Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice
Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique
2016-01-01
The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors related to reproductive or defensive behaviors. PMID:28066196
Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.
Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique
2016-01-01
The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors related to reproductive or defensive behaviors.
Ciumas, Carolina; Lindström, Per; Aoun, Bernard; Savic, Ivanka
2008-01-15
Metabolic and neuro-receptor abnormalities within the extrafocal limbic circuits are established in mesial temporal lobe epilepsy (MTLE). However, very little is known about how these circuits process external stimuli. We tested whether odor activation can help delineate limbic functional disintegration in MTLE, and measured cerebral blood flow with PET during birhinal smelling of familiar and unfamiliar odors, using smelling of odorless air as the baseline condition. Patients with MTLE (13 left-sided, 10 right-sided) and 21 controls were investigated. In addition to odor activation, the analysis included functional connectivity, using right and left piriform cortex as seed regions. Healthy controls activated the amygdala, piriform, anterior insular, and cingulate cortices on both sides. Smelling of familiar odors engaged, in addition, the right parahippocampus, and the left Brodmann Area (BA) 44, 45, 47. Patients failed to activate the amygdala, piriform and the anterior insular cortex in the epileptogenic hemisphere. Furthermore, those with left MTLE did not activate the left BA 44, 45 and 47 with familiar odors, which they perceived as less familiar than controls. Congruent with the activation data each seed region was in patients functionally disconnected with the contralateral amygdala+piriform+insular cortex. The functional disintegration in patients exceeded the reduced activation, and included the contralateral temporal neocortex, and in subjects with right MTLE also the right orbitofrontal cortex. Imaging of odor perception may be used to delineate functional disintegration of the limbic networks in MTLE. It shows an altered response in several regions, which may underlie some interictal behavioral problems associated with this condition.
Gutiérrez-Castellanos, Nicolás; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique
2014-01-01
Most mammals possess a vomeronasal system that detects predominantly chemical signals of biological relevance. Vomeronasal information is relayed to the accessory olfactory bulb (AOB), whose unique cortical target is the posteromedial cortical nucleus of the amygdala. This cortical structure should therefore be considered the primary vomeronasal cortex. In the present work, we describe the afferent and efferent connections of the posteromedial cortical nucleus of the amygdala in female mice, using anterograde (biotinylated dextranamines) and retrograde (Fluorogold) tracers, and zinc selenite as a tracer specific for zinc-enriched (putative glutamatergic) projections. The results show that the posteromedial cortical nucleus of the amygdala is strongly interconnected not only with the rest of the vomeronasal system (AOB and its target structures in the amygdala), but also with the olfactory system (piriform cortex, olfactory-recipient nuclei of the amygdala and entorhinal cortex). Therefore, the posteromedial cortical nucleus of the amygdala probably integrates olfactory and vomeronasal information. In addition, the posteromedial cortical nucleus of the amygdala shows moderate interconnections with the associative (basomedial) amygdala and with the ventral hippocampus, which may be involved in emotional and spatial learning (respectively) induced by chemical signals. Finally, the posteromedial cortical nucleus of the amygdala gives rise to zinc-enriched projections to the ventrolateral septum and the ventromedial striatum (including the medial islands of Calleja). This pattern of intracortical connections (with the olfactory cortex and hippocampus, mainly) and cortico-striatal excitatory projections (with the olfactory tubercle and septum) is consistent with its proposed nature as the primary vomeronasal cortex. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Marrero-Rosado, Brenda; Rossetti, Franco; Rice, Matthew W; Moffett, Mark C; Lee, Robyn; Stone, Michael F; Lumley, Lucille A
2018-03-27
Elderly individuals compose a large percentage of the world population; however, few studies have addressed the efficacy of current medical countermeasures (MCM) against the effects of chemical warfare nerve agent exposure in aged populations. We evaluated the efficacy of the anticonvulsant diazepam in an old adult rat model of soman (GD) poisoning and compared the toxic effects to those observed in young adult rats when anticonvulsant treatment is delayed. After determining their respective median lethal dose (LD50) of GD, we exposed young adult and old adult rats to an equitoxic 1.2 LD50 dose of GD followed by treatment with atropine sulfate and the oxime HI-6 at one minute after exposure, and diazepam at 30 minutes after seizure onset. Old adult rats that presented with status epilepticus were more susceptible to developing spontaneous recurrent seizures (SRS). Neuropathological analysis revealed that in rats of both age groups that developed SRS, there was a significant reduction in the density of mature neurons in the piriform cortex, thalamus, and amygdala, with more pronounced neuronal loss in the thalamus of old adult rats compared to young adult rats. Furthermore, old adult rats displayed a reduced density of cells expressing glutamic acid decarboxylase 67, a marker of GABAergic interneurons, in the basolateral amygdala and piriform cortex, and a reduction of astrocyte activation in the piriform cortex. Our observations demonstrate the reduced effectiveness of current MCM in an old adult animal model of GD exposure and strongly suggest the need for countermeasures that are more tailored to the vulnerabilities of an aging population.
Impaired Auditory and Contextual Fear Conditioning in Soman-Exposed Rats
2011-01-01
include the piriform cortex, amygdala, thalamus and hippocampus (Carpentier et al., 1990; Petras , 1994; Shih et al., 2003). Often the resulting... Martin M, Shah R, Bertchume A, Colvin J, Dong H. Cholinesterase inhibitors ameliorate behavioral deficits induced by MK-801 in mice. Neuropsy...Csernansky CA, Martin MV, Bertchume A, Vallera D, Csernansky JG. Acetylcholinesterase inhibitors ameliorate behavioral deficits in the Tg2576 mouse
Functional asymmetry of left and right avian piriform cortex in homing pigeons' navigation.
Gagliardo, Anna; Odetti, Francesca; Ioalè, Paolo; Pecchia, Tommaso; Vallortigara, Giorgio
2005-07-01
It has been shown that homing pigeons rely on olfactory cues to navigate over unfamiliar areas and that any kind of olfactory impairment produces a dramatic reduction of navigational performance from unfamiliar sites. The avian piriform cortex is the main projection field of olfactory bulbs and it is supposed to process olfactory information; not surprisingly bilateral lesions to this telencephalic region disrupt homing pigeon navigation. In the present study, we attempted to assess whether the left and right piriform cortex are differentially involved in the use of the olfactory navigational map. Therefore, we released from unfamiliar locations pigeons subjected, when adult, to unilateral ablation of the piriform cortex. After being released, the pigeons lesioned to the right piriform cortex orientated similarly to the intact controls. On the contrary, the left lesioned birds were significantly more scattered than controls, showing a crucial role of the left piriform cortex in processing the olfactory cues needed for determining the direction of displacement. However, both lesioned groups were significantly slower than controls in flying back to the home loft, showing that the integrity of both sides of the piriform cortex is necessary to accomplish the whole homing process.
The Olfactory Mosaic: Bringing an Olfactory Network Together for Odor Perception.
Courtiol, Emmanuelle; Wilson, Donald A
2017-01-01
Olfactory perception and its underlying neural mechanisms are not fixed, but rather vary over time, dependent on various parameters such as state, task, or learning experience. In olfaction, one of the primary sensory areas beyond the olfactory bulb is the piriform cortex. Due to an increasing number of functions attributed to the piriform cortex, it has been argued to be an associative cortex rather than a simple primary sensory cortex. In fact, the piriform cortex plays a key role in creating olfactory percepts, helping to form configural odor objects from the molecular features extracted in the nose. Moreover, its dynamic interactions with other olfactory and nonolfactory areas are also critical in shaping the olfactory percept and resulting behavioral responses. In this brief review, we will describe the key role of the piriform cortex in the larger olfactory perceptual network, some of the many actors of this network, and the importance of the dynamic interactions among the piriform-trans-thalamic and limbic pathways.
Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function
Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A.
2016-01-01
The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2–12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16–0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. SIGNIFICANCE STATEMENT Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions. PMID:27927961
Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function.
Zelano, Christina; Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A
2016-12-07
The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2-12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16-0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions. Copyright © 2016 the authors 0270-6474/16/3612448-20$15.00/0.
Might astrocytes play a role in maintaining the seizure-prone state?
Vessal, Mani; Dugani, Chandrasagar B; Solomon, Dianand A; McIntyre Burnham, W; Ivy, Gwen O
2005-05-24
The amygdala-kindling model is used to study complex partial epilepsy with secondary generalization. The present study was designed to (A) quantify astrocytic changes in the piriform cortex of amygdala-kindled subjects over time and (B) investigate the role that astrocytes might play in maintaining the seizure-prone state. In Study A, once the experimental subjects reached five stage 5 seizures, stimulation was stopped, and both kindled and control rats were allowed to survive for the interval appropriate to their group (7, 18, 30, or 90 days). Following each interval, the kindled and control animals were given 10 intraperitoneal injections of bromodeoxyuridine (BrdU) and sacrificed 24 h following the last injection. Significantly higher numbers of dividing astrocytes (identified by co-labeling for BrdU and to one of the astrocytic intermediate filament proteins glial fibrillary acidic protein or vimentin) were found in the kindled brains. All kindled groups had significantly higher numbers of double-labeled cells on the side contralateral to the stimulation site, except for those in the 90 day survival group. In Study B, rats were implanted with chemotrodes, were kindled as in Study A, and were subsequently infused with either saline or with L alpha-AA (to lesion astrocytes) during a further 25 stimulations (1/day). L alpha-AA infused rats had significantly diminished levels of behavioral seizures, higher after discharge thresholds, lower after discharge durations, and decreased numbers of double-labeled astrocytes in piriform cortex than did saline infused rats. Together, the data indicate that astrocytes may play a role in maintaining the seizure-prone state.
Fgfr3 regulates development of the caudal telencephalon.
Moldrich, Randal X; Mezzera, Cecilia; Holmes, William M; Goda, Sailaja; Brookfield, Sam J; Rankin, Alastair J; Barr, Emily; Kurniawan, Nyoman; Dewar, Deborah; Richards, Linda J; López-Bendito, Guillermina; Iwata, Tomoko
2011-06-01
The fibroblast growth factor receptor 3 (Fgfr3) is expressed in a rostral(low) to caudal(high) gradient in the developing cerebral cortex. Therefore, we hypothesized that Fgfr3 contributes to the correct morphology and connectivity of the caudal cortex. Overall, the forebrain structures appeared normal in Fgfr3(-/-) mice. However, cortical and hippocampal volumes were reduced by 26.7% and 16.3%, respectively. Hypoplasia was particularly evident in the caudo-ventral region of the telencephalon where proliferation was mildly decreased at embryonic day 18.5. Dysplasia of GABAergic neurons in the amygdala and piriform cortex was seen following GAD67 immunohistochemistry. Dye-tracing studies and diffusion magnetic resonance imaging and tractography detected a subtle thalamocortical tract deficit, and significant decreases in the stria terminalis and lateral arms of the anterior commissure. These results indicate the subtle role of Fgfr3 in formation of caudal regions of the telencephalon affecting some brain projections. Copyright © 2011 Wiley-Liss, Inc.
Theta Oscillations Rapidly Convey Odor-Specific Content in Human Piriform Cortex.
Jiang, Heidi; Schuele, Stephan; Rosenow, Joshua; Zelano, Christina; Parvizi, Josef; Tao, James X; Wu, Shasha; Gottfried, Jay A
2017-04-05
Olfactory oscillations are pervasive throughout vertebrate and invertebrate nervous systems. Such observations have long implied that rhythmic activity patterns play a fundamental role in odor coding. Using intracranial EEG recordings from rare patients with medically resistant epilepsy, we find that theta oscillations are a distinct electrophysiological signature of olfactory processing in the human brain. Across seven patients, odor stimulation enhanced theta power in human piriform cortex, with robust effects at the level of single trials. Importantly, classification analysis revealed that piriform oscillatory activity conveys olfactory-specific information that can be decoded within 110-518 ms of a sniff, and maximally within the theta frequency band. This temporal window was also associated with increased theta-specific phase coupling between piriform cortex and hippocampus. Together these findings suggest that human piriform cortex has access to olfactory content in the time-frequency domain and can utilize these signals to rapidly differentiate odor stimuli. Copyright © 2017 Elsevier Inc. All rights reserved.
Preprocessing of emotional visual information in the human piriform cortex.
Schulze, Patrick; Bestgen, Anne-Kathrin; Lech, Robert K; Kuchinke, Lars; Suchan, Boris
2017-08-23
This study examines the processing of visual information by the olfactory system in humans. Recent data point to the processing of visual stimuli by the piriform cortex, a region mainly known as part of the primary olfactory cortex. Moreover, the piriform cortex generates predictive templates of olfactory stimuli to facilitate olfactory processing. This study fills the gap relating to the question whether this region is also capable of preprocessing emotional visual information. To gain insight into the preprocessing and transfer of emotional visual information into olfactory processing, we recorded hemodynamic responses during affective priming using functional magnetic resonance imaging (fMRI). Odors of different valence (pleasant, neutral and unpleasant) were primed by images of emotional facial expressions (happy, neutral and disgust). Our findings are the first to demonstrate that the piriform cortex preprocesses emotional visual information prior to any olfactory stimulation and that the emotional connotation of this preprocessing is subsequently transferred and integrated into an extended olfactory network for olfactory processing.
Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex
Roland, Benjamin; Deneux, Thomas; Franks, Kevin M; Bathellier, Brice; Fleischmann, Alexander
2017-01-01
Olfactory perception and behaviors critically depend on the ability to identify an odor across a wide range of concentrations. Here, we use calcium imaging to determine how odor identity is encoded in olfactory cortex. We find that, despite considerable trial-to-trial variability, odor identity can accurately be decoded from ensembles of co-active neurons that are distributed across piriform cortex without any apparent spatial organization. However, piriform response patterns change substantially over a 100-fold change in odor concentration, apparently degrading the population representation of odor identity. We show that this problem can be resolved by decoding odor identity from a subpopulation of concentration-invariant piriform neurons. These concentration-invariant neurons are overrepresented in piriform cortex but not in olfactory bulb mitral and tufted cells. We therefore propose that distinct perceptual features of odors are encoded in independent subnetworks of neurons in the olfactory cortex. DOI: http://dx.doi.org/10.7554/eLife.26337.001 PMID:28489003
Zhu, Yunqi; Xu, Kedi; Xu, Caiyun; Zhang, Jiacheng; Ji, Jianfeng; Zheng, Xiaoxiang; Zhang, Hong; Tian, Mei
2016-07-01
Brain-computer interface (BCI) technology has great potential for improving the quality of life for neurologic patients. This study aimed to use PET mapping for BCI-based stimulation in a rat model with electrodes implanted in the ventroposterior medial (VPM) nucleus of the thalamus. PET imaging studies were conducted before and after stimulation of the right VPM. Stimulation induced significant orienting performance. (18)F-FDG uptake increased significantly in the paraventricular thalamic nucleus, septohippocampal nucleus, olfactory bulb, left crus II of the ansiform lobule of the cerebellum, and bilaterally in the lateral septum, amygdala, piriform cortex, endopiriform nucleus, and insular cortex, but it decreased in the right secondary visual cortex, right simple lobule of the cerebellum, and bilaterally in the somatosensory cortex. This study demonstrated that PET mapping after VPM stimulation can identify specific brain regions associated with orienting performance. PET molecular imaging may be an important approach for BCI-based research and its clinical applications. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Lazic, Stanley E; Goodman, Anna O G; Grote, Helen E; Blakemore, Colin; Morton, A Jennifer; Hannan, Anthony J; van Dellen, Anton; Barker, Roger A
2007-06-02
Reduced neuronal plasticity in the striatum, hippocampus, and neocortex is a common feature of transgenic mouse models of Huntington's disease (HD). Doublecortin (DCX) and polysialylated neural cell adhesion molecule (PSA-NCAM) are associated with structural plasticity in the adult mammalian brain, are markers of newly formed neurons in the dentate gyrus of the adult hippocampus, and are highly expressed in primary olfactory (piriform) cortex. Animal studies have demonstrated that a reduction in plasticity in the piriform cortex is associated with a selective impairment in odour discrimination. Therefore, the number of DCX and PSA-NCAM immunoreactive cells in the piriform cortex were quantified as measures of plasticity in early stage (fifteen week old) R6/1 transgenic HD mice. The transgenic mice had a large reduction in the number of DCX and PSA-NCAM immunoreactive cells in the piriform cortex, similar to that previously reported in the R6/2 mice. We also tested whether odour discrimination, as well as identification and detection, were impaired in HD patients and found that patients (at a similar disease stage as the mice) had an impairment in odour discrimination and identification, but not odour detection. These results suggest that olfactory impairments observed in HD patients may be the result of reduced plasticity in the primary olfactory cortex.
The Piriform Cortex and Human Focal Epilepsy
Vaughan, David N.; Jackson, Graeme D.
2014-01-01
It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic – being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review, we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology, and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability. PMID:25538678
Characterization and isolation of immature neurons of the adult mouse piriform cortex.
Rubio, A; Belles, M; Belenguer, G; Vidueira, S; Fariñas, I; Nacher, J
2016-07-01
Physiological studies indicate that the piriform or primary olfactory cortex of adult mammals exhibits a high degree of synaptic plasticity. Interestingly, a subpopulation of cells in the layer II of the adult piriform cortex expresses neurodevelopmental markers, such as the polysialylated form of neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX). This study analyzes the nature, origin, and potential function of these poorly understood cells in mice. As previously described in rats, most of the PSA-NCAM expressing cells in layer II could be morphologically classified as tangled cells and only a small proportion of larger cells could be considered semilunar-pyramidal transitional neurons. Most were also immunoreactive for DCX, confirming their immature nature. In agreement with this, detection of PSA-NCAM combined with that of different cell lineage-specific antigens revealed that most PSA-NCAM positive cells did not co-express markers of glial cells or mature neurons. Their time of origin was evaluated by birthdating experiments with halogenated nucleosides performed at different developmental stages and in adulthood. We found that virtually all cells in this paleocortical region, including PSA-NCAM-positive cells, are born during fetal development. In addition, proliferation analyses in adult mice revealed that very few cells were cycling in layer II of the piriform cortex and that none of them was PSA-NCAM-positive. Moreover, we have established conditions to isolate and culture these immature neurons in the adult piriform cortex layer II. We find that although they can survive under certain conditions, they do not proliferate in vitro either. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 748-763, 2016. © 2015 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Ghosh, Abhinaba; Mukherjee, Bandhan; Chen, Xihua; Yuan, Qi
2017-01-01
Early odor preference learning occurs in one-week-old rodents when a novel odor is paired with a tactile stimulation mimicking maternal care. ß-Adrenoceptors and L-type calcium channels (LTCCs) in the anterior piriform cortex (aPC) are critically involved in this learning. However, whether ß-adrenoceptors interact directly with LTCCs in aPC…
Relationship between individual neuron and network spontaneous activity in developing mouse cortex.
Barnett, Heather M; Gjorgjieva, Julijana; Weir, Keiko; Comfort, Cara; Fairhall, Adrienne L; Moody, William J
2014-12-15
Spontaneous synchronous activity (SSA) that propagates as electrical waves is found in numerous central nervous system structures and is critical for normal development, but the mechanisms of generation of such activity are not clear. In previous work, we showed that the ventrolateral piriform cortex is uniquely able to initiate SSA in contrast to the dorsal neocortex, which participates in, but does not initiate, SSA (Lischalk JW, Easton CR, Moody WJ. Dev Neurobiol 69: 407-414, 2009). In this study, we used Ca(2+) imaging of cultured embryonic day 18 to postnatal day 2 coronal slices (embryonic day 17 + 1-4 days in culture) of the mouse cortex to investigate the different activity patterns of individual neurons in these regions. In the piriform cortex where SSA is initiated, a higher proportion of neurons was active asynchronously between waves, and a larger number of groups of coactive cells was present compared with the dorsal cortex. When we applied GABA and glutamate synaptic antagonists, asynchronous activity and cellular clusters remained, while synchronous activity was eliminated, indicating that asynchronous activity is a result of cell-intrinsic properties that differ between these regions. To test the hypothesis that higher levels of cell-autonomous activity in the piriform cortex underlie its ability to initiate waves, we constructed a conductance-based network model in which three layers differed only in the proportion of neurons able to intrinsically generate bursting behavior. Simulations using this model demonstrated that a gradient of intrinsic excitability was sufficient to produce directionally propagating waves that replicated key experimental features, indicating that the higher level of cell-intrinsic activity in the piriform cortex may provide a substrate for SSA generation. Copyright © 2014 the American Physiological Society.
Cádiz-Moretti, Bernardita; Otero-García, Marcos; Martínez-García, Fernando; Lanuza, Enrique
2016-03-01
The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.
H.M.'s contributions to neuroscience: a review and autopsy studies.
Augustinack, Jean C; van der Kouwe, André J W; Salat, David H; Benner, Thomas; Stevens, Allison A; Annese, Jacopo; Fischl, Bruce; Frosch, Matthew P; Corkin, Suzanne
2014-11-01
H.M., Henry Molaison, was one of the world's most famous amnesic patients. His amnesia was caused by an experimental brain operation, bilateral medial temporal lobe resection, carried out in 1953 to relieve intractable epilepsy. He died on December 2, 2008, and that night we conducted a wide variety of in situ MRI scans in a 3 T scanner at the Massachusetts General Hospital (Mass General) Athinoula A. Martinos Center for Biomedical Imaging. For the in situ experiments, we acquired a full set of standard clinical scans, 1 mm isotropic anatomical scans, and multiple averages of 440 μm isotropic anatomical scans. The next morning, H.M.'s body was transported to the Mass General Morgue for autopsy. The photographs taken at that time provided the first documentation of H.M.'s lesions in his physical brain. After tissue fixation, we obtained ex vivo structural data at ultra-high resolution using 3 T and 7 T magnets. For the ex vivo acquisitions, the highest resolution images were 210 μm isotropic. Based on the MRI data, the anatomical areas removed during H.M.'s experimental operation were the medial temporopolar cortex, piriform cortex, virtually all of the entorhinal cortex, most of the perirhinal cortex and subiculum, the amygdala (except parts of the dorsal-most nuclei-central and medial), anterior half of the hippocampus, and the dentate gyrus (posterior head and body). The posterior parahippocampal gyrus and medial temporal stem were partially damaged. Spared medial temporal lobe tissue included the dorsal-most amygdala, the hippocampal-amygdalo-transition-area, ∼2 cm of the tail of the hippocampus, a small part of perirhinal cortex, a small portion of medial hippocampal tissue, and ∼2 cm of posterior parahippocampal gyrus. H.M.'s impact on the field of memory has been remarkable, and his contributions to neuroscience continue with a unique dataset that includes in vivo, in situ, and ex vivo high-resolution MRI. Copyright © 2014 Wiley Periodicals, Inc.
Figueiredo, Helmer F; Bruestle, Amy; Bodie, Bryan; Dolgas, Charles M; Herman, James P
2003-10-01
The medial prefrontal cortex (mPFC) plays an important inhibitory role in the hypothalamic-pituitary-adrenal (HPA) axis response. The involvement of the mPFC appears to depend on the type of stressor, preferentially affecting 'psychogenic' stimuli. In this study, we mapped expression of c-fos mRNA to assess the neural circuitry underlying stressor-specific actions of the mPFC on HPA reactivity. Thus, groups of mPFC-lesioned and sham-operated rats were restrained for 20 min or exposed to ether fumes for 2 min. In both cases, the animals were killed at 40 min from the onset of stress. Interestingly, bilateral lesions of the mPFC significantly enhanced c-fos mRNA expression in the hypothalamic paraventricular nucleus of restrained animals, an effect that was paralleled by potentiation of circulating ACTH concentrations in these animals. On the other hand, lesions of the mPFC did not affect neither PVN c-fos mRNA expression nor plasma ACTH concentrations in animals exposed to ether. Lesions of the mPFC also enhanced c-fos activation in the medial amygdala following restraint, but not following ether exposure. Additional regions whose activity was affected by mPFC lesions or stressor differences included the ventrolateral division of the bed nucleus of the stria terminalis, CA3 hippocampus, piriform cortex, and dorsal endopiriform nucleus. Expression of c-fos mRNA was nearly absent in the central amygdala of all stressed animals, regardless of lesion. Furthermore, prefrontal cortex lesions did not change stress-induction levels of c-fos in the CA1 hippocampus, dentate gyrus, anteromedial division of the bed nucleus of the stria terminalis, lateral septum, and claustrum. Taken together, this study indicates that the medial prefrontal cortex differentially regulates cellular activation of specific stress-related brain regions, thus exerting stressor-dependent inhibition of the HPA axis.
Coria-Avila, G A; Hernández-Aguilar, M E; Toledo-Cárdenas, R; García-Hernández, L I; Manzo, J; Pacheco, P; Miquel, M; Pfaus, J G
To analyse the biological and neural bases of partner preference formation in rodents as models to understand human pair bonding. Rodents are social individuals, capable of forming short- or long-lasting partner preferences that develop slowly by stimuli like cohabitation, or rapidly by stimuli like sex and stress. Dopamine, corticosteroids, oxytocin, vasopressin, and opioids form the neurochemical substrate for pair bonding in areas like the nucleus accumbens, the prefrontal cortex, the piriform cortex, the medial preoptic area, the ventral tegmental area and the medial amygdala, among others. Additional areas may participate depending on the nature of the conditioned stimuli by which and individual recognizes a preferred partner. Animal models help us understand that the capacity of an individual to display long-lasting and selective preferences depends on neural bases, selected throughout evolution. The challenge in neuroscience is to use this knowledge to create new solutions for mental problems associated with the incapacity of an individual to display a social bond, keep one, or cope with the disruption of a consolidated one.
Örd, Tiit; Innos, Jürgen; Lilleväli, Kersti; Tekko, Triin; Sütt, Silva; Örd, Daima; Kõks, Sulev; Vasar, Eero; Örd, Tõnis
2014-01-01
Tribbles homolog 3 (TRIB3) is a mammalian pseudokinase that is induced in neuronal cell cultures in response to cell death-inducing stresses, including neurotrophic factor deprivation. TRIB3 is an inhibitor of activating transcription factor 4 (ATF4), the central transcriptional regulator in the eukaryotic translation initiation factor 2α (eIF2α) phosphorylation pathway that is involved in the cellular stress response and behavioral processes. In this article, we study the expression of Trib3 in the mouse brain, characterize the brain morphology of mice with a genetic ablation of Trib3 and investigate whether Trib3 deficiency alters eIF2α-dependent cognitive abilities. Our data show that the consumption of a leucine-deficient diet induces Trib3 expression in the anterior piriform cortex, the brain region responsible for detecting essential amino acid intake imbalance. However, the aversive response to leucine-devoid diet does not differ in Trib3 knockout and wild type mice. Trib3 deletion also does not affect long-term spatial memory and reversal learning in the Morris water maze and auditory or contextual fear conditioning. During embryonic development, Trib3 expression increases in the brain and persists in the early postnatal stadium. Neuroanatomical characterization of mice lacking Trib3 revealed enlarged lateral ventricles. Thus, although the absence of Trib3 does not alter the eIF2α pathway-dependent cognitive functions of several areas of the brain, including the hippocampus, amygdala and anterior piriform cortex, Trib3 may serve a role in other central nervous system processes and molecular pathways. PMID:24732777
Mechanisms of inhibition within the telencephalon: "where the wild things are".
Fishell, Gord; Rudy, Bernardo
2011-01-01
In this review, we first provide a historical perspective of inhibitory signaling from the discovery of inhibition through to our present understanding of the diversity and mechanisms by which GABAergic interneuron populations function in different parts of the telencephalon. This is followed by a summary of the mechanisms of inhibition in the CNS. With this as a starting point, we provide an overview describing the variations in the subtypes and origins of inhibitory interneurons within the pallial and subpallial divisions of the telencephalon, with a focus on the hippocampus, somatosensory, paleo/piriform cortex, striatum, and various amygdala nuclei. Strikingly, we observe that marked variations exist in the origin and numerical balance between GABAergic interneurons and the principal cell populations in distinct regions of the telencephalon. Finally we speculate regarding the attractiveness and challenges of establishing a unifying nomenclature to describe inhibitory neuron diversity throughout the telencephalon.
Dere, E; Zheng-Fischhöfer, Q; Viggiano, D; Gironi Carnevale, U A; Ruocco, L A; Zlomuzica, A; Schnichels, M; Willecke, K; Huston, J P; Sadile, A G
2008-05-02
Neuronal gap junctions in the brain, providing intercellular electrotonic signal transfer, have been implicated in physiological and behavioral correlates of learning and memory. In connexin31.1 (Cx31.1) knockout (KO) mice the coding region of the Cx31.1 gene was replaced by a LacZ reporter gene. We investigated the impact of Cx31.1 deficiency on open-field exploration, the behavioral response to an odor, non-selective attention, learning and memory performance, and the levels of memory-related proteins in the hippocampus, striatum and the piriform cortex. In terms of behavior, the deletion of the Cx31.1 coding DNA in the mouse led to increased exploratory behaviors in a novel environment, and impaired one-trial object recognition at all delays tested. Despite strong Cx31.1 expression in the peripheral and central olfactory system, Cx31.1 KO mice exhibited normal behavioral responses to an odor. We found increased levels of acetylcholine esterase (AChE) and cAMP response element-binding protein (CREB) in the striatum of Cx31.1 KO mice. In the piriform cortex the Cx31.1 KO mice had an increased heterogeneity of CREB expression among neurons. In conclusion, gap-junctions featuring the Cx31.1 protein might be involved in open-field exploration as well as object memory and modulate levels of AChE and CREB in the striatum and piriform cortex.
Song, Yu; Liu, Junxiu; Ma, Furong; Mao, Lanqun
2016-12-01
Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.
Alterations in brain glutathione homeostasis induced by the nerve gas soman.
Klaidman, Lori K; Adams, James D; Cross, Robert; Pazdernik, Thomas L; Samson, Fred
2003-01-01
Public awareness of the dangers of chemical and biological warfare has been heightened in recent times. In particular, chemical nerve agents such as soman and its analogs have been developed and used in war as well as recent incidents, such as in Iraq and Japan. Soman, a rapid acting acetylcholinesterase inhibitor, produces a status epilepticus that leads to extensive neuropathology in vulnerable brain regions (eg, piriform cortex and hippocampus). This study was undertaken to determine whether oxidative mechanisms are involved in brain pathology during soman toxicity. Intracellular thiols such as glutathione (GSH) and protein sulfhydryls (PrSH) are among the most critical antioxidants used to combat oxidative stress. Here we report that during the seizure phase (1 h post soman exposure), PrSH levels in piriform cortex and hippocampus were decreased without changes in glutathione (GSH) levels. However, by 24 h post soman exposure (pathology phase), GSH levels were decreased by nearly 50% in the piriform cortex with a corresponding decrease in PrSH groups. The shift to a more oxidized thiol status indicates that oxygen free radicals likely participate in the neuropathology associated with soman-induced seizures.
The role of necroptosis in status epilepticus-induced brain injury in juvenile rats.
Cai, Qianyun; Gan, Jing; Luo, Rong; Qu, Yi; Li, Shiping; Wan, Chaomin; Mu, Dezhi
2017-10-01
To study the role of necroptosis in status epilepticus (SE)-induced injury in the developing brain and the possible associations of necroptosis with epileptogenesis and cognitive dysfunction. The lithium-pilocarpine epilepsy model was reproduced in male rats at postnatal day 25. Propidium iodide (PI) staining was used to detect cell death after SE. Transmission electron microscopy (TEM) was performed to observe morphological changes in injured neurons. Western blot and immunofluorescence (IF) staining were used to investigate the expression of receptor interacting protein kinase-3 (RIP3), mixed lineage kinase domain-like (MLKL), and p-MLKL after SE. EEG was monitored during the chronic epileptic period. The Morris water maze test was performed to evaluate spatial learning and memory in juvenile rats after SE. Massive PI-positive (PI + ) neurocytes were observed mainly in the amygdala and piriform cortex 24h to 7days after SE, with the most prominent changes observed after 72h. Injured neurons observed via TEM exhibited necroptotic morphological features, including loss of ribosomes, autophagosome formations, deformed nuclei with condensed and marginated chromatin, and disruptive cell membranes. The expression of RIP3 and p-MLKL increased after 24h, peaked at 72h, and decreased 7days after SE. In addition, IF staining revealed that MLKL was expressed in cell plasma membranes present in the amygdala and piriform cortex. This finding was concomitant with the fact that MLKL is involved in executing necroptosis by binding and disrupting the plasma membrane. During the chronic epileptic period, spontaneous recurrent seizures were observed behaviorally and interictal spikes and sharp waves were recorded by EEG in the SE group. The Morris water maze test revealed that in the place navigation test, the escape latency of the SE group was longer than that of the control group (p<0.05). In the spatial probe test, the number of times the rats in the SE group passed through the original platform site was lesser than that of the rats in the control group (p<0.05). SE-induced brain injury leads to neuronal necroptosis in juvenile rats. MLKL may play a significant role in the execution of SE-induced necroptosis. Further studies are required to determine whether inhibiting necroptosis can prevent chronic epileptogenesis and improve cognitive ability for juvenile rats. Copyright © 2017 Elsevier Inc. All rights reserved.
Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku
2017-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. Copyright © 2017 the American Physiological Society.
Onisawa, Naomi; Mori, Kensaku
2016-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. PMID:27733591
Chang, Chun-Hui
2017-07-01
The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017. Published by Oxford University Press on behalf of CINP.
The human brain representation of odor identification.
Kjelvik, Grete; Evensmoen, Hallvard R; Brezova, Veronika; Håberg, Asta K
2012-07-01
Odor identification (OI) tests are increasingly used clinically as biomarkers for Alzheimer's disease and schizophrenia. The aim of this study was to directly compare the neuronal correlates to identified odors vs. nonidentified odors. Seventeen females with normal olfactory function underwent a functional magnetic resonance imaging (fMRI) experiment with postscanning assessment of spontaneous uncued OI. An event-related analysis was performed to compare within-subject activity to spontaneously identified vs. nonidentified odors at the whole brain level, and in anatomic and functional regions of interest (ROIs) in the medial temporal lobe (MTL). Parameter estimate values and blood oxygenated level-dependent (BOLD) signal curves for correctly identified and nonidentified odors were derived from functional ROIs in hippocampus, entorhinal, piriform, and orbitofrontal cortices. Number of activated voxels and max parameter estimate values were obtained from anatomic ROIs in the hippocampus and the entorhinal cortex. At the whole brain level the correct OI gave rise to increased activity in the left entorhinal cortex and secondary olfactory structures, including the orbitofrontal cortex. Increased activation was also observed in fusiform, primary visual, and auditory cortices, inferior frontal plus inferior temporal gyri. The anatomic MTL ROI analysis showed increased activation in the left entorhinal cortex, right hippocampus, and posterior parahippocampal gyri in correct OI. In the entorhinal cortex and hippocampus the BOLD signal increased specifically in response to identified odors and decreased for nonidentified odors. In orbitofrontal and piriform cortices both identified and nonidentified odors gave rise to an increased BOLD signal, but the response to identified odors was significantly greater than that for nonidentified odors. These results support a specific role for entorhinal cortex and hippocampus in OI, whereas piriform and orbitofrontal cortices are active in both smelling and OI. Moreover, episodic as well as semantic memory systems appeared to support OI.
Arichi, T; Gordon-Williams, R; Allievi, A; Groves, AM; Burdet, E; Edwards, AD
2013-01-01
Aim Olfactory sensation is highly functional early in human neonatal life, with studies suggesting that odours can influence behaviour and infant–mother bonding. Due to its good spatial properties, blood oxygen level–dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) has the potential to rapidly advance our understanding of the neural activity which underlies the development of olfactory perception in this key period. We aimed to design an ‘olfactometer’ specifically for use with neonatal subjects for fMRI studies of odour perception. Methods We describe a fully automated and programmable, fMRI compatible system capable of presenting odorant liquids. To prevent contamination of the system and minimize between-subject infective risk, the majority of the olfactometer is constructed from single-use, readily available clinical equipment. The system was used to present the odour of infant formula milk in a validation group of seven neonatal subjects at term equivalent postmenstrual age (median age 40 weeks). Results A safe, reliable and reproducible pattern of stimulation was delivered leading to well-localized positive BOLD functional responses in the piriform cortex, amygdala, thalamus, insular cortex and cerebellum. Conclusions The described system is therefore suitable for detailed studies of the ontology of olfactory sensation and perception during early human brain development. PMID:23789919
Pardo-Bellver, Cecília; Cádiz-Moretti, Bernardita; Novejarque, Amparo; Martínez-García, Fernando; Lanuza, Enrique
2012-01-01
The medial amygdaloid nucleus (Me) is a key structure in the control of sociosexual behavior in mice. It receives direct projections from the main and accessory olfactory bulbs (AOB), as well as an important hormonal input. To better understand its behavioral role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA), posterodorsal (MePD) and posteroventral (MePV) subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines. The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the AOB, whereas the MePV projects to its granule cell layer. The Me (especially the MeA) has also moderate projections to different olfactory structures, including the piriform cortex (Pir). The densest outputs of the Me target the bed nucleus of the stria terminalis (BST) and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus), although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviors [medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus], although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized. PMID:22933993
Pardo-Bellver, Cecília; Cádiz-Moretti, Bernardita; Novejarque, Amparo; Martínez-García, Fernando; Lanuza, Enrique
2012-01-01
The medial amygdaloid nucleus (Me) is a key structure in the control of sociosexual behavior in mice. It receives direct projections from the main and accessory olfactory bulbs (AOB), as well as an important hormonal input. To better understand its behavioral role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA), posterodorsal (MePD) and posteroventral (MePV) subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines. The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the AOB, whereas the MePV projects to its granule cell layer. The Me (especially the MeA) has also moderate projections to different olfactory structures, including the piriform cortex (Pir). The densest outputs of the Me target the bed nucleus of the stria terminalis (BST) and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus), although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviors [medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus], although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.
Hadj-Bouziane, Fadila; Liu, Ning; Bell, Andrew H.; Gothard, Katalin M.; Luh, Wen-Ming; Tootell, Roger B. H.; Murray, Elisabeth A.; Ungerleider, Leslie G.
2012-01-01
We previously showed that facial expressions modulate functional MRI activity in the face-processing regions of the macaque monkey’s amygdala and inferior temporal (IT) cortex. Specifically, we showed that faces expressing emotion yield greater activation than neutral faces; we term this difference the “valence effect.” We hypothesized that amygdala lesions would disrupt the valence effect by eliminating the modulatory feedback from the amygdala to the IT cortex. We compared the valence effects within the IT cortex in monkeys with excitotoxic amygdala lesions (n = 3) with those in intact control animals (n = 3) using contrast agent-based functional MRI at 3 T. Images of four distinct monkey facial expressions—neutral, aggressive (open mouth threat), fearful (fear grin), and appeasing (lip smack)—were presented to the subjects in a blocked design. Our results showed that in monkeys with amygdala lesions the valence effects were strongly disrupted within the IT cortex, whereas face responsivity (neutral faces > scrambled faces) and face selectivity (neutral faces > non-face objects) were unaffected. Furthermore, sparing of the anterior amygdala led to intact valence effects in the anterior IT cortex (which included the anterior face-selective regions), whereas sparing of the posterior amygdala led to intact valence effects in the posterior IT cortex (which included the posterior face-selective regions). Overall, our data demonstrate that the feedback projections from the amygdala to the IT cortex mediate the valence effect found there. Moreover, these modulatory effects are consistent with an anterior-to-posterior gradient of projections, as suggested by classical tracer studies. PMID:23184972
Disrupted Olfactory Integration in Schizophrenia: Functional Connectivity Study.
Kiparizoska, Sara; Ikuta, Toshikazu
2017-09-01
Evidence for olfactory dysfunction in schizophrenia has been firmly established. However, in the typical understanding of schizophrenia, olfaction is not recognized to contribute to or interact with the illness. Despite the solid presence of olfactory dysfunction in schizophrenia, its relation to the rest of the illness remains largely unclear. Here, we aimed to examine functional connectivity of the olfactory bulb, olfactory tract, and piriform cortices and isolate the network that would account for the altered olfaction in schizophrenia. We examined the functional connectivity of these specific olfactory regions in order to isolate other brain regions associated with olfactory processing in schizophrenia. Using the resting state functional MRI data from the Center for Biomedical Research Excellence in Brain Function and Mental Illness, we compared 84 patients of schizophrenia and 90 individuals without schizophrenia. The schizophrenia group showed disconnectivity between the anterior piriform cortex and the nucleus accumbens, between the posterior piriform cortex and the middle frontal gyrus, and between the olfactory tract and the visual cortices. The current results suggest functional disconnectivity of olfactory regions in schizophrenia, which may account for olfactory dysfunction and disrupted integration with other sensory modalities in schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of CINP.
ERIC Educational Resources Information Center
Capitao, Liliana; Sampaio, Adriana; Fernandez, Montse; Sousa, Nuno; Pinheiro, Ana; Goncalves, Oscar F.
2011-01-01
Individuals with Williams syndrome display indiscriminate approach towards strangers. Neuroimaging studies conducted so far have linked this social profile to structural and/or functional abnormalities in WS amygdala and prefrontal cortex. In this study, the neuropsychological hypotheses of amygdala and prefrontal cortex involvement in WS…
Biological complexity and adaptability of simple mammalian olfactory memory systems.
Brennan, P; Keverne, E B
2015-03-01
Chemosensory systems play vital roles in the lives of most mammals, including the detection and identification of predators, as well as sex and reproductive status and the identification of individual conspecifics. All of these capabilities require a process of recognition involving a combination of innate (kairomonal/pheromonal) and learned responses. Across very different phylogenies, the mechanisms for pheromonal and odour learning have much in common. They are frequently associated with plasticity of GABA-ergic feedback at the initial level of processing the chemosensory information, which enhances its pattern separation capability. Association of odourant features into an odour object primarily involves anterior piriform cortex for non-social odours. However, the medial amygdala appears to be involved in both the recognition of social odours and their association with chemosensory information sensed by the vomeronasal system. Unusually not only the sensory neurons themselves, but also the GABA-ergic interneurons in the olfactory bulb are continually being replaced, with implications for the induction and maintenance of learned chemosensory responses. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Chen, Yu-Chen; Bo, Fan; Xia, Wenqing; Liu, Shenghua; Wang, Peng; Su, Wen; Xu, Jin-Jing; Xiong, Zhenyu; Yin, Xindao
2017-10-03
Chronic tinnitus is often accompanied with depressive symptom, which may arise from aberrant functional coupling between the amygdala and cerebral cortex. To explore this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the disrupted amygdala-cortical functional connectivity (FC) in chronic tinnitus patients with depressive mood. Chronic tinnitus patients with depressive mood (n=20), without depressive mood (n=20), and well-matched healthy controls (n=23) underwent resting-state fMRI scanning. Amygdala-cortical FC was characterized using a seed-based whole-brain correlation method. The bilateral amygdala FC was compared among the three groups. Compared to non-depressed patients, depressive tinnitus patients showed decreased amygdala FC with the prefrontal cortex and anterior cingulate cortex as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. Relative to healthy controls, depressive tinnitus patients revealed decreased amygdala FC with the superior and middle temporal gyrus, anterior and posterior cingulate cortex, and prefrontal cortex, as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. The current study identified for the first time abnormal resting-state amygdala-cortical FC with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood, which will provide novel insight into the underlying neuropathological mechanisms of tinnitus-induced depressive disorder. Copyright © 2017 Elsevier Inc. All rights reserved.
TrpM8-mediated somatosensation in mouse neocortex.
Beukema, Patrick; Cecil, Katherine L; Peterson, Elena; Mann, Victor R; Matsushita, Megumi; Takashima, Yoshio; Navlakha, Saket; Barth, Alison L
2018-06-15
Somatosensation is a complex sense mediated by more than a dozen distinct neural subtypes in the periphery. Although pressure and touch sensation have been mapped to primary somatosensory cortex in rodents, it has been controversial whether pain and temperature inputs are also directed to this area. Here we use a well-defined somatosensory modality, cool sensation mediated by peripheral TrpM8-receptors, to investigate the neural substrate for cool perception in the mouse neocortex. Using activation of cutaneous TrpM8 receptor-expressing neurons, we identify candidate neocortical areas responsive for cool sensation. Initially, we optimized TrpM8 stimulation and determined that menthol, a selective TrpM8 agonist, was more effective than cool stimulation at inducing expression of the immediate-early gene c-fos in the spinal cord. We developed a broad-scale brain survey method for identification of activated brain areas, using automated methods to quantify c-fos immunoreactivity (fos-IR) across animals. Brain areas corresponding to the posterior insular cortex and secondary somatosensory (S2) show elevated fos-IR after menthol stimulation, in contrast to weaker activation in primary somatosensory cortex (S1). In addition, menthol exposure triggered fos-IR in piriform cortex, the amygdala, and the hypothalamus. Menthol-mediated activation was absent in TrpM8-knock-out animals. Our results indicate that cool somatosensory input broadly drives neural activity across the mouse brain, with neocortical signal most elevated in the posterior insula, as well as S2 and S1. These findings are consistent with data from humans indicating that the posterior insula is specialized for somatosensory information encoding temperature, pain, and gentle touch. © 2018 Wiley Periodicals, Inc.
Ojo, Joseph O; Abdullah, Laila; Evans, James; Reed, Jon Mike; Montague, Hannah; Mullan, Michael J; Crawford, Fiona C
2014-04-01
Gulf War illness (GWI) is a currently untreatable multi-symptom disorder experienced by 1990-1991 Persian Gulf War (GW) veterans. The characteristic hallmarks of GWI include cognitive dysfunction, tremors, migraine, and psychological disturbances such as depression and anxiety. Meta-analyses of epidemiological studies have consistently linked these symptomatic profiles to the combined exposure of GW agents such as organophosphate-based and pyrethroid-based pesticides (e.g. chlorpyrifos (CPF) and permethrin (PER) respectively) and the prophylactic use of pyridostigmine bromide (PB) as a treatment against neurotoxins. Due to the multi-symptomatic presentation of this illness and the lack of available autopsy tissue from GWI patients, very little is currently known about the distinct early pathological profile implicated in GWI (including its influence on synaptic function and aspects of neurogenesis). In this study, we used preclinical models of GW agent exposure to investigate whether 6-month-old mice exposed to CPF alone, or a combined dose of CPF, PB and PER daily for 10 days, demonstrate any notable pathological changes in hippocampal, cortical (motor, piriform) or amygdalar morphometry. We report that at an acute post-exposure time point (after 3 days), both exposures resulted in the impairment of synaptic integrity (reducing synaptophysin levels) in the CA3 hippocampal region and altered neuronal differentiation in the dentate gyrus (DG), demonstrated by a significant reduction in doublecortin positive cells. Both exposures also significantly increased astrocytic GFAP immunoreactivity in the piriform cortex, motor cortex and the basolateral amygdala and this was accompanied by an increase in (basal) brain acetylcholine (ACh) levels. There was no evidence of microglial activation or structural deterioration of principal neurons in these regions following exposure to CPF alone or in combination with PB and PER. Evidence of subtle microvascular injury was demonstrated by the reduction of platelet endothelial cell adhesion molecule (PECAM)-1 levels in CPF+PB+PER exposed group compared to control. These data support early (subtle) neurotoxic effects on the brain following exposure to GW agents. © 2013 Japanese Society of Neuropathology.
Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha
2016-12-01
Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.
The piriform, perirhinal, and entorhinal cortex in seizure generation
Vismer, Marta S.; Forcelli, Patrick A.; Skopin, Mark D.; Gale, Karen; Koubeissi, Mohamad Z.
2015-01-01
Understanding neural network behavior is essential to shed light on epileptogenesis and seizure propagation. The interconnectivity and plasticity of mammalian limbic and neocortical brain regions provide the substrate for the hypersynchrony and hyperexcitability associated with seizure activity. Recurrent unprovoked seizures are the hallmark of epilepsy, and limbic epilepsy is the most common type of medically-intractable focal epilepsy in adolescents and adults that necessitates surgical evaluation. In this review, we describe the role and relationships among the piriform (PIRC), perirhinal (PRC), and entorhinal cortex (ERC) in seizure-generation and epilepsy. The inherent function, anatomy, and histological composition of these cortical regions are discussed. In addition, the neurotransmitters, intrinsic and extrinsic connections, and the interaction of these regions are described. Furthermore, we provide evidence based on clinical research and animal models that suggest that these cortical regions may act as key seizure-trigger zones and, even, epileptogenesis. PMID:26074779
Central mechanisms of odour object perception
Gottfried, Jay A.
2013-01-01
The stimulus complexity of naturally occurring odours presents unique challenges for central nervous systems that are aiming to internalize the external olfactory landscape. One mechanism by which the brain encodes perceptual representations of behaviourally relevant smells is through the synthesis of different olfactory inputs into a unified perceptual experience — an odour object. Recent evidence indicates that the identification, categorization and discrimination of olfactory stimuli rely on the formation and modulation of odour objects in the piriform cortex. Convergent findings from human and rodent models suggest that distributed piriform ensemble patterns of olfactory qualities and categories are crucial for maintaining the perceptual constancy of ecologically inconstant stimuli. PMID:20700142
Simons, LE; Pielech, M; Erpelding, N; Linnman, C; Moulton, E; Sava, S; Lebel, A; Serrano, P; Sethna, N; Berde, C; Becerra, L; Borsook, D
2014-01-01
The amygdala is a key brain region with efferent and afferent neural connections that involve complex behaviors such as pain, reward, fear and anxiety. This study evaluated resting state functional connectivity of the amygdala with cortical and subcortical regions in a group of chronic pain patients (pediatric complex regional pain syndrome) with age-gender matched controls before and after intensive physical-biobehavioral pain treatment. Our main findings include (1) enhanced functional connectivity from the amygdala to multiple cortical, subcortical, and cerebellar regions in patients compared to controls, with differences predominantly in the left amygdala in the pre-treated condition (disease state); (2) dampened hyperconnectivity from the left amygdala to the motor cortex, parietal lobe, and cingulate cortex after intensive pain rehabilitation treatment within patients with nominal differences observed among healthy controls from Time 1 to Time 2 (treatment effects); (3) functional connectivity to several regions key to fear circuitry (prefrontal cortex, bilateral middle temporal lobe, bilateral cingulate, hippocampus) correlated with higher pain-related fear scores and (4) decreases in pain-related fear associated with decreased connectivity between the amygdala and the motor and somatosensory cortex, cingulate, and frontal areas. Our data suggest that there are rapid changes in amygdala connectivity following an aggressive treatment program in children with chronic pain and intrinsic amygdala functional connectivity activity serving as a potential indicator of treatment response. PMID:24861582
Shen, Mark D; Li, Deana D; Keown, Christopher L; Lee, Aaron; Johnson, Ryan T; Angkustsiri, Kathleen; Rogers, Sally J; Müller, Ralph-Axel; Amaral, David G; Nordahl, Christine Wu
2016-09-01
The objective of this study was to determine whether functional connectivity of the amygdala is altered in preschool-age children with autism spectrum disorder (ASD) and to assess the clinical relevance of observed alterations in amygdala connectivity. A resting-state functional connectivity magnetic resonance imaging study of the amygdala (and a parallel study of primary visual cortex) was conducted in 72 boys (mean age 3.5 years; n = 43 with ASD; n = 29 age-matched controls). The ASD group showed significantly weaker connectivity between the amygdala and several brain regions involved in social communication and repetitive behaviors, including bilateral medial prefrontal cortex, temporal lobes, and striatum (p < .05, corrected). Weaker connectivity between the amygdala and frontal and temporal lobes was significantly correlated with increased autism severity in the ASD group (p < .05). In a parallel analysis examining the functional connectivity of primary visual cortex, the ASD group showed significantly weaker connectivity between visual cortex and sensorimotor regions (p < .05, corrected). Weaker connectivity between visual cortex and sensorimotor regions was not correlated with core autism symptoms, but instead was correlated with increased sensory hypersensitivity in the visual/auditory domain (p < .05). These findings indicate that preschool-age children with ASD have disrupted functional connectivity between the amygdala and regions of the brain important for social communication and language, which might be clinically relevant because weaker connectivity was associated with increased autism severity. Moreover, although amygdala connectivity was associated with behavioral domains that are diagnostic of ASD, altered connectivity of primary visual cortex was related to sensory hypersensitivity. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Methamphetamine-induced neuronal necrosis: the role of electrographic seizure discharges
Fujikawa, Denson G.; Pais, Emil S.; Aviles, Ernesto R.; Hsieh, Kung-Chiao; Bashir, Muhammad Tariq
2016-01-01
We have evidence that methamphetamine (METH)-induced neuronal death is morphologically necrotic, not apoptotic, as is currently believed, and that electrographic seizures may be responsible. We administered 40 mg/kg i.p. to 12 male C57BL/6 mice and monitored EEGs continuously and rectal temperatures every 15 min, keeping rectal temperatures <41.0 °C. Seven of the 12 mice had repetitive electrographic seizure discharges (RESDs) and 5 did not. The RESDs were often not accompanied by behavioral signs of seizures–i.e., they were often not accompanied by clonic forelimb movements. The 7 mice with RESDs had acidophilic neurons (the H&E light-microscopic equivalent of necrotic neurons by ultrastructural examination) in all of 7 brain regions (hippocampal CA1, CA2, CA3 and hilus, amygdala, piriform cortex and entorhinal cortex), the same brain regions damaged following generalized seizures, 24 h after METH administration. The 5 mice without RESDs had a few acidophilic neurons in 4 of the 7 brain regions, but those with RESDs had significantly more in 6 of the 7 brain regions. Maximum rectal temperatures were comparable in mice with and without RESDs, so that cannot explain the difference between the two groups with respect to METH-induced neuronal death. Our data show that METH-induced neuronal death is morphologically necrotic, that EEGs must be recorded to detect electrographic seizure activity in rodents without behavioral evidence of seizures, and that RESDs may be responsible for METH-induced neuronal death. PMID:26562800
Vuilleumier, Patrik; Richardson, Mark P; Armony, Jorge L; Driver, Jon; Dolan, Raymond J
2004-11-01
Emotional visual stimuli evoke enhanced responses in the visual cortex. To test whether this reflects modulatory influences from the amygdala on sensory processing, we used event-related functional magnetic resonance imaging (fMRI) in human patients with medial temporal lobe sclerosis. Twenty-six patients with lesions in the amygdala, the hippocampus or both, plus 13 matched healthy controls, were shown pictures of fearful or neutral faces in task-releant or task-irrelevant positions on the display. All subjects showed increased fusiform cortex activation when the faces were in task-relevant positions. Both healthy individuals and those with hippocampal damage showed increased activation in the fusiform and occipital cortex when they were shown fearful faces, but this was not the case for individuals with damage to the amygdala, even though visual areas were structurally intact. The distant influence of the amygdala was also evidenced by the parametric relationship between amygdala damage and the level of emotional activation in the fusiform cortex. Our data show that combining the fMRI and lesion approaches can help reveal the source of functional modulatory influences between distant but interconnected brain regions.
Extrinsic Origins of the Somatostatin and Neuropeptide Y innervation of the Rat Basolateral Amygdala
McDonald, Alexander J.; Zaric, Violeta
2015-01-01
The amygdalar basolateral nuclear complex (BLC) is a cortex-like structure that receives inputs from many cortical areas. It has long been assumed that cortico-amygdalar projections, as well as inter-areal intracortical connections, arise from cortical pyramidal cells. However, recent studies have shown that GABAergic long-range nonpyramidal neurons (LRNP neurons) in the cortex also contribute to inter-areal connections. The present study combined Fluorogold (FG) retrograde tract tracing with immunohistochemistry for cortical nonpyramidal neuronal markers to determine if cortical LRNP neurons project to the BLC in the rat. Injections of FG into the BLC produced widespread retrograde labeling in the cerebral hemispheres and diencephalon. Triple-labeling for FG, somatostatin (SOM), and neuropeptide Y (NPY) revealed a small number of FG+/SOM+/NPY+ neurons and FG+/SOM+/NPY− neurons in the lateral entorhinal area, amygdalopiriform transition area, and piriform cortex, but not in the prefrontal and insular cortices, or in the diencephalon. In addition, FG+/SOM+/NPY+ neurons were observed in the amygdalostriatal transition area and in a zone surrounding the intercalated nuclei. About half of the SOM+ neurons in the lateral entorhinal area labeled by FG were GABA+. FG+ neurons containing parvalbumin were only seen in the basal forebrain, and no FG+ neurons containing vasoactive intestinal peptide were observed in any brain region. Since LRNP neurons involved in corticocortical connections are critical for synchronous oscillations that allow temporal coordination between distant cortical regions, the LRNP neurons identified in this study may play a role in the synchronous oscillations of the BLC and hippocampal region that are involved in the retrieval of fear memories. PMID:25769940
Sanguedo, Frederico Velasco; Dias, Caio Vitor Bueno; Dias, Flavia Regina Cruz; Samuels, Richard Ian; Carey, Robert J; Carrera, Marinete Pinheiro
2016-03-01
Phosphorylated extracellular signal-regulated kinase (ERK) has been used to identify brain areas activated by exogenous stimuli including psychostimulant drugs. Assess the role of the amygdala in emotional responses. Experimental manipulations were performed in which environmental familiarity was the variable. To provide the maximal degree of familiarity, ERK was measured after removal from the home cage and re-placement back into the same cage. To maximize exposure to an unfamiliar environment, ERK was measured following placement into a novel open field. To assess whether familiarity was the critical variable in the ERK response to the novel open field, ERK was also measured after either four or eight placements into the same environment. ERK quantification was carried out in the amygdala, frontal cortex, and the nucleus accumbens. After home cage re-placement, ERK activation was found in the frontal cortex and nucleus accumbens but was absent in the amygdala. Following placement in a novel environment, ERK activation was more prominent in the amygdala than the frontal cortex or nucleus accumbens. In contrast, with habituation to the novel environment, ERK phosphors declined markedly in the amygdala but increased in the frontal cortex and nucleus accumbens to the level observed following home cage re-placement. The differential responsiveness of the amygdala versus the frontal cortex and the nucleus accumbens to a novel versus a habituated environment is consistent with a reciprocal interaction between these neural systems and points to their important role in the mediation of behavioral activation to novelty and behavioral inactivation with habituation.
Changes in prefrontal and amygdala activity during olanzapine treatment in schizophrenia.
Blasi, Giuseppe; Popolizio, Teresa; Taurisano, Paolo; Caforio, Grazia; Romano, Raffaella; Di Giorgio, Annabella; Sambataro, Fabio; Rubino, Valeria; Latorre, Valeria; Lo Bianco, Luciana; Fazio, Leonardo; Nardini, Marcello; Weinberger, Daniel R; Bertolino, Alessandro
2009-07-15
Earlier imaging studies in schizophrenia have reported abnormal amygdala and prefrontal cortex activity during emotion processing. We investigated with functional magnetic resonance imaging (fMRI) during emotion processing changes in activity of the amygdala and of prefrontal cortex in patients with schizophrenia during 8 weeks of olanzapine treatment. Twelve previously drug-free/naive patients with schizophrenia were treated with olanzapine for 8 weeks and underwent two fMRI scans after 4 and 8 weeks of treatment during implicit and explicit emotional processing. Twelve healthy subjects were also scanned twice to control for potential repetition effects. Results showed a diagnosis by time interaction in left amygdala and a diagnosis by time by task interaction in right ventrolateral prefrontal cortex. In particular, activity in left amygdala was greater in patients than in controls at the first scan during both explicit and implicit processing, while it was lower in patients at the second relative to the first scan. Furthermore, during implicit processing, right ventrolateral prefrontal cortex activity was lower in patients than controls at the first scan, while it was greater in patients at the second relative to the first scan. These results suggest that longitudinal treatment with olanzapine may be associated with specific changes in activity of the amygdala and prefrontal cortex during emotional processing in schizophrenia.
Lee, Sang-Kyu; Kim, Ji-Eun; Kim, Yeon-Joo; Kim, Min-Ju; Kang, Tae-Cheon
2014-08-01
Hyperforin, a lipophilic constituent of medicinal herb St. John's Wort, has neurobiological effects including antidepressant activity, antibiotic potency, anti-inflammatory activity and anti-tumoral properties. Furthermore, hyperforin activates transient receptor potential conical channel-6 (TRPC6), a nonselective cation channel. To elucidate the roles of hyperforin and TRPC6 in neuroinflammation in vivo, we investigated the effect of hyperforin on neuroinflammatory responses and its related events in the rat piriform cortex (PC) following status epilepticus (SE). Hyperforin attenuated microglial activation, p65-serine 276 NFκB phosphorylation, and suppressed TNF-α expression in the PC following SE. Hyperforin also effectively alleviated SE-induced vasogenic edema formation, neuronal damage, microglial TRPC6 induction and blood-derived monocyte infiltration. Our findings suggest that hyperforin may effectively attenuate microglia-mediated neuroinflammation in the TRPC6-independent manner. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Abivardi, Aslan; Bach, Dominik R
2017-08-01
Structural alterations in long-range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non-systematic. Harnessing diffusion-weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1-weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non-human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white-matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non-human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927-3940, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
2017-01-01
Abstract Structural alterations in long‐range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non‐systematic. Harnessing diffusion‐weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1‐weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non‐human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white‐matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non‐human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927–3940, 2017. © 2017 Wiley Periodicals, Inc. PMID:28512761
Abnormal amygdala connectivity in patients with primary insomnia: evidence from resting state fMRI.
Huang, Zhaoyang; Liang, Peipeng; Jia, Xiuqin; Zhan, Shuqin; Li, Ning; Ding, Yan; Lu, Jie; Wang, Yuping; Li, Kuncheng
2012-06-01
Neurobiological mechanisms underlying insomnia are poorly understood. Previous findings indicated that dysfunction of the emotional circuit might contribute to the neurobiological mechanisms underlying insomnia. The present study will test this hypothesis by examining alterations in functional connectivity of the amygdala in patients with primary insomnia (PI). Resting-state functional connectivity analysis was used to examine the temporal correlation between the amygdala and whole-brain regions in 10 medication-naive PI patients and 10 age- and sex-matched healthy controls. Additionally, the relationship between the abnormal functional connectivity and insomnia severity was investigated. We found decreased functional connectivity mainly between the amygdala and insula, striatum and thalamus, and increased functional connectivity mainly between the amygdala and premotor cortex, sensorimotor cortex in PI patients as compared to healthy controls. The connectivity of the amygdala with the premotor cortex in PI patients showed significant positive correlation with the total score of the Pittsburgh Sleep Quality Index (PSQI). The decreased functional connectivity between the amygdala and insula, striatum, and thalamus suggests that dysfunction in the emotional circuit might contribute to the neurobiological mechanisms underlying PI. The increased functional connectivity of the amygdala with the premotor and sensorimotor cortex demonstrates a compensatory mechanism to overcome the negative effects of sleep deficits and maintain the psychomotor performances in PI patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian
2016-07-01
Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. Copyright © 2016 Elsevier Inc. All rights reserved.
Marsh, Abigail A.; Finger, Elizabeth C.; Fowler, Katherine A.; Jurkowitz, Ilana T.N.; Schechter, Julia C.; Yu, Henry H.; Pine, Daniel S.; Blair, R. J. R.
2011-01-01
We used functional magnetic resonance imaging (fMRI) to investigate dysfunction in the amygdala and orbitofrontal cortex in adolescents with disruptive behavior disorders and psychopathic traits during a moral judgment task. Fourteen adolescents with psychopathic traits and 14 healthy controls were assessed using fMRI while they categorized illegal and legal behaviors in a moral judgment implicit association task. fMRI data were then analyzed using random-effects analysis of variance and functional connectivity. Youths with psychopathic traits showed reduced amygdala activity when making judgments about legal actions and reduced functional connectivity between the amygdala and orbitofrontal cortex during task performance. These results suggest that psychopathic traits are associated with amygdala and orbitofrontal cortex dysfunction. This dysfunction may relate to previous findings of disrupted moral judgment in this population. PMID:22047730
Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R; Flor, Herta
2009-01-01
Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate cortex (ACC). The amygdala, insula and inferior frontal cortex were differentially active during late acquisition. Extinction was accompanied by enhanced activation to CS+ vs. CS− in the dorsal anterior cingulate cortex (dACC). The results are in accordance with animal studies and provide evidence for the important role of the hippocampus in contextual learning in humans. Connectivity analyses revealed correlated activity between the left posterior hippocampus and dACC (BA32) during early acquisition and the dACC, left posterior hippocampus and right amygdala during extinction. These data are consistent with theoretical models that propose an inhibitory effect of the mPFC on the amygdala. The interaction of the mPFC with the hippocampus may reflect the context-specificity of extinction learning. PMID:19200075
Inagaki, Mikio; Fujita, Ichiro
2011-07-13
Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.
Mechanisms and Treatment of OP-Induced Seizures and Neuropathology
1993-08-18
Millan, M. H., Patel, S., Mello, L. M. and Meldrum , B. S., Focal injection of 2-amino-7- phosphonoheptanoic acid into prepiriform cortex protects against...LIST OF FIGURES Figure 1. Rapid, selective induction of c-fos and glial fibrillary acidic protein (GFAP) in piriform cortex (PC) by a single...specific to astrocytes, glial fibrillary acidic protein (GFAP). We found that there was a robust increase in GFAP staining in layers Il-III of PC that
The amygdala and ventromedial prefrontal cortex in morality and psychopathy.
Blair, R J R
2007-09-01
Recent work has implicated the amygdala and ventromedial prefrontal cortex in morality and, when dysfunctional, psychopathy. This model proposes that the amygdala, through stimulus-reinforcement learning, enables the association of actions that harm others with the aversive reinforcement of the victims' distress. Consequent information on reinforcement expectancy, fed forward to the ventromedial prefrontal cortex, can guide the healthy individual away from moral transgressions. In psychopathy, dysfunction in these structures means that care-based moral reasoning is compromised and the risk that antisocial behavior is used instrumentally to achieve goals is increased.
Scarlet, Janina; Delamater, Andrew R; Campese, Vincent; Fein, Matthew; Wheeler, Daniel S
2012-06-01
Four experiments examined the roles of the basolateral amygdala and orbitofrontal cortex in the formation of sensory-specific associations in conditioned flavor preference and conditioned magazine approach paradigms using unconditioned stimulus (US) devaluation and selective Pavlovian-instrumental transfer procedures in Long Evans rats. Experiment 1 found that pre-training amygdala and orbitofrontal cortex lesions had no detectable effect on the formation or flexible use of sensory-specific flavor-nutrient associations in a US devaluation task, where flavor cues were paired either simultaneously or sequentially with nutrient rewards in water-deprived subjects. In Experiment 2, pre-training amygdala and orbitofrontal cortex lesions both attenuated outcome-specific Pavlovian-instrumental transfer. Experiment 3 indicated that amygdala lesions have no effect on the formation of sensory-specific flavor-nutrient associations in a US devaluation task in food-deprived subjects. Finally, Experiment 4 demonstrated that the outcomes used in Experiment 3 were sufficiently motivationally significant to support conditioned flavor preference. These findings suggest that, although both orbitofrontal cortex and amygdala lesions attenuate the acquisition of sensory-specific associations in magazine approach conditioning, neither lesion reduces the ability to appropriately respond to a flavor cue that was paired with a devalued outcome. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Sex-related differences in amygdala functional connectivity during resting conditions.
Kilpatrick, L A; Zald, D H; Pardo, J V; Cahill, L F
2006-04-01
Recent neuroimaging studies have established a sex-related hemispheric lateralization of amygdala involvement in memory for emotionally arousing material. Here, we examine the possibility that sex-related differences in amygdala involvement in memory for emotional material develop from differential patterns of amygdala functional connectivity evident in the resting brain. Seed voxel partial least square analyses of regional cerebral blood flow data revealed significant sex-related differences in amygdala functional connectivity during resting conditions. The right amygdala was associated with greater functional connectivity in men than in women. In contrast, the left amygdala was associated with greater functional connectivity in women than in men. Furthermore, the regions displaying stronger functional connectivity with the right amygdala in males (sensorimotor cortex, striatum, pulvinar) differed from those displaying stronger functional connectivity with the left amygdala in females (subgenual cortex, hypothalamus). These differences in functional connectivity at rest may link to sex-related differences in medical and psychiatric disorders.
Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation
ERIC Educational Resources Information Center
Fletcher, Max L.; Chen, Wei R.
2010-01-01
The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…
ERIC Educational Resources Information Center
Cohen-Matsliah, Sivan Ida; Seroussi, Yaron; Rosenblum, Kobi; Barkai, Edi
2008-01-01
Pyramidal neurons in the piriform cortex from olfactory-discrimination (OD) trained rats undergo synaptic modifications that last for days after learning. A particularly intriguing modification is reduced paired-pulse facilitation (PPF) in the synapses interconnecting these cells; a phenomenon thought to reflect enhanced synaptic release. The…
Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A
2017-02-22
Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed increased encoding of the instrumental responses that monkeys made on each trial. Behaviorally, changes in neural activity were accompanied by slower stimulus-reward learning. The findings suggest that interactions among amygdala, OFC, and MFC contribute to learning about stimuli that predict rewards. Copyright © 2017 the authors 0270-6474/17/372186-17$15.00/0.
Averbeck, Bruno B.
2017-01-01
Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also showed increased encoding of the instrumental responses that monkeys made on each trial. Behaviorally, changes in neural activity were accompanied by slower stimulus–reward learning. The findings suggest that interactions among amygdala, OFC, and MFC contribute to learning about stimuli that predict rewards. PMID:28123082
Ihara, Fumiaki; Nishimura, Maki; Muroi, Yoshikage; Mahmoud, Motamed Elsayed; Yokoyama, Naoaki; Nagamune, Kisaburo; Nishikawa, Yoshifumi
2016-10-01
Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Marsh, Abigail A; Finger, Elizabeth C; Fowler, Katherine A; Jurkowitz, Ilana T N; Schechter, Julia C; Yu, Henry H; Pine, Daniel S; Blair, R J R
2011-12-30
We used functional magnetic resonance imaging (fMRI) to investigate dysfunction in the amygdala and orbitofrontal cortex in adolescents with disruptive behavior disorders and psychopathic traits during a moral judgment task. Fourteen adolescents with psychopathic traits and 14 healthy controls were assessed using fMRI while they categorized illegal and legal behaviors in a moral judgment implicit association task. fMRI data were then analyzed using random-effects analysis of variance and functional connectivity. Youths with psychopathic traits showed reduced amygdala activity when making judgments about legal actions and reduced functional connectivity between the amygdala and orbitofrontal cortex during task performance. These results suggest that psychopathic traits are associated with amygdala and orbitofrontal cortex dysfunction. This dysfunction may relate to previous findings of disrupted moral judgment in this population. 2011 Elsevier Ireland Ltd. All rights reserved.
