework, functional imaging data can be partitioned into 'communities' of tightly interconnected voxels corresponding to maximum modularity within the overall network. We evaluated this approach systematically in application to networks constructed from pharmacological MRI (phMRI) of the rat brain in response to acute challenge with three different compounds with distinct mechanisms of action (d-amphetamine, fluoxetine, and nicotine) as well as vehicle (physiological saline). This approach resulted in bilaterally symmetric sub-networks corresponding to meaningful anatomical and functional connectivity pathways consistent with the purported mechanism of action of each drug. Interestingly, common features across all three networks revealed two groups of tightly coupled brain structures that responded as functional units independent of the specific neurotransmitter systems stimulated by the drug challenge, including a network involving the prefrontal cortex and sub-cortical regions extending from the striatum to the amygdala. This finding suggests that each of these networks includes general underlying features of the functional organization of the rat brain.

  4. Trait and state patterns of basolateral amygdala connectivity at rest are related to endogenous testosterone and aggression in healthy young women.

    PubMed

    Buades-Rotger, Macià; Engelke, Christin; Krämer, Ulrike M

    2018-05-09

    The steroid hormone testosterone (T) has been suggested to influence reactive aggression upon its action on the basolateral amygdala (BLA), a key brain region for threat detection. However, it is unclear whether T modulates resting-state functional connectivity (rsFC) of the BLA, and whether this predicts subsequent aggressive behavior. Aggressive interactions themselves, which often induce changes in T concentrations, could further alter BLA rsFC, but this too remains untested. Here we investigated the effect of endogenous T on rsFC of the BLA at baseline as well as after an aggressive encounter, and whether this was related to behavioral aggression in healthy young women (n = 39). Pre-scan T was negatively correlated with basal rsFC between BLA and left superior temporal gyrus (STG; p < .001, p < .05 Family-Wise Error [FWE] cluster-level corrected), which in turn was associated with increased aggression (r = .37, p = .020). BLA-STG coupling at rest might thus underlie hostile readiness in low-T women. In addition, connectivity between the BLA and the right superior parietal lobule (SPL), a brain region involved in higher-order perceptual processes, was reduced in aggressive participants (p < .001, p < .05 FWE cluster-level corrected). On the other hand, post-task increases in rsFC between BLA and medial orbitofrontal cortex (mOFC) were linked to reduced aggression (r = -.36, p = .023), consistent with the established notion that the mOFC regulates amygdala activity in order to curb aggressive impulses. Finally, competition-induced changes in T were associated with increased coupling between the BLA and the right lateral OFC (p < .001, p < .05 FWE cluster-level corrected), but this effect was unrelated to aggression. We thus identified connectivity patterns that prospectively predict aggression in women, and showed how aggressive interactions in turn impact these neural systems.

  5. Association of Hippocampal Substructure Resting-State Functional Connectivity with Memory Performance in Older Adults.

    PubMed

    Smagula, Stephen F; Karim, Helmet T; Rangarajan, Anusha; Santos, Fernando Pasquini; Wood, Sossena C; Santini, Tales; Jakicic, John M; Reynolds, Charles F; Cameron, Judy L; Vallejo, Abbe N; Butters, Meryl A; Rosano, Caterina; Ibrahim, Tamer S; Erickson, Kirk I; Aizenstein, Howard J

    2018-06-01

    Hippocampal hyperactivation marks preclinical dementia pathophysiology, potentially due to differences in the connectivity of specific medial temporal lobe structures. Our aims were to characterize the resting-state functional connectivity of medial temporal lobe sub-structures in older adults, and evaluate whether specific substructural (rather than global) functional connectivity relates to memory function. In 15 adults (mean age: 69 years), we evaluated the resting state functional connectivity of medial temporal lobe substructures: dentate/Cornu Ammonis (CA) 4, CA1, CA2/3, subiculum, the molecular layer, entorhinal cortex, and parahippocampus. We used 7-Tesla susceptibility weighted imaging and magnetization-prepared rapid gradient echo sequences to segment substructures of the hippocampus, which were used as structural seeds for examining functional connectivity in a resting BOLD sequence. We then assessed correlations between functional connectivity with memory performance (short and long delay free recall on the California Verbal Learning Test [CVLT]). All the seed regions had significant connectivity within the temporal lobe (including the fusiform, temporal, and lingual gyri). The left CA1 was the only seed with significant functional connectivity to the amygdala. The left entorhinal cortex was the only seed to have significant functional connectivity with frontal cortex (anterior cingulate and superior frontal gyrus). Only higher left dentate-left lingual connectivity was associated with poorer CVLT performance (Spearman r = -0.81, p = 0.0003, Benjamini-Hochberg false discovery rate: 0.01) after multiple comparison correction. Rather than global hyper-connectivity of the medial temporal lobe, left dentate-lingual connectivity may provide a specific assay of medial temporal lobe hyper-connectivity relevant to memory in aging. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Effective connectivity of facial expression network by using Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Xiaoting

    2013-10-01

    Functional magnetic resonance imaging (fMRI) is an advanced non-invasive data acquisition technique to investigate the neural activity in human brain. In addition to localize the functional brain regions that is activated by specific cognitive task, fMRI can also be utilized to measure the task-related functional interactions among the active regions of interest (ROI) in the brain. Among the variety of analysis tools proposed for modeling the connectivity of brain regions, Granger causality analysis (GCA) measure the directions of information interactions by looking for the lagged effect among the brain regions. In this study, we use fMRI and Granger Causality analysis to investigate the effective connectivity of brain network induced by viewing several kinds of expressional faces. We focus on four kinds of facial expression stimuli: fearful, angry, happy and neutral faces. Five face selective regions of interest are localized and the effective connectivity within these regions is measured for the expressional faces. Our result based on 8 subjects showed that there is significant effective connectivity from STS to amygdala, from amygdala to OFA, aFFA and pFFA, from STS to aFFA and from pFFA to aFFA. This result suggested that there is an information flow from the STS to the amygdala when perusing expressional faces. This emotional expressional information flow that is conveyed by STS and amygdala, flow back to the face selective regions in occipital-temporal lobes, which constructed a emotional face processing network.

  7. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.

    PubMed

    Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver

    2017-01-01

    Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  8. Functional connectivity between right and left mesial temporal structures.

    PubMed

    Lacuey, Nuria; Zonjy, Bilal; Kahriman, Emine S; Kaffashi, Farhad; Miller, Jonathan; Lüders, Hans O

    2015-09-01

    The aim of this study is to investigate functional connectivity between right and left mesial temporal structures using cerebrocerebral evoked potentials. We studied seven patients with drug-resistant focal epilepsy who were explored with stereotactically implanted depth electrodes in bilateral hippocampi. In all patients cerebrocerebral evoked potentials evoked by stimulation of the fornix were evaluated as part of a research project assessing fornix stimulation for control of hippocampal seizures. Stimulation of the fornix elicited responses in the ipsilateral hippocampus in all patients with a mean latency of 4.6 ms (range 2-7 ms). Two patients (29 %) also had contralateral hippocampus responses with a mean latency of 7.5 ms (range 5-12 ms) and without involvement of the contralateral temporal neocortex or amygdala. This study confirms the existence of connections between bilateral mesial temporal structures in some patients and explains seizure discharge spreading between homotopic mesial temporal structures without neocortical involvement.

  9. Where and what is the paralaminar nucleus? A review on a unique and frequently overlooked area of the primate amygdala

    PubMed Central

    deCampo, Danielle; Fudge, Julie

    2011-01-01

    The primate amygdala is composed of multiple subnuclei that play distinct roles in amygdala function. While some nuclei have been areas of focused investigation, others remain virtually unknown. One of the more obscure regions of the amygdala is the paralaminar nucleus (PL). The PL in humans and non-human primates is relatively expanded compared to lower species. Long considered to be part of the basal nucleus, the PL has several interesting features that make it unique. These features include a dense concentration of small cells, high concentrations of receptors for corticotropin releasing hormone and benzodiazepines, and dense innervation of serotonergic fibers. More recently, high concentrations of immature-appearing cells have been noted in the primate PL, suggesting special mechanisms of neural plasticity. Following a brief overview of amygdala structure and function, this review will provide an introduction to the history, embryology, anatomical connectivity, immunohistochemical and cytoarchitectural properties of the PL. Our conclusion based on the following information, is that the PL is a unique subregion of the amygdala that may yield important clues about the normal growth and function of the amygdala, particularly in higher species. PMID:21906624

  10. Cumulative activation during positive and negative events and state anxiety predicts subsequent inertia of amygdala reactivity.

    PubMed

    Pichon, Swann; Miendlarzewska, Ewa A; Eryilmaz, Hamdi; Vuilleumier, Patrik

    2015-02-01

    Inertia, together with intensity and valence, is an important component of emotion. We tested whether positive and negative events generate lingering changes in subsequent brain responses to unrelated threat stimuli and investigated the impact of individual anxiety. We acquired fMRI data while participants watched positive or negative movie-clips and subsequently performed an unrelated task with fearful and neutral faces. We quantified changes in amygdala reactivity to fearful faces as a function of the valence of preceding movies and cumulative neural activity evoked during them. We demonstrate that amygdala responses to emotional movies spill over to subsequent processing of threat information in a valence-specific manner: negative movies enhance later amygdala activation whereas positive movies attenuate it. Critically, the magnitude of such changes is predicted by a measure of cumulative amygdala responses to the preceding positive or negative movies. These effects appear independent of overt attention, are regionally limited to amygdala, with no changes in functional connectivity. Finally, individuals with higher state anxiety displayed stronger modulation of amygdala reactivity by positive movies. These results suggest that intensity and valence of emotional events as well as anxiety levels promote local changes in amygdala sensitivity to threat, highlighting the importance of past experience in shaping future affective reactivity. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Relation between Amygdala Structure and Function in Adolescents with Bipolar Disorder

    ERIC Educational Resources Information Center

    Kalmar, Jessica H.; Wang, Fei; Chepenik, Lara G.; Womer, Fay Y.; Jones, Monique M.; Pittman, Brian; Shah, Maulik P.; Martin, Andres; Constable, R. Todd; Blumberg, Hilary P.

    2009-01-01

    Adolescents with bipolar disorder showed decreased amygdala volume and increased amygdala response to emotional faces. Amygdala volume is inversely related to activation during emotional face processing.

  12. Abnormal Amygdalar Activation and Connectivity in Adolescents With Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Posner, Jonathan; Nagel, Bonnie J.; Maia, Tiago V.; Mechling, Anna; Oh, Milim; Wang, Zhishun; Peterson, Bradley S.

    2011-01-01

    Objective Emotional reactivity is one of the most disabling symptoms associated with ADHD. We aimed to identify neural substrates associated with emotional reactivity and assess the effects of stimulants on those substrates. Method We used functional magnetic resonance imaging (fMRI) to assess neural activity in adolescents with (N=15) and without (N=15) ADHD while they performed a task involving the subliminal presentation of fearful faces. Using dynamic causal modeling, we also examined the effective connectivity of two regions associated with emotional reactivity — the amygdala and the lateral prefrontal cortex (LPFC). The participants with ADHD were scanned both on and off stimulant medication in a counterbalanced fashion. Results During the task, we found that activity in the right amygdala was greater in adolescents with ADHD than in controls. Additionally, in adolescents with ADHD, greater connectivity was detected between the amygdala and LPFC. Stimulants had a normalizing effect on both the activity in the right amygdala and the connectivity between the amygdala and LPFC. Conclusions Our findings demonstrate that in adolescents with ADHD, a neural substrate of fear processing is atypical, as is the connectivity between the amygdala and LPFC. These findings suggest possible neural substrates for the emotional reactivity that is often present in youths with ADHD and provide putative neural targets for the development of novel therapeutic interventions for this condition. PMID:21784302

  13. Resting-State Functional Connectivity in Generalized Anxiety Disorder and Social Anxiety Disorder: Evidence for a Dimensional Approach.

    PubMed

    Rabany, Liron; Diefenbach, Gretchen J; Bragdon, Laura B; Pittman, Brian P; Zertuche, Luis; Tolin, David F; Goethe, John W; Assaf, Michal

    2017-06-01

    Generalized anxiety disorder (GAD) and social anxiety disorder (SAD) are currently considered distinct diagnostic categories. Accumulating data suggest the study of anxiety disorders may benefit from the use of dimensional conceptualizations. One such dimension of shared dysfunction is emotion regulation (ER). The current study evaluated dimensional (ER) and categorical (diagnosis) neurocorrelates of resting-state functional connectivity (rsFC) in participants with GAD and SAD and healthy controls (HC). Functional magnetic resonance imaging (fMRI) rsFC was estimated between all regions of the default mode network (DMN), salience network (SN), and bilateral amygdala (N = 37: HC-19; GAD-10; SAD-8). Thereafter, rsFC was predicted by both ER, (using the Difficulties in Emotion Regulation Scale [DERS]), and diagnosis (DSM-5) within a single unified analysis of covariance (ANCOVA). For the ER dimension, there was a significant association between impaired ER abilities and anticorrelated rsFC of amygdala and DMN (L.amygdala-ACC: p = 0.011, beta = -0.345), as well as amygdala and SN (L.amygdala-posterior cingulate cortex [PCC]: p = 0.032, beta = -0.409). Diagnostic status was significantly associated with rsFC differences between the SAD and HC groups, both within the DMN (PCC-MPFC: p = 0.009) and between the DMN and SN (R.LP-ACC: p = 0.010). Although preliminary, our results exemplify the potential contribution of the dimensional approach to the study of GAD and SAD and support a combined categorical and dimensional model of rsFC of anxiety disorders.

  14. Persistence of Amygdala-Hippocampal Connectivity and Multi-Voxel Correlation Structures During Awake Rest After Fear Learning Predicts Long-Term Expression of Fear.

    PubMed

    Hermans, Erno J; Kanen, Jonathan W; Tambini, Arielle; Fernández, Guillén; Davachi, Lila; Phelps, Elizabeth A

    2017-05-01

    After encoding, memories undergo a process of consolidation that determines long-term retention. For conditioned fear, animal models postulate that consolidation involves reactivations of neuronal assemblies supporting fear learning during postlearning "offline" periods. However, no human studies to date have investigated such processes, particularly in relation to long-term expression of fear. We tested 24 participants using functional MRI on 2 consecutive days in a fear conditioning paradigm involving 1 habituation block, 2 acquisition blocks, and 2 extinction blocks on day 1, and 2 re-extinction blocks on day 2. Conditioning blocks were preceded and followed by 4.5-min rest blocks. Strength of spontaneous recovery of fear on day 2 served as a measure of long-term expression of fear. Amygdala connectivity primarily with hippocampus increased progressively during postacquisition and postextinction rest on day 1. Intraregional multi-voxel correlation structures within amygdala and hippocampus sampled during a block of differential fear conditioning furthermore persisted after fear learning. Critically, both these main findings were stronger in participants who exhibited spontaneous recovery 24 h later. Our findings indicate that neural circuits activated during fear conditioning exhibit persistent postlearning activity that may be functionally relevant in promoting consolidation of the fear memory. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Emotion-induced loss aversion and striatal-amygdala coupling in low-anxious individuals.

    PubMed

    Charpentier, Caroline J; De Martino, Benedetto; Sim, Alena L; Sharot, Tali; Roiser, Jonathan P

    2016-04-01

    Adapting behavior to changes in the environment is a crucial ability for survival but such adaptation varies widely across individuals. Here, we asked how humans alter their economic decision-making in response to emotional cues, and whether this is related to trait anxiety. Developing an emotional decision-making task for functional magnetic resonance imaging, in which gambling decisions were preceded by emotional and non-emotional primes, we assessed emotional influences on loss aversion, the tendency to overweigh potential monetary losses relative to gains. Our behavioral results revealed that only low-anxious individuals exhibited increased loss aversion under emotional conditions. This emotional modulation of decision-making was accompanied by a corresponding emotion-elicited increase in amygdala-striatal functional connectivity, which correlated with the behavioral effect across participants. Consistent with prior reports of 'neural loss aversion', both amygdala and ventral striatum tracked losses more strongly than gains, and amygdala loss aversion signals were exaggerated by emotion, suggesting a potential role for this structure in integrating value and emotion cues. Increased loss aversion and striatal-amygdala coupling induced by emotional cues may reflect the engagement of adaptive harm-avoidance mechanisms in low-anxious individuals, possibly promoting resilience to psychopathology. © The Author (2015). Published by Oxford University Press.

  16. Reduced amygdala reactivity and impaired working memory during dissociation in borderline personality disorder.

    PubMed

    Krause-Utz, Annegret; Winter, Dorina; Schriner, Friederike; Chiu, Chui-De; Lis, Stefanie; Spinhoven, Philip; Bohus, Martin; Schmahl, Christian; Elzinga, Bernet M

    2018-06-01

    Affective hyper-reactivity and impaired cognitive control of emotional material are core features of borderline personality disorder (BPD). A high percentage of individuals with BPD experience stress-related dissociation, including emotional numbing and memory disruptions. So far little is known about how dissociation influences the neural processing of emotional material in the context of a working memory task in BPD. We aimed to investigate whole-brain activity and amygdala functional connectivity (FC) during an Emotional Working Memory Task (EWMT) after dissociation induction in un-medicated BPD patients compared to healthy controls (HC). Using script-driven imagery, dissociation was induced in 17 patients ('BPD_D'), while 12 patients ('BPD_N') and 18 HC were exposed to neutral scripts during fMRI. Afterwards, participants performed the EWMT with neutral vs. negative IAPS pictures vs. no distractors. Main outcome measures were behavioral performance (reaction times, errors) and whole-brain activity during the EWMT. Psychophysiological interaction analysis was used to examine amygdala connectivity during emotional distraction. BPD patients after dissociation induction showed overall WM impairments, a deactivation in bilateral amygdala, and lower activity in left cuneus, lingual gyrus, and posterior cingulate than BPD_N, along with stronger left inferior frontal gyrus activity than HC. Furthermore, reduced amygdala FC with fusiform gyrus and stronger amygdala FC with right middle/superior temporal gyrus and left inferior parietal lobule was observed in BPD_D. Findings suggest that dissociation affects reactivity to emotionally salient material and WM. Altered activity in areas associated with emotion processing, memory, and self-referential processes may contribute to dissociative states in BPD.

  17. The role of anxiety in stuttering: Evidence from functional connectivity.

    PubMed

    Yang, Yang; Jia, Fanlu; Siok, Wai Ting; Tan, Li Hai

    2017-03-27

    Persistent developmental stuttering is a neurologically based speech disorder associated with cognitive-linguistic, motor and emotional abnormalities. Previous studies investigating the relationship between anxiety and stuttering have yielded mixed results, but it has not yet been examined whether anxiety influences brain activity underlying stuttering. Here, using functional magnetic resonance imaging (fMRI), we investigated the functional connectivity associated with state anxiety in a syllable repetition task, and trait anxiety during rest in adults who stutter (N=19) and fluent controls (N=19). During the speech task, people who stutter (PWS) showed increased functional connectivity of the right amygdala with the prefrontal gyrus (the left ventromedial frontal gyrus and right middle frontal gyrus) and the left insula compared to controls. During rest, PWS showed stronger functional connectivity between the right hippocampus and the left orbital frontal gyrus, and between the left hippocampus and left motor areas than controls. Taken together, our results suggest aberrant bottom-up and/or top-down interactions for anxiety regulation, which might be responsible for the higher level of state anxiety during speech and for the anxiety-prone trait in PWS. To our knowledge, this is the first study to examine the neural underpinnings of anxiety in PWS, thus yielding new insight into the causes of stuttering which might aid strategies for the diagnosis and treatment of stuttering. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. (S)-citalopram influences amygdala modulation in healthy subjects: a randomized placebo-controlled double-blind fMRI study using dynamic causal modeling.

    PubMed

    Sladky, Ronald; Spies, Marie; Hoffmann, Andre; Kranz, Georg; Hummer, Allan; Gryglewski, Gregor; Lanzenberger, Rupert; Windischberger, Christian; Kasper, Siegfried

    2015-03-01

    Citalopram and Escitalopram are gold standard pharmaceutical treatment options for affective, anxiety, and other psychiatric disorders. However, their neurophysiologic function on cortico-limbic circuits is incompletely characterized. Here we studied the neuropharmacological influence of Citalopram and Escitalopram on cortico-limbic regulatory processes by assessing the effective connectivity between orbitofrontal cortex (OFC) and amygdala using dynamic causal modeling (DCM) applied to functional MRI data. We investigated a cohort of 15 healthy subjects in a randomized, crossover, double-blind design after 10days of Escitalopram (10mg/d (S)-citalopram), Citalopram (10mg/d (S)-citalopram and 10mg/d (R)-citalopram), or placebo. Subjects performed an emotional face discrimination task, while undergoing functional magnetic resonance imaging (fMRI) scanning at 3 Tesla. As hypothesized, the OFC, in the context of the emotional face discrimination task, exhibited a down-regulatory effect on amygdala activation. This modulatory effect was significantly increased by (S)-citalopram, but not (R)-citalopram. For the first time, this study shows that (1) the differential effects of the two enantiomers (S)- and (R)-citalopram on cortico-limbic connections can be demonstrated by modeling effective connectivity methods, and (2) one of their mechanisms can be linked to an increased inhibition of amygdala activation by the orbitofrontal cortex. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Robust Selectivity for Faces in the Human Amygdala in the Absence of Expressions

    PubMed Central

    Mende-Siedlecki, Peter; Verosky, Sara C.; Turk-Browne, Nicholas B.; Todorov, Alexander

    2014-01-01

    There is a well-established posterior network of cortical regions that plays a central role in face processing and that has been investigated extensively. In contrast, although responsive to faces, the amygdala is not considered a core face-selective region, and its face selectivity has never been a topic of systematic research in human neuroimaging studies. Here, we conducted a large-scale group analysis of fMRI data from 215 participants. We replicated the posterior network observed in prior studies but found equally robust and reliable responses to faces in the amygdala. These responses were detectable in most individual participants, but they were also highly sensitive to the initial statistical threshold and habituated more rapidly than the responses in posterior face-selective regions. A multivariate analysis showed that the pattern of responses to faces across voxels in the amygdala had high reliability over time. Finally, functional connectivity analyses showed stronger coupling between the amygdala and posterior face-selective regions during the perception of faces than during the perception of control visual categories. These findings suggest that the amygdala should be considered a core face-selective region. PMID:23984945

  20. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala.

    PubMed

    Ghashghaei, H T; Hilgetag, C C; Barbas, H

    2007-02-01

    The prefrontal cortex and the amygdala have synergistic roles in regulating purposive behavior, effected through bidirectional pathways. Here we investigated the largely unknown extent and laminar relationship of prefrontal input-output zones linked with the amygdala using neural tracers injected in the amygdala in rhesus monkeys. Prefrontal areas varied vastly in their connections with the amygdala, with the densest connections found in posterior orbitofrontal and posterior medial cortices, and the sparsest in anterior lateral prefrontal areas, especially area 10. Prefrontal projection neurons directed to the amygdala originated in layer 5, but significant numbers were also found in layers 2 and 3 in posterior medial and orbitofrontal cortices. Amygdalar axonal terminations in prefrontal cortex were most frequently distributed in bilaminar bands in the superficial and deep layers, by columns spanning the entire cortical depth, and less frequently as small patches centered in the superficial or deep layers. Heavy terminations in layers 1-2 overlapped with calbindin-positive inhibitory neurons. A comparison of the relationship of input to output projections revealed that among the most heavily connected cortices, cingulate areas 25 and 24 issued comparatively more projections to the amygdala than they received, whereas caudal orbitofrontal areas were more receivers than senders. Further, there was a significant relationship between the proportion of 'feedforward' cortical projections from layers 2-3 to 'feedback' terminations innervating the superficial layers of prefrontal cortices. These findings indicate that the connections between prefrontal cortices and the amygdala follow similar patterns as corticocortical connections, and by analogy suggest pathways underlying the sequence of information processing for emotions.

  1. Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex

    PubMed Central

    Hadj-Bouziane, Fadila; Liu, Ning; Bell, Andrew H.; Gothard, Katalin M.; Luh, Wen-Ming; Tootell, Roger B. H.; Murray, Elisabeth A.; Ungerleider, Leslie G.

    2012-01-01

    We previously showed that facial expressions modulate functional MRI activity in the face-processing regions of the macaque monkey’s amygdala and inferior temporal (IT) cortex. Specifically, we showed that faces expressing emotion yield greater activation than neutral faces; we term this difference the “valence effect.” We hypothesized that amygdala lesions would disrupt the valence effect by eliminating the modulatory feedback from the amygdala to the IT cortex. We compared the valence effects within the IT cortex in monkeys with excitotoxic amygdala lesions (n = 3) with those in intact control animals (n = 3) using contrast agent-based functional MRI at 3 T. Images of four distinct monkey facial expressions—neutral, aggressive (open mouth threat), fearful (fear grin), and appeasing (lip smack)—were presented to the subjects in a blocked design. Our results showed that in monkeys with amygdala lesions the valence effects were strongly disrupted within the IT cortex, whereas face responsivity (neutral faces > scrambled faces) and face selectivity (neutral faces > non-face objects) were unaffected. Furthermore, sparing of the anterior amygdala led to intact valence effects in the anterior IT cortex (which included the anterior face-selective regions), whereas sparing of the posterior amygdala led to intact valence effects in the posterior IT cortex (which included the posterior face-selective regions). Overall, our data demonstrate that the feedback projections from the amygdala to the IT cortex mediate the valence effect found there. Moreover, these modulatory effects are consistent with an anterior-to-posterior gradient of projections, as suggested by classical tracer studies. PMID:23184972

  2. A Volumetric and Functional Connectivity MRI Study of Brain Arginine-Vasopressin Pathways in Autistic Children.

    PubMed

    Shou, Xiao-Jing; Xu, Xin-Jie; Zeng, Xiang-Zhu; Liu, Ying; Yuan, Hui-Shu; Xing, Yan; Jia, Mei-Xiang; Wei, Qing-Yun; Han, Song-Ping; Zhang, Rong; Han, Ji-Sheng

    2017-04-01

    Dysfunction of brain-derived arginine-vasopressin (AVP) systems may be involved in the etiology of autism spectrum disorder (ASD). Certain regions such as the hypothalamus, amygdala, and hippocampus are known to contain either AVP neurons or terminals and may play an important role in regulating complex social behaviors. The present study was designed to investigate the concomitant changes in autistic behaviors, circulating AVP levels, and the structure and functional connectivity (FC) of specific brain regions in autistic children compared with typically developing children (TDC) aged from 3 to 5 years. The results showed: (1) children with ASD had a significantly increased volume in the left amygdala and left hippocampus, and a significantly decreased volume in the bilateral hypothalamus compared to TDC, and these were positively correlated with plasma AVP level. (2) Autistic children had a negative FC between the left amygdala and the bilateral supramarginal gyri compared to TDC. The degree of the negative FC between amygdala and supramarginal gyrus was associated with a higher score on the clinical autism behavior checklist. (3) The degree of negative FC between left amygdala and left supramarginal gyrus was associated with a lowering of the circulating AVP concentration in boys with ASD. (4) Autistic children showed a higher FC between left hippocampus and right subcortical area compared to TDC. (5) The circulating AVP was negatively correlated with the visual and listening response score of the childhood autism rating scale. These results strongly suggest that changes in structure and FC in brain regions containing AVP may be involved in the etiology of autism.

  3. Framing effect following bilateral amygdala lesion.

    PubMed

    Talmi, Deborah; Hurlemann, René; Patin, Alexandra; Dolan, Raymond J

    2010-05-01

    A paradigmatic example of an emotional bias in decision making is the framing effect, where the manner in which a choice is posed--as a potential loss or a potential gain--systematically biases an ensuing decision. Two fMRI studies have shown that the activation in the amygdala is modulated by the framing effect. Here, contrary to an expectation based on these studies, we show that two patients with Urbach-Wiethe (UW) disease, a rare condition associated with congenital, complete bilateral amygdala degeneration, exhibit an intact framing effect. However, choice preference in these patients did show a qualitatively distinct pattern compared to controls evident in an increased propensity to gamble, indicating that loss of amygdala function does exert an overall influence on risk-taking. These findings suggest either that amygdala does contribute to decision making but does not play a causal role in framing, or that UW is not a pure lesion model of amygdala function. 2010 Elsevier Ltd. All rights reserved.

  4. Insular subdivisions functional connectivity dysfunction within major depressive disorder.

    PubMed

    Peng, Xiaolong; Lin, Pan; Wu, Xiaoping; Gong, Ruxue; Yang, Rui; Wang, Jue

    2018-02-01

    Major depressive disorder (MDD) is a mental disorder characterized by cognitive and affective deficits. Previous studies suggested that insula is a crucial node of the salience network for initiating network switching, and dysfunctional connection to this region may be related to the mechanism of MDD. In this study, we systematically investigated and quantified the altered functional connectivity (FC) of the specific insular subdivisions and its relationship to psychopathology of MDD. Resting-state FC of insular subdivisions, including bilateral ventral/dorsal anterior insula and posterior insula, were estimated in 19 MDD patients and 19 healthy controls. Abnormal FC was quantified between groups. Additionally, we investigated the relationships between insular connectivity and depressive symptom severity. MDD patients demonstrated aberrant FC for insular subdivisions to superior temporal sulcus, inferior prefrontal gyrus, amygdala and posterior parietal cortex. Moreover, depression symptoms (Hamilton Depression Rating Scale and Hamilton Anxiety Rating Scale scorers) were associated with the FC values of insular subdivisions. First, the sample size of our current study is relatively small, which may affect the statistic power. Second, using standardized insular subdivision seeds for FC analyses may neglect subtle natural differences in size and location of functional area across individuals and may thus affect connectivity maps. Abnormal FC of insular subdivisions to default network and central executive network may represent impaired intrinsic networks switching which may affect the underlying emotional and sensory disturbances in MDD. And our findings can help to understand the pathophysiology and underlying neural mechanisms of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Functional somato-dendritic α7-containing nicotinic acetylcholine receptors in the rat basolateral amygdala complex

    PubMed Central

    Klein, Rebecca C; Yakel, Jerrel L

    2006-01-01

    Multiple subtypes of nicotinic acetylcholine receptors (nAChRs) are expressed in the CNS. The amygdala complex, the limbic structure important for emotional memory formation, receives cholinergic innervation from the basal forebrain. Although cholinergic drugs have been shown to regulate passive avoidance performance via the amygdala, the neuronal subtypes and circuits involved in this regulation are unknown. In the present study, whole-cell patch-clamp electrophysiological techniques were used to identify and characterize the presence of functional somato-dendritic nAChRs within the basolateral complex of the amygdala. Pressure-application of acetylcholine (ACh; 2 mm) evoked inward current responses in a subset of neurons from both the lateral (49%) and basolateral nuclei (72%). All responses displayed rapid activation kinetics, and were blocked by the α7-selective antagonist methyllycaconitine. In addition, the α7-selective agonist choline induced inward current responses that were similar to ACh-evoked responses. Spiking patterns were consistent with pyramidal class I neurons (the major neuronal type in the basolateral complex); however, there was no correlation between firing frequency and the response to ACh. The local photolysis of caged carbachol demonstrated that the functional expression of nAChRs is located both on the soma and dendrites. This is the first report demonstrating the presence of functional nAChR-mediated current responses from rat amygdala slices, where they may be playing a significant role in fear and aversively motivated memory. PMID:16931547

  6. Amygdala connections with jaw, tongue and laryngo-pharyngeal premotor neurons.

    PubMed

    Van Daele, D J; Fazan, V P S; Agassandian, K; Cassell, M D

    2011-03-17

    As the central nucleus (CE) is the only amygdaloid nucleus to send axons to the pons and medulla, it is thought to be involved in the expression of conditioned responses by accessing hindbrain circuitry generating stereotypic responses to aversive stimuli. Responses to aversive oral stimuli include gaping and tongue protrusion generated by central pattern generators and other premotor neurons in the ponto-medullary reticular formation. We investigated central nucleus connections with the reticular formation by identifying premotor reticular formation neurons through the retrograde trans-synaptic transport of pseudorabies virus (PRV) inoculated into masseter, genioglossus, thyroarytenoid or inferior constrictor muscles in combination with anterograde labeling of CE axons with biotinylated dextran amine. Three dimensional mapping of PRV infected premotor neurons revealed specific clusters of these neurons associated with different oro-laryngo-pharyngeal muscles, particularly in the parvicellular reticular formation. CE axon terminals were concentrated in certain parvicellular clusters but overall putative contacts were identified with premotor neurons associated with all four oro-laryngo-pharyngeal muscles investigated. We also mapped the retrograde trans-synaptic spread of PRV through the various nuclei of the amygdaloid complex. Medial CE was the first amygdala structure infected (4 days post-inoculation) with trans-synaptic spread to the lateral CE and the caudomedial parvicellular basolateral nucleus by day 5 post-inoculation. Infected neurons were only very rarely found in the lateral capsular CE and the lateral nucleus and then at only the latest time points. The data demonstrate that the CE is directly connected with clusters of reticular premotor neurons that may represent complex pattern generators and/or switching elements for the generation of stereotypic oral and laryngo-pharyngeal movements during aversive oral stimulation. Serial connections through the

  7. Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability.

    PubMed

    Wei, Luqing; Chen, Hong; Wu, Guo-Rong

    2018-01-01

    The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.

  8. Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability

    PubMed Central

    Wei, Luqing; Chen, Hong; Wu, Guo-Rong

    2018-01-01

    The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability. PMID:29545744

  9. How the amygdala affects emotional memory by altering brain network properties.

    PubMed

    Hermans, Erno J; Battaglia, Francesco P; Atsak, Piray; de Voogd, Lycia D; Fernández, Guillén; Roozendaal, Benno

    2014-07-01

    The amygdala has long been known to play a key role in supporting memory for emotionally arousing experiences. For example, classical fear conditioning depends on neural plasticity within this anterior medial temporal lobe region. Beneficial effects of emotional arousal on memory, however, are not restricted to simple associative learning. Our recollection of emotional experiences often includes rich representations of, e.g., spatiotemporal context, visceral states, and stimulus-response associations. Critically, such memory features are known to bear heavily on regions elsewhere in the brain. These observations led to the modulation account of amygdala function, which postulates that amygdala activation enhances memory consolidation by facilitating neural plasticity and information storage processes in its target regions. Rodent work in past decades has identified the most important brain regions and neurochemical processes involved in these modulatory actions, and neuropsychological and neuroimaging work in humans has produced a large body of convergent data. Importantly, recent methodological developments make it increasingly realistic to monitor neural interactions underlying such modulatory effects as they unfold. For instance, functional connectivity network modeling in humans has demonstrated how information exchanges between the amygdala and specific target regions occur within the context of large-scale neural network interactions. Furthermore, electrophysiological and optogenetic techniques in rodents are beginning to make it possible to quantify and even manipulate such interactions with millisecond precision. In this paper we will discuss that these developments will likely lead to an updated view of the amygdala as a critical nexus within large-scale networks supporting different aspects of memory processing for emotionally arousing experiences. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Bupropion Administration Increases Resting-State Functional Connectivity in Dorso-Medial Prefrontal Cortex.

    PubMed

    Rzepa, Ewelina; Dean, Zola; McCabe, Ciara

    2017-06-01

    Patients on the selective serotonergic reuptake inhibitors like citalopram report emotional blunting. We showed previously that citalopram reduces resting-state functional connectivity in healthy volunteers in a number of brain regions, including the dorso-medial prefrontal cortex, which may be related to its clinical effects. Bupropion is a dopaminergic and noradrenergic reuptake inhibitor and is not reported to cause emotional blunting. However, how bupropion affects resting-state functional connectivity in healthy controls remains unknown. Using a within-subjects, repeated-measures, double-blind, crossover design, we examined 17 healthy volunteers (9 female, 8 male). Volunteers received 7 days of bupropion (150 mg/d) and 7 days of placebo treatment and underwent resting-state functional Magnetic Resonance Imaging. We selected seed regions in the salience network (amygdala and pregenual anterior cingulate cortex) and the central executive network (dorsal medial prefrontal cortex). Mood and anhedonia measures were also recorded and examined in relation to resting-state functional connectivity. Relative to placebo, bupropion increased resting-state functional connectivity in healthy volunteers between the dorsal medial prefrontal cortex seed region and the posterior cingulate cortex and the precuneus cortex, key parts of the default mode network. These results are opposite to that which we found with 7 days treatment of citalopram in healthy volunteers. These results reflect a different mechanism of action of bupropion compared with selective serotonergic reuptake inhibitors. These results help explain the apparent lack of emotional blunting caused by bupropion in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  11. Cortical functional connectivity decodes subconscious, task-irrelevant threat-related emotion processing

    PubMed Central

    Pantazatos, Spiro P.; Talati, Ardesheer; Pavlidis, Paul; Hirsch, Joy

    2012-01-01

    It is currently unclear to what extent cortical structures are required for and engaged during subconscious processing of biologically salient affective stimuli (i.e. the ‘low-road’ vs. ‘many-roads’ hypotheses). Here we show that cortical-cortical and cortical-subcortical functional connectivity (FC) contain substantially more information, relative to subcortical-subcortical FC (i.e. ‘subcortical alarm’ and other limbic regions), that predicts subliminal fearful face processing within individuals using training data from separate subjects. A plot of classification accuracy vs. number of selected whole-brain FC features revealed 92% accuracy when learning was based on the top 8 features from each training set. The most informative FC was between right amygdala and precuneus, which increased during subliminal fear conditions, while left and right amygdala FC decreased, suggesting a bilateral decoupling of this key limbic region during processing of subliminal fear-related stimuli. Other informative FC included angular gyrus, middle temporal gyrus and cerebellum. These findings identify FC that decodes subliminally perceived, task-irrelevant affective stimuli, and suggest that cortical structures are actively engaged by and appear to be essential for subliminal fear processing. PMID:22484206

  12. Cortical functional connectivity decodes subconscious, task-irrelevant threat-related emotion processing.

    PubMed

    Pantazatos, Spiro P; Talati, Ardesheer; Pavlidis, Paul; Hirsch, Joy

    2012-07-16

    It is currently unclear to what extent cortical structures are required for and engaged during subconscious processing of biologically salient affective stimuli (i.e. the 'low-road' vs. 'many-roads' hypotheses). Here we show that cortical-cortical and cortical-subcortical functional connectivity (FC) contain substantially more information, relative to subcortical-subcortical FC (i.e. 'subcortical alarm' and other limbic regions), that predicts subliminal fearful face processing within individuals using training data from separate subjects. A plot of classification accuracy vs. number of selected whole-brain FC features revealed 92% accuracy when learning was based on the top 8 features from each training set. The most informative FC was between right amygdala and precuneus, which increased during subliminal fear conditions, while left and right amygdala FC decreased, suggesting a bilateral decoupling of this key limbic region during processing of subliminal fear-related stimuli. Other informative FC included angular gyrus, middle temporal gyrus and cerebellum. These findings identify FC that decodes subliminally perceived, task-irrelevant affective stimuli, and suggest that cortical structures are actively engaged by and appear to be essential for subliminal fear processing. Published by Elsevier Inc.

  13. Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans.

    PubMed

    Blasi, Giuseppe; Lo Bianco, Luciana; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Fazio, Leonardo; Papazacharias, Apostolos; Di Giorgio, Annabella; Caforio, Grazia; Rampino, Antonio; Masellis, Rita; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Bertolino, Alessandro

    2009-11-25

    Personality traits related to emotion processing are, at least in part, heritable and genetically determined. Dopamine D(2) receptor signaling is involved in modulation of emotional behavior and activity of associated brain regions such as the amygdala and the prefrontal cortex. An intronic single nucleotide polymorphism within the D(2) receptor gene (DRD2) (rs1076560, guanine > thymine or G > T) shifts splicing of the two protein isoforms (D(2) short, mainly presynaptic, and D(2) long) and has been associated with modulation of memory performance and brain activity. Here, our aim was to investigate the association of DRD2 rs1076560 genotype with personality traits of emotional stability and with brain physiology during processing of emotionally relevant stimuli. DRD2 genotype and Big Five Questionnaire scores were evaluated in 134 healthy subjects demonstrating that GG subjects have reduced "emotion control" compared with GT subjects. Functional magnetic resonance imaging in a sample of 24 individuals indicated greater amygdala activity during implicit processing and greater dorsolateral prefrontal cortex (DLPFC) response during explicit processing of facial emotional stimuli in GG subjects compared with GT. Other results also demonstrate an interaction between DRD2 genotype and facial emotional expression on functional connectivity of both amygdala and dorsolateral prefrontal regions with overlapping medial prefrontal areas. Moreover, rs1076560 genotype is associated with differential relationships between amygdala/DLPFC functional connectivity and emotion control scores. These results suggest that genetically determined D(2) signaling may explain part of personality traits related to emotion processing and individual variability in specific brain responses to emotionally relevant inputs.