Amygdala Functional Connectivity is Reduced After the Cold Pressor Task
Clewett, David; Schoeke, Andrej; Mather, Mara
2013-01-01
The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370
Sex differences in amygdala activation during the perception of facial affect.
Killgore, W D; Yurgelun-Todd, D A
2001-08-08
The cognitive and affective systems of the cerebral cortex are often more lateralized in males than females, but it is unclear whether these differences extend to subcortical systems. We used fMRI to examine sex differences in lateralized amygdala activity during happy and fearful face perception. Amygdala activation differed for men and women depending on the valence of the expression. Overall, males were more lateralized than females, but the direction differed between valence conditions. Happy faces produced greater right than left amygdala activation for males but not females. Both sexes showed greater left amygdala activation for fearful faces. These findings suggest that the lateralization of affective function may extend beyond the cortex to subcortical regions such as the amygdala.
Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.
Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto
2006-11-06
Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.
Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex
Large, Adam M.; Vogler, Nathan W.; Mielo, Samantha; Oswald, Anne-Marie M.
2016-01-01
Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively. Here we use a combination of optical and electrical activation of interneurons to profile the inhibitory input received by three classes of principal excitatory neuron in the anterior piriform cortex. In all classes, we find that L1 interneurons provide weaker inhibition than L2/3 interneurons. Nonetheless, feedforward inhibitory strength covaries with the amount of afferent excitation received by each class of principal neuron. In contrast, intracortical stimulation of L2/3 evokes strong inhibition that dominates recurrent excitation in all classes. Finally, we find that the relative contributions of feedforward and recurrent pathways differ between principal neuron classes. Specifically, L2 neurons receive more reliable afferent drive and less overall inhibition than L3 neurons. Alternatively, L3 neurons receive substantially more intracortical inhibition. These three features—balanced afferent drive, dominant recurrent inhibition, and differential recruitment by afferent vs. intracortical circuits, dependent on cell class—suggest mechanisms for olfactory processing that may extend to other sensory cortices. PMID:26858458
GABAergic circuits control input-spike coupling in the piriform cortex.
Luna, Victor M; Schoppa, Nathan E
2008-08-27
Odor coding in mammals is widely believed to involve synchronized gamma frequency (30-70 Hz) oscillations in the first processing structure, the olfactory bulb. How such inputs are read in downstream cortical structures however is not known. Here we used patch-clamp recordings in rat piriform cortex slices to examine cellular mechanisms that shape how the cortex integrates inputs from bulb mitral cells. Electrical stimulation of mitral cell axons in the lateral olfactory tract (LOT) resulted in excitation of pyramidal cells (PCs), which was followed approximately 10 ms later by inhibition that was highly reproducible between trials in its onset time. This inhibition was somatic in origin and appeared to be driven through a feedforward mechanism, wherein GABAergic interneurons were directly excited by mitral cell axons. The precise inhibition affected action potential firing in PCs in two distinct ways. First, by abruptly terminating PC excitation, it limited the PC response to each EPSP to exactly one, precisely timed action potential. In addition, inhibition limited the summation of EPSPs across time, such that PCs fired action potentials in strong preference for synchronized inputs arriving in a time window of <5 ms. Both mechanisms would help ensure that PCs respond faithfully and selectively to mitral cell inputs arriving as a synchronized gamma frequency pattern.
Cohen, Yaniv; Wilson, Donald A.; Barkai, Edi
2015-01-01
Learning of a complex olfactory discrimination (OD) task results in acquisition of rule learning after prolonged training. Previously, we demonstrated enhanced synaptic connectivity between the piriform cortex (PC) and its ascending and descending inputs from the olfactory bulb (OB) and orbitofrontal cortex (OFC) following OD rule learning. Here, using recordings of evoked field postsynaptic potentials in behaving animals, we examined the dynamics by which these synaptic pathways are modified during rule acquisition. We show profound differences in synaptic connectivity modulation between the 2 input sources. During rule acquisition, the ascending synaptic connectivity from the OB to the anterior and posterior PC is simultaneously enhanced. Furthermore, post-training stimulation of the OB enhanced learning rate dramatically. In sharp contrast, the synaptic input in the descending pathway from the OFC was significantly reduced until training completion. Once rule learning was established, the strength of synaptic connectivity in the 2 pathways resumed its pretraining values. We suggest that acquisition of olfactory rule learning requires a transient enhancement of ascending inputs to the PC, synchronized with a parallel decrease in the descending inputs. This combined short-lived modulation enables the PC network to reorganize in a manner that enables it to first acquire and then maintain the rule. PMID:23960200
Early network activity propagates bidirectionally between hippocampus and cortex.
Barger, Zeke; Easton, Curtis R; Neuzil, Kevin E; Moody, William J
2016-06-01
Spontaneous activity in the developing brain helps refine neuronal connections before the arrival of sensory-driven neuronal activity. In mouse neocortex during the first postnatal week, waves of spontaneous activity originating from pacemaker regions in the septal nucleus and piriform cortex propagate through the neocortex. Using high-speed Ca(2+) imaging to resolve the spatiotemporal dynamics of wave propagation in parasagittal mouse brain slices, we show that the hippocampus can act as an additional source of neocortical waves. Some waves that originate in the hippocampus remain restricted to that structure, while others pause at the hippocampus-neocortex boundary and then propagate into the neocortex. Blocking GABAergic neurotransmission decreases the likelihood of wave propagation into neocortex, whereas blocking glutamatergic neurotransmission eliminates spontaneous and evoked hippocampal waves. A subset of hippocampal and cortical waves trigger Ca(2+) waves in astrocytic networks after a brief delay. Hippocampal waves accompanied by Ca(2+) elevation in astrocytes are more likely to propagate into the neocortex. Finally, we show that two structures in our preparation that initiate waves-the hippocampus and the piriform cortex-can be electrically stimulated to initiate propagating waves at lower thresholds than the neocortex, indicating that the intrinsic circuit properties of those regions are responsible for their pacemaker function. © 2015 Wiley Periodicals, Inc.
Nersesian, L B; Eganova, V S; Pogosian, N L; Avetisian, I N
2011-01-01
Comparative microelectrophysiological study of character and peculiarities of effects of the cortical nucleus of amygdala and of the periamygdalar area of pyriform cortex on impulse activity was performed on the same single functionally identified respiratory medullar neurons. A high reactivity of bulbar respiratory neurons on stimulation is established in both studied limbic structures. There is established the qualitatively different character of their response reactions at stimulation of the cortical amygdala nucleus and the periamygdalar cortex. The cortical amygdala nucleus has been shown to produce on the activity of medullar respiratory neurons both facilitating and inhibitory action with predominance of the activating one (without topographical orderliness). The effect of periamygdalar cortex at stimulation of various parts was characterized by topographic differentiation. The suppressing reactions of neurons in the majority of cases were recorded at stimulation of the rostral area of periamygdalar cortex, whereas the excitatory reactions--at stimulation of its caudal part. Functional organization of respiratory control of the studied limbic system structures is discussed.
Learning in the Absence of Experience-Dependent Regulation of NMDAR Composition
ERIC Educational Resources Information Center
Lebel, David; Sidhu, Nishchal; Barkai, Edi; Quinlan, Elizabeth M.
2006-01-01
Olfactory discrimination (OD) learning consists of two phases: an initial N-methyl-d-aspartate (NMDA) receptor--sensitive rule-learning phase, followed by an NMDA receptor (NMDAR)--insensitive pair-learning phase. The rule-learning phase is accompanied by changes in the composition and function of NMDARs at synapses in the piriform cortex,…
Wei, Shengnan; Geng, Haiyang; Jiang, Xiaowei; Zhou, Qian; Chang, Miao; Zhou, Yifang; Xu, Ke; Tang, Yanqing; Wang, Fei
2017-02-22
Bipolar disorder (BD) is one of the most complex mental illnesses, characterized by interactive depressive and manic states that are 2 contrary symptoms of disease states. The bilateral amygdala and prefrontal cortex (PFC) appear to play critical roles in BD; however, abnormalities seem to manifest differently in the 2 states and may provide further insight into underlying mechanisms. Sixteen participants with first-episode depressive and 13 participants with first-episode manic states of bipolar disorder as well as 30 healthy control (HC) participants underwent resting-state functional magnetic resonance imaging (fMRI). Resting-state functional connectivity (rsFC) between the bilateral amygdala and PFC was compared among the 3 groups. Compared with depressive state participants of the BD group, manic state participants of the BD group showed a significant decrease in rsFC between the amygdala and right orbital frontal cortex (p<0.05, corrected). In addition, rsFC between the amygdala and left middle frontal cortex was significantly decreased in depressive and manic state participants of the BD group when compared with the HC group (p<0.05, corrected). Our findings suggest that mood state during the first episodes of BD may be related to abnormality in hemispheric lateralization. The abnormalities in amygdala- left PFC functional connectivity might present the trait feature for BD, while deficits in amygdala- right PFC functional connectivity might be specific to manic episode, compared to depressive episode. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Tianyu; Szabó, Nora; Ma, Jun; Luo, Lingfei; Zhou, Xunlei; Alvarez-Bolado, Gonzalo
2008-01-01
The hypothalamus is a brain region with vital functions, and alterations in its development can cause human disease. However, we still do not have a complete description of how this complex structure is put together during embryonic and early postnatal stages. Radially oriented, outside-in migration of cells is prevalent in the developing hypothalamus. In spite of this, cell contingents from outside the hypothalamus as well as tangential hypothalamic migrations also have an important role. Here we study migrations in the hypothalamic primordium by genetically labeling the Foxb1 diencephalic lineage. Foxb1 is a transcription factor gene expressed in the neuroepithelium of the developing neural tube with a rostral expression boundary between caudal and rostral diencephalon, and therefore appropriate for marking migrations from caudal levels into the hypothalamus. We have found a large, longitudinally oriented migration stream apparently originating in the thalamic region and following an axonal bundle to end in the anterior portion of the lateral hypothalamic area. Additionally, we have mapped a specific expansion of the neuroepithelium into the rostral diencephalon. The expanded neuroepithelium generates abundant neurons for the medial hypothalamus at the tuberal level. Finally, we have uncovered novel diencephalon-to-telencephalon migrations into septum, piriform cortex and amygdala. PMID:19046377
Fronto-Limbic Functioning in Children and Adolescents with and without Autism
ERIC Educational Resources Information Center
Loveland, Katherine A.; Bachevalier, Jocelyne; Pearson, Deborah A.; Lane, David M.
2008-01-01
We used neuropsychological tasks to investigate integrity of brain circuits linking orbitofrontal cortex and amygdala (orbitofrontal-amygdala), and dorsolateral prefrontal cortex and hippocampus (dorsolateral prefrontal-hippocampus), in 138 individuals aged 7-18 years, with and without autism. We predicted that performance on…
Easton, Curtis R.; Weir, Keiko; Scott, Adina; Moen, Samantha P.; Barger, Zeke; Folch, Albert; Hevner, Robert F.
2014-01-01
Many structures of the mammalian CNS generate propagating waves of electrical activity early in development. These waves are essential to CNS development, mediating a variety of developmental processes, such as axonal outgrowth and pathfinding, synaptogenesis, and the maturation of ion channel and receptor properties. In the mouse cerebral cortex, waves of activity occur between embryonic day 18 and postnatal day 8 and originate in pacemaker circuits in the septal nucleus and the piriform cortex. Here we show that genetic knock-out of the major synthetic enzyme for GABA, GAD67, selectively eliminates the picrotoxin-sensitive fraction of these waves. The waves that remain in the GAD67 knock-out have a much higher probability of propagating into the dorsal neocortex, as do the picrotoxin-resistant fraction of waves in controls. Field potential recordings at the point of wave initiation reveal different electrical signatures for GABAergic and glutamatergic waves. These data indicate that: (1) there are separate GABAergic and glutamatergic pacemaker circuits within the piriform cortex, each of which can initiate waves of activity; (2) the glutamatergic pacemaker initiates waves that preferentially propagate into the neocortex; and (3) the initial appearance of the glutamatergic pacemaker does not require preceding GABAergic waves. In the absence of GAD67, the electrical activity underlying glutamatergic waves shows greatly increased tendency to burst, indicating that GABAergic inputs inhibit the glutamatergic pacemaker, even at stages when GABAergic pacemaker circuitry can itself initiate waves. PMID:24623764
Morphological alterations in the prefrontal cortex and the amygdala in unsuccessful psychopaths.
Yang, Yaling; Raine, Adrian; Colletti, Patrick; Toga, Arthur W; Narr, Katherine L
2010-08-01
Although deficits in several cortical and subcortical structures have been found in psychopaths, it remains unclear whether the neuropathology differs between subgroups of psychopaths (i.e., unsuccessful and successful). Using both traditional and novel image analyses methods, this study aims to reveal gross and subtle morphological changes in the prefrontal cortex and the amygdala in unsuccessful and successful psychopaths. Volumetric segmentation, cortical pattern matching, and surface-based mesh modeling methods were used to examine prefrontal and amygdala structures in 16 unsuccessful psychopaths, 10 successful psychopaths, and 27 controls. Significant reduced gray matter volume and cortical thickness/surface shape in the middle frontal, orbitofrontal cortex and the amygdala were found in unsuccessful psychopaths but not successful psychopaths, compared with controls. This study provides the first evidence of greater prefrontal and amygdala structural deficits in unsuccessful psychopaths, which may predispose them to poor behavioral control and impaired decision-making, thus making them more prone to convictions. Copyright 2010 APA, all rights reserved
Hafeman, Danella; Bebko, Genna; Bertocci, Michele A; Fournier, Jay C; Chase, Henry W; Bonar, Lisa; Perlman, Susan B; Travis, Michael; Gill, Mary Kay; Diwadkar, Vaibhav A; Sunshine, Jeffrey L; Holland, Scott K; Kowatch, Robert A; Birmaher, Boris; Axelson, David; Horwitz, Sarah M; Arnold, L Eugene; Fristad, Mary A; Frazier, Thomas W; Youngstrom, Eric A; Findling, Robert L; Phillips, Mary L
2017-01-15
Both bipolar spectrum disorders (BPSD) and attention deficit hyperactivity disorder (ADHD) present with emotion-regulation deficits, but require different clinical management. We examined how the neurobiological underpinnings of emotion regulation might differentiate youth with BPSD versus ADHD (and healthy controls, HCs), specifically assessing functional connectivity (FxC) of amygdala-prefrontal circuitry during an implicit emotion processing task. We scanned a subset of the Longitudinal Assessment of Manic Symptoms (LAMS) sample, a clinically recruited cohort with elevated behavioral and emotional dysregulation, and age/sex-ratio matched HCs. Our sample consisted of 22 youth with BPSD, 30 youth with ADHD/no BPSD, and 26 HCs. We used generalized psychophysiological interaction (gPPI) to calculate group differences to emerging emotional faces vs. morphing shapes in FxC between bilateral amygdala and ventral prefrontal cortex/anterior cingulate cortex. FxC between amygdala and left ventrolateral prefrontal cortex (VLPFC) in response to emotions vs. shapes differed by group (p=.05): while BPSD showed positive FxC (emotions>shapes), HC and ADHD showed inverse FxC (emotions
ERIC Educational Resources Information Center
Garrett, Amy S.; Reiss, Allan L.; Howe, Meghan E.; Kelley, Ryan G.; Singh, Manpreet K.; Adleman, Nancy E.; Karchemskiy, Asya; Chang, Kiki D.
2012-01-01
Objective: Previous functional magnetic resonance imaging (fMRI) studies in pediatric bipolar disorder (BD) have reported greater amygdala and less dorsolateral prefrontal cortex (DLPFC) activation to facial expressions compared to healthy controls. The current study investigates whether these differences are associated with the early or late…
ERIC Educational Resources Information Center
Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.
2009-01-01
Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…
Yamada, Misa; Saitoh, Akiyoshi; Ohashi, Masanori; Suzuki, Satoshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko
2015-08-01
Local perfusion of the sodium channel activator veratrine in mouse prelimbic medial prefrontal cortex (PL) induced c-Fos immunoreactivity in the sub-regions of amygdala. Co-perfusion of the NMDA receptor antagonist MK-801 diminished the c-Fos expression. Significant correlations were observed between c-Fos immunoreactivity and behavioral measures in the open-field test. The PL stimulation activates a neural network projecting to the amygdala via NMDA receptor-mediated glutamatergic neurotransmission. Anxiety-like behavior induced after the PL stimulation may be partly mediated through the activation of amygdala.
Amygdala-cingulate intrinsic connectivity is associated with degree of social inhibition
Blackford, Jennifer Urbano; Clauss, Jacqueline A.; Avery, Suzanne N.; Cowan, Ronald L.; Benningfield, Margaret M.; VanDerKlok, Ross M.
2014-01-01
The tendency to approach or avoid novel people is a fundamental human behavior and is a core dimension of social anxiety. Resting state fMRI was used to test for an association between social inhibition and intrinsic connectivity in 40 young adults ranging from low to high in social inhibition. Higher levels of social inhibition were associated with specific patterns of reduced amygdala-cingulate cortex connectivity. Connectivity was reduced between the superficial amygdala and the rostral cingulate cortex and between the centromedial amygdala and the dorsal anterior cingulate cortex. Social inhibition also modulated connectivity in several well-established intrinsic networks; higher social inhibition correlated with reduced connectivity with default mode and dorsal attention networks and enhanced connectivity in salience and executive control networks. These findings provide important preliminary evidence that social inhibition reflects differences in the underlying intrinsic connectivity of the brain in the absence of social stimuli or stressors. PMID:24534162
Cocaine. Selective regional effects on central monoamines.
Hadfield, M G
1995-01-01
Cocaine HCl (0, 10, or 50 mg/kg) was injected into adult male ICR mice ip. Thirty minutes later, the brains were removed, and nine regions were isolated: olfactory bulbs, olfactory tubercles, prefrontal cortex, septum, striatum, amygdala, hypothalamus, hippocampus, and thalamus. Using high-performance liquid chromatography, concentrations of norepinephrine, dopamine, serotonin, and their major metabolites and the metabolite/neurotransmitter ratios were determined as an indicator of utilization. Serotonergic systems responded most dramatically. 5HIAA/5-HT decreases were seen in all the brain regions, except the septum, hippocampus, and olfactory bulbs. In most instances, the alterations were dose-dependent. The most profound changes were seen in the amygdala, prefrontal cortex, hypothalamus, and thalamus. For noradrenergic systems, significant responses were seen only in the amygdala, prefrontal cortex, and hypothalamus, but then only at the lower dose. The dopaminergic responses were more complex and not always dose-dependent. The DOPAC/DA ratio was decreased only in the amygdala and striatum at the lower dose, and the olfactory tubercles at the higher dose. It was increased in the septum. The HVA/DA ratios were decreased in the amygdala, prefrontal cortex, and hypothalamus, but only at the lower dose (like MHPG/NE). The 3MT/DA ratio was decreased in the thalamus at the lower dose and in the olfactory tubercles at the higher dose, whereas it was increased in the prefrontal cortex at the lower dose. The HVA and DOPAC routes of degradation were both utilized only by the amygdala. Thus, cocaine produced its most comprehensive effects in this nucleus, as well as the greatest absolute percentage changes for all three of the monoamine systems studied.
Regional brain changes in bipolar I depression: a functional magnetic resonance imaging study
Altshuler, Lori; Bookheimer, Susan; Townsend, Jennifer; Proenza, Manuel A; Sabb, Fred; Mintz, Jim; Cohen, Mark S
2011-01-01
Objective To investigate neural activity in prefrontal cortex and amygdala during bipolar depression. Methods Eleven bipolar I depressed and 17 normal subjects underwent functional magnetic resonance imaging (fMRI) while performing a task known to activate prefrontal cortex and amygdala. Whole brain activation patterns were determined using statistical parametric mapping (SPM) when subjects matched faces displaying neutral or negative affect (match condition) or matched a geometric form (control condition). Contrasts for each group for the match versus control conditions were used in a second-level random effects analysis. Results Random effects between-group analysis revealed significant attenuation in right and left orbitofrontal cortex (BA47) and right dorsolateral prefrontal cortex (DLPFC) (BA9) in bipolar depressed subjects. Additionally, random effects analysis showed a significantly increased activation in left lateral orbitofrontal cortex (BA10) in the bipolar depressed versus control subjects. Within-group contrasts demonstrated significant amygdala activation in the controls and no significant amygdala activation in the bipolar depressed subjects. The amygdala between-group difference, however, was not significant. Conclusions Bipolar depression is associated with attenuated bilateral orbitofrontal (BA47) activation, attenuated right DLPFC (BA9) activation and heightened left orbitofrontal (BA10) activation. BA47 attenuation has also been reported in mania and may thus represent a trait feature of the disorder. Increased left prefrontal (BA10) activation may be a state marker to bipolar depression. Our findings suggest dissociation between mood-dependent and disease-dependent functional brain abnormalities in bipolar disorder. PMID:18837865
Lapate, R. C.; Rokers, B.; Tromp, D. P. M.; Orfali, N. S.; Oler, J. A.; Doran, S. T.; Adluru, N.; Alexander, A. L.; Davidson, R. J.
2016-01-01
Conscious awareness of negative cues is thought to enhance emotion-regulatory capacity, but the neural mechanisms underlying this effect are unknown. Using continuous flash suppression (CFS) in the MRI scanner, we manipulated visual awareness of fearful faces during an affect misattribution paradigm, in which preferences for neutral objects can be biased by the valence of a previously presented stimulus. The amygdala responded to fearful faces independently of awareness. However, when awareness of fearful faces was prevented, individuals with greater amygdala responses displayed a negative bias toward unrelated novel neutral faces. In contrast, during the aware condition, inverse coupling between the amygdala and prefrontal cortex reduced this bias, particularly among individuals with higher structural connectivity in the major white matter pathway connecting the prefrontal cortex and amygdala. Collectively, these results indicate that awareness promotes the function of a critical emotion-regulatory network targeting the amygdala, providing a mechanistic account for the role of awareness in emotion regulation. PMID:27181344
McGregor, Iain S; Clemens, Kelly J; Van der Plasse, Geoffrey; Li, Kong M; Hunt, Glenn E; Chen, Feng; Lawrence, Andrew J
2003-08-01
Male Wistar rats were treated with 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") using either a high dose (4 x 5 mg/kg over 4 h) or low dose (1 x 5 mg/kg over 4 h) regimen on each of 2 consecutive days. After 10 weeks, rats were tested in the social interaction and emergence tests of anxiety. Rats previously given either of the MDMA dose regimens were significantly more anxious on both tests. After behavioral testing, and 3 months after the MDMA treatment, the rats were killed and their brains examined. Rats given the high-, but not the low-, dose MDMA treatment regimen exhibited significant loss of 5-hydroxytryptamine (5-HT) and 5-HIAA in the amygdala, hippocampus, striatum, and cortex. Quantitative autoradiography showed loss of SERT binding in cortical, hippocampal, thalamic, and hypothalamic sites with the high-dose MDMA regime, while low-dose MDMA only produced significant loss in the medial hypothalamus. Neither high- nor low-dose MDMA affected 5HT(1A) receptor density. High-dose MDMA increased 5HT(1B) receptor density in the nucleus accumbens and lateral septum but decreased binding in the globus pallidus, insular cortex and medial thalamus. Low-dose MDMA decreased 5HT(1B) receptor density in the hippocampus, globus pallidus, and medial thalamus. High-dose MDMA caused dramatic decreases in cortical, striatal, thalamic, and hypothalamic 5HT(2A)/(2C) receptor density, while low-dose MDMA tended to produce similar effects but only significantly in the piriform cortex. These data suggest that even brief, relatively low-dose MDMA exposure can produce significant, long-term changes in 5-HT receptor and transporter function and associated emotional behavior. Interestingly, long-term 5-HT depletion may not be necessary to produce lasting effects on anxiety-like behavior after low-dose MDMA.
The Embryonic Septum and Ventral Pallium, New Sources of Olfactory Cortex Cells
de Carlos, Juan A.
2012-01-01
The mammalian olfactory cortex is a complex structure located along the rostro-caudal extension of the ventrolateral prosencephalon, which is divided into several anatomically and functionally distinct areas: the anterior olfactory nucleus, piriform cortex, olfactory tubercle, amygdaloid olfactory nuclei, and the more caudal entorhinal cortex. Multiple forebrain progenitor domains contribute to the cellular diversity of the olfactory cortex, which is invaded simultaneously by cells originating in distinct germinal areas in the dorsal and ventral forebrain. Using a combination of dye labeling techniques, we identified two novel areas that contribute cells to the developing olfactory cortices, the septum and the ventral pallium, from which cells migrate along a radial and then a tangential path. We characterized these cell populations by comparing their expression of calretinin, calbindin, reelin and Tbr1 with that of other olfactory cell populations. PMID:22984546
Wu, Minjie; Kujawa, Autumn; Lu, Lisa H.; Fitzgerald, Daniel A.; Klumpp, Heide; Fitzgerald, Kate D.; Monk, Christopher S.; Phan, K. Luan
2016-01-01
The ability to process and respond to emotional facial expressions is a critical skill for healthy social and emotional development. There has been growing interest in understanding the neural circuitry underlying development of emotional processing, with previous research implicating functional connectivity between amygdala and frontal regions. However, existing work has focused on threatening emotional faces, raising questions regarding the extent to which these developmental patterns are specific to threat or to emotional face processing more broadly. In the current study, we examined age-related changes in brain activity and amygdala functional connectivity during an fMRI emotional face matching task (including angry, fearful and happy faces) in 61 healthy subjects aged 7–25 years. We found age-related decreases in ventral medial prefrontal cortex (vmPFC) activity in response to happy faces but not to angry or fearful faces, and an age-related change (shifting from positive to negative correlation) in amygdala-anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) functional connectivity to all emotional faces. Specifically, positive correlations between amygdala and ACC/mPFC in children changed to negative correlations in adults, which may suggest early emergence of bottom-up amygdala excitatory signaling to ACC/mPFC in children and later development of top-down inhibitory control of ACC/mPFC over amygdala in adults. Age-related changes in amygdala-ACC/mPFC connectivity did not vary for processing of different facial emotions, suggesting changes in amygdala-ACC/mPFC connectivity may underlie development of broad emotional processing, rather than threat-specific processing. PMID:26931629
Blair, R J R
2008-08-12
The current paper examines the functional contributions of the amygdala and ventromedial prefrontal cortex (vmPFC) and the evidence that the functioning of these systems is compromised in individuals with psychopathy. The amygdala is critical for the formation of stimulus-reinforcement associations, both punishment and reward based, and the processing of emotional expressions. vmPFC is critical for the representation of reinforcement expectancies and, owing to this, decision making. Neuropsychological and neuroimaging data from individuals with psychopathy are examined. It is concluded that these critical functions of the amygdala and vmPFC, and their interaction, are compromised in individuals with the disorder. It is argued that these impairments lead to the development of psychopathy.
Brain structure is changed in congenital anosmia.
Frasnelli, Johannes; Fark, Therese; Lehmann, Jacqueline; Gerber, Johannes; Hummel, Thomas
2013-12-01
Olfactory function in healthy people correlates with structural features of both the olfactory bulb and higher order olfactory processing areas, but we do not yet know how congenital anosmia affects these latter structures. In order to examine this question closer, we acquired T1 weighted magnetic resonance images from 17 subjects with congenital anosmia and from 17 age- and sex-matched controls. We compared white and gray matter volumes as well as cortical thickness between both groups. We found subjects with congenital anosmia to exhibit larger gray matter volumes in the left entorhinal and piriform cortices. Further, they had thicker orbitofrontal cortices bilaterally. Their left piriform cortex was also thicker than that of controls. These findings are in contrast to those observed in acquired anosmia, where reduced olfactory function is associated with reduced volumes and thickness. However, they fit well with observations from other sensory systems, e.g., vision, where congenital sensory loss is associated with a thicker primary cortex. This finding has been attributed to reduced or absent synaptic pruning as a result of missing peripheral sensory input. Our findings suggest that similar mechanisms take place in the olfactory system. © 2013.
Biasi, Elisabetta
2010-11-29
Prenatal supplementation of rat dams with dietary choline has been shown to provide their offspring with neuroprotection against N-methyl-d-aspartate (NMDA) antagonist-mediated neurotoxicity. This study investigated whether postnatal dietary choline supplementation exposure for 30 and 60 days of rats starting in a pre-puberty age would also induce neuroprotection (without prenatal exposure). Male and female Sprague-Dawley rats (postnatal day 30 of age) were reared for 30 or 60 concurrent days on one of the four dietary levels of choline: 1) fully deficient choline, 2) 1/3 the normal level, 3) the normal level, or 4) seven times the normal level. After diet treatment, the rats received one injection of MK-801 (dizocilpine 3mg/kg) or saline control. Seventy-two hours later, the rats were anesthetized and transcardially perfused. Their brains were then postfixed for histology with Fluorojade-C (FJ-C) staining. Serial coronal sections were prepared from a rostrocaudal direction from 1.80 to 4.2mm posterior to the bregma to examine cell degeneration in the retrosplenial and piriform regions. MK-801, but not control saline, produced significant numbers of FJ-C positive neurons, indicating considerable neuronal degeneration. Dietary choline supplementation or deprivation in young animals reared for 30-60days did not alter NMDA antagonist-induced neurodegeneration in the retrosplenial region. An interesting finding is the absence of the piriform cortex involvement in young male rats and the complete absence of neurotoxicity in both hippocampus regions and DG. However, neurotoxicity in the piriform cortex of immature females treated for 60days appeared to be suppressed by low levels of dietary choline. Published by Elsevier B.V.
Khaksar, Sepideh; Bigdeli, Mohammad Reza
2017-01-05
Excitotoxicity and imbalance of sodium and calcium homeostasis trigger pathophysiologic processes in cerebral ischemia which can accelerate neuronal death. Neuroprotective role of cannabidiol (CBD), one of the main non-psychoactive phytocannabinoids of the cannabis plant, has attracted attention of many researchers in the neurodegenerative diseases studies. The present investigation was designed to determine whether cannabidiol can alleviate the severity of ischemic damages and if it is able to exert its anti-excitotoxic effects through sodium and calcium regulation. By using stereotaxic surgery, a guide cannula was implanted into the lateral ventricle. Cannabidiol (50, 100, and 200ng/rat; i.c.v.) was administrated for 5 consecutive days. After pretreatment, the rats were subjected to 60min of right middle cerebral artery occlusion (MCAO). After 24h, neurological deficits score, infarct volume, brain edema, and blood-brain barrier (BBB) permeability in total of hemisphere, cortex, piriform cortex-amygdala, and striatum were assessed. The expression of Na + /Ca 2+ exchangers (NCXs) protein as an endogenous target in these regions was also studied. The present results indicate that administration of cannabidiol (100 and 200ng/rat) in the MCAO-induced cerebral ischemia caused a remarkable reduction in neurological deficit, infarction, brain edema, and BBB permeability in comparison with the vehicle group. Up-regulation of NCX2 and NCX3 in cannabidiol-received groups was also observed. These findings support the view that the reduction of ischemic injuries elicited by cannabidiol can be at least partly due to the enhancement of NCX protein expression and its cerebro-protective role in those cerebral territories supplied by MCA. Copyright © 2016 Elsevier B.V. All rights reserved.
Localization of dysfunction in major depressive disorder: Prefrontal cortex and amygdala
Murray, Elisabeth A.; Wise, Steven P.; Drevets, Wayne C.
2010-01-01
Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of ‘self’ underlies the core disorder in MDD; the medial frontal cortex represents ‘self’; interactions between the amygdala and cortical representations update their valuation; and inefficiency in using positive feedback by orbital prefrontal cortex contributes to MDD. PMID:21111403
Laeger, Inga; Dobel, Christian; Radenz, Britta; Kugel, Harald; Keuper, Kati; Eden, Annuschka; Arolt, Volker; Zwitserlood, Pienie; Dannlowski, Udo; Zwanzger, Peter
2014-01-01
Limbic hyperactivation and an impaired functional interplay between the amygdala and the prefrontal cortex are discussed to go along with, or even cause, pathological anxiety. Within the multi-faceted group of anxiety disorders, the highly prevalent social phobia (SP) is characterized by excessive fear of being negatively evaluated. Although there is widespread evidence for amygdala hypersensitivity to emotional faces in SP, verbal material has rarely been used in imaging studies, in particular with an eye on disorder-specificity. Using functional magnetic resonance imaging (fMRI) and a block design consisting of (1) overall negative, (2) social-phobia related, (3) positive, and (4) neutral words, we studied 25 female patients with social phobia and 25 healthy female control subjects (HC). Results demonstrated amygdala hyperactivation to disorder-relevant but not to generally negative words in SP patients, with a positive correlation to symptom severity. A functional connectivity analysis revealed a weaker coupling between the amygdala and the left middle frontal gyrus in patients. Symptom severity was negatively related to connectivity strength between the amygdala and the ventromedial prefrontal and orbitofrontal cortex (Brodmann Area 10 and 11). The findings clearly support the view of a hypersensitive threat-detection system, combined with disorder-related alterations in amygdala-prefrontal cortex connectivity in pathological anxiety.
A network of amygdala connections predict individual differences in trait anxiety.
Greening, Steven G; Mitchell, Derek G V
2015-12-01
In this study we demonstrate that the pattern of an amygdala-centric network contributes to individual differences in trait anxiety. Individual differences in trait anxiety were predicted using maximum likelihood estimates of amygdala structural connectivity to multiple brain targets derived from diffusion-tensor imaging (DTI) and probabilistic tractography on 72 participants. The prediction was performed using a stratified sixfold cross validation procedure using a regularized least square regression model. The analysis revealed a reliable network of regions predicting individual differences in trait anxiety. Higher trait anxiety was associated with stronger connections between the amygdala and dorsal anterior cingulate cortex, an area implicated in the generation of emotional reactions, and inferior temporal gyrus and paracentral lobule, areas associated with perceptual and sensory processing. In contrast, higher trait anxiety was associated with weaker connections between amygdala and regions implicated in extinction learning such as medial orbitofrontal cortex, and memory encoding and environmental context recognition, including posterior cingulate cortex and parahippocampal gyrus. Thus, trait anxiety is not only associated with reduced amygdala connectivity with prefrontal areas associated with emotion modulation, but also enhanced connectivity with sensory areas. This work provides novel anatomical insight into potential mechanisms behind information processing biases observed in disorders of emotion. © 2015 Wiley Periodicals, Inc.
Nitschke, Jack B; Sarinopoulos, Issidoros; Oathes, Desmond J; Johnstone, Tom; Whalen, Paul J; Davidson, Richard J; Kalin, Ned H
2009-03-01
The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.
Nitschke, Jack B.; Sarinopoulos, Issidoros; Oathes, Desmond J.; Johnstone, Tom; Whalen, Paul J.; Davidson, Richard J.; Kalin, Ned H.
2009-01-01
Objective The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. Method Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. Results Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. Conclusions These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder. PMID:19122007
ERIC Educational Resources Information Center
Laurent, Vincent; Westbrook, R. Frederick
2008-01-01
We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but…
Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.
Gresch, P J; Strickland, L V; Sanders-Bush, E
2002-01-01
Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations. Copyright 2002 IBRO
Wu, Minjie; Kujawa, Autumn; Lu, Lisa H; Fitzgerald, Daniel A; Klumpp, Heide; Fitzgerald, Kate D; Monk, Christopher S; Phan, K Luan
2016-05-01
The ability to process and respond to emotional facial expressions is a critical skill for healthy social and emotional development. There has been growing interest in understanding the neural circuitry underlying development of emotional processing, with previous research implicating functional connectivity between amygdala and frontal regions. However, existing work has focused on threatening emotional faces, raising questions regarding the extent to which these developmental patterns are specific to threat or to emotional face processing more broadly. In the current study, we examined age-related changes in brain activity and amygdala functional connectivity during an fMRI emotional face matching task (including angry, fearful, and happy faces) in 61 healthy subjects aged 7-25 years. We found age-related decreases in ventral medial prefrontal cortex activity in response to happy faces but not to angry or fearful faces, and an age-related change (shifting from positive to negative correlation) in amygdala-anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) functional connectivity to all emotional faces. Specifically, positive correlations between amygdala and ACC/mPFC in children changed to negative correlations in adults, which may suggest early emergence of bottom-up amygdala excitatory signaling to ACC/mPFC in children and later development of top-down inhibitory control of ACC/mPFC over amygdala in adults. Age-related changes in amygdala-ACC/mPFC connectivity did not vary for processing of different facial emotions, suggesting changes in amygdala-ACC/mPFC connectivity may underlie development of broad emotional processing, rather than threat-specific processing. Hum Brain Mapp 37:1684-1695, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ghashghaei, H T; Hilgetag, C C; Barbas, H
2007-02-01
The prefrontal cortex and the amygdala have synergistic roles in regulating purposive behavior, effected through bidirectional pathways. Here we investigated the largely unknown extent and laminar relationship of prefrontal input-output zones linked with the amygdala using neural tracers injected in the amygdala in rhesus monkeys. Prefrontal areas varied vastly in their connections with the amygdala, with the densest connections found in posterior orbitofrontal and posterior medial cortices, and the sparsest in anterior lateral prefrontal areas, especially area 10. Prefrontal projection neurons directed to the amygdala originated in layer 5, but significant numbers were also found in layers 2 and 3 in posterior medial and orbitofrontal cortices. Amygdalar axonal terminations in prefrontal cortex were most frequently distributed in bilaminar bands in the superficial and deep layers, by columns spanning the entire cortical depth, and less frequently as small patches centered in the superficial or deep layers. Heavy terminations in layers 1-2 overlapped with calbindin-positive inhibitory neurons. A comparison of the relationship of input to output projections revealed that among the most heavily connected cortices, cingulate areas 25 and 24 issued comparatively more projections to the amygdala than they received, whereas caudal orbitofrontal areas were more receivers than senders. Further, there was a significant relationship between the proportion of 'feedforward' cortical projections from layers 2-3 to 'feedback' terminations innervating the superficial layers of prefrontal cortices. These findings indicate that the connections between prefrontal cortices and the amygdala follow similar patterns as corticocortical connections, and by analogy suggest pathways underlying the sequence of information processing for emotions.
Jalbrzikowski, Maria; Larsen, Bart; Hallquist, Michael N; Foran, William; Calabro, Finnegan; Luna, Beatriz
2017-10-01
Connectivity between the amygdala and ventromedial prefrontal cortex (vmPFC) is compromised in multiple psychiatric disorders, many of which emerge during adolescence. To identify to what extent the deviations in amygdala-vmPFC maturation contribute to the onset of psychiatric disorders, it is essential to characterize amygdala-vmPFC connectivity changes during typical development. Using an accelerated cohort longitudinal design (1-3 time points, 10-25 years old, n = 246), we characterized developmental changes of the amygdala-vmPFC subregion functional and structural connectivity using resting-state functional magnetic resonance imaging and diffusion-weighted imaging. Functional connectivity between the centromedial amygdala and rostral anterior cingulate cortex (rACC), anterior vmPFC, and subgenual cingulate significantly decreased from late childhood to early adulthood in male and female subjects. Age-associated decreases were also observed between the basolateral amygdala and the rACC. Importantly, these findings were replicated in a separate cohort (10-22 years old, n = 327). Similarly, structural connectivity, as measured by quantitative anisotropy, significantly decreased with age in the same regions. Functional connectivity between the centromedial amygdala and the rACC was associated with structural connectivity in these same regions during early adulthood (22-25 years old). Finally, a novel time-varying coefficient analysis showed that increased centromedial amygdala-rACC functional connectivity was associated with greater anxiety and depression symptoms during early adulthood, while increased structural connectivity in centromedial amygdala-anterior vmPFC white matter was associated with greater anxiety/depression during late childhood. Specific developmental periods of functional and structural connectivity between the amygdala and the prefrontal systems may contribute to the emergence of anxiety and depressive symptoms and may play a critical role in the emergence of psychiatric disorders in adolescence. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhvania, Mzia G.; Japaridze, Nadezhda J.; Ksovreli, Mariam G.
The effect of chronic restraint stress and chronic hypokinesia "without stress" on the ultrastructure of central and lateral nuclei of amygdala, CA1 and CA3 area of the hippocampus, cingular cortex, nucleus caudatus and motor cortex of adult male rats were elucidated. In some neurons and synapses of abovementioned regions pathological modifications were revealed. More significant alterations provokes chronic restraint stress. Alterations are mostly concentrated: first—in the nuclei of amygdala, then in the CA1 and CA3 areas. Moderate alterations were observed in cingular cortex and nucleus caudatus. In comparing with it, hypokinesia "without stress" provokes only moderate modifications: predominantly in the nucleus caudatus, in lesser degree—in the hippocampus and amygdalae.
Mitchell, D G V; Fine, C; Richell, R A; Newman, C; Lumsden, J; Blair, K S; Blair, R J R
2006-05-01
Previous work has shown that individuals with psychopathy are impaired on some forms of associative learning, particularly stimulus-reinforcement learning (Blair et al., 2004; Newman & Kosson, 1986). Animal work suggests that the acquisition of stimulus-reinforcement associations requires the amygdala (Baxter & Murray, 2002). Individuals with psychopathy also show impoverished reversal learning (Mitchell, Colledge, Leonard, & Blair, 2002). Reversal learning is supported by the ventrolateral and orbitofrontal cortex (Rolls, 2004). In this paper we present experiments investigating stimulus-reinforcement learning and relearning in patients with lesions of the orbitofrontal cortex or amygdala, and individuals with developmental psychopathy without known trauma. The results are interpreted with reference to current neurocognitive models of stimulus-reinforcement learning, relearning, and developmental psychopathy. Copyright (c) 2006 APA, all rights reserved.
Fermin, Alan S. R.; Sakagami, Masamichi; Kiyonari, Toko; Li, Yang; Matsumoto, Yoshie; Yamagishi, Toshio
2016-01-01
Social value orientations (SVOs) are economic preferences for the distribution of resources – prosocial individuals are more cooperative and egalitarian than are proselfs. Despite the social and economic implications of SVOs, no systematic studies have examined their neural correlates. We investigated the amygdala and dorsolateral prefrontal cortex (DLPFC) structures and functions in prosocials and proselfs by functional magnetic resonance imaging and evaluated cooperative behavior in the Prisoner’s Dilemma game. We found for the first time that amygdala volume was larger in prosocials and positively correlated with cooperation, while DLPFC volume was larger in proselfs and negatively correlated with cooperation. Proselfs’ decisions were marked by strong DLPFC and weak amygdala activity, and prosocials’ decisions were marked by strong amygdala activity, with the DLPFC signal increasing only in defection. Our findings suggest that proselfs’ decisions are controlled by DLPFC-mediated deliberative processes, while prosocials’ decisions are initially guided by automatic amygdala processes. PMID:26876988
Pizarro, Jose M; Chang, Wenling E; Bah, Mariama J; Wright, Linnzi K M; Saviolakis, George A; Alagappan, Arun; Robison, Christopher L; Shah, Jinesh D; Meyerhoff, James L; Cerasoli, Douglas M; Midboe, Eric G; Lumley, Lucille A
2012-04-01
The highly toxic organophosphorus compound VX [O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonate] is an irreversible inhibitor of the enzyme acetylcholinesterase (AChE). Prolonged inhibition of AChE increases endogenous levels of acetylcholine and is toxic at nerve synapses and neuromuscular junctions. We hypothesized that repeated exposure to sublethal doses of VX would affect genes associated with cell survival, neuronal plasticity, and neuronal remodeling, including brain-derived neurotrophic factor (BDNF). We examined the time course of BDNF expression in C57BL/6 mouse brain following repeated exposure (1/day × 5 days/week × 2 weeks) to sublethal doses of VX (0.2 LD(50) and 0.4 LD(50)). BDNF messenger RNA expression was significantly (p < 0.05) elevated in multiple brain regions, including the dentate gyrus, CA3, and CA1 regions of the hippocampal formation, as well as the piriform cortex, hypothalamus, amygdala, and thalamus, 72 h after the last 0.4 LD(50) VX exposure. BDNF protein expression, however, was only increased in the CA3 region of the hippocampus. Whether increased BDNF in response to sublethal doses of VX exposure is an adaptive response to prevent cellular damage or a precursor to impending brain damage remains to be determined. If elevated BDNF is an adaptive response, exogenous BDNF may be a potential therapeutic target to reduce the toxic effects of nerve agent exposure.
Aversive Learning Modulates Cortical Representations of Object Categories
Dunsmoor, Joseph E.; Kragel, Philip A.; Martin, Alex; LaBar, Kevin S.
2014-01-01
Experimental studies of conditioned learning reveal activity changes in the amygdala and unimodal sensory cortex underlying fear acquisition to simple stimuli. However, real-world fears typically involve complex stimuli represented at the category level. A consequence of category-level representations of threat is that aversive experiences with particular category members may lead one to infer that related exemplars likewise pose a threat, despite variations in physical form. Here, we examined the effect of category-level representations of threat on human brain activation using 2 superordinate categories (animals and tools) as conditioned stimuli. Hemodynamic activity in the amygdala and category-selective cortex was modulated by the reinforcement contingency, leading to widespread fear of different exemplars from the reinforced category. Multivariate representational similarity analyses revealed that activity patterns in the amygdala and object-selective cortex were more similar among exemplars from the threat versus safe category. Learning to fear animate objects was additionally characterized by enhanced functional coupling between the amygdala and fusiform gyrus. Finally, hippocampal activity co-varied with object typicality and amygdala activation early during training. These findings provide novel evidence that aversive learning can modulate category-level representations of object concepts, thereby enabling individuals to express fear to a range of related stimuli. PMID:23709642
Phan, K Luan; Orlichenko, Anton; Boyd, Erin; Angstadt, Mike; Coccaro, Emil F; Liberzon, Israel; Arfanakis, Konstantinos
2009-10-01
Individuals with generalized social anxiety disorder (GSAD) exhibit exaggerated amygdala reactivity to aversive social stimuli. These findings could be explained by microstructural abnormalities in white matter (WM) tracts that connect the amygdala and prefrontal cortex, which is known to modulate the amygdala's response to threat. The goal of this study was to investigate brain frontal WM abnormalities using diffusion tensor imaging (DTI) in patients with social anxiety disorder. A Turboprop DTI sequence was used to acquire diffusion tensor images in 30 patients with GSAD and 30 matched healthy control subjects. Fractional anisotropy, an index of axonal organization, within WM was quantified in individual subjects, and an automated voxel-based, whole-brain method was used to analyze group differences. Compared with healthy control subjects, patients had significantly lower fractional anisotropy localized to the right uncinate fasciculus WM near the orbitofrontal cortex. There were no areas of higher fractional anisotropy in patients than controls. These findings point to an abnormality in the uncinate fasciculus, the major WM tract connecting the frontal cortex to the amygdala and other limbic temporal regions, in GSAD, which could underlie the aberrant amygdala-prefrontal interactions resulting in dysfunctional social threat processing in this illness.
Kalmar, Alain F.; Doorduin, Janine; Struys, Michel M. R. F.; Schoemaker, Regien G.; Absalom, Anthony R.
2018-01-01
In anaesthetic practice the risk of cerebral ischemic/hypoxic damage is thought to be attenuated by deep anaesthesia. The rationale is that deeper anaesthesia reduces cerebral oxygen demand more than light anaesthesia, thereby increasing the tolerance to ischemia or hypoxia. However, evidence to support this is scarce. We thus investigated the influence of light versus deep anaesthesia on the responses of rat brains to a period of hypoxia. In the first experiment we exposed adult male Wistar rats to deep or light propofol anaesthesia and then performed [18F]- Fludeoxyglucose (FDG) Positron Emission Tomography (PET) scans to verify the extent of cerebral metabolic suppression. In subsequent experiments, rats were subjected to light/deep propofol anaesthesia and then exposed to a period of hypoxia or ongoing normoxia (n = 9–11 per group). A further 5 rats, not exposed to anaesthesia or hypoxia, served as controls. Four days later a Novel Object Recognition (NOR) test was performed to assess mood and cognition. After another 4 days, the animals were sacrificed for later immunohistochemical analyses of neurogenesis/neuroplasticity (Doublecortin; DCX), Brain Derived Neurotrophic Factor (BDNF) expression and neuroinflammation (Ionized calcium-binding adaptor protein-1; Iba-1) in hippocampal and piriform cortex slices. The hippocampi of rats subjected to hypoxia during light anaesthesia showed lower DCX positivity, and therefore lower neurogenesis, but higher BDNF levels and microglia hyper-ramification. Exploration was reduced, but no significant effect on NOR was observed. In the piriform cortex, higher DCX positivity was observed, associated with neuroplasticity. All these effects were attenuated by deep anaesthesia. Deepening anaesthesia attenuated the brain changes associated with hypoxia. Hypoxia during light anaesthesia had a prolonged effect on the brain, but no impairment in cognitive function was observed. Although reduced hippocampal neurogenesis may be considered unfavourable, higher BDNF expression, associated with microglia hyper-ramification may suggest activation of repair mechanisms. Increased neuroplasticity observed in the piriform cortex supports this, and might reflect a prolonged state of alertness rather than damage. PMID:29451906
Krämer, Bernd; Gruber, Oliver
2015-01-01
Human decisions are guided by a variety of motivational factors, such as immediate rewards, long-term goals, and emotions. We used functional magnetic resonance imaging to investigate the dynamic functional interactions between the amygdala, the nucleus accumbens, and the prefrontal cortex that underlie the influences of emotions, desires, and rationality on human decisions. We found that increased functional connectivity between the amygdala and the nucleus accumbens facilitated the approach of an immediate reward in the presence of emotional information. Further, increased functional interactions of the anteroventral prefrontal cortex with the amygdala and the nucleus accumbens were associated with rational decisions in dilemma situations. These findings support previous animal studies by demonstrating that emotional signals from the amygdala and goal-oriented information from prefrontal cortices interface in the nucleus accumbens to guide human decisions and reward-directed actions. © 2015 S. Karger AG, Basel.
Salling, Michael C.; Hodge, Christopher J.; Psilos, Kelly E.; Eastman, Vallari R.; Faccidomo, Sara P.; Hodge, Clyde W.
2018-01-01
Cue-induced reinstatement of alcohol-seeking is a hallmark behavioral pathology of addiction. Evidence suggests that reinstatement (e.g., relapse), may be regulated by cell signaling systems that underlie neuroplasticity. A variety of plasticity events require activation of calcium calmodulin-dependent protein kinase II (CaMKII) in components of the reward pathway, such as the nucleus accumbens and amygdala. We sought to determine if cue-induced reinstatement of alcohol-seeking behavior is associated with changes in the activation state (e.g., phosphorylation) of CaMKII-T286. Male C57BL/6J mice (n = 14) were trained to lever press on a fixed-ratio-4 schedule of sweetened alcohol (2% sucrose + 9% EtOH) reinforcement. After 14-d of extinction (no cues or reinforcers), mice underwent a response-contingent reinstatement (n = 7) vs. an additional day of extinction (n = 7). Brains were removed immediately after the test and processed for evaluation of pCaMKII-T286 immunoreactivity (IR). Number of pCaMKII-T286 positive cells/mm2 was quantified from coronal brain sections using Bioquant Image Analysis software. Mice emitted significantly more responses on the alcohol vs. the inactive lever throughout the baseline phase with average alcohol intake of 1.1 ± 0.03 g/kg/1-h. During extinction, responses on the alcohol lever decreased to inactive lever levels by day 7. Significant cue-induced reinstatement of alcohol-seeking was observed during a single test with no effects on the inactive lever. Reinstatement was associated with increased pCaMKII-T286 IR specifically in amygdala (LA and BLA), nucleus accumbens (AcbSh), lateral septum, mediodorsal thalamus, and piriform cortex as compared to extinction control. Brain regions showing no change included the dorsal striatum, medial septum, cingulate cortex, habenula, paraventricular thalamus, and ventral hypothalamus. These results show response contingent cue-induced reinstatement of alcohol-seeking behavior is associated with selective increases in pCaMKII-T286 in specific reward- and memory-related brain regions of male C57BL/6J mice. Primary molecular mechanisms of associative learning and memory may regulate relapse in alcohol addiction. PMID:29100991
The amygdala and decision-making.
Gupta, Rupa; Koscik, Timothy R; Bechara, Antoine; Tranel, Daniel
2011-03-01
Decision-making is a complex process that requires the orchestration of multiple neural systems. For example, decision-making is believed to involve areas of the brain involved in emotion (e.g., amygdala, ventromedial prefrontal cortex) and memory (e.g., hippocampus, dorsolateral prefrontal cortex). In this article, we will present findings related to the amygdala's role in decision-making, and differentiate the contributions of the amygdala from those of other structurally and functionally connected neural regions. Decades of research have shown that the amygdala is involved in associating a stimulus with its emotional value. This tradition has been extended in newer work, which has shown that the amygdala is especially important for decision-making, by triggering autonomic responses to emotional stimuli, including monetary reward and punishment. Patients with amygdala damage lack these autonomic responses to reward and punishment, and consequently, cannot utilize "somatic marker" type cues to guide future decision-making. Studies using laboratory decision-making tests have found deficient decision-making in patients with bilateral amygdala damage, which resembles their real-world difficulties with decision-making. Additionally, we have found evidence for an interaction between sex and laterality of amygdala functioning, such that unilateral damage to the right amygdala results in greater deficits in decision-making and social behavior in men, while left amygdala damage seems to be more detrimental for women. We have posited that the amygdala is part of an "impulsive," habit type system that triggers emotional responses to immediate outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Myers, C E; Gluck, M A
1996-08-01
A previous model of hippocampal region function in classical conditioning is generalized to H. Eichenbaum, A. Fagan, P. Mathews, and N.J. Cohen's (1989) and H. Eichenbaum, A. Fagan, and N.J. Cohen's (1989) simultaneous odor discrimination studies in rats. The model assumes that the hippocampal region forms new stimulus representations that compress redundant information while differentiating predictie information; the piriform (olfactory) cortex meanwhile clusters similar and co-occurring odors. Hippocampal damage interrupts the ability to differentiate odor representations, while leaving piriform-mediated odor clustering unchecked. The result is a net tendency to overcompress in the lesioned model. Behavior in the model is very similar to that of the rats, including lesion deficits, facilitation of successively learned tasks, and transfer performance. The computational mechanisms underlying model performance are consistent with the qualitative interpretations suggested by Eichen baum et al. to explain their empirical data.
Cortical thickness, cortico-amygdalar networks, and externalizing behaviors in healthy children.
Ameis, Stephanie H; Ducharme, Simon; Albaugh, Matthew D; Hudziak, James J; Botteron, Kelly N; Lepage, Claude; Zhao, Lu; Khundrakpam, Budhachandra; Collins, D Louis; Lerch, Jason P; Wheeler, Anne; Schachar, Russell; Evans, Alan C; Karama, Sherif
2014-01-01
Fronto-amygdalar networks are implicated in childhood psychiatric disorders characterized by high rates of externalizing (aggressive, noncompliant, oppositional) behavior. Although externalizing behaviors are distributed continuously across clinical and nonclinical samples, little is known about how brain variations may confer risk for problematic behavior. Here, we studied cortical thickness, amygdala volume, and cortico-amygdalar network correlates of externalizing behavior in a large sample of healthy children. Two hundred ninety-seven healthy children (6-18 years; mean = 12 ± 3 years), with 517 magnetic resonance imaging scans, from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development, were studied. Relationships between externalizing behaviors (measured with the Child Behavior Checklist) and cortical thickness, amygdala volume, and cortico-amygdalar structural networks were examined using first-order linear mixed-effects models, after controlling for age, sex, scanner, and total brain volume. Results significant at p ≤ .05, following multiple comparison correction, are reported. Left orbitofrontal, right retrosplenial cingulate, and medial temporal cortex thickness were negatively correlated with externalizing behaviors. Although amygdala volume alone was not correlated with externalizing behaviors, an orbitofrontal cortex-amygdala network predicted rates of externalizing behavior. Children with lower levels of externalizing behaviors exhibited positive correlations between orbitofrontal cortex and amygdala structure, while these regions were not correlated in children with higher levels of externalizing behavior. Our findings identify key cortical nodes in frontal, cingulate, and temporal cortex associated with externalizing behaviors in children; and indicate that orbitofrontal-amygdala network properties may influence externalizing behaviors, along a continuum and across healthy and clinical samples. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Petrovic, Romana; Puskas, Laslo; Jevtic Dozudic, Gordana; Stojkovic, Tihomir; Velimirovic, Milica; Nikolic, Tatjana; Zivkovic, Milica; Djorovic, Djordje J; Nenadovic, Milutin; Petronijevic, Natasa
2018-05-26
Post-traumatic stress disorder (PTSD) is a highly prevalent and impairing disorder. Oxidative stress is implicated in its pathogenesis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of free radicals. The aim of the study was to assess oxidative stress parameters, activities of respiratory chain enzymes, and the expression of NADPH oxidase subunits (gp91phox, p22phox, and p67phox) in the single prolonged stress (SPS) animal model of PTSD. Twenty-four (12 controls; 12 subjected to SPS), 9-week-old, male Wistar rats were used. SPS included physical restraint, forced swimming, and ether exposure. The rats were euthanized seven days later. Cortex, hippocampus, amygdala, and thalamus were dissected. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Complex I, and cytochrome C oxidase were measured using spectrophotometric methods, while the expression of NADPH oxidase subunits was determined by Western blot. Increased MDA and decreased GSH concentrations were found in the amygdala and hippocampus of the SPS rats. SOD activity was decreased in amygdala and GPx was decreased in hippocampus. Increased expression of the NADPH oxidase subunits was seen in amygdala, while mitochondrial respiratory chain enzyme expression was unchanged both in amygdala and hippocampus. In the cortex concentrations of MDA and GSH were unchanged despite increased Complex I and decreased GPx, while in the thalamus no change of any parameter was noticed. We conclude that oxidative stress is present in hippocampus and amygdala seven days after the SPS procedure. NADPH oxidase seems to be a main source of free radicals in the amygdala.
Resting-state functional connectivity in combat veterans suffering from impulsive aggression
Heesink, Lieke; van Honk, Jack; Geuze, Elbert
2017-01-01
Abstract Impulsive aggression is common among military personnel after deployment and may arise because of impaired top-down regulation of the amygdala by prefrontal regions. This study sought to further explore this hypothesis via resting-state functional connectivity analyses in impulsively aggressive combat veterans. Male combat veterans with (n = 28) and without (n = 30) impulsive aggression problems underwent resting-state functional magnetic resonance imaging. Functional connectivity analyses were conducted with the following seed-regions: basolateral amygdala (BLA), centromedial amygdala, anterior cingulate cortex (ACC), and anterior insular cortex (AIC). Regions-of-interest analyses focused on the orbitofrontal cortex and periaqueductal gray, and yielded no significant results. In exploratory cluster analyses, we observed reduced functional connectivity between the (bilateral) BLA and left dorsolateral prefrontal cortex in the impulsive aggression group, relative to combat controls. This finding indicates that combat-related impulsive aggression may be marked by weakened functional connectivity between the amygdala and prefrontal regions, already in the absence of explicit emotional stimuli. Group differences in functional connectivity were also observed between the (bilateral) ACC and left cuneus, which may be related to heightened vigilance to potentially threatening visual cues, as well as between the left AIC and right temporal pole, possibly related to negative memory association in impulsive aggression. PMID:29040723
Pizzi, Stefano Delli; Chiacchieretta, Piero; Mantini, Dante; Bubbico, Giovanna; Edden, Richard A.; Onofrj, Marco; Ferretti, Antonio
2017-01-01
The amygdala-medial prefrontal cortex (mPFC) circuit plays a key role in social behavior. The amygdala and mPFC are bidirectionally connected, functionally and anatomically, via the uncinate fasciculus. Recent evidence suggests that GABA-ergic neurotransmission within the mPFC could be central to the regulation of amygdala activity related to emotions and anxiety processing. However, the functional and neurochemical interactions within amygdala-mPFC circuits are unclear. In the current study, multimodal magnetic resonance imaging techniques were combined to investigate effective connectivity within the amygdala-mPFC network and its relationship with mPFC neurotransmission in 22 healthy subjects aged between 41 and 88 years. Effective connectivity in the amygdala-mPFC circuit was assessed on resting-state functional magnetic resonance imaging data using spectral dynamic causal modelling. State and trait anxiety were also assessed. The mPFC was shown to be the target of incoming outputs from the amygdalae and the source of exciting inputs to the limbic system. The amygdalae were reciprocally connected by excitatory projections. About half of the variance relating to the strength of top–down endogenous connection between right amygdala and mPFC was explained by mPFC GABA levels. State anxiety was correlated with the strength of the endogenous connections between right amygdala and mPFC. We suggest that mPFC GABA content predicts variability in the effective connectivity within the mPFC-amygdala circuit, providing new insights on emotional physiology and the underlying functional and neurochemical interactions. PMID:28386778
Nirujogi, Raja Sekhar; Wright, James D; Manda, Srikanth S; Zhong, Jun; Na, Chan Hyun; Meyerhoff, James; Benton, Bernard; Jabbour, Rabih; Willis, Kristen; Kim, Min-Sik; Pandey, Akhilesh; Sekowski, Jennifer W
2015-01-01
To gain insights into the toxicity induced by the nerve agent VX, an MS-based phosphoproteomic analysis was carried out on the piriform cortex region of brains from VX-treated rats. Using isobaric tag based TMT labeling followed by titanium dioxide enrichment strategy, we identified 9975 unique phosphosites derived from 3287 phosphoproteins. Temporal changes in the phosphorylation status of peptides were observed over a time period of 24 h in rats exposed to a 1× LD50, intravenous (i.v.) dose with the most notable changes occurring at the 1 h postexposure time point. Five major functional classes of proteins exhibited changes in their phosphorylation status: (i) ion channels/transporters, including ATPases, (ii) kinases/phosphatases, (iii) GTPases, (iv) structural proteins, and (v) transcriptional regulatory proteins. This study is the first quantitative phosphoproteomic analysis of VX toxicity in the brain. Understanding the toxicity and compensatory signaling mechanisms will improve the understanding of the complex toxicity of VX in the brain and aid in the elucidation of novel molecular targets that would be important for development of improved countermeasures. All MS data have been deposited in the ProteomeXchange with identifier PXD001184 (http://proteomecentral.proteomexchange.org/dataset/PXD001184). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Tingting; Lin, Zhenzhou; Xie, Ling; Wang, Yao; Pan, Suyue
2017-07-13
Vasogenic edema induced by blood brain barrier disruption and neuronal loss play an important role in the epileptogenic process. 4,4'- diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) is a commonly used anion channel inhibitor that has been reported to exert an anticonvulsant effect in rat hippocampus in vitro. The present study aimed to investigate whether DIDS could prevent epileptogenic process in rat lithium-pilocarpine model of temporal lobe epilepsy. The tight junction proteins and serum extravasation were examined in the piriform cortex 3days after status epilepticus. The findings showed that status epilepticus induced vasogenic edema. Based on these findings, rats were intracerebroventricularly infused with saline and DIDS 1 week after surgery, DIDS reduced vasogenic edema and prevented neuronal loss following status epilepticus in the piriform cortex. Moreover, spontaneous recurrent seizures were recorded by continuous video monitoring. DIDS significantly reduced the frequency and duration of spontaneous recurrent seizures from day 28 to day 42 post status epilepticus. These findings demonstrated that DIDS attenuated vasogenic edema and neuronal apoptosis and might exert disease-modifying effect in animal model of temporal lobe epilepsy. These results explored a novel therapeutic strategy for treatment of epilepsy. Copyright © 2017 Elsevier B.V. All rights reserved.
Vargas-Barroso, Víctor; Larriva-Sahd, Jorge
2013-09-01
The microscopic organization of the piriform cortex (PC) was studied in normal and experimental material from adult albino rats. In rapid-Golgi specimens a set of collaterals from the lateral olfactory tract (i.e., sublayer Ia) to the neuropil of the Layer II (LII) was identified. Specimens from experimental animals that received electrolytic lesion of the main olfactory bulb three days before sacrificing, were further processed for pre-embedding immunocytochemistry to the enzyme glutamic acid decarboxylase 67 (GAD 67). This novel approach permitted a simultaneous visualization at electron microscopy of both synaptic degeneration and GAD67-immunoreactive (GAD-I) sites. Degenerating and GAD-I synapses were separately found in the neuropil of Layers I and II of the PC. Previously overlooked patches of neuropil were featured in sublayer Ia. These areas consisted of dendritic and axonal processes including four synaptic types. Tridimensional reconstructions from serial thin sections from LI revealed the external appearance of the varicose and tubular dendrites as well as the synaptic terminals therein. The putative source(s) of processes to the neuropil of sublayer Ia is discussed in the context of the internal circuitry of the PC and an alternative model is introduced. Copyright © 2013 Wiley Periodicals, Inc.
Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H.; Seifritz, Erich; Vollenweider, Franz X.
2015-01-01
Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual–limbic–prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders. PMID:26909323
Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H; Seifritz, Erich; Vollenweider, Franz X
2016-01-01
Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual-limbic-prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.
Brain Metabolism during Hallucination-Like Auditory Stimulation in Schizophrenia
Horga, Guillermo; Fernández-Egea, Emilio; Mané, Anna; Font, Mireia; Schatz, Kelly C.; Falcon, Carles; Lomeña, Francisco; Bernardo, Miguel; Parellada, Eduard
2014-01-01
Auditory verbal hallucinations (AVH) in schizophrenia are typically characterized by rich emotional content. Despite the prominent role of emotion in regulating normal perception, the neural interface between emotion-processing regions such as the amygdala and auditory regions involved in perception remains relatively unexplored in AVH. Here, we studied brain metabolism using FDG-PET in 9 remitted patients with schizophrenia that previously reported severe AVH during an acute psychotic episode and 8 matched healthy controls. Participants were scanned twice: (1) at rest and (2) during the perception of aversive auditory stimuli mimicking the content of AVH. Compared to controls, remitted patients showed an exaggerated response to the AVH-like stimuli in limbic and paralimbic regions, including the left amygdala. Furthermore, patients displayed abnormally strong connections between the amygdala and auditory regions of the cortex and thalamus, along with abnormally weak connections between the amygdala and medial prefrontal cortex. These results suggest that abnormal modulation of the auditory cortex by limbic-thalamic structures might be involved in the pathophysiology of AVH and may potentially account for the emotional features that characterize hallucinatory percepts in schizophrenia. PMID:24416328
NASA Astrophysics Data System (ADS)
Jongkreangkrai, C.; Vichianin, Y.; Tocharoenchai, C.; Arimura, H.; Alzheimer's Disease Neuroimaging Initiative
2016-03-01
Several studies have differentiated Alzheimer's disease (AD) using cerebral image features derived from MR brain images. In this study, we were interested in combining hippocampus and amygdala volumes and entorhinal cortex thickness to improve the performance of AD differentiation. Thus, our objective was to investigate the useful features obtained from MRI for classification of AD patients using support vector machine (SVM). T1-weighted MR brain images of 100 AD patients and 100 normal subjects were processed using FreeSurfer software to measure hippocampus and amygdala volumes and entorhinal cortex thicknesses in both brain hemispheres. Relative volumes of hippocampus and amygdala were calculated to correct variation in individual head size. SVM was employed with five combinations of features (H: hippocampus relative volumes, A: amygdala relative volumes, E: entorhinal cortex thicknesses, HA: hippocampus and amygdala relative volumes and ALL: all features). Receiver operating characteristic (ROC) analysis was used to evaluate the method. AUC values of five combinations were 0.8575 (H), 0.8374 (A), 0.8422 (E), 0.8631 (HA) and 0.8906 (ALL). Although “ALL” provided the highest AUC, there were no statistically significant differences among them except for “A” feature. Our results showed that all suggested features may be feasible for computer-aided classification of AD patients.
Impact of Infralimbic Inputs on Intercalated Amygdale Neurons: A Biophysical Modeling Study
ERIC Educational Resources Information Center
Li, Guoshi; Amano, Taiju; Pare, Denis; Nair, Satish S.
2011-01-01
Intercalated (ITC) amygdala neurons regulate fear expression by controlling impulse traffic between the input (basolateral amygdala; BLA) and output (central nucleus; Ce) stations of the amygdala for conditioned fear responses. Previously, stimulation of the infralimbic (IL) cortex was found to reduce fear expression and the responsiveness of Ce…
Feng, Pan; Becker, Benjamin; Zheng, Yong; Feng, Tingyong
2018-02-01
Sleep plays an important role for successful fear memory consolidation. Growing evidence suggests that sleep disturbances might contribute to the development and the maintenance of posttraumatic stress disorder (PTSD), a disorders characterized by dysregulations in fear learning mechanisms, as well as exaggerated arousal and salience processing. Against this background, the present study examined the effects of sleep deprivation (SD) on the acquisition of fear and the subsequent neural consolidation. To this end, the present study assessed fear acquisition and associated changes in fMRI-based amygdala-functional connectivity following 24 h of SD. Relative to non-sleep deprived controls, SD subjects demonstrated increased fear ratings and skin conductance responses (SCR) during fear acquisition. During fear consolidation SD inhibited increased amygdala-ventromendial prefrontal cortex (vmPFC) connectivity and concomitantly increased changes in amygdala-insula connectivity. Importantly, whereas in controls fear indices during acquisition were negatively associated with amygdala-vmPFC connectivity during consolidation, fear indices were positively associated with amygdala-insula coupling following SD. Together the findings suggest that SD may interfere with vmPFC control of the amygdala and increase bottom-up arousal signaling in the amygdala-insula pathway during fear consolidation, which might mediate the negative impact of sleep disturbances on PSTD symptomatology.
Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.
2013-01-01
Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. PMID:23714419
ERIC Educational Resources Information Center
Miranda, Maria I.; McGaugh, James L.
2004-01-01
There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the…
Emotion, Cognition, and Mental State Representation in Amygdala and Prefrontal Cortex
Salzman, C. Daniel; Fusi, Stefano
2011-01-01
Neuroscientists have often described cognition and emotion as separable processes implemented by different regions of the brain, such as the amygdala for emotion and the prefrontal cortex for cognition. In this framework, functional interactions between the amygdala and prefrontal cortex mediate emotional influences on cognitive processes such as decision-making, as well as the cognitive regulation of emotion. However, neurons in these structures often have entangled representations, whereby single neurons encode multiple cognitive and emotional variables. Here we review studies using anatomical, lesion, and neurophysiological approaches to investigate the representation and utilization of cognitive and emotional parameters. We propose that these mental state parameters are inextricably linked and represented in dynamic neural networks composed of interconnected prefrontal and limbic brain structures. Future theoretical and experimental work is required to understand how these mental state representations form and how shifts between mental states occur, a critical feature of adaptive cognitive and emotional behavior. PMID:20331363
Saez, Rebecca A; Saez, Alexandre; Paton, Joseph J; Lau, Brian; Salzman, C Daniel
2017-07-05
The same reward can possess different motivational meaning depending upon its magnitude relative to other rewards. To study the neurophysiological mechanisms mediating assignment of motivational meaning, we recorded the activity of neurons in the amygdala and orbitofrontal cortex (OFC) of monkeys during a Pavlovian task in which the relative amount of liquid reward associated with one conditioned stimulus (CS) was manipulated by changing the reward amount associated with a second CS. Anticipatory licking tracked relative reward magnitude, implying that monkeys integrated information about recent rewards to adjust the motivational meaning of a CS. Upon changes in relative reward magnitude, neural responses to reward-predictive cues updated more rapidly in OFC than amygdala, and activity in OFC but not the amygdala was modulated by recent reward history. These results highlight a distinction between the amygdala and OFC in assessing reward history to support the flexible assignment of motivational meaning to sensory cues. Copyright © 2017 Elsevier Inc. All rights reserved.
1991-06-30
seizures In rats. Neurosc. Let 70. 69-74. Millan, M.H., S. Patel, and B.S. Meldrum (1988). The involvement of excitatory mino acid receptors within...a marker specific to astrocytes, glial fibrillary acidic protein (GFAP). We have used this marker to demonstrate that astrocytes are activated soon...88 I I I I I I IUST OF FIGURES Figure 1. Rapid, selective induction of c-fos and glial fibrillary acidic protein (GFAP) In piriform cortex 3 (PC
Baczkowski, Blazej M; Johnstone, Tom; Walter, Henrik; Erk, Susanne; Veer, Ilya M
2017-06-01
We evaluated whether sliding-window analysis can reveal functionally relevant brain network dynamics during a well-established fear conditioning paradigm. To this end, we tested if fMRI fluctuations in amygdala functional connectivity (FC) can be related to task-induced changes in physiological arousal and vigilance, as reflected in the skin conductance level (SCL). Thirty-two healthy individuals participated in the study. For the sliding-window analysis we used windows that were shifted by one volume at a time. Amygdala FC was calculated for each of these windows. Simultaneously acquired SCL time series were averaged over time frames that corresponded to the sliding-window FC analysis, which were subsequently regressed against the whole-brain seed-based amygdala sliding-window FC using the GLM. Surrogate time series were generated to test whether connectivity dynamics could have occurred by chance. In addition, results were contrasted against static amygdala FC and sliding-window FC of the primary visual cortex, which was chosen as a control seed, while a physio-physiological interaction (PPI) was performed as cross-validation. During periods of increased SCL, the left amygdala became more strongly coupled with the bilateral insula and anterior cingulate cortex, core areas of the salience network. The sliding-window analysis yielded a connectivity pattern that was unlikely to have occurred by chance, was spatially distinct from static amygdala FC and from sliding-window FC of the primary visual cortex, but was highly comparable to that of the PPI analysis. We conclude that sliding-window analysis can reveal functionally relevant fluctuations in connectivity in the context of an externally cued task. Copyright © 2017 Elsevier Inc. All rights reserved.
Neural circuitry of emotional face processing in autism spectrum disorders.
Monk, Christopher S; Weng, Shih-Jen; Wiggins, Jillian Lee; Kurapati, Nikhil; Louro, Hugo M C; Carrasco, Melisa; Maslowsky, Julie; Risi, Susan; Lord, Catherine
2010-03-01
Autism spectrum disorders (ASD) are associated with severe impairments in social functioning. Because faces provide nonverbal cues that support social interactions, many studies of ASD have examined neural structures that process faces, including the amygdala, ventromedial prefrontal cortex and superior and middle temporal gyri. However, increases or decreases in activation are often contingent on the cognitive task. Specifically, the cognitive domain of attention influences group differences in brain activation. We investigated brain function abnormalities in participants with ASD using a task that monitored attention bias to emotional faces. Twenty-four participants (12 with ASD, 12 controls) completed a functional magnetic resonance imaging study while performing an attention cuing task with emotional (happy, sad, angry) and neutral faces. In response to emotional faces, those in the ASD group showed greater right amygdala activation than those in the control group. A preliminary psychophysiological connectivity analysis showed that ASD participants had stronger positive right amygdala and ventromedial prefrontal cortex coupling and weaker positive right amygdala and temporal lobe coupling than controls. There were no group differences in the behavioural measure of attention bias to the emotional faces. The small sample size may have affected our ability to detect additional group differences. When attention bias to emotional faces was equivalent between ASD and control groups, ASD was associated with greater amygdala activation. Preliminary analyses showed that ASD participants had stronger connectivity between the amygdala ventromedial prefrontal cortex (a network implicated in emotional modulation) and weaker connectivity between the amygdala and temporal lobe (a pathway involved in the identification of facial expressions, although areas of group differences were generally in a more anterior region of the temporal lobe than what is typically reported for emotional face processing). These alterations in connectivity are consistent with emotion and face processing disturbances in ASD.
Thijssen, Sandra; Muetzel, Ryan L; Bakermans-Kranenburg, Marian J; Jaddoe, Vincent W V; Tiemeier, Henning; Verhulst, Frank C; White, Tonya; Van Ijzendoorn, Marinus H
2017-05-01
This study examined whether the association between age and amygdala-medial prefrontal cortex (mPFC) connectivity in typically developing 6- to 10-year-old children is correlated with parental care. Resting-state functional magnetic resonance imaging scans were acquired from 124 children of the Generation R Study who at 4 years old had been observed interacting with their parents to assess maternal and paternal sensitivity. Amygdala functional connectivity was assessed using a general linear model with the amygdalae time series as explanatory variables. Higher level analyses assessing Sensitivity × Age as well as exploratory Sensitivity × Age × Gender interaction effects were performed restricted to voxels in the mPFC. We found significant Sensitivity × Age interaction effects on amygdala-mPFC connectivity. Age was related to stronger amygdala-mPFC connectivity in children with a lower combined parental sensitivity score (b = 0.11, p = .004, b = 0.06, p = .06, right and left amygdala, respectively), but not in children with a higher parental sensitivity score, (b = -0.07, p = .12, b = -0.06, p = .12, right and left amygdala, respectively). A similar effect was found for maternal sensitivity, with stronger amygdala-mPFC connectivity in children with less sensitive mothers. Exploratory (parental, maternal, paternal) Sensitivity × Age × Gender interaction analyses suggested that this effect was especially pronounced in girls. Amygdala-mPFC resting-state functional connectivity has been shown to increase from age 10.5 years onward, implying that the positive association between age and amygdala-mPFC connectivity in 6- to 10-year-old children of less sensitive parents represents accelerated development of the amygdala-mPFC circuit.
Sekine, Yoshimoto; Minabe, Yoshio; Ouchi, Yasuomi; Takei, Nori; Iyo, Masaomi; Nakamura, Kazuhiko; Suzuki, Katsuaki; Tsukada, Hideo; Okada, Hiroyuki; Yoshikawa, Etsuji; Futatsubashi, Masami; Mori, Norio
2003-09-01
The authors examined dopamine transporter density in the orbitofrontal cortex, dorsolateral prefrontal cortex, and amygdala in methamphetamine users and assessed the relationship of these measures to the subjects' clinical characteristics. Positron emission tomography with [(11)C]WIN 35,428 was used to examine the regions of interest in 11 methamphetamine users and nine healthy comparison subjects. Psychiatric symptoms were evaluated with the Brief Psychiatric Rating Scale. Dopamine transporter density in the three regions studied was significantly lower in the methamphetamine users than in the comparison subjects. The lower dopamine transporter density in the orbitofrontal and dorsolateral prefrontal cortex was significantly correlated with the duration of methamphetamine use and the severity of psychiatric symptoms. Chronic methamphetamine use may cause dopamine transporter reduction in the orbitofrontal cortex, dorsolateral prefrontal cortex, and amygdala in the brain. Psychiatric symptoms in methamphetamine users may be attributable to the decrease in dopamine transporter density in the orbitofrontal cortex and the dorsolateral prefrontal cortex.
Dunkley, Benjamin T; Pang, Elizabeth W; Sedge, Paul A; Jetly, Rakesh; Doesburg, Sam M; Taylor, Margot J
2016-01-01
Post-traumatic stress disorder (PTSD) is associated with atypical responses to emotional face stimuli with preferential processing given to threat-related facial expressions via hyperactive amygdalae disengaged from medial prefrontal modulation. We examined implicit emotional face perception in soldiers with (n = 20) and without (n = 25) PTSD using magnetoencephalography to define spatiotemporal network interactions, and a subsequent region-of-interest analysis to characterize the network role of the right amygdala and medial prefrontal cortex in threatening face perception. Contrasts of network interactions revealed the PTSD group were hyperconnected compared to controls in the phase-locking response in the 2-24 Hz range for angry faces, but not for happy faces when contrasting groups. Hyperconnectivity in PTSD was greatest in the posterior cingulate, right ventromedial prefrontal cortex, right parietal regions and the right temporal pole, as well as the right amygdala. Graph measures of right amygdala and medial prefrontal connectivity revealed increases in node strength and clustering in PTSD, but not inter-node connectivity. Additionally, these measures were found to correlate with anxiety and depression. In line with prior studies, amygdala hyperconnectivity was observed in PTSD in relation to threatening faces, but the medial prefrontal cortex also displayed enhanced connectivity in our network-based approach. Overall, these results support preferential neurophysiological encoding of threat-related facial expressions in those with PTSD.
Extinguishing trace fear engages the retrosplenial cortex rather than the amygdala
Kwapis, Janine L.; Jarome, Timothy J.; Lee, Jonathan L.; Gilmartin, Marieke R.; Helmstetter, Fred J.
2013-01-01
Extinction learning underlies the treatment for a variety of anxiety disorders. Most of what is known about the neurobiology of extinction is based on standard “delay” fear conditioning, in which awareness is not required for learning. Little is known about how complex, explicit associations extinguish, however. “Trace” conditioning is considered to be a rodent model of explicit fear because it relies on both the cortex and hippocampus and requires explicit contingency awareness in humans. Here, we explore the neural circuit supporting trace fear extinction in order to better understand how complex memories extinguish. We first show that the amygdala is selectively involved in delay fear extinction; blocking intra-amygdala glutamate receptors disrupted delay, but not trace extinction. Further, ERK phosphorylation was increased in the amygdala after delay, but not trace extinction. We then identify the retrosplenial cortex (RSC) as a key structure supporting trace extinction. ERK phosphorylation was selectively increased in the RSC following trace extinction and blocking intra-RSC NMDA receptors impaired trace, but not delay extinction. These findings indicate that delay and trace extinction require different neural circuits; delay extinction requires plasticity in the amygdala whereas trace extinction requires the RSC. Anxiety disorders linked to explicit memory may therefore depend on cortical processes that have not been traditionally targeted by extinction studies based on delay fear. PMID:24055593
Finger, Elizabeth C; Marsh, Abigail A; Blair, Karina S; Reid, Marguerite E; Sims, Courtney; Ng, Pamela; Pine, Daniel S; Blair, R James R
2011-02-01
Dysfunction in the amygdala and orbitofrontal cortex has been reported in youths and adults with psychopathic traits. The specific nature of the functional irregularities within these structures remains poorly understood. The authors used a passive avoidance task to examine the responsiveness of these systems to early stimulus-reinforcement exposure, when prediction errors are greatest and learning maximized, and to reward in youths with psychopathic traits and comparison youths. While performing the passive avoidance learning task, 15 youths with conduct disorder or oppositional defiant disorder plus a high level of psychopathic traits and 15 healthy subjects completed a 3.0-T fMRI scan. Relative to the comparison youths, the youths with a disruptive behavior disorder plus psychopathic traits showed less orbitofrontal responsiveness both to early stimulus-reinforcement exposure and to rewards, as well as less caudate response to early stimulus-reinforcement exposure. There were no group differences in amygdala responsiveness to these two task measures, but amygdala responsiveness throughout the task was lower in the youths with psychopathic traits. Compromised sensitivity to early reinforcement information in the orbitofrontal cortex and caudate and to reward outcome information in the orbitofrontal cortex of youths with conduct disorder or oppositional defiant disorder plus psychopathic traits suggests that the integrated functioning of the amygdala, caudate, and orbitofrontal cortex may be disrupted. This provides a functional neural basis for why such youths are more likely to repeat disadvantageous decisions. New treatment possibilities are raised, as pharmacologic modulations of serotonin and dopamine can affect this form of learning.
Velasquez, Francisco; Wiggins, Jillian Lee; Mattson, Whitney I; Martin, Donna M; Lord, Catherine; Monk, Christopher S
2017-04-01
Social deficits in autism spectrum disorder (ASD) are linked to amygdala functioning and functional connection between the amygdala and subgenual anterior cingulate cortex (sACC) is involved in the modulation of amygdala activity. Impairments in behavioral symptoms and amygdala activation and connectivity with the sACC seem to vary by serotonin transporter-linked polymorphic region (5-HTTLPR) variant genotype in diverse populations. The current preliminary investigation examines whether amygdala-sACC connectivity differs by 5-HTTLPR genotype and relates to social functioning in ASD. A sample of 108 children and adolescents (44 ASD) completed an fMRI face-processing task. Youth with ASD and low expressing 5-HTTLPR genotypes showed significantly greater connectivity than youth with ASD and higher expressing genotypes as well as typically developing (TD) individuals with both low and higher expressing genotypes, in the comparison of happy vs. baseline faces and happy vs. neutral faces. Moreover, individuals with ASD and higher expressing genotypes exhibit a negative relationship between amygdala-sACC connectivity and social dysfunction. Altered amygdala-sACC coupling based on 5-HTTLPR genotype may help explain some of the heterogeneity in neural and social function observed in ASD. This is the first ASD study to combine genetic polymorphism analyses and functional connectivity in the context of a social task. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cao, Zhijun; Zhao, Yanbing; Tan, Tengteng; Chen, Gang; Ning, Xueling; Zhan, Lexia; Yang, Jiongjiong
2013-01-01
Previous studies have shown that the amygdala is important in processing not only animate entities but also social information. It remains to be determined to what extent the factors of category and social context interact to modulate the activities of the amygdala and cortical regions. In this study, pictures depicting animals and inanimate objects in negative and neutral levels were presented. The contexts of the pictures differed in whether they included human/human parts. The factors of valence, arousal, familiarity and complexity of pictures were controlled across categories. The results showed that the amygdala activity was modulated by category and contextual information. Under the nonhuman context condition, the amygdala responded more to animals than objects for both negative and neutral pictures. In contrast, under the human context condition, the amygdala showed stronger activity for negative objects than animals. In addition to cortical regions related to object action, functional and effective connectivity analyses showed that the anterior prefrontal cortex interacted with the amygdala more for negative objects (vs. animals) in the human context condition, by a top-down modulation of the anterior prefrontal cortex to the amygdala. These results highlighted the effects of category and human contexts on modulating brain activity in emotional processing. PMID:24099847
Rogers, Mark A; Yamasue, Hidenori; Abe, Osamu; Yamada, Haruyasu; Ohtani, Toshiyuki; Iwanami, Akira; Aoki, Shigeki; Kato, Nobumasa; Kasai, Kiyoto
2009-12-30
Although post-traumatic stress disorder (PTSD) may be seen to represent a failure to extinguish learned fear, significant aspects of the pathophysiology relevant to this hypothesis remain unknown. Both the amygdala and hippocampus are necessary for fear extinction occur, and thus both regions may be abnormal in PTSD. Twenty-five people who experienced the Tokyo subway sarin attack in 1995, nine who later developed PTSD and 16 who did not, underwent magnetic resonance imaging (MRI) with manual tracing to determine bilateral amygdala and hippocampus volumes. At the time of scanning, one had PTSD and eight had a history of PTSD. Results indicated that the group with a history of PTSD had significantly smaller mean bilateral amygdala volume than did the group that did not develop PTSD. Furthermore, left amygdala volume showed a significant negative correlation with severity of PTSD symptomatology as well as reduced gray matter density in the left anterior cingulate cortex. To our knowledge, this is the first observation of an association between PTSD and amygdala volume. Furthermore the apparent interplay between amygdala and anterior cingulate cortex represents support at the level of gross brain morphology for the theory of PTSD as a failure of fear extinction.
Maroun, Mouna; Ioannides, Pericles J; Bergman, Krista L; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L
2013-08-01
Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Salicylate-induced cochlear impairments, cortical hyperactivity and re-tuning, and tinnitus.
Chen, Guang-Di; Stolzberg, Daniel; Lobarinas, Edward; Sun, Wei; Ding, Dalian; Salvi, Richard
2013-01-01
High doses of sodium salicylate (SS) have long been known to induce temporary hearing loss and tinnitus, effects attributed to cochlear dysfunction. However, our recent publications reviewed here show that SS can induce profound, permanent, and unexpected changes in the cochlea and central nervous system. Prolonged treatment with SS permanently decreased the cochlear compound action potential (CAP) amplitude in vivo. In vitro, high dose SS resulted in a permanent loss of spiral ganglion neurons and nerve fibers, but did not damage hair cells. Acute treatment with high-dose SS produced a frequency-dependent decrease in the amplitude of distortion product otoacoustic emissions and CAP. Losses were greatest at low and high frequencies, but least at the mid-frequencies (10-20 kHz), the mid-frequency band that corresponds to the tinnitus pitch measured behaviorally. In the auditory cortex, medial geniculate body and amygdala, high-dose SS enhanced sound-evoked neural responses at high stimulus levels, but it suppressed activity at low intensities and elevated response threshold. When SS was applied directly to the auditory cortex or amygdala, it only enhanced sound evoked activity, but did not elevate response threshold. Current source density analysis revealed enhanced current flow into the supragranular layer of auditory cortex following systemic SS treatment. Systemic SS treatment also altered tuning in auditory cortex and amygdala; low frequency and high frequency multiunit clusters up-shifted or down-shifted their characteristic frequency into the 10-20 kHz range thereby altering auditory cortex tonotopy and enhancing neural activity at mid-frequencies corresponding to the tinnitus pitch. These results suggest that SS-induced hyperactivity in auditory cortex originates in the central nervous system, that the amygdala potentiates these effects and that the SS-induced tonotopic shifts in auditory cortex, the putative neural correlate of tinnitus, arises from the interaction between the frequency-dependent losses in the cochlea and hyperactivity in the central nervous system. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, G.E.; Paul, I.A.; Fassberg, J.B.
1991-03-01
Using high resolution autoradiographic techniques, the distribution of radioactivity in forebrain and brainstem was assessed after 4 injection of 3H-impramine or 3H-desipramine. Results were compared with regional binding of the drugs to brain sections in vitro. Similar topographic binding of 3H-imipramine and 3H-desipramine was observed in vitro among brain regions, except in the paraventricular nucleus of the hypothalamus and locus coeruleus, where binding was greater for 3H-desipramine. For both 3H-desipramine and 3H-imipramine, some brain regions that exhibited high binding in vitro also showed high accumulation after in vivo injection. However, certain regions that contained high densities of binding sites formore » the antidepressant drugs as measured by in vitro binding showed very low accumulation of radioactivity after in vivo treatment. Such regions included the dentate gyrus of the hippocampus, layer 1 of piriform cortex, caudate-putamen, pontine and midbrain central gray, and cerebellar granular layer. Compared to in vitro binding of the drugs, the distribution of imipramine and desipramine in vivo appears more anatomically selective. For imipramine, primary sites of action in vivo, as indicated by the topographic distribution in brain, appear to be the locus coeruleus, hippocampus, lateral septal nucleus, and amygdala. For desipramine, the greatest accumulation in vivo was found in the locus coeruleus, paraventricular nucleus of the hypothalamus, and anterior thalamic nuclei.« less
Thorsen, Anders Lillevik; Hagland, Pernille; Radua, Joaquim; Mataix-Cols, David; Kvale, Gerd; Hansen, Bjarne; van den Heuvel, Odile A
2018-06-01
Patients with obsessive-compulsive disorder (OCD) experience aversive emotions in response to obsessions, motivating avoidance and compulsive behaviors. However, there is considerable ambiguity regarding the brain circuitry involved in emotional processing in OCD, especially whether activation is altered in the amygdala. We conducted a systematic literature review and performed a meta-analysis-seed-based d mapping-of 25 whole-brain neuroimaging studies (including 571 patients and 564 healthy control subjects) using functional magnetic resonance imaging or positron emission tomography, comparing brain activation of patients with OCD and healthy control subjects during presentation of emotionally valenced versus neutral stimuli. Meta-regressions were employed to investigate possible moderators. Patients with OCD, compared with healthy control subjects, showed increased activation in the bilateral amygdala, right putamen, orbitofrontal cortex extending into the anterior cingulate and ventromedial prefrontal cortex, and middle temporal and left inferior occipital cortices during emotional processing. Right amygdala hyperactivation was most pronounced in unmedicated patients. Symptom severity was related to increased activation in the orbitofrontal and anterior cingulate cortices and precuneus. Greater comorbidity with mood and anxiety disorders was associated with higher activation in the right amygdala, putamen, and insula as well as with lower activation in the left amygdala and right ventromedial prefrontal cortex. Patients with OCD show increased emotional processing-related activation in limbic, frontal, and temporal regions. Previous mixed evidence regarding the role of the amygdala in OCD has likely been influenced by patient characteristics (such as medication status) and low statistical power. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Frijling, Jessie L; van Zuiden, Mirjam; Koch, Saskia B J; Nawijn, Laura; Veltman, Dick J; Olff, Miranda
2016-04-01
Approximately 10% of trauma-exposed individuals go on to develop post-traumatic stress disorder (PTSD). Neural emotion regulation may be etiologically involved in PTSD development. Oxytocin administration early post-trauma may be a promising avenue for PTSD prevention, as intranasal oxytocin has previously been found to affect emotion regulation networks in healthy individuals and psychiatric patients. In a randomized double-blind placebo-controlled between-subjects functional magnetic resonance (fMRI) study, we assessed the effects of a single intranasal oxytocin administration (40 IU) on seed-based amygdala resting-state FC with emotion regulation areas (ventromedial prefrontal cortex (vmPFC), ventrolateral prefrontal cortex (vlPFC)), and salience processing areas (insula, dorsal anterior cingulate cortex (dACC)) in 37 individuals within 11 days post trauma. Two resting-state scans were acquired; one after neutral- and one after trauma-script-driven imagery. We found that oxytocin administration reduced amygdala-left vlPFC FC after trauma script-driven imagery, compared with neutral script-driven imagery, whereas in PL-treated participants enhanced amygdala-left vlPFC FC was observed following trauma script-driven imagery. Irrespective of script condition, oxytocin increased amygdala-insula FC and decreased amygdala-vmPFC FC. These neural effects were accompanied by lower levels of sleepiness and higher flashback intensity in the oxytocin group after the trauma script. Together, our findings show that oxytocin administration may impede emotion regulation network functioning in response to trauma reminders in recently trauma-exposed individuals. Therefore, caution may be warranted in administering oxytocin to prevent PTSD in distressed, recently trauma-exposed individuals.
Paul, Sandra; Beucke, Jan C; Kaufmann, Christian; Mersov, Anna; Heinzel, Stephan; Kathmann, Norbert; Simon, Daniela
2018-04-06
Cognitive models of obsessive-compulsive disorder (OCD) posit dysfunctional appraisal of disorder-relevant stimuli in patients, suggesting disturbances in the processes relying on amygdala-prefrontal connectivity. Recent neuroanatomical models add to the traditional view of dysfunction in corticostriatal circuits by proposing alterations in an affective circuit including amygdala-prefrontal connections. However, abnormalities in amygdala-prefrontal coupling during symptom provocation, and particularly during conditions that require stimulus appraisal, remain to be demonstrated directly. Amygdala-prefrontal connectivity was examined in unmedicated OCD patients during appraisal (v. distraction) of symptom-provoking stimuli compared with an emotional control condition. Subsequent analyses tested whether hypothesized connectivity alterations could be also identified during passive viewing and the resting state in two independent samples. During symptom provocation, reductions in positive coupling between amygdala and orbitofrontal cortex were observed in OCD patients relative to healthy control participants during appraisal and passive viewing of OCD-relevant stimuli, whereas abnormally high amygdala-ventromedial prefrontal cortex coupling was found when appraisal was distracted by a secondary task. In contrast, there were no group differences in amygdala connectivity at rest. Our finding of abnormal amygdala-prefrontal connectivity during appraisal of symptom-related (relative to generally aversive) stimuli is consistent with the involvement of affective circuits in the functional neuroanatomy of OCD. Aberrant connectivity can be assumed to impact stimulus appraisal and emotion regulation, but might also relate to fear extinction deficits, which have recently been described in OCD. Taken together, we propose to integrate abnormalities in amygdala-prefrontal coupling in affective models of OCD.
Connolly, Colm G; Ho, Tiffany C; Blom, Eva Henje; LeWinn, Kaja Z; Sacchet, Matthew D; Tymofiyeva, Olga; Simmons, Alan N; Yang, Tony T
2017-01-01
The incidence of major depressive disorder (MDD) rises during adolescence, yet the neural mechanisms of MDD during this key developmental period are unclear. Altered amygdala resting-state functional connectivity (RSFC) has been associated with both adolescent and adult MDD, as well as symptom improvement in response to treatment in adults. However, no study to date has examined whether amygdala RSFC is associated with changes in depressive symptom severity in adolescents. We examined group differences in amygdala RSFC between medication-naïve depressed adolescents (N=48) and well-matched healthy controls (N=53) cross-sectionally. We then longitudinally examined whether baseline amygdala RSFC was associated with change in depression symptoms three months later in a subset of the MDD group (N=24). Compared to healthy controls, depressed adolescents showed reduced amygdala-based RSFC with the dorsolateral prefrontal cortex (DLPFC)and the ventromedial prefrontal cortex (VMPFC). Within the depressed group, more positive baseline RSFC between the amygdala and insulae was associated with greater reduction in depression symptoms three months later. Only a subset of depressed participants was assessed at follow-up and treatment type and delivery were not standardized. Adolescent depression may be characterized by dysfunction of frontolimbic circuits (amygdala-DLPFC, amygdala-VMPFC) underpinning emotional regulation, whereas those circuits (amygdala-insula) subserving affective integration may index changes in depression symptom severity and may therefore potentially serve as a candidate biomarker for treatment response. Furthermore, these results suggest that the biomarkers of MDD presence are distinct from those associated with change in depression symptoms over time. Copyright © 2016 Elsevier B.V. All rights reserved.
Maeng, Lisa Y; Cover, Kara K; Taha, Mohamad B; Landau, Aaron J; Milad, Mohammed R; Lebrón-Milad, Kelimer
2017-01-02
There is growing evidence that estradiol (E2) enhances fear extinction memory consolidation. However, it is unclear how E2 influences the nodes of the fear extinction network to enhance extinction memory. This study begins to delineate the neural circuits underlying the influence of E2 on fear extinction acquisition and consolidation in female rats. After fear conditioning (day 1), naturally cycling female rats underwent extinction learning (day 2) in a low-E2 state, receiving a systemic administration of either E2 or vehicle prior to extinction training. Extinction memory recall was then tested 24 hr later (day 3). We measured immediate early gene c-fos expression within the extinction network during fear extinction learning and extinction recall. During extinction learning, E2 treatment increased centrolateral amygdala c-fos activity and reduced lateral amygdala activity relative to vehicle. During extinction recall, E2-treated rats exhibited reduced c-fos expression in the centromedial amygdala. There were no group differences in c-fos expression within the medial prefrontal cortex or dorsal hippocampus. Examining c-fos ratios with the infralimbic cortex (IL) revealed that, despite the lack of group differences within the IL, E2 treatment induced greater IL activity relative to both prelimbic cortex and central amygdala (CeA) activity during extinction memory recall. Only the relationship between IL and CeA activity positively correlated with extinction retention. In conclusion, E2 appears to modify interactions between the IL and the CeA in females, shifting from stronger amygdalar modulation of fear during extinction learning to stronger IL control during extinction recall. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro
2011-09-01
Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion.
Gray matter alteration in isolated congenital anosmia patient: a voxel-based morphometry study.
Yao, Linyin; Yi, Xiaoli; Wei, Yongxiang
2013-09-01
Decreased volume of gray matter (GM) was observed in olfactory loss in patients with neurodegenerative disorder. However, GM volume has not yet been investigated in isolated congenital anosmia (ICA) people. We herewith investigated the volume change of gray matter of an ICA boy by morphometric analysis of magnetic resonance images (voxel-based morphometry), and compared with that of 20 age-matched healthy controls. ICA boy presented a significant decrease in GM volume in the orbitofrontal cortex, anterior cingulate cortex, middle cingulate cortex, thalamus, insular cortex, cerebellum, precuneus, gyrus rectus, subcallosal gyrus, middle temporal gyrus, fusiform gyrus and piriform cortex. No significant GM volume increase was detected in other brain areas. The pattern of GM atrophy was similar as previous literature reported. Our results identified similar GM volume alterations regardless of the causes of olfactory impairment. Decreased GM volume was not only shown in olfactory bulbs, olfactory tracts and olfactory sulcus, also in primary olfactory cortex and the secondary cerebral olfactory areas in ICA people. This is the first study to evaluate GM volume alterations in ICA people.
Chen, Hui Juan; Wang, Yun Fei; Qi, Rongfeng; Schoepf, U Joseph; Varga-Szemes, Akos; Ball, B Devon; Zhang, Zhe; Kong, Xiang; Wen, Jiqiu; Li, Xue; Lu, Guang Ming; Zhang, Long Jiang
2017-04-01
The purpose of this study was to investigate patterns in the amygdala-based emotional processing circuit of hemodialysis patients using resting-state functional MR imaging (rs-fMRI). Fifty hemodialysis patients (25 with depressed mood and 25 without depressed mood) and 26 healthy controls were included. All subjects underwent neuropsychological tests and rs-fMRI, and patients also underwent laboratory tests. Functional connectivity of the bilateral amygdala was compared among the three groups. The relationship between functional connectivity and clinical markers was investigated. Depressed patients showed increased positive functional connectivity of the left amygdala with the left superior temporal gyrus and right parahippocampal gyrus (PHG) but decreased amygdala functional connectivity with the left precuneus, angular gyrus, posterior cingulate cortex (PCC), and left inferior parietal lobule compared with non-depressed patients (P < 0.05, AlphaSim corrected). Depressed patients had increased positive functional connectivity of the right amygdala with bilateral supplementary motor areas and PHG but decreased amygdala functional connectivity with the right superior frontal gyrus, superior parietal lobule, bilateral precuneus, and PCC (P < 0.05, AlphaSim corrected). After including anxiety as a covariate, we discovered additional decreased functional connectivity with anterior cingulate cortex (ACC) for bilateral amygdala (P < 0.05, AlphaSim corrected). For the depressed, neuropsychological test scores were correlated with functional connectivity of multiple regions (P < 0.05, AlphaSim corrected). In conclusion, functional connectivity in the amygdala-prefrontal-PCC-limbic circuits was impaired in depressive hemodialysis patients, with a gradual decrease in ACC between controls, non-depressed, and depressed patients for the right amygdala. This indicates that ACC plays a role in amygdala-based emotional regulatory circuits in these patients.
2005-03-01
electrocardiogram (ECG) by suturing one of them with 5-0 polyvinyl material to the subcutaneous tissue over the right scapula and the other one at the...bands (Pereira de Souza et al.,2001). Concentrations ofACh, Ch, their deuterated variants, and ACh turnover in brain tissue . Animals were anesthetized...mesencephalon, neocortex, piriform cortex, and striatum. These tissue fragments were homogenized in ice cold 15% IN formic acid, 85% acetone for analysis
Mukherjee, Bandhan; Yuan, Qi
2016-10-14
The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.
Yan, Xiaodan
2010-01-01
The current study investigated the functional connectivity of the primary sensory system with resting state fMRI and applied such knowledge into the design of the neural architecture of autonomous humanoid robots. Correlation and Granger causality analyses were utilized to reveal the functional connectivity patterns. Dissociation was within the primary sensory system, in that the olfactory cortex and the somatosensory cortex were strongly connected to the amygdala whereas the visual cortex and the auditory cortex were strongly connected with the frontal cortex. The posterior cingulate cortex (PCC) and the anterior cingulate cortex (ACC) were found to maintain constant communication with the primary sensory system, the frontal cortex, and the amygdala. Such neural architecture inspired the design of dissociated emergent-response system and fine-processing system in autonomous humanoid robots, with separate processing units and another consolidation center to coordinate the two systems. Such design can help autonomous robots to detect and respond quickly to danger, so as to maintain their sustainability and independence.
Visual attention modulates brain activation to angry voices.
Mothes-Lasch, Martin; Mentzel, Hans-Joachim; Miltner, Wolfgang H R; Straube, Thomas
2011-06-29
In accordance with influential models proposing prioritized processing of threat, previous studies have shown automatic brain responses to angry prosody in the amygdala and the auditory cortex under auditory distraction conditions. However, it is unknown whether the automatic processing of angry prosody is also observed during cross-modal distraction. The current fMRI study investigated brain responses to angry versus neutral prosodic stimuli during visual distraction. During scanning, participants were exposed to angry or neutral prosodic stimuli while visual symbols were displayed simultaneously. By means of task requirements, participants either attended to the voices or to the visual stimuli. While the auditory task revealed pronounced activation in the auditory cortex and amygdala to angry versus neutral prosody, this effect was absent during the visual task. Thus, our results show a limitation of the automaticity of the activation of the amygdala and auditory cortex to angry prosody. The activation of these areas to threat-related voices depends on modality-specific attention.
Unseen fearful faces promote amygdala guidance of attention.
Troiani, Vanessa; Price, Elinora T; Schultz, Robert T
2014-02-01
Little is known about the network of brain regions activated prior to explicit awareness of emotionally salient social stimuli. We investigated this in a functional magnetic resonance imaging study using a technique that combined elements of binocular rivalry and motion flash suppression in order to prevent awareness of fearful faces and houses. We found increased left amygdala and fusiform gyrus activation for fearful faces compared to houses, despite suppression from awareness. Psychophysiological interaction analyses showed that amygdala activation was associated with task-specific (fearful faces greater than houses) modulation of an attention network, including bilateral pulvinar, bilateral insula, left frontal eye fields, left intraparietal sulcus and early visual cortex. Furthermore, we report an unexpected main effect of increased left parietal cortex activation associated with suppressed fearful faces compared to suppressed houses. This parietal finding is the first report of increased dorsal stream activation for a social object despite suppression, which suggests that information can reach parietal cortex for a class of emotionally salient social objects, even in the absence of awareness.
Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra
2017-07-01
The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.
Zuurbier, Lisette A; Nikolova, Yuliya S; Ahs, Fredrik; Hariri, Ahmad R
2013-06-01
Emotion regulation refers to strategies through which individuals influence their experience and expression of emotions. Two typical strategies are reappraisal, a cognitive strategy for reframing the context of an emotional experience, and suppression, a behavioral strategy for inhibiting emotional responses. Functional neuroimaging studies have revealed that regions of the prefrontal cortex modulate amygdala reactivity during both strategies, but relatively greater downregulation of the amygdala occurs during reappraisal. Moreover, these studies demonstrated that engagement of this modulatory circuitry varies as a function of gender. The uncinate fasciculus is a major structural pathway connecting regions of the anterior temporal lobe, including the amygdala to inferior frontal regions, especially the orbitofrontal cortex. The objective of the current study was to map variability in the structural integrity of the uncinate fasciculus onto individual differences in self-reported typical use of reappraisal and suppression. Diffusion tensor imaging was used in 194 young adults to derive regional fractional anisotropy values for the right and left uncinate fasciculus. All participants also completed the Emotion Regulation Questionnaire. In women but not men, self-reported typical reappraisal use was positively correlated with fractional anisotropy values in a region of the left uncinate fasciculus within the orbitofrontal cortex. In contrast, typical use of suppression was not significantly correlated with fractional anisotropy in any region of the uncinate fasciculus in either men or women. Our data suggest that in women typical reappraisal use is specifically related to the integrity of white matter pathways linking the amygdala and prefrontal cortex.
Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara
2012-03-01
The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for biologically emotional images was enhanced even with limited cognitive resources, but (3) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images' subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in the visual cortex and greater functional connectivity between the amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in the medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between the amygdala and MPFC than did biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity.
Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara
2012-01-01
The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention; memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that: a) biologically emotional images hold attention more strongly than socially emotional images, b) memory for biologically emotional images was enhanced even with limited cognitive resources, but c) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images’ subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in visual cortex and greater functional connectivity between amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between amygdala and MPFC than biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity. PMID:21964552
Zikopoulos, Basilis; Höistad, Malin; John, Yohan; Barbas, Helen
2017-05-17
The bidirectional dialogue of the primate posterior orbitofrontal cortex (pOFC) with the amygdala is essential in cognitive-emotional functions. The pOFC also sends a uniquely one-way excitatory pathway to the amygdalar inhibitory intercalated masses (IM), which inhibit the medial part of the central amygdalar nucleus (CeM). Inhibition of IM has the opposite effect, allowing amygdalar activation of autonomic structures and emotional arousal. Using multiple labeling approaches to identify pathways and their postsynaptic sites in the amygdala in rhesus monkeys, we found that the anterior cingulate cortex innervated mostly the basolateral and CeM amygdalar nuclei, poised to activate CeM for autonomic arousal. By contrast, a pathway from pOFC to IM exceeded all other pathways to the amygdala by density and size and proportion of large and efficient terminals. Moreover, whereas pOFC terminals in IM innervated each of the three distinct classes of inhibitory neurons, most targeted neurons expressing dopamine- and cAMP-regulated phosphoprotein (DARPP-32+), known to be modulated by dopamine. The predominant pOFC innervation of DARPP-32+ neurons suggests activation of IM and inhibition of CeM, resulting in modulated autonomic function. By contrast, inhibition of DARPP-32 neurons in IM by high dopamine levels disinhibits CeM and triggers autonomic arousal. The findings provide a mechanism to help explain how a strong pOFC pathway, which is poised to moderate activity of CeM, through IM, can be undermined by the high level of dopamine during stress, resulting in collapse of potent inhibitory mechanisms in the amygdala and heightened autonomic drive, as seen in chronic anxiety disorders. SIGNIFICANCE STATEMENT The dialogue between prefrontal cortex and amygdala allows thoughts and emotions to influence actions. The posterior orbitofrontal cortex sends a powerful pathway that targets a special class of amygdalar intercalated mass (IM) inhibitory neurons, whose wiring may help modulate autonomic function. By contrast, the anterior cingulate cortex innervates other amygdalar parts, activating circuits to help avoid danger. Most IM neurons in primates label for the protein DARPP-32, known to be activated or inhibited based on the level of dopamine. Stress markedly increases dopamine release and inhibits IM neurons, compromises prefrontal control of the amygdala, and sets off a general alarm system as seen in affective disorders, such as chronic anxiety and post-traumatic stress disorder. Copyright © 2017 the authors 0270-6474/17/375051-14$15.00/0.
Ford, Judith M; Palzes, Vanessa A; Roach, Brian J; Potkin, Steven G; van Erp, Theo G M; Turner, Jessica A; Mueller, Bryon A; Calhoun, Vincent D; Voyvodic, Jim; Belger, Aysenil; Bustillo, Juan; Vaidya, Jatin G; Preda, Adrian; McEwen, Sarah C; Mathalon, Daniel H
2015-01-01
While auditory verbal hallucinations (AH) are a cardinal symptom of schizophrenia, people with a diagnosis of schizophrenia (SZ) may also experience visual hallucinations (VH). In a retrospective analysis of a large sample of SZ and healthy controls (HC) studied as part of the functional magnetic resonance imaging (fMRI) Biomedical Informatics Research Network (FBIRN), we asked if SZ who endorsed experiencing VH during clinical interviews had greater connectivity between visual cortex and limbic structures than SZ who did not endorse experiencing VH. We analyzed resting state fMRI data from 162 SZ and 178 age- and gender-matched HC. SZ were sorted into groups according to clinical ratings on AH and VH: SZ with VH (VH-SZ; n = 45), SZ with AH but no VH (AH-SZ; n = 50), and SZ with neither AH nor VH (NoH-SZ; n = 67). Our primary analysis was seed based, extracting connectivity between visual cortex and the amygdala (because of its role in fear and negative emotion) and visual cortex and the hippocampus (because of its role in memory). Compared with the other groups, VH-SZ showed hyperconnectivity between the amygdala and visual cortex, specifically BA18, with no differences in connectivity among the other groups. In a voxel-wise, whole brain analysis comparing VH-SZ with AH-SZ, the amygdala was hyperconnected to left temporal pole and inferior frontal gyrus in VH-SZ, likely due to their more severe thought broadcasting. VH-SZ have hyperconnectivity between subcortical areas subserving emotion and cortical areas subserving higher order visual processing, providing biological support for distressing VH in schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ford, Judith M.; Palzes, Vanessa A.; Roach, Brian J.; Potkin, Steven G.; van Erp, Theo G. M.; Turner, Jessica A.; Mueller, Bryon A.; Calhoun, Vincent D.; Voyvodic, Jim; Belger, Aysenil; Bustillo, Juan; Vaidya, Jatin G.; Preda, Adrian; McEwen, Sarah C.; Mathalon, Daniel H.
2015-01-01
Introduction: While auditory verbal hallucinations (AH) are a cardinal symptom of schizophrenia, people with a diagnosis of schizophrenia (SZ) may also experience visual hallucinations (VH). In a retrospective analysis of a large sample of SZ and healthy controls (HC) studied as part of the functional magnetic resonance imaging (fMRI) Biomedical Informatics Research Network (FBIRN), we asked if SZ who endorsed experiencing VH during clinical interviews had greater connectivity between visual cortex and limbic structures than SZ who did not endorse experiencing VH. Methods: We analyzed resting state fMRI data from 162 SZ and 178 age- and gender-matched HC. SZ were sorted into groups according to clinical ratings on AH and VH: SZ with VH (VH-SZ; n = 45), SZ with AH but no VH (AH-SZ; n = 50), and SZ with neither AH nor VH (NoH-SZ; n = 67). Our primary analysis was seed based, extracting connectivity between visual cortex and the amygdala (because of its role in fear and negative emotion) and visual cortex and the hippocampus (because of its role in memory). Results: Compared with the other groups, VH-SZ showed hyperconnectivity between the amygdala and visual cortex, specifically BA18, with no differences in connectivity among the other groups. In a voxel-wise, whole brain analysis comparing VH-SZ with AH-SZ, the amygdala was hyperconnected to left temporal pole and inferior frontal gyrus in VH-SZ, likely due to their more severe thought broadcasting. Conclusions: VH-SZ have hyperconnectivity between subcortical areas subserving emotion and cortical areas subserving higher order visual processing, providing biological support for distressing VH in schizophrenia. PMID:24619536
Motomura, Yuki; Kitamura, Shingo; Nakazaki, Kyoko; Oba, Kentaro; Katsunuma, Ruri; Terasawa, Yuri; Hida, Akiko; Moriguchi, Yoshiya; Mishima, Kazuo
2017-01-01
Many modern people suffer from sleep debt that has accumulated in everyday life but is not subjectively noticed [potential sleep debt (PSD)]. Our hypothesis for this study was that resolution of PSD through sleep extension optimizes mood regulation by altering the functional connectivity between the amygdala and prefrontal cortex. Fifteen healthy male participants underwent an experiment consisting of a baseline (BL) evaluation followed by two successive interventions, namely, a 9-day sleep extension followed by one night of total sleep deprivation (TSD). Tests performed before and after the interventions included a questionnaire on negative mood and neuroimaging with arterial spin labeling MRI for evaluating regional cerebral blood flow (rCBF) and functional connectivity. Negative mood and amygdala rCBF were significantly reduced after sleep extension compared with BL. The amygdala had a significant negative functional connectivity with the medial prefrontal cortex (FCamg–MPFC), and this negative connectivity was greater after sleep extension than at BL. After TSD, these indices reverted to the same level as at BL. An additional path analysis with structural equation modeling showed that the FCamg–MPFC significantly explained the amygdala rCBF and that the amygdala rCBF significantly explained the negative mood. These findings suggest that the use of our sleep extension protocol normalized amygdala activity via negative amygdala–MPFC functional connectivity. The resolution of unnoticed PSD may improve mood by enhancing frontal suppression of hyperactivity in the amygdala caused by PSD accumulating in everyday life. PMID:28713328
Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability.
Wei, Luqing; Chen, Hong; Wu, Guo-Rong
2018-01-01
The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.
Neurobiological mechanisms underlying the blocking effect in aversive learning.
Eippert, Falk; Gamer, Matthias; Büchel, Christian
2012-09-19
Current theories of classical conditioning assume that learning depends on the predictive relationship between events, not just on their temporal contiguity. Here we employ the classic experiment substantiating this reasoning-the blocking paradigm-in combination with functional magnetic resonance imaging (fMRI) to investigate whether human amygdala responses in aversive learning conform to these assumptions. In accordance with blocking, we demonstrate that significantly stronger behavioral and amygdala responses are evoked by conditioned stimuli that are predictive of the unconditioned stimulus than by conditioned stimuli that have received the same pairing with the unconditioned stimulus, yet have no predictive value. When studying the development of this effect, we not only observed that it was related to the strength of previous conditioned responses, but also that predictive compared with nonpredictive conditioned stimuli received more overt attention, as measured by fMRI-concurrent eye tracking, and that this went along with enhanced amygdala responses. We furthermore observed that prefrontal regions play a role in the development of the blocking effect: ventromedial prefrontal cortex (subgenual anterior cingulate) only exhibited responses when conditioned stimuli had to be established as nonpredictive for an outcome, whereas dorsolateral prefrontal cortex also showed responses when conditioned stimuli had to be established as predictive. Most importantly, dorsolateral prefrontal cortex connectivity to amygdala flexibly switched between positive and negative coupling, depending on the requirements posed by predictive relationships. Together, our findings highlight the role of predictive value in explaining amygdala responses and identify mechanisms that shape these responses in human fear conditioning.
Delli Pizzi, Stefano; Chiacchiaretta, Piero; Mantini, Dante; Bubbico, Giovanna; Ferretti, Antonio; Edden, Richard A; Di Giulio, Camillo; Onofrj, Marco; Bonanni, Laura
2017-04-01
The amygdala-medial prefrontal cortex (mPFC) circuit plays a key role in emotional processing. GABA-ergic inhibition within the mPFC has been suggested to play a role in the shaping of amygdala activity. However, the functional and neurochemical interactions within the amygdala-mPFC circuits and their relevance to emotional processing remain unclear. To investigate this circuit, we obtained resting-state functional magnetic resonance imaging (rs-fMRI) and proton MR spectroscopy in 21 healthy subjects to assess the potential relationship between GABA levels within mPFC and the amygdala-mPFC functional connectivity. Trait anxiety was assessed using the State-Trait Anxiety Inventory (STAI-Y2). Partial correlations were used to measure the relationships among the functional connectivity outcomes, mPFC GABA levels and STAI-Y2 scores. Age, educational level and amount of the gray and white matters within 1 H-MRS volume of interest were included as nuisance variables. The rs-fMRI signals of the amygdala and the vmPFC were significantly anti-correlated. This negative functional coupling between the two regions was inversely correlated with the GABA+/tCr level within the mPFC and the STAI-Y2 scores. We suggest a close relationship between mPFC GABA levels and functional interactions within the amygdala-vmPFC circuit, providing new insights in the physiology of emotion.
Swartz, Johnna R.; Phan, K. Luan; Angstadt, Mike; Fitzgerald, Kate D.; Monk, Christopher S.
2015-01-01
Anxiety disorders are associated with abnormalities in amygdala function and prefrontal cortex-amygdala connectivity. The majority of fMRI studies have examined mean group differences in amygdala activation or connectivity in children and adolescents with anxiety disorders relative to controls, but emerging evidence suggests that abnormalities in amygdala function are dependent on the timing of the task and may vary across the course of a scanning session. The goal of the present study was to extend our knowledge of the dynamics of amygdala dysfunction by examining whether changes in amygdala activation and connectivity over scanning differ in pediatric anxiety disorder patients relative to typically developing controls during an emotion processing task. Examining changes in activation over time allows for a comparison of how brain function differs during initial exposure to novel stimuli versus more prolonged exposure. Participants included 34 anxiety disorder patients and 19 controls 7 to 19 years old. Participants performed an emotional face matching task during fMRI scanning and the task was divided into thirds in order to examine change in activation over time. Results demonstrated that patients exhibited an abnormal pattern of amygdala activation characterized by an initially heightened amygdala response relative to controls at the beginning of scanning, followed by significant decreases in activation over time. In addition, controls evidenced greater prefrontal cortex-amygdala connectivity during the beginning of scanning relative to patients. These results indicate that differences in emotion processing between the groups vary from initial exposure to novel stimuli relative to more prolonged exposure. Implications are discussed regarding how this pattern of neural activation may relate to altered early-occurring or anticipatory emotion-regulation strategies and maladaptive later-occurring strategies in children and adolescents with anxiety disorders. PMID:25422963
Paret, Christian; Ruf, Matthias; Gerchen, Martin Fungisai; Kluetsch, Rosemarie; Demirakca, Traute; Jungkunz, Martin; Bertsch, Katja; Schmahl, Christian; Ende, Gabriele
2016-01-15
Down-regulation of the amygdala with real-time fMRI neurofeedback (rtfMRI NF) potentially allows targeting brain circuits of emotion processing and may involve prefrontal-limbic networks underlying effective emotion regulation. Little research has been dedicated to the effect of rtfMRI NF on the functional connectivity of the amygdala and connectivity patterns in amygdala down-regulation with neurofeedback have not been addressed yet. Using psychophysiological interaction analysis of fMRI data, we present evidence that voluntary amygdala down-regulation by rtfMRI NF while viewing aversive pictures was associated with increased connectivity of the right amygdala with the ventromedial prefrontal cortex (vmPFC) in healthy subjects (N=16). In contrast, a control group (N=16) receiving sham feedback did not alter amygdala connectivity (Group×Condition t-contrast: p<.05 at cluster-level). Task-dependent increases in amygdala-vmPFC connectivity were predicted by picture arousal (β=.59, p<.05). A dynamic causal modeling analysis with Bayesian model selection aimed at further characterizing the underlying causal structure and favored a bottom-up model assuming predominant information flow from the amygdala to the vmPFC (xp=.90). The results were complemented by the observation of task-dependent alterations in functional connectivity of the vmPFC with the visual cortex and the ventrolateral PFC in the experimental group (Condition t-contrast: p<.05 at cluster-level). Taken together, the results underscore the potential of amygdala fMRI neurofeedback to influence functional connectivity in key networks of emotion processing and regulation. This may be beneficial for patients suffering from severe emotion dysregulation by improving neural self-regulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Stevens, Jennifer S; Kim, Ye Ji; Galatzer-Levy, Isaac R; Reddy, Renuka; Ely, Timothy D; Nemeroff, Charles B; Hudak, Lauren A; Jovanovic, Tanja; Rothbaum, Barbara O; Ressler, Kerry J
2017-06-15
Studies suggest that exaggerated amygdala reactivity is a vulnerability factor for posttraumatic stress disorder (PTSD); however, our understanding is limited by a paucity of prospective, longitudinal studies. Recent studies in healthy samples indicate that, relative to reactivity, habituation is a more reliable biomarker of individual differences in amygdala function. We investigated reactivity of the amygdala and cortical areas to repeated threat presentations in a prospective study of PTSD. Participants were recruited from the emergency department of a large level I trauma center within 24 hours of trauma. PTSD symptoms were assessed at baseline and approximately 1, 3, 6, and 12 months after trauma. Growth curve modeling was used to estimate symptom recovery trajectories. Thirty-one individuals participated in functional magnetic resonance imaging around the 1-month assessment, passively viewing fearful and neutral face stimuli. Reactivity (fearful > neutral) and habituation to fearful faces was examined. Amygdala reactivity, but not habituation, 5 to 12 weeks after trauma was positively associated with the PTSD symptom intercept and predicted symptoms at 12 months after trauma. Habituation in the ventral anterior cingulate cortex was positively associated with the slope of PTSD symptoms, such that decreases in ventral anterior cingulate cortex activation over repeated presentations of fearful stimuli predicted increasing symptoms. Findings point to neural signatures of risk for maintaining PTSD symptoms after trauma exposure. Specifically, chronic symptoms were predicted by amygdala hyperreactivity, and poor recovery was predicted by a failure to maintain ventral anterior cingulate cortex activation in response to fearful stimuli. The importance of identifying patients at risk after trauma exposure is discussed. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Brain morphology of childhood aggressive behavior: A multi-informant study in school-age children.
Thijssen, Sandra; Ringoot, Ank P; Wildeboer, Andrea; Bakermans-Kranenburg, Marian J; El Marroun, Hanan; Hofman, Albert; Jaddoe, Vincent W V; Verhulst, Frank C; Tiemeier, Henning; van IJzendoorn, Marinus H; White, Tonya
2015-09-01
Few studies have focused on the neuroanatomy of aggressive behavior in children younger than 10 years. Here, we explored the neuroanatomical correlates of aggression in a population-based sample of 6- to 9-year-old children using a multiple-informant approach. Magnetic resonance (MR) scans were acquired from 566 children from the Generation R study who participated in the Berkeley Puppet Interview and whose parents had completed the Child Behavior Checklist. Linear regression analyses were used to examine associations between aggression and amygdala and hippocampal volume. We performed surface-based analyses to study the association between aggression and cortical thickness, surface area, and gyrification. Aggressive behavior was associated with smaller amygdala (p < .05) but not hippocampal volume. Aggression was associated with a thinner cortex in the left precentral cortex (p < .01) and in a cluster including the right inferior parietal, supramarginal, and postcentral cortex (p < .001). Gender moderated the association between aggression and cortical thickness in the right medial posterior cortex (p = .001) and the right prefrontal cortex (p < .001). Aggression was associated with decreased gyrification in a large cluster including the right precentral, postcentral, frontal, and parietal cortex (p = .01). Moreover, aggression was associated with decreased gyrification in the right occipital and parietal cortex (p = .02). We found novel evidence that childhood aggressive behavior is related to decreased amygdala volume, decreased sensorimotor cortical thickness, and decreased global right hemisphere gyrification. Aggression is related to cortical thickness in regions associated with the default mode network, with negative associations in boys and positive associations in girls.
Huang, Ming-Xiong; Yurgil, Kate A.; Robb, Ashley; Angeles, Annemarie; Diwakar, Mithun; Risbrough, Victoria B.; Nichols, Sharon L.; McLay, Robert; Theilmann, Rebecca J.; Song, Tao; Huang, Charles W.; Lee, Roland R.; Baker, Dewleen G.
2014-01-01
Post-traumatic stress disorder (PTSD) is a leading cause of sustained impairment, distress, and poor quality of life in military personnel, veterans, and civilians. Indirect functional neuroimaging studies using PET or fMRI with fear-related stimuli support a PTSD neurocircuitry model that includes amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC). However, it is not clear if this model can fully account for PTSD abnormalities detected directly by electromagnetic-based source imaging techniques in resting-state. The present study examined resting-state magnetoencephalography (MEG) signals in 25 active-duty service members and veterans with PTSD and 30 healthy volunteers. In contrast to the healthy volunteers, individuals with PTSD showed: 1) hyperactivity from amygdala, hippocampus, posterolateral orbitofrontal cortex (OFC), dorsomedial prefrontal cortex (dmPFC), and insular cortex in high-frequency (i.e., beta, gamma, and high-gamma) bands; 2) hypoactivity from vmPFC, Frontal Pole (FP), and dorsolateral prefrontal cortex (dlPFC) in high-frequency bands; 3) extensive hypoactivity from dlPFC, FP, anterior temporal lobes, precuneous cortex, and sensorimotor cortex in alpha and low-frequency bands; and 4) in individuals with PTSD, MEG activity in the left amygdala and posterolateral OFC correlated positively with PTSD symptom scores, whereas MEG activity in vmPFC and precuneous correlated negatively with symptom score. The present study showed that MEG source imaging technique revealed new abnormalities in the resting-state electromagnetic signals from the PTSD neurocircuitry. Particularly, posterolateral OFC and precuneous may play important roles in the PTSD neurocircuitry model. PMID:25180160
Phan, K. Luan; Orlichenko, Anton; Boyd, Erin; Angstadt, Mike; Coccaro, Emil F.; Liberzon, Israel; Arfanakis, Konstantinos
2009-01-01
Background Individuals with generalized social anxiety disorder (GSAD) exhibit exaggerated amygdala reactivity to aversive social stimuli. These findings could be explained by microstructural abnormalities in white matter (WM) tracts that connect the amygdala and prefrontal cortex, which is known to modulate the amygdala’s response to threat. The goal of this study was to investigate brain frontal WM abnormalities by using diffusion tensor imaging (DTI) in patients with social anxiety disorder. Method A Turboprop DTI sequence was used to acquire diffusion tensor images in thirty patients with GSAD and thirty matched healthy controls. Fractional anisotropy, an index of axonal organization, within WM was quantified in individual subjects and an automated voxel-based, whole-brain method was used to analyze group differences. Results Compared to healthy controls, patients had significantly lower fractional anisotropy localized to the right uncinate fasciculus WM near the orbitofrontal cortex. There were no areas of higher fractional anisotropy in patients than controls. Conclusions These findings point to an abnormality in the uncinate fasciculus, the major WM tract connecting the frontal cortex to the amygdala and other limbic temporal regions, in GSAD which could underlie the aberrant amygdala-prefrontal interactions resulting in dysfunctional social threat processing in this illness. PMID:19362707
Becker, Michael P I; Nitsch, Alexander M; Hewig, Johannes; Miltner, Wolfgang H R; Straube, Thomas
2016-12-01
Several regions of the frontal cortex interact with striatal and amygdala regions to mediate the evaluation of reward-related information and subsequent adjustment of response choices. Recent theories discuss the particular relevance of dorsal anterior cingulate cortex (dACC) for switching behavior; consecutively, ventromedial prefrontal cortex (VMPFC) is involved in mediating exploitative behaviors by tracking reward values unfolding after the behavioral switch. Amygdala, on the other hand, has been implied in coding the valence of stimulus-outcome associations and the ventral striatum (VS) has consistently been shown to code a reward prediction error (RPE). Here, we used fMRI data acquired in humans during a reversal task to parametrically model different sequences of positive feedback in order to unravel differential contributions of these brain regions to the tracking and exploitation of rewards. Parameters from an Optimal Bayesian Learner accurately predicted the divergent involvement of dACC and VMPFC during feedback processing: dACC signaled the first, but not later, presentations of positive feedback, while VMPFC coded trial-by-trial accumulations in reward value. Our results confirm that dACC carries a prominent confirmatory signal during processing of first positive feedback. Amygdala coded positive feedbacks more uniformly, while striatal regions were associated with RPE. Copyright © 2016 Elsevier Inc. All rights reserved.
Preschool Externalizing Behavior Predicts Gender-Specific Variation in Adolescent Neural Structure
Caldwell, Jessica Z. K.; Armstrong, Jeffrey M.; Hanson, Jamie L.; Sutterer, Matthew J.; Stodola, Diane E.; Koenigs, Michael; Kalin, Ned H.
2015-01-01
Dysfunction in the prefrontal cortex, amygdala, and hippocampus is believed to underlie the development of much psychopathology. However, to date only limited longitudinal data relate early behavior with neural structure later in life. Our objective was to examine the relationship of early life externalizing behavior with adolescent brain structure. We report here the first longitudinal study linking externalizing behavior during preschool to brain structure during adolescence. We examined the relationship of preschool externalizing behavior with amygdala, hippocampus, and prefrontal cortex volumes at age 15 years in a community sample of 76 adolescents followed longitudinally since their mothers’ pregnancy. A significant gender by externalizing behavior interaction revealed that males—but not females—with greater early childhood externalizing behavior had smaller amygdala volumes at adolescence (t = 2.33, p = .023). No significant results were found for the hippocampus or the prefrontal cortex. Greater early externalizing behavior also related to smaller volume of a cluster including the angular gyrus and tempoparietal junction across genders. Results were not attributable to the impact of preschool anxiety, preschool maternal stress, school-age internalizing or externalizing behaviors, or adolescent substance use. These findings demonstrate a novel, gender-specific relationship between early-childhood externalizing behavior and adolescent amygdala volume, as well as a cross-gender result for the angular gyrus and tempoparietal junction. PMID:25658357
Naimark, Ari; Barkai, Edi; Matar, Michael A.; Kaplan, Zeev; Kozlovsky, Nitzan; Cohen, Hagit
2007-01-01
We have previously shown that olfactory discrimination learning is accompanied by several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons selectively in the piriform cortex. This study sought to examine whether the previously demonstrated olfactory-learning-task-induced modifications are preceded by suitable changes in the expression of mRNA for neurotrophic factors and in which brain areas this occurs. Rats were trained to discriminate positive cues in pair of odors for a water reward. The relationship between the learning task and local levels of mRNA for brain-derived neurotrophic factor, tyrosine kinase B, nerve growth factor, and neurotrophin-3 in the frontal cortex, hippocampal subregions, and other regions were assessed 24 hours post olfactory learning. The olfactory discrimination learning activated production of endogenous neurotrophic factors and induced their signal transduction in the frontal cortex, but not in other brain areas. These findings suggest that different brain areas may be preferentially involved in different learning/memory tasks. PMID:17710248
Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder
Sripada, Rebecca K.; King, Anthony P.; Garfinkel, Sarah N.; Wang, Xin; Sripada, Chandra S.; Welsh, Robert C.; Liberzon, Israel
2012-01-01
Background Converging neuroimaging research suggests altered emotion neurocircuitry in individuals with posttraumatic stress disorder (PTSD). Emotion activation studies in these individuals have shown hyperactivation in emotion-related regions, including the amygdala and insula, and hypoactivation in emotion-regulation regions, including the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). However, few studies have examined patterns of connectivity at rest in individuals with PTSD, a potentially powerful method for illuminating brain network structure. Methods Using the amygdala as a seed region, we measured resting-state brain connectivity using 3 T functional magnetic resonance imaging in returning male veterans with PTSD and combat controls without PTSD. Results Fifteen veterans with PTSD and 14 combat controls enrolled in our study. Compared with controls, veterans with PTSD showed greater positive connectivity between the amygdala and insula, reduced positive connectivity between the amygdala and hippocampus, and reduced anticorrelation between the amygdala and dorsal ACC and rostral ACC. Limitations Only male veterans with combat exposure were tested, thus our findings cannot be generalized to women or to individuals with non–combat related PTSD. Conclusion These results demonstrate that studies of functional connectivity during resting state can discern aberrant patterns of coupling within emotion circuits and suggest a possible brain basis for emotion-processing and emotion-regulation deficits in individuals with PTSD. PMID:22313617
Neurofunctional Differences Among Youth With and at Varying Risk for Developing Mania.
Welge, Jeffrey A; Saliba, Lawrence J; Strawn, Jeffrey R; Eliassen, James C; Patino, L Rodrigo; Adler, Caleb M; Weber, Wade; Schneider, Marguerite Reid; Barzman, Drew H; Strakowski, Stephen M; DelBello, Melissa P; McNamara, Robert K
2016-11-01
To examine prefrontal and amygdala activation during emotional processing in youth with or at varying risk for developing mania to identify candidate central prodromal risk biomarkers. Four groups of medication-free adolescents (10-20 years old) participated: adolescents with first-episode bipolar I disorder (BP-I; n = 32), adolescents with a parent with bipolar disorder and a depressive disorder (at-risk depressed [ARD]; n = 32), healthy adolescents with a parent with bipolar disorder (at-risk healthy [ARH]; n = 32), and healthy adolescents with no personal or family history of psychiatric illness (healthy comparison [HC]; n = 32). Participants underwent functional magnetic resonance imaging while performing a continuous performance task with emotional and neutral distracters. Region-of-interest analyses were performed for the bilateral amygdala and for subregions of the ventrolateral prefrontal cortex and anterior cingulate cortex. Overall, no group differences in bilateral amygdala and ventrolateral prefrontal cortex (Brodmann area [BA] 45/47) activation during emotional or neutral stimuli were observed. The BP-I group exhibited lower right pregenual anterior cingulate cortex activation compared with the HC group, and activation in the left BA 44 was greater in the ARH and ARD groups compared with the HC group. BP-I and ARD groups exhibited blunted activation in the right BA 10 compared with the ARH group. During emotional processing, amygdala and ventrolateral prefrontal cortex (BA 45/47) activation does not differ in youth with or at increasing risk for BP-I. However, blunted pregenual anterior cingulate cortex activation in first-episode mania could represent an illness biomarker, and greater prefrontal BA 10 and BA 44 activations in at-risk youth could represent a biomarker of risk or resilience warranting additional investigation in prospective longitudinal studies. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
2015-07-22
CONTRACT NUMBER soman-induced status epilepticus in rats 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Johnson, EA, Guignet, MA, Dao...See reprint. 15. SUBJECT TERMS Interleukin 18, Status epilepticus , Soman (GD), Macrophage, T-cell, Neutrophil, Piriform cortex, Hippocampus...following soman-induced status epilepticus in rats Erik A. Johnson1*, Michelle A. Guignet1, Thuy L. Dao1, Tracey A. Hamilton2 and Robert K. Kan1 Abstract
Chen, Yu-Chen; Xia, Wenqing; Chen, Huiyou; Feng, Yuan; Xu, Jin-Jing; Gu, Jian-Ping; Salvi, Richard; Yin, Xindao
2017-05-01
The phantom sound of tinnitus is believed to be triggered by aberrant neural activity in the central auditory pathway, but since this debilitating condition is often associated with emotional distress and anxiety, these comorbidities likely arise from maladaptive functional connections to limbic structures such as the amygdala and hippocampus. To test this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to identify aberrant effective connectivity of the amygdala and hippocampus in tinnitus patients and to determine the relationship with tinnitus characteristics. Chronic tinnitus patients (n = 26) and age-, sex-, and education-matched healthy controls (n = 23) were included. Both groups were comparable for hearing level. Granger causality analysis utilizing the amygdala and hippocampus as seed regions were used to investigate the directional connectivity and the relationship with tinnitus duration or distress. Relative to healthy controls, tinnitus patients demonstrated abnormal directional connectivity of the amygdala and hippocampus, including primary and association auditory cortex, and other non-auditory areas. Importantly, scores on the Tinnitus Handicap Questionnaires were positively correlated with increased connectivity from the left amygdala to left superior temporal gyrus (r = 0.570, P = 0.005), and from the right amygdala to right superior temporal gyrus (r = 0.487, P = 0.018). Moreover, enhanced effective connectivity from the right hippocampus to left transverse temporal gyrus was correlated with tinnitus duration (r = 0.452, P = 0.030). The results showed that tinnitus distress strongly correlates with enhanced effective connectivity that is directed from the amygdala to the auditory cortex. The longer the phantom sensation, the more likely acute tinnitus becomes permanently encoded by memory traces in the hippocampus. Hum Brain Mapp 38:2384-2397, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Neural substrate of the late positive potential in emotional processing
Liu, Yuelu; Huang, Haiqing; McGinnis, Menton; Keil, Andreas; Ding, Mingzhou
2012-01-01
The late positive potential (LPP) is a reliable electrophysiological index of emotional perception in humans. Despite years of research the brain structures that contribute to the generation and modulation of LPP are not well understood. Recording EEG and fMRI simultaneously, and applying a recently proposed single-trial ERP analysis method, we addressed the problem by correlating the single-trial LPP amplitude evoked by affective pictures with the blood-oxygen-level-dependent (BOLD) activity. Three results were found. First, relative to neutral pictures, pleasant and unpleasant pictures elicited enhanced LPP, as well as heightened BOLD activity in both visual cortices and emotion-processing structures such as amygdala and prefrontal cortex, consistent with previous findings. Second, the LPP amplitude across three picture categories was significantly correlated with BOLD activity in visual cortices, temporal cortices, amygdala, orbitofrontal cortex, and insula. Third, within each picture category, LPP-BOLD coupling revealed category-specific differences. For pleasant pictures, the LPP amplitude was coupled with BOLD in occipitotemporal junction, medial prefrontal cortex, amygdala, and precuneus, whereas for unpleasant pictures, significant LPP-BOLD correlation was observed in ventrolateral prefrontal cortex, insula, and posterior cingulate cortex. These results suggest that LPP is generated and modulated by an extensive brain network comprised of both cortical and subcortical structures associated with visual and emotional processing and the degree of contribution by each of these structures to the LPP modulation is valence-specific. PMID:23077042
Timbie, Clare; Barbas, Helen
2015-08-26
The primate amygdala projects to posterior orbitofrontal cortex (pOFC) directly and possibly indirectly through a pathway to the magnocellular mediodorsal thalamic nucleus (MDmc), which may convey signals about the significance of stimuli. However, because MDmc receives input from structures in addition to the amygdala and MDmc projects to areas in addition to pOFC, it is unknown whether amygdalar pathways in MDmc innervate pOFC-bound neurons. We addressed this issue using double- or triple-labeling approaches to identify pathways and key cellular and molecular features in rhesus monkeys. We found that amygdalar terminations innervated labeled neurons in MDmc that project to pOFC. Projection neurons in MDmc directed to pOFC included comparatively fewer "core" parvalbumin neurons that project focally to the middle cortical layers and more "matrix" calbindin neurons that project expansively to the upper cortical layers. In addition, a small and hitherto unknown pathway originated from MDmc calretinin neurons and projected to pOFC. Further, whereas projection neurons directed to MDmc and to pOFC were intermingled in the amygdala, none projected to both structures. Larger amygdalar neurons projected to MDmc and expressed the vesicular glutamate transporter 2 (VGLUT2), which is found in highly efficient "driver" pathways. In contrast, smaller amygdalar neurons directed to pOFC expressed VGLUT1 found in modulatory pathways. The indirect pathway from the amygdala to pOFC via MDmc may provide information about the emotional significance of events and, along with a parallel direct pathway, ensures transfer of signals to all layers of pOFC. The amygdala-the brain's center for emotions-is strongly linked with the orbital cortex, a region associated with social interactions. This study provides evidence that a robust pathway from the amygdala reaches neurons in the thalamus that link directly with the orbital cortex, forming a tight tripartite network. The dual pathways from the amygdala to the orbital cortex and to the thalamus are distinct by morphology, neurochemistry, and function. This tightly linked network suggests the presence of fool-proof avenues for emotions to influence high-order cortical areas associated with affective reasoning. Specific nodes of this tripartite network are disrupted in psychiatric diseases, divorcing areas that integrate emotions and thoughts for decisions and flexible behavior. Copyright © 2015 the authors 0270-6474/15/3511976-12$15.00/0.
Manelis, Anna; Ladouceur, Cecile D; Graur, Simona; Monk, Kelly; Bonar, Lisa K; Hickey, Mary Beth; Dwojak, Amanda C; Axelson, David; Goldstein, Benjamin I; Goldstein, Tina R; Bebko, Genna; Bertocci, Michele A; Hafeman, Danella M; Gill, Mary Kay; Birmaher, Boris; Phillips, Mary L
2015-09-01
This study aimed to identify neuroimaging measures associated with risk for, or protection against, bipolar disorder by comparing youth offspring of parents with bipolar disorder versus youth offspring of non-bipolar parents versus offspring of healthy parents in (i) the magnitude of activation within emotional face processing circuitry; and (ii) functional connectivity between this circuitry and frontal emotion regulation regions. The study was conducted at the University of Pittsburgh Medical Centre. Participants included 29 offspring of parents with bipolar disorder (mean age = 13.8 years; 14 females), 29 offspring of non-bipolar parents (mean age = 13.8 years; 12 females) and 23 healthy controls (mean age = 13.7 years; 11 females). Participants were scanned during implicit processing of emerging happy, sad, fearful and angry faces and shapes. The activation analyses revealed greater right amygdala activation to emotional faces versus shapes in offspring of parents with bipolar disorder and offspring of non-bipolar parents than healthy controls. Given that abnormally increased amygdala activation during emotion processing characterized offspring of both patient groups, and that abnormally increased amygdala activation has often been reported in individuals with already developed bipolar disorder and those with major depressive disorder, these neuroimaging findings may represent markers of increased risk for affective disorders in general. The analysis of psychophysiological interaction revealed that offspring of parents with bipolar disorder showed significantly more negative right amygdala-anterior cingulate cortex functional connectivity to emotional faces versus shapes, but significantly more positive right amygdala-left ventrolateral prefrontal cortex functional connectivity to happy faces (all P-values corrected for multiple tests) than offspring of non-bipolar parents and healthy controls. Taken together with findings of increased amygdala-ventrolateral prefrontal cortex functional connectivity, and decreased amygdala-anterior cingulate cortex functional connectivity previously shown in individuals with bipolar disorder, these connectivity patterns in offspring of parents with bipolar disorder may be risk markers for, rather than markers conferring protection against, bipolar disorder in youth. The patterns of activation and functional connectivity remained unchanged after removing medicated participants and those with current psychopathology from analyses. This is the first study to demonstrate that abnormal functional connectivity patterns within face emotion processing circuitry distinguish offspring of parents with bipolar disorder from those of non-bipolar parents and healthy controls. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Hegoburu, Chloe; Sevelinges, Yannick; Thevenet, Marc; Gervais, Remi; Parrot, Sandrine; Mouly, Anne-Marie
2009-01-01
Although the amygdala seems to be essential to the formation and storage of fear memories, it might store only some aspects of the aversive event and facilitate the storage of more specific sensory aspects in cortical areas. We addressed the time course of amygdala and cortical activation in the context of odor fear conditioning in rats. Using…
Morey, Rajendra A; Haswell, Courtney C; Hooper, Stephen R; De Bellis, Michael D
2016-02-01
Posttraumatic stress disorder (PTSD) is considered a disorder of recovery where individuals fail to learn and retain extinction of the traumatic fear response. In maltreated youth, PTSD is common, chronic, and associated with comorbidity. Studies of extinction-related structural volumes (amygdala, hippocampus, anterior cingulate cortex (ACC), and ventral medial prefrontal cortex (vmPFC)) and this stress diathesis, in maltreated youth were not previously investigated. In this cross-sectional study, neuroanatomical volumes associated with extinction in maltreated youth with PTSD (N=31), without PTSD (N=32), and in non-maltreated healthy volunteers (n=57) were examined using magnetic resonance imaging. Groups were sociodemographically similar. Participants underwent extensive assessments for strict inclusion/exclusion criteria and DSM-IV disorders. Maltreated youth with PTSD demonstrated decreased right vmPFC volumes compared with both maltreated youth without PTSD and non-maltreated controls. Maltreated youth without PTSD demonstrated larger left amygdala and right hippocampal volumes compared with maltreated youth with PTSD and non-maltreated control youth. PTSD symptoms inversely correlated with right and left hippocampal and left amygdala volumes. Confirmatory masked voxel base morphometry analyses demonstrated greater medial orbitofrontal cortex gray matter intensity in controls than maltreated youth with PTSD. Volumetric results were not influenced by psychopathology or maltreatment variables. We identified volumetric differences in extinction-related structures between maltreated youth with PTSD from those without PTSD. Alterations of the vmPFC may be one mechanism that mediates the pathway from PTSD to comorbidity. Further longitudinal work is needed to determine neurobiological factors related to chronic and persistent PTSD, and to PTSD resilience despite maltreatment.
Zuurbier, Lisette A.; Nikolova, Yuliya S.; Ahs, Fredrik; Hariri, Ahmad R.
2014-01-01
Emotion regulation refers to strategies through which individuals influence their experience and expression of emotions. Two typical strategies are reappraisal, a cognitive strategy for reframing the context of an emotional experience, and suppression, a behavioral strategy for inhibiting emotional responses. Functional neuroimaging studies have revealed that regions of the prefrontal cortex modulate amygdala reactivity during both strategies, but relatively greater down-regulation of the amygdala occurs during reappraisal. Moreover, these studies demonstrated that engagement of this modulatory circuitry varies as a function of gender. The uncinate fasciculus is a major structural pathway connecting regions of the anterior temporal lobe, including the amygdala, to inferior frontal regions, especially the orbitofrontal cortex. The objective of the current study was to map variability in the structural integrity of the uncinate fasciculus onto individual differences in self-reported typical use of reappraisal and suppression. Diffusion tensor imaging was used in 194 young adults to derive regional fractional anisotropy values for the right and left uncinate fasciculus. All participants also completed the Emotion Regulation Questionnaire. In women but not men, self-reported typical reappraisal use was positively correlated with fractional anisotropy values in a region of the left uncinate fasciculus within the orbitofrontal cortex. In contrast, typical use of suppression was not significantly correlated with fractional anisotropy in any region of the uncinate fasciculus in either men or women. Our data suggest that in women typical reappraisal use is specifically related to the integrity of white matter pathways linking the amygdala and prefrontal cortex. PMID:23398586
Martel, Guillaume; Hevi, Charles; Wong, Alexandra; Zushida, Ko; Uchida, Shusaku; Shumyatsky, Gleb P.
2012-01-01
Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction. PMID:22312434
Golkar, Armita; Johansson, Emilia; Kasahara, Maki; Osika, Walter; Perski, Aleksander; Savic, Ivanka
2014-01-01
Despite mounting reports about the negative effects of chronic occupational stress on cognitive and emotional functions, the underlying mechanisms are unknown. Recent findings from structural MRI raise the question whether this condition could be associated with a functional uncoupling of the limbic networks and an impaired modulation of emotional stress. To address this, 40 subjects suffering from burnout symptoms attributed to chronic occupational stress and 70 controls were investigated using resting state functional MRI. The participants' ability to up- regulate, down-regulate, and maintain emotion was evaluated by recording their acoustic startle response while viewing neutral and negatively loaded images. Functional connectivity was calculated from amygdala seed regions, using explorative linear correlation analysis. Stressed subjects were less capable of down-regulating negative emotion, but had normal acoustic startle responses when asked to up-regulate or maintain emotion and when no regulation was required. The functional connectivity between the amygdala and the anterior cingulate cortex correlated with the ability to down-regulate negative emotion. This connectivity was significantly weaker in the burnout group, as was the amygdala connectivity with the dorsolateral prefrontal cortex and the motor cortex, whereas connectivity from the amygdala to the cerebellum and the insular cortex were stronger. In subjects suffering from chronic occupational stress, the functional couplings within the emotion- and stress-processing limbic networks seem to be altered, and associated with a reduced ability to down-regulate the response to emotional stress, providing a biological substrate for a further facilitation of the stress condition. PMID:25184294
Martel, Guillaume; Hevi, Charles; Wong, Alexandra; Zushida, Ko; Uchida, Shusaku; Shumyatsky, Gleb P
2012-01-01
Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction.
Hummer, Tom A; Phan, K Luan; Kern, David W; McClintock, Martha K
2017-01-01
Evidence suggests the putative human pheromone Δ4,16-androstadien-3-one (androstadienone), a natural component of human sweat, increases attention to emotional information when passively inhaled, even in minute amounts. However, the neural mechanisms underlying androstadienone's impact on the perception of emotional stimuli have not been clarified. To characterize how the compound modifies neural circuitry while attending to emotional information, 22 subjects (11 women) underwent two fMRI scanning sessions, one with an androstadienone solution and one with a carrier control solution alone on their upper lip. During each session, participants viewed blocks of emotionally positive, negative, or neutral images. The BOLD response to emotional images (relative to neutral images) was greater during exposure to androstadienone in right orbitofrontal and lateral prefrontal cortex, particularly during positive image blocks. Androstadienone did not impact the response to social images, compared to nonsocial images, and results were not related to participant sex or olfactory sensitivity. To examine how androstadienone influences effective connectivity of this network, a dynamic causal model was employed with primary visual cortex (V1), amygdala, prefrontal cortex, and orbitofrontal cortex on each side. These models indicated that emotional images increased the drive from V1 to the amygdala during the control session. With androstadienone present, this drive to amygdala was decreased specifically for positive images, which drove downstream increases in orbitofrontal and prefrontal activity. This evidence suggests that androstadienone may act as a chemical signal to increase attention to positively valenced information via modifications to amygdala connectivity. Copyright © 2016. Published by Elsevier Ltd.
Yoder, Keith J.; Porges, Eric C.; Decety, Jean
2016-01-01
Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a non-forensic sample are linked to amygdala response to violence, the current study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. PMID:25557777
Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability
Wei, Luqing; Chen, Hong; Wu, Guo-Rong
2018-01-01
The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability. PMID:29545744
Yoder, Keith J; Porges, Eric C; Decety, Jean
2015-04-01
Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a nonforensic sample are linked to amygdala response to violence, this study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. © 2014 Wiley Periodicals, Inc.
c-Fos expression predicts long-term social memory retrieval in mice.
Lüscher Dias, Thomaz; Fernandes Golino, Hudson; Moura de Oliveira, Vinícius Elias; Dutra Moraes, Márcio Flávio; Schenatto Pereira, Grace
2016-10-15
The way the rodent brain generally processes socially relevant information is rather well understood. How social information is stored into long-term social memory, however, is still under debate. Here, brain c-Fos expression was measured after adult mice were exposed to familiar or novel juveniles and expression was compared in several memory and socially relevant brain areas. Machine Learning algorithm Random Forest was then used to predict the social interaction category of adult mice based on c-Fos expression in these areas. Interaction with a familiar co-specific altered brain activation in the olfactory bulb, amygdala, hippocampus, lateral septum and medial prefrontal cortex. Remarkably, Random Forest was able to predict interaction with a familiar juvenile with 100% accuracy. Activity in the olfactory bulb, amygdala, hippocampus and the medial prefrontal cortex were crucial to this prediction. From our results, we suggest long-term social memory depends on initial social olfactory processing in the medial amygdala and its output connections synergistically with non-social contextual integration by the hippocampus and medial prefrontal cortex top-down modulation of primary olfactory structures. Copyright © 2016 Elsevier B.V. All rights reserved.
Bullock, Daniel; Barbas, Helen
2016-01-01
In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective ‘framing’ effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders. PMID:26828203
Shirayama, Yukihiko; Muneoka, Katsumasa; Fukumoto, Makoto; Tadokoro, Shigenori; Fukami, Goro; Hashimoto, Kenji; Iyo, Masaomi
2011-10-01
Patients with depression showed a decrease in plasma and cerebrospinal fluid allopregnanolone (ALLO). But antidepressants increased the contents of ALLO in the rat brain. We examined the antidepressant-like effects of infusion of ALLO into the cerebral ventricle, hippocampus, amygdala, nucleus accumbens, or prefrontal cortex of learned helplessness (LH) rats (an animal model of depression). Of these regions, infusions of ALLO into the cerebral ventricle, the CA3 region of hippocampus, or the central region of amygdala exerted antidepressant-like effects. Infusion of ALLO into the hippocampal CA3 region or the central amygdala did not produce memory deficits or locomotor activation in the passive avoidance and open field tests. It is well documented that ALLO exerts its effects through GABA receptors. Therefore, we examined the antagonistic effects of flumazenil (a GABA receptor antagonist) on the antidepressant-like effects of ALLO. Coinfusion of flumazenil with ALLO into the hippocampal CA3 region, but not into the central amygdala, blocked the antidepressant-like effects of ALLO. However, coinfusion of (+)MK801 (an NMDA receptor antagonist), but not cycloheximide (a protein synthesis inhibitor), blocked the antidepressant-like effects of ALLO in the central amygdala. These results suggest that ALLO exerts antidepressant-like effects in the CA3 region of hippocampus through the GABA system and in the central region of amygdala, dependently on the activation of the glutamatergic mechanisms. Copyright © 2010 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Kates, Wendy R.; Miller, Adam M.; Abdulsabur, Nuria; Antshel, Kevin M.; Conchelos, Jena; Fremont, Wanda; Roizen, Nancy
2006-01-01
Objective: To investigate the association between mesial temporal lobe morphology, ratios of prefrontal cortex to amygdala and hippocampus volumes, and psychiatric symptomatology in children and adolescents with velocardiofacial syndrome (VCFS). Method: Scores on behavioral rating scales and volumetric measures of the amygdala, hippocampus, and…
Neural Correlates of Antidepressant Treatment Response in Adolescents with Major Depressive Disorder
Klimes-Dougan, Bonnie; Vu, Dung Pham; Westlund Schreiner, Melinda; Mueller, Bryon A.; Eberly, Lynn E.; Camchong, Jazmin; Westervelt, Ana; Lim, Kelvin O.
2016-01-01
Abstract Objective: The neural changes underlying response to antidepressant treatment in adolescents are unknown. Identification of neural change correlates of treatment response could (1) aid in understanding mechanisms of depression and its treatment and (2) serve as target biomarkers for future research. Method: Using functional magnetic resonance imaging, we examined changes in brain activation and functional connectivity in 13 unmedicated adolescents with major depressive disorder (MDD) before and after receiving treatment with a selective serotonin reuptake inhibitor medication for 8 weeks. Specifically, we examined brain activation during a negative emotion task and resting-state functional connectivity (RSFC), focusing on the amygdala to capture networks relevant to negative emotion. We conducted whole-brain analyses to identify how symptom improvement was related to change in brain activation during a negative emotion task or amygdala RSFC. Results: After treatment, clinical improvement was associated with decreased task activation in rostral and subgenual anterior cingulate cortex and increased activation in bilateral insula, bilateral middle frontal cortices, right parahippocampus, and left cerebellum. Analysis of change in amygdala RSFC showed that treatment response was associated with increased amygdala RSFC with right frontal cortex, but decreased amygdala RSFC with right precuneus and right posterior cingulate cortex. Conclusion: The findings represent a foothold for advancing understanding of pathophysiology of MDD in adolescents by revealing the critical neural circuitry changes that underlie a positive response to a standard treatment. Although preliminary, the present study provides a research platform for future work needed to confirm these biomarkers at a larger scale before using them in future target engagement studies of novel treatments. PMID:27159204
Ohtori, S; Takahashi, K; Chiba, T; Takahashi, Y; Yamagata, M; Sameda, H; Moriya, H
2000-10-01
Acute noxious stimulation delivered to lumbar muscles and skin of rats was used to study Fos expression patterns in the brain and spinal cord. The present study was conducted to determine the differences in Fos expression in the brain and spinal cord as evoked by stimuli delivered to lumbar muscles and skin in rats. Patients with low back pain sometimes show psychological symptoms, such as quiescence, loss of interest, decreased activities, appetite loss, and restlessness. The pathway of deep somatic pain to the brain has been reported to be different from that of cutaneous pain. However, Fos expression has not been studied in the central nervous systems after stimulation of low back muscles. Rats were injected with 100 L of 5% formalin into the multifidus muscle (deep pain group; n = 10) and into the back skin of the L5 dermatome (cutaneous pain group; n = 10). Two hours after injection, the distribution of Fos-immunoreactive neurons was studied in the brain and spinal cord. Fos-immunoreactive neurons were observed in laminae I-V in the spinal cord in the cutaneous pain group, but they were not seen in lamina II in the deep pain group. In the brain, Fos-immunoreactive neurons were significantly more numerous in the deep pain group than in the cutaneous pain group in the piriform cortex, the accumbens nucleus core, the basolateral nucleus of amygdala, the paraventricular hypothalamic nucleus, the ventral tegmental area, and the ventrolateral periaqueductal gray. The finding that Fos-immunoreactive neurons were absent from lamina II of the spinal cord in the deep pain group is similar to that of the projection pattern of the visceral pain pathway. Fos expression in the ventrolateral periaqueductal gray in the deep pain group may represent a reaction of quiescence and a loss of interest, activities, or appetite. Furthermore, the detection of large numbers of Fos-immunoreactive neurons in the core of accumbens nucleus, basolateral nucleus of amygdala, paraventricular hypothalamic nucleus, and ventral tegmental area in the deep pain group may suggest a dominant reaction of dopaminergic neurons to stress, and a different information processing pathway than from that of cutaneous pain.
The neural correlates of sex differences in emotional reactivity and emotion regulation.
Domes, Gregor; Schulze, Lars; Böttger, Moritz; Grossmann, Annette; Hauenstein, Karlheinz; Wirtz, Petra H; Heinrichs, Markus; Herpertz, Sabine C
2010-05-01
Sex differences in emotional responding have been repeatedly postulated but less consistently shown in empirical studies. Because emotional reactions are modulated by cognitive appraisal, sex differences in emotional responding might depend on differences in emotion regulation. In this study, we investigated sex differences in emotional reactivity and emotion regulation using a delayed cognitive reappraisal paradigm and measured whole-brain BOLD signal in 17 men and 16 women. During fMRI, participants were instructed to increase, decrease, or maintain their emotional reactions evoked by negative pictures in terms of cognitive reappraisal. We analyzed BOLD responses to aversive compared to neutral pictures in the initial viewing phase and the effect of cognitive reappraisal in the subsequent regulation phase. Women showed enhanced amygdala responding to aversive stimuli in the initial viewing phase, together with increased activity in small clusters within the prefrontal cortex and the temporal cortex. During cognitively decreasing emotional reactions, women recruited parts of the orbitofrontal cortex, the anterior cingulate, and the dorsolateral prefrontal cortex to a lesser extent than men, while there was no sex effect on amygdala activity. In contrast, compared to women, men showed an increased recruitment of regulatory cortical areas during cognitively increasing initial emotional reactions, which was associated with an increase in amygdala activity. Clinical implications of these findings are discussed.
Gupta, Subhash C; Hillman, Brandon G; Prakash, Anand; Ugale, Rajesh R; Stairs, Dustin J; Dravid, Shashank M
2013-06-01
D-cycloserine (DCS) is currently under clinical trials for a number of neuropsychiatric conditions and has been found to augment fear extinction in rodents and exposure therapy in humans. However, the molecular mechanism of DCS action in these multiple modalities remains unclear. Here, we describe the effect of DCS administration, alone or in conjunction with extinction training, on neuronal activity (c-fos) and neuronal plasticity [phospho-extracellular signal-regulated kinase (pERK)] markers using immunohistochemistry. We found that intraperitoneal administration of DCS in untrained young rats (24-28 days old) increased c-fos- and pERK-stained neurons in both the prelimbic and infralimbic division of the medial prefrontal cortex (mPFC) and reduced pERK levels in the lateral nucleus of the central amygdala. Moreover, DCS administration significantly increased GluA1, GluN1, GluN2A, and GluN2B expression in the mPFC. In a separate set of animals, we found that DCS facilitated fear extinction and increased pERK levels in the infralimbic prefrontal cortex, prelimbic prefrontal cortex intercalated cells and lateral nucleus of the central amygdala, compared with saline control. In the synaptoneurosomal preparation, we found that extinction training increased iGluR protein expression in the mPFC, compared with context animals. No significant difference in protein expression was observed between extinction-saline and extinction-DCS groups in the mPFC. In contrast, in the amygdala DCS, the conjunction with extinction training led to an increase in iGluR subunit expression, compared with the extinction-saline group. Our data suggest that the efficacy of DCS in neuropsychiatric disorders may be partly due to its ability to affect neuronal activity and signaling in the mPFC and amygdala subnuclei. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Adult neurogenesis in the hedgehog (Erinaceus concolor) and mole (Talpa europaea).
Bartkowska, K; Turlejski, K; Grabiec, M; Ghazaryan, A; Yavruoyan, E; Djavadian, R L
2010-01-01
We investigated adult neurogenesis in two species of mammals belonging to the superorder Laurasiatheria, the southern white-breasted hedgehog (order Erinaceomorpha, species Erinaceus concolor) from Armenia and the European mole (order Soricomorpha, species Talpa europaea) from Poland. Neurogenesis in the brain of these species was examined immunohistochemically, using the endogenous markers doublecortin (DCX) and Ki-67, which are highly conserved among species. We found that in both the hedgehog and mole, like in the majority of earlier investigated mammals, neurogenesis continues in the subventricular zone (SVZ) of the lateral ventricles and in the dentate gyrus (DG). In the DG of both species, DCX-expressing cells and Ki-67-labeled cells were present in the subgranular and granular layers. In the mole, a strong bundle of DCX-labeled processes, presumably axons of granule cells, was observed in the center of the hilus. Proliferating cells (expressing Ki-67) were identified in the SVZ of lateral ventricles of both species, but neuronal precursor cells (expressing DCX) were also observed in the olfactory bulb (OB). In both species, the vast majority of cells expressing DCX in the OB were granule cells with radially orientated dendrites, although some periglomerular cells surrounding the glomeruli were also labeled. In addition, this paper is the first to show DCX-labeled fibers in the anterior commissure of the hedgehog and mole. These fibers must be axons of new neurons making interhemispheric connections between the two OB or piriform (olfactory) cortices. DCX-expressing neurons were observed in the striatum and piriform cortex of both hedgehog and mole. We postulate that in both species a fraction of cells newly generated in the SVZ migrates along the rostral migratory stream to the piriform cortex. This pattern of migration resembles that of the 'second-wave neurons' generated during embryonal development of the neocortex rather than the pattern observed during development of the allocortex. In spite of the presence of glial cells alongside DCX-expressing cells, we never found colocalization of DCX protein with a glial marker (vimentin or glial fibrillary acidic protein). Copyright © 2010 S. Karger AG, Basel.
2013-07-02
amygdala induced by hippocampal formation stimulation in vivo. The Journal of neuroscience: the official journal of the Society for Neuroscience 15...6 Figure 1.3. Schematic model of the neural circuitry of Pavlovian auditory fear conditioning. Model shows how an auditory conditioned...stimulus and a nociceptive unconditioned foot shock stimulus converge in the lateral amygdala (LA) via auditory thalamus and cortex and somatosensory
Mercerón-Martínez, D; Almaguer-Melian, W; Alberti-Amador, E; Bergado, J A
2018-06-19
The relationships between affective and cognitive processes are an important issue of present neuroscience. The amygdala, the hippocampus and the prefrontal cortex appear as main players in these mechanisms. We have shown that post-training electrical stimulation of the basolateral amygdala (BLA) speeds the acquisition of a motor skill, and produces a recovery in behavioral performance related to spatial memory in fimbria-fornix (FF) lesioned animals. BLA electrical stimulation rises bdnf RNA expression, BDNF protein levels, and arc RNA expression in the hippocampus. In the present paper we have measured the levels of one presynaptic protein (GAP-43) and one postsynaptic protein (MAP-2) both involved in synaptogenesis to assess whether structural neuroplastic mechanisms are involved in the memory enhancing effects of BLA stimulation. A single train of BLA stimulation produced in healthy animals an increase in the levels of GAP-43 and MAP-2 that lasted days in the hippocampus and the prefrontal cortex. In FF-lesioned rats, daily post-training stimulation of the BLA ameliorates the memory deficit of the animals and induces an increase in the level of both proteins. These results support the hypothesis that the effects of amygdala stimulation on memory recovery are sustained by an enhanced formation of new synapses. Copyright © 2018. Published by Elsevier Inc.
Atanasova, Dimitrinka; Tchekalarova, Jana; Ivanova, Natasha; Nenchovska, Zlatina; Pavlova, Ekaterina; Atanassova, Nina; Lazarov, Nikolai
2018-01-15
Experimental and clinical studies have demonstrated that components of renin-angiotensin system are elevated in the hippocampus in epileptogenic conditions. In the present work, we explored the changes in the expression of angiotensin II receptor, type 1 (AT 1 receptor) in limbic structures, as well as the effect of the AT1 receptor antagonist losartan in a model of comorbid hypertension and epilepsy. The expression of AT 1 receptors was compared between spontaneously hypertensive rats (SHRs) and Wistar rats by using immunohistochemistry in the kainate (KA) model of temporal lobe epilepsy (TLE). The effect of losartan was studied on AT 1 receptor expression in epileptic rats that were treated for a period of 4weeks after status epilepticus. The naive and epileptic SHRs were characterized by stronger protein expression of AT 1 receptor than normotensive Wistar rats in the CA1, CA3a, CA3b, CA3c field and the hilus of the dentate gyrus of the dorsal hippocampus but fewer cells were immunostained in the piriform cortex. Increased AT 1 immunostaining was observed in the basolateral amygdala of epileptic SHRs but not of epileptic Wistar rats. Losartan exerted stronger and structure-dependent suppression of AT 1 receptor expression in SHRs compared to Wistar rats. Our results confirm the important role of AT 1 receptor in epilepsy and suggest that the AT 1 receptor antagonists could be used as a therapeutic strategy for treatment of comorbid hypertension and epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.
Nicholson, Andrew A; Rabellino, Daniela; Densmore, Maria; Frewen, Paul A; Paret, Christian; Kluetsch, Rosemarie; Schmahl, Christian; Théberge, Jean; Neufeld, Richard W J; McKinnon, Margaret C; Reiss, Jim; Jetly, Rakesh; Lanius, Ruth A
2017-01-01
Amygdala dysregulation has been shown to be central to the pathophysiology of posttraumatic stress disorder (PTSD) representing a critical treatment target. Here, amygdala downregulation was targeted using real-time fMRI neurofeedback (rt-fMRI-nf) in patients with PTSD, allowing us to examine further the regulation of emotional states during symptom provocation. Patients (n = 10) completed three sessions of rt-fMRI-nf with the instruction to downregulate activation in the amygdala, while viewing personalized trauma words. Amygdala downregulation was assessed by contrasting (a) regulate trials, with (b) viewing trauma words and not attempting to regulate. Training was followed by one transfer run not involving neurofeedback. Generalized psychophysiological interaction (gPPI) and dynamic causal modeling (DCM) analyses were also computed to explore task-based functional connectivity and causal structure, respectively. It was found that PTSD patients were able to successfully downregulate both right and left amygdala activation, showing sustained effects within the transfer run. Increased activation in the dorsolateral and ventrolateral prefrontal cortex (PFC), regions related to emotion regulation, was observed during regulate as compared with view conditions. Importantly, activation in the PFC, rostral anterior cingulate cortex, and the insula, were negatively correlated to PTSD dissociative symptoms in the transfer run. Increased functional connectivity between the amygdala- and both the dorsolateral and dorsomedial PFC was found during regulate, as compared with view conditions during neurofeedback training. Finally, our DCM analysis exploring directional structure suggested that amygdala downregulation involves both top-down and bottom-up information flow with regard to observed PFC-amygdala connectivity. This is the first demonstration of successful downregulation of the amygdala using rt-fMRI-nf in PTSD, which was critically sustained in a subsequent transfer run without neurofeedback, and corresponded to increased connectivity with prefrontal regions involved in emotion regulation during the intervention. Hum Brain Mapp 38:541-560, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Typical and Atypical Neurodevelopment for Face Specialization: An fMRI Study
ERIC Educational Resources Information Center
Joseph, Jane E.; Zhu, Xun; Gundran, Andrew; Davies, Faraday; Clark, Jonathan D.; Ruble, Lisa; Glaser, Paul; Bhatt, Ramesh S.
2015-01-01
Individuals with autism spectrum disorder (ASD) and their relatives process faces differently from typically developed (TD) individuals. In an fMRI face-viewing task, TD and undiagnosed sibling (SIB) children (5-18 years) showed face specialization in the right amygdala and ventromedial prefrontal cortex, with left fusiform and right amygdala face…
Amygdala response to faces parallels social behavior in Williams syndrome
Snyder, Abraham Z.; Haist, Frank; Raichle, Marcus E.; Bellugi, Ursula; Stiles, Joan
2009-01-01
Individuals with Williams syndrome (WS), a genetically determined disorder, show relatively strong face-processing abilities despite poor visuospatial skills and depressed intellectual function. Interestingly, beginning early in childhood they also show an unusually high level of interest in face-to-face social interaction. We employed functional magnetic resonance imaging (fMRI) to investigate physiological responses in face-sensitive brain regions, including ventral occipito-temporal cortex and the amygdala, in this unique genetic disorder. Participants included 17 individuals with WS, 17 age- and gender-matched healthy adults (chronological age-matched controls, CA) and 17 typically developing 8- to 9-year-old children (developmental age controls, DA). While engaged in a face discrimination task, WS participants failed to recruit the amygdala, unlike both CA and DA controls. WS fMRI responses in ventral occipito-temporal cortex, however, were comparable to those of DA controls. Given the integral role of the amygdala in social behavior, the failure of WS participants to recruit this region during face processing may be a neural correlate of the abnormally high sociability that characterizes this disorder. PMID:19633063
Yanagisawa, Kuniaki; Abe, Nobuhito; Kashima, Emiko S; Nomura, Michio
2016-03-01
Reminders of death often elicit defensive responses in individuals, especially among those with low self-esteem. Although empirical evidence indicates that self-esteem serves as a buffer against mortality threats, the precise neural mechanism underlying this effect remains unknown. We used functional magnetic resonance imaging (fMRI) to test the hypothesis that self-esteem modulates neural responses to death-related stimuli, especially functional connectivity within the limbic-frontal circuitry, thereby affecting subsequent defensive reactions. As predicted, individuals with high self-esteem subjected to a mortality threat exhibited increased amygdala-ventrolateral prefrontal cortex (VLPFC) connectivity during the processing of death-related stimuli compared with individuals who have low self-esteem. Further analysis revealed that stronger functional connectivity between the amygdala and the VLPFC predicted a subsequent decline in responding defensively to those who threaten one's beliefs. These results suggest that the amygdala-VLPFC interaction, which is modulated by self-esteem, can reduce the defensiveness caused by death-related stimuli, thereby providing a neural explanation for why individuals with high self-esteem exhibit less defensive reactions to mortality threats. (c) 2016 APA, all rights reserved).
Edmiston, E. Kale; McHugo, Maureen; Dukic, Mildred S.; Smith, Stephen D.; Abou-Khalil, Bassel; Eggers, Erica
2013-01-01
Emotionally arousing pictures induce increased activation of visual pathways relative to emotionally neutral images. A predominant model for the preferential processing and attention to emotional stimuli posits that the amygdala modulates sensory pathways through its projections to visual cortices. However, recent behavioral studies have found intact perceptual facilitation of emotional stimuli in individuals with amygdala damage. To determine the importance of the amygdala to modulations in visual processing, we used functional magnetic resonance imaging to examine visual cortical blood oxygenation level-dependent (BOLD) signal in response to emotionally salient and neutral images in a sample of human patients with unilateral medial temporal lobe resection that included the amygdala. Adults with right (n = 13) or left (n = 5) medial temporal lobe resections were compared with demographically matched healthy control participants (n = 16). In the control participants, both aversive and erotic images produced robust BOLD signal increases in bilateral primary and secondary visual cortices relative to neutral images. Similarly, all patients with amygdala resections showed enhanced visual cortical activations to erotic images both ipsilateral and contralateral to the lesion site. All but one of the amygdala resection patients showed similar enhancements to aversive stimuli and there were no significant group differences in visual cortex BOLD responses in patients compared with controls for either aversive or erotic images. Our results indicate that neither the right nor left amygdala is necessary for the heightened visual cortex BOLD responses observed during emotional stimulus presentation. These data challenge an amygdalo-centric model of emotional modulation and suggest that non-amygdalar processes contribute to the emotional modulation of sensory pathways. PMID:23825407
Perlman, Susan B; Almeida, Jorge R C; Kronhaus, Dina M; Versace, Amelia; Labarbara, Edmund J; Klein, Crystal R; Phillips, Mary L
2012-03-01
Few studies have employed effective connectivity (EC) to examine the functional integrity of neural circuitry supporting abnormal emotion processing in bipolar disorder (BD), a key feature of the illness. We used Granger Causality Mapping (GCM) to map EC between the prefrontal cortex (PFC) and bilateral amygdala and a novel paradigm to assess emotion processing in adults with BD. Thirty-one remitted adults with BD [(remitted BD), mean age = 32 years], 21 adults with BD in a depressed episode [(depressed BD), mean age = 33 years], and 25 healthy control participants [(HC), mean age = 31 years] performed a block-design emotion processing task requiring color-labeling of a color flash superimposed on a task-irrelevant face morphing from neutral to emotional (happy, sad, angry, or fearful). GCM measured EC preceding (top-down) and following (bottom-up) activity between the PFC and the left and right amygdalae. Our findings indicated patterns of abnormally elevated bilateral amygdala activity in response to emerging fearful, sad, and angry facial expressions in remitted-BD subjects versus HC, and abnormally elevated right amygdala activity to emerging fearful faces in depressed-BD subjects versus HC. We also showed distinguishable patterns of abnormal EC between the amygdala and dorsomedial and ventrolateral PFC, especially to emerging happy and sad facial expressions in remitted-BD and depressed-BD subjects. EC measures of neural system level functioning can further understanding of neural mechanisms associated with abnormal emotion processing and regulation in BD. Our findings suggest major differences in recruitment of amygdala-PFC circuitry, supporting implicit emotion processing between remitted-BD and depressed-BD subjects, which may underlie changes from remission to depression in BD. © 2012 John Wiley and Sons A/S.
Anomalous prefrontal-limbic activation and connectivity in youth at high-risk for bipolar disorder.
Chang, Kiki; Garrett, Amy; Kelley, Ryan; Howe, Meghan; Sanders, Erica Marie; Acquaye, Tenah; Bararpour, Layla; Li, Sherrie; Singh, Manpreet; Jo, Booil; Hallmayer, Joachim; Reiss, Allan
2017-11-01
Abnormal prefrontal-limbic brain activation in response to facial expressions has been reported in pediatric bipolar disorder (BD). However, it is less clear whether these abnormalities exist prior to onset of mania, thus representing a biomarker predicting development of BD. We examined brain activation in 50 youth at high risk for BD (HR-BD), compared with 29 age- and gender-matched healthy control (HC) subjects. HR-BD was defined as having a parent with BD, as well as current mood or attentiondeficit/ hyperactivity disorder (ADHD) symptoms, or a history of at least one depressive episode. FMRI data were collected during an implicit emotion perception task using facial expression stimuli. Activation to fearful faces versus calm faces was compared between HR-BD and HC groups, including analyses of functional connectivity, and comparison of allele subgroups of the serotonin transporter (5-HTTLPR) gene. While viewing fearful versus calm faces, HR-BD youth had significantly greater activation than HC youth in the right amygdala, ventrolateral prefrontal cortex (VLPFC), superior frontal cortex, cerebellum, and lingual gyrus. HR-BD youth, relative to HC youth, had greater functional connectivity between the right amygdala and the VLPFC as well as visual cortical regions Within the HR-BD group, youth with the s-allele had a trend for greater activation in the right amygdala and subgenual cingulate cortex CONCLUSIONS: Similar to youth with BD, youth at high risk for BD have greater activation than healthy controls in the amygdala and ventrolateral prefrontal cortex in response to fearful faces, as well greater functional connectivity between these regions. HR-BD youth with the s-allele of the 5-HTTLPR gene may be at greatest risk for developing BD. Copyright © 2017. Published by Elsevier B.V.
Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; Matias, Beatriz I; Bruchchen, Livia; Florentino, Drielly; Vieira, Andriele; Petronilho, Fabricia; Ceretta, Luciane B; Zugno, Alexandra I; Quevedo, João
2016-03-01
Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes. Copyright © 2015 John Wiley & Sons, Ltd.
Márquez, C; Poirier, G L; Cordero, M I; Larsen, M H; Groner, A; Marquis, J; Magistretti, P J; Trono, D; Sandi, C
2013-01-15
Although adverse early life experiences have been found to increase lifetime risk to develop violent behaviors, the neurobiological mechanisms underlying these long-term effects remain unclear. We present a novel animal model for pathological aggression induced by peripubertal exposure to stress with face, construct and predictive validity. We show that male rats submitted to fear-induction experiences during the peripubertal period exhibit high and sustained rates of increased aggression at adulthood, even against unthreatening individuals, and increased testosterone/corticosterone ratio. They also exhibit hyperactivity in the amygdala under both basal conditions (evaluated by 2-deoxy-glucose autoradiography) and after a resident-intruder (RI) test (evaluated by c-Fos immunohistochemistry), and hypoactivation of the medial orbitofrontal (MO) cortex after the social challenge. Alterations in the connectivity between the orbitofrontal cortex and the amygdala were linked to the aggressive phenotype. Increased and sustained expression levels of the monoamine oxidase A (MAOA) gene were found in the prefrontal cortex but not in the amygdala of peripubertally stressed animals. They were accompanied by increased activatory acetylation of histone H3, but not H4, at the promoter of the MAOA gene. Treatment with an MAOA inhibitor during adulthood reversed the peripuberty stress-induced antisocial behaviors. Beyond the characterization and validation of the model, we present novel data highlighting changes in the serotonergic system in the prefrontal cortex-and pointing at epigenetic control of the MAOA gene-in the establishment of the link between peripubertal stress and later pathological aggression. Our data emphasize the impact of biological factors triggered by peripubertal adverse experiences on the emergence of violent behaviors.
Albein-Urios, Natalia; Verdejo-Román, Juan; Soriano-Mas, Carles; Asensio, Samuel; Martínez-González, José Miguel; Verdejo-García, Antonio
2013-12-01
Cocaine dependence often co-occurs with Cluster B personality disorders. Since both disorders are characterized by emotion regulation deficits, we predicted that cocaine comorbid patients would exhibit dysfunctional patterns of brain activation and connectivity during reappraisal of negative emotions. We recruited 18 cocaine users with comorbid Cluster B personality disorders, 17 cocaine users without comorbidities and 21 controls to be scanned using functional magnetic resonance imaging (fMRI) during performance on a reappraisal task in which they had to maintain or suppress the emotions induced by negative affective stimuli. We followed region of interest (ROI) and whole-brain approaches to investigate brain activations and connectivity associated with negative emotion experience and reappraisal. Results showed that cocaine users with comorbid personality disorders had reduced activation of the subgenual anterior cingulate cortex during negative emotion maintenance and increased activation of the lateral orbitofrontal cortex and the amygdala during reappraisal. Amygdala activation correlated with impulsivity and antisocial beliefs in the comorbid group. Connectivity analyses showed that in the cocaine comorbid group the subgenual cingulate was less efficiently connected with the amygdala and the fusiform gyri and more efficiently connected with the anterior insula during maintenance, whereas during reappraisal the left orbitofrontal cortex was more efficiently connected with the amygdala and the right orbitofrontal cortex was less efficiently connected with the dorsal striatum. We conclude that cocaine users with comorbid Cluster B personality disorders have distinctive patterns of brain activation and connectivity during maintenance and reappraisal of negative emotions, which correlate with impulsivity and dysfunctional beliefs. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.
Ronzoni, Giacomo; Del Arco, Alberto; Mora, Francisco; Segovia, Gregorio
2016-08-01
Increased activity of the noradrenergic system in the amygdala has been suggested to contribute to the hyperarousal symptoms associated with post-traumatic stress disorder (PTSD). However, only two studies have examined the content of noradrenaline or its metabolites in the amygdala of rats previously exposed to traumatic stress showing inconsistent results. The aim of this study was to investigate the effects of an inescapable foot shock (IFS) procedure (1) on reactivity to novelty in an open-field (as an index of hyperarousal), and (2) on noradrenaline release in the amygdala during an acute stress. To test the role of noradrenaline in amygdala, we also investigated the effects of microinjections of propranolol, a β-adrenoreceptor antagonist, and clenbuterol, a β-adrenoreceptor agonist, into the amygdala of IFS and control animals. Finally, we evaluated the expression of mRNA levels of β-adrenoreceptors (β1 and β2) in the amygdala, the hippocampus and the prefrontal cortex. Male Wistar rats (3 months) were stereotaxically implanted with bilateral guide cannulae. After recovering from surgery, animals were exposed to IFS (10 shocks, 0.86mA, and 6s per shock) and seven days later either microdialysis or microinjections were performed in amygdala. Animals exposed to IFS showed a reduced locomotion compared to non-shocked animals during the first 5min in the open-field. In the amygdala, IFS animals showed an enhanced increase of noradrenaline induced by stress compared to control animals. Bilateral microinjections of propranolol (0.5μg) into the amygdala one hour before testing in the open-field normalized the decreased locomotion observed in IFS animals. On the other hand, bilateral microinjections of clenbuterol (30ng) into the amygdala of control animals did not change the exploratory activity induced by novelty in the open field. IFS modified the mRNA expression of β1 and β2 adrenoreceptors in the prefrontal cortex and the hippocampus. These results suggest that an increased noradrenergic activity in the amygdala contributes to the expression of hyperarousal in an animal model of PTSD. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-06-24
barrier induced by status epilepticus within the rat piriform cortex in interferon-gamma inde- pendent pathway. Brain Res. 1447, 126–134. doi:10.1016...hippocampus following status epilepticus . Neuroscience 170, 711–721. doi:10.1016/j.neuroscience. 2010.07.048 Sananbenesi, F., and Fischer, A. (2009). The...methylation status of each CpG locus was analyzed individually as a T/C SNP using QCpG software (Qiagen Pyrosequencing). The loci of specific CpGs measured
Pubertal testosterone influences threat-related amygdala-orbitofrontal cortex coupling.
Spielberg, Jeffrey M; Forbes, Erika E; Ladouceur, Cecile D; Worthman, Carol M; Olino, Thomas M; Ryan, Neal D; Dahl, Ronald E
2015-03-01
Growing evidence indicates that normative pubertal maturation is associated with increased threat reactivity, and this developmental shift has been implicated in the increased rates of adolescent affective disorders. However, the neural mechanisms involved in this pubertal increase in threat reactivity remain unknown. Research in adults indicates that testosterone transiently decreases amygdala-orbitofrontal cortex (OFC) coupling. Consequently, we hypothesized that increased pubertal testosterone disrupts amygdala-OFC coupling, which may contribute to developmental increases in threat reactivity in some adolescents. Hypotheses were tested in a longitudinal study by examining the impact of testosterone on functional connectivity. Findings were consistent with hypotheses and advance our understanding of normative pubertal changes in neural systems instantiating affect/motivation. Finally, potential novel insights into the neurodevelopmental pathways that may contribute to adolescent vulnerability to behavioral and emotional problems are discussed. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Venniro, Marco; Caprioli, Daniele; Zhang, Michelle; Whitaker, Leslie R; Zhang, Shiliang; Warren, Brandon L; Cifani, Carlo; Marchant, Nathan J; Yizhar, Ofer; Bossert, Jennifer M; Chiamulera, Cristiano; Morales, Marisela; Shaham, Yavin
2017-10-11
Despite decades of research on neurobiological mechanisms of psychostimulant addiction, the only effective treatment for many addicts is contingency management, a behavioral treatment that uses alternative non-drug reward to maintain abstinence. However, when contingency management is discontinued, most addicts relapse to drug use. The brain mechanisms underlying relapse after cessation of contingency management are largely unknown, and, until recently, an animal model of this human condition did not exist. Here we used a novel rat model, in which the availability of a mutually exclusive palatable food maintains prolonged voluntary abstinence from intravenous methamphetamine self-administration, to demonstrate that the activation of monosynaptic glutamatergic projections from anterior insular cortex to central amygdala is critical to relapse after the cessation of contingency management. We identified the anterior insular cortex-to-central amygdala projection as a new addiction- and motivation-related projection and a potential target for relapse prevention. Published by Elsevier Inc.
Cyders, Melissa A.; Dzemidzic, Mario; Eiler, William J.; Coskunpinar, Ayca; Karyadi, Kenny A.; Kareken, David A.
2015-01-01
The tendency toward impulsive behavior under emotional duress (negative and positive urgency) predicts a wide range of maladaptive risk-taking and behavioral disorders. However, it remains unclear how urgency relates to limbic system activity as induced from emotional provocation. This study used functional magnetic resonance imaging to examine the relationship between brain responses to visual emotional stimuli and urgency traits. Twenty-seven social drinkers (mean age = 25.2, 14 males) viewed negative (Neg), neutral (Neu), and positive (Pos) images during 6 fMRI scans. Brain activation was extracted from a priori limbic regions previously identified in studies of emotional provocation. The right posterior orbitofrontal cortex (OFC) and left amygdala were activated in the [Neg>Neu] contrast, whereas the left posterior OFC was activated in the [Pos>Neu] contrast. Negative urgency was related to the right lateral OFC (r = 0.43, P = 0.03) and the left amygdala (r = 0.39, P = 0.04) [Neg>Neu] activation. Negative urgency also mediated the relationship between [Neg>Neu] activation and general risk-taking (regression weights = 3.42 for right OFC and 2.75 for the left amygdala). Emotional cue-induced activation in right lateral OFC and left amygdala might relate to emotion-based risk-taking through negative urgency. PMID:24904065
De Winter, François-Laurent; Van den Stock, Jan; de Gelder, Beatrice; Peeters, Ronald; Jastorff, Jan; Sunaert, Stefan; Vanduffel, Wim; Vandenberghe, Rik; Vandenbulcke, Mathieu
2016-09-01
In the healthy brain, modulatory influences from the amygdala commonly explain enhanced activation in face-responsive areas by emotional facial expressions relative to neutral expressions. In the behavioral variant frontotemporal dementia (bvFTD) facial emotion recognition is impaired and has been associated with atrophy of the amygdala. By combining structural and functional MRI in 19 patients with bvFTD and 20 controls we investigated the neural effects of emotion in face-responsive cortex and its relationship with amygdalar gray matter (GM) volume in neurodegeneration. Voxel-based morphometry revealed decreased GM volume in anterior medio-temporal regions including amygdala in patients compared to controls. During fMRI, we presented dynamic facial expressions (fear and chewing) and their spatiotemporally scrambled versions. We found enhanced activation for fearful compared to neutral faces in ventral temporal cortex and superior temporal sulcus in controls, but not in patients. In the bvFTD group left amygdalar GM volume correlated positively with emotion-related activity in left fusiform face area (FFA). This correlation was amygdala-specific and driven by GM in superficial and basolateral (BLA) subnuclei, consistent with reported amygdalar-cortical networks. The data suggests that anterior medio-temporal atrophy in bvFTD affects emotion processing in distant posterior areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guanfacine Modulates the Emotional Biasing of Amygdala-Prefrontal Connectivity for Cognitive Control
Schulz, Kurt P.; Clerkin, Suzanne M.; Newcorn, Jeffrey H.; Halperin, Jeffrey M.; Fan, Jin
2014-01-01
Functional interactions between amygdala and prefrontal cortex provide a cortical entry point for emotional cues to bias cognitive control. Stimulation of α2 adrenoceptors enhances the prefrontal control functions and blocks the amygdala-dependent encoding of emotional cues. However, the impact of this stimulation on amygdala-prefrontal interactions and the emotional biasing of cognitive control have not been established. We tested the effect of the α2 adrenoceptor agonist guanfacine on psychophysiological interactions of amygdala with prefrontal cortex for the emotional biasing of response execution and inhibition. Fifteen healthy adults were scanned twice with event-related functional magnetic resonance imaging while performing an emotional go/no-go task following administration of oral guanfacine (1 mg) and placebo in a double-blind, counterbalanced design. Happy, sad, and neutral faces served as trial cues. Guanfacine moderated the effect of face emotion on the task-related functional connectivity of left and right amygdala with left inferior frontal gyrus compared to placebo, by selectively reversing the functional co-activation of the two regions for response execution cued by sad faces. This shift from positively to negatively correlated activation for guanfacine was associated with selective improvements in the relatively low accuracy of responses to sad faces seen for placebo. These results demonstrate the importance of functional interactions between amygdala and inferior frontal gyrus to both bottom-up biasing of cognitive control and top-down control of emotional processing, as well as for the α2 adrenoceptor-mediated modulation of these processes. These mechanisms offer a possibile method to address the emotional reactivity that is common to several psychiatric disorders. PMID:25059532
Fear processing and social networking in the absence of a functional amygdala.
Becker, Benjamin; Mihov, Yoan; Scheele, Dirk; Kendrick, Keith M; Feinstein, Justin S; Matusch, Andreas; Aydin, Merve; Reich, Harald; Urbach, Horst; Oros-Peusquens, Ana-Maria; Shah, Nadim J; Kunz, Wolfram S; Schlaepfer, Thomas E; Zilles, Karl; Maier, Wolfgang; Hurlemann, René
2012-07-01
The human amygdala plays a crucial role in processing social signals, such as face expressions, particularly fearful ones, and facilitates responses to them in face-sensitive cortical regions. This contributes to social competence and individual amygdala size correlates with that of social networks. While rare patients with focal bilateral amygdala lesion typically show impaired recognition of fearful faces, this deficit is variable, and an intriguing possibility is that other brain regions can compensate to support fear and social signal processing. To investigate the brain's functional compensation of selective bilateral amygdala damage, we performed a series of behavioral, psychophysiological, and functional magnetic resonance imaging experiments in two adult female monozygotic twins (patient 1 and patient 2) with equivalent, extensive bilateral amygdala pathology as a sequela of lipoid proteinosis due to Urbach-Wiethe disease. Patient 1, but not patient 2, showed preserved recognition of fearful faces, intact modulation of acoustic startle responses by fear-eliciting scenes, and a normal-sized social network. Functional magnetic resonance imaging revealed that patient 1 showed potentiated responses to fearful faces in her left premotor cortex face area and bilaterally in the inferior parietal lobule. The premotor cortex face area and inferior parietal lobule are both implicated in the cortical mirror-neuron system, which mediates learning of observed actions and may thereby promote both imitation and empathy. Taken together, our findings suggest that despite the pre-eminent role of the amygdala in processing social information, the cortical mirror-neuron system may sometimes adaptively compensate for its pathology. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Lipka, Judith; Hoffmann, Marius; Miltner, Wolfgang H R; Straube, Thomas
2014-12-01
Neurocircuitry models of anxiety disorders suggest dysregulated mechanisms encompassing both automatic and elaborate threat processing. However, the extent to which these processes might be differentially modified by psychotherapy and the neural basis of such changes are unknown. We examined the effects of cognitive-behavioral therapy (CBT) in patients with anxiety disorder on brain responses to subliminal and supraliminal threat. 3-Tesla functional magnetic resonance imaging was used to assess neural responses to disorder-related stimuli, presented during two backward-masking conditions employed to manipulate stimulus awareness. In 28 spider-phobic patients randomly assigned to a therapy group or a waiting-list control group scanning was performed before and after completing CBT or a waiting period. Scanning was performed one time in 16 healthy control subjects. Self-report and behavioral measures were used to relate CBT-mediated brain activation changes with symptom improvement. Untreated patients demonstrated abnormal hyperactivation in the amygdala, fusiform gyrus, insula, anterior cingulate cortex, and dorsomedial prefrontal cortex. Successful CBT was reflected in an overall downregulation in these fear circuitry structures, especially in the right amygdala and anterior cingulate cortex, with reductions in amygdala responsiveness associated with self-reported symptom improvement. However, subliminal threat induced a pattern of right-lateralized hyperactivation in the amygdala and fusiform gyrus that was subject to intersession habituation across groups without showing significant sensitivity to CBT. These results challenge prevailing models that emphasize a role for amygdala automaticity in the maintenance of anxiety. Our results suggest CBT-related changes in neural activation associated with fear responses to consciously perceived threat. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle
Van Daele, Douglas J.; Cassell, Martin D.
2009-01-01
The present study investigated the central connections of motor neurons innervating the thyroarytenoid laryngeal muscle that is active in swallowing, respiration and vocalization. In both intact and sympathectomized rats, the pseudorabies virus (PRV) was inoculated into the muscle. After initial infection of laryngomotor neurons in the ipsilateral loose division of the nucleus ambiguous (NA) by 3 days post-inoculation., PRV spread to the ipsilateral compact portion of the NA, the central and intermediate divisions of the nucleus tractus solitarii (NTS), the Botzinger complex, and the parvocellular reticular formation by 4 days. Infection was subsequently expanded to include the ipsilateral granular and dysgranular parietal insular cortex, the ipsilateral medial division of the central nucleus of the amygdala, the lateral, paraventricular, ventrolateral and medial preoptic nuclei of the hypothalamus (generally bilaterally), the lateral periaqueductal gray, the A7 and oral and caudal pontine nuclei. At the latest time points sampled post-inoculation (5 days), infected neurons were identified in the ipsilateral agranular insular cortex, the caudal parietal insular cortex, the anterior cingulate cortex, and the contralateral motor cortex. In the amygdala, infection had spread to the lateral central nucleus and the parvocellular portion of the basolateral nucleus. Hypothalamic infection was largely characterized by an increase in the number of infected cells in earlier infected regions though the posterior, dorsomedial, tuberomammillary and mammillary nuclei contained infected cells. Comparison with previous connectional data suggest PRV followed three interconnected systems originating in the forebrain; a bilateral system including the ventral anterior cingulate cortex, periaqueductal gray and ventral respiratory group; an ipsilateral system involving the parietal insular cortex, central nucleus of the amygdala and parvicellular reticular formation, and a minor contralateral system originating in motor cortex. Hypothalamic innervation involved several functionally specific nuclei. Overall, the data imply complex central nervous system control over the multi-functional thyroarytenoid muscle.[297 words] PMID:19426785
Neuroanatomical correlates of personality in the elderly.
Wright, Christopher I; Feczko, Eric; Dickerson, Bradford; Williams, Danielle
2007-03-01
Extraversion and neuroticism are two important and frequently studied dimensions of human personality. They describe individual differences in emotional responding that are quite stable across the adult lifespan. Neuroimaging research has begun to provide evidence that neuroticism and extraversion have specific neuroanatomical correlates within the cerebral cortex and amygdala of young adults. However, these brain areas undergo alterations in size with aging, which may influence the nature of these personality factor-brain structure associations in the elderly. One study in the elderly demonstrated associations between perisylvian cortex structure and measures of self transcendence [Kaasinen, V., Maguire, R.P., Kurki, T., Bruck, A., Rinne, J.O., 2005. Mapping brain structure and personality in late adulthood. NeuroImage 24, 315-322], but the neuroanatomical correlates of extraversion and neuroticism, or other measures of the Five Factor Model of personality have not been explored. The purpose of the present study was to investigate the structural correlates of neuroticism and extraversion in healthy elderly subjects (n=29) using neuroanatomic measures of the cerebral cortex and amygdala. We observed that the thickness of specific lateral prefrontal cortex (PFC) regions, but not amygdala volume, correlates with measures of extraversion and neuroticism. The results suggest differences in the regional neuroanatomic correlates of specific personality traits with aging. We speculate that this relates to the influences of age-related structural changes in the PFC.
Uematsu, Akira; Kitamura, Akihiko; Iwatsuki, Ken; Uneyama, Hisayuki; Tsurugizawa, Tomokazu
2015-09-01
Conditioned taste aversion (CTA) is a well-established learning paradigm, whereby animals associate tastes with subsequent visceral illness. The prelimbic cortex (PL) has been shown to be involved in the association of events separated by time. However, the nature of PL activity and its functional network in the whole brain during CTA learning remain unknown. Here, using awake functional magnetic resonance imaging and fiber tracking, we analyzed functional brain connectivity during the association of tastes and visceral illness. The blood oxygen level-dependent (BOLD) signal significantly increased in the PL after tastant and lithium chloride (LiCl) infusions. The BOLD signal in the PL significantly correlated with those in the amygdala and agranular insular cortex (IC), which we found were also structurally connected to the PL by fiber tracking. To precisely examine these data, we then performed double immunofluorescence with a neuronal activity marker (c-Fos) and an inhibitory neuron marker (GAD67) combined with a fluorescent retrograde tracer in the PL. During CTA learning, we found an increase in the activity of excitatory neurons in the basolateral amygdala (BLA) or agranular IC that project to the PL. Taken together, these findings clearly identify a role of synchronized PL, agranular IC, and BLA activity in CTA learning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
CREB regulates memory allocation in the insular cortex
Sano, Yoshitake; Shobe, Justin L.; Zhou, Miou; Huang, Shan; Shuman, Tristan; Cai, Denise J.; Golshani, Peyman; Kamata, Masakazu; Silva, Alcino J.
2016-01-01
Summary The molecular and cellular mechanisms of memory storage have attracted a great deal of attention. By comparison, little is known about memory allocation, the process that determines which specific neurons in a neural network will store a given memory [1, 2]. Previous studies demonstrated that memory allocation is not random in the amygdala; these studies showed that amygdala neurons with higher levels of the cAMP response element binding protein (CREB) are more likely to be recruited into encoding and storing fear memory [3–6]. To determine whether specific mechanisms also regulate memory allocation in other brain regions, and whether CREB also has a role in this process, we studied insular cortical memory representations for conditioned taste aversion (CTA). In this task, an animal learns to associate a taste (CS) with the experience of malaise (such as that induced by LiCl; US). The insular cortex is required for CTA memory formation and retrieval [7–12]. CTA learning activates a subpopulation of neurons in this structure [13–15], and the insular cortex and the basolateral amygdala (BLA) interact during CTA formation [16, 17]. Here, we used a combination of approaches, including viral vector transfections of insular cortex, arc Fluorescence In Situ Hybridization (FISH) and Designer Receptors Exclusively Activated by Designer Drugs (DREADD) system, to show that CREB levels determine which insular cortical neurons go on to encode a given conditioned taste memory. PMID:25454591
Shared Neural Substrates of Emotionally Enhanced Perceptual and Mnemonic Vividness
Todd, Rebecca M.; Schmitz, Taylor W.; Susskind, Josh; Anderson, Adam K.
2013-01-01
It is well-known that emotionally salient events are remembered more vividly than mundane ones. Our recent research has demonstrated that such memory vividness (Mviv) is due in part to the subjective experience of emotional events as more perceptually vivid, an effect we call emotionally enhanced vividness (EEV). The present study built on previously reported research in which fMRI data were collected while participants rated relative levels of visual noise overlaid on emotionally salient and neutral images. Ratings of greater EEV were associated with greater activation in the amygdala and visual cortex. In the present study, we measured BOLD activation that predicted recognition Mviv for these same images 1 week later. Results showed that, after controlling for differences between scenes in low-level objective features, hippocampus activation uniquely predicted subsequent Mviv. In contrast, amygdala and visual cortex regions that were sensitive to EEV were also modulated by subsequent ratings of Mviv. These findings suggest shared neural substrates for the influence of emotional salience on perceptual and mnemonic vividness, with amygdala and visual cortex activation at encoding contributing to the experience of both perception and subsequent memory. PMID:23653601
Directional connectivity of resting state human fMRI data using cascaded ICA-PDC analysis.
Silfverhuth, Minna J; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Veijola, Juha; Tervonen, Osmo; Kiviniemi, Vesa
2011-11-01
Directional connectivity measures, such as partial directed coherence (PDC), give us means to explore effective connectivity in the human brain. By utilizing independent component analysis (ICA), the original data-set reduction was performed for further PDC analysis. To test this cascaded ICA-PDC approach in causality studies of human functional magnetic resonance imaging (fMRI) data. Resting state group data was imaged from 55 subjects using a 1.5 T scanner (TR 1800 ms, 250 volumes). Temporal concatenation group ICA in a probabilistic ICA and further repeatability runs (n = 200) were overtaken. The reduced data-set included the time series presentation of the following nine ICA components: secondary somatosensory cortex, inferior temporal gyrus, intracalcarine cortex, primary auditory cortex, amygdala, putamen and the frontal medial cortex, posterior cingulate cortex and precuneus, comprising the default mode network components. Re-normalized PDC (rPDC) values were computed to determine directional connectivity at the group level at each frequency. The integrative role was suggested for precuneus while the role of major divergence region may be proposed to primary auditory cortex and amygdala. This study demonstrates the potential of the cascaded ICA-PDC approach in directional connectivity studies of human fMRI.
Maluach, Alfred M; Misquitta, Keith A; Prevot, Thomas D; Fee, Corey; Sibille, Etienne; Banasr, Mounira; Andreazza, Ana C
2017-01-01
Chronic stress is implicated in the development of various psychiatric illnesses including major depressive disorder. Previous reports suggest that patients with major depressive disorder have increased levels of oxidative stress, including higher levels of DNA/RNA oxidation found in postmortem studies, especially within brain regions responsible for the cognitive and emotional processes disrupted in the disorder. Here, we aimed to investigate whether unpredictable chronic mild stress in mice induces neuronal DNA/RNA oxidation in the prelimbic, infralimbic, and cingulate cortices of the frontal cortex and the basolateral amygdala and to explore potential associations with depressive-like behaviors. We expected that animals subjected to unpredictable chronic mild stress will present higher levels of DNA/RNA oxidation, which will be associated with anxiety-/depressive-like behaviors. C57BL/6J mice were assigned to unpredictable chronic mild stress or nonstress conditions (n = 10/group, 50% females). Following five weeks of unpredictable chronic mild stress exposure, mice were tested in a series of behavioral tests measuring anxiety- and depressive-like behaviors. Frontal cortex and amygdala sections were then immunolabeled for neuronal nuclei, a marker of post-mitotic neurons and anti-8-hydroxy-2-deoxyguanosine/8-oxo-7,8-dihydroguanosine, which reflects both DNA and RNA oxidation. Levels of neuronal DNA/RNA oxidation were increased in the frontal cortex of mice subjected to unpredictable chronic mild stress ( p = 0.0207). Levels of neuronal DNA/RNA oxidation in the frontal cortex were positively correlated with z-emotionality scores for latency to feed in the novelty-suppressed feeding test ( p = 0.0031). Statistically significant differences were not detected in basolateral amygdala levels of neuronal DNA/RNA oxidation between nonstress- and unpredictable chronic mild stress-exposed mice, nor were correlations found with behavioral performances for this region. Our results demonstrate that unpredictable chronic mild stress induces a significant increase in neuronal DNA/RNA oxidation in the frontal cortex that correlate with behavioral readouts of the stress response. A lack of DNA/RNA oxidation alterations in the basolateral amygdala suggests greater vulnerability of frontal cortex neurons to DNA/RNA oxidation in response to unpredictable chronic mild stress. These findings add support to the hypothesis that chronic stress-induced damage to DNA/RNA may be an additional molecular mechanism underlying cellular dysfunctions associated with chronic stress and present in stress-related disorders.
ERIC Educational Resources Information Center
Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.
2013-01-01
Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus…
Optogenetic Activation of Presynaptic Inputs in Lateral Amygdala Forms Associative Fear Memory
ERIC Educational Resources Information Center
Kwon, Jeong-Tae; Nakajima, Ryuichi; Hyung-Su, Kim; Jeong, Yire; Augustine, George J.; Han, Jin-Hee
2014-01-01
In Pavlovian fear conditioning, the lateral amygdala (LA) has been highlighted as a key brain site for association between sensory cues and aversive stimuli. However, learning-related changes are also found in upstream sensory regions such as thalamus and cortex. To isolate the essential neural circuit components for fear memory association, we…
Disconnection Between Amygdala and Medial Prefrontal Cortex in Psychotic Disorders
Mukherjee, Prerona; Sabharwal, Amri; Kotov, Roman; Szekely, Akos; Parsey, Ramin; Barch, Deanna M.; Mohanty, Aprajita
2016-01-01
Distracting emotional information impairs attention more in schizophrenia (SCZ) than in never-psychotic individuals. However, it is unclear whether this impairment and its neural circuitry is indicative generally of psychosis, or specifically of SCZ, and whether it is even more specific to certain SCZ symptoms (eg, deficit syndrome). It is also unclear if this abnormality contributes to impaired behavioral performance and real-world functioning. Functional imaging data were recorded while individuals with SCZ, bipolar disorder with psychosis (BDP) and no history of psychotic disorders (CON) attended to identity of faces while ignoring their emotional expressions. We examined group differences in functional connectivity between amygdala, involved in emotional evaluation, and sub-regions of medial prefrontal cortex (MPFC), involved in emotion regulation and cognitive control. Additionally, we examined correlation of this connectivity with deficit syndrome and real-world functioning. Behaviorally, SCZ showed the worst accuracy when matching the identity of emotional vs neutral faces. Neurally, SCZ showed lower amygdala-MPFC connectivity than BDP and CON. BPD did not differ from CON, neurally or behaviorally. In patients, reduced amygdala-MPFC connectivity during emotional distractors was related to worse emotional vs neutral accuracy, greater deficit syndrome severity, and unemployment. Thus, reduced amygdala-MPFC functional connectivity during emotional distractors reflects a deficit that is specific to SCZ. This reduction in connectivity is associated with worse clinical and real-world functioning. Overall, these findings provide support for the specificity and clinical utility of amygdala-MPFC functional connectivity as a potential neural marker of SCZ. PMID:26908926
Dissociable prefrontal brain systems for attention and emotion
NASA Astrophysics Data System (ADS)
Yamasaki, Hiroshi; Labar, Kevin S.; McCarthy, Gregory
2002-08-01
The prefrontal cortex has been implicated in a variety of attentional, executive, and mnemonic mental operations, yet its functional organization is still highly debated. The present study used functional MRI to determine whether attentional and emotional functions are segregated into dissociable prefrontal networks in the human brain. Subjects discriminated infrequent and irregularly presented attentional targets (circles) from frequent standards (squares) while novel distracting scenes, parametrically varied for emotional arousal, were intermittently presented. Targets differentially activated middle frontal gyrus, posterior parietal cortex, and posterior cingulate gyrus. Novel distracters activated inferior frontal gyrus, amygdala, and fusiform gyrus, with significantly stronger activation evoked by the emotional scenes. The anterior cingulate gyrus was the only brain region with equivalent responses to attentional and emotional stimuli. These results show that attentional and emotional functions are segregated into parallel dorsal and ventral streams that extend into prefrontal cortex and are integrated in the anterior cingulate. These findings may have implications for understanding the neural dynamics underlying emotional distractibility on attentional tasks in affective disorders. novelty | prefrontal cortex | amygdala | cingulate gyrus
Neurocircuitry underlying risk and resilience to social anxiety disorder
Clauss, Jacqueline A.; Avery, Suzanne N.; VanDerKlok, Ross M.; Rogers, Baxter P.; Cowan, Ronald L.; Benningfield, Margaret M.; Blackford, Jennifer Urbano
2015-01-01
Background Almost half of children with an inhibited temperament will develop social anxiety disorder by late adolescence. Importantly, this means that half of children with an inhibited temperament will not develop social anxiety disorder. Studying adults with an inhibited temperament provides a unique opportunity to identify neural signatures of both risk and resilience to social anxiety disorder. Methods Functional MRI was used to measure brain activation during the anticipation of viewing fear faces in 34 young adults (17 inhibited, 17 uninhibited). To identify neural signatures of risk, we tested for group differences in functional activation and connectivity in regions implicated in social anxiety disorder, including the prefrontal cortex, amygdala, and insula. To identify neural signatures of resilience, we tested correlations between brain activation and both emotion regulation and social anxiety scores. Results Inhibited subjects had greater activation of a prefrontal network when anticipating viewing fear faces, relative to uninhibited subjects. No group differences were identified in the amygdala. Inhibited subjects had more negative connectivity between the rostral anterior cingulate cortex (ACC) and the bilateral amygdala. Within the inhibited group, those with fewer social anxiety symptoms and better emotion regulation skills had greater ACC activation and greater functional connectivity between the ACC and amygdala. Conclusions These finding suggest that engaging regulatory prefrontal regions during anticipation may be a protective factor, or putative neural marker of resilience, in high-risk individuals. Cognitive training targeting prefrontal cortex function may provide protection against anxiety, especially in high-risk individuals, such as those with inhibited temperament. PMID:24753211
Converging PET and fMRI evidence for a common area involved in human focal epilepsies
Laufs, H.; Richardson, M.P.; Salek-Haddadi, A.; Vollmar, C.; Duncan, J.S.; Gale, K.; Lemieux, L.; Löscher, W.