  14. Intrinsic functional connectivity underlying successful emotion regulation of angry faces

    PubMed Central

    Morawetz, Carmen; Kellermann, Tanja; Kogler, Lydia; Radke, Sina; Blechert, Jens; Derntl, Birgit

    2016-01-01

    Most of our social interaction is naturally based on emotional information derived from the perception of faces of other people. Negative facial expressions of a counterpart might trigger negative emotions and initiate emotion regulatory efforts to reduce the impact of the received emotional message in a perceiver. Despite the high adaptive value of emotion regulation in social interaction, the neural underpinnings of it are largely unknown. To remedy this, this study investigated individual differences in emotion regulation effectiveness during the reappraisal of angry faces on the underlying functional activity using functional magnetic resonance imaging (fMRI) as well as the underlying functional connectivity using resting-state fMRI. Greater emotion regulation ability was associated with greater functional activity in the ventromedial prefrontal cortex. Furthermore, greater functional coupling between activity in the ventrolateral prefrontal cortex and the amygdala was associated with emotion regulation success. Our findings provide a first link between prefrontal cognitive control and subcortical emotion processing systems during successful emotion regulation in an explicitly social context. PMID:27510495

  15. Spared ability to recognise fear from static and moving whole-body cues following bilateral amygdala damage

    PubMed Central

    Atkinson, Anthony P.; Heberlein, Andrea S.; Adolphs, Ralph

    2007-01-01

    Bilateral amygdala lesions impair the ability to identify certain emotions, especially fear, from facial expressions, and neuroimaging studies have demonstrated differential amygdala activation as a function of the emotional expression of faces, even under conditions of subliminal presentation, and again especially for fear. Yet the amygdala's role in processing emotion from other classes of stimuli remains poorly understood. On the basis of its known connectivity as well as prior studies in humans and animals, we hypothesised that the amygdala would be important also for the recognition of fear from body expressions. To test this hypothesis, we assessed a patient (S.M.) with complete bilateral amygdala lesions who is known to be severely impaired at recognising fear from faces. S.M. completed a battery of tasks involving forced-choice labelling and rating of the emotions in two sets of dynamic body movement stimuli, as well as in a set of static body postures. Unexpectedly, S.M.'s performance was completely normal. We replicated the finding in a second rare subject with bilateral lesions entirely confined to the amygdala. Compared to healthy comparison subjects, neither of the amygdala lesion subjects was impaired in identifying fear from any of these displays. Thus, whatever the role of the amygdala in processing whole-body fear cues, it is apparently not necessary for the normal recognition of fear from either static or dynamic body expressions. PMID:17561172

  16. Function of the centromedial amygdala in reward devaluation and open-field activity.

    PubMed

    Kawasaki, K; Glueck, A C; Annicchiarico, I; Papini, M R

    2015-09-10

    The present research aimed at determining the role played by the amygdala in reward devaluation using transient inactivation induced by lidocaine microinfusions into the centromedial region. Two situations involving reward devaluation were tested in rats: consummatory successive negative contrast (cSNC) and anticipatory negative contrast (ANC). In cSNC, rats exposed to a downshift from 32% to 4% sucrose consume less 4% sucrose than rats always exposed to 4% sucrose. Extensive evidence suggests that reward devaluation in the cSNC situation is accompanied by negative emotion. In ANC, rats consume less 4% sucrose when each session is closely followed by access to 32% sucrose rather than by 4% sucrose. Evidence suggests that reward devaluation in the ANC situation does not involve negative emotions; rather, ANC appears to involve Pavlovian anticipation of the higher value solution. To test the effects of lidocaine microinfusions in a situation known to induce negative emotion, but unrelated to reward devaluation, animals were also exposed to a lighted open field. Centromedial amygdala inactivation reduced the cSNC effect and increased exploratory behavior in the open field, both effects consistent with a reduction in negative emotional state. However, no detectable effects of amygdala inactivation were observed in the ANC situation. These results suggest that, first, the function of the amygdala is not unique to reward devaluation and, second, it is concerned with tagging the devaluation experience with aversive valence. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Pubertal testosterone influences threat-related amygdala-orbitofrontal cortex coupling.

    PubMed

    Spielberg, Jeffrey M; Forbes, Erika E; Ladouceur, Cecile D; Worthman, Carol M; Olino, Thomas M; Ryan, Neal D; Dahl, Ronald E

    2015-03-01

    Growing evidence indicates that normative pubertal maturation is associated with increased threat reactivity, and this developmental shift has been implicated in the increased rates of adolescent affective disorders. However, the neural mechanisms involved in this pubertal increase in threat reactivity remain unknown. Research in adults indicates that testosterone transiently decreases amygdala-orbitofrontal cortex (OFC) coupling. Consequently, we hypothesized that increased pubertal testosterone disrupts amygdala-OFC coupling, which may contribute to developmental increases in threat reactivity in some adolescents. Hypotheses were tested in a longitudinal study by examining the impact of testosterone on functional connectivity. Findings were consistent with hypotheses and advance our understanding of normative pubertal changes in neural systems instantiating affect/motivation. Finally, potential novel insights into the neurodevelopmental pathways that may contribute to adolescent vulnerability to behavioral and emotional problems are discussed. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. The Central Amygdala Projection to the Substantia Nigra Reflects Prediction Error Information in Appetitive Conditioning

    ERIC Educational Resources Information Center

    Lee, Hongjoo J.; Gallagher, Michela; Holland, Peter C.

    2010-01-01

    The central amygdala nucleus (CeA) plays a critical role in cognitive processes beyond fear conditioning. For example, intact CeA function is essential for enhancing attention to conditioned stimuli (CSs). Furthermore, this enhanced attention depends on the CeA's connections to the nigrostriatal system. In the current study, we examined the role…

  19. Hypothalamus and amygdala response to acupuncture stimuli in Carpal Tunnel Syndrome.

    PubMed

    Napadow, V; Kettner, N; Liu, J; Li, M; Kwong, K K; Vangel, M; Makris, N; Audette, J; Hui, K K S

    2007-08-01

    Brain processing of acupuncture stimuli in chronic neuropathic pain patients may underlie its beneficial effects. We used fMRI to evaluate verum and sham acupuncture stimulation at acupoint LI-4 in Carpal Tunnel Syndrome (CTS) patients and healthy controls (HC). CTS patients were retested after 5 weeks of acupuncture therapy. Thus, we investigated both the short-term brain response to acupuncture stimulation, as well as the influence of longer-term acupuncture therapy effects on this short-term response. CTS patients responded to verum acupuncture with greater activation in the hypothalamus and deactivation in the amygdala as compared to HC, controlling for the non-specific effects of sham acupuncture. A similar difference was found between CTS patients at baseline and after acupuncture therapy. For baseline CTS patients responding to verum acupuncture, functional connectivity was found between the hypothalamus and amygdala--the less deactivation in the amygdala, the greater the activation in the hypothalamus, and vice versa. Furthermore, hypothalamic response correlated positively with the degree of maladaptive cortical plasticity in CTS patients (inter-digit separation distance). This is the first evidence suggesting that chronic pain patients respond to acupuncture differently than HC, through a coordinated limbic network including the hypothalamus and amygdala.

  20. Decreased functional connectivity and structural deficit in alertness network with right-sided temporal lobe epilepsy.

    PubMed

    Gao, Yujun; Zheng, Jinou; Li, Yaping; Guo, Danni; Wang, Mingli; Cui, Xiangxiang; Ye, Wei

    2018-04-01

    Patients with temporal lobe epilepsy (TLE) often suffer from alertness alterations. However, specific regions connected with alertness remain controversial, and whether these regions have structural impairment is also elusive. This study aimed to investigate the characteristics and neural mechanisms underlying the functions and structures of alertness network in patients with right-sided temporal lobe epilepsy (rTLE) by performing the attentional network test (ANT), resting-state functional magnetic resonance imaging (R-SfMRI), and diffusion tensor imaging (DTI).A total of 47 patients with rTLE and 34 healthy controls underwent ANT, R-SfMRI, and DTI scan. The seed-based functional connectivity (FC) method and deterministic tractography were used to analyze the data.Patients with rTLE had longer reaction times in the no-cue and double-cue conditions. However, no differences were noted in the alertness effect between the 2 groups. The patient group had lower FC compared with the control group in the right inferior parietal lobe (IPL), amygdala, and insula. Structural deficits were found in the right parahippocampal gyrus, superior temporal pole, insula, and amygdala in the patient group compared with the control group. Also significantly negative correlations were observed between abnormal fractional anisotropy (between the right insula and the superior temporal pole) and illness duration in the patients with rTLE.The findings of this study suggested abnormal intrinsic and phasic alertness, decreased FC, and structural deficits within the alerting network in the rTLE. This study provided new insights into the mechanisms of alertness alterations in rTLE.

  1. Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress

    PubMed Central

    2012-01-01

    Background The amygdala plays an essential role in controlling emotional behaviors and has numerous connections to other brain regions. The functional role of the amygdala has been highlighted by various studies of stress-induced behavioral changes. Here we investigated gene expression changes in the amygdala in the chronic immobilization stress (CIS)-induced depression model. Results Eight genes were decreased in the amygdala of CIS mice, including genes for neurotrophic factors and extracellular matrix proteins. Among these, osteoglycin, fibromodulin, insulin-like growth factor 2 (Igf2), and insulin-like growth factor binding protein 2 (Igfbp2) were further analyzed for histological expression changes. The expression of osteoglycin and fibromodulin simultaneously decreased in the medial, basolateral, and central amygdala regions. However, Igf2 and Igfbp2 decreased specifically in the central nucleus of the amygdala. Interestingly, this decrease was found only in the amygdala of mice showing higher immobility, but not in mice displaying lower immobility, although the CIS regimen was the same for both groups. Conclusions These results suggest that the responsiveness of the amygdala may play a role in the sensitivity of CIS-induced behavioral changes in mice. PMID:22672618

  2. The Amygdala: An Agent of Change in Adolescent Neural Networks

    PubMed Central

    Scherf, K. Suzanne; Smyth, Joshua M.; Delgado, Mauricio R.

    2013-01-01

    A unique component of adolescent development is the need to master new developmental tasks in which peer interactions become primary (for the purposes of becoming autonomous from parents, forming intimate friendships, and romantic/sexual partnerships). Previously, it has been suggested that the ability to master these tasks requires an important re-organization in the relation between perceptual, motivational, affective, and cognitive systems in a very general and broad way that is fundamentally influenced by the infusion of sex hormones during pubertal development (Scherf et al., 2012). Herein, we extend this argument to suggest that the amygdala, which is vastly connected with cortical and subcortical regions and contains sex hormone receptors, may lie at the heart of this re-organization. We propose that during adolescent development there is a shift in the attribution of relevance to existing stimuli and contexts that is mediated by the amygdala (e.g., heightened relevance of peer faces, reduced relevance of physical distance from parents). As a result, amygdala inputs to existing stable neural networks are re-weighted (increased or decreased), which destabilizes the functional interactions among regions within these networks and allows for a critical restructuring of the network functional organization. This process of network re-organization enables processing of qualitatively new kinds of social information and the emergence of novel behaviors that support mastery of adolescent-specific developmental tasks. PMID:23756154

  3. Age-related individual variability in memory performance is associated with amygdala-hippocampal circuit function and emotional pattern separation.

    PubMed

    Leal, Stephanie L; Noche, Jessica A; Murray, Elizabeth A; Yassa, Michael A

    2017-01-01

    While aging is generally associated with episodic memory decline, not all older adults exhibit memory loss. Furthermore, emotional memories are not subject to the same extent of forgetting and appear preserved in aging. We conducted high-resolution fMRI during a task involving pattern separation of emotional information in older adults with and without age-related memory impairment (characterized by performance on a word-list learning task: low performers: LP vs. high performers: HP). We found signals consistent with emotional pattern separation in hippocampal dentate (DG)/CA3 in HP but not in LP individuals, suggesting a deficit in emotional pattern separation. During false recognition, we found increased DG/CA3 activity in LP individuals, suggesting that hyperactivity may be associated with overgeneralization. We additionally observed a selective deficit in basolateral amygdala-lateral entorhinal cortex-DG/CA3 functional connectivity in LP individuals during pattern separation of negative information. During negative false recognition, LP individuals showed increased medial temporal lobe functional connectivity, consistent with overgeneralization. Overall, these results suggest a novel mechanistic account of individual differences in emotional memory alterations exhibited in aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Altered inhibition-related frontolimbic connectivity in obsessive-compulsive disorder.

    PubMed

    van Velzen, Laura S; de Wit, Stella J; Ćurĉić-Blake, Branislava; Cath, Daniëlle C; de Vries, Froukje E; Veltman, Dick J; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2015-10-01

    Recent studies have shown that response inhibition is impaired in patients with obsessive-compulsive disorder and their unaffected siblings, suggesting that these deficits may be considered a cognitive endophenotype of obsessive-compulsive disorder. Structural and functional neural correlates of altered response inhibition have been identified in patients and siblings. This study aims to examine the functional integrity of the response inhibition network in patients with obsessive-compulsive disorder and their unaffected siblings. Forty-one unmedicated patients with obsessive-compulsive disorder, 17 of their unaffected siblings and 37 healthy controls performed a stop signal task during functional magnetic resonance imaging. Psycho-physiological interaction analysis was used to examine functional connectivity between the following regions of interest: the bilateral inferior frontal gyri, presupplementary motor area, subthalamic nuclei, inferior parietal lobes, anterior cingulate cortex, and amygdala. We then used dynamic causal modeling to investigate the directionality of the networks involved. Patients, and to a lesser extent also their unaffected siblings, show altered connectivity between the inferior frontal gyrus and the amygdala during response inhibition. The follow-up dynamic causal modeling suggests a bottom-up influence of the amygdala on the inferior frontal gyrus in healthy controls, whereas processing occurs top-down in patients with obsessive-compulsive, and in both directions in siblings. Our findings suggest that amygdala activation in obsessive-compulsive disorder interferes differently with the task-related recruitment of the inhibition network, underscoring the role of limbic disturbances in cognitive dysfunctions in obsessive-compulsive disorder. © 2015 Wiley Periodicals, Inc.

  5. A dissociation of dorso-lateral striatum and amygdala function on the same stimulus-response habit task.

    PubMed

    McDonald, R J; Hong, N S

    2004-01-01

    This experiment tested the idea that the amygdala-based learning and memory system covertly acquires a stimulus-reward (stimulus-outcome) association during acquisition of a stimulus-response (S-R) habit task developed for the eight-arm radial maze. Groups of rats were given dorso-lateral striatal or amygdala lesions and then trained on the S-R habit task on the eight-arm radial maze. Rats with neurotoxic damage to the dorso-lateral striatum were severely impaired on the acquisition of the S-R habit task but showed a conditioned-cue preference for the stimulus reinforced during S-R habit training. Rats with neurotoxic damage to the amygdala were able to acquire the S-R habit task but did not show a conditioned-cue preference for the stimulus reinforced during S-R habit training. This pattern of results represents a dissociation of learning and memory functions of the dorsal striatum and amygdala on the same task.

  6. Disrupted functional connectivity of the periaqueductal gray in chronic low back pain

    PubMed Central

    Yu, Rongjun; Gollub, Randy L.; Spaeth, Rosa; Napadow, Vitaly; Wasan, Ajay; Kong, Jian

    2014-01-01

    Chronic low back pain is a common neurological disorder. The periaqueductal gray (PAG) plays a key role in the descending modulation of pain. In this study, we investigated brain resting state PAG functional connectivity (FC) differences between patients with chronic low back pain (cLBP) in low pain or high pain condition and matched healthy controls (HCs). PAG seed based functional connectivity (FC) analysis of the functional MR imaging data was performed to investigate the difference among the connectivity maps in the cLBP in the low or high pain condition and HC groups as well as within the cLBP at differing endogenous back pain intensities. Results showed that FC between the PAG and the ventral medial prefrontal cortex (vmPFC)/rostral anterior cingulate cortex (rACC) increased in cLBP patients compared to matched controls. In addition, we also found significant negative correlations between pain ratings and PAG–vmPFC/rACC FC in cLBP patients after pain-inducing maneuver. The duration of cLBP was negatively correlated with PAG–insula and PAG–amygdala FC before pain-inducing maneuver in the patient group. These findings are in line with the impairments of the descending pain modulation reported in patients with cLBP. Our results provide evidence showing that cLBP patients have abnormal FC in PAG centered pain modulation network during rest. PMID:25379421

  7. Increased corticolimbic connectivity in cocaine dependence versus pathological gambling is associated with drug severity and emotion-related impulsivity.

    PubMed

    Contreras-Rodríguez, Oren; Albein-Urios, Natalia; Vilar-López, Raquel; Perales, Jose C; Martínez-Gonzalez, Jose M; Fernández-Serrano, Maria J; Lozano-Rojas, Oscar; Clark, Luke; Verdejo-García, Antonio

    2016-05-01

    Neural biomarkers for the active detrimental effects of cocaine dependence (CD) are lacking. Direct comparisons of brain connectivity in cocaine-targeted networks between CD and behavioural addictions (i.e. pathological gambling, PG) may be informative. This study therefore contrasted the resting-state functional connectivity networks of 20 individuals with CD, 19 individuals with PG and 21 healthy individuals (controls). Study groups were assessed to rule out psychiatric co-morbidities (except alcohol abuse and nicotine dependence) and current substance use or gambling (except PG). We first examined global connectivity differences in the corticolimbic reward network and then utilized seed-based analyses to characterize the connectivity of regions displaying between-group differences. We examined the relationships between seed-based connectivity and trait impulsivity and cocaine severity. CD compared with PG displayed increased global functional connectivity in a large-scale ventral corticostriatal network involving the orbitofrontal cortex, caudate, thalamus and amygdala. Seed-based analyses showed that CD compared with PG exhibited enhanced connectivity between the orbitofrontal and subgenual cingulate cortices and between caudate and lateral prefrontal cortex, which are involved in representing the value of decision-making feedback. CD and PG compared with controls showed overlapping connectivity changes between the orbitofrontal and dorsomedial prefrontal cortices and between amygdala and insula, which are involved in stimulus-outcome learning. Orbitofrontal-subgenual cingulate cortical connectivity correlated with impulsivity and caudate/amygdala connectivity correlated with cocaine severity. We conclude that CD is linked to enhanced connectivity in a large-scale ventral corticostriatal-amygdala network that is relevant to decision making and likely to reflect an active cocaine detrimental effect. © 2015 Society for the Study of Addiction.

  8. Migraine classification using magnetic resonance imaging resting-state functional connectivity data.

    PubMed

    Chong, Catherine D; Gaw, Nathan; Fu, Yinlin; Li, Jing; Wu, Teresa; Schwedt, Todd J

    2017-08-01

    Background This study used machine-learning techniques to develop discriminative brain-connectivity biomarkers from resting-state functional magnetic resonance neuroimaging ( rs-fMRI) data that distinguish between individual migraine patients and healthy controls. Methods This study included 58 migraine patients (mean age = 36.3 years; SD = 11.5) and 50 healthy controls (mean age = 35.9 years; SD = 11.0). The functional connections of 33 seeded pain-related regions were used as input for a brain classification algorithm that tested the accuracy of determining whether an individual brain MRI belongs to someone with migraine or to a healthy control. Results The best classification accuracy using a 10-fold cross-validation method was 86.1%. Resting functional connectivity of the right middle temporal, posterior insula, middle cingulate, left ventromedial prefrontal and bilateral amygdala regions best discriminated the migraine brain from that of a healthy control. Migraineurs with longer disease durations were classified more accurately (>14 years; 96.7% accuracy) compared to migraineurs with shorter disease durations (≤14 years; 82.1% accuracy). Conclusions Classification of migraine using rs-fMRI provides insights into pain circuits that are altered in migraine and could potentially contribute to the development of a new, noninvasive migraine biomarker. Migraineurs with longer disease burden were classified more accurately than migraineurs with shorter disease burden, potentially indicating that disease duration leads to reorganization of brain circuitry.

  9. Convergent and divergent effects of apolipoprotein E ε4 and ε2 alleles on amygdala functional networks in nondemented older adults.

    PubMed

    Gong, Liang; Shu, Hao; He, Cancan; Ye, Qing; Bai, Feng; Xie, Chunming; Zhang, Zhijun

    2017-06-01

    Traditionally, in the context of Alzheimer's disease, the apolipoprotein E ε2 (APOEε2) allele is a protective factor and the APOEε4 allele is a destructive factor. However, this inverse relationship has recently been challenged, and the neural mechanisms underlying the effects of APOE genotype on Alzheimer's disease remain unclear. A resting-state functional magnetic resonance imaging study was conducted to investigate the effects of APOE genotype and age on amygdala functional connectivity (AFC) networks in 84 patients with amnestic mild cognitive impairment and 124 cognitively normal order adults. The results indicated that the APOEε2 and APOEε4 alleles produced convergent effects in the right AFC network but divergent effects in the left AFC network. As age increased, APOEε2 carriers showed stable AFC, whereas APOEε4 carriers exhibited decreased AFC in all participants. Furthermore, mediation analysis revealed that connectivity strength regulates the effects of APOE genotype and age on cognitive function in amnestic mild cognitive impairment patients. Our findings suggest that the APOEε2 and APOEε4 alleles produce both convergent and divergent topological effects on brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate

    PubMed Central

    Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian

    2017-01-01

    The central extended amygdala (CEA) has been conceptualized as a ‘macrosystem’ that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the ‘limbic-associative’ striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning. PMID:28220796

  11. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate.

    PubMed

    Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian

    2017-07-01

    The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.

  12. Diminished fronto-limbic functional connectivity in child sexual offenders.

    PubMed

    Kneer, Jonas; Borchardt, Viola; Kärgel, Christian; Sinke, Christopher; Massau, Claudia; Tenbergen, Gilian; Ponseti, Jorge; Walter, Henrik; Beier, Klaus M; Schiffer, Boris; Schiltz, Kolja; Walter, Martin; Kruger, Tillmann H C

    2018-02-22

    Child sexual abuse and neglect have been related to an increased risk for the development of a wide range of behavioral, psychological, and sexual problems and increased rates of suicidal behavior. Contrary to the large amount of research focusing on the negative mental health consequences of child sexual abuse, very little is known about the characteristics of child sexual offenders and the neuronal underpinnings contributing to child sexual offending. This study investigates differences in resting state functional connectivity (rs-FC) between non-pedophilic child sexual offenders (N = 20; CSO-P) and matched healthy controls (N = 20; HC) using a seed-based approach. The focus of this investigation of rs-FC in CSO-P was put on prefrontal and limbic regions highly relevant for emotional and behavioral processing. Results revealed a significant reduction of rs-FC between the right centromedial amygdala and the left dorsolateral prefrontal cortex in child sexual offenders compared to controls. Given that, in the healthy brain, there is a strong top-down inhibitory control of prefrontal over limbic structures, these results suggest that diminished rs-FC between the amygdala and the dorsolateral prefrontal cortex and may foster sexual deviance and sexual offending. A profound understanding of these concepts should contribute to a better understanding of the occurrence of child sexual offending, as well as further development of more differentiated and effective interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Reduced prefrontal connectivity in psychopathy.

    PubMed

    Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael

    2011-11-30

    Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy.

  14. Structural and functional connectivity changes in the brain associated with shyness but not with social anxiety.

    PubMed

    Yang, Xun; Kendrick, Keith Maurice; Wu, Qizhu; Chen, Taolin; Lama, Sunima; Cheng, Bochao; Li, Shiguang; Huang, Xiaoqi; Gong, Qiyong

    2013-01-01

    Shyness and social anxiety are correlated to some extent and both are associated with hyper-responsivity to social stimuli in the frontal cortex and limbic system. However to date no studies have investigated whether common structural and functional connectivity differences in the brain may contribute to these traits. We addressed this issue in a cohort of 61 healthy adult subjects. Subjects were first assessed for their levels of shyness (Cheek and Buss Shyness scale) and social anxiety (Liebowitz Social Anxiety scale) and trait anxiety. They were then given MRI scans and voxel-based morphometry and seed-based, resting-state functional connectivity analysis investigated correlations with shyness and anxiety scores. Shyness scores were positively correlated with gray matter density in the cerebellum, bilateral superior temporal gyri and parahippocampal gyri and right insula. Functional connectivity correlations with shyness were found between the superior temporal gyrus, parahippocampal gyrus and the frontal gyri, between the insula and precentral gyrus and inferior parietal lobule, and between the cerebellum and precuneus. Additional correlations were found for amygdala connectivity with the medial frontal gyrus, superior frontal gyrus and inferior parietal lobule, despite the absence of any structural correlation. By contrast no structural or functional connectivity measures correlated with social or trait anxiety. Our findings show that shyness is specifically associated with structural and functional connectivity changes in cortical and limbic regions involved with processing social stimuli. These associations are not found with social or trait anxiety in healthy subjects despite some behavioral correlations with shyness.

  15. A model of differential amygdala activation in psychopathy.

    PubMed

    Moul, Caroline; Killcross, Simon; Dadds, Mark R

    2012-10-01

    This article introduces a novel hypothesis regarding amygdala function in psychopathy. The first part of this article introduces the concept of psychopathy and describes the main cognitive and affective impairments demonstrated by this population; that is, a deficit in fear-recognition, lower conditioned fear responses and poor performance in passive avoidance, and response-reversal learning tasks. Evidence for amygdala dysfunction in psychopathy is considered with regard to these deficits; however, the idea of unified amygdala function is untenable. A model of differential amygdala activation in which the basolateral amygdala (BLA) is underactive while the activity of the central amygdala (CeA) is of average to above average levels is proposed to provide a more accurate and up-to-date account for the specific cognitive and emotional deficits found in psychopathy. In addition, the model provides a mechanism by which attentional-based models and emotion-based models of psychopathy can coexist. Data to support the differential amygdala activation model are provided from studies from both human and animal research. Supporting evidence concerning some of the neurochemicals implicated in psychopathy is then reviewed. Implications of the model and areas of future research are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  16. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease.

    PubMed

    Mears, David; Pollard, Harvey B

    2016-06-01

    Over the past 15 years, the emerging field of network science has revealed the key features of brain networks, which include small-world topology, the presence of highly connected hubs, and hierarchical modularity. The value of network studies of the brain is underscored by the range of network alterations that have been identified in neurological and psychiatric disorders, including epilepsy, depression, Alzheimer's disease, schizophrenia, and many others. Here we briefly summarize the concepts of graph theory that are used to quantify network properties and describe common experimental approaches for analysis of brain networks of structural and functional connectivity. These range from tract tracing to functional magnetic resonance imaging, diffusion tensor imaging, electroencephalography, and magnetoencephalography. We then summarize the major findings from the application of graph theory to nervous systems ranging from Caenorhabditis elegans to more complex primate brains, including man. Focusing, then, on studies involving the amygdala, a brain region that has attracted intense interest as a center for emotional processing, fear, and motivation, we discuss the features of the amygdala in brain networks for fear conditioning and emotional perception. Finally, to highlight the utility of graph theory for studying dysfunction of the amygdala in mental illness, we review data with regard to changes in the hub properties of the amygdala in brain networks of patients with depression. We suggest that network studies of the human brain may serve to focus attention on regions and connections that act as principal drivers and controllers of brain function in health and disease. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. Extending the amygdala in theories of threat processing

    PubMed Central

    Fox, Andrew S.; Oler, Jonathan A.; Tromp, Do P.M.; Fudge, Julie L.; Kalin, Ned H.

    2015-01-01

    The central extended amygdala is an evolutionarily conserved set of interconnected brain regions that play an important role in threat processing to promote survival. Two core components of the central extended amygdala, the central nucleus of the amygdala (Ce) and the lateral bed nucleus of the stria terminalis (BST) are highly similar regions that serve complimentary roles by integrating fear- and anxiety-relevant information. Survival depends on the central extended amygdala's ability to rapidly integrate and respond to threats that vary in their immediacy, proximity, and characteristics. Future studies will benefit from understanding alterations in central extended amygdala function in relation to stress-related psychopathology. PMID:25851307

  18. Plasticity-related genes in brain development and amygdala-dependent learning.

    PubMed

    Ehrlich, D E; Josselyn, S A

    2016-01-01

    Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  19. Sexually dimorphic functional connectivity in response to high vs. low energy-dense food cues in obese humans: an fMRI study.

    PubMed

    Atalayer, Deniz; Pantazatos, Spiro P; Gibson, Charlisa D; McOuatt, Haley; Puma, Lauren; Astbury, Nerys M; Geliebter, Allan

    2014-10-15

    Sexually-dimorphic behavioral and biological aspects of human eating have been described. Using psychophysiological interaction (PPI) analysis, we investigated sex-based differences in functional connectivity with a key emotion-processing region (amygdala, AMG) and a key reward-processing area (ventral striatum, VS) in response to high vs. low energy-dense (ED) food images using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in obese persons in fasted and fed states. When fed, in response to high vs. low-ED food cues, obese men (vs. women) had greater functional connectivity with AMG in right subgenual anterior cingulate, whereas obese women had greater functional connectivity with AMG in left angular gyrus and right primary motor areas. In addition, when fed, AMG functional connectivity with pre/post-central gyrus was more associated with BMI in women (vs. men). When fasted, obese men (vs. women) had greater functional connectivity with AMG in bilateral supplementary frontal and primary motor areas, left precuneus, and right cuneus, whereas obese women had greater functional connectivity with AMG in left inferior frontal gyrus, right thalamus, and dorsomedial prefrontal cortex. When fed, greater functional connectivity with VS was observed in men in bilateral supplementary and primary motor areas, left postcentral gyrus, and left precuneus. These sex-based differences in functional connectivity in response to visual food cues may help partly explain differential eating behavior, pathology prevalence, and outcomes in men and women. Published by Elsevier Inc.

  20. Absence of fear renewal and functional connections between prefrontal cortex and hippocampus in infant mice.

    PubMed

    Li, Liyu; Gao, Xiaoli; Zhou, Qiang

    2018-04-20

    Impairment in fear extinction is widely viewed as a major contributor to, or even an underlying mechanism of, the pathogenesis of anxiety disorders and PTSD. Children with traumatic experience have a higher risk for developing anxiety disorders and PTSD in the adult. Little is known about the nature of fear memory extinction and its underlying mechanism during this period. Here we showed that while renewal of fear memory is context-specific in adult mice, it is absent in infant mice (P17). Using local injection of GABAa receptor antagonist picrotoxin, we found that there is no functional connectivity between infralimbic prefrontal cortex and hippocampus in P17 mice, while prefrontal cortex projection to amygdala is functioning. Hence, the lack of fear renewal is likely caused by the lack of connections between hippocampus and prefrontal cortex which are known to be involved in the regulation of extinction memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Hippocampus and Amygdala Morphology in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Plessen, Kerstin J.; Bansal, Ravi; Zhu, Hongtu; Whiteman, Ronald; Amat, Jose; Quackenbush, Georgette A.; Martin, Laura; Durkin, Kathleen; Blair, Clancy; Royal, Jason; Hugdahl, Kenneth; Peterson, Bradley S.

    2008-01-01

    Context Limbic structures are implicated in the genesis of attention-deficit/hyperactivity disorder (ADHD) by the presence of mood and cognitive disturbances in affected individuals and by elevated rates of mood disorders in family members of probands with ADHD. Objective To study the morphology of the hippocampus and amygdala in children with ADHD. Design A cross-sectional case-control study of the hippocampus and amygdala using anatomical magnetic resonance imaging. Settings University research institute. Patients One hundred fourteen individuals aged 6 to 18 years, 51 with combined-type ADHD and 63 healthy controls. Main Outcome Measures Volumes and measures of surface morphology for the hippocampus and amygdala. Results The hippocampus was larger bilaterally in the ADHD group than in the control group (t=3.35; P<.002). Detailed surface analyses of the hippocampus further localized these differences to an enlarged head of the hippocampus in the ADHD group. Although conventional measures did not detect significant differences in amygdalar volumes, surface analyses indicated the presence of reduced size bilaterally over the area of the basolateral complex. Correlations with prefrontal measures suggested abnormal connectivity between the amygdala and prefrontal cortex in the ADHD group. Enlarged subregions of the hippocampus tended to accompany fewer symptoms. Conclusions The enlarged hippocampus in children and adolescents with ADHD may represent a compensatory response to the presence of disturbances in the perception of time, temporal processing (eg, delay aversion), and stimulus seeking associated with ADHD. Disrupted connections between the amygdala and orbitofrontal cortex may contribute to behavioral disinhibition. Our findings suggest involvement of the limbic system in the pathophysiology of ADHD. PMID:16818869

  2. Acute effects of Sceletium tortuosum (Zembrin), a dual 5-HT reuptake and PDE4 inhibitor, in the human amygdala and its connection to the hypothalamus.

    PubMed

    Terburg, David; Syal, Supriya; Rosenberger, Lisa A; Heany, Sarah; Phillips, Nicole; Gericke, Nigel; Stein, Dan J; van Honk, Jack

    2013-12-01

    The South African endemic plant Sceletium tortuosum has a long history of traditional use as a masticatory and medicine by San and Khoikhoi people and subsequently by European colonial farmers as a psychotropic in tincture form. Over the past decade, the plant has attracted increasing attention for its possible applications in promoting a sense of wellbeing and relieving stress in healthy individuals and for treating clinical anxiety and depression. The pharmacological actions of a standardized extract of the plant (Zembrin) have been reported to be dual PDE4 inhibition and 5-HT reuptake inhibition, a combination that has been argued to offer potential therapeutic advantages. Here we tested the acute effects of Zembrin administration in a pharmaco-fMRI study focused on anxiety-related activity in the amygdala and its connected neurocircuitry. In a double-blind, placebo-controlled, cross-over design, 16 healthy participants were scanned during performance in a perceptual-load and an emotion-matching task. Amygdala reactivity to fearful faces under low perceptual load conditions was attenuated after a single 25 mg dose of Zembrin. Follow-up connectivity analysis on the emotion-matching task showed that amygdala-hypothalamus coupling was also reduced. These results demonstrate, for the first time, the attenuating effects of S. tortuosum on the threat circuitry of the human brain and provide supporting evidence that the dual 5-HT reuptake inhibition and PDE4 inhibition of this extract might have anxiolytic potential by attenuating subcortical threat responsivity.

  3. Amygdala dysfunction attenuates frustration-induced aggression in psychopathic individuals in a non-criminal population.

    PubMed

    Osumi, Takahiro; Nakao, Takashi; Kasuya, Yukinori; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2012-12-15

    Individuals with psychopathy have an increased tendency toward certain types of aggression. We hypothesized that successful psychopaths, who have no criminal convictions but can be diagnosed with psychopathy in terms of personality characteristics, are skilled at regulating aggressive impulses, compared to incarcerated unsuccessful psychopaths. In this block-designed functional magnetic resonance imaging (fMRI) study, we sought to clarify the neural mechanisms underlying differences in frustration-induced aggression as a function of psychopathy in non-criminal populations. Twenty male undergraduate students who completed a self-report psychopathy questionnaire were scanned while they completed a task in which they either could or could not punish other individuals who made unfair offers of monetary distribution. Individuals with high psychopathic tendencies were less likely to make a decision to inflict costly punishment on people proposing unfair offers. During this decision-making, psychopathy was associated with less amygdala activity in response to the unfairness of offers. Moreover, the amygdala dysfunction in psychopathic individuals was associated with reduced functional connectivity with dopaminergic-related areas, including the striatum, when punishment was available compared to when it was unavailable. The possibility that levels of psychopathic traits in a regular population were milder than in incarcerated populations cannot be ruled out. The findings indicate that amygdala dysfunction underlies affective deficits of psychopathy. We propose that the insensitivity of the amygdala to the affective significance of social stimuli contributes to an increased risk of violation of social norms, but enhances the ability to attenuate impulses toward maladaptive aggression in successful psychopaths. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear.

    PubMed

    Zhu, Xiao-Na; Liu, Xian-Dong; Zhuang, Hanyi; Henkemeyer, Mark; Yang, Jing-Yu; Xu, Nan-Jie

    2016-09-28

    The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal

  5. Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear

    PubMed Central

    Zhu, Xiao-Na; Liu, Xian-Dong; Zhuang, Hanyi; Henkemeyer, Mark

    2016-01-01

    The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB–ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions

  6. Contextual Fear Conditioning in Humans: Cortical-Hippocampal and Amygdala Contributions

    PubMed Central

    Alvarez, Ruben P.; Biggs, Arter; Chen, Gang; Pine, Daniel S.; Grillon, Christian

    2008-01-01

    Functional imaging studies of cued fear conditioning in humans have largely confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using fMRI and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semi-random order, with contexts counterbalanced across participants. An un-signaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared to CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species. PMID:18550763

  7. The Impact of Mirth-Inducing Ventral Striatal Deep Brain Stimulation on Functional and Effective Connectivity

    PubMed Central

    Gibson, William S; Cho, Shinho; Abulseoud, Osama A; Gorny, Krzysztof R; Felmlee, Joel P; Welker, Kirk M; Klassen, Bryan T; Min, Hoon-Ki; Lee, Kendall H

    2017-01-01

    Abstract Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is an investigational therapy for treatment-resistant obsessive-compulsive disorder. The ability of VC/VS DBS to evoke spontaneous mirth in patients, often accompanied by smiling and laughter, is clinically well documented. However, the neural correlates of DBS-evoked mirth remain poorly characterized. Patients undergoing VC/VS DBS surgery underwent intraoperative evaluation in which mirth-inducing and non-mirth-inducing stimulation localizations were identified. Using dynamic causal modeling (DCM) for fMRI, the effect of mirth-inducing DBS on functional and effective connectivity among established nodes in limbic cortico-striato-thalamo-cortical (CSTC) circuitry was investigated. Both mirth-inducing and non-mirth-inducing VC/VS DBS consistently resulted (conjunction, global null, family-wise error-corrected P < 0.05) in activation of amygdala, ventral striatum, and mediodorsal thalamus. However, only mirth-inducing DBS resulted in functional inhibition of anterior cingulate cortex. Dynamic causal modeling revealed that mirth-inducing DBS enhanced effective connectivity from anterior cingulate to ventral striatum, while attenuating connectivity from thalamus to ventral striatum relative to non-mirth-inducing stimulation. These results suggest that DBS-evoked mood elevation is accompanied by distinct patterns of limbic thalamocortical connectivity. Using the novel combination of DBS-evoked mood alteration and functional MRI in human subjects, we provide new insights into the network-level mechanisms that influence affect. PMID:27001680

  8. Psychosocial Stress and Brain Function in Adolescent Psychopathology.

    PubMed

    Quinlan, Erin Burke; Cattrell, Anna; Jia, Tianye; Artiges, Eric; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Brühl, Rüdiger; Conrod, Patricia J; Desrivieres, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Paus, Tomáš; Poustka, Luise; Smolka, Michael N; Vetter, Nora C; Walter, Henrik; Whelan, Robert; Glennon, Jeffrey C; Buitelaar, Jan K; Happé, Francesca; Loth, Eva; Barker, Edward D; Schumann, Gunter

    2017-08-01

    The authors sought to explore how conduct, hyperactivity/inattention, and emotional symptoms are associated with neural reactivity to social-emotional stimuli, and the extent to which psychosocial stress modulates these relationships. Participants were community adolescents recruited as part of the European IMAGEN study. Bilateral amygdala regions of interest were used to assess the relationship between the three symptom domains and functional MRI neural reactivity during passive viewing of dynamic angry and neutral facial expressions. Exploratory functional connectivity and whole brain multiple regression approaches were used to analyze how the symptoms and psychosocial stress relate to other brain regions. In response to the social-emotional stimuli, adolescents with high levels of conduct or hyperactivity/inattention symptoms who had also experienced a greater number of stressful life events showed hyperactivity of the amygdala and several regions across the brain. This effect was not observed with emotional symptoms. A cluster in the midcingulate was found to be common to both conduct problems and hyperactivity symptoms. Exploratory functional connectivity analyses suggested that amygdala-precuneus connectivity is associated with hyperactivity/inattention symptoms. The results link hyperactive amygdala responses and regions critical for top-down emotional processing with high levels of psychosocial stress in individuals with greater conduct and hyperactivity/inattention symptoms. This work highlights the importance of studying how psychosocial stress affects functional brain responses to social-emotional stimuli, particularly in adolescents with externalizing symptoms.

  9. Patterns of neural connectivity during an attention bias task moderate associations between early childhood temperament and internalizing symptoms in young adulthood.

    PubMed

    Hardee, Jillian E; Benson, Brenda E; Bar-Haim, Yair; Mogg, Karin; Bradley, Brendan P; Chen, Gang; Britton, Jennifer C; Ernst, Monique; Fox, Nathan A; Pine, Daniel S; Pérez-Edgar, Koraly

    2013-08-15

    Biased attention to threat is found in both individuals with anxiety symptoms and children with the childhood temperament of behavioral inhibition (BI). Although perturbed fronto-amygdala function is implicated in biased attention among anxious individuals, no work has examined the neural correlates of attention biases in BI. Work in this area might clarify underlying mechanisms for anxiety in a sample at risk for internalizing disorders. We examined the relations among early childhood BI, fronto-amygdala connectivity during an attention bias task in young adulthood, and internalizing symptoms, assessed in young adulthood. Children were assessed for BI at multiple age points from infancy through age seven. On the basis of a composite of observational and maternal report data, we selected 21 young adults classified as having a history of BI and 23 classified as non-BI for this study (n = 44). Participants completed an event-related functional magnetic resonance imaging attention-bias task involving threat (angry faces) and neutral trials. Internalizing symptoms were assessed by self-report and diagnostic interviews. The young adults characterized in childhood with BI exhibited greater strength in threat-related connectivity than non-behaviorally inhibited young adults. Between-group differences manifested in connections between the amygdala and two frontal regions: dorsolateral prefrontal cortex and anterior insula. Amygdala-insula connectivity also interacted with childhood BI to predict young adult internalizing symptoms. Behavioral inhibition during early childhood predicts differences as young adults in threat and attention-related fronto-amygdala connectivity. Connectivity strength, in turn, moderated the relations between early BI and later psychopathology. Copyright © 2013 Society of Biological Psychiatry. All rights reserved.