2011-01-01
Objectives: Experiments in animal models have identified specific subcortical anatomic circuits, which are critically involved in the pathogenesis and control of seizure activity. However, whether such anatomic substrates also exist in human epilepsy is not known. Methods: We studied 2 separate groups of patients with focal epilepsies arising from any cortical location using either simultaneous EEG-fMRI (n = 19 patients) or [11C]flumazenil PET (n = 18). Results: Time-locked with the interictal epileptiform discharges, we found significant hemodynamic increases common to all patients near the frontal piriform cortex ipsilateral to the presumed cortical focus. GABAA receptor binding in the same area was reduced in patients with more frequent seizures. Conclusions: Our findings of cerebral blood flow and GABAergic changes, irrespective of where interictal or ictal activity occurs in the cortex, suggest that this area of the human primary olfactory cortex may be an attractive new target for epilepsy therapy, including neurosurgery, electrical stimulation, and focal drug delivery. PMID:21849655
He, Ying-Ying; Xue, Yan-Xue; Wang, Ji-shi; Fang, Qin; Liu, Jian-Feng; Xue, Li-Fen; Lu, Lin
2011-01-01
The intense associative memories that develop between drug-paired contextual cues and rewarding stimuli or the drug withdrawal-associated aversive feeling have been suggested to contribute to the high rate of relapse. Various studies have elucidated the mechanisms underlying the formation and expression of drug-related cue memories, but how this mechanism is maintained is unknown. Protein kinase M ζ (PKMζ) was recently shown to be necessary and sufficient for long-term potentiation maintenance and memory storage. In the present study, we used conditioned place preference (CPP) and aversion (CPA) to examine whether PKMζ maintains both morphine-associated reward memory and morphine withdrawal-associated aversive memory in the basolateral amygdala (BLA). We also investigate the role of PKMζ in the infralimbic cortex in the extinction memory of morphine reward-related cues and morphine withdrawal-related aversive cues. We found that intra-BLA but not central nucleus of the amygdala injection of the selective PKMζ inhibitor ZIP 1 day after CPP and CPA training impaired the expression of CPP and CPA 1 day later, and the effect of ZIP on memory lasted at least 2 weeks. Inhibiting PKMζ activity in the infralimbic cortex, but not prelimbic cortex, disrupted the expression of the extinction memory of CPP and CPA. These results indicate that PKMζ in the BLA is required for the maintenance of associative morphine reward memory and morphine withdrawal-associated aversion memory, and PKMζ in the infralimbic cortex is required for the maintenance of extinction memory of morphine reward-related cues and morphine withdrawal-related aversive cues. PMID:21633338
Jones, Paulianda J.; Xiang, Zixiu; Conn, P. Jeffrey
2008-01-01
The piriform cortex (PC) is the primary terminal zone of projections from the olfactory bulb, termed the lateral olfactory tract (LOT). The PC plays a critical role in processing of olfactory stimuli and is also a highly seizure prone area thought to be involved in some forms of temporal lobe epilepsy. Pharmacological and immunohistochemical studies provide evidence for the localization of various metabotropic glutamate receptors (GluRs) in the PC. We employed whole cell patch clamp recordings from PC pyramidal cells to determine the roles of group III mGluRs in modulating synaptic transmission at the LOT–PC synapse. The group III mGluR agonist, L-AP4, induced a concentration-dependent inhibition of synaptic transmission at the LOT-PC synapse at concentrations that activate mGluR4 and mGluR8, but not mGluR7 or other mGluR subtypes (EC50 = 473 nM). In addition, the selective mGluR8 agonist, DCPG (300 nM), also suppressed synaptic transmission at the LOT synapse. Furthermore, the inhibitory actions of L-AP4 and Z-cyclopentyl-AP4, a selective mGluR4 agonist, were potentiated by the mGluR4 positive allosteric modulator, PHCCC (30 µM). The high potency of L-AP4, combined with the observed effects of DCPG and PHCCC, suggests that both mGluR4 and mGluR8 play a role in the L-AP4-induced inhibition of synaptic transmission at the LOT-PC synapse. PMID:18625254
Functional MRI of the Olfactory System in Conscious Dogs
Jia, Hao; Pustovyy, Oleg M.; Waggoner, Paul; Beyers, Ronald J.; Schumacher, John; Wildey, Chester; Barrett, Jay; Morrison, Edward; Salibi, Nouha; Denney, Thomas S.; Vodyanoy, Vitaly J.; Deshpande, Gopikrishna
2014-01-01
We depend upon the olfactory abilities of dogs for critical tasks such as detecting bombs, landmines, other hazardous chemicals and illicit substances. Hence, a mechanistic understanding of the olfactory system in dogs is of great scientific interest. Previous studies explored this aspect at the cellular and behavior levels; however, the cognitive-level neural substrates linking them have never been explored. This is critical given the fact that behavior is driven by filtered sensory representations in higher order cognitive areas rather than the raw odor maps of the olfactory bulb. Since sedated dogs cannot sniff, we investigated this using functional magnetic resonance imaging of conscious dogs. We addressed the technical challenges of head motion using a two pronged strategy of behavioral training to keep dogs' head as still as possible and a single camera optical head motion tracking system to account for residual jerky movements. We built a custom computer-controlled odorant delivery system which was synchronized with image acquisition, allowing the investigation of brain regions activated by odors. The olfactory bulb and piriform lobes were commonly activated in both awake and anesthetized dogs, while the frontal cortex was activated mainly in conscious dogs. Comparison of responses to low and high odor intensity showed differences in either the strength or spatial extent of activation in the olfactory bulb, piriform lobes, cerebellum, and frontal cortex. Our results demonstrate the viability of the proposed method for functional imaging of the olfactory system in conscious dogs. This could potentially open up a new field of research in detector dog technology. PMID:24466054
Chemical factors determine olfactory system beta oscillations in waking rats.
Lowry, Catherine A; Kay, Leslie M
2007-07-01
Recent studies have pointed to olfactory system beta oscillations of the local field potential (15-30 Hz) and their roles both in learning and as specific responses to predator odors. To describe odorant physical properties, resultant behavioral responses and changes in the central olfactory system that may induce these oscillations without associative learning, we tested rats with 26 monomolecular odorants spanning 6 log units of theoretical vapor pressure (estimate of relative vapor phase concentration) and 10 different odor mixtures. We found odorant vapor phase concentration to be inversely correlated with investigation time on the first presentation, after which investigation times were brief and not different across odorants. Analysis of local field potentials from the olfactory bulb and anterior piriform cortex shows that beta oscillations in waking rats occur specifically in response to the class of volatile organic compounds with vapor pressures of 1-120 mmHg. Beta oscillations develop over the first three to four presentations and are weakly present for some odorants in anesthetized rats. Gamma oscillations show a smaller effect that is not restricted to the same range of odorants. Olfactory bulb theta oscillations were also examined as a measure of effective afferent input strength, and the power of these oscillations did not vary systematically with vapor pressure, suggesting that it is not olfactory bulb drive strength that determines the presence of beta oscillations. Theta band coherence analysis shows that coupling strength between the olfactory bulb and piriform cortex increases linearly with vapor phase concentration, which may facilitate beta oscillations above a threshold.
Visualizing the engram: learning stabilizes odor representations in the olfactory network.
Shakhawat, Amin M D; Gheidi, Ali; Hou, Qinlong; Dhillon, Sandeep K; Marrone, Diano F; Harley, Carolyn W; Yuan, Qi
2014-11-12
The nature of memory is a central issue in neuroscience. How does our representation of the world change with learning and experience? Here we use the transcription of Arc mRNA, which permits probing the neural representations of temporally separated events, to address this in a well characterized odor learning model. Rat pups readily associate odor with maternal care. In pups, the lateralized olfactory networks are independent, permitting separate training and within-subject control. We use multiday training to create an enduring memory of peppermint odor. Training stabilized rewarded, but not nonrewarded, odor representations in both mitral cells and associated granule cells of the olfactory bulb and in the pyramidal cells of the anterior piriform cortex. An enlarged core of stable, likely highly active neurons represent rewarded odor at both stages of the olfactory network. Odor representations in anterior piriform cortex were sparser than typical in adult rat and did not enlarge with learning. This sparser representation of odor is congruent with the maturation of lateral olfactory tract input in rat pups. Cortical representations elsewhere have been shown to be highly variable in electrophysiological experiments, suggesting brains operate normally using dynamic and network-modulated representations. The olfactory cortical representations here are consistent with the generalized associative model of sparse variable cortical representation, as normal responses to repeated odors were highly variable (∼70% of the cells change as indexed by Arc). Learning and memory modified rewarded odor ensembles to increase stability in a core representational component. Copyright © 2014 the authors 0270-6474/14/3415394-08$15.00/0.
Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard. J.; Myers, Catherine E.
2012-01-01
Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning. PMID:23164732
Schulz, Kurt P; Clerkin, Suzanne M; Newcorn, Jeffrey H; Halperin, Jeffrey M; Fan, Jin
2014-09-01
Functional interactions between amygdala and prefrontal cortex provide a cortical entry point for emotional cues to bias cognitive control. Stimulation of α2 adrenoceptors enhances the prefrontal control functions and blocks the amygdala-dependent encoding of emotional cues. However, the impact of this stimulation on amygdala-prefrontal interactions and the emotional biasing of cognitive control have not been established. We tested the effect of the α2 adrenoceptor agonist guanfacine on psychophysiological interactions of amygdala with prefrontal cortex for the emotional biasing of response execution and inhibition. Fifteen healthy adults were scanned twice with event-related functional magnetic resonance imaging while performing an emotional go/no-go task following administration of oral guanfacine (1mg) and placebo in a double-blind, counterbalanced design. Happy, sad, and neutral faces served as trial cues. Guanfacine moderated the effect of face emotion on the task-related functional connectivity of left and right amygdala with left inferior frontal gyrus compared to placebo, by selectively reversing the functional co-activation of the two regions for response execution cued by sad faces. This shift from positively to negatively correlated activation for guanfacine was associated with selective improvements in the relatively low accuracy of responses to sad faces seen for placebo. These results demonstrate the importance of functional interactions between amygdala and inferior frontal gyrus to both bottom-up biasing of cognitive control and top-down control of emotional processing, as well as for the α2 adrenoceptor-mediated modulation of these processes. These mechanisms offer a possibile method to address the emotional reactivity that is common to several psychiatric disorders. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
ERIC Educational Resources Information Center
Park, Junchol; Choi, June-Seek
2010-01-01
Plasticity in two input pathways into the lateral nucleus of the amygdala (LA), the medial prefrontal cortex (mPFC) and the sensory thalamus, have been suggested to underlie extinction, suppression of a previously acquired conditioned response (CR) following repeated presentations of the conditioned stimulus (CS). However, little is known about…
Feng, Pan; Zheng, Yong
2016-01-01
Investigations of fear conditioning have elucidated the neural mechanisms of fear acquisition, consolidation and extinction, but it is not clear how the neural activation following fear reminder influence the following extinction. To address this question, we measured human brain activity following fear reminder using resting-state functional magnetic resonance imaging, and investigated whether the extinction effect can be predicted by resting-state functional connectivity (RSFC). Behaviorally, we found no significant differences of fear ratings between the reminder group and the no reminder group at the fear acquisition and extinction stages, but spontaneous recovery during re-extinction stage appeared only in the no reminder group. Imaging data showed that functional connectivity between ventromedial prefrontal cortex (vmPFC) and amygdala in the reminder group was greater than that in the no reminder group after fear memory reactivation. More importantly, the functional connectivity between amygdala and vmPFC of the reminder group after fear memory reactivation was positively correlated with extinction effect. These results suggest RSFC between amygdala and the vmPFC following fear reminder can predict fear extinction, which provide important insight into the neural mechanisms of fear memory after fear memory reactivation. PMID:27013104
Brinkmann, L; Buff, C; Feldker, K; Tupak, S V; Becker, M P I; Herrmann, M J; Straube, T
2017-11-01
Panic disorder (PD) patients are constantly concerned about future panic attacks and exhibit general hypersensitivity to unpredictable threat. We aimed to reveal phasic and sustained brain responses and functional connectivity of the amygdala and the bed nucleus of the stria terminalis (BNST) during threat anticipation in PD. Using functional magnetic resonance imaging (fMRI), we investigated 17 PD patients and 19 healthy controls (HC) during anticipation of temporally unpredictable aversive and neutral sounds. We used a phasic and sustained analysis model to disentangle temporally dissociable brain activations. PD patients compared with HC showed phasic amygdala and sustained BNST responses during anticipation of aversive v. neutral stimuli. Furthermore, increased phasic activation was observed in anterior cingulate cortex (ACC), insula and prefrontal cortex (PFC). Insula and PFC also showed sustained activation. Functional connectivity analyses revealed partly distinct phasic and sustained networks. We demonstrate a role for the BNST during unpredictable threat anticipation in PD and provide first evidence for dissociation between phasic amygdala and sustained BNST activation and their functional connectivity. In line with a hypersensitivity to uncertainty in PD, our results suggest time-dependent involvement of brain regions related to fear and anxiety.
Switching brain serotonin with oxytocin.
Mottolese, Raphaelle; Redouté, Jérôme; Costes, Nicolas; Le Bars, Didier; Sirigu, Angela
2014-06-10
Serotonin (5-HT) and oxytocin (OXT) are two neuromodulators involved in human affect and sociality and in disorders like depression and autism. We asked whether these chemical messengers interact in the regulation of emotion-based behavior by administering OXT or placebo to 24 healthy subjects and mapping cerebral 5-HT system by using 2'-methoxyphenyl-(N-2'-pyridinyl)-p-[(18)F]fluoro-benzamidoethylpiperazine ([(18)F]MPPF), an antagonist of 5-HT1A receptors. OXT increased [(18)F]MPPF nondisplaceable binding potential (BPND) in the dorsal raphe nucleus (DRN), the core area of 5-HT synthesis, and in the amygdala/hippocampal complex, insula, and orbitofrontal cortex. Importantly, the amygdala appears central in the regulation of 5-HT by OXT: [(18)F]MPPF BPND changes in the DRN correlated with changes in right amygdala, which were in turn correlated with changes in hippocampus, insula, subgenual, and orbitofrontal cortex, a circuit implicated in the control of stress, mood, and social behaviors. OXT administration is known to inhibit amygdala activity and results in a decrease of anxiety, whereas high amygdala activity and 5-HT dysregulation have been associated with increased anxiety. The present study reveals a previously unidentified form of interaction between these two systems in the human brain, i.e., the role of OXT in the inhibitory regulation of 5-HT signaling, which could lead to novel therapeutic strategies for mental disorders.
Cassidy, Brittany S.; Gutchess, Angela H.
2012-01-01
Research has shown that lesions to regions involved in social and emotional cognition disrupt socioemotional processing and memory. We investigated how structural variation of regions involved in socioemotional memory [ventromedial prefrontal cortex (vmPFC), amygdala], as opposed to a region implicated in explicit memory (hippocampus), affected memory for impressions in young and older adults. Anatomical MRI scans for 15 young and 15 older adults were obtained and reconstructed to gather information about cortical thickness and subcortical volume. Young adults had greater amygdala and hippocampus volumes than old, and thicker left vmPFC than old, although right vmPFC thickness did not differ across the age groups. Participants formed behavior-based impressions and responded to interpersonally meaningful, social but interpersonally irrelevant, or non-social prompts, and completed a memory test. Results showed that greater left amygdala volume predicted enhanced overall memory for impressions in older but not younger adults. Increased right vmPFC thickness in older, but not younger, adults correlated with enhanced memory for impressions formed in the interpersonally meaningful context. Hippocampal volume was not predictive of social memory in young or older adults. These findings demonstrate the importance of structural variation in regions linked to socioemotional processing in the retention of impressions with age, and suggest that the amygdala and vmPFC play integral roles when encoding and retrieving social information. PMID:22973250
Hitlin, Steven; Magnotta, Vincent; Tranel, Daniel
2017-01-01
Abstract A growing body of literature demonstrates that racial group membership can influence neural responses, e.g. when individuals perceive or interact with persons of another race. However, little attention has been paid to social class, a factor that interacts with racial inequalities in American society. We extend previous literature on race-related neural activity by focusing on how the human brain responds to racial out-groups cast in positively valued social class positions vs less valued ones. We predicted that the ventromedial prefrontal cortex (vmPFC) and the amygdala would have functionally dissociable roles, with the vmPFC playing a more significant role within socially valued in-groups (i.e. the middle-class) and the amygdala having a more crucial role for socially ambivalent and threatening categories (i.e. upper and lower class). We tested these predictions with two complementary studies: (i) a neuropsychological experiment with patients with the vmPFC or amygdala lesions, contrasted with brain damaged and normal comparison participants, and (ii) a functional magnetic resonance imaging experiment with 15 healthy adults. Our findings suggest that two distinct mechanisms underlie class-based racial evaluations, one engaging the vmPFC for positively identified in-group class and another recruiting the amygdala for the class groups that are marginalized or perceived as potential threats. PMID:28398590
Firat, Rengin B; Hitlin, Steven; Magnotta, Vincent; Tranel, Daniel
2017-08-01
A growing body of literature demonstrates that racial group membership can influence neural responses, e.g. when individuals perceive or interact with persons of another race. However, little attention has been paid to social class, a factor that interacts with racial inequalities in American society. We extend previous literature on race-related neural activity by focusing on how the human brain responds to racial out-groups cast in positively valued social class positions vs less valued ones. We predicted that the ventromedial prefrontal cortex (vmPFC) and the amygdala would have functionally dissociable roles, with the vmPFC playing a more significant role within socially valued in-groups (i.e. the middle-class) and the amygdala having a more crucial role for socially ambivalent and threatening categories (i.e. upper and lower class). We tested these predictions with two complementary studies: (i) a neuropsychological experiment with patients with the vmPFC or amygdala lesions, contrasted with brain damaged and normal comparison participants, and (ii) a functional magnetic resonance imaging experiment with 15 healthy adults. Our findings suggest that two distinct mechanisms underlie class-based racial evaluations, one engaging the vmPFC for positively identified in-group class and another recruiting the amygdala for the class groups that are marginalized or perceived as potential threats. © The Author (2017). Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Hadi, Shamil; Siadat, Mohamad R.; Babajani-Feremi, Abbas
2012-03-01
Emotional tasks may result in a strong blood oxygen level-dependent (BOLD) signal in the amygdala in 5- HTTLRP short-allele. Reduced anterior cingulate cortex (ACC)-amygdala connectivity in short-allele provides a potential mechanistic account for the observed increase in amygdala activity. In our study, fearful and threatening facial expressions were presented to two groups of 12 subjects with long- and short-allele carriers. The BOLD signals of the left amygdala of each group were averaged to increase the signal-to-noise ratio. A Bayesian approach was used to estimate the model parameters to elucidate the underlying hemodynamic mechanism. Our results showed a positive BOLD signal in the left amygdala for short-allele individuals, and a negative BOLD signal in the same region for long-allele individuals. This is due to the fact that short-allele is associated with lower availability of serotonin transporter (5-HTT) and this leads to an increase of serotonin (5-HT) concentration in the cACC-amygdala synapse.
Functionally distinct amygdala subregions identified using DTI and high-resolution fMRI
Balderston, Nicholas L.; Schultz, Douglas H.; Hopkins, Lauren
2015-01-01
Although the amygdala is often directly linked with fear and emotion, amygdala neurons are activated by a wide variety of emotional and non-emotional stimuli. Different subregions within the amygdala may be engaged preferentially by different aspects of emotional and non-emotional tasks. To test this hypothesis, we measured and compared the effects of novelty and fear on amygdala activity. We used high-resolution blood oxygenation level-dependent (BOLD) imaging and streamline tractography to subdivide the amygdala into three distinct functional subunits. We identified a laterobasal subregion connected with the visual cortex that responds generally to visual stimuli, a non-projecting region that responds to salient visual stimuli, and a centromedial subregion connected with the diencephalon that responds only when a visual stimulus predicts an aversive outcome. We provide anatomical and functional support for a model of amygdala function where information enters through the laterobasal subregion, is processed by intrinsic circuits in the interspersed tissue, and is then passed to the centromedial subregion, where activation leads to behavioral output. PMID:25969533
The social evaluation of faces: a meta-analysis of functional neuroimaging studies
Mende-Siedlecki, Peter; Said, Christopher P.
2013-01-01
Neuroscience research on the social evaluation of faces has accumulated over the last decade, yielding divergent results. We used a meta-analytic technique, multi-level kernel density analysis (MKDA), to analyze 29 neuroimaging studies on face evaluation. Across negative face evaluations, we observed the most consistent activations in bilateral amygdala. Across positive face evaluations, we observed the most consistent activations in medial prefrontal cortex, pregenual anterior cingulate cortex (pgACC), medial orbitofrontal cortex (mOFC), left caudate and nucleus accumbens (NAcc). Based on additional analyses comparing linear and non-linear responses, we propose a ventral/dorsal dissociation within the amygdala, wherein separate populations of neurons code for face valence and intensity, respectively. Finally, we argue that some of the differences between studies are attributable to differences in the typicality of face stimuli. Specifically, extremely attractive faces are more likely to elicit responses in NAcc/caudate and mOFC. PMID:22287188
Hippocampus and Amygdala Morphology in Attention-Deficit/Hyperactivity Disorder
Plessen, Kerstin J.; Bansal, Ravi; Zhu, Hongtu; Whiteman, Ronald; Amat, Jose; Quackenbush, Georgette A.; Martin, Laura; Durkin, Kathleen; Blair, Clancy; Royal, Jason; Hugdahl, Kenneth; Peterson, Bradley S.
2008-01-01
Context Limbic structures are implicated in the genesis of attention-deficit/hyperactivity disorder (ADHD) by the presence of mood and cognitive disturbances in affected individuals and by elevated rates of mood disorders in family members of probands with ADHD. Objective To study the morphology of the hippocampus and amygdala in children with ADHD. Design A cross-sectional case-control study of the hippocampus and amygdala using anatomical magnetic resonance imaging. Settings University research institute. Patients One hundred fourteen individuals aged 6 to 18 years, 51 with combined-type ADHD and 63 healthy controls. Main Outcome Measures Volumes and measures of surface morphology for the hippocampus and amygdala. Results The hippocampus was larger bilaterally in the ADHD group than in the control group (t=3.35; P<.002). Detailed surface analyses of the hippocampus further localized these differences to an enlarged head of the hippocampus in the ADHD group. Although conventional measures did not detect significant differences in amygdalar volumes, surface analyses indicated the presence of reduced size bilaterally over the area of the basolateral complex. Correlations with prefrontal measures suggested abnormal connectivity between the amygdala and prefrontal cortex in the ADHD group. Enlarged subregions of the hippocampus tended to accompany fewer symptoms. Conclusions The enlarged hippocampus in children and adolescents with ADHD may represent a compensatory response to the presence of disturbances in the perception of time, temporal processing (eg, delay aversion), and stimulus seeking associated with ADHD. Disrupted connections between the amygdala and orbitofrontal cortex may contribute to behavioral disinhibition. Our findings suggest involvement of the limbic system in the pathophysiology of ADHD. PMID:16818869
Ren, Ping; Anthony, Mia; Chapman, Benjamin P.; Heffner, Kathi; Lin, Feng
2017-01-01
Locus of control (LOC) measures the extent to which individuals perceive control over their lives. Those with a more “internal” LOC feel self-sufficient and able to determine important aspects of their own future, while those with a more “external” LOC feel that their lives are governed by events beyond their control. Reduced internal LOC and increased external LOC have been found in cognitive disorders, but the neural substrates of these control perceptions are yet unknown. In the present study, we explored the relationship between amygdala functional connectivity and LOC in 18 amnestic mild cognitive impairment (MCI) and age-, sex-, and education-matched, 22 cognitively healthy controls (HC). Participants completed cognitive challenge tasks (Stroop Word Color task and Dual 1-back) for 20 minutes, and underwent resting-state functional magnetic resonance imaging immediately before and after the tasks. We found significantly lower internal LOC and higher external LOC in the MCI group than the HC group. Compared to HC, MCI group showed significantly stronger positive associations between internal LOC and baseline right amygdala connections (including right middle frontal gyrus and anterior cingulate cortex), and stronger negative associations between internal LOC and change of these right amygdala connections. Across all participants, external LOC explained the relationships between associations of another set of right amygdala connections (including middle cingulate cortex and right superior frontal gyrus), both at baseline and for change, and performance in the cognitive challenge tasks. Our findings indicate that the right amygdala networks might be critical in understanding the neural mechanisms underlying LOC’s role in cognitive aging. PMID:28315366
The Neurodevelopmental Basis of Math Anxiety
Young, Christina B.; Wu, Sarah S.; Menon, Vinod
2012-01-01
Math anxiety is a negative emotional reaction to situations involving mathematical problem solving. Math anxiety has a detrimental impact on an individual’s long-term professional success, but its neurodevelopmental origins are unknown. In a functional MRI study on 7- to 9-year-old children, we showed that math anxiety was associated with hyperactivity in right amygdala regions that are important for processing negative emotions. In addition, we found that math anxiety was associated with reduced activity in posterior parietal and dorsolateral prefrontal cortex regions involved in mathematical reasoning. Multivariate classification analysis revealed distinct multivoxel activity patterns, which were independent of overall activation levels in the right amygdala. Furthermore, effective connectivity between the amygdala and ventromedial prefrontal cortex regions that regulate negative emotions was elevated in children with math anxiety. These effects were specific to math anxiety and unrelated to general anxiety, intelligence, working memory, or reading ability. Our study identified the neural correlates of math anxiety for the first time, and our findings have significant implications for its early identification and treatment. PMID:22434239
Chen, Yu-Chen; Li, Xiaowei; Liu, Lijie; Wang, Jian; Lu, Chun-Qiang; Yang, Ming; Jiao, Yun; Zang, Feng-Chao; Radziwon, Kelly; Chen, Guang-Di; Sun, Wei; Krishnan Muthaiah, Vijaya Prakash; Salvi, Richard; Teng, Gao-Jun
2015-01-01
Hearing loss often triggers an inescapable buzz (tinnitus) and causes everyday sounds to become intolerably loud (hyperacusis), but exactly where and how this occurs in the brain is unknown. To identify the neural substrate for these debilitating disorders, we induced both tinnitus and hyperacusis with an ototoxic drug (salicylate) and used behavioral, electrophysiological, and functional magnetic resonance imaging (fMRI) techniques to identify the tinnitus–hyperacusis network. Salicylate depressed the neural output of the cochlea, but vigorously amplified sound-evoked neural responses in the amygdala, medial geniculate, and auditory cortex. Resting-state fMRI revealed hyperactivity in an auditory network composed of inferior colliculus, medial geniculate, and auditory cortex with side branches to cerebellum, amygdala, and reticular formation. Functional connectivity revealed enhanced coupling within the auditory network and segments of the auditory network and cerebellum, reticular formation, amygdala, and hippocampus. A testable model accounting for distress, arousal, and gating of tinnitus and hyperacusis is proposed. DOI: http://dx.doi.org/10.7554/eLife.06576.001 PMID:25962854
The neurodevelopmental basis of math anxiety.
Young, Christina B; Wu, Sarah S; Menon, Vinod
2012-05-01
Math anxiety is a negative emotional reaction to situations involving mathematical problem solving. Math anxiety has a detrimental impact on an individual's long-term professional success, but its neurodevelopmental origins are unknown. In a functional MRI study on 7- to 9-year-old children, we showed that math anxiety was associated with hyperactivity in right amygdala regions that are important for processing negative emotions. In addition, we found that math anxiety was associated with reduced activity in posterior parietal and dorsolateral prefrontal cortex regions involved in mathematical reasoning. Multivariate classification analysis revealed distinct multivoxel activity patterns, which were independent of overall activation levels in the right amygdala. Furthermore, effective connectivity between the amygdala and ventromedial prefrontal cortex regions that regulate negative emotions was elevated in children with math anxiety. These effects were specific to math anxiety and unrelated to general anxiety, intelligence, working memory, or reading ability. Our study identified the neural correlates of math anxiety for the first time, and our findings have significant implications for its early identification and treatment.
Uncovering Camouflage: Amygdala Activation Predicts Long-Term Memory of Induced Perceptual Insight
Ludmer, Rachel; Dudai, Yadin; Rubin, Nava
2012-01-01
What brain mechanisms underlie learning of new knowledge from single events? We studied encoding in long-term memory of a unique type of one-shot experience, induced perceptual insight. While undergoing an fMRI brain scan, participants viewed degraded images of real-world pictures where the underlying objects were hard to recognize (‘camouflage’), followed by brief exposures to the original images (‘solution’), which led to induced insight (“Aha!”). A week later, participants’ memory was tested; a solution image was classified as ‘remembered’ if detailed perceptual knowledge was elicited from the camouflage image alone. During encoding, subsequently remembered images enjoyed higher activity in mid-level visual cortex and medial frontal cortex, but most pronouncedly in the amygdala, whose activity could be used to predict which solutions will remain in long-term memory. Our findings extend the known roles of amygdala in memory to include promoting of long-term memory of the sudden reorganization of internal representations. PMID:21382558
Kanske, Philipp; Kotz, Sonja A
2011-02-01
Coherent behavior depends on attentional control that detects and resolves conflict between opposing actions. The current functional magnetic resonance imaging study tested the hypothesis that emotion triggers attentional control to speed up conflict processing in particularly salient situations. Therefore, we presented emotionally negative and neutral words in a version of the flanker task. In response to conflict, we found activation of the dorsal anterior cingulate cortex (ACC) and of the amygdala for emotional stimuli. When emotion and conflict coincided, a region in the ventral ACC was activated, which resulted in faster conflict processing in reaction times. Emotion also increased functional connectivity between the ventral ACC and activation of the dorsal ACC and the amygdala in conflict trials. These data suggest that the ventral ACC integrates emotion and conflict and prioritizes the processing of conflict in emotional trials. This adaptive mechanism ensures rapid detection and resolution of conflict in potentially threatening situations signaled by emotional stimuli. Copyright © 2010 Wiley-Liss, Inc.
Fornai, F; Bassi, L; Gesi, M; Giorgi, F S; Guerrini, R; Bonaccorsi, I; Alessandrì, M G
2000-01-01
Previous studies have shown that physiological stimulation of brain activity increases anaerobic glucose consumption, both in humans and in experimental animals. To investigate this phenomenon further, we measured extracellular lactate levels within different rat brain regions, using microdialysis. Experiments were performed comparing the effects of natural, physiological olfactory stimulation of the limbic system with experimental limbic seizures. Olfactory stimulation was carried out by using different odors (i.e. both conventional odors: 2-isobutyl-3-methoxypyrazine, green pepper essence; thymol; and 2-sec-butylthiazoline, a sexual pheromone). Limbic seizures were either induced by systemic injection of pilocarpine (200-400 mg/kg) or focally elicited by microinfusions of chemoconvulsants (bicuculline 118 pmol and cychlothiazide 1.2 nmol) within the anterior piriform cortex. Seizures induced by systemic pilocarpine tripled lactic acid within the hippocampus, whereas limbic seizures elicited by focal microinfusion of chemoconvulsants within the piriform cortex produced a less pronounced increase in extracellular lactic acid. Increases in extracellular lactate occurring during olfactory stimulation with the sexual pheromone (three times the baseline levels) were non-significantly different from those occurring after systemic pilocarpine. Increases in lactic acid following natural olfactory stimulation were abolished both by olfactory bulbectomy and by the focal microinfusion of tetrodotoxin, while they were significantly attenuated by the local application of the N-methyl-D-aspartate antagonist AP-5. Increases in hippocampal lactate induced by short-lasting stimuli (olfactory stimulation or microinfusion of subthreshold doses of chemoconvulsants, bicuculline 30 pmol) were reproducible after a short delay (1 h) and cumulated when applied sequentially. In contrast, limbic status epilepticus led to a long-lasting refractoriness to additional lactate-raising stimuli and there was no further increase in lactate levels when the olfactory stimulation was produced during status epilepticus. Increases in lactic acid following olfactory stimulation occurred with site specificity in the rhinencephalon (hippocampus, piriform and entorhinal cortex) but not in the dorsal striatum. Site specificity crucially relied on the quality of the stimulus. For instance, other natural stimuli (i.e. tail pinch) produced a similar increase in extracellular lactate in all brain areas under investigation. The major conclusion of this work is that the presentation of an odor known to be a rat pheromone results in lactate production as great as that induced by the systemic convulsant pylocarpine (maximum: 2.286+/-0.195 mM and 1.803+/-0.108 mM, respectively). This supports the notion that the great magnitude of lactate production known to accompany seizures can result from the intensified neural activity per se ("aerobic gycolysis"), not merely from local anoxia or other pathological changes.
Gabard-Durnam, Laurel J.; Flannery, Jessica; Goff, Bonnie; Gee, Dylan G.; Humphreys, Kathryn L.; Telzer, Eva; Hare, Todd; Tottenham, Nim
2014-01-01
Functional connections (FC) between the amygdala and cortical and subcortical regions underlie a range of affective and cognitive processes. Despite the central role amygdala networks have in these functions, the normative developmental emergence of FC between the amygdala and the rest of the brain is still largely undefined. This study employed amygdala subregion maps and resting-state functional magnetic resonance imaging to characterize the typical development of human amygdala FC from age 4 to 23 years old (n = 58). Amygdala FC with subcortical and limbic regions was largely stable across this developmental period. However, three cortical regions exhibited age-dependent changes in FC: amygdala FC with the medial prefrontal cortex (mPFC) increased with age, while amygdala FC with a region including the insula and superior temporal sulcus decreased with age, and amygdala FC with a region encompassing the parahippocampal gyrus and posterior cingulate also decreased with age. The transition from childhood to adolescence (around age 10 years) marked an important change-point in the nature of amygdala-cortical FC. We distinguished unique developmental patterns of coupling for three amygdala subregions and found particularly robust convergence of FC for all subregions with the mPFC. These findings suggest that there are extensive changes in amygdala-cortical functional connectivity that emerge between childhood and adolescence. PMID:24662579
Wallace, Gregory L; White, Stuart F; Robustelli, Briana; Sinclair, Stephen; Hwang, Soonjo; Martin, Alex; Blair, R James R
2014-04-01
Although there is growing evidence of brain abnormalities among individuals with conduct disorder (CD), the structural neuroimaging literature is mixed and frequently aggregates cortical volume rather than differentiating cortical thickness from surface area. The current study assesses CD-related differences in cortical thickness, surface area, and gyrification as well as volume differences in subcortical structures critical to neurodevelopmental models of CD (amygdala; striatum) in a carefully characterized sample. We also examined whether group structural differences were related to severity of callous-unemotional (CU) traits in the CD sample. Participants were 49 community adolescents aged 10 to 18 years, 22 with CD and 27 healthy comparison youth. Structural MRI was collected and the FreeSurfer image analysis suite was used to provide measures of cortical thickness, surface area, and local gyrification as well as subcortical (amygdala and striatum) volumes. Youths with CD showed reduced cortical thickness in the superior temporal cortex. There were also indications of reduced gyrification in the ventromedial frontal cortex, particularly for youths with CD without comorbid attention-deficit/hyperactivity disorder. There were no group differences in cortical surface area. However, youths with CD also showed reduced amygdala and striatum (putamen and pallidum) volumes. Right temporal cortical thickness was significantly inversely related to severity of CU traits. Youths with CD show reduced cortical thickness within superior temporal regions, some indication of reduced gyrification within ventromedial frontal cortex and reduced amygdala and striatum (putamen and pallidum) volumes. These results are discussed with reference to neurobiological models of CD. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Matsui, Yasuto; Sakai, Nobumitsu; Tsuda, Akira; Terada, Yasuko; Takaoka, Masaki; Fujimaki, Hidekazu; Uchiyama, Iwao
2009-08-01
Studies have shown that exposure to nano-sized particles (< 50 nm) result in their translocation to the central nervous system through the olfactory nerve. Translocation commonly occurs via inhalation, ingestion and skin uptake. Little information is available on the specific pathway of cellular localization of nano-sized particles in the olfactory bulb. The nano-sized particles entrance into the postsynaptics cell is of particular interest because the mitral cell projects to the central nucleus of the amygdala and the piriform cortex. Therefore, our objective in this follow-up study has been to determine whether or not the mitral cells project nano-sized particles to the brain. Nano-sized particles in this study were generated using diesel exhaust. Lab mice were exposed for a period of 4 weeks. We employed synchrotron radiation (SPring-8, Japan) to determine the concentration levels of metal in the olfactory neuron pathway. Metal levels were assayed by mapping, using X-ray fluorescence analysis. The major metal components measured in the filter that collected the inhaled diesel exhaust particles were calcium, copper, iron, nickel and zinc. Our studies reveal an increase in the amount of nano-sized particles in the glomerular layer as well as in the neurons in the olfactory epithelium. Higher levels of nickel and iron were found in the olfactory epithelium's lamina propria mucosae in comparison to that in the control group. Higher levels of iron also were observed in the glomerular layer. Our studies do not clarify the specifics of metal adhesion and detachment. This remains to be one of the key issues requiring further clarification.
Amegandjin, Clara A; Jammow, Wafaa; Laforest, Sylvie; Riad, Mustapha; Baharnoori, Moogeh; Badeaux, Frédérique; DesGroseillers, Luc; Murai, Keith K; Pasquale, Elena B; Drolet, Guy; Doucet, Guy
2016-08-15
EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
van Vliet, Erwin A; Otte, Willem M; Wadman, Wytse J; Aronica, Eleonora; Kooij, Gijs; de Vries, Helga E; Dijkhuizen, Rick M; Gorter, Jan A
2016-01-01
The mammalian target of rapamycin (mTOR) pathway has received increasing attention as a potential antiepileptogenic target. Treatment with the mTOR inhibitor rapamycin after status epilepticus reduces the development of epilepsy in a rat model. To study whether rapamycin mediates this effect via restoration of blood-brain barrier (BBB) dysfunction, contrast-enhanced magnetic resonance imaging (CE-MRI) was used to determine BBB permeability throughout epileptogenesis. Imaging was repeatedly performed until 6 weeks after kainic acid-induced status epilepticus in rapamycin (6 mg/kg for 6 weeks starting 4 h after SE) and vehicle-treated rats, using gadobutrol as contrast agent. Seizures were detected using video monitoring in the week following the last imaging session. Gadobutrol leakage was widespread and extensive in both rapamycin and vehicle-treated epileptic rats during the acute phase, with the piriform cortex and amygdala as the most affected regions. Gadobutrol leakage was higher in rapamycin-treated rats 4 and 8 days after status epilepticus compared to vehicle-treated rats. However, during the chronic epileptic phase, gadobutrol leakage was lower in rapamycin-treated epileptic rats along with a decreased seizure frequency. This was confirmed by local fluorescein staining in the brains of the same rats. Total brain volume was reduced by this rapamycin treatment regimen. The initial slow recovery of BBB function in rapamycin-treated epileptic rats indicates that rapamycin does not reduce seizure activity by a gradual recovery of BBB integrity. The reduced BBB leakage during the chronic phase, however, could contribute to the decreased seizure frequency in post-status epilepticus rats treated with rapamycin. Furthermore, the data show that CE-MRI (using step-down infusion with gadobutrol) can be used as biomarker for monitoring the effect of drug therapy in rats. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Angoa-Pérez, Mariana; Kreipke, Christian W; Thomas, David M; Van Shura, Kerry E; Lyman, Megan; McDonough, John H; Kuhn, Donald M
2010-12-01
Nerve agent-induced seizures cause neuronal damage in brain limbic and cortical circuits leading to persistent behavioral and cognitive deficits. Without aggressive anticholinergic and benzodiazepine therapy, seizures can be prolonged and neuronal damage progresses for extended periods of time. The objective of this study was to determine the effects of the nerve agent soman on expression of cyclooxygenase-2 (COX-2), the initial enzyme in the biosynthetic pathway of the proinflammatory prostaglandins and a factor that has been implicated in seizure initiation and propagation. Rats were exposed to a toxic dose of soman and scored behaviorally for seizure intensity. Expression of COX-2 was determined throughout brain from 4h to 7 days after exposure by immunohistochemistry and immunoblotting. Microglial activation and astrogliosis were assessed microscopically over the same time-course. Soman increased COX-2 expression in brain regions known to be damaged by nerve agents (e.g., hippocampus, amygdala, piriform cortex and thalamus). COX-2 expression was induced in neurons, and not in microglia or astrocytes, and remained elevated through 7 days. The magnitude of COX-2 induction was correlated with seizure intensity. COX-1 expression was not changed by soman. Increased expression of neuronal COX-2 by soman is a late-developing response relative to other signs of acute physiological distress caused by nerve agents. COX-2-mediated production of prostaglandins is a consequence of the seizure-induced neuronal damage, even after survival of the initial cholinergic crisis is assured. COX-2 inhibitors should be considered as adjunct therapy in nerve agent poisoning to minimize nerve agent-induced seizure activity. Published by Elsevier B.V.
Kim, M. Justin; Loucks, Rebecca A.; Palmer, Amy L.; Brown, Annemarie C.; Solomon, Kimberly M.; Marchante, Ashley N.; Whalen, Paul J.
2011-01-01
The dynamic interactions between the amygdala and the medial prefrontal cortex (mPFC) are usefully conceptualized as a circuit that both allows us to react automatically to biologically relevant predictive stimuli as well as regulate these reactions when the situation calls for it. In this review, we will begin by discussing the role of this amygdala-mPFC circuitry in the conditioning and extinction of aversive learning in animals. We will then relate these data to emotional regulation paradigms in humans. Finally, we will consider how these processes are compromised in normal and pathological anxiety. We conclude that the capacity for efficient crosstalk between the amygdala and the mPFC, which is represented as the strength of the amygdala-mPFC circuitry, is crucial to beneficial outcomes in terms of reported anxiety. PMID:21536077
Lewis, G.J.; Panizzon, M.S.; Eyler, L.; Fennema-Notestine, C.; Chen, C.-H.; Neale, M.C.; Jernigan, T.L.; Lyons, M.J.; Dale, A.M.; Kremen, W.S.; Franz, C.E.
2015-01-01
While many studies have reported that individual differences in personality traits are genetically influenced, the neurobiological bases mediating these influences have not yet been well characterized. To advance understanding concerning the pathway from genetic variation to personality, here we examined whether measures of heritable variation in neuroanatomical size in candidate regions (amygdala and medial orbitofrontal cortex) were associated with heritable effects on personality. A sample of 486 middle-aged (mean = 55 years) male twins (complete MZ pairs = 120; complete DZ pairs = 84) underwent structural brain scans and also completed measures of two core domains of personality: positive and negative emotionality. After adjusting for estimated intracranial volume, significant phenotypic (rp) and genetic (rg) correlations were observed between left amygdala volume and positive emotionality (rp = .16, p < .01; rg = .23, p < .05, respectively). In addition, after adjusting for mean cortical thickness, genetic and nonshared-environmental correlations (re) between left medial orbitofrontal cortex thickness and negative emotionality were also observed (rg = .34, p < .01; re = −.19, p < .05, respectively). These findings support a model positing that heritable bases of personality are, at least in part, mediated through individual differences in the size of brain structures, although further work is still required to confirm this causal interpretation. PMID:25263286
Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jörg; Pape, Hans-Christian
2012-04-17
Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65 isoform of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD). However, a detailed analysis of changes in gene expression of GAD in the subregions comprising the extinction network has not been undertaken. Here, we report changes in gene expression of the GAD65 and GAD67 isoforms of GAD, as measured by relative quantitative real-time RT-PCR, in subregions of the amygdala, hippocampus, and prefrontal cortex 24-26 h after extinction of a recent (1-d) or intermediate (14-d) fear memory. Our results show that extinction of a recent memory induces a down-regulation of Gad65 gene expression in the hippocampus (CA1, dentate gyrus) and an up-regulation of Gad67 gene expression in the infralimbic cortex. Extinguishing an intermediate memory increased Gad65 gene expression in the central amygdala. These results indicate a differential regulation of Gad gene expression after extinction of a recent memory vs. intermediate memory.
Role of testosterone and Y chromosome genes for the masculinization of the human brain.
Savic, Ivanka; Frisen, Louise; Manzouri, Amirhossein; Nordenstrom, Anna; Lindén Hirschberg, Angelica
2017-04-01
Women with complete androgen insensitivity syndrome (CAIS) have a male (46,XY) karyotype but no functional androgen receptors. Their condition, therefore, offers a unique model for studying testosterone effects on cerebral sex dimorphism. We present MRI data from 16 women with CAIS and 32 male (46,XY) and 32 female (46,XX) controls. FreeSurfer software was employed to measure cortical thickness and subcortical structural volumes. Axonal connections, indexed by fractional anisotropy, (FA) were measured with diffusion tensor imaging, and functional connectivity with resting state fMRI. Compared to men, CAIS women displayed a "female" pattern by having thicker parietal and occipital cortices, lower FA values in the right corticospinal, superior and inferior longitudinal tracts, and corpus callosum. Their functional connectivity from the amygdala to the medial prefrontal cortex, was stronger and amygdala-connections to the motor cortex weaker than in control men. CAIS and control women also showed stronger posterior cingulate and precuneus connections in the default mode network. Thickness of the motor cortex, the caudate volume, and the FA in the callosal body followed, however, a "male" pattern. Altogether, these data suggest that testosterone modulates the microstructure of somatosensory and visual cortices and their axonal connections to the frontal cortex. Testosterone also influenced functional connections from the amygdala, whereas the motor cortex could, in agreement with our previous reports, be moderated by processes linked to X-chromosome gene dosage. These data raise the question about other genetic factors masculinizing the human brain than the SRY gene and testosterone. Hum Brain Mapp 38:1801-1814, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Neural and Behavioral Correlates of PTSD and Alcohol Use
2012-10-01
IL cortex is also required for 21 effective consolidation and recall of fear extinction memories [79,98]. Both decreased 22 conditioned fear...directly manipulate 21 5- HT receptor activity in the amygdala with 5- HT receptor ligands (Table 2). For example, 22 activation of postsynaptic...ligands across different experiments. 1 Future studies directly comparing the effects of 5- HT manipulations within the different 2 amygdala
Sleepiness induced by sleep-debt enhanced amygdala activity for subliminal signals of fear.
Motomura, Yuki; Kitamura, Shingo; Oba, Kentaro; Terasawa, Yuri; Enomoto, Minori; Katayose, Yasuko; Hida, Akiko; Moriguchi, Yoshiya; Higuchi, Shigekazu; Mishima, Kazuo
2014-08-19
Emotional information is frequently processed below the level of consciousness, where subcortical regions of the brain are thought to play an important role. In the absence of conscious visual experience, patients with visual cortex damage discriminate the valence of emotional expression. Even in healthy individuals, a subliminal mechanism can be utilized to compensate for a functional decline in visual cognition of various causes such as strong sleepiness. In this study, sleep deprivation was simulated in healthy individuals to investigate functional alterations in the subliminal processing of emotional information caused by reduced conscious visual cognition and attention due to an increase in subjective sleepiness. Fourteen healthy adult men participated in a within-subject crossover study consisting of a 5-day session of sleep debt (SD, 4-h sleep) and a 5-day session of sleep control (SC, 8-h sleep). On the last day of each session, participants performed an emotional face-viewing task that included backward masking of nonconscious presentations during magnetic resonance scanning. Finally, data from eleven participants who were unaware of nonconscious face presentations were analyzed. In fear contrasts, subjective sleepiness was significantly positively correlated with activity in the amygdala, ventromedial prefrontal cortex, hippocampus, and insular cortex, and was significantly negatively correlated with the secondary and tertiary visual areas and the fusiform face area. In fear-neutral contrasts, subjective sleepiness was significantly positively correlated with activity of the bilateral amygdala. Further, changes in subjective sleepiness (the difference between the SC and SD sessions) were correlated with both changes in amygdala activity and functional connectivity between the amygdala and superior colliculus in response to subliminal fearful faces. Sleepiness induced functional decline in the brain areas involved in conscious visual cognition of facial expressions, but also enhanced subliminal emotional processing via superior colliculus as represented by activity in the amygdala. These findings suggest that an evolutionally old and auxiliary subliminal hazard perception system is activated as a compensatory mechanism when conscious visual cognition is impaired. In addition, enhancement of subliminal emotional processing might cause involuntary emotional instability during sleep debt through changes in emotional response to or emotional evaluation of external stimuli.
Neurobiology of Sensory Overresponsivity in Youth With Autism Spectrum Disorders.
Green, Shulamite A; Hernandez, Leanna; Tottenham, Nim; Krasileva, Kate; Bookheimer, Susan Y; Dapretto, Mirella
2015-08-01
More than half of youth with autism spectrum disorders (ASDs) have sensory overresponsivity (SOR), an extreme negative reaction to sensory stimuli. However, little is known about the neurobiological basis of SOR, and there are few effective treatments. Understanding whether SOR is due to an initial heightened sensory response or to deficits in regulating emotional reactions to stimuli has important implications for intervention. To determine differences in brain responses, habituation, and connectivity during exposure to mildly aversive sensory stimuli in youth with ASDs and SOR compared with youth with ASDs without SOR and compared with typically developing control subjects. Functional magnetic resonance imaging was used to examine brain responses and habituation to mildly aversive auditory and tactile stimuli in 19 high-functioning youths with ASDs and 19 age- and IQ-matched, typically developing youths (age range, 9-17 years). Brain activity was related to parents' ratings of children's SOR symptoms. Functional connectivity between the amygdala and orbitofrontal cortex was compared between ASDs subgroups with and without SOR and typically developing controls without SOR. The study dates were March 2012 through February 2014. Relative increases in blood oxygen level-dependent signal response across the whole brain and within the amygdala during exposure to sensory stimuli compared with fixation, as well as correlation between blood oxygen level-dependent signal change in the amygdala and orbitofrontal cortex. The mean age in both groups was 14 years and the majority in both groups (16 of 19 each) were male. Compared with neurotypical control participants, participants with ASDs displayed stronger activation in primary sensory cortices and the amygdala (P < .05, corrected). This activity was positively correlated with SOR symptoms after controlling for anxiety. The ASDs with SOR subgroup had decreased neural habituation to stimuli in sensory cortices and the amygdala compared with groups without SOR. Youth with ASDs without SOR showed a pattern of amygdala downregulation, with negative connectivity between the amygdala and orbitofrontal cortex (thresholded at z > 1.70, P < .05). Results demonstrate that youth with ASDs and SOR show sensorilimbic hyperresponsivity to mildly aversive tactile and auditory stimuli, particularly to multiple modalities presented simultaneously, and show that this hyperresponsivity is due to failure to habituate. In addition, findings suggest that a subset of youth with ASDs can regulate their responses through prefrontal downregulation of amygdala activity. Implications for intervention include minimizing exposure to multiple sensory modalities and building coping strategies for regulating emotional response to stimuli.
Ngô, Thanh-Lan
2013-01-01
Interventions based on mindfulness have become increasingly popular. This article reviews the empirical literature on its effects on mental and physical health, discusses presumed mechanisms of action as well as its proposed neurobiological underpinning. Mindfulness is associated with increased well-being as well as reduced cognitive reactivity and behavioral avoidance. It seems to contribute to enhance immune functions, diminish inflammation, diminish the reactivity of the autonomic nervous system, increase telomerase activity, lead to higher levels of plasmatic melatonin and serotonin. It enhances the quality of life for patients suffering from chronic pain, fibromylagia and HIV infection. It facilitates adaptation to the diagnosis of cancer and diabetes. It seems to lead to symptomatic improvement in irritable bowel syndrome, chronic fatigue syndrome, hot flashes, insomnia, stress related hyperphagia. It diminishes craving in substance abuse. The proposed mechanism of action are enhanced metacognitive conscience, interoceptive exposure, experiential acceptance, self-management, attention control, memory, relaxation. Six mechanism of actions for which neurological underpinnings have been published are: attention regulation (anterior cingulate cortex), body awareness (insula, temporoparietal junction), emotion regulation (modulation of the amygdala by the lateral prefrontal cortex), cognitive re-evaluation (activation of the dorsal medial prefrontal cortex or diminished activity in prefrontal regions), exposure/extinction/reconsolidation (ventromedial prefrontal cortex, hippocampus, amygdala) and flexible self-concept (prefrontal median cortex, posterior cingulated cortex, insula, temporoparietal junction). The neurobiological effects of meditation are described. These are: (1) the deactivation of the default mode network that generates spontaneous thoughts, contributes to the maintenance of the autobiographical self and is associated with anxiety and depression; (2) the anterior cingulate cortex that underpins attention functions; (3) the anterior insula associated with the perception of visceral sensation, the detection of heartbeat and respiratory rate, and the affective response to pain; (4) the posterior cingulate cortex which helps to understand the context from which a stimulus emerges; (5) the temporoparietal junction which assumes a central role in empathy and compassion; (6) the amygdala implicated in fear responses. The article ends with a short review of the empirical basis supporting the efficacy for mindfulness based intervention and suggested directions for future research.
Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi
2017-04-12
Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We found that social recognition memory is consolidated through CREB-meditated gene expression in the hippocampus, medial prefrontal cortex, anterior cingulate cortex (ACC), and amygdala. Importantly, network analyses based on c-fos expression suggest that functional connectivity of these four brain regions with other brain regions is increased with time spent in social investigation toward the generation of brain networks to consolidate social recognition memory. Furthermore, our findings suggest that hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. Copyright © 2017 the authors 0270-6474/17/374103-14$15.00/0.
ERIC Educational Resources Information Center
Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico
2008-01-01
These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…
Looming animate and inanimate threats: the response of the amygdala and periaqueductal gray.
Coker-Appiah, Dionne S; White, Stuart F; Clanton, Roberta; Yang, Jiongjong; Martin, Alex; Blair, R J R
2013-01-01
Looming stimuli are processed as threatening and activate basic neural defense systems. However, it is unclear how animacy information modulates this response. Participants (N = 25) viewed threatening or neutral images that were either animate (animals) or inanimate (objects) and which either approached (loomed) or receded from the participant. The amygdala was responsive to emotional, animacy, and looming information (particularly to looming threats and looming animate stimuli). Periaqueductal gray was also sensitive to emotional information and particularly responsive to looming threats. The data are interpreted within category-specific models of the amygdala and temporal cortex.
Self-Regulation of Amygdala Activation Using Real-Time fMRI Neurofeedback
Phillips, Raquel; Alvarez, Ruben P.; Simmons, W. Kyle; Bellgowan, Patrick; Drevets, Wayne C.; Bodurka, Jerzy
2011-01-01
Real-time functional magnetic resonance imaging (rtfMRI) with neurofeedback allows investigation of human brain neuroplastic changes that arise as subjects learn to modulate neurophysiological function using real-time feedback regarding their own hemodynamic responses to stimuli. We investigated the feasibility of training healthy humans to self-regulate the hemodynamic activity of the amygdala, which plays major roles in emotional processing. Participants in the experimental group were provided with ongoing information about the blood oxygen level dependent (BOLD) activity in the left amygdala (LA) and were instructed to raise the BOLD rtfMRI signal by contemplating positive autobiographical memories. A control group was assigned the same task but was instead provided with sham feedback from the left horizontal segment of the intraparietal sulcus (HIPS) region. In the LA, we found a significant BOLD signal increase due to rtfMRI neurofeedback training in the experimental group versus the control group. This effect persisted during the Transfer run without neurofeedback. For the individual subjects in the experimental group the training effect on the LA BOLD activity correlated inversely with scores on the Difficulty Identifying Feelings subscale of the Toronto Alexithymia Scale. The whole brain data analysis revealed significant differences for Happy Memories versus Rest condition between the experimental and control groups. Functional connectivity analysis of the amygdala network revealed significant widespread correlations in a fronto-temporo-limbic network. Additionally, we identified six regions — right medial frontal polar cortex, bilateral dorsomedial prefrontal cortex, left anterior cingulate cortex, and bilateral superior frontal gyrus — where the functional connectivity with the LA increased significantly across the rtfMRI neurofeedback runs and the Transfer run. The findings demonstrate that healthy subjects can learn to regulate their amygdala activation using rtfMRI neurofeedback, suggesting possible applications of rtfMRI neurofeedback training in the treatment of patients with neuropsychiatric disorders. PMID:21931738
Anosmia leads to a loss of gray matter in cortical brain areas.
Bitter, Thomas; Gudziol, Hilmar; Burmeister, Hartmut Peter; Mentzel, Hans-Joachim; Guntinas-Lichius, Orlando; Gaser, Christian
2010-06-01
Chronic olfactory disorders, including the complete loss of the sense of smell (anosmia), are common. Using voxel-based morphometry (VBM) in magnetic resonance imaging (MRI), structural changes in the cerebral gray matter (GM) of a group of patients with anosmia compared with a normosmic, healthy control group were evaluated. Patients with anosmia presented a significant decrease of GM volume mainly in the nucleus accumbens with adjacent subcallosal gyrus, in the medial prefrontal cortex (MPC) including the middle and anterior cingulate cortices, and in the dorsolateral prefrontal cortex (dlPFC). These areas are part of the limbic loop of the basal ganglia and except the dlPFC secondary olfactory areas. They also play an important role in many neurological diseases. Furthermore, volume decreases in smaller areas like the piriform cortex, insular cortex, orbitofrontal cortex, hippocampus, parahippocampal gyrus, supramarginal gyrus, and cerebellum could be seen. Longer disease duration was associated with a stronger atrophy in the described areas. No local increases in the GM volume could be observed. A comparison with results of an additionally executed functional MRI study on olfaction in healthy subjects was performed to evaluate the significance of the observed atrophy areas in cerebral olfactory processing. To our knowledge, this is the first study on persisting structural changes in cortical GM volume after complete olfactory loss.
Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne
2012-11-01
The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis, and, together, suggest a common BDNF-/GABA-related pathology in major depression with sex- and brain region-specific features.
Barch, Deanna; Pagliaccio, David; Belden, Andy; Harms, Michael P; Gaffrey, Michael; Sylvester, Chad M; Tillman, Rebecca; Luby, Joan
2016-06-01
In this study, the authors tested the hypothesis that poverty experienced in early childhood, as measured by income-to-needs ratio, has an impact on functional brain connectivity at school age, which in turn mediates influences on child negative mood/depression. Participants were from a prospective longitudinal study of emotion development. Preschoolers 3-5 years of age were originally ascertained from primary care and day care sites in the St. Louis area and then underwent annual behavioral assessments for up to 12 years. Healthy preschoolers and those with a history of depression symptoms underwent neuroimaging at school age. Using functional MRI, the authors examined whole brain resting-state functional connectivity with the left and right hippocampus and amygdala. Lower income-to-needs ratio at preschool age was associated with reduced connectivity between hippocampus and amygdala and a number of regions at school age, including the superior frontal cortex, lingual gyrus, posterior cingulate, and putamen. Lower income-to-needs ratio predicted greater negative mood/depression severity at school age, as did connectivity between the left hippocampus and the right superior frontal cortex and between the right amygdala and the right lingual gyrus. Connectivity mediated the relationship between income-to-needs ratio and negative mood/depression at the time of scanning. These findings suggest that poverty in early childhood, as assessed by at least one measure, may influence the development of hippocampal and amygdala connectivity in a manner leading to negative mood symptoms during later childhood.
Amygdala responses to unpleasant pictures are influenced by task demands and positive affect trait.
Sanchez, Tiago A; Mocaiber, Izabela; Erthal, Fatima S; Joffily, Mateus; Volchan, Eliane; Pereira, Mirtes G; de Araujo, Draulio B; Oliveira, Leticia
2015-01-01
The role of attention in emotional processing is still the subject of debate. Recent studies have found that high positive affect in approach motivation narrows attention. Furthermore, the positive affect trait has been suggested as an important component for determining human variability in threat reactivity. We employed functional magnetic resonance imaging to investigate whether different states of attention control would modulate amygdala responses to highly unpleasant pictures relative to neutral and whether this modulation would be influenced by the positive affect trait. Participants (n = 22, 12 male) were scanned while viewing neutral (people) or unpleasant pictures (mutilated bodies) flanked by two peripheral bars. They were instructed to (a) judge the picture content as unpleasant or neutral or (b) to judge the difference in orientation between the bars in an easy condition (0 or 90(∘) orientation difference) or (c) in a hard condition (0 or 6(∘) orientation difference). Whole brain analysis revealed a task main effect of brain areas related to the experimental manipulation of attentional control, including the amygdala, dorsolateral prefrontal cortex, and posterior parietal cortex. Region of interest analysis showed an inverse correlation (r = -0.51, p < 0.01) between left amygdala activation and positive affect level when participants viewed unpleasant stimuli and judged bar orientation in the easy condition. This result suggests that subjects with high positive affect exhibit lower amygdala reactivity to distracting unpleasant pictures. In conclusion, the current study suggests that positive affect modulates attention effect on unpleasant pictures, therefore attenuating emotional responses.
Minocycline fails to exert antiepileptogenic effects in a rat status epilepticus model.
Russmann, Vera; Goc, Joanna; Boes, Katharina; Ongerth, Tanja; Salvamoser, Josephine D; Siegl, Claudia; Potschka, Heidrun
2016-01-15
The tetracycline antibiotic minocycline can exert strong anti-inflammatory, antioxidant, and antiapoptotic effects. There is cumulating evidence that epileptogenic brain insults trigger neuroinflammation and anti-inflammatory concepts can modulate the process of epileptogenesis. Based on the mechanisms of action discussed for minocycline, the compound is of interest for intervention studies as it can prevent the polarization of microglia into a pro-inflammatory state. Here, we assessed the efficacy of sub-chronic minocycline administration initiated immediately following an electrically-induced status epilepticus in rats. The treatment did not affect the development of spontaneous seizures. However, minocycline attenuated behavioral long-term consequences of status epilepticus with a reduction in hyperactivity and hyperlocomotion. Furthermore, the compound limited the spatial learning deficits observed in the post-status epilepticus model. The typical status epilepticus-induced neuronal cell loss was evident in the hippocampus and the piriform cortex. Minocycline exposure selectively protected neurons in the piriform cortex and the hilus, but not in the hippocampal pyramidal layer. In conclusion, the data argue against an antiepileptogenic effect of minocycline in adult rats. However, the findings suggest a disease-modifying impact of the tetracycline affecting the development of behavioral co-morbidities, as well as long-term consequences on spatial learning. In addition, minocycline administration resulted in a selective neuroprotective effect. Although strong anti-inflammatory effects have been proposed for minocycline, we could not verify these effects in our experimental model. Considering the multitude of mechanisms claimed to contribute to minocycline's effects, it is of interest to further explore the exact mechanisms underlying the beneficial effects in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Ghosh, Abhinaba; Purchase, Nicole C.; Chen, Xihua; Yuan, Qi
2015-01-01
Early odor preference learning in rodents occurs within a sensitive period [≤postnatal day (P)10–12], during which pups show a heightened ability to form an odor preference when a novel odor is paired with a tactile stimulation (e.g., stroking). Norepinephrine (NE) release from the locus coeruleus during stroking mediates this learning. However, in older pups, stroking loses its ability to induce learning. The cellular and circuitry mechanisms underpinning the sensitive period for odor preference learning is not well understood. We first established the sensitive period learning model in mice – odor paired with stroking induced odor preference in P8 but not P14 mice. This learning was dependent on NE-β-adrenoceptors as it was prevented by propranolol injection prior to training. We then tested whether there are developmental changes in pyramidal cell excitability and NE responsiveness in the anterior piriform cortex (aPC) in mouse pups. Although significant differences of pyramidal cell intrinsic properties were found in two age groups (P8–11 and P14+), NE at two concentrations (0.1 and 10 μM) did not alter intrinsic properties in either group. In contrast, in P8–11 pups, NE at 0.1 μM presynaptically decreased miniature IPSC and increased miniature EPSC frequencies. These effects were reversed with a higher dose of NE (10 μM), suggesting involvement of different adrenoceptor subtypes. In P14+ pups, NE at higher doses (1 and 10 μM) acted both pre- and postsynaptically to promote inhibition. These results suggest that enhanced synaptic excitation and reduced inhibition by NE in the aPC network may underlie the sensitive period. PMID:26635530
Bidirectional communication between amygdala and fusiform gyrus during facial recognition.
Herrington, John D; Taylor, James M; Grupe, Daniel W; Curby, Kim M; Schultz, Robert T
2011-06-15
Decades of research have documented the specialization of fusiform gyrus (FG) for facial information processes. Recent theories indicate that FG activity is shaped by input from amygdala, but effective connectivity from amygdala to FG remains undocumented. In this fMRI study, 39 participants completed a face recognition task. 11 participants underwent the same experiment approximately four months later. Robust face-selective activation of FG, amygdala, and lateral occipital cortex were observed. Dynamic causal modeling and Bayesian Model Selection (BMS) were used to test the intrinsic connections between these structures, and their modulation by face perception. BMS results strongly favored a dynamic causal model with bidirectional, face-modulated amygdala-FG connections. However, the right hemisphere connections diminished at time 2, with the face modulation parameter no longer surviving Bonferroni correction. These findings suggest that amygdala strongly influences FG function during face perception, and that this influence is shaped by experience and stimulus salience. Copyright © 2011 Elsevier Inc. All rights reserved.
Feng, Pan; Zheng, Yong; Feng, Tingyong
2016-06-01
Investigations of fear conditioning have elucidated the neural mechanisms of fear acquisition, consolidation and extinction, but it is not clear how the neural activation following fear reminder influence the following extinction. To address this question, we measured human brain activity following fear reminder using resting-state functional magnetic resonance imaging, and investigated whether the extinction effect can be predicted by resting-state functional connectivity (RSFC). Behaviorally, we found no significant differences of fear ratings between the reminder group and the no reminder group at the fear acquisition and extinction stages, but spontaneous recovery during re-extinction stage appeared only in the no reminder group. Imaging data showed that functional connectivity between ventromedial prefrontal cortex (vmPFC) and amygdala in the reminder group was greater than that in the no reminder group after fear memory reactivation. More importantly, the functional connectivity between amygdala and vmPFC of the reminder group after fear memory reactivation was positively correlated with extinction effect. These results suggest RSFC between amygdala and the vmPFC following fear reminder can predict fear extinction, which provide important insight into the neural mechanisms of fear memory after fear memory reactivation. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Chen, Guang-Di; Radziwon, Kelly E.; Manohar, Senthilvelan
2014-01-01
Previous studies have shown that sodium salicylate (SS) activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus). The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus. PMID:24891959
High-anxiety rats are less sensitive to the rewarding affects of amphetamine on 50kHz USV.
Lehner, Małgorzata H; Taracha, Ewa; Kaniuga, Ewelina; Wisłowska-Stanek, Aleksandra; Wróbel, Jacek; Sobolewska, Alicja; Turzyńska, Danuta; Skórzewska, Anna; Płaźnik, Adam
2014-12-15
This study assessed behaviour, as measured by 50kHz calls related to positive affect, in rats with different fear conditioned response strengths: low-anxiety rats (LR) and high-anxiety rats (HR), after amphetamine injection in a two-injection protocol (TIPS). The results showed that the first dose of amphetamine evoked similar behavioural effects in frequency-modulated (FM) 50kHz calls in the LR and HR groups. The second injection of amphetamine resulted in stronger FM 50kHz calls in LR compared with HR rats. The biochemical data ('ex vivo' analysis) showed that the LR rats had increased basal levels of dopamine in the amygdala, and increased homovanilic acid (HVA), dopamine's main metabolite, in the amygdala and prefrontal cortex compared with HR rats. The 'in vivo' analysis (microdialysis study) showed that the LR rats had increased HVA concentrations in the basolateral amygdala in response to an aversively conditioned context. Research has suggested that differences in dopaminergic system activity in the amygdala and prefrontal cortex may be one of the biological factors that underlie individual differences in response to fear stimuli, which may also affect the rewarding effects of amphetamine. Copyright © 2014 Elsevier B.V. All rights reserved.
Elzinga, B M; Bremner, J D
2002-06-01
A model for the posttraumatic stress disorder (PTSD) as a disorder of memory is presented drawing both on psychological and neurobiological data. Evidence on intrusive memories and deficits in declarative memory function in PTSD-patients is reviewed in relation to three brain areas that are involved in memory functioning and the stress response: the hippocampus, amygdala, and the prefrontal cortex. Neurobiological studies have shown that the noradrenergic stress-system is involved in enhanced encoding of emotional memories, sensitization, and fear conditioning, by way of its effects on the amygdala. Chronic stress also affects the hippocampus, a brain area involved in declarative memories, suggesting that hippocampal dysfunction may partly account for the deficits in declarative memory in PTSD-patients. Deficits in the medial prefrontal cortex, a structure that normally inhibits the amygdala, may further enhance the effects of the amygdala, thereby increasing the frequency and intensity of the traumatic memories. Thus, by way of its influence on these brain structures, exposure to severe stress may simultaneously result in strong emotional reactions and in difficulties to recall the emotional event. This model is also relevant for understanding the distinction between declarative and non-declarative memory-functions in processing trauma-related information in PTSD. Implications of our model are reviewed.
Elzinga, B.M.; Bremner, J.D.