  10. Reduced anterior insula, enlarged amygdala in alcoholism and associated depleted von Economo neurons

    PubMed Central

    Senatorov, Vladimir V.; Damadzic, Ruslan; Mann, Claire L.; Schwandt, Melanie L.; George, David T.; Hommer, Daniel W.; Heilig, Markus

    2015-01-01

    The insula, a structure involved in higher order representation of interoceptive states, has recently been implicated in drug craving and social stress. Here, we performed brain magnetic resonance imaging to measure volumes of the insula and amygdala, a structure with reciprocal insular connections, in 26 alcohol-dependent patients and 24 healthy volunteers (aged 22–56 years, nine females in each group). We used an established morphometry method to quantify total and regional insular volumes. Volumetric measurements of the amygdala were obtained using a model-based segmentation/registration tool. In alcohol-dependent patients, anterior insula volumes were bilaterally reduced compared to healthy volunteers (left by 10%, right by 11%, normalized to total brain volumes). Furthermore, alcohol-dependent patients, compared with healthy volunteers, had bilaterally increased amygdala volumes. The left amygdala was increased by 28% and the right by 29%, normalized to total brain volumes. Post-mortem studies of the anterior insula showed that the reduced anterior insular volume may be associated with a population of von Economo neurons, which were 60% diminished in subjects with a history of alcoholism (n = 6) as compared to subjects without a history of alcoholism (n = 6) (aged 32–56 years, all males). The pattern of neuroanatomical change observed in our alcohol-dependent patients might result in a loss of top-down control of amygdala function, potentially contributing to impaired social cognition as well as an inability to control negatively reinforced alcohol seeking and use. PMID:25367022

  11. Conservatism and the neural circuitry of threat: economic conservatism predicts greater amygdala–BNST connectivity during periods of threat vs safety

    PubMed Central

    Muftuler, L Tugan; Larson, Christine L

    2018-01-01

    Abstract Political conservatism is associated with an increased negativity bias, including increased attention and reactivity toward negative and threatening stimuli. Although the human amygdala has been implicated in the response to threatening stimuli, no studies to date have investigated whether conservatism is associated with altered amygdala function toward threat. Furthermore, although an influential theory posits that connectivity between the amygdala and bed nucleus of the stria terminalis (BNST) is important in initiating the response to sustained or uncertain threat, whether individual differences in conservatism modulate this connectivity is unknown. To test whether conservatism is associated with increased reactivity in neural threat circuitry, we measured participants’ self-reported social and economic conservatism and asked them to complete high-resolution fMRI scans while under threat of an unpredictable shock and while safe. We found that economic conservatism predicted greater connectivity between the BNST and a cluster of voxels in the left amygdala during threat vs safety. These results suggest that increased amygdala–BNST connectivity during threat may be a key neural correlate of the enhanced negativity bias found in conservatism. PMID:29126127

  12. Neurons in the human amygdala selective for perceived emotion

    PubMed Central

    Wang, Shuo; Tudusciuc, Oana; Mamelak, Adam N.; Ross, Ian B.; Adolphs, Ralph; Rutishauser, Ueli

    2014-01-01

    The human amygdala plays a key role in recognizing facial emotions and neurons in the monkey and human amygdala respond to the emotional expression of faces. However, it remains unknown whether these responses are driven primarily by properties of the stimulus or by the perceptual judgments of the perceiver. We investigated these questions by recording from over 200 single neurons in the amygdalae of 7 neurosurgical patients with implanted depth electrodes. We presented degraded fear and happy faces and asked subjects to discriminate their emotion by button press. During trials where subjects responded correctly, we found neurons that distinguished fear vs. happy emotions as expressed by the displayed faces. During incorrect trials, these neurons indicated the patients’ subjective judgment. Additional analysis revealed that, on average, all neuronal responses were modulated most by increases or decreases in response to happy faces, and driven predominantly by judgments about the eye region of the face stimuli. Following the same analyses, we showed that hippocampal neurons, unlike amygdala neurons, only encoded emotions but not subjective judgment. Our results suggest that the amygdala specifically encodes the subjective judgment of emotional faces, but that it plays less of a role in simply encoding aspects of the image array. The conscious percept of the emotion shown in a face may thus arise from interactions between the amygdala and its connections within a distributed cortical network, a scheme also consistent with the long response latencies observed in human amygdala recordings. PMID:24982200

  13. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    PubMed Central

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R; Flor, Herta

    2009-01-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate cortex (ACC). The amygdala, insula and inferior frontal cortex were differentially active during late acquisition. Extinction was accompanied by enhanced activation to CS+ vs. CS− in the dorsal anterior cingulate cortex (dACC). The results are in accordance with animal studies and provide evidence for the important role of the hippocampus in contextual learning in humans. Connectivity analyses revealed correlated activity between the left posterior hippocampus and dACC (BA32) during early acquisition and the dACC, left posterior hippocampus and right amygdala during extinction. These data are consistent with theoretical models that propose an inhibitory effect of the mPFC on the amygdala. The interaction of the mPFC with the hippocampus may reflect the context-specificity of extinction learning. PMID:19200075

  14. Aberrant functional network connectivity in psychopathy from a large (N = 985) forensic sample.

    PubMed

    Espinoza, Flor A; Vergara, Victor M; Reyes, Daisy; Anderson, Nathaniel E; Harenski, Carla L; Decety, Jean; Rachakonda, Srinivas; Damaraju, Eswar; Rashid, Barnaly; Miller, Robyn L; Koenigs, Michael; Kosson, David S; Harenski, Keith; Kiehl, Kent A; Calhoun, Vince D

    2018-06-01

    Psychopathy is a personality disorder characterized by antisocial behavior, lack of remorse and empathy, and impaired decision making. The disproportionate amount of crime committed by psychopaths has severe emotional and economic impacts on society. Here we examine the neural correlates associated with psychopathy to improve early assessment and perhaps inform treatments for this condition. Previous resting-state functional magnetic resonance imaging (fMRI) studies in psychopathy have primarily focused on regions of interest. This study examines whole-brain functional connectivity and its association to psychopathic traits. Psychopathy was hypothesized to be characterized by aberrant functional network connectivity (FNC) in several limbic/paralimbic networks. Group-independent component and regression analyses were applied to a data set of resting-state fMRI from 985 incarcerated adult males. We identified resting-state networks (RSNs), estimated FNC between RSNs, and tested their association to psychopathy factors and total summary scores (Factor 1, interpersonal/affective; Factor 2, lifestyle/antisocial). Factor 1 scores showed both increased and reduced functional connectivity between RSNs from seven brain domains (sensorimotor, cerebellar, visual, salience, default mode, executive control, and attentional). Consistent with hypotheses, RSNs from the paralimbic system-insula, anterior and posterior cingulate cortex, amygdala, orbital frontal cortex, and superior temporal gyrus-were related to Factor 1 scores. No significant FNC associations were found with Factor 2 and total PCL-R scores. In summary, results suggest that the affective and interpersonal symptoms of psychopathy (Factor 1) are associated with aberrant connectivity in multiple brain networks, including paralimbic regions. © 2018 Wiley Periodicals, Inc.

  15. Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans

    PubMed Central

    Blasi, Giuseppe; Bianco, Luciana Lo; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Fazio, Leonardo; Papazacharias, Apostolos; Di Giorgio, Annabella; Caforio, Grazia; Rampino, Antonio; Masellis, Rita; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Bertolino, Alessandro

    2010-01-01

    Personality traits related to emotion processing are, at least in part, heritable and genetically determined. Dopamine D2 receptor signaling is involved in modulation of emotional behavior and activity of associated brain regions such as the amygdala and the prefrontal cortex. An intronic single nucleotide polymorphism within the D2 receptor gene (DRD2, rs1076560, guanine>thymine - G>T) shifts splicing of the two protein isoforms (D2 short, D2S, mainly presynaptic, and D2 long, D2L) and has been associated with modulation of memory performance and brain activity. Here, our aim was to investigate the association of DRD2 rs1076560 genotype with personality traits of emotional stability and with brain physiology during processing of emotionally relevant stimuli. DRD2 genotype and Big Five Questionnaire scores were evaluated in 134 healthy subjects demonstrating that GG subjects have reduced ‘emotion control’ compared with GT subjects. fMRI in a sample of 24 individuals indicated greater amygdala activity during implicit processing and greater dorsolateral prefrontal cortex (DLPFC) response during explicit processing of facial emotional stimuli in GG subjects compared with GT. Other results also demonstrate an interaction between DRD2 genotype and facial emotional expression on functional connectivity of both amygdala and dorsolateral prefrontal regions with overlapping medial prefrontal areas. Moreover, rs1076560 genotype is associated with differential relationships between amygdala/DLPFC functional connectivity and emotion control scores. These results suggest that genetically determined D2 signaling may explain part of personality traits related to emotion processing and individual variability in specific brain responses to emotionally relevant inputs. PMID:19940176

  16. Altered Resting State Effective Connectivity of Anterior Insula in Depression.

    PubMed

    Kandilarova, Sevdalina; Stoyanov, Drozdstoy; Kostianev, Stefan; Specht, Karsten

    2018-01-01

    Depression has been associated with changes in both functional and effective connectivity of large scale brain networks, including the default mode network, executive network, and salience network. However, studies of effective connectivity by means of spectral dynamic causal modeling (spDCM) are still rare and the interaction between the different resting state networks has not been investigated in detail. Thus, we aimed at exploring differences in effective connectivity among eight right hemisphere brain areas-anterior insula, inferior frontal gyrus, middle frontal gyrus (MFG), frontal eye field, anterior cingulate cortex, superior parietal lobe, amygdala, and hippocampus, between a group of healthy controls ( N  = 20) and medicated depressed patients ( N  = 20). We found that patients not only had significantly reduced strength of the connection from the anterior insula to the MFG (i.e., dorsolateral prefrontal cortex) but also a significant connection between the amygdala and the anterior insula. Moreover, depression severity correlated with connectivity of the hippocampal node. In conclusion, the results from this resting state spDCM study support and enrich previous data on the role of the right anterior insula in the pathophysiology of depression. Furthermore, our findings add to the growing evidence of an association between depression severity and disturbances of the hippocampal function in terms of impaired connectivity with other brain regions.

  17. Altered Resting State Effective Connectivity of Anterior Insula in Depression

    PubMed Central

    Kandilarova, Sevdalina; Stoyanov, Drozdstoy; Kostianev, Stefan; Specht, Karsten

    2018-01-01

    Depression has been associated with changes in both functional and effective connectivity of large scale brain networks, including the default mode network, executive network, and salience network. However, studies of effective connectivity by means of spectral dynamic causal modeling (spDCM) are still rare and the interaction between the different resting state networks has not been investigated in detail. Thus, we aimed at exploring differences in effective connectivity among eight right hemisphere brain areas—anterior insula, inferior frontal gyrus, middle frontal gyrus (MFG), frontal eye field, anterior cingulate cortex, superior parietal lobe, amygdala, and hippocampus, between a group of healthy controls (N = 20) and medicated depressed patients (N = 20). We found that patients not only had significantly reduced strength of the connection from the anterior insula to the MFG (i.e., dorsolateral prefrontal cortex) but also a significant connection between the amygdala and the anterior insula. Moreover, depression severity correlated with connectivity of the hippocampal node. In conclusion, the results from this resting state spDCM study support and enrich previous data on the role of the right anterior insula in the pathophysiology of depression. Furthermore, our findings add to the growing evidence of an association between depression severity and disturbances of the hippocampal function in terms of impaired connectivity with other brain regions. PMID:29599728

  18. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior.

    PubMed

    Felix-Ortiz, Ada C; Tye, Kay M

    2014-01-08

    Impairments in social interaction represent a core symptom of a number of psychiatric disease states, including autism, schizophrenia, depression, and anxiety. Although the amygdala has long been linked to social interaction, little is known about the functional role of connections between the amygdala and downstream regions in noncompetitive social behavior. In the present study, we used optogenetic and pharmacological tools in mice to study the role of projections from the basolateral complex of the amygdala (BLA) to the ventral hippocampus (vHPC) in two social interaction tests: the resident-juvenile-intruder home-cage test and the three chamber sociability test. BLA pyramidal neurons were transduced using adeno-associated viral vectors (AAV5) carrying either channelrhodopsin-2 (ChR2) or halorhodopsin (NpHR), under the control of the CaMKIIα promoter to allow for optical excitation or inhibition of amygdala axon terminals. Optical fibers were chronically implanted to selectively manipulate BLA terminals in the vHPC. NpHR-mediated inhibition of BLA-vHPC projections significantly increased social interaction in the resident-juvenile intruder home-cage test as shown by increased intruder exploration. In contrast, ChR2-mediated activation of BLA-vHPC projections significantly reduced social behaviors as shown in the resident-juvenile intruder procedure as seen by decreased time exploring the intruder and in the three chamber sociability test by decreased time spent in the social zone. These results indicate that BLA inputs to the vHPC are capable of modulating social behaviors in a bidirectional manner.

  19. The amygdala and basal forebrain as a pathway for motivationally guided attention.

    PubMed

    Peck, Christopher J; Salzman, C Daniel

    2014-10-08

    Visual stimuli associated with rewards attract spatial attention. Neurophysiological mechanisms that mediate this process must register both the motivational significance and location of visual stimuli. Recent neurophysiological evidence indicates that the amygdala encodes information about both of these parameters. Furthermore, the firing rate of amygdala neurons predicts the allocation of spatial attention. One neural pathway through which the amygdala might influence attention involves the intimate and bidirectional connections between the amygdala and basal forebrain (BF), a brain area long implicated in attention. Neurons in the rhesus monkey amygdala and BF were therefore recorded simultaneously while subjects performed a detection task in which the stimulus-reward associations of visual stimuli modulated spatial attention. Neurons in BF were spatially selective for reward-predictive stimuli, much like the amygdala. The onset of reward-predictive signals in each brain area suggested different routes of processing for reward-predictive stimuli appearing in the ipsilateral and contralateral fields. Moreover, neurons in the amygdala, but not BF, tracked trial-to-trial fluctuations in spatial attention. These results suggest that the amygdala and BF could play distinct yet inter-related roles in influencing attention elicited by reward-predictive stimuli. Copyright © 2014 the authors 0270-6474/14/3413757-11$15.00/0.

  20. Monitoring and control of amygdala neurofeedback involves distributed information processing in the human brain.

    PubMed

    Paret, Christian; Zähringer, Jenny; Ruf, Matthias; Gerchen, Martin Fungisai; Mall, Stephanie; Hendler, Talma; Schmahl, Christian; Ende, Gabriele

    2018-03-30

    Brain-computer interfaces provide conscious access to neural activity by means of brain-derived feedback ("neurofeedback"). An individual's abilities to monitor and control feedback are two necessary processes for effective neurofeedback therapy, yet their underlying functional neuroanatomy is still being debated. In this study, healthy subjects received visual feedback from their amygdala response to negative pictures. Activation and functional connectivity were analyzed to disentangle the role of brain regions in different processes. Feedback monitoring was mapped to the thalamus, ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and rostral PFC. The VS responded to feedback corresponding to instructions while rPFC activity differentiated between conditions and predicted amygdala regulation. Control involved the lateral PFC, anterior cingulate, and insula. Monitoring and control activity overlapped in the VS and thalamus. Extending current neural models of neurofeedback, this study introduces monitoring and control of feedback as anatomically dissociated processes, and suggests their important role in voluntary neuromodulation. © 2018 Wiley Periodicals, Inc.

  1. Amygdala Hyperactivity at Rest in Paranoid Individuals With Schizophrenia.

    PubMed

    Pinkham, Amy E; Liu, Peiying; Lu, Hanzhang; Kriegsman, Michael; Simpson, Claire; Tamminga, Carol

    2015-08-01

    The amygdala's role in threat perception suggests that increased activation of this region may be related to paranoid ideation. However, investigations of amygdala function in paranoid individuals with schizophrenia, compared with both healthy individuals and nonparanoid individuals with schizophrenia, have consistently reported reduced task-related activation. The reliance of blood-oxygen-level-dependent functional MRI on a contrast between events and baseline, and the inability to quantitatively measure this baseline, may account for these counterintuitive findings. The present study tested for differences in baseline levels of amygdala activity in paranoid and nonparanoid individuals with schizophrenia using arterial spin labeling perfusion MRI. Resting cerebral blood flow (CBF) and task-related activation of the amygdala were measured in 25 healthy individuals, 16 individuals with schizophrenia who were actively paranoid at the time of scanning, and 16 individuals with schizophrenia who were not paranoid. Analysis of relative CBF values extracted from the amygdala bilaterally revealed significantly increased activity in the left amygdala in paranoid patient volunteers compared with healthy comparison subjects and nonparanoid patient volunteers. Increased CBF was also evident in the right amygdala but did not reach the level of statistical significance. Paranoid volunteers also showed significantly decreased task-related activation of the amygdala compared with the two other groups. These findings suggest that amygdala hyperactivation may underlie paranoia in schizophrenia. Additionally, the reported differences between paranoid and nonparanoid patient volunteers emphasize the importance of considering symptom-based subgroups and baseline levels of activity in future investigations of neural activation in schizophrenia.

  2. Maternal sensitivity, infant limbic structure volume and functional connectivity: a preliminary study

    PubMed Central

    Rifkin-Graboi, A; Kong, L; Sim, L W; Sanmugam, S; Broekman, B F P; Chen, H; Wong, E; Kwek, K; Saw, S-M; Chong, Y-S; Gluckman, P D; Fortier, M V; Pederson, D; Meaney, M J; Qiu, A

    2015-01-01

    Mechanisms underlying the profound parental effects on cognitive, emotional and social development in humans remain poorly understood. Studies with nonhuman models suggest variations in parental care affect the limbic system, influential to learning, autobiography and emotional regulation. In some research, nonoptimal care relates to decreases in neurogenesis, although other work suggests early-postnatal social adversity accelerates the maturation of limbic structures associated with emotional learning. We explored whether maternal sensitivity predicts human limbic system development and functional connectivity patterns in a small sample of human infants. When infants were 6 months of age, 20 mother–infant dyads attended a laboratory-based observational session and the infants underwent neuroimaging at the same age. After considering age at imaging, household income and postnatal maternal anxiety, regression analyses demonstrated significant indirect associations between maternal sensitivity and bilateral hippocampal volume at six months, with the majority of associations between sensitivity and the amygdala demonstrating similar indirect, but not significant results. Moreover, functional analyses revealed direct associations between maternal sensitivity and connectivity between the hippocampus and areas important for emotional regulation and socio-emotional functioning. Sensitivity additionally predicted indirect associations between limbic structures and regions related to autobiographical memory. Our volumetric results are consistent with research indicating accelerated limbic development in response to early social adversity, and in combination with our functional results, if replicated in a larger sample, may suggest that subtle, but important, variations in maternal care influence neuroanatomical trajectories important to future cognitive and emotional functioning. PMID:26506054

  3. Reduced Prefrontal Connectivity in Psychopathy

    PubMed Central

    Motzkin, Julian C.; Newman, Joseph P.; Kiehl, Kent A.; Koenigs, Michael

    2012-01-01

    Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy. PMID:22131397

  4. Posterior Orbitofrontal and Anterior Cingulate Pathways to the Amygdala Target Inhibitory and Excitatory Systems with Opposite Functions.

    PubMed

    Zikopoulos, Basilis; Höistad, Malin; John, Yohan; Barbas, Helen

    2017-05-17

    The bidirectional dialogue of the primate posterior orbitofrontal cortex (pOFC) with the amygdala is essential in cognitive-emotional functions. The pOFC also sends a uniquely one-way excitatory pathway to the amygdalar inhibitory intercalated masses (IM), which inhibit the medial part of the central amygdalar nucleus (CeM). Inhibition of IM has the opposite effect, allowing amygdalar activation of autonomic structures and emotional arousal. Using multiple labeling approaches to identify pathways and their postsynaptic sites in the amygdala in rhesus monkeys, we found that the anterior cingulate cortex innervated mostly the basolateral and CeM amygdalar nuclei, poised to activate CeM for autonomic arousal. By contrast, a pathway from pOFC to IM exceeded all other pathways to the amygdala by density and size and proportion of large and efficient terminals. Moreover, whereas pOFC terminals in IM innervated each of the three distinct classes of inhibitory neurons, most targeted neurons expressing dopamine- and cAMP-regulated phosphoprotein (DARPP-32+), known to be modulated by dopamine. The predominant pOFC innervation of DARPP-32+ neurons suggests activation of IM and inhibition of CeM, resulting in modulated autonomic function. By contrast, inhibition of DARPP-32 neurons in IM by high dopamine levels disinhibits CeM and triggers autonomic arousal. The findings provide a mechanism to help explain how a strong pOFC pathway, which is poised to moderate activity of CeM, through IM, can be undermined by the high level of dopamine during stress, resulting in collapse of potent inhibitory mechanisms in the amygdala and heightened autonomic drive, as seen in chronic anxiety disorders. SIGNIFICANCE STATEMENT The dialogue between prefrontal cortex and amygdala allows thoughts and emotions to influence actions. The posterior orbitofrontal cortex sends a powerful pathway that targets a special class of amygdalar intercalated mass (IM) inhibitory neurons, whose wiring may help

  5. Preferential amygdala reactivity to the negative assessment of neutral faces.

    PubMed

    Blasi, Giuseppe; Hariri, Ahmad R; Alce, Guilna; Taurisano, Paolo; Sambataro, Fabio; Das, Saumitra; Bertolino, Alessandro; Weinberger, Daniel R; Mattay, Venkata S

    2009-11-01

    Prior studies suggest that the amygdala shapes complex behavioral responses to socially ambiguous cues. We explored human amygdala function during explicit behavioral decision making about discrete emotional facial expressions that can represent socially unambiguous and ambiguous cues. During functional magnetic resonance imaging, 43 healthy adults were required to make complex social decisions (i.e., approach or avoid) about either relatively unambiguous (i.e., angry, fearful, happy) or ambiguous (i.e., neutral) facial expressions. Amygdala activation during this task was compared with that elicited by simple, perceptual decisions (sex discrimination) about the identical facial stimuli. Angry and fearful expressions were more frequently judged as avoidable and happy expressions most often as approachable. Neutral expressions were equally judged as avoidable and approachable. Reaction times to neutral expressions were longer than those to angry, fearful, and happy expressions during social judgment only. Imaging data on stimuli judged to be avoided revealed a significant task by emotion interaction in the amygdala. Here, only neutral facial expressions elicited greater activity during social judgment than during sex discrimination. Furthermore, during social judgment only, neutral faces judged to be avoided were associated with greater amygdala activity relative to neutral faces that were judged as approachable. Moreover, functional coupling between the amygdala and both dorsolateral prefrontal (social judgment > sex discrimination) and cingulate (sex discrimination > social judgment) cortices was differentially modulated by task during processing of neutral faces. Our results suggest that increased amygdala reactivity and differential functional coupling with prefrontal circuitries may shape complex decisions and behavioral responses to socially ambiguous cues.

  6. Preferential Amygdala Reactivity to the Negative Assessment of Neutral Faces

    PubMed Central

    Blasi, Giuseppe; Hariri, Ahmad R.; Alce, Guilna; Taurisano, Paolo; Sambataro, Fabio; Das, Saumitra; Bertolino, Alessandro; Weinberger, Daniel R.; Mattay, Venkata S.

    2010-01-01

    Background Prior studies suggest that the amygdala shapes complex behavioral responses to socially ambiguous cues. We explored human amygdala function during explicit behavioral decision making about discrete emotional facial expressions that can represent socially unambiguous and ambiguous cues. Methods During functional magnetic resonance imaging, 43 healthy adults were required to make complex social decisions (i.e., approach or avoid) about either relatively unambiguous (i.e., angry, fearful, happy) or ambiguous (i.e., neutral) facial expressions. Amygdala activation during this task was compared with that elicited by simple, perceptual decisions (sex discrimination) about the identical facial stimuli. Results Angry and fearful expressions were more frequently judged as avoidable and happy expressions most often as approachable. Neutral expressions were equally judged as avoidable and approachable. Reaction times to neutral expressions were longer than those to angry, fearful, and happy expressions during social judgment only. Imaging data on stimuli judged to be avoided revealed a significant task by emotion interaction in the amygdala. Here, only neutral facial expressions elicited greater activity during social judgment than during sex discrimination. Furthermore, during social judgment only, neutral faces judged to be avoided were associated with greater amygdala activity relative to neutral faces that were judged as approachable. Moreover, functional coupling between the amygdala and both dorsolateral prefrontal (social judgment > sex discrimination) and cingulate (sex discrimination > social judgment) cortices was differentially modulated by task during processing of neutral faces. Conclusions Our results suggest that increased amygdala reactivity and differential functional coupling with prefrontal circuitries may shape complex decisions and behavioral responses to socially ambiguous cues. PMID:19709644

  7. Normative development of ventral striatal resting state connectivity in humans.

    PubMed

    Fareri, Dominic S; Gabard-Durnam, Laurel; Goff, Bonnie; Flannery, Jessica; Gee, Dylan G; Lumian, Daniel S; Caldera, Christina; Tottenham, Nim

    2015-09-01

    Incentives play a crucial role in guiding behavior throughout our lives, but perhaps no more so than during the early years of life. The ventral striatum is a critical piece of an incentive-based learning circuit, sharing robust anatomical connections with subcortical (e.g., amygdala, hippocampus) and cortical structures (e.g., medial prefrontal cortex (mPFC), insula) that collectively support incentive valuation and learning. Resting-state functional connectivity (rsFC) is a powerful method that provides insight into the development of the functional architecture of these connections involved in incentive-based learning. We employed a seed-based correlation approach to investigate ventral striatal rsFC in a cross-sectional sample of typically developing individuals between the ages of 4.5 and 23-years old (n=66). Ventral striatal rsFC with the mPFC showed regionally specific linear age-related changes in connectivity that were associated with age-related increases in circulating testosterone levels. Further, ventral striatal connectivity with the posterior hippocampus and posterior insula demonstrated quadratic age-related changes characterized by negative connectivity in adolescence. Finally, across this age range, the ventral striatum demonstrated positive coupling with the amygdala beginning during childhood and remaining consistently positive across age. In sum, our findings suggest that normative ventral striatal rsFC development is dynamic and characterized by early establishment of connectivity with medial prefrontal and limbic structures supporting incentive-based learning, as well as substantial functional reorganization with later developing regions during transitions into and out of adolescence. Copyright © 2015. Published by Elsevier Inc.

  8. Sleepiness induced by sleep-debt enhanced amygdala activity for subliminal signals of fear.

    PubMed

    Motomura, Yuki; Kitamura, Shingo; Oba, Kentaro; Terasawa, Yuri; Enomoto, Minori; Katayose, Yasuko; Hida, Akiko; Moriguchi, Yoshiya; Higuchi, Shigekazu; Mishima, Kazuo

    2014-08-19

    Emotional information is frequently processed below the level of consciousness, where subcortical regions of the brain are thought to play an important role. In the absence of conscious visual experience, patients with visual cortex damage discriminate the valence of emotional expression. Even in healthy individuals, a subliminal mechanism can be utilized to compensate for a functional decline in visual cognition of various causes such as strong sleepiness. In this study, sleep deprivation was simulated in healthy individuals to investigate functional alterations in the subliminal processing of emotional information caused by reduced conscious visual cognition and attention due to an increase in subjective sleepiness. Fourteen healthy adult men participated in a within-subject crossover study consisting of a 5-day session of sleep debt (SD, 4-h sleep) and a 5-day session of sleep control (SC, 8-h sleep). On the last day of each session, participants performed an emotional face-viewing task that included backward masking of nonconscious presentations during magnetic resonance scanning. Finally, data from eleven participants who were unaware of nonconscious face presentations were analyzed. In fear contrasts, subjective sleepiness was significantly positively correlated with activity in the amygdala, ventromedial prefrontal cortex, hippocampus, and insular cortex, and was significantly negatively correlated with the secondary and tertiary visual areas and the fusiform face area. In fear-neutral contrasts, subjective sleepiness was significantly positively correlated with activity of the bilateral amygdala. Further, changes in subjective sleepiness (the difference between the SC and SD sessions) were correlated with both changes in amygdala activity and functional connectivity between the amygdala and superior colliculus in response to subliminal fearful faces. Sleepiness induced functional decline in the brain areas involved in conscious visual cognition of facial

  9. Functional organization of human subgenual cortical areas: Relationship between architectonical segregation and connectional heterogeneity.

    PubMed

    Palomero-Gallagher, Nicola; Eickhoff, Simon B; Hoffstaedter, Felix; Schleicher, Axel; Mohlberg, Hartmut; Vogt, Brent A; Amunts, Katrin; Zilles, Karl

    2015-07-15

    Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Amygdala Signaling during Foraging in a Hazardous Environment.

    PubMed

    Amir, Alon; Lee, Seung-Chan; Headley, Drew B; Herzallah, Mohammad M; Pare, Denis

    2015-09-23

    We recorded basolateral amygdala (BL) neurons in a seminaturalistic foraging task. Rats had to leave their nest to retrieve food in an elongated arena inhabited by a mechanical predator. There were marked trial-to-trial variations in behavior. After poking their head into the foraging arena and waiting there for a while, rats either retreated to their nest or initiated foraging. Before initiating foraging, rats waited longer on trials that followed failed than successful trials indicating that prior experience influenced behavior. Upon foraging initiation, most principal cells (Type-1) reduced their firing rate, while in a minority (Type-2) it increased. When rats aborted foraging, Type-1 cells increased their firing rates, whereas in Type-2 cells it did not change. Surprisingly, the opposite activity profiles of Type-1 and Type-2 units were also seen in control tasks devoid of explicit threats or rewards. The common correlate of BL activity across these tasks was movement velocity, although an influence of position was also observed. Thus depending on whether rats initiated movement or not, the activity of BL neurons decreased or increased, regardless of whether threat or rewards were present. Therefore, BL activity not only encodes threats or rewards, but is closely related to behavioral output. We propose that higher order cortical areas determine task-related changes in BL activity as a function of reward/threat expectations and internal states. Because Type-1 and Type-2 cells likely form differential connections with the central amygdala (controlling freezing), this process would determine whether movement aimed at attaining food or exploration is suppressed or facilitated. Significance statement: For decades, amygdala research has been dominated by pavlovian and operant conditioning paradigms. This work has led to the view that amygdala neurons signal threats or rewards, in turn causing defensive or approach behaviors. However, the artificial circumstances of

  11. The vomeronasal cortex - afferent and efferent projections of the posteromedial cortical nucleus of the amygdala in mice.

    PubMed

    Gutiérrez-Castellanos, Nicolás; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2014-01-01

    Most mammals possess a vomeronasal system that detects predominantly chemical signals of biological relevance. Vomeronasal information is relayed to the accessory olfactory bulb (AOB), whose unique cortical target is the posteromedial cortical nucleus of the amygdala. This cortical structure should therefore be considered the primary vomeronasal cortex. In the present work, we describe the afferent and efferent connections of the posteromedial cortical nucleus of the amygdala in female mice, using anterograde (biotinylated dextranamines) and retrograde (Fluorogold) tracers, and zinc selenite as a tracer specific for zinc-enriched (putative glutamatergic) projections. The results show that the posteromedial cortical nucleus of the amygdala is strongly interconnected not only with the rest of the vomeronasal system (AOB and its target structures in the amygdala), but also with the olfactory system (piriform cortex, olfactory-recipient nuclei of the amygdala and entorhinal cortex). Therefore, the posteromedial cortical nucleus of the amygdala probably integrates olfactory and vomeronasal information. In addition, the posteromedial cortical nucleus of the amygdala shows moderate interconnections with the associative (basomedial) amygdala and with the ventral hippocampus, which may be involved in emotional and spatial learning (respectively) induced by chemical signals. Finally, the posteromedial cortical nucleus of the amygdala gives rise to zinc-enriched projections to the ventrolateral septum and the ventromedial striatum (including the medial islands of Calleja). This pattern of intracortical connections (with the olfactory cortex and hippocampus, mainly) and cortico-striatal excitatory projections (with the olfactory tubercle and septum) is consistent with its proposed nature as the primary vomeronasal cortex. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex

    PubMed Central

    McGarry, Laura M.

    2016-01-01

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. SIGNIFICANCE STATEMENT The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at

  13. Altered functional connectivity links in neuroleptic-naïve and neuroleptic-treated patients with schizophrenia, and their relation to symptoms including volition

    PubMed Central

    Pu, Weidan; Rolls, Edmund T.; Guo, Shuixia; Liu, Haihong; Yu, Yun; Xue, Zhimin; Feng, Jianfeng; Liu, Zhening

    2014-01-01

    In order to analyze functional connectivity in untreated and treated patients with schizophrenia, resting-state fMRI data were obtained for whole-brain functional connectivity analysis from 22 first-episode neuroleptic-naïve schizophrenia (NNS), 61 first-episode neuroleptic-treated schizophrenia (NTS) patients, and 60 healthy controls (HC). Reductions were found in untreated and treated patients in the functional connectivity between the posterior cingulate gyrus and precuneus, and this was correlated with the reduction in volition from the Positive and Negative Symptoms Scale (PANSS), that is in the willful initiation, sustenance, and control of thoughts, behavior, movements, and speech, and with the general and negative symptoms. In addition in both patient groups interhemispheric functional connectivity was weaker between the orbitofrontal cortex, amygdala and temporal pole. These functional connectivity changes and the related symptoms were not treated by the neuroleptics. Differences between the patient groups were that there were more strong functional connectivity links in the NNS patients (including in hippocampal, frontal, and striatal circuits) than in the NTS patients. These findings with a whole brain analysis in untreated and treated patients with schizophrenia provide evidence on some of the brain regions implicated in the volitional, other general, and negative symptoms, of schizophrenia that are not treated by neuroleptics so have implications for the development of other treatments; and provide evidence on some brain systems in which neuroleptics do alter the functional connectivity. PMID:25389520

  14. Amygdala Response to Emotional Stimuli without Awareness: Facts and Interpretations

    PubMed Central

    Diano, Matteo; Celeghin, Alessia; Bagnis, Arianna; Tamietto, Marco

    2017-01-01

    Over the past two decades, evidence has accumulated that the human amygdala exerts some of its functions also when the observer is not aware of the content, or even presence, of the triggering emotional stimulus. Nevertheless, there is as of yet no consensus on the limits and conditions that affect the extent of amygdala’s response without focused attention or awareness. Here we review past and recent studies on this subject, examining neuroimaging literature on healthy participants as well as brain-damaged patients, and we comment on their strengths and limits. We propose a theoretical distinction between processes involved in attentional unawareness, wherein the stimulus is potentially accessible to enter visual awareness but fails to do so because attention is diverted, and in sensory unawareness, wherein the stimulus fails to enter awareness because its normal processing in the visual cortex is suppressed. We argue this distinction, along with data sampling amygdala responses with high temporal resolution, helps to appreciate the multiplicity of functional and anatomical mechanisms centered on the amygdala and supporting its role in non-conscious emotion processing. Separate, but interacting, networks relay visual information to the amygdala exploiting different computational properties of subcortical and cortical routes, thereby supporting amygdala functions at different stages of emotion processing. This view reconciles some apparent contradictions in the literature, as well as seemingly contrasting proposals, such as the dual stage and the dual route model. We conclude that evidence in favor of the amygdala response without awareness is solid, albeit this response originates from different functional mechanisms and is driven by more complex neural networks than commonly assumed. Acknowledging the complexity of such mechanisms can foster new insights on the varieties of amygdala functions without awareness and their impact on human behavior. PMID:28119645

  15. Overexpressing corticotropin-releasing hormone (CRH) in the primate amygdala increases anxious temperament and alters its neural circuit

    PubMed Central

    Kalin, Ned H; Fox, Andrew S; Kovner, Rothem; Riedel, Marissa K; Fekete, Eva M; Roseboom, Patrick H; Tromp, Do P M; Grabow, Benjamin P; Olsen, Miles E; Brodsky, Ethan K; McFarlin, Daniel R.; Alexander, Andrew L; Emborg, Marina E; Block, Walter F; Fudge, Julie L; Oler, Jonathan A

    2016-01-01

    Background Nonhuman primate models are critical for understanding mechanisms underlying human psychopathology. We established a non-human primate model of anxious temperament (AT) for studying the early-life risk to develop anxiety and depression. Studies have identified the central nucleus of the amygdala (Ce) as an essential component of AT’s neural substrates. Corticotropin-releasing hormone (CRH) is expressed in the Ce, has a role in stress, and is linked to psychopathology. Here, in young rhesus monkeys, we combined viral vector technology with assessments of anxiety and multimodal neuroimaging to understand the consequences of chronically increased CRH in the Ce-region. Methods Using real-time intraoperative MRI-guided convection-enhanced delivery, 5 monkeys received bilateral dorsal amygdala Ce-region infusions of adeno-associated virus serotype 2 (AAV2) containing the CRH construct. Their cage-mates served as unoperated controls. AT, regional brain metabolism, “resting” fMRI, and diffusion tensor imaging (DTI) were assessed before and two months after viral infusions. Results Dorsal amygdala CRH overexpression significantly increased AT and metabolism within the dorsal amygdala. Additionally, we observed changes in metabolism in other AT-related regions, as well as in measures of functional and structural connectivity. Conclusion This study provides a translational roadmap that is important for understanding human psychopathology by combining molecular manipulations used in rodents with behavioral phenotyping and multimodal neuroimaging measures used in humans. The results indicate that chronic CRH overexpression in primates not only increases AT, but also affects metabolism and connectivity within components of AT’s neural circuitry. PMID:27016385

  16. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses

    PubMed Central

    Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark

    2015-01-01

    Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363

  17. Structural and functional bases of inhibited temperament.

    PubMed

    Clauss, Jacqueline A; Seay, April L; VanDerKlok, Ross M; Avery, Suzanne N; Cao, Aize; Cowan, Ronald L; Benningfield, Margaret M; Blackford, Jennifer Urbano

    2014-12-01

    Children born with an inhibited temperament are at heightened risk for developing anxiety, depression and substance use. Inhibited temperament is believed to have a biological basis; however, little is known about the structural brain basis of this vulnerability trait. Structural MRI scans were obtained from 84 (44 inhibited, 40 uninhibited) young adults. Given previous findings of amygdala hyperactivity in inhibited individuals, groups were compared on three measures of amygdala structure. To identify novel substrates of inhibited temperament, a whole brain analysis was performed. Functional activation and connectivity were examined across both groups. Inhibited adults had larger amygdala and caudate volume and larger volume predicted greater activation to neutral faces. In addition, larger amygdala volume predicted greater connectivity with subcortical and higher order visual structures. Larger caudate volume predicted greater connectivity with the basal ganglia, and less connectivity with primary visual and auditory cortex. We propose that larger volume in these salience detection regions may result in increased activation and enhanced connectivity in response to social stimuli. Given the strong link between inhibited temperament and risk for psychiatric illness, novel therapeutics that target these brain regions and related neural circuits have the potential to reduce rates of illness in vulnerable individuals. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Patterns of Neural Connectivity during an Attention Bias Task Moderate Associations between Early Childhood Temperament and Internalizing Symptoms in Young Adulthood

    PubMed Central

    Hardee, Jillian E.; Benson, Brenda E.; Bar-Haim, Yair; Mogg, Karin; Bradley, Brendan P; Chen, Gang; Britton, Jennifer C.; Ernst, Monique; Fox, Nathan A.; Pine, Daniel S.; Pérez-Edgar, Koraly

    2013-01-01

    Background Biased attention to threat is found in both individuals with anxiety symptoms and children with the childhood temperament of behavioral inhibition (BI). Although perturbed fronto-amygdala function is implicated in biased attention among anxious individuals, no work has examined the neural correlates of attention biases in BI. Work in this area may clarify underlying mechanisms for anxiety in a sample at risk for internalizing disorders. We examined the relations among early childhood BI, fronto-amygdala connectivity during an attention bias task in young adulthood, and internalizing symptoms, assessed in young adulthood. Methods Children were assessed for BI at multiple age points from infancy through age seven. Based on a composite of observational and maternal report data, we selected 21 young adults classified as having a history of BI and 23 classified as non-BI for this study (N=44). Participants completed an event-related fMRI attention-bias task involving threat (angry faces) and neutral trials. Internalizing symptoms were assessed by self-report and diagnostic interviews. Results The young adults characterized in childhood with BI exhibited greater strength in threat-related connectivity than non-behaviorally inhibited young adults. Between-group differences manifested in connections between the amygdala and two frontal regions: dorsolateral prefrontal cortex and anterior insula. Amygdala-insula connectivity also interacted with childhood BI to predict young adult internalizing symptoms. Conclusions BI during early childhood predicts differences as young adults in threat and attention-related fronto-amygdala connectivity. Connectivity strength, in turn, moderated the relations between early BI and later psychopathology. PMID:23489415

  19. Structural Brain Connectivity Constrains within-a-Day Variability of Direct Functional Connectivity

    PubMed Central

    Park, Bumhee; Eo, Jinseok; Park, Hae-Jeong

    2017-01-01

    The idea that structural white matter connectivity constrains functional connectivity (interactions among brain regions) has widely been explored in studies of brain networks; studies have mostly focused on the “average” strength of functional connectivity. The question of how structural connectivity constrains the “variability” of functional connectivity remains unresolved. In this study, we investigated the variability of resting state functional connectivity that was acquired every 3 h within a single day from 12 participants (eight time sessions within a 24-h period, 165 scans per session). Three different types of functional connectivity (functional connectivity based on Pearson correlation, direct functional connectivity based on partial correlation, and the pseudo functional connectivity produced by their difference) were estimated from resting state functional magnetic resonance imaging data along with structural connectivity defined using fiber tractography of diffusion tensor imaging. Those types of functional connectivity were evaluated with regard to properties of structural connectivity (fiber streamline counts and lengths) and types of structural connectivity such as intra-/inter-hemispheric edges and topological edge types in the rich club organization. We observed that the structural connectivity constrained the variability of direct functional connectivity more than pseudo-functional connectivity and that the constraints depended strongly on structural connectivity types. The structural constraints were greater for intra-hemispheric and heterologous inter-hemispheric edges than homologous inter-hemispheric edges, and feeder and local edges than rich club edges in the rich club architecture. While each edge was highly variable, the multivariate patterns of edge involvement, especially the direct functional connectivity patterns among the rich club brain regions, showed low variability over time. This study suggests that structural

  20. Amygdala Lesions Reduce Cataplexy in Orexin KO mice

    PubMed Central

    Burgess, C.R.; Oishi, Y.; Mochizuki, T.; Peever, J.H.; Scammell, T.E.

    2013-01-01

    Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of REM sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal grey, lateral pontine tegmentum, locus coeruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knockout mice, a model of narcolepsy. These lesions did not alter basic sleep/wake behavior, but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia. PMID:23739970

  1. Functional effects of polymorphisms on glucocorticoid receptor modulation of human anxiogenic substance-P gene promoter activity in primary amygdala neurones

    PubMed Central

    Hay, Colin W.; Shanley, Lynne; Davidson, Scott; Cowie, Philip; Lear, Marissa; McGuffin, Peter; Riedel, Gernot; McEwan, Iain J.; MacKenzie, Alasdair

    2014-01-01

    Summary Expression or introduction of the neuropeptide substance-P (SP; encoded by the TAC1 gene in humans and Tac1 in rodents) in the amygdala induces anxiety related behaviour in rodents. In addition, pharmacological antagonism of the main receptor of SP in humans; NK1, is anxiolytic. In the current study, we show that the Tac1 locus is up-regulated in primary rat amygdala neurones in response to activation of the glucocorticoid receptor (GR); a classic component of the stress response. Using a combination of bioinformatics, electrophoretic mobility shift assays (EMSA) and reporter plasmid magnetofection into rat primary amygdala neurones we identified a highly conserved GR response sequence (2GR) in the human TAC1 promoter that binds GR in response to dexamethasone (Dex) or forskolin. We also identified a second GR binding site in the human promoter that was polymorphic and whose T-allele is only found in Japanese and Chinese populations. We present evidence that the T-allele of SNPGR increases the activity of the TAC1 promoter through de-sequestration or de-repression of 2GR. The identification of Dex/forskolin response elements in the TAC1 promoter in amygdala neurones suggests a possible link in the chain of molecular events connecting GR activation and anxiety. In addition, the discovery of a SNP which can alter this response may have implications for our understanding of the role of regulatory variation in susceptibility to stress in specific populations. PMID:25001955

  2. Oxytocin selectively facilitates learning with social feedback and increases activity and functional connectivity in emotional memory and reward processing regions.

    PubMed

    Hu, Jiehui; Qi, Song; Becker, Benjamin; Luo, Lizhu; Gao, Shan; Gong, Qiyong; Hurlemann, René; Kendrick, Keith M

    2015-06-01

    In male Caucasian subjects, learning is facilitated by receipt of social compared with non-social feedback, and the neuropeptide oxytocin (OXT) facilitates this effect. In this study, we have first shown a cultural difference in that male Chinese subjects actually perform significantly worse in the same reinforcement associated learning task with social (emotional faces) compared with non-social feedback. Nevertheless, in two independent double-blind placebo (PLC) controlled between-subject design experiments we found OXT still selectively facilitated learning with social feedback. Similar to Caucasian subjects this OXT effect was strongest with feedback using female rather than male faces. One experiment performed in conjunction with functional magnetic resonance imaging showed that during the response, but not feedback phase of the task, OXT selectively increased activity in the amygdala, hippocampus, parahippocampal gyrus and putamen during the social feedback condition, and functional connectivity between the amygdala and insula and caudate. Therefore, OXT may be increasing the salience and reward value of anticipated social feedback. In the PLC group, response times and state anxiety scores during social feedback were associated with signal changes in these same regions but not in the OXT group. OXT may therefore have also facilitated learning by reducing anxiety in the social feedback condition. Overall our results provide the first evidence for cultural differences in social facilitation of learning per se, but a similar selective enhancement of learning with social feedback under OXT. This effect of OXT may be associated with enhanced responses and functional connectivity in emotional memory and reward processing regions. © 2015 Wiley Periodicals, Inc.

  3. Reduced anterior insula, enlarged amygdala in alcoholism and associated depleted von Economo neurons.

    PubMed

    Senatorov, Vladimir V; Damadzic, Ruslan; Mann, Claire L; Schwandt, Melanie L; George, David T; Hommer, Daniel W; Heilig, Markus; Momenan, Reza

    2015-01-01

    The insula, a structure involved in higher order representation of interoceptive states, has recently been implicated in drug craving and social stress. Here, we performed brain magnetic resonance imaging to measure volumes of the insula and amygdala, a structure with reciprocal insular connections, in 26 alcohol-dependent patients and 24 healthy volunteers (aged 22-56 years, nine females in each group). We used an established morphometry method to quantify total and regional insular volumes. Volumetric measurements of the amygdala were obtained using a model-based segmentation/registration tool. In alcohol-dependent patients, anterior insula volumes were bilaterally reduced compared to healthy volunteers (left by 10%, right by 11%, normalized to total brain volumes). Furthermore, alcohol-dependent patients, compared with healthy volunteers, had bilaterally increased amygdala volumes. The left amygdala was increased by 28% and the right by 29%, normalized to total brain volumes. Post-mortem studies of the anterior insula showed that the reduced anterior insular volume may be associated with a population of von Economo neurons, which were 60% diminished in subjects with a history of alcoholism (n = 6) as compared to subjects without a history of alcoholism (n = 6) (aged 32-56 years, all males). The pattern of neuroanatomical change observed in our alcohol-dependent patients might result in a loss of top-down control of amygdala function, potentially contributing to impaired social cognition as well as an inability to control negatively reinforced alcohol seeking and use. Published by Oxford University Press on behalf of the Guarantors of Brain 2014. This work is written by US Government employees and is in the public domain in the US.

  4. Anomalous prefrontal-limbic activation and connectivity in youth at high-risk for bipolar disorder.

    PubMed

    Chang, Kiki; Garrett, Amy; Kelley, Ryan; Howe, Meghan; Sanders, Erica Marie; Acquaye, Tenah; Bararpour, Layla; Li, Sherrie; Singh, Manpreet; Jo, Booil; Hallmayer, Joachim; Reiss, Allan

    2017-11-01

    Abnormal prefrontal-limbic brain activation in response to facial expressions has been reported in pediatric bipolar disorder (BD). However, it is less clear whether these abnormalities exist prior to onset of mania, thus representing a biomarker predicting development of BD. We examined brain activation in 50 youth at high risk for BD (HR-BD), compared with 29 age- and gender-matched healthy control (HC) subjects. HR-BD was defined as having a parent with BD, as well as current mood or attentiondeficit/ hyperactivity disorder (ADHD) symptoms, or a history of at least one depressive episode. FMRI data were collected during an implicit emotion perception task using facial expression stimuli. Activation to fearful faces versus calm faces was compared between HR-BD and HC groups, including analyses of functional connectivity, and comparison of allele subgroups of the serotonin transporter (5-HTTLPR) gene. While viewing fearful versus calm faces, HR-BD youth had significantly greater activation than HC youth in the right amygdala, ventrolateral prefrontal cortex (VLPFC), superior frontal cortex, cerebellum, and lingual gyrus. HR-BD youth, relative to HC youth, had greater functional connectivity between the right amygdala and the VLPFC as well as visual cortical regions Within the HR-BD group, youth with the s-allele had a trend for greater activation in the right amygdala and subgenual cingulate cortex CONCLUSIONS: Similar to youth with BD, youth at high risk for BD have greater activation than healthy controls in the amygdala and ventrolateral prefrontal cortex in response to fearful faces, as well greater functional connectivity between these regions. HR-BD youth with the s-allele of the 5-HTTLPR gene may be at greatest risk for developing BD. Copyright © 2017. Published by Elsevier B.V.

  5. Cortico-limbic connectivity in MAOA-L carriers is vulnerable to acute tryptophan depletion.

    PubMed

    Eisner, Patrick; Klasen, Martin; Wolf, Dhana; Zerres, Klaus; Eggermann, Thomas; Eisert, Albrecht; Zvyagintsev, Mikhail; Sarkheil, Pegah; Mathiak, Krystyna A; Zepf, Florian; Mathiak, Klaus

    2017-03-01

    A gene-environment interaction between expression genotypes of the monoamine oxidase A (MAOA) and adverse childhood experience increases the risk of antisocial behavior. However, the neural underpinnings of this interaction remain uninvestigated. A cortico-limbic circuit involving the prefrontal cortex (PFC) and the amygdala is central to the suppression of aggressive impulses and is modulated by serotonin (5-HT). MAOA genotypes may modulate the vulnerability of this circuit and increase the risk for emotion regulation deficits after specific life events. Acute tryptophan depletion (ATD) challenges 5-HT regulation and may identify vulnerable neuronal circuits, contributing to the gene-environment interaction. Functional magnetic resonance imaging measured the resting-state state activity in 64 healthy males in a double-blind, placebo-controlled study. Cortical maps of amygdala correlation identified the impact of ATD and its interaction with low- (MAOA-L) and high-expression variants (MAOA-H) of MAOA on cortico-limbic connectivity. Across all Regions of Interest (ROIs) exhibiting an ATD effect on cortico-limbic connectivity, MAOA-L carriers were more susceptible to ATD than MAOA-H carriers. In particular, the MAOA-L group exhibited a larger reduction of amygdala connectivity with the right prefrontal cortex and a larger increase of amygdala connectivity with the insula and dorsal PCC. MAOA-L carriers were more susceptable to a central 5-HT challenge in cortico-limbic networks. Such vulnerability of the cortical serotonergic system may contribute to the emergence of antisocial behavior after systemic challenges, observed as gene-environment interaction. Hum Brain Mapp 38:1622-1635, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. A functional connectivity comparison between attention deficit hyperactivity disorder and bipolar disorder in medication-naïve adolescents with mood fluctuation and attention problems.

    PubMed

    Son, Young Don; Han, Doug Hyun; Kim, Sun Mi; Min, Kyung Joon; Renshaw, Perry F

    2017-05-30

    In order to compare patterns of connectivity between affective and attention networks in adolescents with bipolar disorder (BD) and attention deficit hyperactivity disorder (ADHD), we investigated differences in resting state functional connectivity (RSFC) between these populations. Study participants were medication-naïve adolescents (aged 13-18 years) with BD (N=22) or ADHD (N=25) and age- and sex-matched healthy adolescents (healthy controls [HC]) (N=22). Forty-seven adolescents with mood fluctuation and attention problems showed increased functional correlation (FC) between two pairs of regions within the affective network (AFN), compared to 22 HC: the left orbitofrontal cortex (OFC) to the left thalamus and the left OFC to the right thalamus. In post-hoc testing, adolescents with BD showed increased FC between two pairs of regions compared to ADHD: the right amygdala to the left temporoparietal junction (TPJ) and the right amygdala to the right TPJ. Adolescents with BD showed increased FC within the attention network (ATN) as well as increased FC between the ATN and the AFN, while those with ADHD showed decreased FC within the ATN. The current suggests that these features could be used as biomarkers for differentiating BD from ADHD in adolescents. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. Sex differences in effective fronto-limbic connectivity during negative emotion processing.

    PubMed

    Lungu, Ovidiu; Potvin, Stéphane; Tikàsz, Andràs; Mendrek, Adrianna

    2015-12-01

    In view of the greater prevalence of depression and anxiety disorders in women than in men, functional magnetic resonance imaging (fMRI) studies have examined sex-differences in brain activations during emotion processing. Comparatively, sex-differences in brain connectivity received little attention, despite evidence for important fronto-limbic connections during emotion processing across sexes. Here, we investigated sex-differences in fronto-limbic connectivity during negative emotion processing. Forty-six healthy individuals (25 women, 21 men) viewed negative, positive and neutral images during an fMRI session. Effective connectivity between significantly activated regions was examined using Granger causality and psychophysical interaction analyses. Sex steroid hormones and feminine-masculine traits were also measured. Subjective ratings of negative emotional images were higher in women than in men. Across sexes, significant activations were observed in the dorso-medial prefrontal cortex (dmPFC) and the right amygdala. Granger connectivity from right amygdala was significantly greater than that from dmPFC during the 'high negative' condition, an effect driven by men. Magnitude of this effect correlated negatively with highly negative image ratings and feminine traits and positively with testosterone levels. These results highlight critical sex differences in brain connectivity during negative emotion processing and point to the fact that both biological (sex steroid hormones) and psychosocial (gender role and identity) variables contribute to them. As the dmPFC is involved in social cognition and action planning, and the amygdala-in threat detection, the connectivity results suggest that compared to women, men have a more evaluative, rather than purely affective, brain response during negative emotion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Functional Brain Activation to Emotional and non-Emotional Faces in Healthy Children: Evidence for Developmentally Undifferentiated Amygdala Function During the School Age Period

    PubMed Central

    Pagliaccio, David; Luby, Joan L.; Gaffrey, Michael S.; Belden, Andrew C.; Botteron, Kelly N.; Harms, Michael P.; Barch, Deanna M.

    2013-01-01

    The amygdala is a key region in emotion processing. Particularly, fMRI studies have demonstrated that the amygdala is active during the viewing of emotional faces. Previous research has consistently found greater amygdala responses to fearful faces as compared to neutral faces in adults, convergent with a focus in the animal literature on the amygdala's role in fear processing. Studies have found that the amygdala also responds differentially to other facial emotion types in adults. Yet, the literature regarding when this differential amygdala responsivity develops is limited and mixed. Thus, the goal of current study was to examine amygdala responses to emotional and neutral faces in a relatively large sample of healthy school age children (N = 52). While the amygdala was active in response to emotional and neutral faces, the results do not support the hypothesis that the amygdala responds differentially to emotional faces in 7 – 12 year old children. Nonetheless, amygdala activity was correlated with the severity of subclinical depression symptoms and emotional regulation skills. Additionally, sex differences were observed in frontal, temporal, and visual regions as well as effects of pubertal development in visual regions. These findings suggest important differences in amygdala reactivity in childhood. PMID:23636982

  9. Addiction Related Alteration in Resting-state Brain Connectivity

    PubMed Central

    Ma, Ning; Liu, Ying; Li, Nan; Wang, Chang-Xin; Zhang, Hao; Jiang, Xiao-Feng; Xu, Hu-Sheng; Fu, Xian-Ming; Hu, Xiaoping; Zhang, Da-Ren

    2009-01-01

    It is widely accepted that addictive drug use is related to abnormal functional organization in the user’s brain. The present study aimed to identify this type of abnormality within the brain networks implicated in addiction by resting-state functional connectivity measured with functional magnetic resonance imaging (fMRI). With fMRI data acquired during resting state from 14 chronic heroin users (12 of whom were being treated with methadone) and 13 non-addicted controls, we investigated the addiction related alteration in functional connectivity between the regions in the circuits implicated in addiction with seed-based correlation analysis. Compared with controls, chronic heroin users showed increased functional connectivity between nucleus accumbens and ventral/rostral anterior cingulate cortex (ACC), and orbital frontal cortex (OFC), between amygdala and OFC; and reduced functional connectivity between prefrontal cortex and OFC, and ACC. These observations of altered resting-state functional connectivity suggested abnormal functional organization in the addicted brain and may provide additional evidence supporting the theory of addiction that emphasizes enhanced salience value of a drug and its related cues but weakened cognitive control in the addictive state. PMID:19703568

  10. Reduced modulation of thalamocortical connectivity during exposure to sensory stimuli in ASD.

    PubMed

    Green, Shulamite A; Hernandez, Leanna; Bookheimer, Susan Y; Dapretto, Mirella

    2017-05-01

    Recent evidence for abnormal thalamic connectivity in autism spectrum disorders (ASD) and sensory processing disorders suggests the thalamus may play a role in sensory over-responsivity (SOR), an extreme negative response to sensory stimuli, which is common in ASD. However, there is yet little understanding of changes in thalamic connectivity during exposure to aversive sensory inputs in individuals with ASD. In particular, the pulvinar nucleus of the thalamus is implicated in atypical sensory processing given its role in selective attention, regulation, and sensory integration. This study aimed to examine the role of pulvinar connectivity in ASD during mildly aversive sensory input. Functional magnetic resonance imaging was used to examine connectivity with the pulvinar during exposure to mildly aversive auditory and tactile stimuli in 38 youth (age 9-17; 19 ASD, 19 IQ-matched typically developing (TD)). Parents rated children's SOR severity on two standard scales. Compared to TD, ASD participants displayed aberrant modulation of connectivity between pulvinar and cortex (including sensory-motor and prefrontal regions) during sensory stimulation. In ASD participants, pulvinar-amygdala connectivity was correlated with severity of SOR symptoms. Deficits in modulation of thalamocortical connectivity in youth with ASD may reflect reduced thalamo-cortical inhibition in response to sensory stimulation, which could lead to difficulty filtering out and/or integrating sensory information. An increase in amygdala connectivity with the pulvinar might be partially responsible for deficits in selective attention as the amygdala signals the brain to attend to distracting sensory stimuli. Autism Res 2017, 10: 801-809. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  11. The role of the amygdala during emotional processing in Huntington's disease: from pre-manifest to late stage disease.

    PubMed

    Mason, Sarah L; Zhang, Jiaxiang; Begeti, Faye; Guzman, Natalie Valle; Lazar, Alpar S; Rowe, James B; Barker, Roger A; Hampshire, Adam

    2015-04-01

    Deficits in emotional processing can be detected in the pre-manifest stage of Huntington's disease and negative emotion recognition has been identified as a predictor of clinical diagnosis. The underlying neuropathological correlates of such deficits are typically established using correlative structural MRI studies. This approach does not take into consideration the impact of disruption to the complex interactions between multiple brain circuits on emotional processing. Therefore, exploration of the neural substrates of emotional processing in pre-manifest HD using fMRI connectivity analysis may be a useful way of evaluating the way brain regions interrelate in the period prior to diagnosis. We investigated the impact of predicted time to disease onset on brain activation when participants were exposed to pictures of faces with angry and neutral expressions, in 20 pre-manifest HD gene carriers and 23 healthy controls. On the basis of the results of this initial study went on to look at amygdala dependent cognitive performance in 79 Huntington's disease patients from a cross-section of disease stages (pre-manifest to late disease) and 26 healthy controls, using a validated theory of mind task: "the Reading the Mind in the Eyes Test" which has been previously been shown to be amygdala dependent. Psychophysiological interaction analysis identified reduced connectivity between the left amygdala and right fusiform facial area in pre-manifest HD gene carriers compared to controls when viewing angry compared to neutral faces. Change in PPI connectivity scores correlated with predicted time to disease onset (r=0.45, p<0.05). Furthermore, performance on the "Reading the Mind in the Eyes Test" correlated negatively with proximity to disease onset and became progressively worse with each stage of disease. Abnormalities in the neural networks underlying social cognition and emotional processing can be detected prior to clinical diagnosis in Huntington's disease. Connectivity

  12. Preliminary differences in resting state MEG functional connectivity pre- and post-ketamine in major depressive disorder.

    PubMed

    Nugent, Allison C; Robinson, Stephen E; Coppola, Richard; Zarate, Carlos A

    2016-08-30

    Functional neuroimaging techniques including magnetoencephalography (MEG) have demonstrated that the brain is organized into networks displaying correlated activity. Group connectivity differences between healthy controls and participants with major depressive disorder (MDD) can be detected using temporal independent components analysis (ICA) on beta-bandpass filtered Hilbert envelope MEG data. However, the response of these networks to treatment is unknown. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects. We obtained MEG recordings before and after open-label infusion of 0.5mg/kg ketamine in MDD subjects (N=13) and examined networks previously shown to differ between healthy individuals and those with MDD. Connectivity between the amygdala and an insulo-temporal component decreased post-ketamine in MDD subjects towards that observed in control subjects at baseline. Decreased baseline connectivity of the subgenual anterior cingulate cortex (sgACC) with a bilateral precentral network had previously been observed in MDD compared to healthy controls, and the change in connectivity post-ketamine was proportional to the change in sgACC glucose metabolism in a subset (N=8) of subjects receiving [11F]FDG-PET imaging. Ketamine appeared to reduce connectivity, regardless of whether connectivity was abnormally high or low compared to controls at baseline. These preliminary findings suggest that sgACC connectivity may be directly related to glutamate levels. Published by Elsevier Ireland Ltd.

  13. Correlation Between Activation of the Prelimbic Cortex, Basolateral Amygdala, and Agranular Insular Cortex During Taste Memory Formation.

    PubMed

    Uematsu, Akira; Kitamura, Akihiko; Iwatsuki, Ken; Uneyama, Hisayuki; Tsurugizawa, Tomokazu

    2015-09-01

    Conditioned taste aversion (CTA) is a well-established learning paradigm, whereby animals associate tastes with subsequent visceral illness. The prelimbic cortex (PL) has been shown to be involved in the association of events separated by time. However, the nature of PL activity and its functional network in the whole brain during CTA learning remain unknown. Here, using awake functional magnetic resonance imaging and fiber tracking, we analyzed functional brain connectivity during the association of tastes and visceral illness. The blood oxygen level-dependent (BOLD) signal significantly increased in the PL after tastant and lithium chloride (LiCl) infusions. The BOLD signal in the PL significantly correlated with those in the amygdala and agranular insular cortex (IC), which we found were also structurally connected to the PL by fiber tracking. To precisely examine these data, we then performed double immunofluorescence with a neuronal activity marker (c-Fos) and an inhibitory neuron marker (GAD67) combined with a fluorescent retrograde tracer in the PL. During CTA learning, we found an increase in the activity of excitatory neurons in the basolateral amygdala (BLA) or agranular IC that project to the PL. Taken together, these findings clearly identify a role of synchronized PL, agranular IC, and BLA activity in CTA learning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Amygdala volume and verbal memory performance in schizophrenia and bipolar disorder.

    PubMed

    Killgore, William D S; Rosso, Isabelle M; Gruber, Staci A; Yurgelun-Todd, Deborah A

    2009-03-01

    To clarify the relationship between amygdala-hippocampal volume and cognitive performance in schizophrenia and bipolar disorder. Abnormalities of the amygdala-hippocampal complex and memory deficits have been reported in both schizophrenia and bipolar illness. We examined memory performance and its relationship to the volumes of the whole brain, lateral ventricles, hippocampus, and amygdala using morphometric magnetic resonance imaging in 19 patients with schizophrenia, 11 bipolar patients, and 20 healthy controls. Schizophrenia patients performed more poorly than bipolar patients and controls on indices of memory functioning, whereas patients with bipolar disorder showed milder impairments relative to controls. The schizophrenia group showed reduced total cerebral volume and enlarged ventricles relative to controls, but no group differences were found for amygdala or hippocampal volume. Left amygdala volume was predictive of memory performance in both groups, correlating positively with better immediate and delayed verbal memory for bipolar patients and negatively with immediate and delayed verbal recall for schizophrenia patients. Amygdala volume was unrelated to memory performance in healthy subjects. Schizophrenia and bipolar disorder both seem to be associated with anomalous and differential limbic volume-function relationships, such that the amygdala may facilitate hippocampal-dependent memory processes in bipolar disorder but impair these same processes in schizophrenia.

  15. Working memory for social cues recruits orbitofrontal cortex and amygdala: a functional magnetic resonance imaging study of delayed matching to sample for emotional expressions.

    PubMed

    LoPresti, Matthew L; Schon, Karin; Tricarico, Marisa D; Swisher, Jascha D; Celone, Kim A; Stern, Chantal E

    2008-04-02

    During everyday interactions, we continuously monitor and maintain information about different individuals and their changing emotions in memory. Yet to date, working memory (WM) studies have primarily focused on mechanisms for maintaining face identity, but not emotional expression, and studies investigating the neural basis of emotion have focused on transient activity, not delay related activity. The goal of this functional magnetic resonance imaging study was to investigate WM for two critical social cues: identity and emotion. Subjects performed a delayed match-to-sample task that required them to match either the emotional expression or the identity of a face after a 10 s delay. Neuroanatomically, our predictions focused on the orbitofrontal cortex (OFC) and the amygdala, as these regions have previously been implicated in emotional processing and long-term memory, and studies have demonstrated sustained OFC and medial temporal lobe activity during visual WM. Consistent with previous studies, transient activity during the sample period representing emotion and identity was found in the superior temporal sulcus and inferior occipital cortex, respectively. Sustained delay-period activity was evident in OFC, amygdala, and hippocampus, for both emotion and identity trials. These results suggest that, although initial processing of emotion and identity is accomplished in anatomically segregated temporal and occipital regions, sustained delay related memory for these two critical features is held by the OFC, amygdala and hippocampus. These regions share rich connections, and have been shown previously to be necessary for binding features together in long-term memory. Our results suggest a role for these regions in active maintenance as well.

  16. Generous economic investments after basolateral amygdala damage.

    PubMed

    van Honk, Jack; Eisenegger, Christoph; Terburg, David; Stein, Dan J; Morgan, Barak

    2013-02-12

    Contemporary economic models hold that instrumental and impulsive behaviors underlie human social decision making. The amygdala is assumed to be involved in social-economic behavior, but its role in human behavior is poorly understood. Rodent research suggests that the basolateral amygdala (BLA) subserves instrumental behaviors and regulates the central-medial amygdala, which subserves impulsive behaviors. The human amygdala, however, typically is investigated as a single unit. If these rodent data could be translated to humans, selective dysfunction of the human BLA might constrain instrumental social-economic decisions and result in more impulsive social-economic choice behavior. Here we show that humans with selective BLA damage and a functional central-medial amygdala invest nearly 100% more money in unfamiliar others in a trust game than do healthy controls. We furthermore show that this generosity is not caused by risk-taking deviations in nonsocial contexts. Moreover, these BLA-damaged subjects do not expect higher returns or perceive people as more trustworthy, implying that their generous investments are not instrumental in nature. These findings suggest that the human BLA is essential for instrumental behaviors in social-economic interactions.

  17. Impact of transient emotions on functional connectivity during subsequent resting state: a wavelet correlation approach.

    PubMed

    Eryilmaz, Hamdi; Van De Ville, Dimitri; Schwartz, Sophie; Vuilleumier, Patrik

    2011-02-01

    The functional properties of resting brain activity are poorly understood, but have generally been related to self-monitoring and introspective processes. Here we investigated how emotionally positive and negative information differentially influenced subsequent brain activity at rest. We acquired fMRI data in 15 participants during rest periods following fearful, joyful, and neutral movies. Several brain regions were more active during resting than during movie-watching, including posterior/anterior cingulate cortices (PCC, ACC), bilateral insula and inferior parietal lobules (IPL). Functional connectivity at different frequency bands was also assessed using a wavelet correlation approach and small-world network analysis. Resting activity in ACC and insula as well as their coupling were strongly enhanced by preceding emotions, while coupling between ventral-medial prefrontal cortex and amygdala was selectively reduced. These effects were more pronounced after fearful than joyful movies for higher frequency bands. Moreover, the initial suppression of resting activity in ACC and insula after emotional stimuli was followed by a gradual restoration over time. Emotions did not affect IPL average activity but increased its connectivity with other regions. These findings reveal specific neural circuits recruited during the recovery from emotional arousal and highlight the complex functional dynamics of default mode networks in emotionally salient contexts. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Dynamic functional connectivity and individual differences in emotions during social stress.

    PubMed

    Tobia, Michael J; Hayashi, Koby; Ballard, Grey; Gotlib, Ian H; Waugh, Christian E

    2017-12-01

    Exposure to acute stress induces multiple emotional responses, each with their own unique temporal dynamics. Dynamic functional connectivity (dFC) measures the temporal variability of network synchrony and captures individual differences in network neurodynamics. This study investigated the relationship between dFC and individual differences in emotions induced by an acute psychosocial stressor. Sixteen healthy adult women underwent fMRI scanning during a social evaluative threat (SET) task, and retrospectively completed questionnaires that assessed individual differences in subjectively experienced positive and negative emotions about stress and stress relief during the task. Group dFC was decomposed with parallel factor analysis (PARAFAC) into 10 components, each with a temporal signature, spatial network of functionally connected regions, and vector of participant loadings that captures individual differences in dFC. Participant loadings of two networks were positively correlated with stress-related emotions, indicating the existence of networks for positive and negative emotions. The emotion-related networks involved the ventromedial prefrontal cortex, cingulate cortex, anterior insula, and amygdala, among other distributed brain regions, and time signatures for these emotion-related networks were uncorrelated. These findings demonstrate that individual differences in stress-induced positive and negative emotions are each uniquely associated with large-scale brain networks, and suggest that dFC is a mechanism that generates individual differences in the emotional components of the stress response. Hum Brain Mapp 38:6185-6205, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Functional effects of polymorphisms on glucocorticoid receptor modulation of human anxiogenic substance-P gene promoter activity in primary amygdala neurones.

    PubMed

    Hay, Colin W; Shanley, Lynne; Davidson, Scott; Cowie, Philip; Lear, Marissa; McGuffin, Peter; Riedel, Gernot; McEwan, Iain J; MacKenzie, Alasdair

    2014-09-01

    Expression or introduction of the neuropeptide substance-P (SP; encoded by the TAC1 gene in humans and Tac1 in rodents) in the amygdala induces anxiety related behaviour in rodents. In addition, pharmacological antagonism of the main receptor of SP in humans; NK1, is anxiolytic. In the current study, we show that the Tac1 locus is up-regulated in primary rat amygdala neurones in response to activation of the glucocorticoid receptor (GR); a classic component of the stress response. Using a combination of bioinformatics, electrophoretic mobility shift assays (EMSA) and reporter plasmid magnetofection into rat primary amygdala neurones we identified a highly conserved GR response sequence (2GR) in the human TAC1 promoter that binds GR in response to dexamethasone (Dex) or forskolin. We also identified a second GR binding site in the human promoter that was polymorphic and whose T-allele is only found in Japanese and Chinese populations. We present evidence that the T-allele of SNPGR increases the activity of the TAC1 promoter through de-sequestration or de-repression of 2GR. The identification of Dex/forskolin response elements in the TAC1 promoter in amygdala neurones suggests a possible link in the chain of molecular events connecting GR activation and anxiety. In addition, the discovery of a SNP which can alter this response may have implications for our understanding of the role of regulatory variation in susceptibility to stress in specific populations. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Amygdala reactivity to fearful faces correlates positively with impulsive aggression.

    PubMed

    da Cunha-Bang, Sofi; Fisher, Patrick M; Hjordt, Liv V; Holst, Klaus; Knudsen, Gitte M

    2018-01-07

    Facial expressions robustly activate the amygdala, a brain structure playing a critical role in aggression. Whereas previous studies suggest that amygdala reactivity is related to various measures of impulsive aggression, we here estimate a composite measure of impulsive aggression and evaluate whether it is associated with amygdala reactivity to angry and fearful faces. We estimated amygdala reactivity with functional magnetic resonance imaging in 47 men with varying degree of aggressive traits (19 incarcerated violent offenders and 28 healthy controls). We modeled a composite "impulsive aggression" trait construct (LV agg ) using a linear structural equation model, with a single latent variable capturing the shared correlation between five self-report measures of trait aggression, anger and impulsivity. We tested for associations between amygdala reactivity and the LV agg , adjusting for age and group. The LV agg was significantly positively associated with amygdala reactivity to fearful (p = 0.001), but not angry faces (p = 0.9). We found no group difference in amygdala reactivity to fearful or angry faces. The findings suggest that that amygdala reactivity to fearful faces is represented by a composite index of impulsive aggression and provide evidence that impulsive aggression is associated with amygdala reactivity in response to submissive cues, i.e., fearful faces.

  1. Emotion triggers executive attention: anterior cingulate cortex and amygdala responses to emotional words in a conflict task.

    PubMed

    Kanske, Philipp; Kotz, Sonja A

    2011-02-01

    Coherent behavior depends on attentional control that detects and resolves conflict between opposing actions. The current functional magnetic resonance imaging study tested the hypothesis that emotion triggers attentional control to speed up conflict processing in particularly salient situations. Therefore, we presented emotionally negative and neutral words in a version of the flanker task. In response to conflict, we found activation of the dorsal anterior cingulate cortex (ACC) and of the amygdala for emotional stimuli. When emotion and conflict coincided, a region in the ventral ACC was activated, which resulted in faster conflict processing in reaction times. Emotion also increased functional connectivity between the ventral ACC and activation of the dorsal ACC and the amygdala in conflict trials. These data suggest that the ventral ACC integrates emotion and conflict and prioritizes the processing of conflict in emotional trials. This adaptive mechanism ensures rapid detection and resolution of conflict in potentially threatening situations signaled by emotional stimuli. Copyright © 2010 Wiley-Liss, Inc.

  2. Successful group psychotherapy of depression in adolescents alters fronto-limbic resting-state connectivity.

    PubMed

    Straub, J; Metzger, C D; Plener, P L; Koelch, M G; Groen, G; Abler, B

    2017-02-01

    Current resting state imaging findings support suggestions that the neural signature of depression and therefore also its therapy should be conceptualized as a network disorder rather than a dysfunction of specific brain regions. In this study, we compared neural connectivity of adolescent patients with depression (PAT) and matched healthy controls (HC) and analysed pre-to-post changes of seed-based network connectivities in PAT after participation in a cognitive behavioral group psychotherapy (CBT). 38 adolescents (30 female; 19 patients; 13-18 years) underwent an eyes-closed resting-state scan. PAT were scanned before (pre) and after (post) five sessions of CBT. Resting-state functional connectivity was analysed in a seed-based approach for right-sided amygdala and subgenual anterior cingulate cortex (sgACC). Symptom severity was assessed using the Beck Depression Inventory Revision (BDI-II). Prior to group CBT, between groups amygdala and sgACC connectivity with regions of the default mode network was stronger in the patients group relative to controls. Within the PAT group, a similar pattern significantly decreased after successful CBT. Conversely, seed-based connectivity with affective regions and regions processing cognition and salient stimuli was stronger in HC relative to PAT before CBT. Within the PAT group, a similar pattern changed with CBT. Changes in connectivity correlated with the significant pre-to-post symptom improvement, and pre-treatment amygdala connectivity predicted treatment response in depressed adolescents. Sample size and missing long-term follow-up limit the interpretability. Successful group psychotherapy of depression in adolescents involved connectivity changes in resting state networks to that of healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.

    PubMed

    McGarry, Laura M; Carter, Adam G

    2016-09-07

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared

  4. Amygdala lesions reduce cataplexy in orexin knock-out mice.

    PubMed

    Burgess, Christian R; Oishi, Yo; Mochizuki, Takatoshi; Peever, John H; Scammell, Thomas E

    2013-06-05

    Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of rapid eye movement sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal gray, lateral pontine tegmentum, locus ceruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knock-out mice, a model of narcolepsy. These lesions did not alter basic sleep-wake behavior but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia.

  5. vlPFC-vmPFC-Amygdala Interactions Underlie Age-Related Differences in Cognitive Regulation of Emotion.

    PubMed

    Silvers, Jennifer A; Insel, Catherine; Powers, Alisa; Franz, Peter; Helion, Chelsea; Martin, Rebecca E; Weber, Jochen; Mischel, Walter; Casey, B J; Ochsner, Kevin N

    2017-07-01

    Emotion regulation is a critical life skill that develops throughout childhood and adolescence. Despite this development in emotional processes, little is known about how the underlying brain systems develop with age. This study examined emotion regulation in 112 individuals (aged 6-23 years) as they viewed aversive and neutral images using a reappraisal task. On "reappraisal" trials, participants were instructed to view the images as distant, a strategy that has been previously shown to reduce negative affect. On "reactivity" trials, participants were instructed to view the images without regulating emotions to assess baseline emotional responding. During reappraisal, age predicted less negative affect, reduced amygdala responses and inverse coupling between the ventromedial prefrontal cortex (vmPFC) and amygdala. Moreover, left ventrolateral prefrontal (vlPFC) recruitment mediated the relationship between increasing age and diminishing amygdala responses. This negative vlPFC-amygdala association was stronger for individuals with inverse coupling between the amygdala and vmPFC. These data provide evidence that vmPFC-amygdala connectivity facilitates vlPFC-related amygdala modulation across development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Fear-Specific Amygdala Function in Children and Adolescents on the Fragile X Spectrum: A Dosage Response of the FMR1 Gene

    PubMed Central

    Kim, So-Yeon; Burris, Jessica; Bassal, Frederick; Koldewyn, Kami; Chattarji, Sumantra; Tassone, Flora; Hessl, David; Rivera, Susan M.

    2014-01-01

    Mutations of the fragile X mental retardation 1 (FMR1) gene are the genetic cause of fragile X syndrome (FXS). The presence of significant socioemotional problems has been well documented in FXS although the brain basis of those deficits remains unspecified. Here, we investigated amygdala dysfunction and its relation to socioemotional deficits and FMR1 gene expression in children and adolescents on the FX spectrum (i.e., individuals whose trinucleotide CGG repeat expansion from 55 to over 200 places them somewhere within the fragile X diagnostic range from premutation to full mutation). Participants performed an fMRI task in which they viewed fearful, happy, and scrambled faces. Neuroimaging results demonstrated that FX participants revealed significantly attenuated amygdala activation in Fearful > Scrambled and Fearful > Happy contrasts compared with their neurotypical counterparts, while showing no differences in amygdala volume. Furthermore, we found significant relationships between FMR1 gene expression, anxiety/social dysfunction scores, and reduced amygdala activation in the FX group. In conclusion, we report novel evidence regarding a dosage response of the FMR1 gene on fear-specific functions of the amygdala, which is associated with socioemotional deficits in FXS. PMID:23146966

  7. Functional connectivity of neural motor networks is disrupted in children with developmental coordination disorder and attention-deficit/hyperactivity disorder

    PubMed Central

    McLeod, Kevin R.; Langevin, Lisa Marie; Goodyear, Bradley G.; Dewey, Deborah

    2014-01-01

    Developmental coordination disorder (DCD) and attention deficit/hyperactivity disorder (ADHD) are prevalent childhood disorders that frequently co-occur. Evidence from neuroimaging research suggests that children with these disorders exhibit disruptions in motor circuitry, which could account for the high rate of co-occurrence. The primary objective of this study was to investigate the functional connections of the motor network in children with DCD and/or ADHD compared to typically developing controls, with the aim of identifying common neurophysiological substrates. Resting-state fMRI was performed on seven children with DCD, 21 with ADHD, 18 with DCD + ADHD and 23 controls. Resting-state connectivity of the primary motor cortex was compared between each group and controls, using age as a co-factor. Relative to controls, children with DCD and/or ADHD exhibited similar reductions in functional connectivity between the primary motor cortex and the bilateral inferior frontal gyri, right supramarginal gyrus, angular gyri, insular cortices, amygdala, putamen, and pallidum. In addition, children with DCD and/or ADHD exhibited different age-related patterns of connectivity, compared to controls. These findings suggest that children with DCD and/or ADHD exhibit disruptions in motor circuitry, which may contribute to problems with motor functioning and attention. Our results support the existence of common neurophysiological substrates underlying both motor and attention problems. PMID:24818082

  8. Sex differences in amygdala activation during the perception of facial affect.

    PubMed

    Killgore, W D; Yurgelun-Todd, D A

    2001-08-08

    The cognitive and affective systems of the cerebral cortex are often more lateralized in males than females, but it is unclear whether these differences extend to subcortical systems. We used fMRI to examine sex differences in lateralized amygdala activity during happy and fearful face perception. Amygdala activation differed for men and women depending on the valence of the expression. Overall, males were more lateralized than females, but the direction differed between valence conditions. Happy faces produced greater right than left amygdala activation for males but not females. Both sexes showed greater left amygdala activation for fearful faces. These findings suggest that the lateralization of affective function may extend beyond the cortex to subcortical regions such as the amygdala.