2017-01-01
A model for the posttraumatic stress disorder (PTSD) as a disorder of memory is presented drawing both on psychological and neurobiological data. Evidence on intrusive memories and deficits in declarative memory function in PTSD-patients is reviewed in relation to three brain areas that are involved in memory functioning and the stress response: the hippocampus, amygdala, and the prefrontal cortex. Neurobiological studies have shown that the noradrenergic stress-system is involved in enhanced encoding of emotional memories, sensitization, and fear conditioning, by way of its effects on the amygdala. Chronic stress also affects the hippocampus, a brain area involved in declarative memories, suggesting that hippocampal dysfunction may partly account for the deficits in declarative memory in PTSD-patients. Deficits in the medial prefrontal cortex, a structure that normally inhibits the amygdala, may further enhance the effects of the amygdala, thereby increasing the frequency and intensity of the traumatic memories. Thus, by way of its influence on these brain structures, exposure to severe stress may simultaneously result in strong emotional reactions and in difficulties to recall the emotional event. This model is also relevant for understanding the distinction between declarative and non-declarative memory-functions in processing trauma-related information in PTSD. Implications of our model are reviewed. PMID:12113915
Neural correlates of emotion acceptance vs worry or suppression in generalized anxiety disorder
Barlow, David H.; Whitfield-Gabrieli, Susan; Gabrieli, John D.E.; Deckersbach, Thilo
2017-01-01
Abstract Recent emotion dysregulation models of generalized anxiety disorder (GAD) propose chronic worry in GAD functions as a maladaptive attempt to regulate anxiety related to uncertain or unpredictable outcomes. Emotion acceptance is an adaptive emotion regulation strategy increasingly incorporated into newer cognitive behavioral therapy (CBT) approaches to GAD to counter chronic worry. The current study explores the mechanisms of emotion acceptance as an alternate emotion regulation strategy to worry or emotion suppression using functional magnetic resonance imaging. Twenty-one female participants diagnosed with GAD followed counterbalanced instructions to regulate responses to personally relevant worry statements by engaging in either emotion acceptance, worry or emotion suppression. Emotion acceptance resulted in lower ratings of distress than worry and was associated with increased dorsal anterior cingulate cortex (dACC) activation and increased ventrolateral prefrontal cortex (VLPFC)-amygdala functional connectivity. In contrast, worry showed significantly greater distress ratings than acceptance or suppression and was associated with increased precuneus, VLPFC, amygdala and hippocampal activation. Suppression did not significantly differ from acceptance in distress ratings or amygdala recruitment, but resulted in significantly greater insula and VLPFC activation and decreased VLPFC-amygdala functional connectivity. Emotion acceptance closely aligned with activation and connectivity patterns reported in studies of contextual extinction learning and mindful awareness. PMID:28402571
Contextual Fear Conditioning in Humans: Cortical-Hippocampal and Amygdala Contributions
Alvarez, Ruben P.; Biggs, Arter; Chen, Gang; Pine, Daniel S.; Grillon, Christian
2008-01-01
Functional imaging studies of cued fear conditioning in humans have largely confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using fMRI and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semi-random order, with contexts counterbalanced across participants. An un-signaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared to CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species. PMID:18550763
Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando
2017-08-01
Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Kim, M Justin; Loucks, Rebecca A; Palmer, Amy L; Brown, Annemarie C; Solomon, Kimberly M; Marchante, Ashley N; Whalen, Paul J
2011-10-01
The dynamic interactions between the amygdala and the medial prefrontal cortex (mPFC) are usefully conceptualized as a circuit that both allows us to react automatically to biologically relevant predictive stimuli as well as regulate these reactions when the situation calls for it. In this review, we will begin by discussing the role of this amygdala-mPFC circuitry in the conditioning and extinction of aversive learning in animals. We will then relate these data to emotional regulation paradigms in humans. Finally, we will consider how these processes are compromised in normal and pathological anxiety. We conclude that the capacity for efficient crosstalk between the amygdala and the mPFC, which is represented as the strength of the amygdala-mPFC circuitry, is crucial to beneficial outcomes in terms of reported anxiety. Copyright © 2011 Elsevier B.V. All rights reserved.
Gorkiewicz, Tomasz; Balcerzyk, Marcin; Kaczmarek, Leszek; Knapska, Ewelina
2015-01-01
It has been shown that matrix metalloproteinase 9 (MMP-9) is required for synaptic plasticity, learning and memory. In particular, MMP-9 involvement in long-term potentiation (LTP, the model of synaptic plasticity) in the hippocampus and prefrontal cortex has previously been demonstrated. Recent data suggest the role of MMP-9 in amygdala-dependent learning and memory. Nothing is known, however, about its physiological correlates in the specific pathways in the amygdala. In the present study we show that LTP in the basal and central but not lateral amygdala (LA) is affected by MMP-9 knock-out. The MMP-9 dependency of LTP was confirmed in brain slices treated with a specific MMP-9 inhibitor. The results suggest that MMP-9 plays different roles in synaptic plasticity in different nuclei of the amygdala.
Amygdala habituation and prefrontal functional connectivity in youth with autism spectrum disorders.
Swartz, Johnna R; Wiggins, Jillian Lee; Carrasco, Melisa; Lord, Catherine; Monk, Christopher S
2013-01-01
Amygdala habituation, the rapid decrease in amygdala responsiveness to the repeated presentation of stimuli, is fundamental to the nervous system. Habituation is important for maintaining adaptive levels of arousal to predictable social stimuli and decreased habituation is associated with heightened anxiety. Input from the ventromedial prefrontal cortex (vmPFC) regulates amygdala activity. Although previous research has shown abnormal amygdala function in youth with autism spectrum disorders (ASD), no study has examined amygdala habituation in a young sample or whether habituation is related to amygdala connectivity with the vmPFC. Data were analyzed from 32 children and adolescents with ASD and 56 typically developing controls who underwent functional magnetic resonance imaging while performing a gender identification task for faces that were fearful, happy, sad, or neutral. Habituation was tested by comparing amygdala activation to faces during the first half versus the second half of the session. VmPFC-amygdala connectivity was examined through psychophysiologic interaction analysis. Youth with ASD had decreased amygdala habituation to sad and neutral faces compared with controls. Moreover, decreased amygdala habituation correlated with autism severity as measured by the Social Responsiveness Scale. There was a group difference in vmPFC-amygdala connectivity while viewing sad faces, and connectivity predicted amygdala habituation to sad faces in controls. Sustained amygdala activation to faces suggests that repeated face presentations are processed differently in individuals with ASD, which could contribute to social impairments. Abnormal modulation of the amygdala by the vmPFC may play a role in decreased habituation. Copyright © 2013 American Academy of Child & Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Ren, Ping; Anthony, Mia; Chapman, Benjamin P; Heffner, Kathi; Lin, Feng
2017-05-01
Locus of control (LOC) measures the extent to which individuals perceive control over their lives. Those with a more "internal" LOC feel self-sufficient and able to determine important aspects of their own future, while those with a more "external" LOC feel that their lives are governed by events beyond their control. Reduced internal LOC and increased external LOC have been found in cognitive disorders, but the neural substrates of these control perceptions are yet unknown. In the present study, we explored the relationship between amygdala functional connectivity and LOC in 18 amnestic mild cognitive impairment (MCI) and age-, sex-, and education-matched, 22 cognitively healthy controls (HC). Participants completed cognitive challenge tasks (Stroop Word Color task and Dual 1-back) for 20min, and underwent resting-state functional magnetic resonance imaging immediately before and after the tasks. We found significantly lower internal LOC and higher external LOC in the MCI group than the HC group. Compared to HC, MCI group showed significantly stronger positive associations between internal LOC and baseline right amygdala connections (including right middle frontal gyrus and anterior cingulate cortex), and stronger negative associations between internal LOC and change of these right amygdala connections. Across all participants, external LOC explained the relationships between associations of another set of right amygdala connections (including middle cingulate cortex and right superior frontal gyrus), both at baseline and for change, and performance in the cognitive challenge tasks. Our findings indicate that the right amygdala networks might be critical in understanding the neural mechanisms underlying LOC's role in cognitive aging. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cathomas, F; Azzinnari, D; Bergamini, G; Sigrist, H; Buerge, M; Hoop, V; Wicki, B; Goetze, L; Soares, S; Kukelova, D; Seifritz, E; Goebbels, S; Nave, K-A; Ghandour, M S; Seoighe, C; Hildebrandt, T; Leparc, G; Klein, H; Stupka, E; Hengerer, B; Pryce, C R
2018-03-22
Oligodendrocyte gene expression is downregulated in stress-related neuropsychiatric disorders, including depression. In mice, chronic social stress (CSS) leads to depression-relevant changes in brain and emotional behavior, and the present study shows the involvement of oligodendrocytes in this model. In C57BL/6 (BL/6) mice, RNA-sequencing (RNA-Seq) was conducted with prefrontal cortex, amygdala and hippocampus from CSS and controls; a gene enrichment database for neurons, astrocytes and oligodendrocytes was used to identify cell origin of deregulated genes, and cell deconvolution was applied. To assess the potential causal contribution of reduced oligodendrocyte gene expression to CSS effects, mice heterozygous for the oligodendrocyte gene cyclic nucleotide phosphodiesterase (Cnp1) on a BL/6 background were studied; a 2 genotype (wildtype, Cnp1 +/- ) × 2 environment (control, CSS) design was used to investigate effects on emotional behavior and amygdala microglia. In BL/6 mice, in prefrontal cortex and amygdala tissue comprising gray and white matter, CSS downregulated expression of multiple oligodendroycte genes encoding myelin and myelin-axon-integrity proteins, and cell deconvolution identified a lower proportion of oligodendrocytes in amygdala. Quantification of oligodendrocyte proteins in amygdala gray matter did not yield evidence for reduced translation, suggesting that CSS impacts primarily on white matter oligodendrocytes or the myelin transcriptome. In Cnp1 mice, social interaction was reduced by CSS in Cnp1 +/- mice specifically; using ionized calcium-binding adaptor molecule 1 (IBA1) expression, microglia activity was increased additively by Cnp1 +/- and CSS in amygdala gray and white matter. This study provides back-translational evidence that oligodendrocyte changes are relevant to the pathophysiology and potentially the treatment of stress-related neuropsychiatric disorders. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Altinay, Murat; Karne, Harish; Anand, Amit
2018-01-01
This study, for the first time, investigated lithium monotherapy associated effects on amygdala- ventromedial prefrontal cortex (vMPFC) resting-state functional connectivity and correlation with clinical improvement in bipolar disorder (BP) METHODS: Thirty-six medication-free subjects - 24 BP (12 hypomanic BPM) and 12 depressed (BPD)) and 12 closely matched healthy controls (HC), were included. BP subjects were treated with lithium and scanned at baseline, after 2 weeks and 8 weeks. HC were scanned at same time points but were not treated. The effect of lithium was studied for the BP group as a whole using two way (group, time) ANOVA while regressing out effects of state. Next, correlation between changes in amygdala-vMPFC resting-state connectivity and clinical global impression (CGI) of severity and improvement scale scores for overall BP illness was calculated. An exploratory analysis was also conducted for the BPD and BPM subgroups separately. Group by time interaction revealed that lithium monotherapy in patients was associated with increase in amygdala-medial OFC connectivity after 8 weeks of treatment (p = 0.05 (cluster-wise corrected)) compared to repeat testing in healthy controls. Increased amygdala-vMPFC connectivity correlated with clinical improvement at week 2 and week 8 as measured with the CGI-I scale. The results pertain to open-label treatment and do not account for non-treatment related improvement effects. Only functional connectivity was measured which does not give information regarding one regions effect on the other. Lithium monotherapy in BP is associated with modulation of amygdala-vMPFC connectivity which correlates with state-independent global clinical improvement. Copyright © 2017. Published by Elsevier B.V.
Schmidt, M L; Murray, J M; Trojanowski, J Q
1993-04-01
Neuropil threads (NTs) are abnormal processes that are associated with tangle-bearing neurons in gray matter areas of Alzheimer disease (AD) brains. Although NTs contain paired helical filaments (PHFs) and share multiple tau epitopes with neurobrillary tangles (NFTs), the relationship between NTs and tangle-bearing neurons is unclear. For this reason, we assessed the continuity of NTs with tangle-bearing and tangle-free neurons. Since astrocytes express low levels of tau and rarely have been shown to contain PHFs, we also examined the relationship of NTs to cortical astrocytes. This was done using histochemical and immunochemical methods in conjunction with confocal laser scanning microscopy to examine NTs in amygdala and entorhinal cortex of seven AD brains. Only a small fraction of NTs (< 1%) in 3.5 x 10(6) microns 3 of amygdala and entorhinal cortex could be traced to local neurons with NFTs or to neurons that did not contain NFTs, and no NTs were continuous with cortical astrocytes. These results indicate that only a very small percentage of NTs in entorhinal cortex and amygdala occur in the most proximal segments of processes that emanate from tangle-bearing or tangle-free neurons. This implies that the majority of NTs reside in the distal parts of dendrites and/or the terminal arborizations of axons or that NTs are discontinuous abnormalities. Taken together, these data suggest that NTs could disrupt local and long distance neuronal circuitry and thereby contribute to the cognitive impairments seen in AD patients.
Affective network and default mode network in depressive adolescents with disruptive behaviors
Kim, Sun Mi; Park, Sung Yong; Kim, Young In; Son, Young Don; Chung, Un-Sun; Min, Kyung Joon; Han, Doug Hyun
2016-01-01
Aim Disruptive behaviors are thought to affect the progress of major depressive disorder (MDD) in adolescents. In resting-state functional connectivity (RSFC) studies of MDD, the affective network (limbic network) and the default mode network (DMN) have garnered a great deal of interest. We aimed to investigate RSFC in a sample of treatment-naïve adolescents with MDD and disruptive behaviors. Methods Twenty-two adolescents with MDD and disruptive behaviors (disrup-MDD) and 20 age- and sex-matched healthy control (HC) participants underwent resting-state functional magnetic resonance imaging (fMRI). We used a seed-based correlation approach concerning two brain circuits including the affective network and the DMN, with two seed regions including the bilateral amygdala for the limbic network and the bilateral posterior cingulate cortex (PCC) for the DMN. We also observed a correlation between RSFC and severity of depressive symptoms and disruptive behaviors. Results The disrup-MDD participants showed lower RSFC from the amygdala to the orbitofrontal cortex and parahippocampal gyrus compared to HC participants. Depression scores in disrup-MDD participants were negatively correlated with RSFC from the amygdala to the right orbitofrontal cortex. The disrup-MDD participants had higher PCC RSFC compared to HC participants in a cluster that included the left precentral gyrus, left insula, and left parietal lobe. Disruptive behavior scores in disrup-MDD patients were positively correlated with RSFC from the PCC to the left insular cortex. Conclusion Depressive mood might be correlated with the affective network, and disruptive behavior might be correlated with the DMN in adolescent depression. PMID:26770059
Dickstein, Daniel P; Milham, Michael P; Nugent, Allison C; Drevets, Wayne C; Charney, Dennis S; Pine, Daniel S; Leibenluft, Ellen
2005-07-01
While numerous magnetic resonance imaging (MRI) studies have evaluated adults with bipolar disorder (BPD), few have examined MRI changes in children with BPD. To determine volume alterations in children with BPD using voxel-based morphometry, an automated MRI analysis method with reduced susceptibility to various biases. A priori regions of interest included amygdala, accumbens, hippocampus, dorsolateral prefrontal cortex (DLPFC), and orbitofrontal cortex. Ongoing study of the pathophysiology of pediatric BPD. Intramural National Institute of Mental Health; approved by the institutional review board. Patients Pediatric subjects with BPD (n = 20) with at least 1 manic or hypomanic episode meeting strict DSM-IV criteria for duration and elevated, expansive mood. Controls (n = 20) and their first-degree relatives lacked psychiatric disorders. Groups were matched for age and sex and did not differ in IQ. With a 1.5-T MRI machine, we collected 1.2-mm axial sections (124 per subject) with an axial 3-dimensional spoiled gradient recalled echo in the steady state sequence. Image analysis was by optimized voxel-based morphometry. Subjects with BPD had reduced gray matter volume in the left DLPFC. With a less conservative statistical threshold, additional gray matter reductions were found in the left accumbens and left amygdala. No difference was found in the hippocampus or orbitofrontal cortex. Our results are consistent with data implicating the prefrontal cortex in emotion regulation, a process that is perturbed in BPD. Reductions in amygdala and accumbens volumes are consistent with neuropsychological data on pediatric BPD. Further study is required to determine the relationship between these findings in children and adults with BPD.
Arana, F Sergio; Parkinson, John A; Hinton, Elanor; Holland, Anthony J; Owen, Adrian M; Roberts, Angela C
2003-10-22
Theories of incentive motivation attempt to capture the way in which objects and events in the world can acquire high motivational value and drive behavior, even in the absence of a clear biological need. In addition, for an individual to select the most appropriate goal, the incentive values of competing desirable objects need to be defined and compared. The present study examined the neural substrates by which appetitive incentive value influences prospective goal selection, using positron emission tomographic neuroimaging in humans. Sated subjects were shown a series of restaurant menus that varied in incentive value, specifically tailored for each individual, and in half the trials, were asked to make a selection from the menu. The amygdala was activated by high-incentive menus regardless of whether a choice was required. Indeed, activity in this region varied as a function of individual subjective ratings of incentive value. In contrast, distinct regions of the orbitofrontal cortex were recruited both during incentive judgments and goal selection. Activity in the medial orbital cortex showed a greater response to high-incentive menus and when making a choice, with the latter activity also correlating with subjective ratings of difficulty. Lateral orbitofrontal activity was observed selectively when participants had to suppress responses to alternative desirable items to select their most preferred. Taken together, these data highlight the differential contribution of the amygdala and regions within the orbitofrontal cortex in a neural system underlying the selection of goals based on the prospective incentive value of stimuli, over and above homeostatic influences.
Effective connectivity of a reward network in obese women
Stoeckel, Luke E.; Kim, Jieun; Weller, Rosalyn E.; Cox, James E.; Cook, Edwin W.; Horwitz, Barry
2012-01-01
Exaggerated reactivity to food cues in obese women appears to be mediated in part by a hyperactive reward system that includes the nucleus accumbens, amygdala, and orbitofrontal cortex. The present study used fMRI to investigate whether differences between 12 obese and 12 normal-weight women in reward-related brain activation in response to food images can be explained by changes in the functional interactions between key reward network regions. A two-step path analysis/General Linear Model approach was used to test whether there were group differences in network connections between nucleus accumbens, amygdala, and orbitofrontal cortex in response to high- and low-calorie food images. There was abnormal connectivity in the obese group in response to both high- and low-calorie food cues compared to normal-weight controls. Compared to controls, the obese group had a relative deficiency in the amygdala’s modulation of activation in both orbitofrontal cortex and nucleus accumbens, but excessive influence of orbitofrontal cortex’s modulation of activation in nucleus accumbens. The deficient projections from the amygdala might relate to suboptimal modulation of the affective/emotional aspects of a food’s reward value or an associated cue’s motivational salience, whereas increased orbitofrontal cortex to nucleus accumbens connectivity might contribute to a heightened drive to eat in response to a food cue. Thus, it is possible that not only greater activation of the reward system, but also differences in the interaction of regions in this network may contribute to the relatively increased motivational value of foods in obese individuals. PMID:19467298
Larson, Christine L; Baskin-Sommers, Arielle R; Stout, Daniel M; Balderston, Nicholas L; Curtin, John J; Schultz, Douglas H; Kiehl, Kent A; Newman, Joseph P
2013-12-01
Psychopathic behavior has long been attributed to a fundamental deficit in fear that arises from impaired amygdala function. Growing evidence has demonstrated that fear-potentiated startle (FPS) and other psychopathy-related deficits are moderated by focus of attention, but to date, no work on adult psychopathy has examined attentional modulation of the amygdala or concomitant recruitment of relevant attention-related circuitry. Consistent with previous FPS findings, here we report that psychopathy-related differences in amygdala activation appear and disappear as a function of goal-directed attention. Specifically, decreased amygdala activity was observed in psychopathic offenders only when attention was engaged in an alternative goal-relevant task prior to presenting threat-relevant information. Under this condition, psychopaths also exhibited greater activation in selective-attention regions of the lateral prefrontal cortex (LPFC) than did nonpsychopaths, and this increased LPFC activation mediated psychopathy's association with decreased amygdala activation. In contrast, when explicitly attending to threat, amygdala activation did not differ in psychopaths and nonpsychopaths. This pattern of amygdala activation highlights the potential role of LPFC in mediating the failure of psychopathic individuals to process fear and other important information when it is peripheral to the primary focus of goal-directed attention.
Increased amygdala reactivity following early life stress: a potential resilience enhancer role.
Yamamoto, Tetsuya; Toki, Shigeru; Siegle, Greg J; Takamura, Masahiro; Takaishi, Yoshiyuki; Yoshimura, Shinpei; Okada, Go; Matsumoto, Tomoya; Nakao, Takashi; Muranaka, Hiroyuki; Kaseda, Yumiko; Murakami, Tsuneji; Okamoto, Yasumasa; Yamawaki, Shigeto
2017-01-18
Amygdala hyper-reactivity is sometimes assumed to be a vulnerability factor that predates depression; however, in healthy people, who experience early life stress but do not become depressed, it may represent a resilience mechanism. We aimed to test these hypothesis examining whether increased amygdala activity in association with a history of early life stress (ELS) was negatively or positively associated with depressive symptoms and impact of negative life event stress in never-depressed adults. Twenty-four healthy participants completed an individually tailored negative mood induction task during functional magnetic resonance imaging (fMRI) assessment along with evaluation of ELS. Mood change and amygdala reactivity were increased in never-depressed participants who reported ELS compared to participants who reported no ELS. Yet, increased amygdala reactivity lowered effects of ELS on depressive symptoms and negative life events stress. Amygdala reactivity also had positive functional connectivity with the bilateral DLPFC, motor cortex and striatum in people with ELS during sad memory recall. Increased amygdala activity in those with ELS was associated with decreased symptoms and increased neural features, consistent with emotion regulation, suggesting that preservation of robust amygdala reactions may reflect a stress buffering or resilience enhancing factor against depression and negative stressful events.
Neugebauer, Volker
2015-01-01
A limbic brain area the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the “nociceptive amygdala”) accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms. PMID:25846623
Silvers, Jennifer A; Insel, Catherine; Powers, Alisa; Franz, Peter; Helion, Chelsea; Martin, Rebecca E; Weber, Jochen; Mischel, Walter; Casey, B J; Ochsner, Kevin N
2017-07-01
Emotion regulation is a critical life skill that develops throughout childhood and adolescence. Despite this development in emotional processes, little is known about how the underlying brain systems develop with age. This study examined emotion regulation in 112 individuals (aged 6-23 years) as they viewed aversive and neutral images using a reappraisal task. On "reappraisal" trials, participants were instructed to view the images as distant, a strategy that has been previously shown to reduce negative affect. On "reactivity" trials, participants were instructed to view the images without regulating emotions to assess baseline emotional responding. During reappraisal, age predicted less negative affect, reduced amygdala responses and inverse coupling between the ventromedial prefrontal cortex (vmPFC) and amygdala. Moreover, left ventrolateral prefrontal (vlPFC) recruitment mediated the relationship between increasing age and diminishing amygdala responses. This negative vlPFC-amygdala association was stronger for individuals with inverse coupling between the amygdala and vmPFC. These data provide evidence that vmPFC-amygdala connectivity facilitates vlPFC-related amygdala modulation across development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Larson, Christine L.; Baskin-Sommers, Arielle R.; Stout, Daniel M.; Balderston, Nicholas L.; Curtin, John J.; Schultz, Douglas H.; Kiehl, Kent A.; Newman, Joseph P.
2013-01-01
Psychopathic behavior has long been attributed to a fundamental deficit in fear that arises from impaired amygdala function. Growing evidence demonstrates that fear potentiated startle (FPS) and other psychopathy-related deficits are moderated by focus of attention but, to date, no work on adult psychopathy has examined attentional modulation of the amygdala, or concomitant recruitment of relevant attention-related circuitry. Consistent with previous FPS findings, here we report that psychopathy-related differences in amygdala activation appear and disappear as a function of goal-directed attention. Specifically, decreased amygdala activity was observed in psychopathic offenders only when attention was engaged in an alternative goal-relevant task prior to presenting threat-relevant information. Under this condition, psychopaths also exhibited greater activation in selective attention regions of the lateral prefrontal cortex (LPFC) than non-psychopaths, and this increased LPFC activation mediated psychopathy’s association with decreased amygdala activation. In contrast, when explicitly attending to threat, amygdala activation in psychopaths did not differ from non-psychopaths. This pattern of amygdala activation highlights the potential role of LPFC in mediating the failure of psychopathic individuals to process fear and other important information when it is peripheral to the primary focus of goal-directed attention. PMID:23712665
ERIC Educational Resources Information Center
Yorke, Jan
2010-01-01
Emotional stress and trauma impacts the neurobiology of children. They are especially vulnerable given the developmental plasticity of the brain. The neural synaptic circular processes between the anterior cingulated cortex, prefrontal cortex, amygdala and the hypothalamus are altered. Trauma results in the release of the peptide glucocortisoid,…
Márquez, C; Poirier, G L; Cordero, M I; Larsen, M H; Groner, A; Marquis, J; Magistretti, P J; Trono, D; Sandi, C
2013-01-01
Although adverse early life experiences have been found to increase lifetime risk to develop violent behaviors, the neurobiological mechanisms underlying these long-term effects remain unclear. We present a novel animal model for pathological aggression induced by peripubertal exposure to stress with face, construct and predictive validity. We show that male rats submitted to fear-induction experiences during the peripubertal period exhibit high and sustained rates of increased aggression at adulthood, even against unthreatening individuals, and increased testosterone/corticosterone ratio. They also exhibit hyperactivity in the amygdala under both basal conditions (evaluated by 2-deoxy-glucose autoradiography) and after a resident–intruder (RI) test (evaluated by c-Fos immunohistochemistry), and hypoactivation of the medial orbitofrontal (MO) cortex after the social challenge. Alterations in the connectivity between the orbitofrontal cortex and the amygdala were linked to the aggressive phenotype. Increased and sustained expression levels of the monoamine oxidase A (MAOA) gene were found in the prefrontal cortex but not in the amygdala of peripubertally stressed animals. They were accompanied by increased activatory acetylation of histone H3, but not H4, at the promoter of the MAOA gene. Treatment with an MAOA inhibitor during adulthood reversed the peripuberty stress-induced antisocial behaviors. Beyond the characterization and validation of the model, we present novel data highlighting changes in the serotonergic system in the prefrontal cortex—and pointing at epigenetic control of the MAOA gene—in the establishment of the link between peripubertal stress and later pathological aggression. Our data emphasize the impact of biological factors triggered by peripubertal adverse experiences on the emergence of violent behaviors. PMID:23321813
Denny, Bryan T; Fan, Jin; Liu, Xun; Guerreri, Stephanie; Mayson, Sarah Jo; Rimsky, Liza; McMaster, Antonia; Alexander, Heather; New, Antonia S; Goodman, Marianne; Perez-Rodriguez, Mercedes; Siever, Larry J; Koenigsberg, Harold W
2016-08-01
Borderline personality disorder (BPD) and avoidant personality disorder (AvPD) are characterized by hyper-reactivity to negatively-perceived interpersonal cues, yet they differ in degree of affective instability. Recent work has begun to elucidate the neural (structural and functional) and cognitive-behavioral underpinnings of BPD, although some initial studies of brain structure have reached divergent conclusions. AvPD, however, has been almost unexamined in the cognitive neuroscience literature. In the present study we investigated group differences among 29 BPD patients, 27 AvPD patients, and 29 healthy controls (HC) in structural brain volumes using voxel-based morphometry (VBM) in five anatomically-defined regions of interest: amygdala, hippocampus, medial prefrontal cortex (MPFC), dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC). We also examined the relationship between individual differences in brain structure and self-reported anxiety and affective instability in each group. We observed reductions in MPFC and ACC volume in BPD relative to HC, with no significant difference among patient groups. No group differences in amygdala volume were found. However, BPD and AvPD patients each showed a positive relationship between right amygdala volume and state-related anxiety. By contrast, in HC there was an inverse relationship between MPFC volume and state and trait-related anxiety as well as between bilateral DLPFC volume and affective instability. Current sample sizes did not permit examination of gender effects upon structure-symptom correlations. These results shed light on potentially protective, or compensatory, aspects of brain structure in these populations-namely, relatively reduced amygdala volume or relatively enhanced MPFC and DLPFC volume. Published by Elsevier B.V.
LoPresti, Matthew L; Schon, Karin; Tricarico, Marisa D; Swisher, Jascha D; Celone, Kim A; Stern, Chantal E
2008-04-02
During everyday interactions, we continuously monitor and maintain information about different individuals and their changing emotions in memory. Yet to date, working memory (WM) studies have primarily focused on mechanisms for maintaining face identity, but not emotional expression, and studies investigating the neural basis of emotion have focused on transient activity, not delay related activity. The goal of this functional magnetic resonance imaging study was to investigate WM for two critical social cues: identity and emotion. Subjects performed a delayed match-to-sample task that required them to match either the emotional expression or the identity of a face after a 10 s delay. Neuroanatomically, our predictions focused on the orbitofrontal cortex (OFC) and the amygdala, as these regions have previously been implicated in emotional processing and long-term memory, and studies have demonstrated sustained OFC and medial temporal lobe activity during visual WM. Consistent with previous studies, transient activity during the sample period representing emotion and identity was found in the superior temporal sulcus and inferior occipital cortex, respectively. Sustained delay-period activity was evident in OFC, amygdala, and hippocampus, for both emotion and identity trials. These results suggest that, although initial processing of emotion and identity is accomplished in anatomically segregated temporal and occipital regions, sustained delay related memory for these two critical features is held by the OFC, amygdala and hippocampus. These regions share rich connections, and have been shown previously to be necessary for binding features together in long-term memory. Our results suggest a role for these regions in active maintenance as well.
Siep, Nicolette; Roefs, Anne; Roebroeck, Alard; Havermans, Remco; Bonte, Milene L; Jansen, Anita
2009-03-02
Research indicates that dysfunctional food reward processing may contribute to pathological eating behaviour. It is widely recognized that both the amygdala and the orbitofrontal cortex (OFC) are essential parts of the brain's reward circuitry. The aims of this fMRI study were (1) to examine the effects of food deprivation and calorie content on reward processing in the amygdala and the OFC, and (2) to examine whether an explicit evaluation of foods is necessary for OFC, but not amygdalar activity. Addressing the first aim, healthy females were presented with high and low calorie food pictures while being either hungry or satiated. For the second aim, attention focus was manipulated by directing participants' attention either to the food or to a neutral aspect. This study shows that hunger interacts with the energy content of foods, modulating activity in the posterior cingulate cortex, medial OFC, insula, caudate putamen and fusiform gyrus. Results show that satiated healthy females show an increased reward processing in response to low calorie foods. Confirming our hypothesis, food deprivation increased activity following the presentation of high calorie foods, which may explain why treatments of obesity energy restricting diets often are unsuccessful. Interestingly, activity in both the amygdala and mOFC was only evident when participants explicitly evaluated foods. However, attention independent activity was found in the mPFC following the high calorie foods cues when participants where hungry. Current findings indicate that research on how attention modulates food reward processing might prove especially insightful in the study of the neural substrates of healthy and pathological eating behaviour.
Koch, Saskia B J; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda
2017-09-01
Posttraumatic stress disorder (PTSD) is a disabling psychiatric disorder that has been associated with lower white matter integrity of tracts connecting the prefrontal cortex with limbic regions. However, previous diffusion tensor imaging (DTI) findings have been inconsistent, showing high variability in the exact location and direction of effects. We performed probabilistic tractography of the bilateral uncinate fasciculus, cingulum and superior longitudinal fasciculus (both temporal and parietal projections) in male and female police officers with and without PTSD. We included 38 (21 men) police officers with and 39 (20 men) without PTSD in our analyses. Compared with trauma-exposed controls, patients with PTSD showed significantly higher mean diffusivity of the right uncinate fasciculus, the major white matter tract connecting the amygdala to the prefrontal cortex ( p = 0.012). No other significant between-group or group × sex differences were observed. Mean diffusivity of the right uncinate fasciculus was positively associated with anxiety symptoms ( r = 0.410, p = 0.013) in patients with PTSD as well as with amygdala activity ( r = 0.247, p = 0.038) and ventromedial prefrontal cortex (vmPFC) activity ( r = 0.283, p = 0.016) in all participants in response to happy and neutral faces. Our specific sample of trauma-exposed police officers limits the generalizability of our findings to other PTSD patient groups (e.g., civilian trauma). Patients with PTSD showed diminished structural connectivity between the amygdala and vmPFC, which was correlated with higher anxiety symptoms and increased functional activity of these brain regions. Our findings provide additional evidence for the prevailing neurocircuitry model of PTSD, postulating that ineffective communication between the amygdala and vmPFC underlies decreased top-down control over fear responses.
Koch, Saskia B.J.; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L.; Veltman, Dick J.; Olff, Miranda
2017-01-01
Background Posttraumatic stress disorder (PTSD) is a disabling psychiatric disorder that has been associated with lower white matter integrity of tracts connecting the prefrontal cortex with limbic regions. However, previous diffusion tensor imaging (DTI) findings have been inconsistent, showing high variability in the exact location and direction of effects. Methods We performed probabilistic tractography of the bilateral uncinate fasciculus, cingulum and superior longitudinal fasciculus (both temporal and parietal projections) in male and female police officers with and without PTSD. Results We included 38 (21 men) police officers with and 39 (20 men) without PTSD in our analyses. Compared with trauma-exposed controls, patients with PTSD showed significantly higher mean diffusivity of the right uncinate fasciculus, the major white matter tract connecting the amygdala to the prefrontal cortex (p = 0.012). No other significant between-group or group × sex differences were observed. Mean diffusivity of the right uncinate fasciculus was positively associated with anxiety symptoms (r = 0.410, p = 0.013) in patients with PTSD as well as with amygdala activity (r = 0.247, p = 0.038) and ventromedial prefrontal cortex (vmPFC) activity (r = 0.283, p = 0.016) in all participants in response to happy and neutral faces. Limitations Our specific sample of trauma-exposed police officers limits the generalizability of our findings to other PTSD patient groups (e.g., civilian trauma). Conclusion Patients with PTSD showed diminished structural connectivity between the amygdala and vmPFC, which was correlated with higher anxiety symptoms and increased functional activity of these brain regions. Our findings provide additional evidence for the prevailing neurocircuitry model of PTSD, postulating that ineffective communication between the amygdala and vmPFC underlies decreased top–down control over fear responses. PMID:28452713
Deal, Alex L.; Erickson, Kristen J.; Shiers, Stephanie I.; Burman, Michael A.
2016-01-01
Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the 3rd or 4th weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the 3rd and 4th weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. PMID:26820587
Di, Xin; Huang, Jia; Biswal, Bharat B
2017-01-01
Understanding functional connectivity of the amygdala with other brain regions, especially task modulated connectivity, is a critical step toward understanding the role of the amygdala in emotional processes and the interactions between emotion and cognition. The present study performed coordinate-based meta-analysis on studies of task modulated connectivity of the amygdala which used psychophysiological interaction (PPI) analysis. We first analyzed 49 PPI studies on different types of tasks using activation likelihood estimation (ALE) meta-analysis. Widespread cortical and subcortical regions showed consistent task modulated connectivity with the amygdala, including the medial frontal cortex, bilateral insula, anterior cingulate, fusiform gyrus, parahippocampal gyrus, thalamus, and basal ganglia. These regions were in general overlapped with those showed coactivations with the amygdala, suggesting that these regions and amygdala are not only activated together, but also show different levels of interactions during tasks. Further analyses with subsets of PPI studies revealed task specific functional connectivities with the amygdala that were modulated by fear processing, face processing, and emotion regulation. These results suggest a dynamic modulation of connectivity upon task demands, and provide new insights on the functions of the amygdala in different affective and cognitive processes. The meta-analytic approach on PPI studies may offer a framework toward systematical examinations of task modulated connectivity.
Normalizing effect of heroin maintenance treatment on stress-induced brain connectivity
Walter, Marc; Gerber, Hana; Seifritz, Erich; Brenneisen, Rudolf; Wiesbeck, Gerhard A.; Riecher-Rössler, Anita; Lang, Undine E.; Borgwardt, Stefan
2015-01-01
Recent evidence has shown that a single maintenance dose of heroin attenuates psychophysiological stress responses in heroin-dependent patients, probably reflecting the effectiveness of heroin-assisted therapies for the treatment of severe heroin addiction. However, the underlying neural circuitry of these effects has not yet been investigated. Using a cross-over, double-blind, vehicle-controlled design, 22 heroin-dependent and heroin-maintained outpatients from the Centre of Substance Use Disorders at the University Hospital of Psychiatry in Basel were studied after heroin and placebo administration, while 17 healthy controls from the general population were included for placebo administration only. Functional magnetic resonance imaging was used to detect brain responses to fearful faces and dynamic causal modelling was applied to compute fear-induced modulation of connectivity within the emotional face network. Stress responses were assessed by hormone releases and subjective ratings. Relative to placebo, heroin acutely reduced the fear-induced modulation of connectivity from the left fusiform gyrus to the left amygdala and from the right amygdala to the right orbitofrontal cortex in dependent patients. Both of these amygdala-related connectivity strengths were significantly increased in patients after placebo treatment (acute withdrawal) compared to healthy controls, whose connectivity estimates did not differ from those of patients after heroin injection. Moreover, we found positive correlations between the left fusiform gyrus to amygdala connectivity and different stress responses, as well as between the right amygdala to orbitofrontal cortex connectivity and levels of craving. Our findings indicate that the increased amygdala-related connectivity during fearful face processing after the placebo treatment in heroin-dependent patients transiently normalizes after acute heroin maintenance treatment. Furthermore, this study suggests that the assessment of amygdala-related connectivity during fear processing may provide a prognostic tool to assess stress levels in heroin-dependent patients and to quantify the efficacy of maintenance treatments in drug addiction. PMID:25414039
Typical and atypical neurodevelopment for face specialization: An fMRI study
Joseph, Jane E.; Zhu, Xun; Gundran, Andrew; Davies, Faraday; Clark, Jonathan D.; Ruble, Lisa; Glaser, Paul; Bhatt, Ramesh S.
2014-01-01
Individuals with Autism Spectrum Disorder (ASD) and their relatives process faces differently from typically developed (TD) individuals. In an fMRI face-viewing task, TD and undiagnosed sibling (SIB) children (5–18 years) showed face specialization in the right amygdala and ventromedial prefrontal cortex (vmPFC), with left fusiform and right amygdala face specialization increasing with age in TD subjects. SIBs showed extensive antero-medial temporal lobe activation for faces that was not present in any other group, suggesting a potential compensatory mechanism. In ASD, face specialization was minimal but increased with age in the right fusiform and decreased with age in the left amygdala, suggesting atypical development of a frontal-amygdala-fusiform system which is strongly linked to detecting salience and processing facial information. PMID:25479816
Huang, Wen-Chin; Chen, Youjun; Page, Damon T
2016-11-15
Multiple autism risk genes converge on the regulation of mTOR signalling, which is a key effector of neuronal growth and connectivity. We show that mTOR signalling is dysregulated during early postnatal development in the cerebral cortex of germ-line heterozygous Pten mutant mice (Pten +/- ), which model macrocephaly/autism syndrome. The basolateral amygdala (BLA) receives input from subcortical-projecting neurons in the medial prefrontal cortex (mPFC). Analysis of mPFC to BLA axonal projections reveals that Pten +/- mice exhibit increased axonal branching and connectivity, which is accompanied by increased activity in the BLA in response to social stimuli and social behavioural deficits. The latter two phenotypes can be suppressed by pharmacological inhibition of S6K1 during early postnatal life or by reducing the activity of mPFC-BLA circuitry in adulthood. These findings identify a mechanism of altered connectivity that has potential relevance to the pathophysiology of macrocephaly/autism syndrome and autism spectrum disorders featuring dysregulated mTOR signalling.
Hunger-Dependent Enhancement of Food Cue Responses in Mouse Postrhinal Cortex and Lateral Amygdala.
Burgess, Christian R; Ramesh, Rohan N; Sugden, Arthur U; Levandowski, Kirsten M; Minnig, Margaret A; Fenselau, Henning; Lowell, Bradford B; Andermann, Mark L
2016-09-07
The needs of the body can direct behavioral and neural processing toward motivationally relevant sensory cues. For example, human imaging studies have consistently found specific cortical areas with biased responses to food-associated visual cues in hungry subjects, but not in sated subjects. To obtain a cellular-level understanding of these hunger-dependent cortical response biases, we performed chronic two-photon calcium imaging in postrhinal association cortex (POR) and primary visual cortex (V1) of behaving mice. As in humans, neurons in mouse POR, but not V1, exhibited biases toward food-associated cues that were abolished by satiety. This emergent bias was mirrored by the innervation pattern of amygdalo-cortical feedback axons. Strikingly, these axons exhibited even stronger food cue biases and sensitivity to hunger state and trial history. These findings highlight a direct pathway by which the lateral amygdala may contribute to state-dependent cortical processing of motivationally relevant sensory cues. Published by Elsevier Inc.
Huang, Wen-Chin; Chen, Youjun; Page, Damon T.
2016-01-01
Multiple autism risk genes converge on the regulation of mTOR signalling, which is a key effector of neuronal growth and connectivity. We show that mTOR signalling is dysregulated during early postnatal development in the cerebral cortex of germ-line heterozygous Pten mutant mice (Pten+/−), which model macrocephaly/autism syndrome. The basolateral amygdala (BLA) receives input from subcortical-projecting neurons in the medial prefrontal cortex (mPFC). Analysis of mPFC to BLA axonal projections reveals that Pten+/− mice exhibit increased axonal branching and connectivity, which is accompanied by increased activity in the BLA in response to social stimuli and social behavioural deficits. The latter two phenotypes can be suppressed by pharmacological inhibition of S6K1 during early postnatal life or by reducing the activity of mPFC–BLA circuitry in adulthood. These findings identify a mechanism of altered connectivity that has potential relevance to the pathophysiology of macrocephaly/autism syndrome and autism spectrum disorders featuring dysregulated mTOR signalling. PMID:27845329
A multi-pathway hypothesis for human visual fear signaling
Silverstein, David N.; Ingvar, Martin
2015-01-01
A hypothesis is proposed for five visual fear signaling pathways in humans, based on an analysis of anatomical connectivity from primate studies and human functional connectvity and tractography from brain imaging studies. Earlier work has identified possible subcortical and cortical fear pathways known as the “low road” and “high road,” which arrive at the amygdala independently. In addition to a subcortical pathway, we propose four cortical signaling pathways in humans along the visual ventral stream. All four of these traverse through the LGN to the visual cortex (VC) and branching off at the inferior temporal area, with one projection directly to the amygdala; another traversing the orbitofrontal cortex; and two others passing through the parietal and then prefrontal cortex, one excitatory pathway via the ventral-medial area and one regulatory pathway via the ventral-lateral area. These pathways have progressively longer propagation latencies and may have progressively evolved with brain development to take advantage of higher-level processing. Using the anatomical path lengths and latency estimates for each of these five pathways, predictions are made for the relative processing times at selective ROIs and arrival at the amygdala, based on the presentation of a fear-relevant visual stimulus. Partial verification of the temporal dynamics of this hypothesis might be accomplished using experimental MEG analysis. Possible experimental protocols are suggested. PMID:26379513
Stimulation of the basolateral amygdala improves the acquisition of a motor skill.
Bergado, Jorge A; Rojas, Yeneissy; Capdevila, Vladimir; González, Odalys; Almaguer-Melian, William
2006-01-01
We have previously shown that the stimulation of limbic structures related to affective life such as the amygdale can improve and reinforce neural plastic processes related to hippocampus-dependent forms of explicit memory, as spatial memory and LTP. We now assessed whether this effect is restricted to the mentioned structure and memory type, or represents a more general form of modulatory influence. Young, male Sprague Dawley rats were implanted stereotactically with one electrode in the basolateral amygdala (BLA) and trained to acquire a motor skill using their right anterior limb. A group of animals received 3 trains of 15 impulses at the BLA 15 minutes after each daily training session. A second group of implanted animals was handled in the same way, but not stimulated, while a third group was not implanted. After reaching the training criterion the left motor cortex was mapped by the observation of the movements induced by stimuli applied in discrete points of the cortex. Cortical representation of the anterior limb was increased in all trained animals, showing that the motor cortex is involved in the acquisition of the new skill. Animals receiving stimulation of the BLA showed similar cortical changes, but learned faster than non-stimulated controls. Reinforcement of neural plasticity by the activation of the amygdala is not restricted to hippocampus-dependent explicit memory, but it might represent a universal mechanism to modulate plasticity.
Miranda, María I.; McGaugh, James L.
2004-01-01
There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the acquisition/consolidation of conditioned taste aversion (CTA). Posttraining infusion into the IC of 0.3 μg oxotremorine and 1.25 μg 8-Br-cAMP enhanced IA retention. Infusions of 8-Br-cAMP, but not oxotremorine, into the IC enhanced taste aversion. The experiments also examined whether noradrenergic activity in the basolateral amygdala (BLA) is critical in enabling the enhancement of CTA and IA memory induced by drug infusions administered into the IC. For both CTA and IA, ipsilateral infusions of β-adrenergic antagonist propranolol administered into the BLA blocked the retention-enhancing effect of 8-Br-cAMP or oxotremorine infused into the IC. These results indicate that the IC is involved in the consolidation of memory for both IA and CTA, and this effect requires intact noradrenergic activity into the BLA. These findings provide additional evidence that the BLA interacts with other brain regions, including sensory cortex, in modulating memory consolidation. PMID:15169861
Amygdala Damage Affects Event-Related Potentials for Fearful Faces at Specific Time Windows
Rotshtein, Pia; Richardson, Mark P; Winston, Joel S; Kiebel, Stefan J; Vuilleumier, Patrik; Eimer, Martin; Driver, Jon; Dolan, Raymond J
2010-01-01
The amygdala is known to influence processing of threat-related stimuli in distant brain regions, including visual cortex. The time-course of these distant influences is unknown, although this information is important for resolving debates over likely pathways mediating an apparent rapidity in emotional processing. To address this, we recorded event-related potentials (ERPs) to seen fearful face expressions, in preoperative patients with medial temporal lobe epilepsy who had varying degrees of amygdala pathology, plus healthy volunteers. We found that amygdala damage diminished ERPs for fearful versus neutral faces within the P1 time-range, ∼100–150 ms, and for a later component at ∼500–600 ms. Individual severity of amygdala damage determined the magnitude of both these effects, consistent with a causal amygdala role. By contrast, amygdala damage did not affect explicit perception of fearful expressions nor a distinct emotional ERP effect at 150–250 ms. These results demonstrate two distinct time-points at which the amygdala influences fear processing. The data also demonstrate that while not all aspects of expression processing are disrupted by amygdala damage, there is a crucial impact on an early P1 component. These findings are consistent with the existence of multiple processing stages or routes for fearful faces that vary in their dependence on amygdala function. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. PMID:20017134
Volumetric cerebral characteristics of children exposed to opiates and other substances in utero
Walhovd, K. B.; Moe, V.; Slinning, K.; Due-Tønnessen, P.; Bjørnerud, A.; Dale, A. M.; van der Kouwe, A.; Quinn, B. T.; Kosofsky, B.; Greve, D.; Fischl, B.
2007-01-01
Morphometric cerebral characteristics were studied in children with prenatal poly-substance exposure (n =14) compared to controls (n = 14) without such exposure. Ten of the substance exposed children were born to mothers who used opiates (heroin) throughout the pregnancy. Groups were compared across 16 brain measures: cortical gray matter, cerebral white matter, hippocampus, amygdala, thalamus, accumbens area, caudate, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, lateral ventricles, inferior lateral ventricles, and the 3rd and 4th ventricles. In addition, continuous measurement of thickness across the entire cortical mantle was performed. Volumetric characteristics were correlated with ability and questionnaire assessments 2 years prior to scan. Compared to controls, the substance-exposed children had smaller intracranial and brain volumes, including smaller cerebral cortex, amygdala, accumbens area, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, and inferior lateral ventricles, and thinner cortex of the right anterior cingulate and lateral orbitofrontal cortex. Pallidum and putamen appeared especially reduced in the subgroup exposed to opiates. Only volumes of the right anterior cingulate, the right lateral orbitofrontal cortex and the accumbens area, showed some association with ability and questionnaire measures. The sample studied is rare, and hence small, so conclusions cannot be drawn with certainty. Morphometric group differences were observed, but associations with previous behavioral assessment were generally weak. Some of the volumetric differences, particularly thinner cortex in part of the right lateral orbitofrontal cortex, may be moderately involved in cognitive and behavioral difficulties more frequently experienced by opiate and poly-substance exposed children. PMID:17513131
Correlation between brain injury and dysphagia in adult patients with stroke
Nunes, Maria Cristina de Alencar; Jurkiewicz, Ari Leon; Santos, Rosane Sampaio; Furkim, Ana Maria; Massi, Giselle; Pinto, Gisele Sant Ana; Lange, Marcos Christiano
2012-01-01
Summary Introduction: In the literature, the incidence of oropharyngeal dysphagia in patients with cerebrovascular accident (AVE) ranges 20–90%. Some studies correlate the location of a stroke with dysphagia, while others do not. Objective: To correlate brain injury with dysphagia in patients with stroke in relation to the type and location of stroke. Method: A prospective study conducted at the Hospital de Clinicas with 30 stroke patients: 18 women and 12 men. All patients underwent clinical evaluation and swallowing nasolaryngofibroscopy (FEES®), and were divided based on the location of the injury: cerebral cortex, cerebellar cortex, subcortical areas, and type: hemorrhagic or transient ischemic. Results: Of the 30 patients, 18 had ischemic stroke, 10 had hemorrhagic stroke, and 2 had transient stroke. Regarding the location, 10 lesions were in the cerebral cortex, 3 were in the cerebral and cerebellar cortices, 3 were in the cerebral cortex and subcortical areas, and 3 were in the cerebral and cerebellar cortices and subcortical areas. Cerebral cortex and subcortical area ischemic strokes predominated in the clinical evaluation of dysphagia. In FEES®, decreased laryngeal sensitivity persisted following cerebral cortex and ischemic strokes. Waste in the pharyngeal recesses associated with epiglottic valleculae predominated in the piriform cortex in all lesion areas and in ischemic stroke. A patient with damage to the cerebral and cerebellar cortices from an ischemic stroke exhibited laryngeal penetration and tracheal aspiration of liquid and honey. Conclusion: Dysphagia was prevalent when a lesion was located in the cerebral cortex and was of the ischemic type. PMID:25991951
ERIC Educational Resources Information Center
Osorio-Gómez, Daniel; Guzmán-Ramos, Kioko; Bermúdez-Rattoni, Federico
2017-01-01
The insular cortex (IC) is required for conditioned taste aversion (CTA) retrieval. However, it remains unknown which cortical neurotransmitters levels are modified upon CTA retrieval. Using in vivo microdialysis, we observed that there were clear elevations in extracellular glutamate, norepinephrine, and dopamine in and around the center of the…
Brain Responses during the Anticipation of Dyspnea
Stoeckel, M. Cornelia; Esser, Roland W.; Büchel, Christian
2016-01-01
Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea. PMID:27648309
Brain Responses during the Anticipation of Dyspnea.
Stoeckel, M Cornelia; Esser, Roland W; Gamer, Matthias; Büchel, Christian; von Leupoldt, Andreas
2016-01-01
Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.
Impaired cortico-limbic functional connectivity in schizophrenia patients during emotion processing
Comte, Magali; Zendjidjian, Xavier Y; Coull, Jennifer T; Cancel, Aïda; Boutet, Claire; Schneider, Fabien C; Sage, Thierry; Lazerges, Pierre-Emmanuel; Jaafari, Nematollah; Ibrahim, El Chérif; Azorin, Jean-Michel; Blin, Olivier; Fakra, Eric
2018-01-01
Abstract Functional dysconnection is increasingly recognized as a core pathological feature in schizophrenia. Aberrant interactions between regions of the cortico-limbic circuit may underpin the abnormal emotional processing associated with this illness. We used a functional magnetic resonance imaging paradigm designed to dissociate the various components of the cortico-limbic circuit (i.e. a ventral automatic circuit that is intertwined with a dorsal cognitive circuit), to explore bottom-up appraisal as well as top-down control during emotion processing. In schizophrenia patients compared with healthy controls, bottom-up processes were associated with reduced interaction between the amygdala and both the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex. Contrariwise, top-down control processes led to stronger connectivity between the ventral affective and the dorsal cognitive circuits, i.e. heightened interactions between the ventral ACC and the dorsolateral prefrontal cortex as well as between dorsal and ventral ACC. These findings offer a comprehensive view of the cortico-limbic dysfunction in schizophrenia. They confirm previous results of impaired propagation of information between the amygdala and the prefrontal cortex and suggest a defective functional segregation in the dorsal cognitive part of the cortico-limbic circuit. PMID:29069508
Fuentes, Paola; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Rosell, Patricia; Costumero, Víctor; Ávila, César
2012-09-01
The Behavioral Inhibition System (BIS) is described in Gray's Reinforcement Sensitivity Theory as a hypothetical construct that mediates anxiety in animals and humans. The neuroanatomical correlates of this system are not fully clear, although they are known to involve the amygdala, the septohippocampal system, and the prefrontal cortex. Previous neuroimaging research has related individual differences in BIS with regional volume and functional variations in the prefrontal cortex, amygdala, and hippocampal formation. The aim of the present work was to study BIS-related individual differences and their relationship with brain regional volume. BIS sensitivity was assessed through the BIS/BAS questionnaire in a sample of male participants (N = 114), and the scores were correlated with brain regional volume in a voxel-based morphometry analysis. The results show a negative correlation between the BIS and the volume of the right and medial orbitofrontal cortices and the precuneus. Our results and previous findings suggest that individual differences in anxiety-related personality traits and their related psychopathology may be associated with reduced brain volume in certain structures relating to emotional control (i.e., the orbitofrontal cortex) and self-consciousness (i.e., the precuneus), as shown by our results.
Sex differences in structural brain asymmetry predict overt aggression in early adolescents.
Visser, Troy A W; Ohan, Jeneva L; Whittle, Sarah; Yücel, Murat; Simmons, Julian G; Allen, Nicholas B
2014-04-01
The devastating social, emotional and economic consequences of human aggression are laid bare nightly on newscasts around the world. Aggression is principally mediated by neural circuitry comprising multiple areas of the prefrontal cortex and limbic system, including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), amygdala and hippocampus. A striking characteristic of these regions is their structural asymmetry about the midline (i.e. left vs right hemisphere). Variations in these asymmetries have been linked to clinical disorders characterized by aggression and the rate of aggressive behavior in psychiatric patients. Here, we show for the first time that structural asymmetries in prefrontal cortical areas are also linked to aggression in a normal population of early adolescents. Our findings indicate a relationship between parent reports of aggressive behavior in adolescents and structural asymmetries in the limbic and paralimbic ACC and OFC, and moreover, that this relationship varies by sex. Furthermore, while there was no relationship between aggression and structural asymmetries in the amygdala or hippocampus, hippocampal volumes did predict aggression in females. Taken together, the results suggest that structural asymmetries in the prefrontal cortex may influence human aggression, and that the anatomical basis of aggression varies substantially by sex.
Amygdala responses to unpleasant pictures are influenced by task demands and positive affect trait
Sanchez, Tiago A.; Mocaiber, Izabela; Erthal, Fatima S.; Joffily, Mateus; Volchan, Eliane; Pereira, Mirtes G.; de Araujo, Draulio B.; Oliveira, Leticia
2015-01-01
The role of attention in emotional processing is still the subject of debate. Recent studies have found that high positive affect in approach motivation narrows attention. Furthermore, the positive affect trait has been suggested as an important component for determining human variability in threat reactivity. We employed functional magnetic resonance imaging to investigate whether different states of attention control would modulate amygdala responses to highly unpleasant pictures relative to neutral and whether this modulation would be influenced by the positive affect trait. Participants (n = 22, 12 male) were scanned while viewing neutral (people) or unpleasant pictures (mutilated bodies) flanked by two peripheral bars. They were instructed to (a) judge the picture content as unpleasant or neutral or (b) to judge the difference in orientation between the bars in an easy condition (0 or 90∘ orientation difference) or (c) in a hard condition (0 or 6∘ orientation difference). Whole brain analysis revealed a task main effect of brain areas related to the experimental manipulation of attentional control, including the amygdala, dorsolateral prefrontal cortex, and posterior parietal cortex. Region of interest analysis showed an inverse correlation (r = -0.51, p < 0.01) between left amygdala activation and positive affect level when participants viewed unpleasant stimuli and judged bar orientation in the easy condition. This result suggests that subjects with high positive affect exhibit lower amygdala reactivity to distracting unpleasant pictures. In conclusion, the current study suggests that positive affect modulates attention effect on unpleasant pictures, therefore attenuating emotional responses. PMID:25788883
Shenhav, Amitai; Greene, Joshua D
2014-03-26
A decade's research highlights a critical dissociation between automatic and controlled influences on moral judgment, which is subserved by distinct neural structures. Specifically, negative automatic emotional responses to prototypically harmful actions (e.g., pushing someone off of a footbridge) compete with controlled responses favoring the best consequences (e.g., saving five lives instead of one). It is unknown how such competitions are resolved to yield "all things considered" judgments. Here, we examine such integrative moral judgments. Drawing on insights from research on self-interested, value-based decision-making in humans and animals, we test a theory concerning the respective contributions of the amygdala and ventromedial prefrontal cortex (vmPFC) to moral judgment. Participants undergoing fMRI responded to moral dilemmas, separately evaluating options for their utility (Which does the most good?), emotional aversiveness (Which feels worse?), and overall moral acceptability. Behavioral data indicate that emotional aversiveness and utility jointly predict "all things considered" integrative judgments. Amygdala response tracks the emotional aversiveness of harmful utilitarian actions and overall disapproval of such actions. During such integrative moral judgments, the vmPFC is preferentially engaged relative to utilitarian and emotional assessments. Amygdala-vmPFC connectivity varies with the role played by emotional input in the task, being the lowest for pure utilitarian assessments and the highest for pure emotional assessments. These findings, which parallel those of research on self-interested economic decision-making, support the hypothesis that the amygdala provides an affective assessment of the action in question, whereas the vmPFC integrates that signal with a utilitarian assessment of expected outcomes to yield "all things considered" moral judgments.
Preferential attention to animals and people is independent of the amygdala
Tsuchiya, Naotsugu; New, Joshua; Hurlemann, Rene; Adolphs, Ralph
2015-01-01
The amygdala is thought to play a critical role in detecting salient stimuli. Several studies have taken ecological approaches to investigating such saliency, and argue for domain-specific effects for processing certain natural stimulus categories, in particular faces and animals. Linking this to the amygdala, neurons in the human amygdala have been found to respond strongly to faces and also to animals. However, the amygdala’s necessary role for such category-specific effects at the behavioral level remains untested. Here we tested four rare patients with bilateral amygdala lesions on an established change-detection protocol. Consistent with prior published studies, healthy controls showed reliably faster and more accurate detection of people and animals, as compared with artifacts and plants. So did all four amygdala patients: there were no differences in phenomenal change blindness, in behavioral reaction time to detect changes or in eye-tracking measures. The findings provide decisive evidence against a critical participation of the amygdala in rapid initial processing of attention to animate stimuli, suggesting that the necessary neural substrates for this phenomenon arise either in other subcortical structures (such as the pulvinar) or within the cortex itself. PMID:24795434
Opposing Amygdala and Ventral Striatum Connectivity During Emotion Identification
Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James
2011-01-01
Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed a well-characterized emotion identification task. As expected, the amygdala responded to THREAT (angry or fearful) faces more than NON-THREAT (sad or happy) faces. A functional connectivity analysis of the time series from an anatomically defined amygdala seed revealed a strong anti-correlation between the amygdala and the ventral striatum /ventral pallidum, consistent with an opposing role for these regions in during emotion identification. A second functional connectivity analysis (psychophysiological interaction) investigating relative connectivity on THREAT vs. NON-THREAT trials demonstrated that the amygdala had increased connectivity with the orbitofrontal cortex during THREAT trials, whereas the ventral striatum demonstrated increased connectivity with the posterior hippocampus on NON-THREAT trials. These results indicate that activity in the amygdala and ventral striatum may be inversely related, and that both regions may provide opposing affective bias signals during emotion identification. PMID:21600684
Social scaffolding of human amygdala-mPFCcircuit development.
Tottenham, Nim
2015-01-01
Strong evidence indicates that reciprocal connections between the amygdala and the medial prefrontal cortex (mPFC) support fundamental aspects of emotional behavior in adulthood. However, this circuitry is slow to develop in humans, exhibiting immaturity in childhood. The argument is made that the development of this circuitry in humans is intimately associated with caregiving, such that parental availability during childhood provides important and enduring scaffolding of neuroaffective processes that ultimately form of the nature of the adult phenotype.
The changing face of emotion: age-related patterns of amygdala activation to salient faces.
Todd, Rebecca M; Evans, Jennifer W; Morris, Drew; Lewis, Marc D; Taylor, Margot J
2011-01-01
The present study investigated age-related differences in the amygdala and other nodes of face-processing networks in response to facial expression and familiarity. fMRI data were analyzed from 31 children (3.5-8.5 years) and 14 young adults (18-33 years) who viewed pictures of familiar (mothers) and unfamiliar emotional faces. Results showed that amygdala activation for faces over a scrambled image baseline increased with age. Children, but not adults, showed greater amygdala activation to happy than angry faces; in addition, amygdala activation for angry faces increased with age. In keeping with growing evidence of a positivity bias in young children, our data suggest that children find happy faces to be more salient or meaningful than angry faces. Both children and adults showed preferential activation to mothers' over strangers' faces in a region of rostral anterior cingulate cortex associated with self-evaluation, suggesting that some nodes in frontal evaluative networks are active early in development. This study presents novel data on neural correlates of face processing in childhood and indicates that preferential amygdala activation for emotional expressions changes with age.
Contreras, Carlos M; Gutiérrez-García, Ana G
2017-05-10
Amygdala-medial prefrontal cortex (mPFC) connections partially regulate fear, anxiety, and the acquisition of conditioned fear. Progesterone exerts some effects on anxiety and fear. Currently unknown, however, are the actions of progesterone on the responsivity of amygdala-mPFC connections and possible sex differences. We performed single-unit extracellular recordings from the prelimbic (PL) and infralimbic (IL) cortices of the mPFC during stimulation of the basal amygdala (BA) in anesthetized male and diestrus female rats. Basal amygdala stimulation produced an initial excitatory paucisynaptic response that was similar between sexes and unaffected by progesterone. A long-lasting inhibitory response followed the initial brief excitatory response, which was more pronounced in the PL region in males. The unit activity ratio analysis indicated that progesterone negated the sex difference in the PL region response to BA stimulation. The results suggest that progesterone decreases the responsivity to amygdala stimulation, particularly in males compared with diestrus females, which may be related to sex differences in the strategies to cope with threatening situations. Copyright © 2017 Elsevier B.V. All rights reserved.
Pizzi, Stefano Delli; Chiacchiaretta, Piero; Mantini, Dante; Bubbico, Giovanna; Ferretti, Antonio; Edden, Richard A.; Di Giulio, Camillo; Onofrj, Marco
2017-01-01
The amygdala–medial prefrontal cortex (mPFC) circuit plays a key role in emotional processing. GABA-ergic inhibition within the mPFC has been suggested to play a role in the shaping of amygdala activity. However, the functional and neurochemical interactions within the amygdala–mPFC circuits and their relevance to emotional processing remain unclear. To investigate this circuit, we obtained resting-state functional magnetic resonance imaging (rs-fMRI) and proton MR spectroscopy in 21 healthy subjects to assess the potential relationship between GABA levels within mPFC and the amygdala–mPFC functional connectivity. Trait anxiety was assessed using the State-Trait Anxiety Inventory (STAI-Y2). Partial correlations were used to measure the relationships among the functional connectivity outcomes, mPFC GABA levels and STAI-Y2 scores. Age, educational level and amount of the gray and white matters within 1H-MRS volume of interest were included as nuisance variables. The rs-fMRI signals of the amygdala and the vmPFC were significantly anti-correlated. This negative functional coupling between the two regions was inversely correlated with the GABA+/tCr level within the mPFC and the STAI-Y2 scores. We suggest a close relationship between mPFC GABA levels and functional interactions within the amygdala-vmPFC circuit, providing new insights in the physiology of emotion. PMID:27566606
Sladky, Ronald; Spies, Marie; Hoffmann, Andre; Kranz, Georg; Hummer, Allan; Gryglewski, Gregor; Lanzenberger, Rupert; Windischberger, Christian; Kasper, Siegfried
2015-03-01
Citalopram and Escitalopram are gold standard pharmaceutical treatment options for affective, anxiety, and other psychiatric disorders. However, their neurophysiologic function on cortico-limbic circuits is incompletely characterized. Here we studied the neuropharmacological influence of Citalopram and Escitalopram on cortico-limbic regulatory processes by assessing the effective connectivity between orbitofrontal cortex (OFC) and amygdala using dynamic causal modeling (DCM) applied to functional MRI data. We investigated a cohort of 15 healthy subjects in a randomized, crossover, double-blind design after 10days of Escitalopram (10mg/d (S)-citalopram), Citalopram (10mg/d (S)-citalopram and 10mg/d (R)-citalopram), or placebo. Subjects performed an emotional face discrimination task, while undergoing functional magnetic resonance imaging (fMRI) scanning at 3 Tesla. As hypothesized, the OFC, in the context of the emotional face discrimination task, exhibited a down-regulatory effect on amygdala activation. This modulatory effect was significantly increased by (S)-citalopram, but not (R)-citalopram. For the first time, this study shows that (1) the differential effects of the two enantiomers (S)- and (R)-citalopram on cortico-limbic connections can be demonstrated by modeling effective connectivity methods, and (2) one of their mechanisms can be linked to an increased inhibition of amygdala activation by the orbitofrontal cortex. Copyright © 2014 Elsevier Inc. All rights reserved.
Satterthwaite, T D; Cook, P A; Bruce, S E; Conway, C; Mikkelsen, E; Satchell, E; Vandekar, S N; Durbin, T; Shinohara, R T; Sheline, Y I
2016-07-01
Depressive symptoms are common in multiple psychiatric disorders and are frequent sequelae of trauma. A dimensional conceptualization of depression suggests that symptoms should be associated with a continuum of deficits in specific neural circuits. However, most prior investigations of abnormalities in functional connectivity have typically focused on a single diagnostic category using hypothesis-driven seed-based analyses. Here, using a sample of 105 adult female participants from three diagnostic groups (healthy controls, n=17; major depression, n=38; and post-traumatic stress disorder, n=50), we examine the dimensional relationship between resting-state functional dysconnectivity and severity of depressive symptoms across diagnostic categories using a data-driven analysis (multivariate distance-based matrix regression). This connectome-wide analysis identified foci of dysconnectivity associated with depression severity in the bilateral amygdala. Follow-up seed analyses using subject-specific amygdala segmentations revealed that depression severity was associated with amygdalo-frontal hypo-connectivity in a network of regions including bilateral dorsolateral prefrontal cortex, anterior cingulate and anterior insula. In contrast, anxiety was associated with elevated connectivity between the amygdala and the ventromedial prefrontal cortex. Taken together, these results emphasize the centrality of the amygdala in the pathophysiology of depressive symptoms, and suggest that dissociable patterns of amygdalo-frontal dysconnectivity are a critical neurobiological feature across clinical diagnostic categories.
Neural circuits involved in the renewal of extinguished fear.
Chen, Weihai; Wang, Yan; Wang, Xiaqing; Li, Hong
2017-07-01
The last 10 years have witnessed a substantial progress in understanding the neural mechanisms for the renewal of the extinguished fear memory. Based on the theory of fear extinction, exposure therapy has been developed as a typical cognitive behavioral therapy for posttraumatic stress disorder. Although the fear memory can be extinguished by repeated presentation of conditioned stimulus without unconditioned stimulus, the fear memory is not erased and tends to relapse outside of extinction context, which is referred to as renewal. Therefore, the renewal is regarded as a great obstruction interfering with the effect of exposure therapy. In recent years, there has been a great deal of studies in understanding the neurobiological underpinnings of fear renewal. These offer a foundation upon which novel therapeutic interventions for the renewal may be built. This review focuses on behavioral, anatomical and electrophysiological studies that interpret roles of the hippocampus, prelimbic cortex and amygdala as well as the connections between them for the renewal of the extinguished fear. Additionally, this review suggests the possible pathways for the renewal: (1) the prelimbic cortex may integrate contextual information from hippocampal inputs and project to the basolateral amygdala to mediate the renewal of extinguished fear memory; the ventral hippocampus may innervate the activities of the basolateral amygdala or the central amygdala directly for the renewal. © 2017 IUBMB Life, 69(7):470-478, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Osorio-Gómez, Daniel; Guzmán-Ramos, Kioko
2017-01-01
The insular cortex (IC) is required for conditioned taste aversion (CTA) retrieval. However, it remains unknown which cortical neurotransmitters levels are modified upon CTA retrieval. Using in vivo microdialysis, we observed that there were clear elevations in extracellular glutamate, norepinephrine, and dopamine in and around the center of the gustatory zone of the IC during CTA retrieval. Additionally, it has been reported that the amygdala–IC interaction is highly involved in CTA memory establishment. Therefore, we evaluated the effects of infusions of an AMPA receptor antagonist (CNQX) and a NMDA receptor antagonist (APV) into the amygdala on CTA retrieval and IC neurotransmitter levels. Infusion of APV into the amygdala impaired glutamate augmentation within the IC, whereas dopamine and norepinephrine levels augmentation persisted and a reliable CTA expression was observed. Conversely, CNQX infusion into the amygdala impaired the aversion response, as well as norepinephrine and dopamine augmentations in the IC. Interestingly, CNQX infusion did not affect glutamate elevation in the IC. To evaluate the functional meaning of neurotransmitters elevations within the IC on CTA response, we infused specific antagonists for the AMPA, NMDA, D1, and β-adrenergic receptor before retrieval. Results showed that activation of AMPA, D1, and β-adrenergic receptors is necessary for CTA expression, whereas NMDA receptors are not involved in the aversion response. PMID:27980072
van den Bulk, Bianca G; Koolschijn, P Cédric M P; Meens, Paul H F; van Lang, Natasja D J; van der Wee, Nic J A; Rombouts, Serge A R B; Vermeiren, Robert R J M; Crone, Eveline A
2013-04-01
Prior developmental functional magnetic resonance imaging (fMRI) studies have demonstrated elevated activation patterns in the amygdala and prefrontal cortex (PFC) in response to viewing emotional faces. As adolescence is a time of substantial variability in mood and emotional responsiveness, the stability of activation patterns could be fluctuating over time. In the current study, 27 healthy adolescents (age: 12-19 years) were scanned three times over a period of six months (mean test-retest interval of three months; final samples N=27, N=22, N=18). At each session, participants performed the same emotional faces task. At first measurement the presentation of emotional faces resulted in heightened activation in bilateral amygdala, bilateral lateral PFC and visual areas including the fusiform face area. Average activation did not differ across test-sessions over time, indicating that at the group level activation patterns in this network do not vary significantly over time. However, using the Intraclass Correlation Coefficient (ICC), fMRI reliability demonstrated only fair reliability for PFC (ICC=0.41-0.59) and poor reliability for the amygdala (ICC<0.4). These findings suggest substantial variability of brain activity over time and may have implications for studies investigating the influence of treatment effects on changes in neural levels in adolescents with psychiatric disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
Contribution of amygdala pathology to comorbid emotional disturbances in temporal lobe epilepsy.