  9. Amygdala reactivity to negative stimuli is influenced by oral contraceptive use.

    PubMed

    Petersen, Nicole; Cahill, Larry

    2015-09-01

    The amygdala is a highly interconnected region of the brain that is critically important to emotional processing and affective networks. Previous studies have shown that the response of the amygdala to emotionally arousing stimuli can be modulated by sex hormones. Because oral contraceptive pills dramatically lower circulating sex hormone levels with potent analogs of those hormones, we performed a functional magnetic resonance imaging experiment to measure amygdala reactivity in response to emotional stimuli in women using oral contraceptives, and compared their amygdala reactivity with that of naturally cycling women. Here, we show that women who use oral contraceptive pills have significantly decreased bilateral amygdala reactivity in response to negatively valenced, emotionally arousing stimuli compared with naturally cycling women. We suggest that by modulating amygdala reactivity, oral contraceptive pills may influence behaviors that have previously been shown to be amygdala dependent-in particular, emotional memory. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Amygdala hyperactivation to angry faces in intermittent explosive disorder.

    PubMed

    McCloskey, Michael S; Phan, K Luan; Angstadt, Mike; Fettich, Karla C; Keedy, Sarah; Coccaro, Emil F

    2016-08-01

    Individuals with intermittent explosive disorder (IED) were previously found to exhibit amygdala hyperactivation and relatively reduced orbital medial prefrontal cortex (OMPFC) activation to angry faces while performing an implicit emotion information processing task during functional magnetic resonance imaging (fMRI). This study examines the neural substrates associated with explicit encoding of facial emotions among individuals with IED. Twenty unmedicated IED subjects and twenty healthy, matched comparison subjects (HC) underwent fMRI while viewing blocks of angry, happy, and neutral faces and identifying the emotional valence of each face (positive, negative or neutral). We compared amygdala and OMPFC reactivity to faces between IED and HC subjects. We also examined the relationship between amygdala/OMPFC activation and aggression severity. Compared to controls, the IED group exhibited greater amygdala response to angry (vs. neutral) facial expressions. In contrast, IED and control groups did not differ in OMPFC activation to angry faces. Across subjects amygdala activation to angry faces was correlated with number of prior aggressive acts. These findings extend previous evidence of amygdala dysfunction in response to the identification of an ecologically-valid social threat signal (processing angry faces) among individuals with IED, further substantiating a link between amygdala hyperactivity to social signals of direct threat and aggression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Task-irrelevant fear enhances amygdala-FFG inhibition and decreases subsequent face processing.

    PubMed

    Schulte Holthausen, Barbara; Habel, Ute; Kellermann, Thilo; Schelenz, Patrick D; Schneider, Frank; Christopher Edgar, J; Turetsky, Bruce I; Regenbogen, Christina

    2016-09-01

    Facial threat is associated with changes in limbic activity as well as modifications in the cortical face-related N170. It remains unclear if task-irrelevant threat modulates the response to a subsequent facial stimulus, and whether the amygdala's role in early threat perception is independent and direct, or modulatory. In 19 participants, crowds of emotional faces were followed by target faces and a rating task while simultaneous EEG-fMRI were recorded. In addition to conventional analyses, fMRI-informed EEG analyses and fMRI dynamic causal modeling (DCM) were performed. Fearful crowds reduced EEG N170 target face amplitudes and increased responses in a fMRI network comprising insula, amygdala and inferior frontal cortex. Multimodal analyses showed that amygdala response was present ∼60 ms before the right fusiform gyrus-derived N170. DCM indicated inhibitory connections from amygdala to fusiform gyrus, strengthened when fearful crowds preceded a target face. Results demonstrated the suppressing influence of task-irrelevant fearful crowds on subsequent face processing. The amygdala may be sensitive to task-irrelevant fearful crowds and subsequently strengthen its inhibitory influence on face-responsive fusiform N170 generators. This provides spatiotemporal evidence for a feedback mechanism of the amygdala by narrowing attention in order to focus on potential threats. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. How music alters a kiss: superior temporal gyrus controls fusiform–amygdalar effective connectivity

    PubMed Central

    Deserno, Lorenz; Bakels, Jan-Hendrik; Schlochtermeier, Lorna H.; Kappelhoff, Hermann; Jacobs, Arthur M.; Fritz, Thomas Hans; Koelsch, Stefan; Kuchinke, Lars

    2014-01-01

    While watching movies, the brain integrates the visual information and the musical soundtrack into a coherent percept. Multisensory integration can lead to emotion elicitation on which soundtrack valences may have a modulatory impact. Here, dynamic kissing scenes from romantic comedies were presented to 22 participants (13 females) during functional magnetic resonance imaging scanning. The kissing scenes were either accompanied by happy music, sad music or no music. Evidence from cross-modal studies motivated a predefined three-region network for multisensory integration of emotion, consisting of fusiform gyrus (FG), amygdala (AMY) and anterior superior temporal gyrus (aSTG). The interactions in this network were investigated using dynamic causal models of effective connectivity. This revealed bilinear modulations by happy and sad music with suppression effects on the connectivity from FG and AMY to aSTG. Non-linear dynamic causal modeling showed a suppressive gating effect of aSTG on fusiform–amygdalar connectivity. In conclusion, fusiform to amygdala coupling strength is modulated via feedback through aSTG as region for multisensory integration of emotional material. This mechanism was emotion-specific and more pronounced for sad music. Therefore, soundtrack valences may modulate emotion elicitation in movies by differentially changing preprocessed visual information to the amygdala. PMID:24298171

  13. Threat of Punishment Motivates Memory Encoding via Amygdala, Not Midbrain, Interactions with the Medial Temporal Lobe

    PubMed Central

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2012-01-01

    Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward. PMID:22745496

  14. Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe.

    PubMed

    Murty, Vishnu P; Labar, Kevin S; Adcock, R Alison

    2012-06-27

    Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.

  15. A probabilistic framework to infer brain functional connectivity from anatomical connections.

    PubMed

    Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel

    2011-01-01

    We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.

  16. Using novel control groups to dissect the amygdala's role in Williams syndrome.

    PubMed

    Thornton-Wells, Tricia A; Avery, Suzanne N; Blackford, Jennifer Urbano

    2011-07-01

    Williams syndrome is a neurodevelopmental disorder with an intriguing behavioral phenotype-hypersociability combined with significant non-social fears. Previous studies have demonstrated abnormalities in amygdala function in individuals with Williams syndrome compared to typically-developing controls. However, it remains unclear whether the findings are related to the atypical neurodevelopment of Williams syndrome, or are also associated with behavioral traits at the extreme end of a normal continuum. We used functional magnetic resonance imaging (fMRI) to compare amygdala blood-oxygenation-level-dependent (BOLD) responses to non-social and social images in individuals with Williams syndrome compared to either individuals with inhibited temperament (high non-social fear) or individuals with uninhibited temperament (high sociability). Individuals with Williams syndrome had larger amygdala BOLD responses when viewing the non-social fear images than the inhibited temperament control group. In contrast, when viewing both fear and neutral social images, individuals with Williams syndrome did not show smaller amygdala BOLD responses relative to the uninhibited temperament control group, but instead had amygdala responses proportionate to their sociability. These results suggest heightened amygdala response to non-social fear images is characteristic of WS, whereas, variability in amygdala response to social fear images is proportionate to, and might be explained by, levels of trait sociability.

  17. Distinctive amygdala subregions involved in emotion-modulated Stroop interference

    PubMed Central

    Han, Hyun Jung; Lee, Kanghee; Kim, Hyun Taek; Kim, Hackjin

    2014-01-01

    Despite the well-known role of the amygdala in mediating emotional interference during tasks requiring cognitive resources, no definite conclusion has yet been reached regarding the differential roles of functionally and anatomically distinctive subcomponents of the amygdala in such processes. In this study, we examined female participants and attempted to separate the neural processes for the detection of emotional information from those for the regulation of cognitive interference from emotional distractors by adding a temporal gap between emotional stimuli and a subsequent cognitive Stroop task. Reaction time data showed a significantly increased Stroop interference effect following emotionally negative stimuli compared with neutral stimuli, and functional magnetic resonance imaging data revealed that the anterior ventral amygdala (avAMYG) showed greater responses to negative stimuli compared with neutral stimuli. In addition, individuals who scored high in neuroticism showed greater posterior dorsal amygdala (pdAMYG) responses to incongruent compared with congruent Stroop trials following negative stimuli, but not following neutral stimuli. Taken together, the findings of this study demonstrated functionally distinctive contributions of the avAMYG and pdAMYG to the emotion-modulated Stroop interference effect and suggested that the avAMYG encodes associative values of emotional stimuli whereas the pdAMYG resolves cognitive interference from emotional distractors. PMID:23543193

  18. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    PubMed

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Amygdala reactivity in healthy adults is correlated with prefrontal cortical thickness.

    PubMed

    Foland-Ross, Lara C; Altshuler, Lori L; Bookheimer, Susan Y; Lieberman, Matthew D; Townsend, Jennifer; Penfold, Conor; Moody, Teena; Ahlf, Kyle; Shen, Jim K; Madsen, Sarah K; Rasser, Paul E; Toga, Arthur W; Thompson, Paul M

    2010-12-08

    Recent evidence suggests that putting feelings into words activates the prefrontal cortex (PFC) and suppresses the response of the amygdala, potentially helping to alleviate emotional distress. To further elucidate the relationship between brain structure and function in these regions, structural and functional magnetic resonance imaging (MRI) data were collected from a sample of 20 healthy human subjects. Structural MRI data were processed using cortical pattern-matching algorithms to produce spatially normalized maps of cortical thickness. During functional scanning, subjects cognitively assessed an emotional target face by choosing one of two linguistic labels (label emotion condition) or matched geometric forms (control condition). Manually prescribed regions of interest for the left amygdala were used to extract percentage signal change in this region occurring during the contrast of label emotion versus match forms. A correlation analysis between left amygdala activation and cortical thickness was then performed along each point of the cortical surface, resulting in a color-coded r value at each cortical point. Correlation analyses revealed that gray matter thickness in left ventromedial PFC was inversely correlated with task-related activation in the amygdala. These data add support to a general role of the ventromedial PFC in regulating activity of the amygdala.

  20. Structural and functional neural correlates of self-reported attachment in healthy adults: evidence for an amygdalar involvement.

    PubMed

    Rigon, Arianna; Duff, Melissa C; Voss, Michelle W

    2016-12-01

    The concept of attachment in long-term interpersonal relationships has been linked to relationship outcome and social-emotional health. To date, no relationship between the structural properties of the human amygdala and attachment in romantic relationships (measured through self-reported attachment related anxiety and avoidance) has been described. The aim of the current study was to investigate the relationship between amygdala structure as well as amygdala structural and functional connectivity and attachment anxiety and avoidance. To this end, we collected self-report attachment data on a sample of female young adults. We then examined associations between attachment and mean diffusivity, fractional anisotropy and resting state functional connectivity MRI (rs-FC) of the amygdala and its white matter connections with the prefrontal cortex. We found that lower integrity of the left amygdala was linked with attachment avoidance (e.g., being less comfortable in seeking proximity with others and depending on others) and that greater structural integrity of the uncinate fasciculus was positively associated with avoidance. Lastly, we found that stronger rs-FC between the bilateral amygdala and medial prefrontal regions was linked with greater avoidance. Our findings are compatible with and expand previous results reported by studies that have taken a task-related fMRI approach, furthering our understanding of the neurobiological mechanisms of attachment, and in particular implicating the system formed by amygdala and prefrontal areas in the patterns of behavior that regulate emotional proximity in romantic relationships. These findings have the potential to further our understanding of the affective mechanisms underlying attachment behavior.

  1. Functional Connectivity of Human Chewing

    PubMed Central

    Quintero, A.; Ichesco, E.; Schutt, R.; Myers, C.; Peltier, S.; Gerstner, G.E.

    2013-01-01

    Mastication is one of the most important orofacial functions. The neurobiological mechanisms of masticatory control have been investigated in animal models, but less so in humans. This project used functional connectivity magnetic resonance imaging (fcMRI) to assess the positive temporal correlations among activated brain areas during a gum-chewing task. Twenty-nine healthy young-adults underwent an fcMRI scanning protocol while they chewed gum. Seed-based fcMRI analyses were performed with the motor cortex and cerebellum as regions of interest. Both left and right motor cortices were reciprocally functionally connected and functionally connected with the post-central gyrus, cerebellum, cingulate cortex, and precuneus. The cerebellar seeds showed functional connections with the contralateral cerebellar hemispheres, bilateral sensorimotor cortices, left superior temporal gyrus, and left cingulate cortex. These results are the first to identify functional central networks engaged during mastication. PMID:23355525

  2. 15. Amygdala pain mechanisms

    PubMed Central

    Neugebauer, Volker

    2015-01-01

    A limbic brain area the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the “nociceptive amygdala”) accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms. PMID:25846623

  3. Bi-Directional Tuning of Amygdala Sensitivity in Combat Veterans Investigated with fMRI

    PubMed Central

    Brashers-Krug, Tom; Jorge, Ricardo

    2015-01-01

    Objectives Combat stress can be followed by persistent emotional consequences. It is thought that these emotional consequences are caused in part by increased amygdala reactivity. It is also thought that amygdala hyper-reactivity results from decreased inhibition from portions of the anterior cingulate cortex (ACC) in which activity is negatively correlated with activity in the amygdala. However, experimental support for these proposals has been inconsistent. Methods We showed movies of combat and civilian scenes during a functional magnetic resonance imaging (fMRI) session to 50 veterans of recent combat. We collected skin conductance responses (SCRs) as measures of emotional arousal. We examined the relation of blood oxygenation-level dependent (BOLD) signal in the amygdala and ACC to symptom measures and to SCRs. Results Emotional arousal, as measured with SCR, was greater during the combat movie than during the civilian movie and did not depend on symptom severity. As expected, amygdala signal during the less-arousing movie increased with increasing symptom severity. Surprisingly, during the more-arousing movie amygdala signal decreased with increasing symptom severity. These differences led to the unexpected result that amygdala signal in highly symptomatic subjects was lower during the more-arousing movie than during the less-arousing movie. Also unexpectedly, we found no significant inverse correlation between any portions of the amygdala and ACC. Rather, signal throughout more than 80% of the ACC showed a strong positive correlation with signal throughout more than 90% of the amygdala. Conclusions Amygdala reactivity can be tuned bi-directionally, either up or down, in the same person depending on the stimulus and the degree of post-traumatic symptoms. The exclusively positive correlations in BOLD activity between the amygdala and ACC contrast with findings that have been cited as evidence for inhibitory control of the amygdala by the ACC. The

  4. Re-valuing the amygdala.

    PubMed

    Morrison, Sara E; Salzman, C Daniel

    2010-04-01

    Recent advances indicate that the amygdala represents valence: a general appetitive/aversive affective characteristic that bears similarity to the neuroeconomic concept of value. Neurophysiological studies show that individual amygdala neurons respond differentially to a range of stimuli with positive or negative affective significance. Meanwhile, increasingly specific lesion/inactivation studies reveal that the amygdala is necessary for processes--for example, fear extinction and reinforcer devaluation--that involve updating representations of value. Furthermore, recent neuroimaging studies suggest that the human amygdala mediates performance on many reward-based decision-making tasks. The encoding of affective significance by the amygdala might be best described as a representation of state value-a representation that is useful for coordinating physiological, behavioral, and cognitive responses in an affective/emotional context. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Amygdala volumes in childhood absence epilepsy.

    PubMed

    Schreibman Cohen, Ayelet; Daley, Melita; Siddarth, Prabha; Levitt, Jennifer; Loesch, Ingrid K; Altshuler, Lori; Ly, Ronald; Shields, W Donald; Gurbani, Suresh; Caplan, Rochelle

    2009-11-01

    Abnormal amygdala volumes in pediatric mood-anxiety disorders and attention deficit hyperactivity disorder (ADHD), as well as high rates of these diagnoses in childhood absence epilepsy (CAE), prompted this study of amygdala volume in CAE. Twenty-six children with CAE and 23 normal children, aged 6.6-15.8 years, underwent MRI at 1.5 T. The tissue imaged with MRI was segmented, and amygdala volumes were obtained by manual tracings. There were no significant amygdala volume differences between the CAE and normal groups. Within the CAE group, however, the children with ADHD had significantly smaller amygdala volumes than the subjects with CAE with no psychopathology and those with mood/anxiety diagnoses. There was also a significant relationship between higher seizure frequency and greater amygdala asymmetry in the epilepsy group. Given ongoing development of the amygdala during late childhood and adolescence, despite the lack of significant group differences in amygdala volumes, the association of amygdala volume abnormalities with ADHD and seizure frequency implies a possible impact of the disorder on amygdala development and CAE-associated comorbidities, such as ADHD.

  6. The effect of competitive and non-competitive NMDA receptor antagonists, ACPC and MK-801 on NPY and CRF-like immunoreactivity in the rat brain amygdala.

    PubMed

    Wierońska, J M; Brański, P; Pałvcha, A; Smiałowska, M

    2001-01-01

    Amygdala is the brain structure responsible for integrating all behavior connected with fear, and in this structure two neuropeptides, neuropeptide Y (NPY), corticoliberin (CRF) and the most abundant excitatory neurotransmitter glutamate seem to take part in the regulation of anxiety behavior. Our previous studies showed the modulation of NPY and CRF expression by classical neurotransmitters in some brain structures, therefore in the present study we investigated the effect of NMDA receptor antagonists on the expression of NPY and CRF immunoreactivity in the rat brain amygdala. A non-competitive NMDA receptor antagonist, MK-801, or a functional NMDA antagonist, ACPC were used. Brains were taken out and processed by immunohistochemical method using specific NPY or CRF antibodies. The staining intensity and density of IR neurons were evaluated under a microscope in amygdala sections. It was found that both MK-801 and ACPC induced a significant decrease in NPY-immunoreactivity in amygdala nerve cell bodies and terminals, which may suggest an increased release of this peptide. CRF-IR was decreased after ACPC only. The obtained results indicate that in the amygdala, the NMDA receptors mediated glutamatergic transmission may regulate NPY neurons. Copyright 2001 Harcourt Publishers Ltd.

  7. Cortico-Amygdala Coupling as a Marker of Early Relapse Risk in Cocaine-Addicted Individuals

    PubMed Central

    McHugh, Meredith J.; Demers, Catherine H.; Salmeron, Betty Jo; Devous, Michael D.; Stein, Elliot A.; Adinoff, Bryon

    2014-01-01

    Addiction to cocaine is a chronic condition characterized by high rates of early relapse. This study builds on efforts to identify neural markers of relapse risk by studying resting-state functional connectivity (rsFC) in neural circuits arising from the amygdala, a brain region implicated in relapse-related processes including craving and reactivity to stress following acute and protracted withdrawal from cocaine. Whole-brain resting-state functional magnetic resonance imaging connectivity (6 min) was assessed in 45 cocaine-addicted individuals and 22 healthy controls. Cocaine-addicted individuals completed scans in the final week of a residential treatment episode. To approximate preclinical models of relapse-related circuitry, separate seeds were derived for the left and right basolateral (BLA) and corticomedial (CMA) amygdala. Participants also completed the Iowa Gambling Task, Wisconsin Card Sorting Test, Cocaine Craving Questionnaire, Obsessive-Compulsive Cocaine Use Scale and Personality Inventory. Relapse within the first 30 days post-treatment (n = 24) was associated with reduced rsFC between the left CMA and ventromedial prefrontal cortex/rostral anterior cingulate cortex (vmPFC/rACC) relative to cocaine-addicted individuals who remained abstinent (non-relapse, n = 21). Non-relapse participants evidenced reduced rsFC between the bilateral BLA and visual processing regions (lingual gyrus/cuneus) compared to controls and relapsed participants. Early relapse was associated with fewer years of education but unrelated to trait reactivity to stress, neurocognitive and clinical characteristics or cocaine use history. Findings suggest that rsFC within neural circuits implicated in preclinical models of relapse may provide a promising marker of relapse risk in cocaine-addicted individuals. Future efforts to replicate the current findings and alter connectivity within these circuits may yield novel interventions and improve treatment outcomes. PMID

  8. Neuroplasticity and Calcium Signaling in Stressed Rat Amygdala

    DTIC Science & Technology

    2005-02-01

    kainate receptor and neuroplasticity in the amygdala. National Institute of aging, November, 2001. • He Li: GluR5 kainate receptor mediated synaptic...functions in the amygdala. National Institute of Mental Health, April, 2002. 50 " Maria F. M. Braga: Chronic Stress Causes Impairment of aI-Adrenoceptor...resistance All animal experiments were performed in accordance with of 1.5-5.0 Mf when filled with a solution containing (in our institutional guidelines

  9. A functional polymorphism of the MAOA gene is associated with neural responses to induced anger control.

    PubMed

    Denson, Thomas F; Dobson-Stone, Carol; Ronay, Richard; von Hippel, William; Schira, Mark M

    2014-07-01

    Aggressiveness is highly heritable. Recent experimental work has linked individual differences in a functional polymorphism of the monoamine oxidase-A gene (MAOA) to anger-driven aggression. Other work has implicated the dorsal ACC (dACC) in cognitive-emotional control and the amygdala in emotional arousal. The present imaging genetics study investigated dACC and amygdala reactivity to induced anger control as a function of MAOA genotype. A research assistant asked 38 healthy male undergraduates to control their anger in response to an insult by a rude experimenter. Men with the low-expression allele showed increased dACC and amygdala activation after the insult, but men with the high-expression allele did not. Both dACC and amygdala activation independently mediated the relationship between MAOA genotype and self-reported anger control. Moreover, following the insult, men with the high-functioning allele showed functional decoupling between the amygdala and dACC, but men with the low-functioning allele did not. These results suggest that heightened dACC and amygdala activation and their connectivity are neuroaffective mechanisms underlying anger control in participants with the low-functioning allele of the MAOA gene.

  10. Effective connectivity of a reward network in obese women

    PubMed Central

    Stoeckel, Luke E.; Kim, Jieun; Weller, Rosalyn E.; Cox, James E.; Cook, Edwin W.; Horwitz, Barry

    2012-01-01

    Exaggerated reactivity to food cues in obese women appears to be mediated in part by a hyperactive reward system that includes the nucleus accumbens, amygdala, and orbitofrontal cortex. The present study used fMRI to investigate whether differences between 12 obese and 12 normal-weight women in reward-related brain activation in response to food images can be explained by changes in the functional interactions between key reward network regions. A two-step path analysis/General Linear Model approach was used to test whether there were group differences in network connections between nucleus accumbens, amygdala, and orbitofrontal cortex in response to high- and low-calorie food images. There was abnormal connectivity in the obese group in response to both high- and low-calorie food cues compared to normal-weight controls. Compared to controls, the obese group had a relative deficiency in the amygdala’s modulation of activation in both orbitofrontal cortex and nucleus accumbens, but excessive influence of orbitofrontal cortex’s modulation of activation in nucleus accumbens. The deficient projections from the amygdala might relate to suboptimal modulation of the affective/emotional aspects of a food’s reward value or an associated cue’s motivational salience, whereas increased orbitofrontal cortex to nucleus accumbens connectivity might contribute to a heightened drive to eat in response to a food cue. Thus, it is possible that not only greater activation of the reward system, but also differences in the interaction of regions in this network may contribute to the relatively increased motivational value of foods in obese individuals. PMID:19467298

  11. Comparison between subjects with long- and short-allele carriers in the BOLD signal within amygdala during emotional tasks

    NASA Astrophysics Data System (ADS)

    Hadi, Shamil; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    Emotional tasks may result in a strong blood oxygen level-dependent (BOLD) signal in the amygdala in 5- HTTLRP short-allele. Reduced anterior cingulate cortex (ACC)-amygdala connectivity in short-allele provides a potential mechanistic account for the observed increase in amygdala activity. In our study, fearful and threatening facial expressions were presented to two groups of 12 subjects with long- and short-allele carriers. The BOLD signals of the left amygdala of each group were averaged to increase the signal-to-noise ratio. A Bayesian approach was used to estimate the model parameters to elucidate the underlying hemodynamic mechanism. Our results showed a positive BOLD signal in the left amygdala for short-allele individuals, and a negative BOLD signal in the same region for long-allele individuals. This is due to the fact that short-allele is associated with lower availability of serotonin transporter (5-HTT) and this leads to an increase of serotonin (5-HT) concentration in the cACC-amygdala synapse.

  12. Cocaine users with comorbid Cluster B personality disorders show dysfunctional brain activation and connectivity in the emotional regulation networks during negative emotion maintenance and reappraisal.

    PubMed

    Albein-Urios, Natalia; Verdejo-Román, Juan; Soriano-Mas, Carles; Asensio, Samuel; Martínez-González, José Miguel; Verdejo-García, Antonio

    2013-12-01

    Cocaine dependence often co-occurs with Cluster B personality disorders. Since both disorders are characterized by emotion regulation deficits, we predicted that cocaine comorbid patients would exhibit dysfunctional patterns of brain activation and connectivity during reappraisal of negative emotions. We recruited 18 cocaine users with comorbid Cluster B personality disorders, 17 cocaine users without comorbidities and 21 controls to be scanned using functional magnetic resonance imaging (fMRI) during performance on a reappraisal task in which they had to maintain or suppress the emotions induced by negative affective stimuli. We followed region of interest (ROI) and whole-brain approaches to investigate brain activations and connectivity associated with negative emotion experience and reappraisal. Results showed that cocaine users with comorbid personality disorders had reduced activation of the subgenual anterior cingulate cortex during negative emotion maintenance and increased activation of the lateral orbitofrontal cortex and the amygdala during reappraisal. Amygdala activation correlated with impulsivity and antisocial beliefs in the comorbid group. Connectivity analyses showed that in the cocaine comorbid group the subgenual cingulate was less efficiently connected with the amygdala and the fusiform gyri and more efficiently connected with the anterior insula during maintenance, whereas during reappraisal the left orbitofrontal cortex was more efficiently connected with the amygdala and the right orbitofrontal cortex was less efficiently connected with the dorsal striatum. We conclude that cocaine users with comorbid Cluster B personality disorders have distinctive patterns of brain activation and connectivity during maintenance and reappraisal of negative emotions, which correlate with impulsivity and dysfunctional beliefs. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  13. Discrimination of amygdala response predicts future separation anxiety in youth with early deprivation.

    PubMed

    Green, Shulamite A; Goff, Bonnie; Gee, Dylan G; Gabard-Durnam, Laurel; Flannery, Jessica; Telzer, Eva H; Humphreys, Kathryn L; Louie, Jennifer; Tottenham, Nim

    2016-10-01

    Significant disruption in caregiving is associated with increased internalizing symptoms, most notably heightened separation anxiety symptoms during childhood. It is also associated with altered functional development of the amygdala, a neurobiological correlate of anxious behavior. However, much less is known about how functional alterations of amygdala predict individual differences in anxiety. Here, we probed amygdala function following institutional caregiving using very subtle social-affective stimuli (trustworthy and untrustworthy faces), which typically result in large differences in amygdala signal, and change in separation anxiety behaviors over a 2-year period. We hypothesized that the degree of differentiation of amygdala signal to trustworthy versus untrustworthy face stimuli would predict separation anxiety symptoms. Seventy-four youths mean (SD) age = 9.7 years (2.64) with and without previous institutional care, who were all living in families at the time of testing, participated in an fMRI task designed to examine differential amygdala response to trustworthy versus untrustworthy faces. Parents reported on their children's separation anxiety symptoms at the time of scan and again 2 years later. Previous institutional care was associated with diminished amygdala signal differences and behavioral differences to the contrast of untrustworthy and trustworthy faces. Diminished differentiation of these stimuli types predicted more severe separation anxiety symptoms 2 years later. Older age at adoption was associated with diminished differentiation of amygdala responses. A history of institutional care is associated with reduced differential amygdala responses to social-affective cues of trustworthiness that are typically exhibited by comparison samples. Individual differences in the degree of amygdala differential responding to these cues predict the severity of separation anxiety symptoms over a 2-year period. These findings provide a biological

  14. Visual Hallucinations Are Associated With Hyperconnectivity Between the Amygdala and Visual Cortex in People With a Diagnosis of Schizophrenia

    PubMed Central

    Ford, Judith M.; Palzes, Vanessa A.; Roach, Brian J.; Potkin, Steven G.; van Erp, Theo G. M.; Turner, Jessica A.; Mueller, Bryon A.; Calhoun, Vincent D.; Voyvodic, Jim; Belger, Aysenil; Bustillo, Juan; Vaidya, Jatin G.; Preda, Adrian; McEwen, Sarah C.; Mathalon, Daniel H.

    2015-01-01

    Introduction: While auditory verbal hallucinations (AH) are a cardinal symptom of schizophrenia, people with a diagnosis of schizophrenia (SZ) may also experience visual hallucinations (VH). In a retrospective analysis of a large sample of SZ and healthy controls (HC) studied as part of the functional magnetic resonance imaging (fMRI) Biomedical Informatics Research Network (FBIRN), we asked if SZ who endorsed experiencing VH during clinical interviews had greater connectivity between visual cortex and limbic structures than SZ who did not endorse experiencing VH. Methods: We analyzed resting state fMRI data from 162 SZ and 178 age- and gender-matched HC. SZ were sorted into groups according to clinical ratings on AH and VH: SZ with VH (VH-SZ; n = 45), SZ with AH but no VH (AH-SZ; n = 50), and SZ with neither AH nor VH (NoH-SZ; n = 67). Our primary analysis was seed based, extracting connectivity between visual cortex and the amygdala (because of its role in fear and negative emotion) and visual cortex and the hippocampus (because of its role in memory). Results: Compared with the other groups, VH-SZ showed hyperconnectivity between the amygdala and visual cortex, specifically BA18, with no differences in connectivity among the other groups. In a voxel-wise, whole brain analysis comparing VH-SZ with AH-SZ, the amygdala was hyperconnected to left temporal pole and inferior frontal gyrus in VH-SZ, likely due to their more severe thought broadcasting. Conclusions: VH-SZ have hyperconnectivity between subcortical areas subserving emotion and cortical areas subserving higher order visual processing, providing biological support for distressing VH in schizophrenia. PMID:24619536

  15. Interactions Between Anandamide and Corticotropin-Releasing Factor Signaling Modulate Human Amygdala Function and Risk for Anxiety Disorders: An Imaging Genetics Strategy for Modeling Molecular Interactions.

    PubMed

    Demers, Catherine H; Drabant Conley, Emily; Bogdan, Ryan; Hariri, Ahmad R

    2016-09-01

    Preclinical models reveal that stress-induced amygdala activity and impairment in fear extinction reflect reductions in anandamide driven by corticotropin-releasing factor receptor type 1 (CRF1) potentiation of the anandamide catabolic enzyme fatty acid amide hydrolase. Here, we provide clinical translation for the importance of these molecular interactions using an imaging genetics strategy to examine whether interactions between genetic polymorphisms associated with differential anandamide (FAAH rs324420) and CRF1 (CRHR1 rs110402) signaling modulate amygdala function and anxiety disorder diagnosis. Analyses revealed that individuals with a genetic background predicting relatively high anandamide and CRF1 signaling exhibited blunted basolateral amygdala habituation, which further mediated increased risk for anxiety disorders among these same individuals. The convergence of preclinical and clinical data suggests that interactions between anandamide and CRF1 represent a fundamental molecular mechanism regulating amygdala function and anxiety. Our results further highlight the potential of imaging genetics to powerfully translate complex preclinical findings to clinically meaningful human phenotypes. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. The social network-network: size is predicted by brain structure and function in the amygdala and paralimbic regions

    PubMed Central

    Von Der Heide, Rebecca; Vyas, Govinda

    2014-01-01

    The social brain hypothesis proposes that the large size of the primate neocortex evolved to support complex and demanding social interactions. Accordingly, recent studies have reported correlations between the size of an individual’s social network and the density of gray matter (GM) in regions of the brain implicated in social cognition. However, the reported relationships between GM density and social group size are somewhat inconsistent with studies reporting correlations in different brain regions. One factor that might account for these discrepancies is the use of different measures of social network size (SNS). This study used several measures of SNS to assess the relationships SNS and GM density. The second goal of this study was to test the relationship between social network measures and functional brain activity. Participants performed a social closeness task using photos of their friends and unknown people. Across the VBM and functional magnetic resonance imaging analyses, individual differences in SNS were consistently related to structural and functional differences in three regions: the left amygdala, right amygdala and the right entorhinal/ventral anterior temporal cortex. PMID:24493846

  17. The central amygdala circuits in fear regulation

    NASA Astrophysics Data System (ADS)

    Li, Bo

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how the CeA contributes to the learning and expression of fear remains unclear. Our recent studies in mice indicate that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). In particular, this plasticity is cell-type specific and is required for the formation of fear memory. In addition, sensory cues that predict threat can cause activation of the somatostatin-positive CeL neurons, which is sufficient to drive freezing behavior. Here I will report our recent findings regarding the circuit and cellular mechanisms underlying CeL function in fear processing.

  18. Acute Effects of Sceletium tortuosum (Zembrin), a Dual 5-HT Reuptake and PDE4 Inhibitor, in the Human Amygdala and its Connection to the Hypothalamus

    PubMed Central

    Terburg, David; Syal, Supriya; Rosenberger, Lisa A; Heany, Sarah; Phillips, Nicole; Gericke, Nigel; Stein, Dan J; van Honk, Jack

    2013-01-01

    The South African endemic plant Sceletium tortuosum has a long history of traditional use as a masticatory and medicine by San and Khoikhoi people and subsequently by European colonial farmers as a psychotropic in tincture form. Over the past decade, the plant has attracted increasing attention for its possible applications in promoting a sense of wellbeing and relieving stress in healthy individuals and for treating clinical anxiety and depression. The pharmacological actions of a standardized extract of the plant (Zembrin) have been reported to be dual PDE4 inhibition and 5-HT reuptake inhibition, a combination that has been argued to offer potential therapeutic advantages. Here we tested the acute effects of Zembrin administration in a pharmaco-fMRI study focused on anxiety-related activity in the amygdala and its connected neurocircuitry. In a double-blind, placebo-controlled, cross-over design, 16 healthy participants were scanned during performance in a perceptual-load and an emotion-matching task. Amygdala reactivity to fearful faces under low perceptual load conditions was attenuated after a single 25 mg dose of Zembrin. Follow-up connectivity analysis on the emotion-matching task showed that amygdala–hypothalamus coupling was also reduced. These results demonstrate, for the first time, the attenuating effects of S. tortuosum on the threat circuitry of the human brain and provide supporting evidence that the dual 5-HT reuptake inhibition and PDE4 inhibition of this extract might have anxiolytic potential by attenuating subcortical threat responsivity. PMID:23903032

  19. An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men

    PubMed Central

    Waller, Rebecca; Corral-Frías, Nadia S.; Vannucci, Bianca; Bogdan, Ryan; Knodt, Annchen R.; Hariri, Ahmad R.

    2016-01-01

    Variability in oxytocin (OXT) signaling is associated with individual differences in sex-specific social behavior across species. The effects of OXT signaling on social behavior are, in part, mediated through its modulation of amygdala function. Here, we use imaging genetics to examine sex-specific effects of three single-nucleotide polymorphisms in the human oxytocin receptor gene (OXTR; rs1042778, rs53576 and rs2254298) on threat-related amygdala reactivity and social behavior in 406 Caucasians. Analyses revealed that among men but not women, OXTR rs1042778 TT genotype was associated with increased right amygdala reactivity to angry facial expressions, which was uniquely related to higher levels of antisocial behavior among men. Moderated meditation analysis suggested a trending indirect effect of OXTR rs1042778 TT genotype on higher antisocial behavior via increased right amygdala reactivity to angry facial expressions in men. Our results provide evidence linking genetic variation in OXT signaling to individual differences in amygdala function. The results further suggest that these pathways may be uniquely important in shaping antisocial behavior in men. PMID:27036876

  20. Understanding amygdala responsiveness to fearful expressions through the lens of psychopathy and altruism.

    PubMed

    Marsh, Abigail A

    2016-06-01

    Because the face is the central focus of human social interactions, emotional facial expressions provide a unique window into the emotional lives of others. They play a particularly important role in fostering empathy, which entails understanding and responding to others' emotions, especially distress-related emotions such as fear. This Review considers how fearful facial as well as vocal and postural expressions are interpreted, with an emphasis on the role of the amygdala. The amygdala may be best known for its role in the acquisition and expression of conditioned fear, but it also supports the perception and recognition of others' fear. Various explanations have been supplied for the amygdala's role in interpreting and responding to fearful expressions. They include theories that amygdala responses to fearful expressions 1) reflect heightened vigilance in response to uncertain danger, 2) promote heightened attention to the eye region of faces, 3) represent a response to an unconditioned aversive stimulus, or 4) reflect the generation of an empathic fear response. Among these, only empathic fear explains why amygdala lesions would impair fear recognition across modalities. Supporting the possibility of a link between fundamental empathic processes and amygdala responses to fear is evidence that impaired fear recognition in psychopathic individuals results from amygdala dysfunction, whereas enhanced fear recognition in altruistic individuals results from enhanced amygdala function. Empathic concern and caring behaviors may be fostered by sensitivity to signs of acute distress in others, which relies on intact functioning of the amygdala. © 2015 Wiley Periodicals, Inc.

  1. The interplay of attention and emotion: top-down attention modulates amygdala activation in psychopathy.

    PubMed

    Larson, Christine L; Baskin-Sommers, Arielle R; Stout, Daniel M; Balderston, Nicholas L; Curtin, John J; Schultz, Douglas H; Kiehl, Kent A; Newman, Joseph P

    2013-12-01

    Psychopathic behavior has long been attributed to a fundamental deficit in fear that arises from impaired amygdala function. Growing evidence has demonstrated that fear-potentiated startle (FPS) and other psychopathy-related deficits are moderated by focus of attention, but to date, no work on adult psychopathy has examined attentional modulation of the amygdala or concomitant recruitment of relevant attention-related circuitry. Consistent with previous FPS findings, here we report that psychopathy-related differences in amygdala activation appear and disappear as a function of goal-directed attention. Specifically, decreased amygdala activity was observed in psychopathic offenders only when attention was engaged in an alternative goal-relevant task prior to presenting threat-relevant information. Under this condition, psychopaths also exhibited greater activation in selective-attention regions of the lateral prefrontal cortex (LPFC) than did nonpsychopaths, and this increased LPFC activation mediated psychopathy's association with decreased amygdala activation. In contrast, when explicitly attending to threat, amygdala activation did not differ in psychopaths and nonpsychopaths. This pattern of amygdala activation highlights the potential role of LPFC in mediating the failure of psychopathic individuals to process fear and other important information when it is peripheral to the primary focus of goal-directed attention.

  2. How music alters a kiss: superior temporal gyrus controls fusiform-amygdalar effective connectivity.

    PubMed

    Pehrs, Corinna; Deserno, Lorenz; Bakels, Jan-Hendrik; Schlochtermeier, Lorna H; Kappelhoff, Hermann; Jacobs, Arthur M; Fritz, Thomas Hans; Koelsch, Stefan; Kuchinke, Lars

    2014-11-01

    While watching movies, the brain integrates the visual information and the musical soundtrack into a coherent percept. Multisensory integration can lead to emotion elicitation on which soundtrack valences may have a modulatory impact. Here, dynamic kissing scenes from romantic comedies were presented to 22 participants (13 females) during functional magnetic resonance imaging scanning. The kissing scenes were either accompanied by happy music, sad music or no music. Evidence from cross-modal studies motivated a predefined three-region network for multisensory integration of emotion, consisting of fusiform gyrus (FG), amygdala (AMY) and anterior superior temporal gyrus (aSTG). The interactions in this network were investigated using dynamic causal models of effective connectivity. This revealed bilinear modulations by happy and sad music with suppression effects on the connectivity from FG and AMY to aSTG. Non-linear dynamic causal modeling showed a suppressive gating effect of aSTG on fusiform-amygdalar connectivity. In conclusion, fusiform to amygdala coupling strength is modulated via feedback through aSTG as region for multisensory integration of emotional material. This mechanism was emotion-specific and more pronounced for sad music. Therefore, soundtrack valences may modulate emotion elicitation in movies by differentially changing preprocessed visual information to the amygdala. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Heightened amygdala responsiveness in s-carriers of 5-HTTLPR genetic polymorphism reflects enhanced cortical rather than subcortical inputs: An MEG study.

    PubMed

    Luo, Qian; Holroyd, Tom; Mitchell, Derek; Yu, Henry; Cheng, Xi; Hodgkinson, Colin; Chen, Gang; McCaffrey, Daniel; Goldman, David; Blair, R James

    2017-09-01

    Short allele carriers (S-carriers) of the serotonin transporter gene (5-HTTLPR) show an elevated amygdala response to emotional stimuli relative to long allele carriers (LL-homozygous). However, whether this reflects increased responsiveness of the amygdala generally or interactions between the amygdala and the specific input systems remains unknown. It is argued that the amygdala receives input via a quick subcortical and a slower cortical pathway. If the elevated amygdala response in S-carriers reflects generally increased amygdala responding, then group differences in amygdala should be seen across the amygdala response time course. However, if the difference is a secondary consequence of enhanced amygdala-cortical interactions, then group differences might only be present later in the amygdala response. Using magnetoencephalography (MEG), we found an enhanced amygdala response to fearful expressions starting 40-50 ms poststimulus. However, group differences in the amygdala were only seen 190-200 ms poststimulus, preceded by increased superior temporal sulcus (STS) responses in S-carriers from 130 to 140 ms poststimulus. An enhanced amygdala response to angry expressions started 260-270 ms poststimulus with group differences in the amygdala starting at 160-170 ms poststimulus onset, preceded by increased STS responses in S-carriers from 150 to 160 ms poststimulus. These suggest that enhanced amygdala responses in S-carriers might reflect enhanced STS-amygdala connectivity in S-carriers. Hum Brain Mapp 38:4313-4321, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity.

    PubMed

    Bhaumik, Runa; Jenkins, Lisanne M; Gowins, Jennifer R; Jacobs, Rachel H; Barba, Alyssa; Bhaumik, Dulal K; Langenecker, Scott A

    2017-01-01

    Understanding abnormal resting-state functional connectivity of distributed brain networks may aid in probing and targeting mechanisms involved in major depressive disorder (MDD). To date, few studies have used resting state functional magnetic resonance imaging (rs-fMRI) to attempt to discriminate individuals with MDD from individuals without MDD, and to our knowledge no investigations have examined a remitted (r) population. In this study, we examined the efficiency of support vector machine (SVM) classifier to successfully discriminate rMDD individuals from healthy controls (HCs) in a narrow early-adult age range. We empirically evaluated four feature selection methods including multivariate Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net feature selection algorithms. Our results showed that SVM classification with Elastic Net feature selection achieved the highest classification accuracy of 76.1% (sensitivity of 81.5% and specificity of 68.9%) by leave-one-out cross-validation across subjects from a dataset consisting of 38 rMDD individuals and 29 healthy controls. The highest discriminating functional connections were between the left amygdala, left posterior cingulate cortex, bilateral dorso-lateral prefrontal cortex, and right ventral striatum. These appear to be key nodes in the etiopathophysiology of MDD, within and between default mode, salience and cognitive control networks. This technique demonstrates early promise for using rs-fMRI connectivity as a putative neurobiological marker capable of distinguishing between individuals with and without rMDD. These methods may be extended to periods of risk prior to illness onset, thereby allowing for earlier diagnosis, prevention, and intervention.

  5. 5-HT1A-receptor agonist modified amygdala activity and amygdala-associated social behavior in a valproate-induced rat autism model.

    PubMed

    Wang, Chao-Chuan; Lin, Hui-Ching; Chan, Yun-Han; Gean, Po-Wu; Yang, Yen Kung; Chen, Po See

    2013-10-01

    Accumulating evidence suggests that dysfunction of the amygdala is related to abnormal fear processing, anxiety, and social behaviors noted in autistic spectrum disorders (ASDs). In addition, studies have shown that disrupted brain serotonin homeostasis is linked to ASD. With a valproate (VPA)-induced rat ASD model, we investigated the possible role of amygdala serotonin homeostasis in autistic phenotypes and further explored the underlying mechanism. We first discovered that the distribution of tryptophan hydroxylase immunoreactivity in the caudal raphe system was modulated on postnatal day (PD) 28 of the VPA-exposed offspring. Then, we found a significantly higher serotonin transporter availability in the amygdala of the VPA-exposed offspring on PD 56 by using single photon emission computed tomography and computed tomography co-registration following injection of (123)I-labeled 2-((2-(dimethylamino)methyl)phenyl)thio)-5-iodophenylamine((123)I[ADAM]). Furthermore, treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, increased social interaction and improved fear memory extinction in the VPA-exposed offspring. 8-OH-DPAT treatment also reversed the characteristics of miniature excitatory post-synaptic currents as well as paired pulse facilitation observed in lateral amygdala slices. These results provided further evidence to support the role of the amygdala in characteristic behavioral changes in the rat ASD model. The serotonergic projections that modulate the amygdala function might play a certain role in the development and treatment of behavioral symptoms exhibited in individuals with ASD.

  6. Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory

    PubMed Central

    Hübner, Cora; Bosch, Daniel; Gall, Andrea; Lüthi, Andreas; Ehrlich, Ingrid

    2014-01-01

    Many lines of evidence suggest that a reciprocally interconnected network comprising the amygdala, ventral hippocampus (vHC), and medial prefrontal cortex (mPFC) participates in different aspects of the acquisition and extinction of conditioned fear responses and fear behavior. This could at least in part be mediated by direct connections from mPFC or vHC to amygdala to control amygdala activity and output. However, currently the interactions between mPFC and vHC afferents and their specific targets in the amygdala are still poorly understood. Here, we use an ex-vivo optogenetic approach to dissect synaptic properties of inputs from mPFC and vHC to defined neuronal populations in the basal amygdala (BA), the area that we identify as a major target of these projections. We find that BA principal neurons (PNs) and local BA interneurons (INs) receive monosynaptic excitatory inputs from mPFC and vHC. In addition, both these inputs also recruit GABAergic feedforward inhibition in a substantial fraction of PNs, in some neurons this also comprises a slow GABAB-component. Amongst the innervated PNs we identify neurons that project back to subregions of the mPFC, indicating a loop between neurons in mPFC and BA, and a pathway from vHC to mPFC via BA. Interestingly, mPFC inputs also recruit feedforward inhibition in a fraction of INs, suggesting that these inputs can activate dis-inhibitory circuits in the BA. A general feature of both mPFC and vHC inputs to local INs is that excitatory inputs display faster rise and decay kinetics than in PNs, which would enable temporally precise signaling. However, mPFC and vHC inputs to both PNs and INs differ in their presynaptic release properties, in that vHC inputs are more depressing. In summary, our data describe novel wiring, and features of synaptic connections from mPFC and vHC to amygdala that could help to interpret functions of these interconnected brain areas at the network level. PMID:24634648

  7. Reduced hippocampal functional connectivity in Alzheimer disease.

    PubMed

    Allen, Greg; Barnard, Holly; McColl, Roderick; Hester, Andrea L; Fields, Julie A; Weiner, Myron F; Ringe, Wendy K; Lipton, Anne M; Brooker, Matthew; McDonald, Elizabeth; Rubin, Craig D; Cullum, C Munro

    2007-10-01

    To determine if functional connectivity of the hippocampus is reduced in patients with Alzheimer disease. Functional connectivity magnetic resonance imaging was used to investigate coherence in the magnetic resonance signal between the hippocampus and all other regions of the brain. Eight patients with probable Alzheimer disease and 8 healthy volunteers. Control subjects showed hippocampal functional connectivity with diffuse cortical, subcortical, and cerebellar sites, while patients demonstrated markedly reduced functional connectivity, including an absence of connectivity with the frontal lobes. These findings suggest a functional disconnection between the hippocampus and other brain regions in patients with Alzheimer disease.

  8. Primate amygdala neurons evaluate the progress of self-defined economic choice sequences.

    PubMed

    Grabenhorst, Fabian; Hernadi, Istvan; Schultz, Wolfram

    2016-10-12

    The amygdala is a prime valuation structure yet its functions in advanced behaviors are poorly understood. We tested whether individual amygdala neurons encode a critical requirement for goal-directed behavior: the evaluation of progress during sequential choices. As monkeys progressed through choice sequences toward rewards, amygdala neurons showed phasic, gradually increasing responses over successive choice steps. These responses occurred in the absence of external progress cues or motor preplanning. They were often specific to self-defined sequences, typically disappearing during instructed control sequences with similar reward expectation. Their build-up rate reflected prospectively the forthcoming choice sequence, suggesting adaptation to an internal plan. Population decoding demonstrated a high-accuracy progress code. These findings indicate that amygdala neurons evaluate the progress of planned, self-defined behavioral sequences. Such progress signals seem essential for aligning stepwise choices with internal plans. Their presence in amygdala neurons may inform understanding of human conditions with amygdala dysfunction and deregulated reward pursuit.

  9. Sex-Related Hemispheric Lateralization of Amygdala Function in Emotionally Influenced Memory: An fMRI Investigation

    ERIC Educational Resources Information Center

    Cahill, Larry; Uncapher, Melina; Kilpatrick, Lisa; Alkire, Mike T.; Turner, Jessica

    2004-01-01

    The amygdala appears necessary for enhanced long-term memory associated with emotionally arousing events. Recent brain imaging investigations support this view and indicate a sex-related hemispheric lateralization exists in the amygdala relationship to memory for emotional material. This study confirms and further explores this finding. Healthy…

  10. The Interplay of Attention and Emotion: Top-down Attention Modulates Amygdala Activation in Psychopathy

    PubMed Central

    Larson, Christine L.; Baskin-Sommers, Arielle R.; Stout, Daniel M.; Balderston, Nicholas L.; Curtin, John J.; Schultz, Douglas H.; Kiehl, Kent A.; Newman, Joseph P.

    2013-01-01

    Psychopathic behavior has long been attributed to a fundamental deficit in fear that arises from impaired amygdala function. Growing evidence demonstrates that fear potentiated startle (FPS) and other psychopathy-related deficits are moderated by focus of attention but, to date, no work on adult psychopathy has examined attentional modulation of the amygdala, or concomitant recruitment of relevant attention-related circuitry. Consistent with previous FPS findings, here we report that psychopathy-related differences in amygdala activation appear and disappear as a function of goal-directed attention. Specifically, decreased amygdala activity was observed in psychopathic offenders only when attention was engaged in an alternative goal-relevant task prior to presenting threat-relevant information. Under this condition, psychopaths also exhibited greater activation in selective attention regions of the lateral prefrontal cortex (LPFC) than non-psychopaths, and this increased LPFC activation mediated psychopathy’s association with decreased amygdala activation. In contrast, when explicitly attending to threat, amygdala activation in psychopaths did not differ from non-psychopaths. This pattern of amygdala activation highlights the potential role of LPFC in mediating the failure of psychopathic individuals to process fear and other important information when it is peripheral to the primary focus of goal-directed attention. PMID:23712665

  11. The central amygdala controls learning in the lateral amygdala

    PubMed Central

    Yu, Kai; Ahrens, Sandra; Zhang, Xian; Schiff, Hillary; Ramakrishnan, Charu; Fenno, Lief; Deisseroth, Karl; Zhao, Fei; Luo, Min-Hua; Gong, Ling; He, Miao; Zhou, Pengcheng; Paninski, Liam; Li, Bo

    2018-01-01

    Experience-driven synaptic plasticity in the lateral amygdala (LA) is thought to underlie the formation of associations between sensory stimuli and an ensuing threat. However, how the central amygdala (CeA) participates in such learning process remains unclear. Here we show that PKC-δ-expressing CeA neurons are essential for the synaptic plasticity underlying learning in the LA, as they convey information about unconditioned stimulus to LA neurons during fear conditioning. PMID:29184202

  12. An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men.

    PubMed

    Waller, Rebecca; Corral-Frías, Nadia S; Vannucci, Bianca; Bogdan, Ryan; Knodt, Annchen R; Hariri, Ahmad R; Hyde, Luke W

    2016-08-01

    Variability in oxytocin (OXT) signaling is associated with individual differences in sex-specific social behavior across species. The effects of OXT signaling on social behavior are, in part, mediated through its modulation of amygdala function. Here, we use imaging genetics to examine sex-specific effects of three single-nucleotide polymorphisms in the human oxytocin receptor gene (OXTR; rs1042778, rs53576 and rs2254298) on threat-related amygdala reactivity and social behavior in 406 Caucasians. Analyses revealed that among men but not women, OXTR rs1042778 TT genotype was associated with increased right amygdala reactivity to angry facial expressions, which was uniquely related to higher levels of antisocial behavior among men. Moderated meditation analysis suggested a trending indirect effect of OXTR rs1042778 TT genotype on higher antisocial behavior via increased right amygdala reactivity to angry facial expressions in men. Our results provide evidence linking genetic variation in OXT signaling to individual differences in amygdala function. The results further suggest that these pathways may be uniquely important in shaping antisocial behavior in men. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Default Mode Functional Connectivity is Associated with Social Functioning in Schizophrenia

    PubMed Central

    Fox, Jaclyn M.; Abram, Samantha V.; Reilly, James L.; Eack, Shaun; Goldman, Morris B.; Csernansky, John G.; Wang, Lei; Smith, Matthew J.

    2017-01-01

    Individuals with schizophrenia display notable deficits in social functioning. Research indicates that neural connectivity within the default mode network (DMN) is related to social cognition and social functioning in healthy and clinical populations. However, the association between DMN connectivity, social cognition, and social functioning has not been studied in schizophrenia. For the present study, we used resting-state neuroimaging data to evaluate connectivity between the main DMN hubs (i.e., the medial prefrontal cortex (mPFC) and the posterior cingulate cortex-anterior precuneus (PPC)) in individuals with schizophrenia (n=28) and controls (n=32). We also examined whether DMN connectivity was associated with social functioning via social attainment (measured by the Specific Levels of Functioning Scale) and social competence (measured by the Social Skills Performance Assessment), and if social cognition mediates the association between DMN connectivity and these measures of social functioning. Results revealed that DMN connectivity did not differ between individuals with schizophrenia and controls. However, connectivity between the mPFC and PCC hubs was significantly associated with social competence and social attainment in individuals with schizophrenia but not in controls as reflected by a significant group-by-connectivity interaction. Social cognition did not mediate the association between social functioning and DMN connectivity in individuals with schizophrenia. Our findings suggest that fronto-parietal DMN connectivity in particular may be differentially associated with social functioning in schizophrenia and controls. As a result, DMN connectivity may be used as a neuroimaging marker to monitor treatment response or as a potential target for interventions that aim to enhance social functioning in schizophrenia. PMID:28358526

  14. Visual hallucinations are associated with hyperconnectivity between the amygdala and visual cortex in people with a diagnosis of schizophrenia.

    PubMed

    Ford, Judith M; Palzes, Vanessa A; Roach, Brian J; Potkin, Steven G; van Erp, Theo G M; Turner, Jessica A; Mueller, Bryon A; Calhoun, Vincent D; Voyvodic, Jim; Belger, Aysenil; Bustillo, Juan; Vaidya, Jatin G; Preda, Adrian; McEwen, Sarah C; Mathalon, Daniel H

    2015-01-01

    While auditory verbal hallucinations (AH) are a cardinal symptom of schizophrenia, people with a diagnosis of schizophrenia (SZ) may also experience visual hallucinations (VH). In a retrospective analysis of a large sample of SZ and healthy controls (HC) studied as part of the functional magnetic resonance imaging (fMRI) Biomedical Informatics Research Network (FBIRN), we asked if SZ who endorsed experiencing VH during clinical interviews had greater connectivity between visual cortex and limbic structures than SZ who did not endorse experiencing VH. We analyzed resting state fMRI data from 162 SZ and 178 age- and gender-matched HC. SZ were sorted into groups according to clinical ratings on AH and VH: SZ with VH (VH-SZ; n = 45), SZ with AH but no VH (AH-SZ; n = 50), and SZ with neither AH nor VH (NoH-SZ; n = 67). Our primary analysis was seed based, extracting connectivity between visual cortex and the amygdala (because of its role in fear and negative emotion) and visual cortex and the hippocampus (because of its role in memory). Compared with the other groups, VH-SZ showed hyperconnectivity between the amygdala and visual cortex, specifically BA18, with no differences in connectivity among the other groups. In a voxel-wise, whole brain analysis comparing VH-SZ with AH-SZ, the amygdala was hyperconnected to left temporal pole and inferior frontal gyrus in VH-SZ, likely due to their more severe thought broadcasting. VH-SZ have hyperconnectivity between subcortical areas subserving emotion and cortical areas subserving higher order visual processing, providing biological support for distressing VH in schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder.

    PubMed

    Demirtaş, Murat; Tornador, Cristian; Falcón, Carles; López-Solà, Marina; Hernández-Ribas, Rosa; Pujol, Jesús; Menchón, José M; Ritter, Petra; Cardoner, Narcis; Soriano-Mas, Carles; Deco, Gustavo

    2016-08-01

    Resting-state fMRI (RS-fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS-fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self-referential thoughts and ruminations has made the use of the resting-state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS-fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918-2930, 2016. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  16. Social scaffolding of human amygdala-mPFCcircuit development.

    PubMed

    Tottenham, Nim

    2015-01-01

    Strong evidence indicates that reciprocal connections between the amygdala and the medial prefrontal cortex (mPFC) support fundamental aspects of emotional behavior in adulthood. However, this circuitry is slow to develop in humans, exhibiting immaturity in childhood. The argument is made that the development of this circuitry in humans is intimately associated with caregiving, such that parental availability during childhood provides important and enduring scaffolding of neuroaffective processes that ultimately form of the nature of the adult phenotype.

  17. Sensitive periods of amygdala development: the role of maltreatment in preadolescence.

    PubMed

    Pechtel, Pia; Lyons-Ruth, Karlen; Anderson, Carl M; Teicher, Martin H

    2014-08-15

    The amygdala is vulnerable to stress-dependent disruptions in neural development. Animal models have shown that stress increases dendritic arborization leading to larger amygdala volumes. Human studies of early stress and amygdala volume, however, remain inconclusive. This study compared amygdala volume in adults with childhood maltreatment to that in healthy controls. Eighteen participants from a longitudinal cohort and 33 cross-sectional controls (17 M/34 F, 25.5±3.1 years) completed a structural magnetic resonance imagining scan and the Maltreatment and Abuse Chronology of Exposure scale. Random forest regression with conditional trees was used to assess relative importance of exposure to adversity at each age on amygdala, thalamic or caudate volume. Severity of exposure to adversity across age accounted for 27% of the variance in right amygdala volume. Peak sensitivity occurred at 10-11 years of age, and importance of exposure at this time was highly significant based on permutation tests (p=0.003). The regression model showed that exposure during this sensitive period resulted in steep dose-response function with maximal response to even modest levels of exposure. Subjects in the highest exposure quartile (MACE-11, range=11-54) had a 9.1% greater right amygdala volume than subjects in the lowest exposure quartile (MACE-11, ≤3.5). No associations emerged between age of exposure and volume of the left amygdala or bilateral caudate or thalamus. Severity of adversity experienced at age 10-11 contributed to larger right but not left amygdala volume in adulthood. Results provide preliminary evidence that the amygdala may have a developmental sensitive period in preadolescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Brain-derived neurotrophic factor Val66Met genotype modulates amygdala habituation.

    PubMed

    Perez-Rodriguez, M Mercedes; New, Antonia S; Goldstein, Kim E; Rosell, Daniel; Yuan, Qiaoping; Zhou, Zhifeng; Hodgkinson, Colin; Goldman, David; Siever, Larry J; Hazlett, Erin A

    2017-05-30

    A deficit in amygdala habituation to repeated emotional stimuli may be an endophenotype of disorders characterized by emotion dysregulation, such as borderline personality disorder (BPD). Amygdala reactivity to emotional stimuli is genetically modulated by brain-derived neurotrophic factor (BDNF) variants. Whether amygdala habituation itself is also modulated by BDNF genotypes remains unknown. We used imaging-genetics to examine the effect of BDNF Val66Met genotypes on amygdala habituation to repeated emotional stimuli. We used functional magnetic resonance imaging (fMRI) in 57 subjects (19 BPD patients, 18 patients with schizotypal personality disorder [SPD] and 20 healthy controls [HC]) during a task involving viewing of unpleasant, neutral, and pleasant pictures, each presented twice to measure habituation. Amygdala responses across genotypes (Val66Met SNP Met allele-carriers vs. Non-Met carriers) and diagnoses (HC, BPD, SPD) were examined with ANOVA. The BDNF 66Met allele was significantly associated with a deficit in amygdala habituation, particularly for emotional pictures. The association of the 66Met allele with a deficit in habituation to unpleasant emotional pictures remained significant in the subsample of BPD patients. Using imaging-genetics, we found preliminary evidence that deficient amygdala habituation may be modulated by BDNF genotype. Copyright © 2017. Published by Elsevier B.V.

  19. Corticotropin-Releasing Hormone Drives Anandamide Hydrolysis in the Amygdala to Promote Anxiety

    PubMed Central

    Gray, J. Megan; Vecchiarelli, Haley A.; Morena, Maria; Lee, Tiffany T.Y.; Hermanson, Daniel J.; Kim, Alexander B.; McLaughlin, Ryan J.; Hassan, Kowther I.; Kühne, Claudia; Wotjak, Carsten T.; Deussing, Jan M.; Patel, Sachin

    2015-01-01

    Corticotropin-releasing hormone (CRH) is a central integrator in the brain of endocrine and behavioral stress responses, whereas activation of the endocannabinoid CB1 receptor suppresses these responses. Although these systems regulate overlapping functions, few studies have investigated whether these systems interact. Here we demonstrate a novel mechanism of CRH-induced anxiety that relies on modulation of endocannabinoids. Specifically, we found that CRH, through activation of the CRH receptor type 1 (CRHR1), evokes a rapid induction of the enzyme fatty acid amide hydrolase (FAAH), which causes a reduction in the endocannabinoid anandamide (AEA), within the amygdala. Similarly, the ability of acute stress to modulate amygdala FAAH and AEA in both rats and mice is also mediated through CRHR1 activation. This interaction occurs specifically in amygdala pyramidal neurons and represents a novel mechanism of endocannabinoid–CRH interactions in regulating amygdala output. Functionally, we found that CRH signaling in the amygdala promotes an anxious phenotype that is prevented by FAAH inhibition. Together, this work suggests that rapid reductions in amygdala AEA signaling following stress may prime the amygdala and facilitate the generation of downstream stress-linked behaviors. Given that endocannabinoid signaling is thought to exert “tonic” regulation on stress and anxiety responses, these data suggest that CRH signaling coordinates a disruption of tonic AEA activity to promote a state of anxiety, which in turn may represent an endogenous mechanism by which stress enhances anxiety. These data suggest that FAAH inhibitors may represent a novel class of anxiolytics that specifically target stress-induced anxiety. PMID:25740517

  20. Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review.

    PubMed

    Young, Kymberly D; Zotev, Vadim; Phillips, Raquel; Misaki, Masaya; Drevets, Wayne C; Bodurka, Jerzy

    2018-04-23

    Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy. © 2018 The Author. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  1. Spontaneous brain activity following fear reminder of fear conditioning by using resting-state functional MRI

    PubMed Central

    Feng, Pan; Zheng, Yong; Feng, Tingyong

    2015-01-01

    Although disrupting reconsolidation may be a promising approach to attenuate or erase the expression of fear memory, it is not clear how the neural state following fear reminder contribute to the following fear extinction. To address this question, we used resting-state functional magnetic resonance imaging (rs-fMRI) to measure spontaneous neuronal activity and functional connectivity (RSFC) following fear reminder. Some brain regions such as dorsal anterior cingulate (dACC) and ventromedial prefrontal cortex (vmPFC) showed increased amplitude of LFF (ALFF) in the fear reminder group than the no reminder group following fear reminder. More importantly, there was much stronger functional connectivity between the amygdala and vmPFC in the fear reminder group than those in the no reminder group. These findings suggest that the strong functional connectivity between vmPFC and amygdala following a fear reminder could serve as a key role in the followed-up fear extinction stages, which may contribute to the erasing of fear memory. PMID:26576733

  2. Spontaneous brain activity following fear reminder of fear conditioning by using resting-state functional MRI.

    PubMed

    Feng, Pan; Zheng, Yong; Feng, Tingyong

    2015-11-18

    Although disrupting reconsolidation may be a promising approach to attenuate or erase the expression of fear memory, it is not clear how the neural state following fear reminder contribute to the following fear extinction. To address this question, we used resting-state functional magnetic resonance imaging (rs-fMRI) to measure spontaneous neuronal activity and functional connectivity (RSFC) following fear reminder. Some brain regions such as dorsal anterior cingulate (dACC) and ventromedial prefrontal cortex (vmPFC) showed increased amplitude of LFF (ALFF) in the fear reminder group than the no reminder group following fear reminder. More importantly, there was much stronger functional connectivity between the amygdala and vmPFC in the fear reminder group than those in the no reminder group. These findings suggest that the strong functional connectivity between vmPFC and amygdala following a fear reminder could serve as a key role in the followed-up fear extinction stages, which may contribute to the erasing of fear memory.

  3. Preregistered Replication of "Affective Flexibility: Evaluative Processing Goals Shape Amygdala Activity".

    PubMed

    Lumian, Daniel S; McRae, Kateri

    2017-09-01

    The human amygdala is sensitive to stimulus characteristics, and growing evidence suggests that it is also responsive to cognitive framing in the form of evaluative goals. To examine whether different evaluations of stimulus characteristics shape amygdala activation, we conducted a preregistered replication of Cunningham, Van Bavel, and Johnsen's (2008) study demonstrating flexible mapping of amygdala activation to stimulus characteristics, depending on evaluative goals. Participants underwent functional MRI scanning while viewing famous names under three conditions: They were asked to report their overall attitude toward each name, their positive associations only, or their negative associations only. We observed an interaction between condition and rating type, identified as the effect of interest in Cunningham et al. (2008). Specifically, postscan positivity, but not negativity, ratings predicted left amygdala activation when participants were asked to evaluate positive, but not negative, associations with the names. These results provide convergent evidence that cognitive framing, in the form of evaluative goals, can significantly alter whether amygdala activation indexes positivity or negativity.

  4. Hypervigilance for fear after basolateral amygdala damage in humans

    PubMed Central

    Terburg, D; Morgan, B E; Montoya, E R; Hooge, I T; Thornton, H B; Hariri, A R; Panksepp, J; Stein, D J; van Honk, J

    2012-01-01

    Recent rodent research has shown that the basolateral amygdala (BLA) inhibits unconditioned, or innate, fear. It is, however, unknown whether the BLA acts in similar ways in humans. In a group of five subjects with a rare genetic syndrome, that is, Urbach–Wiethe disease (UWD), we used a combination of structural and functional neuroimaging, and established focal, bilateral BLA damage, while other amygdala sub-regions are functionally intact. We tested the translational hypothesis that these BLA-damaged UWD-subjects are hypervigilant to facial expressions of fear, which are prototypical innate threat cues in humans. Our data indeed repeatedly confirm fear hypervigilance in these UWD subjects. They show hypervigilant responses to unconsciously presented fearful faces in a modified Stroop task. They attend longer to the eyes of dynamically displayed fearful faces in an eye-tracked emotion recognition task, and in that task recognize facial fear significantly better than control subjects. These findings provide the first direct evidence in humans in support of an inhibitory function of the BLA on the brain's threat vigilance system, which has important implications for the understanding of the amygdala's role in the disorders of fear and anxiety. PMID:22832959

  5. Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat.

    PubMed

    Linley, Stephanie B; Olucha-Bordonau, Francisco; Vertes, Robert P

    2017-01-01

    As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT + fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc.

  6. Individual Differences in Amygdala-Medial Prefrontal Anatomy Link Negative Affect, Impaired Social Functioning, and Polygenic Depression Risk

    PubMed Central

    Holmes, Avram J.; Lee, Phil H.; Hollinshead, Marisa O.; Bakst, Leah; Roffman, Joshua L.; Smoller, Jordan W.; Buckner, Randy L.

    2013-01-01

    Individual differences in affective and social processes may arise from variability in amygdala-medial prefrontal (mPFC) circuitry and related genetic heterogeneity. To explore this possibility in humans, we examined the structural correlates of trait negative affect in a sample of 1050 healthy young adults with no history of psychiatric illness. Analyses revealed that heightened negative affect was associated with increased amygdala volume and reduced thickness in a left mPFC region encompassing the subgenual and rostral anterior cingulate cortex. The most extreme individuals displayed an inverse correlation between amygdala volume and mPFC thickness, suggesting that imbalance between these structures is linked to negative affect in the general population. Subgroups of participants were further evaluated on social (n = 206) and emotional (n = 533) functions. Individuals with decreased mPFC thickness exhibited the poorest social cognition and were least able to correctly identify facial emotion. Given prior links between disrupted amygdala–mPFC circuitry and the presence of major depressive disorder (MDD), we explored whether the individual differences in anatomy observed here in healthy young adults were associated with polygenic risk for MDD (n = 438) using risk scores derived from a large genome-wide association analysis (n = 18,759). Analyses revealed associations between increasing polygenic burden for MDD and reduced cortical thickness in the left mPFC. These collective findings suggest that, within the healthy population, there is significant variability in amygdala–mPFC circuitry that is associated with poor functioning across affective and social domains. Individual differences in this circuitry may arise, in part, from common genetic variability that contributes to risk for MDD. PMID:23238724

  7. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit

    PubMed Central

    Anthony, Todd E.; Dee, Nick; Bernard, Amy; Lerchner, Walter; Heintz, Nathaniel; Anderson, David J.

    2014-01-01

    The extended amygdala has dominated research on the neural circuitry of fear and anxiety, but the septo-hippocampal axis plays an important role as well. The lateral septum (LS) is thought to suppress fear and anxiety, through its outputs to the hypothalamus. However, this structure has not yet been dissected using modern tools. The type 2 CRF receptor (Crfr2) marks a subset of LS neurons, whose functional connectivity we have investigated using optogenetics. Crfr2+ cells include GABAergic projection neurons that connect with the anterior hypothalamus. Surprisingly, we find that these LS outputs enhance stress-induced behavioral measures of anxiety. Furthermore, transient activation of Crfr2+ neurons promotes, while inhibition suppresses, persistent anxious behaviors. LS Crfr2+ outputs also positively regulate circulating corticosteroid levels. These data identify a subset of LS projection neurons that promote, rather than suppress, stress-induced behavioral and endocrinological dimensions of persistent anxiety states, and provide a cellular point-of-entry to LS circuitry. PMID:24485458

  8. Directional connectivity of resting state human fMRI data using cascaded ICA-PDC analysis.

    PubMed

    Silfverhuth, Minna J; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Veijola, Juha; Tervonen, Osmo; Kiviniemi, Vesa

    2011-11-01

    Directional connectivity measures, such as partial directed coherence (PDC), give us means to explore effective connectivity in the human brain. By utilizing independent component analysis (ICA), the original data-set reduction was performed for further PDC analysis. To test this cascaded ICA-PDC approach in causality studies of human functional magnetic resonance imaging (fMRI) data. Resting state group data was imaged from 55 subjects using a 1.5 T scanner (TR 1800 ms, 250 volumes). Temporal concatenation group ICA in a probabilistic ICA and further repeatability runs (n = 200) were overtaken. The reduced data-set included the time series presentation of the following nine ICA components: secondary somatosensory cortex, inferior temporal gyrus, intracalcarine cortex, primary auditory cortex, amygdala, putamen and the frontal medial cortex, posterior cingulate cortex and precuneus, comprising the default mode network components. Re-normalized PDC (rPDC) values were computed to determine directional connectivity at the group level at each frequency. The integrative role was suggested for precuneus while the role of major divergence region may be proposed to primary auditory cortex and amygdala. This study demonstrates the potential of the cascaded ICA-PDC approach in directional connectivity studies of human fMRI.

  9. Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network

    PubMed Central

    Chen, Yu-Chen; Li, Xiaowei; Liu, Lijie; Wang, Jian; Lu, Chun-Qiang; Yang, Ming; Jiao, Yun; Zang, Feng-Chao; Radziwon, Kelly; Chen, Guang-Di; Sun, Wei; Krishnan Muthaiah, Vijaya Prakash; Salvi, Richard; Teng, Gao-Jun

    2015-01-01

    Hearing loss often triggers an inescapable buzz (tinnitus) and causes everyday sounds to become intolerably loud (hyperacusis), but exactly where and how this occurs in the brain is unknown. To identify the neural substrate for these debilitating disorders, we induced both tinnitus and hyperacusis with an ototoxic drug (salicylate) and used behavioral, electrophysiological, and functional magnetic resonance imaging (fMRI) techniques to identify the tinnitus–hyperacusis network. Salicylate depressed the neural output of the cochlea, but vigorously amplified sound-evoked neural responses in the amygdala, medial geniculate, and auditory cortex. Resting-state fMRI revealed hyperactivity in an auditory network composed of inferior colliculus, medial geniculate, and auditory cortex with side branches to cerebellum, amygdala, and reticular formation. Functional connectivity revealed enhanced coupling within the auditory network and segments of the auditory network and cerebellum, reticular formation, amygdala, and hippocampus. A testable model accounting for distress, arousal, and gating of tinnitus and hyperacusis is proposed. DOI: http://dx.doi.org/10.7554/eLife.06576.001 PMID:25962854

  10. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients.

    PubMed

    Beck, Anne; Wüstenberg, Torsten; Genauck, Alexander; Wrase, Jana; Schlagenhauf, Florian; Smolka, Michael N; Mann, Karl; Heinz, Andreas

    2012-08-01

    In alcohol-dependent patients, brain atrophy and functional brain activation elicited by alcohol-associated stimuli may predict relapse. However, to date, the interaction between both factors has not been studied. To determine whether results from structural and functional magnetic resonance imaging are associated with relapse in detoxified alcohol-dependent patients. A cue-reactivity functional magnetic resonance experiment with alcohol-associated and neutral stimuli. After a follow-up period of 3 months, the group of 46 detoxified alcohol-dependent patients was subdivided into 16 abstainers and 30 relapsers. Faculty for Clinical Medicine Mannheim at the University of Heidelberg, Germany. A total of 46 detoxified alcohol-dependent patients and 46 age- and sex-matched healthy control subjects Local gray matter volume, local stimulus-related functional magnetic resonance imaging activation, joint analyses of structural and functional data with Biological Parametric Mapping, and connectivity analyses adopting the psychophysiological interaction approach. Subsequent relapsers showed pronounced atrophy in the bilateral orbitofrontal cortex and in the right medial prefrontal and anterior cingulate cortex, compared with healthy controls and patients who remained abstinent. The local gray matter volume-corrected brain response elicited by alcohol-associated vs neutral stimuli in the left medial prefrontal cortex was enhanced for subsequent relapsers, whereas abstainers displayed an increased neural response in the midbrain (the ventral tegmental area extending into the subthalamic nucleus) and ventral striatum. For alcohol-associated vs neutral stimuli in abstainers compared with relapsers, the analyses of the psychophysiological interaction showed a stronger functional connectivity between the midbrain and the left amygdala and between the midbrain and the left orbitofrontal cortex. Subsequent relapsers displayed increased brain atrophy in brain areas associated with

  11. Amygdala TDP-43 Pathology in Frontotemporal Lobar Degeneration and Motor Neuron Disease.

    PubMed

    Takeda, Takahiro; Seilhean, Danielle; Le Ber, Isabelle; Millecamps, Stéphanie; Sazdovitch, Véronique; Kitagawa, Kazuo; Uchihara, Toshiki; Duyckaerts, Charles

    2017-09-01

    TDP-43-positive inclusions are present in the amygdala in frontotemporal lobar degeneration (FTLD) and motor neuron disease (MND) including amyotrophic lateral sclerosis. Behavioral abnormalities, one of the chief symptoms of FTLD, could be, at least partly, related to amygdala pathology. We examined TDP-43 inclusions in the amygdala of patients with sporadic FTLD/MND (sFTLD/MND), FTLD/MND with mutation of the C9ORF72 (FTLD/MND-C9) and FTLD with mutation of the progranulin (FTLD-GRN). TDP-43 inclusions were common in each one of these subtypes, which can otherwise be distinguished on topographical and genetic grounds. Conventional and immunological stainings were performed and we quantified the numerical density of inclusions on a regional basis. TDP-43 inclusions in amygdala could be seen in 10 out of 26 sFTLD/MND cases, 5 out of 9 FTLD/MND-C9 cases, and all 4 FTLD-GRN cases. Their numerical density was lower in FTLD/MND-C9 than in sFTLD/MND and FTLD-GRN. TDP-43 inclusions were more numerous in the ventral region of the basolateral nucleus group in all subtypes. This contrast was apparent in sporadic and C9-mutated FTLD/MND, while it was less evident in FTLD-GRN. Such differences in subregional involvement of amygdala may be related to the region-specific neuronal connections that are differentially affected in FTLD/MND and FTLD-GRN. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  12. EEG functional connectivity is partially predicted by underlying white matter connectivity

    PubMed Central

    Chu, CJ; Tanaka, N; Diaz, J; Edlow, BL; Wu, O; Hämäläinen, M; Stufflebeam, S; Cash, SS; Kramer, MA.

    2015-01-01

    Over the past decade, networks have become a leading model to illustrate both the anatomical relationships (structural networks) and the coupling of dynamic physiology (functional networks) linking separate brain regions. The relationship between these two levels of description remains incompletely understood and an area of intense research interest. In particular, it is unclear how cortical currents relate to underlying brain structural architecture. In addition, although theory suggests that brain communication is highly frequency dependent, how structural connections influence overlying functional connectivity in different frequency bands has not been previously explored. Here we relate functional networks inferred from statistical associations between source imaging of EEG activity and underlying cortico-cortical structural brain connectivity determined by probabilistic white matter tractography. We evaluate spontaneous fluctuating cortical brain activity over a long time scale (minutes) and relate inferred functional networks to underlying structural connectivity for broadband signals, as well as in seven distinct frequency bands. We find that cortical networks derived from source EEG estimates partially reflect both direct and indirect underlying white matter connectivity in all frequency bands evaluated. In addition, we find that when structural support is absent, functional connectivity is significantly reduced for high frequency bands compared to low frequency bands. The association between cortical currents and underlying white matter connectivity highlights the obligatory interdependence of functional and structural networks in the human brain. The increased dependence on structural support for the coupling of higher frequency brain rhythms provides new evidence for how underlying anatomy directly shapes emergent brain dynamics at fast time scales. PMID:25534110

  13. The Human Ortholog of Acid-Sensing Ion Channel Gene ASIC1a Is Associated With Panic Disorder And Amygdala Structure And Function

    PubMed Central

    Smoller, Jordan W.; Gallagher, Patience J.; Duncan, Laramie E.; McGrath, Lauren M.; Haddad, Stephen A.; Holmes, Avram.; Wolf, Aaron B.; Hilker, Sidney; Block, Stefanie R.; Weill, Sydney; Young, Sarah; Choi, Eun Young; Rosenbaum, Jerrold F.; Biederman, Joseph; Faraone, Stephen V.; Roffman, Joshua; Manfro, Gisele G.; Blaya, Carolina; Hirshfeld-Becker, Dina R.; Stein, Murray B.; Van Ameringen, Michael; Tolin, David F.; Otto, Michael W.; Pollack, Mark H.; Simon, Naomi M.; Buckner, Randy L.; Ongur, Dost; Cohen, Bruce M.

    2014-01-01

    Background Individuals with panic disorder (PD) exhibit a hypersensitivity to inhaled carbon dioxide (CO2), possibly reflecting a lowered threshold for sensing signals of suffocation. Animal studies have shown that CO2-mediated fear behavior depends on chemosensing of acidosis in the amygdala via the acid sensing ion channel ASIC1a. We examined whether the human ortholog of the ASIC1a gene, ACCN2, is associated with the presence of PD and with amygdala structure and function. Methods We conducted a case-control analysis (N=414 PD cases, 846 healthy controls) of ACCN2single nucleotide polymorphisms (SNPs) and PD. We then tested whether variants showing significant association with PD are also associated with amygdala volume (n=1,048) and/or task-evoked reactivity to emotional stimuli (n=103) in healthy individuals. Results Two SNPs at the ACCN2 locus showed evidence of association with PD: rs685012 (OR=1.32, gene-wise corrected p=0.011) and rs10875995 (OR=1.26, gene-wise corrected p=0.046). The association appeared to be stronger when early-onset (age ≤ 20) PD cases and when cases with prominent respiratory symptoms were compared to controls. The PD risk allele at rs10875995 was associated with increased amygdala volume (p=0.035), as well as task-evoked amygdala reactivity to fearful and angry faces (p=0.0048). Conclusions Genetic variation at ACCN2 appears to be associated with PD and with amygdala phenotypes that have been linked to anxiety proneness. These results support the possibility that modulation of acid-sensing ion channels may have therapeutic potential for PD. PMID:24529281

  14. Multivariate Classification of Major Depressive Disorder Using the Effective Connectivity and Functional Connectivity

    PubMed Central

    Geng, Xiangfei; Xu, Junhai; Liu, Baolin; Shi, Yonggang

    2018-01-01

    Major depressive disorder (MDD) is a mental disorder characterized by at least 2 weeks of low mood, which is present across most situations. Diagnosis of MDD using rest-state functional magnetic resonance imaging (fMRI) data faces many challenges due to the high dimensionality, small samples, noisy and individual variability. To our best knowledge, no studies aim at classification with effective connectivity and functional connectivity measures between MDD patients and healthy controls. In this study, we performed a data-driving classification analysis using the whole brain connectivity measures which included the functional connectivity from two brain templates and effective connectivity measures created by the default mode network (DMN), dorsal attention network (DAN), frontal-parietal network (FPN), and silence network (SN). Effective connectivity measures were extracted using spectral Dynamic Causal Modeling (spDCM) and transformed into a vectorial feature space. Linear Support Vector Machine (linear SVM), non-linear SVM, k-Nearest Neighbor (KNN), and Logistic Regression (LR) were used as the classifiers to identify the differences between MDD patients and healthy controls. Our results showed that the highest accuracy achieved 91.67% (p < 0.0001) when using 19 effective connections and 89.36% when using 6,650 functional connections. The functional connections with high discriminative power were mainly located within or across the whole brain resting-state networks while the discriminative effective connections located in several specific regions, such as posterior cingulate cortex (PCC), ventromedial prefrontal cortex (vmPFC), dorsal cingulate cortex (dACC), and inferior parietal lobes (IPL). To further compare the discriminative power of functional connections and effective connections, a classification analysis only using the functional connections from those four networks was conducted and the highest accuracy achieved 78.33% (p < 0.0001). Our study

  15. Functional connectivity change as shared signal dynamics

    PubMed Central

    Cole, Michael W.; Yang, Genevieve J.; Murray, John D.; Repovš, Grega; Anticevic, Alan

    2015-01-01

    Background An increasing number of neuroscientific studies gain insights by focusing on differences in functional connectivity – between groups, individuals, temporal windows, or task conditions. We found using simulations that additional insights into such differences can be gained by forgoing variance normalization, a procedure used by most functional connectivity measures. Simulations indicated that these functional connectivity measures are sensitive to increases in independent fluctuations (unshared signal) in time series, consistently reducing functional connectivity estimates (e.g., correlations) even though such changes are unrelated to corresponding fluctuations (shared signal) between those time series. This is inconsistent with the common notion of functional connectivity as the amount of inter-region interaction. New Method Simulations revealed that a version of correlation without variance normalization – covariance – was able to isolate differences in shared signal, increasing interpretability of observed functional connectivity change. Simulations also revealed cases problematic for non-normalized methods, leading to a “covariance conjunction” method combining the benefits of both normalized and non-normalized approaches. Results We found that covariance and covariance conjunction methods can detect functional connectivity changes across a variety of tasks and rest in both clinical and non-clinical functional MRI datasets. Comparison with Existing Method(s) We verified using a variety of tasks and rest in both clinical and non-clinical functional MRI datasets that it matters in practice whether correlation, covariance, or covariance conjunction methods are used. Conclusions These results demonstrate the practical and theoretical utility of isolating changes in shared signal, improving the ability to interpret observed functional connectivity change. PMID:26642966

  16. Anatomical connections of the functionally-defined “face patches” in the macaque monkey

    PubMed Central

    Saleem, Kadharbatcha S.