Yilmazer-Hanke, Deniz; O'Loughlin, Elaine; McDermott, Kieran
2016-06-01
The amygdala contributes to the generation and propagation of epileptiform activity in temporal lobe epilepsy (TLE). Ictal symptoms such as fear, dreamy states (déjà vu, memory flashbacks, experiential hallucinations), epigastric auras, or sympathetic outflow with cardiovascular changes are often linked to a seizure focus in the amygdala. However, the amygdala may also play a role in comorbid anxiety, depression, and other psychiatric symptoms experienced in the interictal phase, especially in pharmacoresistant TLE. The few studies available on TLE-related alterations in surgical amygdala specimens indicate loss of both excitatory spiny projection neurons as well as interneurons in nuclei with a cortex-like architecture, which may influence mechanisms of feedforward and feedback inhibition. Studies of the human amygdala indicate global alterations in the density of AMPA/kainate, metabotropic glutamate, γ-aminobutyric acid type A (GABAA ), muscarinic M2 and M3, serotonergic 5-HT1A, and adrenergic α1 receptors. Also, amygdala GABAergic and neuropeptide Y (NPY) systems affected in human TLE are both involved in antiepileptic and anxiolytic effects. Experimental and human positron emission tomography studies indicate changes in amygdala serotonergic, NPY Y1 receptor, neurokinin, and opioid systems in emotional disturbances in TLE. Of particular interest is the reduction in amygdala volume in conjunction with ictal fear, seizure focus in the amygdala, and amygdala and hippocampal sclerosis in TLE patients. In contrast, patients with interictal depression often have an intact or even enlarged amygdala and a negative MRI associated with amygdala hypometabolism, which can be associated with limbic autoimmune encephalitis. These findings suggest a differential role of TLE-related amygdala changes in ictal and interictal emotional disturbances. © 2015 Wiley Periodicals, Inc.
Gray Matter Volume Reduction of Olfactory Cortices in Patients With Idiopathic Olfactory Loss
Yao, Linyin; Pinto, Jayant Marian; Yi, Xiaoli; Li, Li; Peng, Peng
2014-01-01
Idiopathic olfactory loss (IOL) is a common olfactory disorder. Little is known about the pathophysiology of this disease. Previous studies demonstrated decreased olfactory bulb (OB) volume in IOL patients when compared with controls. The aim of our study was to investigate structural brain alterations in areas beyond the OB. We acquired T1-weighted magnetic resonance images from 16 patients with IOL and from 16 age- and sex-matched controls on a 3T scanner. Voxel-based morphometry (VBM) was performed using VBM8 toolbox and SPM8 in a Matlab environment. Psychophysical testing confirmed that patients had higher scores for Toyota and Takagi olfactometer and lower scores for Sniffin’ Sticks olfactory test than controls (t = 46.9, P < 0.001 and t = 21.4, P < 0.001, respectively), consistent with olfactory dysfunction. There was a significant negative correlation between the 2 olfactory tests (r = −0.6, P = 0.01). In a volume of interest analysis including primary and secondary olfactory areas, we found patients with IOL to exhibit gray matter volume loss in the orbitofrontal cortex, anterior cingulate cortex, insular cortex, parahippocampal cortex, and the piriform cortex. The present study indicates that changes in the central brain structures proximal to the OB occur in IOL. Further investigations of this phenomenon may be helpful to elucidate the etiology of IOL. PMID:25240014
Amygdala hyperactivation to angry faces in intermittent explosive disorder.
McCloskey, Michael S; Phan, K Luan; Angstadt, Mike; Fettich, Karla C; Keedy, Sarah; Coccaro, Emil F
2016-08-01
Individuals with intermittent explosive disorder (IED) were previously found to exhibit amygdala hyperactivation and relatively reduced orbital medial prefrontal cortex (OMPFC) activation to angry faces while performing an implicit emotion information processing task during functional magnetic resonance imaging (fMRI). This study examines the neural substrates associated with explicit encoding of facial emotions among individuals with IED. Twenty unmedicated IED subjects and twenty healthy, matched comparison subjects (HC) underwent fMRI while viewing blocks of angry, happy, and neutral faces and identifying the emotional valence of each face (positive, negative or neutral). We compared amygdala and OMPFC reactivity to faces between IED and HC subjects. We also examined the relationship between amygdala/OMPFC activation and aggression severity. Compared to controls, the IED group exhibited greater amygdala response to angry (vs. neutral) facial expressions. In contrast, IED and control groups did not differ in OMPFC activation to angry faces. Across subjects amygdala activation to angry faces was correlated with number of prior aggressive acts. These findings extend previous evidence of amygdala dysfunction in response to the identification of an ecologically-valid social threat signal (processing angry faces) among individuals with IED, further substantiating a link between amygdala hyperactivity to social signals of direct threat and aggression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lehner, Małgorzata; Taracha, Ewa; Turzyńska, Danuta; Sobolewska, Alicja; Hamed, Adam; Kołomańska, Paulina; Skórzewska, Anna; Maciejak, Piotr; Szyndler, Janusz; Bidziński, Andrzej; Płaźnik, Adam
2008-10-10
In this study we have explored differences in animal reactivity to conditioned aversive stimuli using the conditioned fear test (a contextual fear-freezing response), in rats subjected to the selective lesion of the prefrontal cortex serotonergic innervation, and differing in their response to the acute painful stimulation, a footshock (HS--high sensitivity rats, and LS--low sensitivity rats, selected arbitrarily according to their behavior in the 'flinch-jump' pre-test). Local administration of serotonergic neurotoxin (5,7-dihydroxytryptamine) to the dorsomedial part of the prefrontal cortex caused a very strong, structure and neurotransmitter selective depletion of serotonin concentration. In HS rats, the serotonergic lesion significantly disinhibited rat behavior controlled by fear, enhanced c-Fos expression in the dorsomedial prefrontal area, and increased the concentration of GABA in the basolateral amygdala, measured in vivo after the testing session of the conditioned fear test. The LS animals revealed an opposite pattern of behavioral and biochemical changes after serotonergic lesion: an increase in the duration of a freezing response, and expression of c-Fos in the basolateral and central nuclei of amygdala, and a lower GABA concentration in the basolateral amygdala. In control conditions, c-Fos expression did not differ in LS and HS, naïve, not conditioned and not exposed to the test cage animals. The present study adds more arguments for the controlling role of serotonergic innervation of the dorsomedial part of the prefrontal cortex in processing emotional input by other brain centers. Moreover, it provides experimental data, which may help to better explain the anatomical and biochemical basis of differences in individual reactivity to stressful stimulation, and, possibly, to anxiolytic drugs with serotonergic or GABAergic profiles of action.
Hiser, Jaryd; Koenigs, Michael
2018-04-15
The ventromedial prefrontal cortex (vmPFC) has been implicated in a variety of social, cognitive, and affective functions that are commonly disrupted in mental illness. In this review, we summarize data from a diverse array of human and animal studies demonstrating that the vmPFC is a key node of cortical and subcortical networks that subserve at least three broad domains of psychological function linked to psychopathology. One track of research indicates that the vmPFC is critical for the representation of reward- and value-based decision making, through interactions with the ventral striatum and amygdala. A second track of research demonstrates that the vmPFC is critical for the generation and regulation of negative emotion, through its interactions with the amygdala, bed nucleus of the stria terminalis, periaqueductal gray, hippocampus, and dorsal anterior cingulate cortex. A third track of research shows the importance of the vmPFC in multiple aspects of social cognition, such as facial emotion recognition, theory-of-mind ability, and processing self-relevant information, through its interactions with the posterior cingulate cortex, precuneus, dorsomedial PFC, and amygdala. We then present meta-analytic data revealing distinct subregions within the vmPFC that correspond to each of these three functions, as well as the associations between these subregions and specific psychiatric disorders (depression, posttraumatic stress disorder, addiction, social anxiety disorder, bipolar disorder, schizophrenia, and attention-deficit/hyperactivity disorder). We conclude by describing several translational possibilities for clinical studies of vmPFC-based circuits, including neuropsychological assessment of transdiagnostic functions, anatomical targets for intervention, predictors of treatment response, markers of treatment efficacy, and subtyping within disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Rastogi, Ashutosh; Surbhi; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod
2016-01-01
Present study investigated seasonal plasticity in neural activity of the olfactory system, and assessed whether this was influenced by differences in seasonal life-history states (LHSs) between the non-migratory and migratory birds. Brains of non-migratory Indian weaver birds and migratory redheaded buntings were processed for ZENK immunohistochemistry, a marker of neuronal activation, at the times of equinoxes (March, September) and solstices (June, December), which correspond with the periods of different seasonal LHSs during the year. Immunoreactivity was quantified in brain regions comprising the olfactory system viz. olfactory bulb (OB), anterior olfactory nucleus (AON), prepiriform cortex (CPP), lateral olfactory tract (LOT) and olfactory cortex (piriform cortex, CPI; lateral olfactory cortex, LOC). In weaver birds, ZENK-like immunoreactive (ZENK-lir) cells were significantly higher in all the brain areas during post-breeding season (September) than during the other seasons; OBs had higher neuronal activity in the breeding season (June), however. A similar neural activity pattern but at enhanced levels was found in migratory buntings almost all the year. These results for the first time show LHS-associated differences in the seasonal plasticity of a sensory system between the non-migratory and migratory songbirds. Copyright © 2015 Elsevier B.V. All rights reserved.
Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M
2017-12-01
Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.
López-Ramos, Juan Carlos; Guerra-Narbona, Rafael; Delgado-García, José M
2015-01-01
Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex (mPFC) is identified in rodents by its dense connectivity with the mediodorsal (MD) thalamus, and because of its inputs from other sites, such as hippocampus and amygdala (Amyg). The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials (fPSPs) evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the MD thalamus, the hippocampal CA1 area, or the basolateral amygdala (BLA), and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. FPSPs evoked at the mPFC from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals' avoidance of the reward. FPSPs collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation) when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations.
López-Ramos, Juan Carlos; Guerra-Narbona, Rafael; Delgado-García, José M.
2015-01-01
Decision-making and other cognitive processes are assumed to take place in the prefrontal cortex. In particular, the medial prefrontal cortex (mPFC) is identified in rodents by its dense connectivity with the mediodorsal (MD) thalamus, and because of its inputs from other sites, such as hippocampus and amygdala (Amyg). The aim of this study was to find a putative relationship between the behavior of mice during the performance of decision-making tasks that involve penalties as a consequence of induced actions, and the strength of field postsynaptic potentials (fPSPs) evoked in the prefrontal cortex from its thalamic, hippocampal, and amygdalar afferents. Mice were chronically implanted with stimulating electrodes in the MD thalamus, the hippocampal CA1 area, or the basolateral amygdala (BLA), and with recording electrodes in the prelimbic/infralimbic area of the prefrontal cortex. Additional stimulating electrodes aimed at evoking negative reinforcements were implanted on the trigeminal nerve. FPSPs evoked at the mPFC from the three selected projecting areas during the food/shock decision-making task decreased in amplitude with shock intensity and animals’ avoidance of the reward. FPSPs collected during the operant task also decreased in amplitude (but that evoked by amygdalar stimulation) when lever presses were associated with a trigeminal shock. Results showed a general decrease in the strength of these potentials when animals inhibited their natural or learned appetitive behaviors, suggesting an inhibition of the prefrontal cortex in these conflicting situations. PMID:25688195
Clewett, David; Bachman, Shelby; Mather, Mara
2014-01-01
Objective A current neuroanatomical model of anxiety posits that greater structural connectivity between the amygdala and ventral prefrontal cortex (vPFC) facilitates regulatory control over the amygdala and helps reduce anxiety. However, some neuroimaging studies have reported contradictory findings, demonstrating a positive rather than negative association between trait anxiety and amygdala-vPFC white matter integrity. To help reconcile these findings, we tested the regulatory hypothesis of anxiety circuitry using aging as a model of white matter decline in the amygdala-vPFC pathway. Methods We used probabilistic tractography to trace connections between the amygdala and vPFC in 21 younger, 18 middle-aged, and 15 healthy older adults. The resulting tract estimates were used to extract three indices of white-matter integrity: fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD). The relationship between these amygdala-vPFC structural connectivity measures and age and State-Trait Anxiety Inventory (STAI) scores were assessed. Results The tractography results revealed age-related decline in the FA (p = .005) and radial diffusivity (p = .002) of the amygdala-vPFC pathway. Contrary to the regulatory hypothesis, we found a positive rather than negative association between trait anxiety and right amygdala-vPFC FA (p = .01). Conclusion These findings argue against the notion that greater amygdala-vPFC structural integrity facilitates better anxiety outcomes in healthy adults. Instead, our results suggest that white matter degeneration in this network relates to lower anxiety in older adults. PMID:24635708
Perlman, Greg; Simmons, Alan N.; Wu, Jing; Hahn, Kevin S.; Tapert, Susan F.; Max, Jeffrey E.; Paulus, Martin P.; Brown, Gregory G.; Frank, Guido K.; Campbell-Sills, Laura; Yang, Tony T.
2012-01-01
Background Ineffective emotion regulation and abnormal amygdala activation have each been found in adolescent-onset major depressive disorder. However, amygdala activation during emotion regulation has not been studied in adolescent-onset major depressive disorder. Method Fourteen unmedicated adolescents diagnosed with current depression without comorbid psychiatric disorders and fourteen well-matched controls ages 13 to 17 years underwent an emotional regulation task during functional magnetic resonance imaging. During this task, participants viewed negatively-valence images and were asked to notice how they were feeling without trying to change it and maintain their emotional reaction (“Maintain”) or to interpret the image in such a way as minimize their emotional response (“Reduce”). Results Imaging analyses demonstrated that adolescents with depression showed: (1) greater right amygdala activation during the maintain condition relative to controls, (2) less connectivity during the maintain condition between the amygdala and both the insula and medial prefrontal cortex than controls, and (3) a significant positive correlation between amygdala-seeded connectivity during maintenance of emotion and psychosocial functioning. Limitations The current study is cross-sectional comparison and longitudinal investigations with larger sample sizes are needed to examine the association between amygdala reactivity and emotion regulation over time in adolescent MDD. Conclusions During the maintain condition, adolescents with depression showed a heightened amygdala response and less reciprocal activation in brain regions that may modulate the amygdala. A poorly modulated, overreactive amygdala may contribute to poor emotion regulation. PMID:22401827
Horacek, Jiri; Mikolas, Pavol; Tintera, Jaroslav; Novak, Tomas; Palenicek, Tomas; Brunovsky, Martin; Höschl, Cyril; Alda, Martin
2014-12-16
Aberrant amygdala reactivity to affective stimuli represents a candidate factor predisposing patients with bipolar disorder (BD) to relapse, but it is unclear to what extent amygdala reactivity is state-dependent. We evaluated the modulatory influence of mood on amygdala reactivity and functional connectivity in patients with remitted BD and healthy controls. Amygdala response to sad versus neutral faces was investigated using fMRI during periods of normal and sad mood induced by autobiographical scripts. We assessed the functional connectivity of the amygdala to characterize the influence of mood state on the network responsible for the amygdala response. We included 20 patients with remitted BD and 20 controls in our study. The sad and normal mood exerted opposite effects on the amygdala response to emotional faces in patients compared with controls ( F 1,38 = 5.85, p = 0.020). Sad mood amplified the amygdala response to sad facial stimuli in controls but attenuated the amygdala response in patients. The groups differed in functional connectivity between the amygdala and the inferior prefrontal gyrus ( p ≤ 0.05, family-wise error-corrected) of ventrolateral prefrontal cortex (vlPFC) corresponding to Brodmann area 47. The sad mood challenge increased connectivity during the period of processing sad faces in patients but decreased connectivity in controls. Limitations to our study included long-term medication use in the patient group and the fact that we mapped only depressive (not manic) reactivity. Our results support the role of the amygdala-vlPFC as the system of dysfunctional contextual affective processing in patients with BD. Opposite amygdala reactivity unmasked by the mood challenge paradigm could represent a trait marker of altered mood regulation in patients with BD.
Horacek, Jiri; Mikolas, Pavol; Tintera, Jaroslav; Novak, Tomas; Palenicek, Tomas; Brunovsky, Martin; Höschl, Cyril; Alda, Martin
2015-03-01
Aberrant amygdala reactivity to affective stimuli represents a candidate factor predisposing patients with bipolar disorder (BD) to relapse, but it is unclear to what extent amygdala reactivity is state-dependent. We evaluated the modulatory influence of mood on amygdala reactivity and functional connectivity in patients with remitted BD and healthy controls. Amygdala response to sad versus neutral faces was investigated using fMRI during periods of normal and sad mood induced by autobiographical scripts. We assessed the functional connectivity of the amygdala to characterize the influence of mood state on the network responsible for the amygdala response. We included 20 patients with remitted BD and 20 controls in our study. The sad and normal mood exerted opposite effects on the amygdala response to emotional faces in patients compared with controls (F1,38 = 5.85, p = 0.020). Sad mood amplified the amygdala response to sad facial stimuli in controls but attenuated the amygdala response in patients. The groups differed in functional connectivity between the amygdala and the inferior prefrontal gyrus (p ≤ 0.05, family-wise error-corrected) of ventrolateral prefrontal cortex (vlPFC) corresponding to Brodmann area 47. The sad mood challenge increased connectivity during the period of processing sad faces in patients but decreased connectivity in controls. Limitations to our study included long-term medication use in the patient group and the fact that we mapped only depressive (not manic) reactivity. Our results support the role of the amygdala-vlPFC as the system of dysfunctional contextual affective processing in patients with BD. Opposite amygdala reactivity unmasked by the mood challenge paradigm could represent a trait marker of altered mood regulation in patients with BD.
Sparks, Daniel W.
2016-01-01
The superficial layers of the entorhinal cortex receive sensory and associational cortical inputs and provide the hippocampus with the majority of its cortical sensory input. The parasubiculum, which receives input from multiple hippocampal subfields, sends its single major output projection to layer II of the entorhinal cortex, suggesting that it may modulate processing of synaptic inputs to the entorhinal cortex. Indeed, stimulation of the parasubiculum can enhance entorhinal responses to synaptic input from the piriform cortex in vivo. Theta EEG activity contributes to spatial and mnemonic processes in this region, and the current study assessed how stimulation of the parasubiculum with either single pulses or short, five-pulse, theta-frequency trains may modulate synaptic responses in layer II entorhinal stellate neurons evoked by stimulation of layer I afferents in vitro. Parasubicular stimulation pulses or trains suppressed responses to layer I stimulation at intervals of 5 ms, and parasubicular stimulation trains facilitated layer I responses at a train-pulse interval of 25 ms. This suggests that firing of parasubicular neurons during theta activity may heterosynaptically enhance incoming sensory inputs to the entorhinal cortex. Bath application of the hyperpolarization-activated cation current (Ih) blocker ZD7288 enhanced the facilitation effect, suggesting that cholinergic inhibition of Ih may contribute. In addition, repetitive pairing of parasubicular trains and layer I stimulation induced a lasting depression of entorhinal responses to layer I stimulation. These findings provide evidence that theta activity in the parasubiculum may promote heterosynaptic modulation effects that may alter sensory processing in the entorhinal cortex. PMID:27146979
Tröscher, Anna R.; Klang, Andrea; French, Maria; Quemada-Garrido, Lucía; Kneissl, Sibylle Maria; Bien, Christian G.; Pákozdy, Ákos; Bauer, Jan
2017-01-01
Human leucine-rich glioma-inactivated protein 1 encephalitis (LGI1) is an autoimmune limbic encephalitis in which serum and cerebrospinal fluid contain antibodies targeting LGI1, a protein of the voltage gated potassium channel (VGKC) complex. Recently, we showed that a feline model of limbic encephalitis with LGI1 antibodies, called feline complex partial seizures with orofacial involvement (FEPSO), is highly comparable to human LGI1 encephalitis. In human LGI1 encephalitis, neuropathological investigations are difficult because very little material is available. Taking advantage of this natural animal model to study pathological mechanisms will, therefore, contribute to a better understanding of its human counterpart. Here, we present a brain-wide histopathological analysis of FEPSO. We discovered that blood–brain barrier (BBB) leakage was present not only in all regions of the hippocampus but also in other limbic structures such as the subiculum, amygdale, and piriform lobe. However, in other regions, such as the cerebellum, no leakage was observed. In addition, this brain-region-specific immunoglobulin leakage was associated with the breakdown of endothelial tight junctions. Brain areas affected by BBB dysfunction also revealed immunoglobulin and complement deposition as well as neuronal cell death. These neuropathological findings were supported by magnetic resonance imaging showing signal and volume increase in the amygdala and the piriform lobe. Importantly, we could show that BBB disturbance in LGI1 encephalitis does not depend on T cell infiltrates, which were present brain-wide. This finding points toward another, so far unknown, mechanism of opening the BBB. The limbic predilection sites of immunoglobulin antibody leakage into the brain may explain why most patients with LGI1 antibodies have a limbic phenotype even though LGI1, the target protein, is ubiquitously distributed across the central nervous system. PMID:29093718
Tröscher, Anna R; Klang, Andrea; French, Maria; Quemada-Garrido, Lucía; Kneissl, Sibylle Maria; Bien, Christian G; Pákozdy, Ákos; Bauer, Jan
2017-01-01
Human leucine-rich glioma-inactivated protein 1 encephalitis (LGI1) is an autoimmune limbic encephalitis in which serum and cerebrospinal fluid contain antibodies targeting LGI1, a protein of the voltage gated potassium channel (VGKC) complex. Recently, we showed that a feline model of limbic encephalitis with LGI1 antibodies, called feline complex partial seizures with orofacial involvement (FEPSO), is highly comparable to human LGI1 encephalitis. In human LGI1 encephalitis, neuropathological investigations are difficult because very little material is available. Taking advantage of this natural animal model to study pathological mechanisms will, therefore, contribute to a better understanding of its human counterpart. Here, we present a brain-wide histopathological analysis of FEPSO. We discovered that blood-brain barrier (BBB) leakage was present not only in all regions of the hippocampus but also in other limbic structures such as the subiculum, amygdale, and piriform lobe. However, in other regions, such as the cerebellum, no leakage was observed. In addition, this brain-region-specific immunoglobulin leakage was associated with the breakdown of endothelial tight junctions. Brain areas affected by BBB dysfunction also revealed immunoglobulin and complement deposition as well as neuronal cell death. These neuropathological findings were supported by magnetic resonance imaging showing signal and volume increase in the amygdala and the piriform lobe. Importantly, we could show that BBB disturbance in LGI1 encephalitis does not depend on T cell infiltrates, which were present brain-wide. This finding points toward another, so far unknown, mechanism of opening the BBB. The limbic predilection sites of immunoglobulin antibody leakage into the brain may explain why most patients with LGI1 antibodies have a limbic phenotype even though LGI1, the target protein, is ubiquitously distributed across the central nervous system.
Gotink, Rinske A; Meijboom, Rozanna; Vernooij, Meike W; Smits, Marion; Hunink, M G Myriam
2016-10-01
The objective of the current study was to systematically review the evidence of the effect of secular mindfulness techniques on function and structure of the brain. Based on areas known from traditional meditation neuroimaging results, we aimed to explore a neuronal explanation of the stress-reducing effects of the 8-week Mindfulness Based Stress Reduction (MBSR) and Mindfulness Based Cognitive Therapy (MBCT) program. We assessed the effect of MBSR and MBCT (N=11, all MBSR), components of the programs (N=15), and dispositional mindfulness (N=4) on brain function and/or structure as assessed by (functional) magnetic resonance imaging. 21 fMRI studies and seven MRI studies were included (two studies performed both). The prefrontal cortex, the cingulate cortex, the insula and the hippocampus showed increased activity, connectivity and volume in stressed, anxious and healthy participants. Additionally, the amygdala showed decreased functional activity, improved functional connectivity with the prefrontal cortex, and earlier deactivation after exposure to emotional stimuli. Demonstrable functional and structural changes in the prefrontal cortex, cingulate cortex, insula and hippocampus are similar to changes described in studies on traditional meditation practice. In addition, MBSR led to changes in the amygdala consistent with improved emotion regulation. These findings indicate that MBSR-induced emotional and behavioral changes are related to functional and structural changes in the brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Co-occurring anxiety influences patterns of brain activity in depression.
Engels, Anna S; Heller, Wendy; Spielberg, Jeffrey M; Warren, Stacie L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A
2010-03-01
Brain activation associated with anhedonic depression and co-occurring anxious arousal and anxious apprehension was measured by fMRI during performance of an emotion word Stroop task. Consistent with EEG findings, depression was associated with rightward frontal lateralization in the dorsolateral prefrontal cortex (DLPFC), but only when anxious arousal was elevated and anxious apprehension was low. Activity in the right inferior frontal gyrus (IFG) was also reduced for depression under the same conditions. In contrast, depression was associated with more activity in the anterior cingulate cortex (dorsal ACC and rostral ACC) and the bilateral amygdala. Results imply that depression, particularly when accompanied by anxious arousal, may result in a failure to implement top-down processing by appropriate brain regions (left DLPFC, right IFG) due to increased activation in regions associated with responding to emotionally salient information (right DLPFC, amygdala).
Co-occurring Anxiety Influences Patterns of Brain Activity in Depression
Engels, Anna S.; Heller, Wendy; Spielberg, Jeffrey M.; Warren, Stacie L.; Sutton, Bradley P.; Banich, Marie T.; Miller, Gregory A.
2011-01-01
Brain activation associated with anhedonic depression and co-occurring anxious arousal and anxious apprehension was measured by fMRI during performance of an emotion-word Stroop task. Consistent with EEG findings, depression was associated with rightward frontal lateralization in dorsolateral prefrontal cortex (DLPFC), but only when anxious arousal was elevated and anxious apprehension was low. Activity in right inferior frontal gyrus (IFG) was also reduced for depression under the same conditions. In contrast, depression was associated with more activity in anterior cingulate cortex (dACC and rACC) and bilateral amygdala. Results imply that depression, particularly when accompanied by anxious arousal, may result in a failure to implement top-down processing by appropriate brain regions (left DLPFC, right IFG) due to increased activation in regions associated with responding to emotionally salient information (right DLPFC, amygdala). PMID:20233962
Posttraumatic Stress Disorder: A Theoretical Model of the Hyperarousal Subtype
Weston, Charles Stewart E.
2014-01-01
Posttraumatic stress disorder (PTSD) is a frequent and distressing mental disorder, about which much remains to be learned. It is a heterogeneous disorder; the hyperarousal subtype (about 70% of occurrences and simply termed PTSD in this paper) is the topic of this article, but the dissociative subtype (about 30% of occurrences and likely involving quite different brain mechanisms) is outside its scope. A theoretical model is presented that integrates neuroscience data on diverse brain regions known to be involved in PTSD, and extensive psychiatric findings on the disorder. Specifically, the amygdala is a multifunctional brain region that is crucial to PTSD, and processes peritraumatic hyperarousal on grounded cognition principles to produce hyperarousal symptoms. Amygdala activity also modulates hippocampal function, which is supported by a large body of evidence, and likewise amygdala activity modulates several brainstem regions, visual cortex, rostral anterior cingulate cortex (rACC), and medial orbitofrontal cortex (mOFC), to produce diverse startle, visual, memory, numbing, anger, and recklessness symptoms. Additional brain regions process other aspects of peritraumatic responses to produce further symptoms. These contentions are supported by neuroimaging, neuropsychological, neuroanatomical, physiological, cognitive, and behavioral evidence. Collectively, the model offers an account of how responses at the time of trauma are transformed into an extensive array of the 20 PTSD symptoms that are specified in the Diagnostic and Statistical Manual of Mental Disorders, Fifth edition. It elucidates the neural mechanisms of a specific form of psychopathology, and accords with the Research Domain Criteria framework. PMID:24772094
Aznar, Susana; Klein, Anders B
2013-12-01
The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.
Canto-de-Souza, L; Mattioli, R
2016-04-01
Several studies using inhibitory avoidance models have demonstrated the importance of limbic structures, such as the amygdala, dorsal hippocampus and medial prefrontal cortex, in the consolidation of emotional memory. However, we aimed to investigate the role of the amygdala (AMG), dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) of mice in the consolidation of step-down inhibitory avoidance and whether this avoidance would be conditioned relative to the intensity of the aversive stimulus. To test this, we bilaterally infused anisomycin (ANI-40μg/μl, a protein synthesis inhibitor) into one of these three brain areas in mice. These mice were then exposed to one of two different intensities (moderate: 0.5mA or intense: 1.5mA) in a step-down inhibitory avoidance task. We found that consolidation of both of the aversive experiences was mPFC dependent, while the AMG and DH were only required for the consolidation of the intense experience. We suggest that in moderately aversive situations, which do not represent a severe physical risk to the individual, the consolidation of aversive experiences does not depend on protein synthesis in the AMG or the DH, but only the mPFC. However, for intense aversive stimuli all three of these limbic structures are essential for the consolidation of the experience. Copyright © 2016 Elsevier Inc. All rights reserved.
Schmittbuhl, M; Le Minor, J M; Allenbach, B; Schaaf, A
1998-07-01
By using new methodologies based on automatic image analysis, the shape of the piriform aperture was analyzed in Gorilla gorilla (33 males, 13 females), Pan troglodytes (35 males, 22 females), and modern Homo sapiens (30 males, 12 females). The determination of the piriform aperture index (breadth/height) allowed the authors to demonstrate a marked elongation of the aperture in Homo compared with Gorilla and Pan. Individual characterization of the shape was possible with great precision and without ambiguity by using Fourier analysis. An absolute, interspecific partition between Gorilla, Pan, and Homo resulted from the canonical discriminant analysis of the Fourier descriptors. However, a closeness of shape between some individuals in Pan and some in Gorilla and Homo was observed, demonstrating a morphological continuum of the shape of the piriform aperture in hominoids: Pan was in intermediate position between Gorilla and Homo. Interspecific differences between Homo and the group Pan-Gorilla were explained principally by the differences in elongation (amplitude of the second harmonic) and pentagonality (amplitude of the fifth harmonic) and by differences in orientation of quadrangularity (phase of the fourth harmonic). Differences in the shape of the piriform aperture between Pan and Gorilla were explained by differences in orientation of elongation (phase of the second harmonic) and by differences in the component of triangularity (amplitude of the third harmonic). In Gorilla and Pan, the little, elongated, and relatively trapezoidal piriform aperture seems to be a shared primitive feature (plesiomorphic), whereas an elongated piriform aperture seems to be a characteristic and derived feature (apomorphic) of modern Homo sapiens.
Neural correlates of genetically abnormal social cognition in Williams syndrome.
Meyer-Lindenberg, Andreas; Hariri, Ahmad R; Munoz, Karen E; Mervis, Carolyn B; Mattay, Venkata S; Morris, Colleen A; Berman, Karen Faith
2005-08-01
Williams-Beuren syndrome (WBS), caused by a microdeletion of approximately 21 genes on chromosome 7q11.23, is characterized by unique hypersociability combined with increased non-social anxiety. Using functional neuroimaging, we found reduced amygdala activation in individuals with WBS for threatening faces but increased activation for threatening scenes, relative to matched normal controls. Activation and interactions of prefrontal regions linked to amygdala, especially orbitofrontal cortex, were abnormal, suggesting a genetically controlled neural circuitry for regulating human social behavior.
2009-02-05
Crestani F, Martin JR, Möhler H, and Rudolph U (2000) Mechanism of action of the hypnotic zolpidem in vivo. Br J Pharmacol 131:1251–56...epilepsy laterality and reproductive hormone levels in women. Epilepsy Behav 4:407-13. Houser CR (1990) Granule cell dispersion in the dentate gyrus of...cortex from epileptic patients. Neurobiol Dis 8:459- 68. Kostarczyk EM (1986) The amygdala and male reproductive functions. I. Anatomical and
Sciolino, Natale R.; Bortolato, Marco; Eisenstein, Sarah A.; Fu, Jin; Oveisi, Fariba; Hohmann, Andrea G.; Piomelli, Daniele
2010-01-01
Social deprivation in early life disrupts emotionality and attentional processes in humans. Rearing rats in isolation reproduces some of these abnormalities, which are attenuated by daily handling. However, the neurochemical mechanisms underlying these responses remain poorly understood. We hypothesized that post-weaning social isolation alters the endocannabinoid system, a neuromodulatory system that controls emotional responding. We characterized behavioral consequences of social isolation and evaluated whether handling would reverse social isolation-induced alterations in behavioral reactivity to context and the endocannabinoid system. At weaning, pups were single or group housed and concomitantly handled or not handled daily until adulthood. Rats were tested in emotionality- and attentional-sensitive behavioral assays (open field, elevated plus maze, startle and prepulse inhibition). Cannabinoid receptor densities and endocannabinoid levels were quantified in a separate group of rats. Social isolation negatively altered behavioral responding. Socially-isolated rats that were handled showed less deficits in the open field, elevated plus maze, and prepulse inhibition tests. Social isolation produced site-specific alterations (supraoptic nucleus, ventrolateral thalamus, rostral striatum) in cannabinoid receptor densities compared to group rearing. Handling altered the endocannabinoid system in neural circuitry controlling emotional expression. Handling altered endocannabinoid content (prefrontal and piriform cortices, nucleus accumbens) and cannabinoid receptor densities (lateral globus pallidus, cingulate and piriform cortices, hippocampus) in a region-specific manner. Some effects of social isolation on the endocannabinoid system were moderated by handling. Isolates were unresponsive to handling-induced increases in cannabinoid receptor densities (caudal striatum, anterior thalamus), but were sensitive to handling-induced increases in endocannabinoid content (piriform cortex), compared to group-reared rats. Our findings suggest alterations in the endocannabinoid system may contribute to the abnormal isolate phenotype. Handling modifies the endocannabinoid system and behavioral reactivity to context, but surmounts only some effects of social isolation. These data implicate a pivotal role for the endocannabinoid system in stress adaptation and emotionality-related disturbances. PMID:20394803
Kassem, Mustafa S; Lagopoulos, Jim; Stait-Gardner, Tim; Price, William S; Chohan, Tariq W; Arnold, Jonathon C; Hatton, Sean N; Bennett, Maxwell R
2013-04-01
Stress, unaccompanied by signs of post-traumatic stress disorder, is known to decrease grey matter volume (GMV) in the anterior cingulate cortex (ACC) and hippocampus but not the amygdala in humans. We sought to determine if this was the case in stressed mice using high-resolution magnetic resonance imaging (MRI) and to identify the cellular constituents of the grey matter that quantitatively give rise to such changes. Stressed mice showed grey matter losses of 10 and 15 % in the ACC and hippocampus, respectively but not in the amygdala or the retrosplenial granular area (RSG). Concurrently, no changes in the number or volumes of the somas of neurons, astrocytes or oligodendrocytes were detected. A loss of synaptic spine density of up to 60 % occurred on different-order dendrites in the ACC and hippocampus (CA1) but not in the amygdala or RSG. The loss of spines was accompanied by decreases in cumulative dendritic length of neurons of over 40 % in the ACC and hippocampus (CA1) giving rise to decreases in volume of dendrites of 2.6 mm(3) for the former and 0.6 mm(3) for the latter, with no change in the amygdala or RSG. These values are similar to the MRI-determined loss of GMV following stress of 3.0 and 0.8 mm(3) in ACC and hippocampus, respectively, with no changes in the amygdala or RSG. This quantitative study is the first to relate GMV changes in the cortex measured with MRI to volume changes in cellular constituents of the grey matter.
Yun, Richard J; Krystal, John H; Mathalon, Daniel H
2010-03-01
The human working memory system provides an experimentally useful model for examination of neural overload effects on subsequent functioning of the overloaded system. This study employed functional magnetic resonance imaging in conjunction with a parametric working memory task to characterize the behavioral and neural effects of cognitive overload on subsequent cognitive performance, with particular attention to cognitive-limbic interactions. Overloading the working memory system was associated with varying degrees of subsequent decline in performance accuracy and reduced activation of brain regions central to both task performance and suppression of negative affect. The degree of performance decline was independently predicted by three separate factors operating during the overload condition: the degree of task failure, the degree of amygdala activation, and the degree of inverse coupling between the amygdala and dorsolateral prefrontal cortex. These findings suggest that vulnerability to overload effects in cognitive functioning may be mediated by reduced amygdala suppression and subsequent amygdala-prefrontal interaction.
Social support, stress and the aging brain
Cheng, Yen-Pi; Fingerman, Karen L.; Schnyer, David M.
2016-01-01
Social support benefits health and well-being in older individuals, however the mechanism remains poorly understood. One proposal, the stress-buffering hypothesis states social support ‘buffers’ the effects of stress on health. Alternatively, the main effect hypothesis suggests social support independently promotes health. We examined the combined association of social support and stress on the aging brain. Forty healthy older adults completed stress questionnaires, a social network interview and structural MRI to investigate the amygdala-medial prefrontal cortex circuitry, which is implicated in social and emotional processing and negatively affected by stress. Social support was positively correlated with right medial prefrontal cortical thickness while amygdala volume was negatively associated with social support and positively related to stress. We examined whether the association between social support and amygdala volume varied across stress level. Stress and social support uniquely contribute to amygdala volume, which is consistent with the health benefits of social support being independent of stress. PMID:26060327
Differences in resting corticolimbic functional connectivity in bipolar I euthymia
Torrisi, Salvatore; Moody, Teena D; Vizueta, Nathalie; Thomason, Moriah E; Monti, Martin M; Townsend, Jennifer D; Bookheimer, Susan Y; Altshuler, Lori L
2012-01-01
Objective We examined resting state functional connectivity in the brain between key emotion regulation regions in bipolar I disorder to delineate differences in coupling from healthy subjects. Methods Euthymic subjects with bipolar I disorder (n = 20) and matched healthy subjects (n = 20) participated in a resting state functional magnetic resonance imaging scan. Low frequency fluctuations in blood oxygen level-dependent (BOLD) signal were correlated in the six connections between four anatomically-defined nodes: left and right amygdala and left and right ventrolateral prefrontal cortex (vlPFC). Seed-to-voxel connectivity results were probed for commonly coupled regions. Following this, an identified region was included in a mediation analysis to determine the potential of mediation. Results The bipolar I disorder group exhibited significant hyperconnectivity between right amygdala and right vlPFC relative to healthy subjects. The connectivity between these regions in the bipolar I disorder group was partially mediated by activity in the anterior cingulate cortex (ACC). Conclusions Greater coupling between right amygdala and right vlPFC and their partial mediation by the ACC were found in bipolar I disorder subjects in remission and in the absence of a psychological task. These findings have implications for a trait-related and clinically-important imaging biomarker. PMID:23347587
Cox, Christine L.; Schmader, Toni; Ryan, Lee
2012-01-01
Priming negative stereotypes of African Americans can bias perceptions toward novel Black targets, but less is known about how these perceptions ultimately arise. Examining how neural regions involved in arousal, inhibition and control covary when negative stereotypes are activated can provide insight into whether individuals attempt to downregulate biases. Using fMRI, White egalitarian-motivated participants were shown Black and White faces at fast (32 ms) or slow (525 ms) presentation speeds. To create a racially negative stereotypic context, participants listened to violent and misogynistic rap (VMR) in the background. No music (NM) and death metal (DM) were used as control conditions in separate blocks. Fast exposure of Black faces elicited amygdala activation in the NM and VMR conditions (but not DM), that also negatively covaried with activation in prefrontal regions. Only in VMR, however, did amygdala activation for Black faces persist during slow exposure and positively covary with activation in dorsolateral prefrontal cortex while negatively covarying with activation in orbitofrontal cortex. Findings suggest that contexts that prime negative racial stereotypes seem to hinder the downregulation of amygdala activation that typically occurs when egalitarian perceivers are exposed to Black faces. PMID:21954239
Franklin, Daniel J; Grossberg, Stephen
2017-02-01
How do the hippocampus and amygdala interact with thalamocortical systems to regulate cognitive and cognitive-emotional learning? Why do lesions of thalamus, amygdala, hippocampus, and cortex have differential effects depending on the phase of learning when they occur? In particular, why is the hippocampus typically needed for trace conditioning, but not delay conditioning, and what do the exceptions reveal? Why do amygdala lesions made before or immediately after training decelerate conditioning while those made later do not? Why do thalamic or sensory cortical lesions degrade trace conditioning more than delay conditioning? Why do hippocampal lesions during trace conditioning experiments degrade recent but not temporally remote learning? Why do orbitofrontal cortical lesions degrade temporally remote but not recent or post-lesion learning? How is temporally graded amnesia caused by ablation of prefrontal cortex after memory consolidation? How are attention and consciousness linked during conditioning? How do neurotrophins, notably brain-derived neurotrophic factor (BDNF), influence memory formation and consolidation? Is there a common output path for learned performance? A neural model proposes a unified answer to these questions that overcome problems of alternative memory models.
Impaired periamygdaloid-cortex prodynorphin is characteristic of opiate addiction and depression.
Anderson, Sarah Ann R; Michaelides, Michael; Zarnegar, Parisa; Ren, Yanhua; Fagergren, Pernilla; Thanos, Panayotis K; Wang, Gene-Jack; Bannon, Michael; Neumaier, John F; Keller, Eva; Volkow, Nora D; Hurd, Yasmin L
2013-12-01
Negative affect is critical for conferring vulnerability to opiate addiction as reflected by the high comorbidity of opiate abuse with major depressive disorder (MDD). Rodent models implicate amygdala prodynorphin (Pdyn) as a mediator of negative affect; however, evidence of PDYN involvement in human negative affect is limited. Here, we found reduced PDYN mRNA expression in the postmortem human amygdala nucleus of the periamygdaloid cortex (PAC) in both heroin abusers and MDD subjects. Similar to humans, rats that chronically self-administered heroin had reduced Pdyn mRNA expression in the PAC at a time point associated with a negative affective state. Using the in vivo functional imaging technology DREAMM (DREADD-assisted metabolic mapping, where DREADD indicates designer receptors exclusively activated by designer drugs), we found that selective inhibition of Pdyn-expressing neurons in the rat PAC increased metabolic activity in the extended amygdala, which is a key substrate of the extrahypothalamic brain stress system. In parallel, PAC-specific Pdyn inhibition provoked negative affect-related physiological and behavioral changes. Altogether, our translational study supports a functional role for impaired Pdyn in the PAC in opiate abuse through activation of the stress and negative affect neurocircuitry implicated in addiction vulnerability.
Forbes, Chad E; Cox, Christine L; Schmader, Toni; Ryan, Lee
2012-10-01
Priming negative stereotypes of African Americans can bias perceptions toward novel Black targets, but less is known about how these perceptions ultimately arise. Examining how neural regions involved in arousal, inhibition and control covary when negative stereotypes are activated can provide insight into whether individuals attempt to downregulate biases. Using fMRI, White egalitarian-motivated participants were shown Black and White faces at fast (32 ms) or slow (525 ms) presentation speeds. To create a racially negative stereotypic context, participants listened to violent and misogynistic rap (VMR) in the background. No music (NM) and death metal (DM) were used as control conditions in separate blocks. Fast exposure of Black faces elicited amygdala activation in the NM and VMR conditions (but not DM), that also negatively covaried with activation in prefrontal regions. Only in VMR, however, did amygdala activation for Black faces persist during slow exposure and positively covary with activation in dorsolateral prefrontal cortex while negatively covarying with activation in orbitofrontal cortex. Findings suggest that contexts that prime negative racial stereotypes seem to hinder the downregulation of amygdala activation that typically occurs when egalitarian perceivers are exposed to Black faces.
Face processing in different brain areas, and critical band masking.
Rolls, Edmund T
2008-09-01
Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size, view, and spatial frequency of faces and objects, and that these neurons show rapid processing and rapid learning. Critical band spatial frequency masking is shown to be a property of these face-selective neurons and of the human visual perception of faces. Which face or object is present is encoded using a distributed representation in which each neuron conveys independent information in its firing rate, with little information evident in the relative time of firing of different neurons. This ensemble encoding has the advantages of maximizing the information in the representation useful for discrimination between stimuli using a simple weighted sum of the neuronal firing by the receiving neurons, generalization, and graceful degradation. These invariant representations are ideally suited to provide the inputs to brain regions such as the orbitofrontal cortex and amygdala that learn the reinforcement associations of an individual's face, for then the learning, and the appropriate social and emotional responses generalize to other views of the same face. A theory is described of how such invariant representations may be produced by self-organizing learning in a hierarchically organized set of visual cortical areas with convergent connectivity. The theory utilizes either temporal or spatial continuity with an associative synaptic modification rule. Another population of neurons in the cortex in the superior temporal sulcus encodes other aspects of faces such as face expression, eye-gaze, face view, and whether the head is moving. These neurons thus provide important additional inputs to parts of the brain such as the orbitofrontal cortex and amygdala that are involved in social communication and emotional behaviour. Outputs of these systems reach the amygdala, in which face-selective neurons are found, and also the orbitofrontal cortex, in which some neurons are tuned to face identity and others to face expression. In humans, activation of the orbitofrontal cortex is found when a change of face expression acts as a social signal that behaviour should change; and damage to the human orbitofrontal and pregenual cingulate cortex can impair face and voice expression identification, and also the reversal of emotional behaviour that normally occurs when reinforcers are reversed.
The representation of information about faces in the temporal and frontal lobes.
Rolls, Edmund T
2007-01-07
Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size and view of faces and objects, and that these neurons show rapid processing and rapid learning. Which face or object is present is encoded using a distributed representation in which each neuron conveys independent information in its firing rate, with little information evident in the relative time of firing of different neurons. This ensemble encoding has the advantages of maximising the information in the representation useful for discrimination between stimuli using a simple weighted sum of the neuronal firing by the receiving neurons, generalisation and graceful degradation. These invariant representations are ideally suited to provide the inputs to brain regions such as the orbitofrontal cortex and amygdala that learn the reinforcement associations of an individual's face, for then the learning, and the appropriate social and emotional responses, generalise to other views of the same face. A theory is described of how such invariant representations may be produced in a hierarchically organised set of visual cortical areas with convergent connectivity. The theory proposes that neurons in these visual areas use a modified Hebb synaptic modification rule with a short-term memory trace to capture whatever can be captured at each stage that is invariant about objects as the objects change in retinal view, position, size and rotation. Another population of neurons in the cortex in the superior temporal sulcus encodes other aspects of faces such as face expression, eye gaze, face view and whether the head is moving. These neurons thus provide important additional inputs to parts of the brain such as the orbitofrontal cortex and amygdala that are involved in social communication and emotional behaviour. Outputs of these systems reach the amygdala, in which face-selective neurons are found, and also the orbitofrontal cortex, in which some neurons are tuned to face identity and others to face expression. In humans, activation of the orbitofrontal cortex is found when a change of face expression acts as a social signal that behaviour should change; and damage to the orbitofrontal cortex can impair face and voice expression identification, and also the reversal of emotional behaviour that normally occurs when reinforcers are reversed.
Hofmann, Stefan G; Ellard, Kristen K; Siegle, Greg J
2012-01-01
We review likely neurobiological substrates of cognitions related to fear and anxiety. Cognitive processes are linked to abnormal early activity reflecting hypervigilance in subcortical networks involving the amygdala, hippocampus, and insular cortex, and later recruitment of cortical regulatory resources, including activation of the anterior cingulate cortex and prefrontal cortex to implement avoidant response strategies. Based on this evidence, we present a cognitive-neurobiological information-processing model of fear and anxiety, linking distinct brain structures to specific stages of information processing of perceived threat.
Seizure-mediated neuronal activation induces DREAM gene expression in the mouse brain.
Matsu-ura, Toru; Konishi, Yoshiyuki; Aoki, Tsutomu; Naranjo, Jose R; Mikoshiba, Katsuhiko; Tamura, Taka-aki
2002-12-30
Various transcriptional activators are induced in neurons concomitantly with long-lasting neural activity, whereas only a few transcription factors are known to act as neural activity-inducible transcription repressors. In this study, mRNA of DREAM (DRE-antagonizing modulator), a Ca(2+)-modulated transcriptional repressor, was demonstrated to accumulate in the mouse brain after pentylenetetrazol (PTZ)-induced seizures. Accumulation in the mouse hippocampus reached maximal level in the late phase (at 7-8 h) after PTZ injection. Kainic acid induced the same response. Interestingly, the late induction of DREAM expression required new protein synthesis and was blocked by MK801 suggesting that Ca(2+)-influx via NMDA receptors is necessary for the PTZ-mediated DREAM expression. In situ hybridization revealed that PTZ-induced DREAM mRNA accumulation was observed particularly in the dentate gyrus, cerebral cortex, and piriform cortex. The results of the present study demonstrate that DREAM is a neural activity-stimulated late gene and suggest its involvement in adaptation to long-lasting neuronal activity.
Dynamics of myelin content decrease in the rat stroke model
NASA Astrophysics Data System (ADS)
Kisel, A.; Khodanovich, M.; Atochin, D.; Mustafina, L.; Yarnykh, V.
2017-08-01
The majority of studies were usually focused on neuronal death after brain ischemia; however, stroke affects all cell types including oligodendrocytes that form myelin sheath in the CNS. Our study is focused on the changes of myelin content in the ischemic core and neighbor structures in early terms (1, 3 and 10 days) after stroke. Stroke was modeled with middle cerebral artery occlusion (MCAo) in 15 male rats that were divided into three groups by time points after operation. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. The significant demyelination was found in the ischemic core, corpus callosum, anterior commissure, whereas myelin content was increased in caudoputamen, internal capsule and piriform cortex compared with the contralateral hemisphere. The motor cortex showed a significant increase of myelin content on the 1st day and a significant decrease on the 3rd and 10th days after MCAo. These results suggest that stroke influences myelination not only in the ischemic core but also in distant structures.
Complementary codes for odor identity and intensity in olfactory cortex
Bolding, Kevin A; Franks, Kevin M
2017-01-01
The ability to represent both stimulus identity and intensity is fundamental for perception. Using large-scale population recordings in awake mice, we find distinct coding strategies facilitate non-interfering representations of odor identity and intensity in piriform cortex. Simply knowing which neurons were activated is sufficient to accurately represent odor identity, with no additional information about identity provided by spike time or spike count. Decoding analyses indicate that cortical odor representations are not sparse. Odorant concentration had no systematic effect on spike counts, indicating that rate cannot encode intensity. Instead, odor intensity can be encoded by temporal features of the population response. We found a subpopulation of rapid, largely concentration-invariant responses was followed by another population of responses whose latencies systematically decreased at higher concentrations. Cortical inhibition transforms olfactory bulb output to sharpen these dynamics. Our data therefore reveal complementary coding strategies that can selectively represent distinct features of a stimulus. DOI: http://dx.doi.org/10.7554/eLife.22630.001 PMID:28379135
White matter integrity deficits in prefrontal-amygdala pathways in Williams syndrome.
Avery, Suzanne N; Thornton-Wells, Tricia A; Anderson, Adam W; Blackford, Jennifer Urbano
2012-01-16
Williams syndrome is a neurodevelopmental disorder associated with significant non-social fears. Consistent with this elevated non-social fear, individuals with Williams syndrome have an abnormally elevated amygdala response when viewing threatening non-social stimuli. In typically-developing individuals, amygdala activity is inhibited through dense, reciprocal white matter connections with the prefrontal cortex. Neuroimaging studies suggest a functional uncoupling of normal prefrontal-amygdala inhibition in individuals with Williams syndrome, which might underlie both the extreme amygdala activity and non-social fears. This functional uncoupling might be caused by structural deficits in underlying white matter pathways; however, prefrontal-amygdala white matter deficits have yet to be explored in Williams syndrome. We used diffusion tensor imaging to investigate prefrontal-amygdala white matter integrity differences in individuals with Williams syndrome and typically-developing controls with high levels of non-social fear. White matter pathways between the amygdala and several prefrontal regions were isolated using probabilistic tractography. Within each pathway, we tested for between-group differences in three measures of white matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and parallel diffusivity (λ(1)). Individuals with Williams syndrome had lower FA, compared to controls, in several of the prefrontal-amygdala pathways investigated, indicating a reduction in white matter integrity. Lower FA in Williams syndrome was explained by significantly higher RD, with no differences in λ(1), suggestive of lower fiber density or axon myelination in prefrontal-amygdala pathways. These results suggest that deficits in the structural integrity of prefrontal-amygdala white matter pathways might underlie the increased amygdala activity and extreme non-social fears observed in Williams syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.
Lifespan anxiety is reflected in human amygdala cortical connectivity
He, Ye; Xu, Ting; Zhang, Wei
2016-01-01
Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26859312
Horacek, Jiri; Mikolas, Pavol; Tintera, Jaroslav; Novak, Tomas; Palenicek, Tomas; Brunovsky, Martin; Höschl, Cyril; Alda, Martin
2015-01-01
Background Aberrant amygdala reactivity to affective stimuli represents a candidate factor predisposing patients with bipolar disorder (BD) to relapse, but it is unclear to what extent amygdala reactivity is state-dependent. We evaluated the modulatory influence of mood on amygdala reactivity and functional connectivity in patients with remitted BD and healthy controls. Methods Amygdala response to sad versus neutral faces was investigated using fMRI during periods of normal and sad mood induced by autobiographical scripts. We assessed the functional connectivity of the amygdala to characterize the influence of mood state on the network responsible for the amygdala response. Results We included 20 patients with remitted BD and 20 controls in our study. The sad and normal mood exerted opposite effects on the amygdala response to emotional faces in patients compared with controls (F1,38 = 5.85, p = 0.020). Sad mood amplified the amygdala response to sad facial stimuli in controls but attenuated the amygdala response in patients. The groups differed in functional connectivity between the amygdala and the inferior prefrontal gyrus (p ≤ 0.05, family-wise error–corrected) of ventrolateral prefrontal cortex (vlPFC) corresponding to Brodmann area 47. The sad mood challenge increased connectivity during the period of processing sad faces in patients but decreased connectivity in controls. Limitations Limitations to our study included long-term medication use in the patient group and the fact that we mapped only depressive (not manic) reactivity. Conclusion Our results support the role of the amygdala–vlPFC as the system of dysfunctional contextual affective processing in patients with BD. Opposite amygdala reactivity unmasked by the mood challenge paradigm could represent a trait marker of altered mood regulation in patients with BD. PMID:25703646
Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms.
Carhart-Harris, Robin L; Roseman, Leor; Bolstridge, Mark; Demetriou, Lysia; Pannekoek, J Nienke; Wall, Matthew B; Tanner, Mark; Kaelen, Mendel; McGonigle, John; Murphy, Kevin; Leech, Robert; Curran, H Valerie; Nutt, David J
2017-10-13
Psilocybin with psychological support is showing promise as a treatment model in psychiatry but its therapeutic mechanisms are poorly understood. Here, cerebral blood flow (CBF) and blood oxygen-level dependent (BOLD) resting-state functional connectivity (RSFC) were measured with functional magnetic resonance imaging (fMRI) before and after treatment with psilocybin (serotonin agonist) for treatment-resistant depression (TRD). Quality pre and post treatment fMRI data were collected from 16 of 19 patients. Decreased depressive symptoms were observed in all 19 patients at 1-week post-treatment and 47% met criteria for response at 5 weeks. Whole-brain analyses revealed post-treatment decreases in CBF in the temporal cortex, including the amygdala. Decreased amygdala CBF correlated with reduced depressive symptoms. Focusing on a priori selected circuitry for RSFC analyses, increased RSFC was observed within the default-mode network (DMN) post-treatment. Increased ventromedial prefrontal cortex-bilateral inferior lateral parietal cortex RSFC was predictive of treatment response at 5-weeks, as was decreased parahippocampal-prefrontal cortex RSFC. These data fill an important knowledge gap regarding the post-treatment brain effects of psilocybin, and are the first in depressed patients. The post-treatment brain changes are different to previously observed acute effects of psilocybin and other 'psychedelics' yet were related to clinical outcomes. A 'reset' therapeutic mechanism is proposed.
Brooks, S J; Savov, V; Allzén, E; Benedict, C; Fredriksson, R; Schiöth, H B
2012-02-01
Functional Magnetic Resonance Imaging (fMRI) demonstrates that the subliminal presentation of arousing stimuli can activate subcortical brain regions independently of consciousness-generating top-down cortical modulation loops. Delineating these processes may elucidate mechanisms for arousal, aberration in which may underlie some psychiatric conditions. Here we are the first to review and discuss four Activation Likelihood Estimation (ALE) meta-analyses of fMRI studies using subliminal paradigms. We find a maximum of 9 out of 12 studies using subliminal presentation of faces contributing to activation of the amygdala, and also a significantly high number of studies reporting activation in the bilateral anterior cingulate, bilateral insular cortex, hippocampus and primary visual cortex. Subliminal faces are the strongest modality, whereas lexical stimuli are the weakest. Meta-analyses independent of studies using Regions of Interest (ROI) revealed no biasing effect. Core neuronal arousal in the brain, which may be at first independent of conscious processing, potentially involves a network incorporating primary visual areas, somatosensory, implicit memory and conflict monitoring regions. These data could provide candidate brain regions for the study of psychiatric disorders associated with aberrant automatic emotional processing. Copyright © 2011 Elsevier Inc. All rights reserved.
Makovac, Elena; Watson, David R; Meeten, Frances; Garfinkel, Sarah N; Cercignani, Mara; Critchley, Hugo D; Ottaviani, Cristina
2016-11-01
Generalized anxiety disorder (GAD) is characterized by excessive worry, autonomic dysregulation and functional amygdala dysconnectivity, yet these illness markers have rarely been considered together, nor their interrelationship tested longitudinally. We hypothesized that an individual's capacity for emotion regulation predicts longer-term changes in amygdala functional connectivity, supporting the modification of GAD core symptoms. Sixteen patients with GAD (14 women) and individually matched controls were studied at two time points separated by 1 year. Resting-state fMRI data and concurrent measurement of vagally mediated heart rate variability were obtained before and after the induction of perseverative cognition. A greater rise in levels of worry following the induction predicted a stronger reduction in connectivity between right amygdala and ventromedial prefrontal cortex, and enhanced coupling between left amygdala and ventral tegmental area at follow-up. Similarly, amplified physiological responses to the induction predicted increased connectivity between right amygdala and thalamus. Longitudinal shifts in a distinct set of functional connectivity scores were associated with concomitant changes in GAD symptomatology over the course of the year. Results highlight the prognostic value of indices of emotional dysregulation and emphasize the integral role of the amygdala as a critical hub in functional neural circuitry underlying the progression of GAD symptomatology. © The Author (2016). Published by Oxford University Press.
Altered amygdala-prefrontal connectivity during emotion perception in schizophrenia.
Bjorkquist, Olivia A; Olsen, Emily K; Nelson, Brady D; Herbener, Ellen S
2016-08-01
Individuals with schizophrenia evidence impaired emotional functioning. Abnormal amygdala activity has been identified as an etiological factor underlying affective impairment in this population, but the exact nature remains unclear. The current study utilized psychophysiological interaction analyses to examine functional connectivity between the amygdala and medial prefrontal cortex (mPFC) during an emotion perception task. Participants with schizophrenia (SZ) and healthy controls (HC) viewed and rated positive, negative, and neutral images while undergoing functional neuroimaging. Results revealed a significant group difference in right amygdala-mPFC connectivity during perception of negative versus neutral images. Specifically, HC participants demonstrated positive functional coupling between the amygdala and mPFC, consistent with co-active processing of salient information. In contrast, SZ participants evidenced negative functional coupling, consistent with top-down inhibition of the amygdala by the mPFC. A significant positive correlation between connectivity strength during negative image perception and clinician-rated social functioning was also observed in SZ participants, such that weaker right amygdala-mPFC coupling during negative compared to neutral image perception was associated with poorer social functioning. Overall, results suggest that emotional dysfunction and associated deficits in functional outcome in schizophrenia may relate to abnormal interactions between the amygdala and mPFC during perception of emotional stimuli. This study adds to the growing literature on abnormal functional connections in schizophrenia and supports the functional disconnection hypothesis of schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Double Dissociation of Amygdala and Hippocampal Contributions to Trace and Delay Fear Conditioning
Raybuck, Jonathan D.; Lattal, K. Matthew
2011-01-01
A key finding in studies of the neurobiology of learning memory is that the amygdala is critically involved in Pavlovian fear conditioning. This is well established in delay-cued and contextual fear conditioning; however, surprisingly little is known of the role of the amygdala in trace conditioning. Trace fear conditioning, in which the CS and US are separated in time by a trace interval, requires the hippocampus and prefrontal cortex. It is possible that recruitment of cortical structures by trace conditioning alters the role of the amygdala compared to delay fear conditioning, where the CS and US overlap. To investigate this, we inactivated the amygdala of male C57BL/6 mice with GABA A agonist muscimol prior to 2-pairing trace or delay fear conditioning. Amygdala inactivation produced deficits in contextual and delay conditioning, but had no effect on trace conditioning. As controls, we demonstrate that dorsal hippocampal inactivation produced deficits in trace and contextual, but not delay fear conditioning. Further, pre- and post-training amygdala inactivation disrupted the contextual but the not cued component of trace conditioning, as did muscimol infusion prior to 1- or 4-pairing trace conditioning. These findings demonstrate that insertion of a temporal gap between the CS and US can generate amygdala-independent fear conditioning. We discuss the implications of this surprising finding for current models of the neural circuitry involved in fear conditioning. PMID:21283812
Kolla, Nathan J; Patel, Raihaan; Meyer, Jeffrey H; Chakravarty, M Mallar
2017-08-29
Violent offending is elevated among individuals with antisocial personality disorder (ASPD) and high psychopathic traits (PP). Morphological abnormalities of the amygdala and orbitofrontal cortex (OFC) are present in violent offenders, which may relate to the violence enacted by ASPD + PP. Among healthy males, monoamine oxidase-A (MAO-A) genetic variants linked to low in vitro transcription (MAOA-L) are associated with structural abnormalities of the amygdala and OFC. However, it is currently unknown whether amygdala and OFC morphology in ASPD relate to MAO-A genetic polymorphisms. We studied 18 ASPD males with a history of violent offending and 20 healthy male controls. Genomic DNA was extracted from peripheral leukocytes to determine MAO-A genetic polymorphisms. Subjects underwent a T1-weighted MRI anatomical brain scan that provided vertex-wise measures of amygdala shape and surface area and OFC cortical thickness. We found that ASPD + PP subjects with MAOA-L exhibited decreased surface area in the right basolateral amygdala nucleus and increased surface area in the right anterior cortical amygdaloid nucleus versus healthy MAOA-L carriers. This study is the first to describe genotype-related morphological differences of the amygdala in a population marked by high aggression. Deficits in emotional regulation that contribute to the violence of ASPD + PP may relate to morphological changes of the amygdala under genetic control.
Rzepa, Ewelina; Tudge, Luke; McCabe, Ciara
2015-09-10
The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Neural Mechanisms of Grief Regulation
Freed, Peter J.; Yanagihara, Ted K.; Hirsch, Joy; Mann, J. John
2009-01-01
Background: The death of an attachment figure triggers intrusive thoughts of the deceased, sadness, and yearning for reunion. Recovery requires reduction of symptoms. We hypothesized that symptoms might correlate with a capacity to regulate attention toward reminders of the deceased, and activity in, and functional connectivity between, prefrontal regulatory regions and the amygdala. Methods: Twenty recently bereaved subjects rated intrusive thoughts of the deceased versus a capacity to avoid thoughts (grief style). Reaction time was measured while subjects completed an Emotional Stroop (ES) task contrasting deceased-related with control words during functional magnetic resonance imaging (fMRI). Subjects subsequently visualized the death of the deceased and rated induced emotions. Results: Subjects demonstrated attentional bias toward deceased-related words. Bias magnitude correlated with amygdala, insula, dorsolateral prefrontal cortex (DLPFC) activity. Amygdala activity predicted induced sadness intensity. A double dissociation between grief style and both prefrontal and amygdala subregion activity was found. Intrusiveness correlated with activation of ventral amygdala and rostral anterior cingulate (rACC); avoidance correlated with deactivation of dorsal amygdala and DLPFC. A double dissociation between regulatory region and task-dependent functional connectivity (FC) was found. High DLPFC-amygdala FC correlated with reduced attentional bias, while low rACC-amygdala FC predicted sadness intensity. Conclusions: Results are consistent with a model in which activity in and functional connectivity between the amygdala and prefrontal regulatory regions indexes differences in mourners' regulation of attention and sadness during pangs of grief, and may be used to distinguish between clinically relevant differences in grief style. PMID:19249748
Gender differences in human single neuron responses to male emotional faces.
Newhoff, Morgan; Treiman, David M; Smith, Kris A; Steinmetz, Peter N
2015-01-01
Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions. This study included recordings of single-neuron activity of 14 (6 male) epileptic patients in four brain areas: amygdala (236 neurons), hippocampus (n = 270), anterior cingulate cortex (n = 256), and ventromedial prefrontal cortex (n = 174). Neural activity was recorded while participants viewed a series of avatar male faces portraying positive, negative or neutral expressions. Significant gender differences were found in the left amygdala, where 23% (n = 15∕66) of neurons in men were significantly affected by facial emotion, vs. 8% (n = 6∕76) of neurons in women. A Fisher's exact test comparing the two ratios found a highly significant difference between the two (p < 0.01). These results show specific differences between genders at the single-neuron level in the human amygdala. These differences may reflect gender-based distinctions in evolved capacities for emotional processing and also demonstrate the importance of including subject gender as an independent factor in future studies of emotional processing by single neurons in the human amygdala.
Taren, Adrienne A.; Gianaros, Peter J.; Greco, Carol M.; Lindsay, Emily K.; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K.; Ferris, Jennifer L.; Julson, Erica; Marsland, Anna L.; Bursley, James K.; Ramsburg, Jared
2015-01-01
Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. PMID:26048176
Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies.
Shi, C; Davis, M
1999-01-01
It is well established that the basolateral amygdala is critically involved in the association between an unconditioned stimulus (US), such as a foot shock, and a conditioned stimulus (CS), such as a light, during classic fear conditioning. However, little is known about how the US (pain) inputs are relayed to the basolateral amygdala. The present studies were designed to define potential US pathways to the amygdala using lesion methods. Electrolytic lesions before or after training were placed in caudal granular/dysgranular insular cortex (IC) alone or in conjunction with the posterior intralaminar nuclei of the thalamus (PoT/PIL), and the effects on fear conditioning were examined. Pretraining lesions of both IC and PoT/PIL, but not lesions of IC alone, blocked the acquisition of fear-potentiated startle. However, post-training combined lesions of IC and PoT/PIL did not prevent expression of conditioned fear. Given that previous studies have shown that lesions of PoT/PIL alone had no effect on acquisition of conditioned fear, these results suggest that two parallel cortical (insula-amygdala) and subcortical (PoT/PIL-amygdala) pathways are involved in relaying shock information to the basolateral amygdala during fear conditioning.
The changing face of emotion: age-related patterns of amygdala activation to salient faces
Evans, Jennifer W.; Morris, Drew; Lewis, Marc D.; Taylor, Margot J.
2011-01-01
The present study investigated age-related differences in the amygdala and other nodes of face-processing networks in response to facial expression and familiarity. fMRI data were analyzed from 31 children (3.5–8.5 years) and 14 young adults (18–33 years) who viewed pictures of familiar (mothers) and unfamiliar emotional faces. Results showed that amygdala activation for faces over a scrambled image baseline increased with age. Children, but not adults, showed greater amygdala activation to happy than angry faces; in addition, amygdala activation for angry faces increased with age. In keeping with growing evidence of a positivity bias in young children, our data suggest that children find happy faces to be more salient or meaningful than angry faces. Both children and adults showed preferential activation to mothers’ over strangers’ faces in a region of rostral anterior cingulate cortex associated with self-evaluation, suggesting that some nodes in frontal evaluative networks are active early in development. This study presents novel data on neural correlates of face processing in childhood and indicates that preferential amygdala activation for emotional expressions changes with age. PMID:20194512
Amygdala reactivity in healthy adults is correlated with prefrontal cortical thickness.