    2017-01-01

    The neural circuits underlying face recognition provide a model for understanding visual object representation, social cognition, and hierarchical information processing. A fundamental piece of information lacking to date is the detailed anatomical connections of the face patches. Here, we injected retrograde tracers into four different face patches (PL, ML, AL, AM) to characterize their anatomical connectivity. We found that the patches are strongly and specifically connected to each other, and individual patches receive inputs from extrastriate cortex, the medial temporal lobe, and three subcortical structures (the pulvinar, claustrum, and amygdala). Inputs from prefrontal cortex were surprisingly weak. Patches were densely interconnected to one another in both feedforward and feedback directions, inconsistent with a serial hierarchy. These results provide the first direct anatomical evidence that the face patches constitute a highly specialized system, and suggest that subcortical regions may play a vital role in routing face-related information to subsequent processing stages. PMID:27263973

  17. Primate amygdala neurons evaluate the progress of self-defined economic choice sequences

    PubMed Central

    Grabenhorst, Fabian; Hernadi, Istvan; Schultz, Wolfram

    2016-01-01

    The amygdala is a prime valuation structure yet its functions in advanced behaviors are poorly understood. We tested whether individual amygdala neurons encode a critical requirement for goal-directed behavior: the evaluation of progress during sequential choices. As monkeys progressed through choice sequences toward rewards, amygdala neurons showed phasic, gradually increasing responses over successive choice steps. These responses occurred in the absence of external progress cues or motor preplanning. They were often specific to self-defined sequences, typically disappearing during instructed control sequences with similar reward expectation. Their build-up rate reflected prospectively the forthcoming choice sequence, suggesting adaptation to an internal plan. Population decoding demonstrated a high-accuracy progress code. These findings indicate that amygdala neurons evaluate the progress of planned, self-defined behavioral sequences. Such progress signals seem essential for aligning stepwise choices with internal plans. Their presence in amygdala neurons may inform understanding of human conditions with amygdala dysfunction and deregulated reward pursuit. DOI: http://dx.doi.org/10.7554/eLife.18731.001 PMID:27731795

  18. Williams Syndrome Hypersociability: A Neuropsychological Study of the Amygdala and Prefrontal Cortex Hypotheses

    ERIC Educational Resources Information Center

    Capitao, Liliana; Sampaio, Adriana; Fernandez, Montse; Sousa, Nuno; Pinheiro, Ana; Goncalves, Oscar F.

    2011-01-01

    Individuals with Williams syndrome display indiscriminate approach towards strangers. Neuroimaging studies conducted so far have linked this social profile to structural and/or functional abnormalities in WS amygdala and prefrontal cortex. In this study, the neuropsychological hypotheses of amygdala and prefrontal cortex involvement in WS…

  19. Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback.

    PubMed

    Koush, Yury; Meskaldji, Djalel-E; Pichon, Swann; Rey, Gwladys; Rieger, Sebastian W; Linden, David E J; Van De Ville, Dimitri; Vuilleumier, Patrik; Scharnowski, Frank

    2017-02-01

    Most mental functions are associated with dynamic interactions within functional brain networks. Thus, training individuals to alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions. Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After training, participants successfully self-regulated the top-down connectivity between these brain areas even without neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Distant influences of amygdala lesion on visual cortical activation during emotional face processing.

    PubMed

    Vuilleumier, Patrik; Richardson, Mark P; Armony, Jorge L; Driver, Jon; Dolan, Raymond J

    2004-11-01

    Emotional visual stimuli evoke enhanced responses in the visual cortex. To test whether this reflects modulatory influences from the amygdala on sensory processing, we used event-related functional magnetic resonance imaging (fMRI) in human patients with medial temporal lobe sclerosis. Twenty-six patients with lesions in the amygdala, the hippocampus or both, plus 13 matched healthy controls, were shown pictures of fearful or neutral faces in task-releant or task-irrelevant positions on the display. All subjects showed increased fusiform cortex activation when the faces were in task-relevant positions. Both healthy individuals and those with hippocampal damage showed increased activation in the fusiform and occipital cortex when they were shown fearful faces, but this was not the case for individuals with damage to the amygdala, even though visual areas were structurally intact. The distant influence of the amygdala was also evidenced by the parametric relationship between amygdala damage and the level of emotional activation in the fusiform cortex. Our data show that combining the fMRI and lesion approaches can help reveal the source of functional modulatory influences between distant but interconnected brain regions.

  1. Amygdala Damage Affects Event-Related Potentials for Fearful Faces at Specific Time Windows

    PubMed Central

    Rotshtein, Pia; Richardson, Mark P; Winston, Joel S; Kiebel, Stefan J; Vuilleumier, Patrik; Eimer, Martin; Driver, Jon; Dolan, Raymond J

    2010-01-01

    The amygdala is known to influence processing of threat-related stimuli in distant brain regions, including visual cortex. The time-course of these distant influences is unknown, although this information is important for resolving debates over likely pathways mediating an apparent rapidity in emotional processing. To address this, we recorded event-related potentials (ERPs) to seen fearful face expressions, in preoperative patients with medial temporal lobe epilepsy who had varying degrees of amygdala pathology, plus healthy volunteers. We found that amygdala damage diminished ERPs for fearful versus neutral faces within the P1 time-range, ∼100–150 ms, and for a later component at ∼500–600 ms. Individual severity of amygdala damage determined the magnitude of both these effects, consistent with a causal amygdala role. By contrast, amygdala damage did not affect explicit perception of fearful expressions nor a distinct emotional ERP effect at 150–250 ms. These results demonstrate two distinct time-points at which the amygdala influences fear processing. The data also demonstrate that while not all aspects of expression processing are disrupted by amygdala damage, there is a crucial impact on an early P1 component. These findings are consistent with the existence of multiple processing stages or routes for fearful faces that vary in their dependence on amygdala function. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. PMID:20017134

  2. Brain connectivity aberrations in anabolic-androgenic steroid users.

    PubMed

    Westlye, Lars T; Kaufmann, Tobias; Alnæs, Dag; Hullstein, Ingunn R; Bjørnebekk, Astrid

    2017-01-01

    Sustained anabolic-androgenic steroid (AAS) use has adverse behavioral consequences, including aggression, violence and impulsivity. Candidate mechanisms include disruptions of brain networks with high concentrations of androgen receptors and critically involved in emotional and cognitive regulation. Here, we tested the effects of AAS on resting-state functional brain connectivity in the largest sample of AAS-users to date. We collected resting-state functional magnetic resonance imaging (fMRI) data from 151 males engaged in heavy resistance strength training. 50 users tested positive for AAS based on the testosterone to epitestosterone (T/E) ratio and doping substances in urine. 16 previous users and 59 controls tested negative. We estimated brain network nodes and their time-series using ICA and dual regression and defined connectivity matrices as the between-node partial correlations. In line with the emotional and behavioral consequences of AAS, current users exhibited reduced functional connectivity between key nodes involved in emotional and cognitive regulation, in particular reduced connectivity between the amygdala and default-mode network (DMN) and between the dorsal attention network (DAN) and a frontal node encompassing the superior and inferior frontal gyri (SFG/IFG) and the anterior cingulate cortex (ACC), with further reductions as a function of dependency, lifetime exposure, and cycle state (on/off).

  3. Human Amygdala Represents the Complete Spectrum of Subjective Valence

    PubMed Central

    Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.

    2015-01-01

    Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the hedonic potency of odor stimuli and the amygdala's anatomical proximity to the peripheral olfactory system, we combined high-resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Representational similarity analyses showed that amygdala codes the entire dimension of valence, ranging from pleasantness to unpleasantness. This unidimensional representation significantly correlated with self-reported valence ratings but not with intensity ratings. Furthermore, within-trial valence representations evolved over time, prioritizing earlier differentiation of unpleasant stimuli. Together, these findings underscore the idea that both spatial and temporal features uniquely encode pleasant and unpleasant odor valence in the amygdala. The availability of a unidimensional valence code in the amygdala, distributed in both space and time, would create greater flexibility in determining the pleasantness or unpleasantness of stimuli, providing a mechanism by which expectation, context, attention, and learning could influence affective boundaries for guiding behavior. SIGNIFICANCE STATEMENT Our findings elucidate the mechanisms of affective processing in the amygdala by demonstrating that this brain region represents the entire valence dimension from pleasant to unpleasant. An important implication of this unidimensional valence code is that pleasant and unpleasant valence cannot coexist in the amygdale because overlap of fMRI ensemble patterns for these two valence extremes obscures their unique content. This functional architecture, whereby subjective valence maps onto a pattern continuum between pleasant and unpleasant poles, offers a robust mechanism by which context

  4. Human Amygdala Tracks a Feature-Based Valence Signal Embedded within the Facial Expression of Surprise.

    PubMed

    Kim, M Justin; Mattek, Alison M; Bennett, Randi H; Solomon, Kimberly M; Shin, Jin; Whalen, Paul J

    2017-09-27

    Human amygdala function has been traditionally associated with processing the affective valence (negative vs positive) of an emotionally charged event, especially those that signal fear or threat. However, this account of human amygdala function can be explained by alternative views, which posit that the amygdala might be tuned to either (1) general emotional arousal (activation vs deactivation) or (2) specific emotion categories (fear vs happy). Delineating the pure effects of valence independent of arousal or emotion category is a challenging task, given that these variables naturally covary under many circumstances. To circumvent this issue and test the sensitivity of the human amygdala to valence values specifically, we measured the dimension of valence within the single facial expression category of surprise. Given the inherent valence ambiguity of this category, we show that surprised expression exemplars are attributed valence and arousal values that are uniquely and naturally uncorrelated. We then present fMRI data from both sexes, showing that the amygdala tracks these consensus valence values. Finally, we provide evidence that these valence values are linked to specific visual features of the mouth region, isolating the signal by which the amygdala detects this valence information. SIGNIFICANCE STATEMENT There is an open question as to whether human amygdala function tracks the valence value of cues in the environment, as opposed to either a more general emotional arousal value or a more specific emotion category distinction. Here, we demonstrate the utility of surprised facial expressions because exemplars within this emotion category take on valence values spanning the dimension of bipolar valence (positive to negative) at a consistent level of emotional arousal. Functional neuroimaging data showed that amygdala responses tracked the valence of surprised facial expressions, unconfounded by arousal. Furthermore, a machine learning classifier identified

  5. Regional specificity of aberrant thalamocortical connectivity in autism.

    PubMed

    Nair, Aarti; Carper, Ruth A; Abbott, Angela E; Chen, Colleen P; Solders, Seraphina; Nakutin, Sarah; Datko, Michael C; Fishman, Inna; Müller, Ralph-Axel

    2015-11-01

    Preliminary evidence suggests aberrant (mostly reduced) thalamocortical (TC) connectivity in autism spectrum disorder (ASD), but despite the crucial role of thalamus in sensorimotor functions and its extensive connectivity with cerebral cortex, relevant evidence remains limited. We performed a comprehensive investigation of region-specific TC connectivity in ASD. Resting-state functional MRI and diffusion tensor imaging (DTI) data were acquired for 60 children and adolescents with ASD (ages 7-17 years) and 45 age, sex, and IQ-matched typically developing (TD) participants. We examined intrinsic functional connectivity (iFC) and anatomical connectivity (probabilistic tractography) with thalamus, using 68 unilateral cerebral cortical regions of interest (ROIs). For frontal and parietal lobes, iFC was atypically reduced in the ASD group for supramodal association cortices, but was increased for cingulate gyri and motor cortex. Temporal iFC was characterized by overconnectivity for auditory cortices, but underconnectivity for amygdalae. Occipital iFC was broadly reduced in the ASD group. DTI indices (such as increased radial diffusion) for regions with group differences in iFC further indicated compromised anatomical connectivity, especially for frontal ROIs, in the ASD group. Our findings highlight the regional specificity of aberrant TC connectivity in ASD. Their overall pattern can be largely accounted for by functional overconnectivity with limbic and sensorimotor regions, but underconnectivity with supramodal association cortices. This could be related to comparatively early maturation of limbic and sensorimotor regions in the context of early overgrowth in ASD, at the expense of TC connectivity with later maturing cortical regions. © 2015 Wiley Periodicals, Inc.

  6. General and specific responsiveness of the amygdala during explicit emotion recognition in females and males.

    PubMed

    Derntl, Birgit; Habel, Ute; Windischberger, Christian; Robinson, Simon; Kryspin-Exner, Ilse; Gur, Ruben C; Moser, Ewald

    2009-08-04

    The ability to recognize emotions in facial expressions relies on an extensive neural network with the amygdala as the key node as has typically been demonstrated for the processing of fearful stimuli. A sufficient characterization of the factors influencing and modulating amygdala function, however, has not been reached now. Due to lacking or diverging results on its involvement in recognizing all or only certain negative emotions, the influence of gender or ethnicity is still under debate. This high-resolution fMRI study addresses some of the relevant parameters, such as emotional valence, gender and poser ethnicity on amygdala activation during facial emotion recognition in 50 Caucasian subjects. Stimuli were color photographs of emotional Caucasian and African American faces. Bilateral amygdala activation was obtained to all emotional expressions (anger, disgust, fear, happy, and sad) and neutral faces across all subjects. However, only in males a significant correlation of amygdala activation and behavioral response to fearful stimuli was observed, indicating higher amygdala responses with better fear recognition, thus pointing to subtle gender differences. No significant influence of poser ethnicity on amygdala activation occurred, but analysis of recognition accuracy revealed a significant impact of poser ethnicity that was emotion-dependent. Applying high-resolution fMRI while subjects were performing an explicit emotion recognition task revealed bilateral amygdala activation to all emotions presented and neutral expressions. This mechanism seems to operate similarly in healthy females and males and for both in-group and out-group ethnicities. Our results support the assumption that an intact amygdala response is fundamental in the processing of these salient stimuli due to its relevance detecting function.

  7. Fiber-connected, indefinite Morse 2-functions on connected n-manifolds

    PubMed Central

    Gay, David T.; Kirby, Robion C.

    2011-01-01

    We discuss generic smooth maps from smooth manifolds to smooth surfaces, which we call “Morse 2-functions,” and homotopies between such maps. The two central issues are to keep the fibers connected, in which case the Morse 2-function is “fiber-connected,” and to avoid local extrema over one-dimensional submanifolds of the range, in which case the Morse 2-function is “indefinite.” This is foundational work for the long-range goal of defining smooth invariants from Morse 2-functions using tools analogous to classical Morse homology and Cerf theory. PMID:21518894

  8. Developmental change in amygdala reactivity during adolescence: effects of family history of depression and stressful life events.

    PubMed

    Swartz, Johnna R; Williamson, Douglas E; Hariri, Ahmad R

    2015-03-01

    Although heightened amygdala reactivity is observed in patients with major depression, two critical gaps in our knowledge remain. First, it is unclear whether heightened amygdala reactivity is a premorbid vulnerability or a consequence of the disorder. Second, it is unknown how and when this neural phenotype develops. The authors sought to address these gaps by evaluating developmental change in threat-related amygdala reactivity in adolescents at high or low risk for depression based on family history, before onset of disorder. At baseline and again 2 years later, adolescents (initially 11-15 years of age) participated in a functional MRI paradigm that elicited threat-related amygdala reactivity. After quality control, data were available for 232 adolescents at wave 1 and 197 adolescents at wave 2; longitudinal data meeting quality control at both waves were available for 157 of these participants. Change in amygdala reactivity was assessed as a function of family history of depression and severity of stressful life events. Threat-related amygdala reactivity increased with age in participants with a positive family history regardless of the severity of life stress reported, and it increased in adolescents with a negative family history who reported relatively severe life stress. These changes in amygdala reactivity with age occurred in the absence of clinical disorder or increases in depressive symptoms. These results suggest that heightened amygdala reactivity emerges during adolescence, prior to the development of depression, as a function of familial risk or, in the absence of familial risk, stressful life events.

  9. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice.

    PubMed

    Lin, Tzu-Wei; Shih, Yao-Hsiang; Chen, Shean-Jen; Lien, Chi-Hsiang; Chang, Chia-Yuan; Huang, Tung-Yi; Chen, Shun-Hua; Jen, Chauying J; Kuo, Yu-Min

    2015-02-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. Post-mortem examination and brain imaging studies indicate that neurodegeneration is evident in the hippocampus and amygdala of very early stage AD patients. Exercise training is known to enhance hippocampus- and amygdala-associated neuronal function. Here, we investigated the effects of exercise (running) on the neuronal structure and function of the hippocampus and amygdala in APP/PS1 transgenic (Tg) mice. At 4-months-old, an age before amyloid deposition, the amygdala-associated, but not the hippocampus-associated, long-term memory was impaired in the Tg mice. The dendritic complexities of the amygdalar basolateral neurons, but not those in the hippocampal CA1 and CA3 neurons, were reduced. Furthermore, the levels of BDNF/TrkB signaling molecules (i.e. p-TrkB, p-Akt and p-PKC) were reduced in the amygdala, but not in the hippocampus of the 4-month-old Tg mice. The concentrations of Aβ40 and Aβ42 in the amygdala were higher than those in the hippocampus. Ten weeks of treadmill training (from 1.5- to 4-month-old) increased the hippocampus-associated memory and dendritic arbor of the CA1 and CA3 neurons, and also restored the amygdala-associated memory and the dendritic arbor of amygdalar basolateral neurons in the Tg mice. Similarly, exercise training also increased the levels of p-TrkB, p-AKT and p-PKC in the hippocampus and amygdala. Furthermore, exercise training reduced the levels of soluble Aβ in the amygdala and hippocampus. Exercise training did not change the levels of APP or RAGE, but significantly increased the levels of LRP-1 in both brain regions of the Tg mice. In conclusion, our results suggest that tests of amygdala function should be incorporated into subject selection for early prevention trials. Long-term exercise protects neurons in the amygdala and hippocampus against AD-related degeneration, probably via enhancements of BDNF signaling pathways and Aβ clearance. Physical

  10. Human amygdala engagement moderated by early life stress exposure is a biobehavioral target for predicting recovery on antidepressants.

    PubMed

    Goldstein-Piekarski, Andrea N; Korgaonkar, Mayuresh S; Green, Erin; Suppes, Trisha; Schatzberg, Alan F; Hastie, Trevor; Nemeroff, Charles B; Williams, Leanne M

    2016-10-18

    Amygdala circuitry and early life stress (ELS) are both strongly and independently implicated in the neurobiology of depression. Importantly, animal models have revealed that the contribution of ELS to the development and maintenance of depression is likely a consequence of structural and physiological changes in amygdala circuitry in response to stress hormones. Despite these mechanistic foundations, amygdala engagement and ELS have not been investigated as biobehavioral targets for predicting functional remission in translational human studies of depression. Addressing this question, we integrated human neuroimaging and measurement of ELS within a controlled trial of antidepressant outcomes. Here we demonstrate that the interaction between amygdala activation engaged by emotional stimuli and ELS predicts functional remission on antidepressants with a greater than 80% cross-validated accuracy. Our model suggests that in depressed people with high ELS, the likelihood of remission is highest with greater amygdala reactivity to socially rewarding stimuli, whereas for those with low-ELS exposure, remission is associated with lower amygdala reactivity to both rewarding and threat-related stimuli. This full model predicted functional remission over and above the contribution of demographics, symptom severity, ELS, and amygdala reactivity alone. These findings identify a human target for elucidating the mechanisms of antidepressant functional remission and offer a target for developing novel therapeutics. The results also offer a proof-of-concept for using neuroimaging as a target for guiding neuroscience-informed intervention decisions at the level of the individual person.

  11. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    PubMed Central

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  12. Amygdala activity associated with social choice in mice.

    PubMed

    Mihara, Takuma; Mensah-Brown, Kobina; Sobota, Rosanna; Lin, Robert; Featherstone, Robert; Siegel, Steven J

    2017-08-14

    Studies suggest that the amygdala is a key region for regulation of anxiety, fear and social function. Therefore, dysfunction of the amygdala has been proposed as a potential mechanism for negative symptoms in schizophrenia. This may be due to NMDA receptor-mediated hypofunction, which is thought to be related to the pathogenesis of schizophrenia. In this study, electroencephalographic amygdala activity was assessed in mice during the three-chamber social test. This activity was also evaluated following exposure to the NMDA receptor antagonist ketamine. Vehicle-treated mice spent significantly more time in the social than the non-social chamber. This social preference was eliminated by ketamine. However, ketamine-treated mice spent significantly less time in the social chamber and significantly more time in the nonsocial chamber than vehicle-treated mice. There were no significant differences in induced powers between social and non-social chamber entries in vehicle-treated mice, except for theta frequencies, which featured greater induced theta power during non-social chamber entry. Ketamine eliminated differences in induced theta power between social and non-social chamber entries. Moreover, ketamine increased the induced gamma power during social chamber entry compared to that of vehicle-treated mice. All other frequency ranges were not significantly influenced by zone or drug condition. All significant findings were upon entry to chambers not during interaction. Results suggest that impaired function of NMDA receptor-mediated glutamate transmission can induce social impairments and amygdala dysfunction, similar to the pattern in schizophrenia. Future studies will utilize this method to evaluate mechanisms of social dysfunction and development of treatments of social impairments in schizophrenia. Copyright © 2017. Published by Elsevier B.V.

  13. Detecting nonlinear dynamics of functional connectivity

    NASA Astrophysics Data System (ADS)

    LaConte, Stephen M.; Peltier, Scott J.; Kadah, Yasser; Ngan, Shing-Chung; Deshpande, Gopikrishna; Hu, Xiaoping

    2004-04-01

    Functional magnetic resonance imaging (fMRI) is a technique that is sensitive to correlates of neuronal activity. The application of fMRI to measure functional connectivity of related brain regions across hemispheres (e.g. left and right motor cortices) has great potential for revealing fundamental physiological brain processes. Primarily, functional connectivity has been characterized by linear correlations in resting-state data, which may not provide a complete description of its temporal properties. In this work, we broaden the measure of functional connectivity to study not only linear correlations, but also those arising from deterministic, non-linear dynamics. Here the delta-epsilon approach is extended and applied to fMRI time series. The method of delays is used to reconstruct the joint system defined by a reference pixel and a candidate pixel. The crux of this technique relies on determining whether the candidate pixel provides additional information concerning the time evolution of the reference. As in many correlation-based connectivity studies, we fix the reference pixel. Every brain location is then used as a candidate pixel to estimate the spatial pattern of deterministic coupling with the reference. Our results indicate that measured connectivity is often emphasized in the motor cortex contra-lateral to the reference pixel, demonstrating the suitability of this approach for functional connectivity studies. In addition, discrepancies with traditional correlation analysis provide initial evidence for non-linear dynamical properties of resting-state fMRI data. Consequently, the non-linear characterization provided from our approach may provide a more complete description of the underlying physiology and brain function measured by this type of data.

  14. Whole Brain Functional Connectivity Pattern Homogeneity Mapping.

    PubMed

    Wang, Lijie; Xu, Jinping; Wang, Chao; Wang, Jiaojian

    2018-01-01

    Mounting studies have demonstrated that brain functions are determined by its external functional connectivity patterns. However, how to characterize the voxel-wise similarity of whole brain functional connectivity pattern is still largely unknown. In this study, we introduced a new method called functional connectivity homogeneity (FcHo) to delineate the voxel-wise similarity of whole brain functional connectivity patterns. FcHo was defined by measuring the whole brain functional connectivity patterns similarity of a given voxel with its nearest 26 neighbors using Kendall's coefficient concordance (KCC). The robustness of this method was tested in four independent datasets selected from a large repository of MRI. Furthermore, FcHo mapping results were further validated using the nearest 18 and six neighbors and intra-subject reproducibility with each subject scanned two times. We also compared FcHo distribution patterns with local regional homogeneity (ReHo) to identify the similarity and differences of the two methods. Finally, FcHo method was used to identify the differences of whole brain functional connectivity patterns between professional Chinese chess players and novices to test its application. FcHo mapping consistently revealed that the high FcHo was mainly distributed in association cortex including parietal lobe, frontal lobe, occipital lobe and default mode network (DMN) related areas, whereas the low FcHo was mainly found in unimodal cortex including primary visual cortex, sensorimotor cortex, paracentral lobule and supplementary motor area. These results were further supported by analyses of the nearest 18 and six neighbors and intra-subject similarity. Moreover, FcHo showed both similar and different whole brain distribution patterns compared to ReHo. Finally, we demonstrated that FcHo can effectively identify the whole brain functional connectivity pattern differences between professional Chinese chess players and novices. Our findings indicated

  15. Whole-brain functional connectivity identification of functional dyspepsia.

    PubMed

    Nan, Jiaofen; Liu, Jixin; Li, Guoying; Xiong, Shiwei; Yan, Xuemei; Yin, Qing; Zeng, Fang; von Deneen, Karen M; Liang, Fanrong; Gong, Qiyong; Qin, Wei; Tian, Jie

    2013-01-01

    Recent neuroimaging studies have shown local brain aberrations in functional dyspepsia (FD) patients, yet little attention has been paid to the whole-brain resting-state functional network abnormalities. The purpose of this study was to investigate whether FD disrupts the patterns of whole-brain networks and the abnormal functional connectivity could reflect the severity of the disease. The dysfunctional interactions between brain regions at rest were investigated in FD patients as compared with 40 age- and gender- matched healthy controls. Multivariate pattern analysis was used to evaluate the discriminative power of our results for classifying patients from controls. In our findings, the abnormal brain functional connections were mainly situated within or across the limbic/paralimbic system, the prefrontal cortex, the tempo-parietal areas and the visual cortex. About 96% of the subjects among the original dataset were correctly classified by a leave one-out cross-validation approach, and 88% accuracy was also validated in a replication dataset. The classification features were significantly associated with the patients' dyspepsia symptoms, the self-rating depression scale and self-rating anxiety scale, but it was not correlated with duration of FD patients (p>0.05). Our results may indicate the effectiveness of the altered brain functional connections reflecting the disease pathophysiology underling FD. These dysfunctional connections may be the epiphenomena or causative agents of FD, which may be affected by clinical severity and its related emotional dimension of the disease rather than the clinical course.

  16. Effects of gratitude meditation on neural network functional connectivity and brain-heart coupling.

    PubMed

    Kyeong, Sunghyon; Kim, Joohan; Kim, Dae Jin; Kim, Hesun Erin; Kim, Jae-Jin

    2017-07-11

    A sense of gratitude is a powerful and positive experience that can promote a happier life, whereas resentment is associated with life dissatisfaction. To explore the effects of gratitude and resentment on mental well-being, we acquired functional magnetic resonance imaging and heart rate (HR) data before, during, and after the gratitude and resentment interventions. Functional connectivity (FC) analysis was conducted to identify the modulatory effects of gratitude on the default mode, emotion, and reward-motivation networks. The average HR was significantly lower during the gratitude intervention than during the resentment intervention. Temporostriatal FC showed a positive correlation with HR during the gratitude intervention, but not during the resentment intervention. Temporostriatal resting-state FC was significantly decreased after the gratitude intervention compared to the resentment intervention. After the gratitude intervention, resting-state FC of the amygdala with the right dorsomedial prefrontal cortex and left dorsal anterior cingulate cortex were positively correlated with anxiety scale and depression scale, respectively. Taken together, our findings shed light on the effect of gratitude meditation on an individual's mental well-being, and indicate that it may be a means of improving both emotion regulation and self-motivation by modulating resting-state FC in emotion and motivation-related brain regions.

  17. Heterogeneity of amygdala response in major depressive disorder: the impact of lifetime subthreshold mania.

    PubMed

    Fournier, J C; Keener, M T; Mullin, B C; Hafeman, D M; Labarbara, E J; Stiffler, R S; Almeida, J; Kronhaus, D M; Frank, E; Phillips, M L

    2013-02-01

    Patients with major depressive disorder (MDD) present with highly heterogeneous symptom profiles. We aimed to examine whether individual differences in amygdala activity to emotionally salient stimuli were related to heterogeneity in lifetime levels of depressive and subthreshold manic symptoms among adults with MDD. We compared age- and gender-matched adults with MDD (n = 26) with healthy controls (HC, n = 28). While undergoing functional magnetic resonance imaging, participants performed an implicit emotional faces task: they labeled a color flash superimposed upon initially neutral faces that dynamically morphed into one of four emotions (angry, fearful, sad, happy). Region of interest analyses examined group differences in amygdala activity. For conditions in which adults with MDD displayed abnormal amygdala activity versus HC, within-group analyses examined amygdala activity as a function of scores on a continuous measure of lifetime depression-related and mania-related pathology. Adults with MDD showed significantly greater right-sided amygdala activity to angry and happy conditions than HC (p < 0.05, corrected). Multiple regression analyses revealed that greater right-amygdala activity to the happy condition in adults with MDD was associated with higher levels of subthreshold manic symptoms experienced across the lifespan (p = 0.002). Among depressed adults with MDD, lifetime features of subthreshold mania were associated with abnormally elevated amygdala activity to emerging happy faces. These findings are a first step toward identifying biomarkers that reflect individual differences in neural mechanisms in MDD, and challenge conventional mood disorder diagnostic boundaries by suggesting that some adults with MDD are characterized by pathophysiological processes that overlap with bipolar disorder.

  18. Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain.

    PubMed

    Calamante, Fernando; Masterton, Richard A J; Tournier, Jacques-Donald; Smith, Robert E; Willats, Lisa; Raffelt, David; Connelly, Alan

    2013-04-15

    MRI provides a powerful tool for studying the functional and structural connections in the brain non-invasively. The technique of functional connectivity (FC) exploits the intrinsic temporal correlations of slow spontaneous signal fluctuations to characterise brain functional networks. In addition, diffusion MRI fibre-tracking can be used to study the white matter structural connections. In recent years, there has been considerable interest in combining these two techniques to provide an overall structural-functional description of the brain. In this work we applied the recently proposed super-resolution track-weighted imaging (TWI) methodology to demonstrate how whole-brain fibre-tracking data can be combined with FC data to generate a track-weighted (TW) FC map of FC networks. The method was applied to data from 8 healthy volunteers, and illustrated with (i) FC networks obtained using a seeded connectivity-based analysis (seeding in the precuneus/posterior cingulate cortex, PCC, known to be part of the default mode network), and (ii) with FC networks generated using independent component analysis (in particular, the default mode, attention, visual, and sensory-motor networks). TW-FC maps showed high intensity in white matter structures connecting the nodes of the FC networks. For example, the cingulum bundles show the strongest TW-FC values in the PCC seeded-based analysis, due to their major role in the connection between medial frontal cortex and precuneus/posterior cingulate cortex; similarly the superior longitudinal fasciculus was well represented in the attention network, the optic radiations in the visual network, and the corticospinal tract and corpus callosum in the sensory-motor network. The TW-FC maps highlight the white matter connections associated with a given FC network, and their intensity in a given voxel reflects the functional connectivity of the part of the nodes of the network linked by the structural connections traversing that voxel. They

  19. Amygdala response to faces parallels social behavior in Williams syndrome

    PubMed Central

    Snyder, Abraham Z.; Haist, Frank; Raichle, Marcus E.; Bellugi, Ursula; Stiles, Joan

    2009-01-01

    Individuals with Williams syndrome (WS), a genetically determined disorder, show relatively strong face-processing abilities despite poor visuospatial skills and depressed intellectual function. Interestingly, beginning early in childhood they also show an unusually high level of interest in face-to-face social interaction. We employed functional magnetic resonance imaging (fMRI) to investigate physiological responses in face-sensitive brain regions, including ventral occipito-temporal cortex and the amygdala, in this unique genetic disorder. Participants included 17 individuals with WS, 17 age- and gender-matched healthy adults (chronological age-matched controls, CA) and 17 typically developing 8- to 9-year-old children (developmental age controls, DA). While engaged in a face discrimination task, WS participants failed to recruit the amygdala, unlike both CA and DA controls. WS fMRI responses in ventral occipito-temporal cortex, however, were comparable to those of DA controls. Given the integral role of the amygdala in social behavior, the failure of WS participants to recruit this region during face processing may be a neural correlate of the abnormally high sociability that characterizes this disorder. PMID:19633063

  20. The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment.

    PubMed

    Silvers, Jennifer A; Insel, Catherine; Powers, Alisa; Franz, Peter; Helion, Chelsea; Martin, Rebecca; Weber, Jochen; Mischel, Walter; Casey, B J; Ochsner, Kevin N

    2017-06-01

    Understanding how and why affective responses change with age is central to characterizing typical and atypical emotional development. Prior work has emphasized the role of the amygdala and prefrontal cortex (PFC), which show age-related changes in function and connectivity. However, developmental neuroimaging research has only recently begun to unpack whether age effects in the amygdala and PFC are specific to affective stimuli or may be found for neutral stimuli as well, a possibility that would support a general, rather than affect-specific, account of amygdala-PFC development. To examine this, 112 individuals ranging from 6 to 23 years of age viewed aversive and neutral images while undergoing fMRI scanning. Across age, participants reported more negative affect and showed greater amygdala responses for aversive than neutral stimuli. However, children were generally more sensitive to both neutral and aversive stimuli, as indexed by affective reports and amygdala responses. At the same time, the transition from childhood to adolescence was marked by a ventral-to-dorsal shift in medial prefrontal responses to aversive, but not neutral, stimuli. Given the role that dmPFC plays in executive control and higher-level representations of emotion, these results suggest that adolescence is characterized by a shift towards representing emotional events in increasingly cognitive terms. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Amygdala activation in response to facial expressions in pediatric obsessive-compulsive disorder

    PubMed Central

    Britton, Jennifer C.; Stewart, S. Evelyn; Killgore, William D.S.; Rosso, Isabelle M.; Price, Lauren M.; Gold, Andrea L.; Pine, Daniel S.; Wilhelm, Sabine; Jenike, Michael A.; Rauch, Scott L.

    2010-01-01

    Background Exaggerated amygdala activation to threatening faces has been detected in adults and children with anxiety disorders, compared to healthy comparison subjects. However, the profile of amygdala activation in response to facial expressions in obsessive-compulsive disorder (OCD) may be a distinguishing feature; a prior study found that compared with healthy adults, adults with OCD exhibited less amygdala activation to emotional and neutral faces, relative to fixation (Cannistraro et al., 2004). Methods In the current event-related functional magnetic resonance imaging (fMRI) study, a pediatric OCD sample (N=12) and a healthy comparison sample (HC, N=17) performed a gender discrimination task while viewing emotional faces (happy, fear, disgust) and neutral faces. Results Compared to the HC group, the OCD group showed less amygdala/hippocampus activation in all emotion and neutral conditions relative to fixation. Conclusions Like previous reports in adult OCD, pediatric OCD may have a distinct neural profile from other anxiety disorders, with respect to amygdala activation in response to emotional stimuli that are not disorder-specific. PMID:20602430

  2. Electrolytic lesions of the nucleus accumbens core (but not the medial shell) and the basolateral amygdala enhance context-specific locomotor sensitization to nicotine in rats.

    PubMed

    Kelsey, John E; Gerety, Lyle P; Guerriero, Rejean M

    2009-06-01

    We previously demonstrated that lesions of the nucleus accumbens (NAc) core enhanced locomotion and locomotor sensitization to repeated injections of nicotine in rats (Kelsey & Willmore, 2006). In this study, we compared the effects of separate lesions of the NAc core, NAc medial shell, and basolateral amygdala on context-specific locomotor sensitization to repeated injections of 0.4 mg/kg nicotine. Electrolytic lesions of the NAc core increased locomotion, and lesions of the core (but not the shell) and the basolateral amygdala enhanced context-specific locomotor sensitization by enhancing the development of sensitization in paired rats and decreasing expression in unpaired rats relative to sham-operated rats when challenged with an injection of 0.4 mg/kg nicotine in the locomotor chambers. These data are consistent with findings that the NAc core and the basolateral amygdala share a variety of behavioral functions and anatomical connections. The findings that lesions of these structures enhance context-specific locomotor sensitization while typically impairing other reward-related behaviors also indicate that the processes underlying locomotor sensitization and reward are not identical. Copyright (c) 2009 APA, all rights reserved.

  3. Amygdala neural activity reflects spatial attention towards stimuli promising reward or threatening punishment

    PubMed Central

    Peck, Christopher J; Salzman, C Daniel

    2014-01-01

    Humans and other animals routinely identify and attend to sensory stimuli so as to rapidly acquire rewards or avoid aversive experiences. Emotional arousal, a process mediated by the amygdala, can enhance attention to stimuli in a non-spatial manner. However, amygdala neural activity was recently shown to encode spatial information about reward-predictive stimuli, and to correlate with spatial attention allocation. If representing the motivational significance of sensory stimuli within a spatial framework reflects a general principle of amygdala function, then spatially selective neural responses should also be elicited by sensory stimuli threatening aversive events. Recordings from amygdala neurons were therefore obtained while monkeys directed spatial attention towards stimuli promising reward or threatening punishment. Neural responses encoded spatial information similarly for stimuli associated with both valences of reinforcement, and responses reflected spatial attention allocation. The amygdala therefore may act to enhance spatial attention to sensory stimuli associated with rewarding or aversive experiences. DOI: http://dx.doi.org/10.7554/eLife.04478.001 PMID:25358090

  4. Left or right? Lateralizing temporal lobe epilepsy by dynamic amygdala fMRI.

    PubMed

    Ives-Deliperi, Victoria; Butler, James Thomas; Jokeit, Hennric

    2017-05-01

    In this case series, the findings of 85 functional MRI studies employing a dynamic fearful face paradigm are reported. Previous findings have shown the paradigm to generate bilateral amygdala activations in healthy subjects and unilateral activations in patients with MTLE, in the contralateral hemisphere to seizure origin. Such findings suggest ipsilateral limbic pathology and offer collateral evidence in lateralizing MTLE. The series includes 60 patients with TLE, 12 patients with extra-temporal lobe epilepsy, and 13 healthy controls. Functional MRI studies using a 1.5T scanner were conducted over a three-year period at a single epilepsy center and individual results were compared with EEG findings. In the cohort of unilateral TLE patients, lateralized activations of the amygdala were concordant with EEG findings in 76% of patients (77% lTLE, 74% rTLE). The differences in the mean lateralized indices of the lTLE, rTLE, and healthy control groups were all statistically significant. Lateralized amygdala activations were concordant with EEG findings in only 31% of the 12 patients with extra-temporal lobe epilepsy and bilateral amygdala activations were generated in all but one of the healthy control subjects. This case series further endorses the utility of the dynamic fearful face functional MRI paradigm using the widely available 1.5T as an adjunctive investigation to lateralize TLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.

    PubMed

    Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf

    2018-04-01

    Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.

  6. Diminished functional connectivity on the road to child sexual abuse in pedophilia.

    PubMed

    Kärgel, Christian; Massau, Claudia; Weiß, Simone; Walter, Martin; Kruger, Tillmann H C; Schiffer, Boris

    2015-03-01

    Pedophilia is a disorder recognized for its impairment to the individual and for the harm it may cause to others. However, the neurobiology of pedophilia and a possible propensity to sexually abuse children are not well understood. In this study, we thus aimed at providing new insights in how functional integration of brain regions may relate to pedophilia or child sexual abuse (CSA). By using functional magnetic resonance imaging (fMRI) technique, we compared functional connectivity at rest (RSFC) between pedophiles who engaged (P+CSA; N = 12) or did not engage (P-CSA; N = 14) in CSA and healthy controls (HCs; N = 14) within two networks: (i) the default mode network and (ii) the limbic network that has been linked to pedophilia before. Pedophiles who engaged in CSA show diminished RSFC in both networks compared with HC and P-CSA. Most importantly, they showed diminished RSFC between the left amygdala and orbitofrontal as well as anterior prefrontal regions. Though significant age differences between groups could not be avoided, correlation control analysis did not provide evidence for the assumption that the RSFC effects were related to age differences. We found significantly diminished RSFC in brain networks critically involved in widespread motivational and socio-emotional processes. These results extend existing models of the functional neuroanatomy of pedophilia and CSA as altered RSFC between these regions were related to CSA rather than pedophilia and thus may account for an increased propensity to engage in CSA in people suffering from pedophilia. © 2015 International Society for Sexual Medicine.

  7. Connectivity Neurofeedback Training Can Differentially Change Functional Connectivity and Cognitive Performance.

    PubMed

    Yamashita, Ayumu; Hayasaka, Shunsuke; Kawato, Mitsuo; Imamizu, Hiroshi

    2017-10-01

    Advances in functional magnetic resonance imaging have made it possible to provide real-time feedback on brain activity. Neurofeedback has been applied to therapeutic interventions for psychiatric disorders. Since many studies have shown that most psychiatric disorders exhibit abnormal brain networks, a novel experimental paradigm named connectivity neurofeedback, which can directly modulate a brain network, has emerged as a promising approach to treat psychiatric disorders. Here, we investigated the hypothesis that connectivity neurofeedback can induce the aimed direction of change in functional connectivity, and the differential change in cognitive performance according to the direction of change in connectivity. We selected the connectivity between the left primary motor cortex and the left lateral parietal cortex as the target. Subjects were divided into 2 groups, in which only the direction of change (an increase or a decrease in correlation) in the experimentally manipulated connectivity differed between the groups. As a result, subjects successfully induced the expected connectivity changes in either of the 2 directions. Furthermore, cognitive performance significantly and differentially changed from preneurofeedback to postneurofeedback training between the 2 groups. These findings indicate that connectivity neurofeedback can induce the aimed direction of change in connectivity and also a differential change in cognitive performance. © The Author 2017. Published by Oxford University Press.

  8. Disentangling the roles of arousal and amygdala activation in emotional declarative memory

    PubMed Central

    Fernández, Guillén; Hermans, Erno J.

    2016-01-01

    A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS− trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain. PMID:27217115

  9. Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans

    PubMed Central

    Meyer-Lindenberg, A; Kolachana, B; Gold, B; Olsh, A; Nicodemus, KK; Mattay, V; Dean, M; Weinberger, DR

    2009-01-01

    In mammals, the neuropeptide vasopressin is a key molecule for complex emotional and social behaviours. Two microsatellite polymorphisms, RS1 and RS3, near the promoter of AVPR1A, encoding the receptor subtype most heavily implicated in behaviour regulation, have been linked to autism and behavioural traits. However, the impact of these variants on human brain function is unknown. Here we show that human amygdala function is strongly associated with genetic variation in AVPR1A. Using an imaging genetics approach in a sample of 121 volunteers studied with an emotional face-matching paradigm, we found that differential activation of amygdala is observed in carriers of risk alleles for RS3 and RS1. Alleles in RS1 previously reported to be significantly over- and undertransmitted to autistic probands showed opposing effects on amygdala activation. Furthermore, we show functional difference in human brain between short and long repeat lengths that mirror findings recently obtained in a corresponding variant in voles. Our results indicate a neural mechanism mediating genetic risk for autism through an impact on amygdala signalling and provide a rationale for exploring therapeutic strategies aimed at abnormal amygdala function in this disorder. PMID:18490926

  10. Mapping functional connectivity

    Treesearch

    Peter Vogt; Joseph R. Ferrari; Todd R. Lookingbill; Robert H. Gardner; Kurt H. Riitters; Katarzyna Ostapowicz

    2009-01-01

    An objective and reliable assessment of wildlife movement is important in theoretical and applied ecology. The identification and mapping of landscape elements that may enhance functional connectivity is usually a subjective process based on visual interpretations of species movement patterns. New methods based on mathematical morphology provide a generic, flexible,...

  11. Functional brain connectivity when cooperation fails.

    PubMed

    Balconi, Michela; Vanutelli, Maria Elide; Gatti, Laura

    2018-06-01

    Functional connectivity during cooperative actions is an important topic in social neuroscience that has yet to be answered. Here, we examined the effects of administration of (fictitious) negative social feedback in relation to cooperative capabilities. Cognitive performance and neural activation underlying the execution of joint actions was recorded with functional near-infrared spectroscopy (fNIRS) on prefrontal regions during a task where pairs of participants received negative feedback after their joint action. Performance (error rates (ERs) and response times (RTs)) and intra- and inter-brain connectivity indices were computed, along with the ConIndex (inter-brain/intra-brain connectivity). Finally, correlational measures were considered to assess the relation between these different measures. Results showed that the negative feedback was able to modulate participants' responses for both behavioral and neural components. Cognitive performance was decreased after the feedback. Moreover, decreased inter-brain connectivity and increased intra-brain connectivity was induced by the feedback, whereas the cooperative task pre-feedback condition was able to increase the brain-to-brain coupling, mainly localized within the dorsolateral prefrontal cortex (DLPFC). Finally, the presence of significant correlations between RTs and inter-brain connectivity revealed that ineffective joint action produces the worst cognitive performance and a more 'individual strategy' for brain activity, limiting the inter-brain connectivity. The present study provides a significant contribution to the identification of patterns of intra- and inter-brain functional connectivity when negative social reinforcement is provided in relation to cooperative actions. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Corticostriatal connectivity fingerprints: Probability maps based on resting-state functional connectivity.

    PubMed

    Jaspers, Ellen; Balsters, Joshua H; Kassraian Fard, Pegah; Mantini, Dante; Wenderoth, Nicole

    2017-03-01

    Over the last decade, structure-function relationships have begun to encompass networks of brain areas rather than individual structures. For example, corticostriatal circuits have been associated with sensorimotor, limbic, and cognitive information processing, and damage to these circuits has been shown to produce unique behavioral outcomes in Autism, Parkinson's Disease, Schizophrenia and healthy ageing. However, it remains an open question how abnormal or absent connectivity can be detected at the individual level. Here, we provide a method for clustering gross morphological structures into subregions with unique functional connectivity fingerprints, and generate network probability maps usable as a baseline to compare individual cases against. We used connectivity metrics derived from resting-state fMRI (N = 100), in conjunction with hierarchical clustering methods, to parcellate the striatum into functionally distinct clusters. We identified three highly reproducible striatal subregions, across both hemispheres and in an independent replication dataset (N = 100) (dice-similarity values 0.40-1.00). Each striatal seed region resulted in a highly reproducible distinct connectivity fingerprint: the putamen showed predominant connectivity with cortical and cerebellar sensorimotor and language processing areas; the ventromedial striatum cluster had a distinct limbic connectivity pattern; the caudate showed predominant connectivity with the thalamus, frontal and occipital areas, and the cerebellum. Our corticostriatal probability maps agree with existing connectivity data in humans and non-human primates, and showed a high degree of replication. We believe that these maps offer an efficient tool to further advance hypothesis driven research and provide important guidance when investigating deviant connectivity in neurological patient populations suffering from e.g., stroke or cerebral palsy. Hum Brain Mapp 38:1478-1491, 2017. © 2016 Wiley Periodicals, Inc.

  13. Laterality patterns of brain functional connectivity: gender effects.

    PubMed

    Tomasi, Dardo; Volkow, Nora D

    2012-06-01

    Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism).

  14. Laterality Patterns of Brain Functional Connectivity: Gender Effects

    PubMed Central

    Tomasi, Dardo; Volkow, Nora D.

    2012-01-01

    Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism). PMID:21878483

  15. Subregional Shape Alterations in the Amygdala in Patients with Panic Disorder.

    PubMed

    Yoon, Sujung; Kim, Jieun E; Kim, Geon Ha; Kang, Hee Jin; Kim, Bori R; Jeon, Saerom; Im, Jooyeon Jamie; Hyun, Heejung; Moon, Sohyeon; Lim, Soo Mee; Lyoo, In Kyoon

    2016-01-01

    The amygdala has been known to play a pivotal role in mediating fear-related responses including panic attacks. Given the functionally distinct role of the amygdalar subregions, morphometric measurements of the amygdala may point to the pathophysiological mechanisms underlying panic disorder. The current study aimed to determine the global and local morphometric alterations of the amygdala related to panic disorder. Volumetric and surface-based morphometric approach to high-resolution three-dimensional T1-weighted images was used to examine the structural variations of the amygdala, with respect to extent and location, in 23 patients with panic disorder and 31 matched healthy individuals. There were no significant differences in bilateral amygdalar volumes between patients with panic disorder and healthy individuals despite a trend-level right amygdalar volume reduction related to panic disorder (right, β = -0.23, p = 0.09, Cohen's d = 0.51; left, β = -0.18, p = 0.19, Cohen's d = 0.45). Amygdalar subregions were localized into three groups including the superficial, centromedial, and laterobasal groups based on the cytoarchitectonically defined probability map. Surface-based morphometric analysis revealed shape alterations in the laterobasal and centromedial groups of the right amygdala in patients with panic disorder (false discovery rate corrected p < 0.05). The current findings suggest that subregion-specific shape alterations in the right amygdala may be involved in the development and maintenance of panic disorder, which may be attributed to the cause or effects of amygdalar hyperactivation.

  16. Subregional Shape Alterations in the Amygdala in Patients with Panic Disorder

    PubMed Central

    Kim, Geon Ha; Kang, Hee Jin; Kim, Bori R.; Jeon, Saerom; Im, Jooyeon Jamie; Hyun, Heejung; Moon, Sohyeon; Lim, Soo Mee; Lyoo, In Kyoon

    2016-01-01

    Background The amygdala has been known to play a pivotal role in mediating fear-related responses including panic attacks. Given the functionally distinct role of the amygdalar subregions, morphometric measurements of the amygdala may point to the pathophysiological mechanisms underlying panic disorder. The current study aimed to determine the global and local morphometric alterations of the amygdala related to panic disorder. Methods Volumetric and surface-based morphometric approach to high-resolution three-dimensional T1-weighted images was used to examine the structural variations of the amygdala, with respect to extent and location, in 23 patients with panic disorder and 31 matched healthy individuals. Results There were no significant differences in bilateral amygdalar volumes between patients with panic disorder and healthy individuals despite a trend-level right amygdalar volume reduction related to panic disorder (right, β = -0.23, p = 0.09, Cohen's d = 0.51; left, β = -0.18, p = 0.19, Cohen's d = 0.45). Amygdalar subregions were localized into three groups including the superficial, centromedial, and laterobasal groups based on the cytoarchitectonically defined probability map. Surface-based morphometric analysis revealed shape alterations in the laterobasal and centromedial groups of the right amygdala in patients with panic disorder (false discovery rate corrected p < 0.05). Conclusions The current findings suggest that subregion-specific shape alterations in the right amygdala may be involved in the development and maintenance of panic disorder, which may be attributed to the cause or effects of amygdalar hyperactivation. PMID:27336300

  17. Amygdala's involvement in facilitating associative learning-induced plasticity: a promiscuous role for the amygdala in memory acquisition

    PubMed Central

    Chau, Lily S.; Galvez, Roberto

    2012-01-01

    It is widely accepted that the amygdala plays a critical role in acquisition and consolidation of fear-related memories. Some of the more widely employed behavioral paradigms that have assisted in solidifying the amygdala's role in fear-related memories are associative learning paradigms. With most associative learning tasks, a neutral conditioned stimulus (CS) is paired with a salient unconditioned stimulus (US) that elicits an unconditioned response (UR). After multiple CS-US pairings, the subject learns that the CS predicts the onset or delivery of the US, and thus elicits a learned conditioned response (CR). Most fear-related associative paradigms have suggested that an aspect of the fear association is stored in the amygdala; however, some fear-motivated associative paradigms suggest that the amygdala is not a site of storage, but rather facilitates consolidation in other brain regions. Based upon various learning theories, one of the most likely sites for storage of long-term memories is the neocortex. In support of these theories, findings from our laboratory, and others, have demonstrated that trace-conditioning, an associative paradigm where there is a separation in time between the CS and US, induces learning-specific neocortical plasticity. The following review will discuss the amygdala's involvement, either as a site of storage or facilitating storage in other brain regions such as the neocortex, in fear- and non-fear-motivated associative paradigms. In this review, we will discuss recent findings suggesting a broader role for the amygdala in increasing the saliency of behaviorally relevant information, thus facilitating acquisition for all forms of memory, both fear- and non-fear-related. This proposed promiscuous role of the amygdala in facilitating acquisition for all memories further suggests a potential role of the amygdala in general learning disabilities. PMID:23087626

  18. Amygdala's involvement in facilitating associative learning-induced plasticity: a promiscuous role for the amygdala in memory acquisition.

    PubMed

    Chau, Lily S; Galvez, Roberto

    2012-01-01

    It is widely accepted that the amygdala plays a critical role in acquisition and consolidation of fear-related memories. Some of the more widely employed behavioral paradigms that have assisted in solidifying the amygdala's role in fear-related memories are associative learning paradigms. With most associative learning tasks, a neutral conditioned stimulus (CS) is paired with a salient unconditioned stimulus (US) that elicits an unconditioned response (UR). After multiple CS-US pairings, the subject learns that the CS predicts the onset or delivery of the US, and thus elicits a learned conditioned response (CR). Most fear-related associative paradigms have suggested that an aspect of the fear association is stored in the amygdala; however, some fear-motivated associative paradigms suggest that the amygdala is not a site of storage, but rather facilitates consolidation in other brain regions. Based upon various learning theories, one of the most likely sites for storage of long-term memories is the neocortex. In support of these theories, findings from our laboratory, and others, have demonstrated that trace-conditioning, an associative paradigm where there is a separation in time between the CS and US, induces learning-specific neocortical plasticity. The following review will discuss the amygdala's involvement, either as a site of storage or facilitating storage in other brain regions such as the neocortex, in fear- and non-fear-motivated associative paradigms. In this review, we will discuss recent findings suggesting a broader role for the amygdala in increasing the saliency of behaviorally relevant information, thus facilitating acquisition for all forms of memory, both fear- and non-fear-related. This proposed promiscuous role of the amygdala in facilitating acquisition for all memories further suggests a potential role of the amygdala in general learning disabilities.

  19. Changes in prefrontal and amygdala activity during olanzapine treatment in schizophrenia.

    PubMed

    Blasi, Giuseppe; Popolizio, Teresa; Taurisano, Paolo; Caforio, Grazia; Romano, Raffaella; Di Giorgio, Annabella; Sambataro, Fabio; Rubino, Valeria; Latorre, Valeria; Lo Bianco, Luciana; Fazio, Leonardo; Nardini, Marcello; Weinberger, Daniel R; Bertolino, Alessandro

    2009-07-15

    Earlier imaging studies in schizophrenia have reported abnormal amygdala and prefrontal cortex activity during emotion processing. We investigated with functional magnetic resonance imaging (fMRI) during emotion processing changes in activity of the amygdala and of prefrontal cortex in patients with schizophrenia during 8 weeks of olanzapine treatment. Twelve previously drug-free/naive patients with schizophrenia were treated with olanzapine for 8 weeks and underwent two fMRI scans after 4 and 8 weeks of treatment during implicit and explicit emotional processing. Twelve healthy subjects were also scanned twice to control for potential repetition effects. Results showed a diagnosis by time interaction in left amygdala and a diagnosis by time by task interaction in right ventrolateral prefrontal cortex. In particular, activity in left amygdala was greater in patients than in controls at the first scan during both explicit and implicit processing, while it was lower in patients at the second relative to the first scan. Furthermore, during implicit processing, right ventrolateral prefrontal cortex activity was lower in patients than controls at the first scan, while it was greater in patients at the second relative to the first scan. These results suggest that longitudinal treatment with olanzapine may be associated with specific changes in activity of the amygdala and prefrontal cortex during emotional processing in schizophrenia.

  20. Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.

    PubMed

    Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong

    2014-07-01

    The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This

  1. Aberrant Spontaneous and Task-Dependent Functional Connections in the Anxious Brain

    PubMed Central

    MacNamara, Annmarie; DiGangi, Julia; Phan, K. Luan

    2016-01-01

    A number of brain regions have been implicated in the anxiety disorders, yet none of these regions in isolation has been distinguished as the sole or discrete site responsible for anxiety disorder pathology. Therefore, the identification of dysfunctional neural networks as represented by alterations in the temporal correlation of blood-oxygen level dependent (BOLD) signal across several brain regions in anxiety disorders has been increasingly pursued in the past decade. Here, we review task-independent (e.g., resting state) and task-induced functional connectivity magnetic resonance imaging (fcMRI) studies in the adult anxiety disorders (including trauma- and stressor-related and obsessive compulsive disorders). The results of this review suggest that anxiety disorder pathophysiology involves aberrant connectivity between amygdala-frontal and frontal-striatal regions, as well as within and between canonical “intrinsic” brain networks - the default mode and salience networks, and that evidence of these aberrations may help inform findings of regional activation abnormalities observed in the anxiety disorders. Nonetheless, significant challenges remain, including the need to better understand mixed findings observed using different methods (e.g., resting state and task-based approaches); the need for more developmental work; the need to delineate disorder-specific and transdiagnostic fcMRI aberrations in the anxiety disorders; and the need to better understand the clinical significance of fcMRI abnormalities. In meeting these challenges, future work has the potential to elucidate aberrant neural networks as intermediate, brain-based phenotypes to predict disease onset and progression, refine diagnostic nosology, and ascertain treatment mechanisms and predictors of treatment response across anxiety, trauma-related and obsessive compulsive disorders. PMID:27141532

  2. Effect of direct eye contact in women with PTSD related to interpersonal trauma: Psychophysiological interaction analysis of connectivity of an innate alarm system.

    PubMed

    Steuwe, Carolin; Daniels, Judith K; Frewen, Paul A; Densmore, Maria; Theberge, Jean; Lanius, Ruth A

    2015-05-30

    In healthy individuals, direct eye contact is thought to modulate a cortical route eliciting social cognitive processes via activation of a fast subcortical pathway. This study aimed to examine functional brain connectivity during direct eye contact in women with posttraumatic stress disorder (PTSD) related to childhood abuse as compared with healthy controls. We conducted psychophysiological interaction (PPI) analyses in Statistical Parametric Mapping-8 (SPM8) using the superior colliculus (SC) and locus coeruleus (LC) as seed regions while 16 healthy subjects and 16 patients with a primary diagnosis of PTSD related to childhood maltreatment viewed a functional magnetic resonance imaging (fMRI) paradigm involving direct (D) versus averted (A) gaze (happy, sad, neutral). The PTSD group showed a significantly enhanced connectivity between the SC and the anterior cingulate, and between the LC and the thalamus, caudate, putamen, insula, cingulate gyrus, and amygdala, as compared with healthy individuals. Symptom severity scores on the Clinician-Administered PTSD Scale (CAPS) showed significant positive correlations with superior colliculus connectivity with the perigenual and posterior cingulate, insula, and sublenticular extended amygdala. Functional connectivity data suggest increased recruitment of brain regions involved in emotion processing during direct gaze in PTSD in association with the fast subcortical pathway. The interpretation of eye contact as a signal of threat may require more emotion regulatory capacities in patients with PTSD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Mechanisms Contributing to the Induction and Storage of Pavlovian Fear Memories in the Lateral Amygdala

    ERIC Educational Resources Information Center

    Kim, Dongbeom; Pare, Denis; Nair, Satish S.

    2013-01-01

    The relative contributions of plasticity in the amygdala vs. its afferent pathways to conditioned fear remain controversial. Some believe that thalamic and cortical neurons transmitting information about the conditioned stimulus (CS) to the lateral amygdala (LA) serve a relay function. Others maintain that thalamic and/or cortical plasticity is…

  4. Disentangling the roles of arousal and amygdala activation in emotional declarative memory.

    PubMed

    de Voogd, Lycia D; Fernández, Guillén; Hermans, Erno J

    2016-09-01

    A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS- trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Multisite Reliability of MR-Based Functional Connectivity

    PubMed Central

    Noble, Stephanie; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Papademetris, Xenophon; McEwen, Sarah C.; Bearden, Carrie E.; Addington, Jean; Goodyear, Bradley; Cadenhead, Kristin S.; Mirzakhanian, Heline; Cornblatt, Barbara A.; Olvet, Doreen M.; Mathalon, Daniel H.; McGlashan, Thomas H.; Perkins, Diana O.; Belger, Aysenil; Seidman, Larry J.; Thermenos, Heidi; Tsuang, Ming T.; van Erp, Theo G.M.; Walker, Elaine F.; Hamann, Stephan; Woods, Scott W.; Cannon, Tyrone D.; Constable, R. Todd

    2016-01-01

    Recent years have witnessed an increasing number of multisite MRI functional connectivity (fcMRI) studies. While multisite studies are an efficient way to speed up data collection and increase sample sizes, especially for rare clinical populations, any effects of site or MRI scanner could ultimately limit power and weaken results. Little data exists on the stability of functional connectivity measurements across sites and sessions. In this study, we assess the influence of site and session on resting state functional connectivity measurements in a healthy cohort of traveling subjects (8 subjects scanned twice at each of 8 sites) scanned as part of the North American Prodrome Longitudinal Study (NAPLS). Reliability was investigated in three types of connectivity analyses: (1) seed-based connectivity with posterior cingulate cortex (PCC), right motor cortex (RMC), and left thalamus (LT) as seeds; (2) the intrinsic connectivity distribution (ICD), a voxel-wise connectivity measure; and (3) matrix connectivity, a whole-brain, atlas-based approach assessing connectivity between nodes. Contributions to variability in connectivity due to subject, site, and day-of-scan were quantified and used to assess between-session (test-retest) reliability in accordance with Generalizability Theory. Overall, no major site, scanner manufacturer, or day-of-scan effects were found for the univariate connectivity analyses; instead, subject effects dominated relative to the other measured factors. However, summaries of voxel-wise connectivity were found to be sensitive to site and scanner manufacturer effects. For all connectivity measures, although subject variance was three times the site variance, the residual represented 60–80% of the variance, indicating that connectivity differed greatly from scan to scan independent of any of the measured factors (i.e., subject, site, and day-of-scan). Thus, for a single 5 min scan, reliability across connectivity measures was poor (ICC=0.07–0

  6. FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity.

    PubMed

    White, M G; Bogdan, R; Fisher, P M; Muñoz, K E; Williamson, D E; Hariri, A R

    2012-10-01

    Individual variation in physiological responsiveness to stress mediates risk for mental illness and is influenced by both experiential and genetic factors. Common polymorphisms in the human gene for FK506 binding protein 5 (FKBP5), which is involved in transcriptional regulation of the hypothalamic-pituitary-adrenal (HPA) axis, have been shown to interact with childhood abuse and trauma to predict stress-related psychopathology. In the current study, we examined if such gene-environment interaction effects may be related to variability in the threat-related reactivity of the amygdala, which plays a critical role in mediating physiological and behavioral adaptations to stress including modulation of the HPA axis. To this end, 139 healthy Caucasian youth completed a blood oxygen level-dependent functional magnetic resonance imaging probe of amygdala reactivity and self-report assessments of emotional neglect (EN) and other forms of maltreatment. These individuals were genotyped for 6 FKBP5 polymorphisms (rs7748266, rs1360780, rs9296158, rs3800373, rs9470080 and rs9394309) previously associated with psychopathology and/or HPA axis function. Interactions between each SNP and EN emerged such that risk alleles predicted relatively increased dorsal amygdala reactivity in the context of higher EN, even after correcting for multiple testing. Two different haplotype analyses confirmed this relationship as haplotypes with risk alleles also exhibited increased amygdala reactivity in the context of higher EN. Our results suggest that increased threat-related amygdala reactivity may represent a mechanism linking psychopathology to interactions between common genetic variants affecting HPA axis function and childhood trauma. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  7. Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment.

    PubMed

    Chen, Rong; Nixon, Erika; Herskovits, Edward

    2016-04-01

    Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.

  8. The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders.

    PubMed

    Chang, H; Hoshina, N; Zhang, C; Ma, Y; Cao, H; Wang, Y; Wu, D-D; Bergen, S E; Landén, M; Hultman, C M; Preisig, M; Kutalik, Z; Castelao, E; Grigoroiu-Serbanescu, M; Forstner, A J; Strohmaier, J; Hecker, J; Schulze, T G; Müller-Myhsok, B; Reif, A; Mitchell, P B; Martin, N G; Schofield, P R; Cichon, S; Nöthen, M M; Walter, H; Erk, S; Heinz, A; Amin, N; van Duijn, C M; Meyer-Lindenberg, A; Tost, H; Xiao, X; Yamamoto, T; Rietschel, M; Li, M

    2018-02-01

    Major mood disorders, which primarily include bipolar disorder and major depressive disorder, are the leading cause of disability worldwide and pose a major challenge in identifying robust risk genes. Here, we present data from independent large-scale clinical data sets (including 29 557 cases and 32 056 controls) revealing brain expressed protocadherin 17 (PCDH17) as a susceptibility gene for major mood disorders. Single-nucleotide polymorphisms (SNPs) spanning the PCDH17 region are significantly associated with major mood disorders; subjects carrying the risk allele showed impaired cognitive abilities, increased vulnerable personality features, decreased amygdala volume and altered amygdala function as compared with non-carriers. The risk allele predicted higher transcriptional levels of PCDH17 mRNA in postmortem brain samples, which is consistent with increased gene expression in patients with bipolar disorder compared with healthy subjects. Further, overexpression of PCDH17 in primary cortical neurons revealed significantly decreased spine density and abnormal dendritic morphology compared with control groups, which again is consistent with the clinical observations of reduced numbers of dendritic spines in the brains of patients with major mood disorders. Given that synaptic spines are dynamic structures which regulate neuronal plasticity and have crucial roles in myriad brain functions, this study reveals a potential underlying biological mechanism of a novel risk gene for major mood disorders involved in synaptic function and related intermediate phenotypes.

  9. Receptor-driven, multimodal mapping of the human amygdala.

    PubMed

    Kedo, Olga; Zilles, Karl; Palomero-Gallagher, Nicola; Schleicher, Axel; Mohlberg, Hartmut; Bludau, Sebastian; Amunts, Katrin

    2018-05-01

    The human amygdala consists of subdivisions contributing to various functions. However, principles of structural organization at the cellular and molecular level are not well understood. Thus, we re-analyzed the cytoarchitecture of the amygdala and generated cytoarchitectonic probabilistic maps of ten subdivisions in stereotaxic space based on novel workflows and mapping tools. This parcellation was then used as a basis for analyzing the receptor expression for 15 receptor types. Receptor fingerprints, i.e., the characteristic balance between densities of all receptor types, were generated in each subdivision to comprehensively visualize differences and similarities in receptor architecture between the subdivisions. Fingerprints of the central and medial nuclei and the anterior amygdaloid area were highly similar. Fingerprints of the lateral, basolateral and basomedial nuclei were also similar to each other, while those of the remaining nuclei were distinct in shape. Similarities were further investigated by a hierarchical cluster analysis: a two-cluster solution subdivided the phylogenetically older part (central, medial nuclei, anterior amygdaloid area) from the remaining parts of the amygdala. A more fine-grained three-cluster solution replicated our previous parcellation including a laterobasal, superficial and centromedial group. Furthermore, it helped to better characterize the paralaminar nucleus with a molecular organization in-between the laterobasal and the superficial group. The multimodal cyto- and receptor-architectonic analysis of the human amygdala provides new insights into its microstructural organization, intersubject variability, localization in stereotaxic space and principles of receptor-based neurochemical differences.

  10. Altered Brain Functional Connectivity in Betel Quid-Dependent Chewers.

    PubMed

    Huang, Xiaojun; Pu, Weidan; Liu, Haihong; Li, Xinmin; Greenshaw, Andrew J; Dursun, Serdar M; Xue, Zhimin; Liu, Zhening

    2017-01-01

    Betel quid (BQ) is a common psychoactive substance worldwide with particularly high usage in many Asian countries. This study aimed to explore the effect of BQ use on functional connectivity by comparing global functional brain networks and their subset between BQ chewers and healthy controls (HCs). Resting-state functional magnetic resonance imaging (fMRI) was obtained from 24 betel quid-dependent (BQD) male chewers and 27 healthy male individuals on a 3.0T scanner. We used independent component analysis (ICA) to determine components that represent the brain's functional networks and their spatial aspects of functional connectivity. Two sample t -tests were used to identify the functional connectivity differences in each network between these two groups. Seventeen networks were identified by ICA. Nine of them showed connectivity differences between BQD and HCs (two sample t -tests, p  < 0.001 uncorrected). We found increased functional connectivity in the orbitofrontal, bilateral frontoparietal, frontotemporal, occipital/parietal, frontotemporal/cerebellum, and temporal/limbic networks, and decreased connectivity in the parietal and medial frontal/anterior cingulate networks in the BQD compared to the HCs. The betel quid dependence scale scores were positively related to the increased functional connectivity in the orbitofrontal ( r  = 0.39, p  = 0.03) while negatively related to the decreased functional connectivity in medial frontal/anterior cingulate networks ( r  = -0.35, p  = 0.02). Our findings provide further evidence that BQ chewing may lead to brain functional connectivity changes, which may play a key role in the psychological and physiological effects of BQ.

  11. Sex differences in the development of neuroanatomical functional connectivity underlying intelligence found using Bayesian connectivity analysis.

    PubMed

    Schmithorst, Vincent J; Holland, Scott K

    2007-03-01

    A Bayesian method for functional connectivity analysis was adapted to investigate between-group differences. This method was applied in a large cohort of almost 300 children to investigate differences in boys and girls in the relationship between intelligence and functional connectivity for the task of narrative comprehension. For boys, a greater association was shown between intelligence and the functional connectivity linking Broca's area to auditory processing areas, including Wernicke's areas and the right posterior superior temporal gyrus. For girls, a greater association was shown between intelligence and the functional connectivity linking the left posterior superior temporal gyrus to Wernicke's areas bilaterally. A developmental effect was also seen, with girls displaying a positive correlation with age in the association between intelligence and the functional connectivity linking the right posterior superior temporal gyrus to Wernicke's areas bilaterally. Our results demonstrate a sexual dimorphism in the relationship of functional connectivity to intelligence in children and an increasing reliance on inter-hemispheric connectivity in girls with age.

  12. Emotion reactivity and regulation in late-life generalized anxiety disorder: Functional connectivity at baseline and post-treatment

    PubMed Central

    Andreescu, Carmen; Sheu, Lei K.; Tudorascu, Dana; Gross, James J.; Walker, Sarah; Banihashemi, Layla; Aizenstein, Howard

    2014-01-01

    Objectives Generalized Anxiety Disorder (GAD) is one of the most prevalent mental disorders in the elderly, but its functional neuroanatomy is not well understood. Given the role of emotion dysregulation in GAD, we sought to describe the neural bases of emotion regulation in late-life GAD by analyzing the functional connectivity (FC) in the Salience Network and the Executive Control Network during worry induction and worry reappraisal. Design, setting and participants Twenty-eight elderly GAD and thirty-one non-anxious comparison participants were included. Twelve elderly GAD completed a 12-week pharmacotherapy trial. We used an in-scanner worry script that alternates blocks of worry induction and reappraisal. We assessed network FC, employing the following seeds: anterior insula (AI), dorso-lateral prefrontal cortex (dlPFC), the bed nucleus of stria terminalis (BNST), the paraventricular nucleus (PVN). Results GAD participants exhibited greater FC during worry induction between the left AI and the right orbito-frontal cortex (OFC), and between the BNST and the subgenual cingulate. During worry reappraisal, the non-anxious participants had greater FC between the left dlPFC and the medial PFC, as well as between the left AI and the medial PFC, while elderly GAD had greater FC between the PVN and the amygdala. Following twelve weeks of pharmacotherapy, GAD participants had greater connectivity between the dlPFC and several prefrontal regions during worry reappraisal. Conclusion FC during worry induction and reappraisal points toward abnormalities in both worry generation and worry reappraisal. Following successful pharmacologic treatment, we observed greater connectivity in the prefrontal nodes of the Executive Control Network during reappraisal of worry. PMID:24996397

  13. Altered connections on the road to psychopathy.

    PubMed

    Craig, M C; Catani, M; Deeley, Q; Latham, R; Daly, E; Kanaan, R; Picchioni, M; McGuire, P K; Fahy, T; Murphy, D G M

    2009-10-01

    Psychopathy is strongly associated with serious criminal behaviour (for example, rape and murder) and recidivism. However, the biological basis of psychopathy remains poorly understood. Earlier studies suggested that dysfunction of the amygdala and/or orbitofrontal cortex (OFC) may underpin psychopathy. Nobody, however, has ever studied the white matter connections (such as the uncinate fasciculus (UF)) linking these structures in psychopaths. Therefore, we used in vivo diffusion tensor magnetic resonance imaging (DT-MRI) tractography to analyse the microstructural integrity of the UF in psychopaths (defined by a Psychopathy Checklist Revised (PCL-R) score of > or = 25) with convictions that included attempted murder, manslaughter, multiple rape with strangulation and false imprisonment. We report significantly reduced fractional anisotropy (FA) (P<0.003), an indirect measure of microstructural integrity, in the UF of psychopaths compared with age- and IQ-matched controls. We also found, within psychopaths, a correlation between measures of antisocial behaviour and anatomical differences in the UF. To confirm that these findings were specific to the limbic amygdala-OFC network, we also studied two 'non-limbic' control tracts connecting the posterior visual and auditory areas to the amygdala and the OFC, and found no significant between-group differences. Lastly, to determine that our findings in UF could not be totally explained by non-specific confounds, we carried out a post hoc comparison with a psychiatric control group with a past history of drug abuse and institutionalization. Our findings remained significant. Taken together, these results suggest that abnormalities in a specific amygdala-OFC limbic network underpin the neurobiological basis of psychopathy.

  14. Culture but not gender modulates amygdala activation during explicit emotion recognition.

    PubMed

    Derntl, Birgit; Habel, Ute; Robinson, Simon; Windischberger, Christian; Kryspin-Exner, Ilse; Gur, Ruben C; Moser, Ewald

    2012-05-29

    Mounting evidence indicates that humans have significant difficulties in understanding emotional expressions from individuals of different ethnic backgrounds, leading to reduced recognition accuracy and stronger amygdala activation. However, the impact of gender on the behavioral and neural reactions during the initial phase of cultural assimilation has not been addressed. Therefore, we investigated 24 Asians students (12 females) and 24 age-matched European students (12 females) during an explicit emotion recognition task, using Caucasian facial expressions only, on a high-field MRI scanner. Analysis of functional data revealed bilateral amygdala activation to emotional expressions in Asian and European subjects. However, in the Asian sample, a stronger response of the amygdala emerged and was paralleled by reduced recognition accuracy, particularly for angry male faces. Moreover, no significant gender difference emerged. We also observed a significant inverse correlation between duration of stay and amygdala activation. In this study we investigated the "alien-effect" as an initial problem during cultural assimilation and examined this effect on a behavioral and neural level. This study has revealed bilateral amygdala activation to emotional expressions in Asian and European females and males. In the Asian sample, a stronger response of the amygdala bilaterally was observed and this was paralleled by reduced performance, especially for anger and disgust depicted by male expressions. However, no gender difference occurred. Taken together, while gender exerts only a subtle effect, culture and duration of stay as well as gender of poser are shown to be relevant factors for emotion processing, influencing not only behavioral but also neural responses in female and male immigrants.

  15. A Model of Differential Amygdala Activation in Psychopathy

    ERIC Educational Resources Information Center

    Moul, Caroline; Killcross, Simon; Dadds, Mark R.

    2012-01-01

    This article introduces a novel hypothesis regarding amygdala function in psychopathy. The first part of this article introduces the concept of psychopathy and describes the main cognitive and affective impairments demonstrated by this population; that is, a deficit in fear-recognition, lower conditioned fear responses and poor performance in…

  16. A new class of methods for functional connectivity estimation

    NASA Astrophysics Data System (ADS)

    Lin, Wutu

    Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.

  17. Network structure shapes spontaneous functional connectivity dynamics.

    PubMed

    Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R

    2015-04-08

    The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.

  18. The amygdala as a hub in brain networks that support social life

    PubMed Central

    Bickart, Kevin C.; Dickerson, Bradford C.; Barrett, Lisa Feldman

    2016-01-01

    A growing body of evidence suggests that the amygdala is central to handling the demands of complex social life in primates. In this paper, we synthesize extant anatomical and functional data from rodents, monkeys, and humans to describe the topography of three partially distinct large-scale brain networks anchored in the amygdala that each support unique functions for effectively managing social interactions and maintaining social relationships. These findings provide a powerful componential framework for parsing social behavior into partially distinct neural underpinnings that differ among healthy people and disintegrate or fail to develop in neuropsychiatric populations marked by social impairment, such as autism, antisocial personality disorder, and frontotemporal dementia. PMID:25152530

  19. 219. Changes in Functional Networks Underlying Social Cognition Following Cognitive Training in Individuals at Risk for Psychosis

    PubMed Central

    Haut, Kristen; Saxena, Abhishek; Yin, Hong; Carol, Emily; Dodell-Feder, David; Lincoln, Sarah Hope; Tully, Laura; Keshavan, Matcheri; Seidman, Larry J.; Nahum, Mor; Hooker, Christine

    2017-01-01

    Abstract Background: Deficits in social cognition are prominent features of schizophrenia that play a large role in functional impairments and disability. Performance deficits in these domains are associated with altered activity in functional networks, including those that support social cognitive abilities such as emotion recognition. These social cognitive deficits and alterations in neural networks are present prior to the onset of frank psychotic symptoms and thus present a potential target for intervention in early phases of the illness, including in individuals at clinical high risk (CHR) for psychosis. This study assessed changes in social cognitive functional networks following targeted cognitive training (TCT) in CHR individuals. Methods: 14 CHR subjects (7 male, mean age = 21.9) showing attenuated psychotic symptoms as assessed by the SIPS were included in the study. Subjects underwent a clinical evaluation and a functional MRI session prior to and subsequent to completing 40 hours (8 weeks) of targeted cognitive and social cognitive training using Lumosity and SocialVille. 14 matched healthy control (HC) subjects also underwent a single fMRI session as a comparison group for functional activity. Resting state fMRI was acquired as well as fMRI during performance of an emotion recognition task. Group level differences in BOLD activity between HC and CHR group before TCT, and CHR group before and after TCT were computed. Changes in social cognitive network functional connectivity at rest and during task performance was evaluated using seed-based connectivity analyses and psychophysiological interaction (PPI). Results: Prior to training, CHR individuals demonstrated hyperactivity in the amygdala, posterior cingulate, and superior temporal sulcus (STS) during emotion recognition, suggesting inefficient processing. This hyperactivity normalized somewhat after training, with CHR individuals showing less hyperactivity in the amygdala in response to emotional

  20. Association between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children.

    PubMed

    Juranek, Jenifer; Filipek, Pauline A; Berenji, Gholam R; Modahl, Charlotte; Osann, Kathryn; Spence, M Anne

    2006-12-01

    Our objective was to evaluate brain-behavior relationships between amygdala volume and anxious/depressed scores on the Child Behavior Checklist in a well-characterized population of autistic children. Volumes for the amygdala, hippocampus, and whole brain were obtained from three-dimensional magnetic resonance images (MRIs) captured from 42 children who met the criteria for autistic disorder. Anxious/depressed symptoms were assessed in these children by the Anxious/Depressed subscale of the Child Behavior Checklist. To investigate the association between anxious/depressed scores on the Child Behavior Checklist and amygdala volume, data were analyzed using linear regression methods with Pearson correlation coefficients. A multivariate model was used to adjust for potential covariates associated with amygdala volume, including age at MRI and total brain size. We found that anxious/depressed symptoms were significantly correlated with increased total amygdala volume (r = .386, P = .012) and right amygdala volume (r = .469, P = .002). The correlation between anxious/depressed symptoms and left amygdala volume did not reach statistical significance (r = .249, P = .112). Child Behavior Checklist anxious/depressed scores were found to be a significant predictor of amygdala total (P = .014) and right amygdala (P = .002) volumes. In conclusion, we have identified a significant brain-behavior relationship between amygdala volume and anxious/depressed scores on the Child Behavior Checklist in our autistic cohort. This specific relationship has not been reported in autism. However, the existing literature on human psychiatry and behavior supports our reported evidence for a neurobiologic relationship between symptoms of anxiety and depression with amygdala structure and function. Our results highlight the importance of characterizing comorbid psychiatric symptomatology in autism. The abundance of inconsistent findings in the published literature on autism might reflect