Foland-Ross, Lara C; Altshuler, Lori L; Bookheimer, Susan Y; Lieberman, Matthew D; Townsend, Jennifer; Penfold, Conor; Moody, Teena; Ahlf, Kyle; Shen, Jim K; Madsen, Sarah K; Rasser, Paul E; Toga, Arthur W; Thompson, Paul M
2010-12-08
Recent evidence suggests that putting feelings into words activates the prefrontal cortex (PFC) and suppresses the response of the amygdala, potentially helping to alleviate emotional distress. To further elucidate the relationship between brain structure and function in these regions, structural and functional magnetic resonance imaging (MRI) data were collected from a sample of 20 healthy human subjects. Structural MRI data were processed using cortical pattern-matching algorithms to produce spatially normalized maps of cortical thickness. During functional scanning, subjects cognitively assessed an emotional target face by choosing one of two linguistic labels (label emotion condition) or matched geometric forms (control condition). Manually prescribed regions of interest for the left amygdala were used to extract percentage signal change in this region occurring during the contrast of label emotion versus match forms. A correlation analysis between left amygdala activation and cortical thickness was then performed along each point of the cortical surface, resulting in a color-coded r value at each cortical point. Correlation analyses revealed that gray matter thickness in left ventromedial PFC was inversely correlated with task-related activation in the amygdala. These data add support to a general role of the ventromedial PFC in regulating activity of the amygdala.
Pagliaccio, David; Luby, Joan L.; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Belden, Andrew C.; Botteron, Kelly N.; Harms, Michael P.; Barch, Deanna M.
2015-01-01
Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within four hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9–14 year olds; N=120). Whole-brain regression analyses indicated that increasing genetic ‘risk’ predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic ‘risk’ and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. PMID:26595470
Pagliaccio, David; Luby, Joan L; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S; Belden, Andrew C; Botteron, Kelly N; Harms, Michael P; Barch, Deanna M
2015-11-01
Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within 4 hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9- to 14-year-olds; N = 120). Whole-brain regression analyses indicated that increasing genetic "risk" predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic "risk" and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. (c) 2015 APA, all rights reserved).
Fang, Zhuo; Zhu, Senhua; Gillihan, Seth J.; Korczykowski, Marc; Detre, John A.; Rao, Hengyi
2013-01-01
The short (S) allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) has been associated with increased susceptibility to depression. Previous neuroimaging studies have consistently showed increased amygdala activity during the presentation of negative stimuli or regulation of negative emotion in the homozygous short allele carriers, suggesting the key role of amygdala response in mediating increased risk for depression. The brain default mode network (DMN) has also been shown to modulate amygdala activity. However, it remains unclear whether 5-HTTLPR genetic variation modulates functional connectivity (FC) between the amygdala and regions of DMN. In this study, we re-analyzed our previous imaging dataset and examined the effects of 5-HTTLPR genetic variation on amygdala connectivity. A total of 15 homozygous short (S/S) and 15 homozygous long individuals (L/L) were scanned in functional magnetic resonance imaging (fMRI) during four blocks: baseline, sad mood, mood recovery, and return to baseline. The S/S and L/L groups showed a similar pattern of FC and no differences were found between the two groups during baseline and sad mood scans. However, during mood recovery, the S/S group showed significantly reduced anti-correlation between amygdala and posterior cingulate cortex/precuneus (PCC/PCu) compared to the L/L group. Moreover, PCC/PCu-amygdala connectivity correlated with amygdala activity in the S/S group but not the L/L group. These results suggest that 5-HTTLPR genetic variation modulates amygdala connectivity which subsequently affects its activity during mood regulation, providing an additional mechanism by which the S allele confers depression risk. PMID:24198772
Cha, Jiook; DeDora, Daniel; Nedic, Sanja; Ide, Jaime; Greenberg, Tsafrir; Hajcak, Greg; Mujica-Parodi, Lilianne Rivka
2016-04-27
Clinical anxiety is associated with generalization of conditioned fear, in which innocuous stimuli elicit alarm. Using Pavlovian fear conditioning (electric shock), we quantify generalization as the degree to which subjects' neurobiological responses track perceptual similarity gradients to a conditioned stimulus. Previous studies show that the ventromedial prefrontal cortex (vmPFC) inversely and ventral tegmental area directly track the gradient of perceptual similarity to the conditioned stimulus in healthy individuals, whereas clinically anxious individuals fail to discriminate. Here, we extend this work by identifying specific functional roles within the prefrontal-limbic circuit. We analyzed fMRI time-series acquired from 57 human subjects during a fear generalization task using entropic measures of circuit-wide regulation and feedback (power spectrum scale invariance/autocorrelation), in combination with structural (diffusion MRI-probabilistic tractography) and functional (stochastic dynamic causal modeling) measures of prefrontal-limbic connectivity within the circuit. Group comparison and correlations with anxiety severity across 57 subjects revealed dysregulatory dynamic signatures within the inferior frontal gyrus (IFG), which our prior work has linked to impaired feedback within the circuit. Bayesian model selection then identified a fully connected prefrontal-limbic model comprising the IFG, vmPFC, and amygdala. Dysregulatory IFG dynamics were associated with weaker reciprocal excitatory connectivity between the IFG and the vmPFC. The vmPFC exhibited inhibitory influence on the amygdala. Our current results, combined with our previous work across a threat-perception spectrum of 137 subjects and a meta-analysis of 366 fMRI studies, dissociate distinct roles for three prefrontal-limbic regions, wherein the IFG provides evaluation of stimulus meaning, which then informs the vmPFC in inhibiting the amygdala. Affective neuroscience has generally treated prefrontal regions (orbitofrontal cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex) equivalently as inhibitory components of the prefrontal-limbic system. Yet research across the anxiety spectrum suggests that the inferior frontal gyrus may have a more complex role in emotion regulation, as this region shows abnormal function in disorders of both hyperarousal and hypoarousal. Using entropic measures of circuit-wide regulation and feedback, in combination with measures of structural and functional connectivity, we dissociate distinct roles for three prefrontal-limbic regions, wherein the inferior frontal gyrus provides evaluation of stimulus meaning, which then informs the ventromedial prefrontal cortex in inhibiting the amygdala. This reconfiguration coheres with studies of conceptual disambiguation also implicating the inferior frontal gyrus. Copyright © 2016 the authors 0270-6474/16/364708-11$15.00/0.
Emotional modulation of body-selective visual areas.
Peelen, Marius V; Atkinson, Anthony P; Andersson, Frederic; Vuilleumier, Patrik
2007-12-01
Emotionally expressive faces have been shown to modulate activation in visual cortex, including face-selective regions in ventral temporal lobe. Here, we tested whether emotionally expressive bodies similarly modulate activation in body-selective regions. We show that dynamic displays of bodies with various emotional expressions vs neutral bodies, produce significant activation in two distinct body-selective visual areas, the extrastriate body area and the fusiform body area. Multi-voxel pattern analysis showed that the strength of this emotional modulation was related, on a voxel-by-voxel basis, to the degree of body selectivity, while there was no relation with the degree of selectivity for faces. Across subjects, amygdala responses to emotional bodies positively correlated with the modulation of body-selective areas. Together, these results suggest that emotional cues from body movements produce topographically selective influences on category-specific populations of neurons in visual cortex, and these increases may implicate discrete modulatory projections from the amygdala.
Boccia, M; Dacquino, C; Piccardi, L; Cordellieri, P; Guariglia, C; Ferlazzo, F; Ferracuti, S; Giannini, A M
2017-02-01
Moral sense is defined as a feeling of the rightness or wrongness of an action that knowingly causes harm to people other than the agent. The large amount of data collected over the past decade allows drawing some definite conclusions about the neurobiological foundations of moral reasoning as well as a systematic investigation of methodological variables during fMRI studies. Here, we verified the existence of converging and consistent evidence in the current literature by means of a meta-analysis of fMRI studies of moral reasoning, using activation likelihood estimation meta-analysis. We also tested for a possible neural segregation as function of the perspective used during moral reasoning i.e., first or third person perspectives. Results demonstrate the existence of a wide network of areas underpinning moral reasoning, including orbitofrontal cortex, insula, amygdala, anterior cingulate cortex as well as precuneus and posterior cingulate cortex. Within this network we found a neural segregation as a function of the personal perspective, with 1PP eliciting higher activation in the bilateral insula and superior temporal gyrus as well as in the anterior cingulate cortex, lingual and fusiform gyri, middle temporal gyrus and precentral gyrus in the left hemisphere, and 3PP eliciting higher activation in the bilateral amygdala, the posterior cingulate cortex, insula and supramarginal gyrus in the left hemisphere as well as the medial and ventromedial prefrontal cortex in the right hemisphere. These results shed some more light on the contribution of these areas to moral reasoning, strongly supporting a functional specialization as a function of the perspective used during moral reasoning.
Rogers, Cynthia E; Sylvester, Chad M; Mintz, Carrie; Kenley, Jeanette K; Shimony, Joshua S; Barch, Deanna M; Smyser, Christopher D
2017-02-01
Alterations in the normal developmental trajectory of amygdala resting state functional connectivity (rs-FC) have been associated with atypical emotional processes and psychopathology. Little is known, however, regarding amygdala rs-FC at birth or its relevance to outcomes. This study examined amygdala rs-FC in healthy, full-term (FT) infants and in very preterm (VPT) infants, and tested whether variability of neonatal amygdala rs-FC predicted internalizing symptoms at age 2 years. Resting state fMRI data were obtained shortly after birth from 65 FT infants (gestational age [GA] ≥36 weeks) and 57 VPT infants (GA <30 weeks) at term equivalent. Voxelwise correlation analyses were performed using individual-specific bilateral amygdala regions of interest. Total internalizing symptoms and the behavioral inhibition, depression/withdrawal, general anxiety, and separation distress subdomains were assessed in a subset (n = 44) at age 2 years using the Infant Toddler Social Emotional Assessment. In FT and VPT infants, the amygdala demonstrated positive correlations with subcortical and limbic structures and negative correlations with cortical regions, although magnitudes were decreased in VPT infants. Neonatal amygdala rs-FC predicted internalizing symptoms at age 2 years with regional specificity consistent with known pathophysiology in older populations: connectivity with the anterior insula related to depressive symptoms, with the dorsal anterior cingulate related to generalized anxiety, and with the medial prefrontal cortex related to behavioral inhibition. Amygdala rs-FC is well established in neonates. Variability in regional neonatal amygdala rs-FC predicted internalizing symptoms at 2 years, suggesting that risk for internalizing symptoms may be established in neonatal amygdala functional connectivity patterns. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Cheetham, Ali; Allen, Nicholas B; Whittle, Sarah; Simmons, Julian; Yücel, Murat; Lubman, Dan I
2018-06-30
The current study examined amygdala and orbitofrontal cortex (OFC) volumes as mediators of the relationship between externalizing symptoms and daily smoking in adolescence. Externalizing behaviors are among the most robust predictors of adolescent smoking, and there is emerging evidence that volume reductions in the amygdala and OFC are associated with risk for substance misuse as well as aggressive, impulsive, and disinhibited tendencies. Using a prospective longitudinal design, we recruited 109 adolescents who provided data on brain volume and externalizing behaviors at age 12, and on smoking at age 18. Daily smoking at age 18 (n = 27) was predicted by externalizing behaviors (measured by the self-report Child Behavior Checklist, CBCL) as well as smaller right amygdala volumes. Right amygdala volumes mediated the relationship between externalizing symptoms and later smoking. These findings provide important insight into the neurobiological risk factors associated with adolescent smoking, and, more generally, into factors that may be associated with vulnerability to substance use disorders and related psychopathology. Copyright © 2018 Elsevier B.V. All rights reserved.
Gleizes, Marie; Perrier, Simon P.; Fonta, Caroline
2017-01-01
Neuronal activity is characterized by a diversity of oscillatory phenomena that are associated with multiple behavioral and cognitive processes, yet the functional consequences of these oscillations are not fully understood. Our aim was to determine whether and how these different oscillatory activities affect short-term synaptic plasticity (STP), using the olfactory system as a model. In response to odorant stimuli, the olfactory bulb displays a slow breathing rhythm as well as beta and gamma oscillations. Since the firing of olfactory bulb projecting neurons is phase-locked with beta and gamma oscillations, structures downstream from the olfactory bulb should be driven preferentially at these frequencies. We examined STP exhibited by olfactory bulb inputs in slices of adult mouse piriform cortex maintained in vitro in an in vivo-like ACSF (calcium concentration: 1.1 mM). We replaced the presynaptic neuronal firing rate by repeated electrical stimulation (frequency between 3.125 and 100 Hz) applied to the lateral olfactory tract. Our results revealed a considerable enhancement of postsynaptic response amplitude for stimulation frequencies in the beta and gamma range. A phenomenological model of STP fitted to the data suggests that the experimental results can be explained by the interplay between three mechanisms: a short-term facilitation mechanism (time constant ≈160 msec), and two short-term depression mechanisms (recovery time constants <20 msec and ≈140 msec). Increasing calcium concentration (2.2 mM) resulted in an increase in the time constant of facilitation and in a strengthening of the slowest depression mechanism. As a result, response enhancement was reduced and its peak shifted toward the low beta and alpha ranges while depression became predominant in the gamma band. Using environmental conditions corresponding to those that prevail in vivo, our study shows that STP in the lateral olfactory tract to layer Ia synapse allows amplification of olfactory bulb inputs at beta and gamma frequencies. PMID:28820903
Odor preference and olfactory memory are impaired in Olfaxin-deficient mice.
Islam, Saiful; Ueda, Masashi; Nishida, Emika; Wang, Miao-Xing; Osawa, Masatake; Lee, Dongsoo; Itoh, Masanori; Nakagawa, Kiyomi; Tana; Nakagawa, Toshiyuki
2018-06-01
Olfaxin, which is a BNIP2 and Cdc42GAP homology (BCH) domain-containing protein, is predominantly expressed in mitral and tufted (M/T) cells in the olfactory bulb (OB). Olfaxin and Caytaxin, which share 56.3% amino acid identity, are similar in their glutamatergic terminal localization, kidney-type glutaminase (KGA) interaction, and caspase-3 substrate. Although the deletion of Caytaxin protein causes human Cayman ataxia and ataxia in the mutant mouse, the function of Olfaxin is largely unknown. In this study, we generated Prune2 gene mutant mice (Prune2 Ex16-/- ; knock out [KO] mice) using the CRISPR/Cas9 system, during which the exon 16 containing start codon of Olfaxin mRNA was deleted. Exon 16 has 80 nucleotides and is contained in four of five Prune2 isoforms, including PRUNE2, BMCC1, BNIPXL, and Olfaxin/BMCC1s. The levels of Olfaxin mRNA and Olfaxin protein in the OB and piriform cortex of KO mice significantly decreased. Although Prune2 mRNA also significantly decreased in the spinal cord, the gross anatomy of the spinal cord and dorsal root ganglion (DRG) was intact. Further, disturbance of the sensory and motor system was not observed in KO mice. Therefore, in the current study, we examined the role of Olfaxin in the olfactory system where PRUNE2, BMCC1, and BNIPXL are scarcely expressed. Odor preference was impaired in KO mice using opposite-sex urinary scents as well as a non-social odor stimulus (almond). Results of the odor-aversion test demonstrated that odor-associative learning was disrupted in KO mice. Moreover, the NMDAR2A/NMDAR2B subunits switch in the piriform cortex was not observed in KO mice. These results indicated that Olfaxin may play a critical role in odor preference and olfactory memory. Copyright © 2018 Elsevier B.V. All rights reserved.
Thomasson, Julien; Canini, Frédéric; Poly-Thomasson, Betty; Trousselard, Marion; Granon, Sylvie; Chauveau, Frédéric
2017-12-01
Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Cunningham, Miles Gregory; Bhattacharyya, Sujoy; Benes, Francine Mary
2002-11-11
Adolescence is a critical stage for the development of emotional maturity and diverse forms of psychopathology. The posterior basolateral nucleus of the amygdala is known to mediate fear and anxiety and is important in assigning emotional valence to cognitive processes. The medial prefrontal cortex, a homologue of the human anterior cingulate cortex, mediates emotional, attentional, and motivational behaviors at the cortical level. We postulate that the development of connectivity between these two corticolimbic regions contributes to an enhanced integration of emotion and cognition during the postnatal period. In order to characterize the development of this relay, injections of the anterograde tracer biocytin were stereotaxically placed within the posterior basolateral nucleus of the amygdala of rats at successive postnatal time points (postnatal days 6-120). Labeled fibers in the medial prefrontal cortex were evaluated using a combination of brightfield, confocal, and electron microscopy. We found that the density of labeled fibers originating from the posterior basolateral nucleus shows a sharp curvilinear increase within layers II and V of the anterior cingulate cortex and the infralimbic subdivisions of medial prefrontal cortex during the late postweanling period. This increase was paralleled by a linear rise in the number of axospinous and axodendritic synapses present in the neuropil. Based on these results, we propose that late maturation of amygdalo-cortical connectivity may provide an anatomical basis for the development and integration of normal and possibly abnormal emotional behavior during adolescence and early adulthood. Copyright 2002 Wiley-Liss, Inc.
Koob, George F; Volkow, Nora D
2010-01-01
Drug addiction is a chronically relapsing disorder that has been characterized by (1) compulsion to seek and take the drug, (2) loss of control in limiting intake, and (3) emergence of a negative emotional state (eg, dysphoria, anxiety, irritability) reflecting a motivational withdrawal syndrome when access to the drug is prevented. Drug addiction has been conceptualized as a disorder that involves elements of both impulsivity and compulsivity that yield a composite addiction cycle composed of three stages: ‘binge/intoxication', ‘withdrawal/negative affect', and ‘preoccupation/anticipation' (craving). Animal and human imaging studies have revealed discrete circuits that mediate the three stages of the addiction cycle with key elements of the ventral tegmental area and ventral striatum as a focal point for the binge/intoxication stage, a key role for the extended amygdala in the withdrawal/negative affect stage, and a key role in the preoccupation/anticipation stage for a widely distributed network involving the orbitofrontal cortex–dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, and insula involved in craving and the cingulate gyrus, dorsolateral prefrontal, and inferior frontal cortices in disrupted inhibitory control. The transition to addiction involves neuroplasticity in all of these structures that may begin with changes in the mesolimbic dopamine system and a cascade of neuroadaptations from the ventral striatum to dorsal striatum and orbitofrontal cortex and eventually dysregulation of the prefrontal cortex, cingulate gyrus, and extended amygdala. The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction. PMID:19710631
Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders.
Wilcox, Claire E; Pommy, Jessica M; Adinoff, Bryon
2016-04-01
Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity.
Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders
Wilcox, Claire E.; Pommy, Jessica M.; Adinoff, Bryon
2016-01-01
Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity. PMID:26771738
Lueken, Ulrike; Straube, Benjamin; Konrad, Carsten; Wittchen, Hans-Ulrich; Ströhle, Andreas; Wittmann, André; Pfleiderer, Bettina; Uhlmann, Christina; Arolt, Volker; Jansen, Andreas; Kircher, Tilo
2013-11-01
Although exposure-based cognitive-behavioral therapy (CBT) is an effective treatment option for panic disorder with agoraphobia, the neural substrates of treatment response remain unknown. Evidence suggests that panic disorder with agoraphobia is characterized by dysfunctional safety signal processing. Using fear conditioning as a neurofunctional probe, the authors investigated neural baseline characteristics and neuroplastic changes after CBT that were associated with treatment outcome in patients with panic disorder with agoraphobia. Neural correlates of fear conditioning and extinction were measured using functional MRI before and after a manualized CBT program focusing on behavioral exposure in 49 medication-free patients with a primary diagnosis of panic disorder with agoraphobia. Treatment response was defined as a reduction exceeding 50% in Hamilton Anxiety Rating Scale scores. At baseline, nonresponders exhibited enhanced activation in the right pregenual anterior cingulate cortex, the hippocampus, and the amygdala in response to a safety signal. While this activation pattern partly resolved in nonresponders after CBT, successful treatment was characterized by increased right hippocampal activation when processing stimulus contingencies. Treatment response was associated with an inhibitory functional coupling between the anterior cingulate cortex and the amygdala that did not change over time. This study identified brain activation patterns associated with treatment response in patients with panic disorder with agoraphobia. Altered safety signal processing and anterior cingulate cortex-amygdala coupling may indicate individual differences among these patients that determine the effectiveness of exposure-based CBT and associated neuroplastic changes. Findings point to brain networks by which successful CBT in this patient population is mediated.
Brain c-fos expression patterns induced by emotional stressors differing in nature and intensity.
Úbeda-Contreras, Jesús; Marín-Blasco, Ignacio; Nadal, Roser; Armario, Antonio
2018-06-01
Regardless of its particular nature, emotional stressors appear to elicit a widespread and roughly similar brain activation pattern as evaluated by c-fos expression. However, their behavioral and physiological consequences may strongly differ. Here we addressed in adult male rats the contribution of the intensity and the particular nature of stressors by comparing, in a set of brain areas, the number of c-fos expressing neurons in response to open-field, cat odor or immobilization on boards (IMO). These are qualitatively different stressors that are known to differ in terms of intensity, as evaluated by biological markers. In the present study, plasma levels of the adrenocorticotropic hormone (ACTH) demonstrated that intensity increases in the following order: open-field, cat odor and IMO. Four different c-fos activation patterns emerged among all areas studied: (i) positive relationship with intensity (posterior-dorsal medial amygdala, dorsomedial hypothalamus, lateral septum ventral and paraventricular nucleus of the hypothalamus), (ii) negative relationship with intensity (cingulate cortex 1, posterior insular cortex, dorsal striatum, nucleus accumbens and some subdivisions of the hippocampal formation); (iii) activation not dependent on the intensity of the stressor (prelimbic and infralimbic cortex and lateral and basolateral amygdala); and (iv) activation specifically associated with cat odor (ventromedial amygdala and ventromedial hypothalamus). Histone 3 phosphorylation at serine 10, another neuronal activation marker, corroborated c-fos results. Summarizing, deepest analysis of the brain activation pattern elicit by emotional stressor indicated that, in spite of activating similar areas, each stressor possess their own brain activation signature, mediated mainly by qualitative aspects but also by intensity.
Bi-Directional Tuning of Amygdala Sensitivity in Combat Veterans Investigated with fMRI
Brashers-Krug, Tom; Jorge, Ricardo
2015-01-01
Objectives Combat stress can be followed by persistent emotional consequences. It is thought that these emotional consequences are caused in part by increased amygdala reactivity. It is also thought that amygdala hyper-reactivity results from decreased inhibition from portions of the anterior cingulate cortex (ACC) in which activity is negatively correlated with activity in the amygdala. However, experimental support for these proposals has been inconsistent. Methods We showed movies of combat and civilian scenes during a functional magnetic resonance imaging (fMRI) session to 50 veterans of recent combat. We collected skin conductance responses (SCRs) as measures of emotional arousal. We examined the relation of blood oxygenation-level dependent (BOLD) signal in the amygdala and ACC to symptom measures and to SCRs. Results Emotional arousal, as measured with SCR, was greater during the combat movie than during the civilian movie and did not depend on symptom severity. As expected, amygdala signal during the less-arousing movie increased with increasing symptom severity. Surprisingly, during the more-arousing movie amygdala signal decreased with increasing symptom severity. These differences led to the unexpected result that amygdala signal in highly symptomatic subjects was lower during the more-arousing movie than during the less-arousing movie. Also unexpectedly, we found no significant inverse correlation between any portions of the amygdala and ACC. Rather, signal throughout more than 80% of the ACC showed a strong positive correlation with signal throughout more than 90% of the amygdala. Conclusions Amygdala reactivity can be tuned bi-directionally, either up or down, in the same person depending on the stimulus and the degree of post-traumatic symptoms. The exclusively positive correlations in BOLD activity between the amygdala and ACC contrast with findings that have been cited as evidence for inhibitory control of the amygdala by the ACC. The conceptualization of post-traumatic changes in neural function should be reconsidered. PMID:26120848
[A role of the autonomic nervous system in cerebro-cardiac disorders].
Basantsova, N Yu; Tibekina, L M; Shishkin, A N
The authors consider anatomical/physiological characteristics and a role of different autonomic CNS regions, including insula cortex, amygdala complex, anterior cingulate cortex, ventral medial prefrontal cortex, hypothalamus and epiphysis, involved in the regulation of cardiovascular activity. The damage of these structures, e.g., due to the acute disturbance of cerebral blood circulation, led to arrhythmia, including fatal arrhythmia, in previously intact myocardium; systolic and diastolic dysfunction, ischemic changes considered in the frames of cerebro-cardial syndrome. On the cellular level, the disturbance of autonomic regulation resulted in catechol amine excitotoxicity, oxidative stress and free radical myocardium injury.
Role of Central Amygdala Neuronal Ensembles in Incubation of Nicotine Craving.
Funk, Douglas; Coen, Kathleen; Tamadon, Sahar; Hope, Bruce T; Shaham, Yavin; Lê, A D
2016-08-17
The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. Here, we further characterized incubation of nicotine craving in the rat model by determining whether this incubation is observed after adolescent-onset nicotine self-administration. We also used the neuronal activity marker Fos and the Daun02 chemogenetic inactivation procedure to identify cue-activated neuronal ensembles that mediate incubation of nicotine craving. We trained adolescent and adult male rats to self-administer nicotine (2 h/d for 12 d) and assessed cue-induced nicotine seeking in extinction tests (1 h) after 1, 7, 14, or 28 withdrawal days. In both adult and adolescent rats, nicotine seeking in the relapse tests followed an inverted U-shaped curve, with maximal responding on withdrawal day 14. Independent of the withdrawal day, nicotine seeking in the relapse tests was higher in adult than in adolescent rats. Analysis of Fos expression in different brain areas of adolescent and adult rats on withdrawal days 1 and 14 showed time-dependent increases in the number of Fos-positive neurons in central and basolateral amygdala, orbitofrontal cortex, ventral and dorsal medial prefrontal cortex, and nucleus accumbens core and shell. In adult Fos-lacZ transgenic rats, selective inactivation of nicotine-cue-activated Fos neurons in central amygdala, but not orbitofrontal cortex, decreased "incubated" nicotine seeking on withdrawal day 14. Our results demonstrate that incubation of nicotine craving occurs after adolescent-onset nicotine self-administration and that neuronal ensembles in central amygdala play a critical role in this incubation. The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. It is currently unknown whether incubation of craving also occurs after adolescent-onset nicotine self-administration. The brain areas that mediate such incubation are also unknown. Here, we used a rat model of incubation of drug craving, the neuronal activity marker Fos, and the Daun02 chemogenetic inactivation method to demonstrate that incubation of nicotine craving is also observed after adolescent-onset nicotine self-administration and that neuronal ensembles in the central nucleus of the amygdala play a critical role in this incubation in adult rats. Copyright © 2016 the authors 0270-6474/16/368612-12$15.00/0.
Role of Central Amygdala Neuronal Ensembles in Incubation of Nicotine Craving
Coen, Kathleen; Tamadon, Sahar; Hope, Bruce T.; Shaham, Yavin; Lê, A.D.
2016-01-01
The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. Here, we further characterized incubation of nicotine craving in the rat model by determining whether this incubation is observed after adolescent-onset nicotine self-administration. We also used the neuronal activity marker Fos and the Daun02 chemogenetic inactivation procedure to identify cue-activated neuronal ensembles that mediate incubation of nicotine craving. We trained adolescent and adult male rats to self-administer nicotine (2 h/d for 12 d) and assessed cue-induced nicotine seeking in extinction tests (1 h) after 1, 7, 14, or 28 withdrawal days. In both adult and adolescent rats, nicotine seeking in the relapse tests followed an inverted U-shaped curve, with maximal responding on withdrawal day 14. Independent of the withdrawal day, nicotine seeking in the relapse tests was higher in adult than in adolescent rats. Analysis of Fos expression in different brain areas of adolescent and adult rats on withdrawal days 1 and 14 showed time-dependent increases in the number of Fos-positive neurons in central and basolateral amygdala, orbitofrontal cortex, ventral and dorsal medial prefrontal cortex, and nucleus accumbens core and shell. In adult Fos–lacZ transgenic rats, selective inactivation of nicotine-cue-activated Fos neurons in central amygdala, but not orbitofrontal cortex, decreased “incubated” nicotine seeking on withdrawal day 14. Our results demonstrate that incubation of nicotine craving occurs after adolescent-onset nicotine self-administration and that neuronal ensembles in central amygdala play a critical role in this incubation. SIGNIFICANCE STATEMENT The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. It is currently unknown whether incubation of craving also occurs after adolescent-onset nicotine self-administration. The brain areas that mediate such incubation are also unknown. Here, we used a rat model of incubation of drug craving, the neuronal activity marker Fos, and the Daun02 chemogenetic inactivation method to demonstrate that incubation of nicotine craving is also observed after adolescent-onset nicotine self-administration and that neuronal ensembles in the central nucleus of the amygdala play a critical role in this incubation in adult rats. PMID:27535909
Murdoch, Hannah; Feng, Gui-Jie; Bächner, Dietmar; Ormiston, Laura; White, Julia H; Richter, Dietmar; Milligan, Graeme
2005-03-04
In mice genetic ablation of expression of either melanin-concentrating hormone or the melanin-concentrating hormone-1 receptor results in alterations in energy metabolism and a lean phenotype. There is thus great interest in the function and regulation of this receptor. Using the yeast two-hybrid system we identified an interaction of the actin- and intermediate filament-binding protein periplakin with the intracellular C-terminal tail of the melanin-concentrating hormone-1 receptor. Direct association of these proteins was verified in pull-down and coimmunoprecipitation experiments. Truncations and internal deletions delineated the site of interaction to a group of 11 amino acids proximal to transmembrane helix VII, which was distinct from the binding site for the melanin-concentrating hormone-1 receptor-interacting zinc finger protein. Immunohistochemistry demonstrated coexpression of periplakin with melanin-concentrating hormone-1 receptor in specific cells of the piriform cortex, amygdala, and other structures of the adult mouse brain. Coexpression of the melanin-concentrating hormone-1 receptor with periplakin in human embryonic kidney 293 cells did not prevent agonist-mediated internalization of the receptor but did interfere with binding of (35)S-labeled guanosine 5'-3-O-(thio)triphosphate ([(35)S]GTPgammaS) to the G protein Galpha(o1) and the elevation of [Ca(2+)](i). Coexpression of the receptor with the interacting zinc finger protein did not modulate receptor internalization or G protein activation. The interaction of periplakin with receptors was selective. Coexpression of periplakin with the IP prostanoid receptor did not result in coimmunoprecipitation nor interfere with agonist-mediated binding of [(35)S]GTPgammaS to the G protein Galpha(s). Periplakin is the first protein described to modify the capacity of the melanin-concentrating hormone-1 receptor to initiate signal transduction.
Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo; Rydbirk, Rasmus; Olesen, Mikkel Vestergaard; Hay-Schmidt, Anders; Pakkenberg, Bente; Aznar, Susana
2017-05-30
The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT 2A receptor (5-HT 2A R) dependent. Here, we further investigated how blockade of 5-HT 2A Rs in mice exposed to a novel open-field arena affects medial PFC activation and basolateral amygdala (BLA) reactivity. We used c-Fos immunoreactivity (IR) as a marker of neuronal activation and stereological quantification for obtaining the total number of c-Fos-IR neurons as a measure of regional activation. We further examined the impact of 5-HT 2A R blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin-treated animals, upholding its involvement in modulating averseness. Ketanserin did not affect the number of activated striatal-projecting BLA neurons (measured by number of Cholera Toxin b (CTb) retrograde labelled neurons also being c-Fos-IR) following CTb injection in the ventral striatum. These results support a role of 5-HT 2A R activation in modulating mPFC and BLA activation during exposure to a novel environment, which may be interrelated. Conversely, 5-HT 2A R blockade does not seem to affect the amygdala-striatal projection. Copyright © 2017 Elsevier B.V. All rights reserved.
Task-irrelevant fear enhances amygdala-FFG inhibition and decreases subsequent face processing.
Schulte Holthausen, Barbara; Habel, Ute; Kellermann, Thilo; Schelenz, Patrick D; Schneider, Frank; Christopher Edgar, J; Turetsky, Bruce I; Regenbogen, Christina
2016-09-01
Facial threat is associated with changes in limbic activity as well as modifications in the cortical face-related N170. It remains unclear if task-irrelevant threat modulates the response to a subsequent facial stimulus, and whether the amygdala's role in early threat perception is independent and direct, or modulatory. In 19 participants, crowds of emotional faces were followed by target faces and a rating task while simultaneous EEG-fMRI were recorded. In addition to conventional analyses, fMRI-informed EEG analyses and fMRI dynamic causal modeling (DCM) were performed. Fearful crowds reduced EEG N170 target face amplitudes and increased responses in a fMRI network comprising insula, amygdala and inferior frontal cortex. Multimodal analyses showed that amygdala response was present ∼60 ms before the right fusiform gyrus-derived N170. DCM indicated inhibitory connections from amygdala to fusiform gyrus, strengthened when fearful crowds preceded a target face. Results demonstrated the suppressing influence of task-irrelevant fearful crowds on subsequent face processing. The amygdala may be sensitive to task-irrelevant fearful crowds and subsequently strengthen its inhibitory influence on face-responsive fusiform N170 generators. This provides spatiotemporal evidence for a feedback mechanism of the amygdala by narrowing attention in order to focus on potential threats. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Yoon, Eun Jin; Choi, Jung-Seok; Kim, Heejung; Sohn, Bo Kyung; Jung, Hee Yeon; Lee, Jun-Young; Kim, Dai-Jin; Park, Sun-Won; Kim, Yu Kyeong
2017-07-18
Internet gaming disorder (IGD) has been conceptualized as a behavioral addiction and shares clinical, neuropsychological, and personality characteristics with alcohol use disorder (AUD), but IGD dose not entail brain exposure to toxic agents, which renders it different from AUD. To achieve a clear understanding of the neurobiological features of IGD, we aimed to identify morphological and functional changes in IGD and compare them with those in AUD. Individuals with IGD showed larger volume in the hippocampus/amygdala and precuneus than healthy controls (HCs). The volume in the hippocampus positively correlated with the symptom severity of IGD. Moreover, functional connectivity analysis with the hippocampus/amygdala cluster revealed that the left ventromedial prefrontal cortex showed stronger functional connectivity in individuals with IGD compared to those with AUD. In contrast, individuals with AUD exhibited the smaller cerebellar volume and thinner medial frontal cortex than HCs. The volume in the cerebellum correlated with impaired working memory function as well as duration of illness in AUD group. Findings suggested that altered volume and functional connectivity in the hippocampus/amygdala in IGD might be associated with abnormally enhanced memory process of gaming-related cues, while abnormal cortical changes and cognitive impairments in AUD might be associated with neurotoxic effects of alcohol.
Rubio, Marina; McHugh, Douglas; Fernández-Ruiz, Javier; Bradshaw, Heather; Walker, J. Michael
2010-01-01
Chronic alcohol exposure leads to significant changes in the levels of endocannabinoids and their receptors in the brains of humans and laboratory animals, as well as in cultured neuronal cells. However, little is known about the effects of short-term periods of alcohol exposure. In the present study, we examined the changes in endocannabinoid levels (anandamide and 2-arachidonoylglycerol), as well as four additional N-acylethanolamines, in four brain regions of rats exposed to alcohol through the liquid diet for a period of 24 hours. The levels of N-acylethanolamines were diminished 24 hours after the onset of alcohol exposure. This was particularly evident for anandamide in the hypothalamus, amygdala and caudate-putamen, for N-palmitoylethanolamine in the caudate-putamen, for N-oleoylethanolamine in the hypothalamus, caudate-putamen and prefrontal cortex, and for N-stearoylethanolamine in the amygdala. The only exception was N-linoleoylethanolamine for which the levels increased in the amygdala after the exposure to alcohol. The levels of the other major endocannabinoid, 2-arachidonoylglycerol, were also reduced with marked effects in the prefrontal cortex. These results support the notion that short-term alcohol exposure reduces endocannabinoid levels in the brain accompanied by a reduction in several related N-acylethanolamines. PMID:17574742
Neural foundations to moral reasoning and antisocial behavior
Yang, Yaling
2006-01-01
A common feature of the antisocial, rule-breaking behavior that is central to criminal, violent and psychopathic individuals is the failure to follow moral guidelines. This review summarizes key findings from brain imaging research on both antisocial behavior and moral reasoning, and integrates these findings into a neural moral model of antisocial behavior. Key areas found to be functionally or structurally impaired in antisocial populations include dorsal and ventral regions of the prefrontal cortex (PFC), amygdala, hippocampus, angular gyrus, anterior cingulate and temporal cortex. Regions most commonly activated in moral judgment tasks consist of the polar/medial and ventral PFC, amygdala, angular gyrus and posterior cingulate. It is hypothesized that the rule-breaking behavior common to antisocial, violent and psychopathic individuals is in part due to impairments in some of the structures (dorsal and ventral PFC, amygdala and angular gyrus) subserving moral cognition and emotion. Impairments to the emotional component that comprises the feeling of what is moral is viewed as the primary deficit in antisocials, although some disruption to the cognitive and cognitive-emotional components of morality (particularly self-referential thinking and emotion regulation) cannot be ruled out. While this neurobiological predisposition is likely only one of several biosocial processes involved in the etiology of antisocial behavior, it raises significant moral issues for the legal system and neuroethics. PMID:18985107
Distinct pathways of neural coupling for different basic emotions.
Tettamanti, Marco; Rognoni, Elena; Cafiero, Riccardo; Costa, Tommaso; Galati, Dario; Perani, Daniela
2012-01-16
Emotions are complex events recruiting distributed cortical and subcortical cerebral structures, where the functional integration dynamics within the involved neural circuits in relation to the nature of the different emotions are still unknown. Using fMRI, we measured the neural responses elicited by films representing basic emotions (fear, disgust, sadness, happiness). The amygdala and the associative cortex were conjointly activated by all basic emotions. Furthermore, distinct arrays of cortical and subcortical brain regions were additionally activated by each emotion, with the exception of sadness. Such findings informed the definition of three effective connectivity models, testing for the functional integration of visual cortex and amygdala, as regions processing all emotions, with domain-specific regions, namely: i) for fear, the frontoparietal system involved in preparing adaptive motor responses; ii) for disgust, the somatosensory system, reflecting protective responses against contaminating stimuli; iii) for happiness: medial prefrontal and temporoparietal cortices involved in understanding joyful interactions. Consistently with these domain-specific models, the results of the effective connectivity analysis indicate that the amygdala is involved in distinct functional integration effects with cortical networks processing sensorimotor, somatosensory, or cognitive aspects of basic emotions. The resulting effective connectivity networks may serve to regulate motor and cognitive behavior based on the quality of the induced emotional experience. Copyright © 2011. Published by Elsevier Inc.
Impaired cortico-limbic functional connectivity in schizophrenia patients during emotion processing.
Comte, Magali; Zendjidjian, Xavier Y; Coull, Jennifer T; Cancel, Aïda; Boutet, Claire; Schneider, Fabien C; Sage, Thierry; Lazerges, Pierre-Emmanuel; Jaafari, Nematollah; Ibrahim, El Chérif; Azorin, Jean-Michel; Blin, Olivier; Fakra, Eric
2017-10-23
Functional dysconnection is increasingly recognized as a core pathological feature in schizophrenia. Aberrant interactions between regions of the cortico-limbic circuit may underpin the abnormal emotional processing associated with this illness. We used a functional magnetic resonance imaging (fMRI) paradigm designed to dissociate the various components of the cortico-limbic circuit (i.e. a ventral automatic circuit that is intertwined with a dorsal cognitive circuit), in order to explore bottom-up appraisal as well as top-down control during emotion processing. In schizophrenia patients compared to healthy controls, bottom-up processes were associated with reduced interaction between the amygdala and both the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC). Contrariwise, top-down control processes led to stronger connectivity between the ventral affective and the dorsal cognitive circuits, i.e. heightened interactions between the ventral ACC and the DLPFC as well as between dorsal and ventral ACC. These findings offer a comprehensive view of the cortico-limbic dysfunction in schizophrenia. They confirm previous results of impaired propagation of information between the amygdala and the prefrontal cortex and suggest a defective functional segregation in the dorsal cognitive part of the cortico-limbic circuit. © The Author (2017). Published by Oxford University Press.
Dendritic Spines in Depression: What We Learned from Animal Models
Qiao, Hui; Li, Ming-Xing; Xu, Chang; Chen, Hui-Bin; An, Shu-Cheng; Ma, Xin-Ming
2016-01-01
Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms. PMID:26881133
Acute exposure to the tri-substituted organotin trimethyltin (TMT) causes neuronal degeneration in the hippocampus, amygdala, pyriform cortex, and neocortex. Developmental exposure to TMT impairs later learning and memory. Despite extensive efforts elucidating neuropathological...
The Pig Olfactory Brain: A Primer
Feldman, Sanford; Osterberg, Stephen K.
2016-01-01
Despite the fact that pigs are reputed to have excellent olfactory abilities, few studies have examined regions of the pig brain involved in the sense of smell. The present study provides an overview of the olfactory bulb, anterior olfactory nucleus, and piriform cortex of adult pigs using several approaches. Nissl, myelin, and Golgi stains were used to produce a general overview of the organization of the regions and confocal microscopy was employed to examine 1) projection neurons, 2) GABAergic local circuit neurons that express somatostatin, parvalbumin, vasoactive intestinal polypeptide, or calretinin, 3) neuromodulatory fibers (cholinergic and serotonergic), and 4) glia (astrocytes and microglia). The findings revealed that pig olfactory structures are quite large, highly organized and follow the general patterns observed in mammals. PMID:26936231
Kritman, Milly; Lahoud, Nisrine; Maroun, Mouna
2017-05-01
A growing body of evidence suggests that the hypothalamic neuropeptide oxytocin (OT), aside from its central role in the regulation of social behavior, reduces fear and anxiety. The functional and opposing interactions of the medial prefrontal cortex (mPFC) and the amygdala in regulation of fear provide a unique experimental setting to examine the effects of OT on fear and extinction. Recent evidence suggests that in the adult animal OT can play a dual role in the regulation of fear leading to contrasting effects on fear depending on the manipulated brain region and the time of manipulations. The OT system is one of the systems that undergoes major changes throughout development, however, its role in regulating fear in young animals has not been widely explored. We recently showed that the mechanisms of extinction, and specifically engagement of the mPFC in extinction, are not identical in adult and juvenile animals. Thus, the purpose of this study was to elucidate the effects of OT on fear and extinction in juvenile animals. To that end, we determine extinction, by measuring freezing at different time points, following microinjection of the OT agonist, TGOT, into the mPFC, the basolateral and the central nuclei of the amygdala (BLA and CeA, respectively). The results show that whereas TGOT microinjections into the IL-mPFC did not affect extinction, microinjections into the amygdala were mainly associated with enhanced fear and impaired extinction. These results further emphasize the differences between adult and juvenile brains. Copyright © 2017. Published by Elsevier Inc.
McDonald, Alexander J.; Hamilton, Patricia G.; Barnstable, Colin J.
2018-01-01
Perineuronal nets (PNNs) are specialized condensations of extracellular matrix that ensheath particular neuronal subpopulations in the brain and spinal cord. PNNs regulate synaptic plasticity, including the encoding of fear memories by the amygdala. The present immunohistochemical investigation studied PNN structure and distribution, as well as the neurochemistry of their ensheathed neurons, in the rat amygdala using monoclonal antibody VC1.1, which recognizes a glucuronic acid 3-sulfate glycan associated with PNNs in the cerebral cortex. VC1.1+ PNNs surrounded the cell bodies and dendrites of a subset of nonpyramidal neurons in cortex-like portions of the amygdala (basolateral amygdalar complex, cortical nuclei, nucleus of the lateral olfactory tract, and amygdalohippocampal region). There was also significant neuropilar VC1.1 immunoreactivity whose density varied in different amygdalar nuclei. Cell counts in the basolateral nucleus revealed that virtually all neurons ensheathed by VC1.1+ PNNs were parvalbumin-positive (PV+) interneurons, and these VC1.1+/PV+ cells constituted 60% of all PV+ interneurons, including all of the larger PV+ neurons. Approximately 70% of VC1.1+ neurons were calbindin-positive (CB+), and these VC1.1+/CB+ cells constituted about 40% of all CB+ neurons. Colocalization of VC1.1 with Vicia villosa agglutinin (VVA) binding, which stains terminal N-acetylgalactosamines, revealed that VC1.1+ PNNs were largely a subset of VVA+ PNNs. This investigation provides baseline data regarding PNNs in the rat which should be useful for future studies of their function in this species. PMID:29094304
Gender differences in human single neuron responses to male emotional faces
Newhoff, Morgan; Treiman, David M.; Smith, Kris A.; Steinmetz, Peter N.
2015-01-01
Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions. This study included recordings of single-neuron activity of 14 (6 male) epileptic patients in four brain areas: amygdala (236 neurons), hippocampus (n = 270), anterior cingulate cortex (n = 256), and ventromedial prefrontal cortex (n = 174). Neural activity was recorded while participants viewed a series of avatar male faces portraying positive, negative or neutral expressions. Significant gender differences were found in the left amygdala, where 23% (n = 15∕66) of neurons in men were significantly affected by facial emotion, vs. 8% (n = 6∕76) of neurons in women. A Fisher's exact test comparing the two ratios found a highly significant difference between the two (p < 0.01). These results show specific differences between genders at the single-neuron level in the human amygdala. These differences may reflect gender-based distinctions in evolved capacities for emotional processing and also demonstrate the importance of including subject gender as an independent factor in future studies of emotional processing by single neurons in the human amygdala. PMID:26441597
Babiloni, Claudio; Vecchio, Fabrizio; Mirabella, Giovanni; Sebastiano, Fabio; Di Gennaro, Giancarlo; Quarato, Pier P; Buffo, Paola; Esposito, Vincenzo; Manfredi, Mario; Cantore, Giampaolo; Eusebi, Fabrizio
2010-08-01
Previous evidence in epileptic subjects has shown that theta (about 4-7Hz) and gamma rhythms (about 40-45Hz) of hippocampus, amygdala, and neocortex were temporally synchronized during the listening of repeated words successfully remembered (Babiloni et al., 2009). Here we re-analyzed those electroencephalographic (EEG) data to test whether a parallel increase in amplitude of late positive event-related potentials takes place. Intracerebral electroencephalographic (EEG) activity had been recorded in five subjects with drug-resistant temporal lobe epilepsy, undergoing pre-surgical evaluation. During the recording of the intracerebral EEG activity, the subjects performed a computerized version of the Rey auditory verbal learning test (RAVLT). They heard the same list of 15 common words for five times. Each time, immediately after the listening of the list, the subjects were required to repeat as many words as they could recall. We found that late positive event-related potentials (ERPs) peaking at about 350ms post-stimulus in amygdala, hippocampus, and occipital-temporal cortex had a higher amplitude during the listening of the repeated words that were subsequently recalled than for those that were not recalled. Late positive ERPs reflect a functional mechanism implemented in a human brain network spanning amygdala, hippocampus, and occipital-temporal cortex which is at the basis of the memorization processes of verbal materials. This ERP component is a promising neuromarker of successful memorization of repeated words in humans. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
fMRI studies of successful emotional memory encoding: a quantitative meta-analysis
Murty, Vishnu P.; Ritchey, Maureen; Adcock, R. Alison; LaBar, Kevin S.
2010-01-01
Over the past decade, fMRI techniques have been increasingly used to interrogate the neural correlates of successful emotional memory encoding. These investigations have typically aimed to either characterize the contributions of the amygdala and medial temporal lobe (MTL) memory system, replicating results in animals, or delineate the neural correlates of specific behavioral phenomena. It has remained difficult, however, to synthesize these findings into a systems neuroscience account of how networks across the whole brain support the enhancing effects of emotion on memory encoding. To this end, the present study employed a meta-analytic approach using activation likelihood estimates to assess the anatomical specificity and reliability of event-related fMRI activations related to successful memory encoding for emotional versus neutral information. The meta-analysis revealed consistent clusters within bilateral amygdala, anterior hippocampus, anterior and posterior parahippocampal gyrus, the ventral visual stream, left lateral prefrontal cortex and right ventral parietal cortex. The results within the amygdala and MTL support a wealth of findings from the animal literature linking these regions to arousal-mediated memory effects. The consistency of findings in cortical targets, including the visual, prefrontal, and parietal cortices, underscores the importance of generating hypotheses regarding their participation in emotional memory formation. In particular, we propose that the amygdala interacts with these structures to promote enhancements in perceptual processing, semantic elaboration, and attention, which serve to benefit subsequent memory for emotional material. These findings may motivate future research on emotional modulation of widespread neural systems and the implications of this modulation for cognition. PMID:20688087
Maat, Arija; van Haren, Neeltje E M; Bartholomeusz, Cali F; Kahn, René S; Cahn, Wiepke
2016-02-01
Investigations of social cognition in schizophrenia have demonstrated consistent impairments compared to healthy controls. Functional imaging studies in schizophrenia patients and healthy controls have revealed that social cognitive processing depends critically on the amygdala and the prefrontal cortex (PFC). However, the relationship between social cognition and structural brain abnormalities in these regions in schizophrenia patients is less well understood. Measures of facial emotion recognition and theory of mind (ToM), two key social cognitive abilities, as well as face perception and IQ, were assessed in 166 patients with schizophrenia and 134 healthy controls. MRI brain scans were acquired. Automated parcellation of the brain to determine gray matter volume of the amygdala and the superior, middle, inferior and orbital PFC was performed. Between-group analyses showed poorer recognition of angry faces and ToM performance, and decreased amygdala and PFC gray matter volumes in schizophrenia patients as compared to healthy controls. Moreover, in schizophrenia patients, recognition of angry faces was associated with inferior PFC gray matter volume, particularly the pars triangularis (p=0.006), with poor performance being related to reduced pars triangularis gray matter volume. In addition, ToM ability was related to PFC gray matter volume, particularly middle PFC (p=0.001), in that poor ToM skills in schizophrenia patients were associated with reduced middle PFC gray matter volume. In conclusion, reduced PFC, but not amygdala, gray matter volume is associated with social cognitive deficits in schizophrenia. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Cortico-limbic connectivity in MAOA-L carriers is vulnerable to acute tryptophan depletion.
Eisner, Patrick; Klasen, Martin; Wolf, Dhana; Zerres, Klaus; Eggermann, Thomas; Eisert, Albrecht; Zvyagintsev, Mikhail; Sarkheil, Pegah; Mathiak, Krystyna A; Zepf, Florian; Mathiak, Klaus
2017-03-01
A gene-environment interaction between expression genotypes of the monoamine oxidase A (MAOA) and adverse childhood experience increases the risk of antisocial behavior. However, the neural underpinnings of this interaction remain uninvestigated. A cortico-limbic circuit involving the prefrontal cortex (PFC) and the amygdala is central to the suppression of aggressive impulses and is modulated by serotonin (5-HT). MAOA genotypes may modulate the vulnerability of this circuit and increase the risk for emotion regulation deficits after specific life events. Acute tryptophan depletion (ATD) challenges 5-HT regulation and may identify vulnerable neuronal circuits, contributing to the gene-environment interaction. Functional magnetic resonance imaging measured the resting-state state activity in 64 healthy males in a double-blind, placebo-controlled study. Cortical maps of amygdala correlation identified the impact of ATD and its interaction with low- (MAOA-L) and high-expression variants (MAOA-H) of MAOA on cortico-limbic connectivity. Across all Regions of Interest (ROIs) exhibiting an ATD effect on cortico-limbic connectivity, MAOA-L carriers were more susceptible to ATD than MAOA-H carriers. In particular, the MAOA-L group exhibited a larger reduction of amygdala connectivity with the right prefrontal cortex and a larger increase of amygdala connectivity with the insula and dorsal PCC. MAOA-L carriers were more susceptable to a central 5-HT challenge in cortico-limbic networks. Such vulnerability of the cortical serotonergic system may contribute to the emergence of antisocial behavior after systemic challenges, observed as gene-environment interaction. Hum Brain Mapp 38:1622-1635, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Indovina, Iole; Riccelli, Roberta; Staab, Jeffrey P; Lacquaniti, Francesco; Passamonti, Luca
2014-11-01
Strong links between anxiety, space-motion perception, and vestibular symptoms have been recognized for decades. These connections may extend to anxiety-related personality traits. Psychophysical studies showed that high trait anxiety affected postural control and visual scanning strategies under stress. Neuroticism and introversion were identified as risk factors for chronic subjective dizziness (CSD), a common psychosomatic syndrome. This study examined possible relationships between personality traits and activity in brain vestibular networks for the first time using functional magnetic resonance imaging (fMRI). Twenty-six right-handed healthy individuals underwent fMRI during sound-evoked vestibular stimulation. Regional brain activity and functional connectivity measures were correlated with personality traits of the Five Factor Model (neuroticism, extraversion-introversion, openness, agreeableness, consciousness). Neuroticism correlated positively with activity in the pons, vestibulo-cerebellum, and para-striate cortex, and negatively with activity in the supra-marginal gyrus. Neuroticism also correlated positively with connectivity between pons and amygdala, vestibulo-cerebellum and amygdala, inferior frontal gyrus and supra-marginal gyrus, and inferior frontal gyrus and para-striate cortex. Introversion correlated positively with amygdala activity and negatively with connectivity between amygdala and inferior frontal gyrus. Neuroticism and introversion correlated with activity and connectivity in cortical and subcortical vestibular, visual, and anxiety systems during vestibular stimulation. These personality-related changes in brain activity may represent neural correlates of threat sensitivity in posture and gaze control mechanisms in normal individuals. They also may reflect risk factors for anxiety-related morbidity in patients with vestibular disorders, including previously observed associations of neuroticism and introversion with CSD. Copyright © 2014 Elsevier Inc. All rights reserved.
Interpersonal violence in posttraumatic women: brain networks triggered by trauma-related pictures.
Neumeister, Paula; Feldker, Katharina; Heitmann, Carina Y; Helmich, Ruth; Gathmann, Bettina; Becker, Michael P I; Straube, Thomas
2017-04-01
Interpersonal violence (IPV) is one of the most frequent causes for the development of posttraumatic stress disorder (PTSD) in women. Trauma-related triggers have been proposed to evoke automatic emotional responses in PTSD. The present functional magnetic resonance study investigated the neural basis of trauma-related picture processing in women with IPV-PTSD (n = 18) relative to healthy controls (n = 18) using a newly standardized trauma-related picture set and a non-emotional vigilance task. We aimed to identify brain activation and connectivity evoked by trauma-related pictures, and associations with PTSD symptom severity. We found hyperactivation during trauma-related vs neutral picture processing in both subcortical [basolateral amygdala (BLA), thalamus, brainstem] and cortical [anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC), insula, occipital cortex] regions in IPV-PTSD. In patients, brain activation in amygdala, ACC, insula, occipital cortex and brainstem correlated positively with symptom severity. Furthermore, connectivity analyses revealed hyperconnectivity between BLA and dorsal ACC/mPFC. Results show symptom severity-dependent brain activation and hyperconnectivity in response to trauma-related pictures in brain regions related to fear and visual processing in women suffering from IPV-PTSD. These brain mechanisms appear to be associated with immediate responses to trauma-related triggers presented in a non-emotional context in this PTSD subgroup. © The Author (2016). Published by Oxford University Press.
Cellular activation in limbic brain systems during social play behaviour in rats.
van Kerkhof, Linda W M; Trezza, Viviana; Mulder, Tessa; Gao, Ping; Voorn, Pieter; Vanderschuren, Louk J M J
2014-07-01
Positive social interactions during the juvenile and adolescent phases of life are essential for proper social and cognitive development in mammals, including humans. During this developmental period, there is a marked increase in peer-peer interactions, signified by the abundance of social play behaviour. Despite its importance for behavioural development, our knowledge of the neural underpinnings of social play behaviour is limited. Therefore, the purpose of this study was to map the neural circuits involved in social play behaviour in rats. This was achieved by examining cellular activity after social play using the immediate early gene c-Fos as a marker. After a session of social play behaviour, pronounced increases in c-Fos expression were observed in the medial prefrontal cortex, medial and ventral orbitofrontal cortex, dorsal striatum, nucleus accumbens core and shell, lateral amygdala, several thalamic nuclei, dorsal raphe and the pedunculopontine tegmental nucleus. Importantly, the cellular activity patterns after social play were topographically organized in this network, as indicated by play-specific correlations in c-Fos activity between regions with known direct connections. These correlations suggest involvement in social play behaviour of the projections from the medial prefrontal cortex to the striatum, and of amygdala and monoaminergic inputs to frontal cortex and striatum. The analyses presented here outline a topographically organized neural network implicated in processes such as reward, motivation and cognitive control over behaviour, which mediates social play behaviour in rats.
Corradi-Dell'Acqua, Corrado; Turri, Francesco; Kaufmann, Laurence; Clément, Fabrice; Schwartz, Sophie
2015-09-01
Forming and updating impressions about others is critical in everyday life and engages portions of the dorsomedial prefrontal cortex (dMPFC), the posterior cingulate cortex (PCC) and the amygdala. Some of these activations are attributed to "mentalizing" functions necessary to represent people's mental states, such as beliefs or desires. Evolutionary psychology and developmental studies, however, suggest that interpersonal inferences can also be obtained through the aid of deontic heuristics, which dictate what must (or must not) be done in given circumstances. We used fMRI and asked 18 participants to predict whether unknown characters would follow their desires or obey external rules. Participants had no means, at the beginning, to make accurate predictions, but slowly learned (throughout the experiment) each character's behavioral profile. We isolated brain regions whose activity changed during the experiment, as a neural signature of impression updating: whereas dMPFC was progressively more involved in predicting characters' behavior in relation to their desires, the medial orbitofrontal cortex and the amygdala were progressively more recruited in predicting rule-based behavior. Our data provide evidence of a neural dissociation between deontic inference and theory-of-mind (ToM), and support a differentiation of orbital and dorsal prefrontal cortex in terms of low- and high-level social cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lalonde, Robert; Strazielle, Catherine
2017-07-26
When injected via the intracerebroventricular route, corticosterone-releasing hormone (CRH) reduced exploration in the elevated plus-maze, the center region of the open-field, and the large chamber in the defensive withdrawal test. The anxiogenic action of CRH in the elevated plus-maze also occurred when infused in the basolateral amygdala, ventral hippocampus, lateral septum, bed nucleus of the stria terminalis, nucleus accumbens, periaqueductal grey, and medial frontal cortex. The anxiogenic action of CRH in the defensive withdrawal test was reproduced when injected in the locus coeruleus, while the amygdala, hippocampus, lateral septum, nucleus accumbens, and lateral globus pallidus contribute to center zone exploration in the open-field. In addition to elevated plus-maze and open-field tests, the amygdala appears as a target region for CRH-mediated anxiety in the elevated T-maze. Thus, the amygdala is the principal brain region identified with these three tests, and further research must identify the neural circuits underlying this form of anxiety.
The Neural Development of ‘Us and Them’
Guassi Moreira, João F.; Van Bavel, Jay J.
2017-01-01
Abstract Social groups aid human beings in several ways, ranging from the fulfillment of complex social and personal needs to the promotion of survival. Despite the importance of group affiliation to humans, there remains considerable variation in group preferences across development. In the current study, children and adolescents completed an explicit evaluation task of in-group and out-group members during functional neuroimaging. We found that participants displayed age-related increases in bilateral amygdala, fusiform gyrus and orbitofrontal cortex (OFC) activation when viewing in-group relative to out-group faces. Moreover, we found an indirect effect of age on in-group favoritism via brain activation in the amygdala, fusiform and OFC. Finally, with age, youth showed greater functional coupling between the amygdala and several neural regions when viewing in-group relative to out-group peers, suggesting a role of the amygdala in directing attention to motivationally relevant cues. Our findings suggest that the motivational significance and processing of group membership undergoes important changes across development. PMID:27633395
Social support, stress and the aging brain.
Sherman, Stephanie M; Cheng, Yen-Pi; Fingerman, Karen L; Schnyer, David M
2016-07-01
Social support benefits health and well-being in older individuals, however the mechanism remains poorly understood. One proposal, the stress-buffering hypothesis states social support 'buffers' the effects of stress on health. Alternatively, the main effect hypothesis suggests social support independently promotes health. We examined the combined association of social support and stress on the aging brain. Forty healthy older adults completed stress questionnaires, a social network interview and structural MRI to investigate the amygdala-medial prefrontal cortex circuitry, which is implicated in social and emotional processing and negatively affected by stress. Social support was positively correlated with right medial prefrontal cortical thickness while amygdala volume was negatively associated with social support and positively related to stress. We examined whether the association between social support and amygdala volume varied across stress level. Stress and social support uniquely contribute to amygdala volume, which is consistent with the health benefits of social support being independent of stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age
Graham, Alice M.; Buss, Claudia; Rasmussen, Jerod M.; Rudolph, Marc D.; Demeter, Damion V.; Gilmore, John H.; Styner, Martin; Entringer, Sonja; Wadhwa, Pathik D.; Fair, Damien A.
2015-01-01
The first year of life is an important period for emergence of fear in humans. While animal models have revealed developmental changes in amygdala circuitry accompanying emerging fear, human neural systems involved in early fear development remain poorly understood. To increase understanding of the neural foundations of human fear, it is important to consider parallel cognitive development, which may modulate associations between typical development of early fear and subsequent risk for fear-related psychopathology. We, therefore, examined amygdala functional connectivity with rs-fcMRI in 48 neonates (M=3.65 weeks, SD=1.72), and measured fear and cognitive development at 6-months-of-age. Stronger, positive neonatal amygdala connectivity to several regions, including bilateral anterior insula and ventral striatum, was prospectively associated with higher fear at 6-months. Stronger amygdala connectivity to ventral anterior cingulate/anterior medial prefrontal cortex predicted a specific phenotype of higher fear combined with more advanced cognitive development. Overall, findings demonstrate unique profiles of neonatal amygdala functional connectivity related to emerging fear and cognitive development, which may have implications for normative and pathological fear in later years. Consideration of infant fear in the context of cognitive development will likely contribute to a more nuanced understanding of fear, its neural bases, and its implications for future mental health. PMID:26499255
Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David
2015-12-01
Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Liu, Ning; Yu, Xueli; Yao, Li; Zhao, Xiaojie
2018-06-01
The amygdala plays an important role in emotion processing. Several studies have proved that its activation can be regulated by real-time functional magnetic resonance imaging (rtfMRI)-based neurofeedback training. However, although studies have found brain regions that are functionally closely connected to the amygdala in the cortex, it is not clear whether these brain regions and the amygdala are structurally closely connected, and if they show the same training effect as the amygdala in the process of emotional regulation. In this paper, we instructed subjects to up-regulate the activation of the left amygdala (LA) through rtfMRI-based neurofeedback training. In order to fuse multimodal imaging data, we introduced a network analysis method called the -Louvain clustering algorithm. This method was used to integrate multimodal data from the training experiment and construct an LA-cortical network. Correlation analysis and main-effect analysis were conducted to determine the signal covariance associated with the activation of the target area; ultimately, we identified the left temporal pole superior as the amygdaloidal-cortical network region. As a deep nucleus in the brain, the treatment and stimulation of the amygdala remains challenging. Our results provide new insights for the regulation of activation in a deep nucleus using more neurofeedback techniques.
Determination of the rCBF in the Amygdala and Rhinal Cortex Using a FAIR-TrueFISP Sequence
Martirosian, Petros; Klose, Uwe; Nägele, Thomas; Schick, Fritz; Ernemann, Ulrike
2011-01-01
Objective Brain perfusion can be assessed non-invasively by modern arterial spin labeling MRI. The FAIR (flow-sensitive alternating inversion recovery)-TrueFISP (true fast imaging in steady precession) technique was applied for regional assessment of cerebral blood flow in brain areas close to the skull base, since this approach provides low sensitivity to magnetic susceptibility effects. The investigation of the rhinal cortex and the amygdala is a potentially important feature for the diagnosis and research on dementia in its early stages. Materials and Methods Twenty-three subjects with no structural or psychological impairment were investigated. FAIR-True-FISP quantitative perfusion data were evaluated in the amygdala on both sides and in the pons. A preparation of the radiofrequency FOCI (frequency offset corrected inversion) pulse was used for slice selective inversion. After a time delay of 1.2 sec, data acquisition began. Imaging slice thickness was 5 mm and inversion slab thickness for slice selective inversion was 12.5 mm. Image matrix size for perfusion images was 64 × 64 with a field of view of 256 × 256 mm, resulting in a spatial resolution of 4 × 4 × 5 mm. Repetition time was 4.8 ms; echo time was 2.4 ms. Acquisition time for the 50 sets of FAIR images was 6:56 min. Data were compared with perfusion data from the literature. Results Perfusion values in the right amygdala, left amygdala and pons were 65.2 (± 18.2) mL/100 g/minute, 64.6 (± 21.0) mL/100 g/minute, and 74.4 (± 19.3) mL/100 g/minute, respectively. These values were higher than formerly published data using continuous arterial spin labeling but similar to 15O-PET (oxygen-15 positron emission tomography) data. Conclusion The FAIR-TrueFISP approach is feasible for the quantitative assessment of perfusion in the amygdala. Data are comparable with formerly published data from the literature. The applied technique provided excellent image quality, even for brain regions located at the skull base in the vicinity of marked susceptibility steps. PMID:21927556
TRIMETHYLTIN IMPAIRS RETENTION OF A PASSIVE AVOIDANCE TASK
Trimethyltin is a neurotoxic organometal which produces neuronal damage in several limbic regions including the hippocampus, amygdala and the pyriform cortex. One administration of trimethyltin (5,6 or 7 mg/kg) twenty one days prior to passive avoidance conditioning produced an i...
A specific area of olfactory cortex involved in stress hormone responses to predator odours.
Kondoh, Kunio; Lu, Zhonghua; Ye, Xiaolan; Olson, David P; Lowell, Bradford B; Buck, Linda B
2016-04-07
Instinctive reactions to danger are critical to the perpetuation of species and are observed throughout the animal kingdom. The scent of predators induces an instinctive fear response in mice that includes behavioural changes, as well as a surge in blood stress hormones that mobilizes multiple body systems to escape impending danger. How the olfactory system routes predator signals detected in the nose to achieve these effects is unknown. Here we identify a specific area of the olfactory cortex in mice that induces stress hormone responses to volatile predator odours. Using monosynaptic and polysynaptic viral tracers, we found that multiple olfactory cortical areas transmit signals to hypothalamic corticotropin-releasing hormone (CRH) neurons, which control stress hormone levels. However, only one minor cortical area, the amygdalo-piriform transition area (AmPir), contained neurons upstream of CRH neurons that were activated by volatile predator odours. Chemogenetic stimulation of AmPir activated CRH neurons and induced an increase in blood stress hormones, mimicking an instinctive fear response. Moreover, chemogenetic silencing of AmPir markedly reduced the stress hormone response to predator odours without affecting a fear behaviour. These findings suggest that AmPir, a small area comprising <5% of the olfactory cortex, plays a key part in the hormonal component of the instinctive fear response to volatile predator scents.
Neural abnormalities in early-onset and adolescence-onset conduct disorder.
Passamonti, Luca; Fairchild, Graeme; Goodyer, Ian M; Hurford, Georgina; Hagan, Cindy C; Rowe, James B; Calder, Andrew J
2010-07-01
Conduct disorder (CD) is characterized by severe antisocial behavior that emerges in childhood (early-onset CD [EO-CD]) or adolescence (adolescence-onset CD [AO-CD]). Early-onset CD is proposed to have a neurodevelopmental basis, whereas AO-CD is thought to emerge owing to social mimicry of deviant peers. However, this developmental taxonomic theory is debated after reports of neuropsychological impairments in both CD subtypes. A critical, although unaddressed, issue is whether these subtypes present similar or distinct neurophysiological profiles. Hence, we investigated neurophysiological responses to emotional and neutral faces in regions associated with antisocial behavior (ie, the amygdala, ventromedial prefrontal cortex, insula, and orbitofrontal cortex) in individuals with EO-CD and AO-CD and in healthy control subjects. To investigate whether EO-CD and AO-CD subjects show neurophysiological abnormalities. Case-control study. Government research institute, university department. Seventy-five male adolescents and young adults aged 16 to 21 years, including 27 with EO-CD, 25 with AO-CD, and 23 healthy controls. Main Outcome Measure Neural activations measured by functional magnetic resonance imaging while participants viewed angry, sad, and neutral faces. Comparing angry vs neutral faces, participants with both CD subtypes displayed reduced responses in regions associated with antisocial behavior compared with controls; differences between the CD subtypes were not significant. Comparing each expression with fixation baseline revealed an abnormal (increased) amygdala response to neutral but not angry faces in both groups of CD relative to controls. For sad vs neutral faces, reduced amygdala activation was observed in EO-CD relative to AO-CD and control participants. Comparing each expression with fixation revealed hypoactive amygdala responses to sadness in individuals with EO-CD relative to AO-CD participants and controls. These findings were not accounted for by attention-deficit/hyperactivity disorder symptoms. Neurophysiological abnormalities are observed in both CD subtypes, contrary to the developmental taxonomic theory of CD. Additional amygdala hypofunction in relation to sad expressions might indicate why EO-CD is more severe and persistent than AO-CD.
The Central Amygdala Nucleus is Critical for Incubation of Methamphetamine Craving
Li, Xuan; Zeric, Tamara; Kambhampati, Sarita; Bossert, Jennifer M; Shaham, Yavin
2015-01-01
Cue-induced methamphetamine seeking progressively increases after withdrawal but mechanisms underlying this ‘incubation of methamphetamine craving' are unknown. Here we studied the role of central amygdala (CeA), ventral medial prefrontal cortex (vmPFC), and orbitofrontal cortex (OFC), brain regions implicated in incubation of cocaine and heroin craving, in incubation of methamphetamine craving. We also assessed the role of basolateral amygdala (BLA) and dorsal medial prefrontal cortex (dmPFC). We trained rats to self-administer methamphetamine (10 days; 9 h/day, 0.1 mg/kg/infusion) and tested them for cue-induced methamphetamine seeking under extinction conditions during early (2 days) or late (4–5 weeks) withdrawal. We first confirmed that ‘incubation of methamphetamine craving' occurs under our experimental conditions. Next, we assessed the effect of reversible inactivation of CeA or BLA by GABAA+GABAB receptor agonists (muscimol+baclofen, 0.03+0.3 nmol) on cue-induced methamphetamine seeking during early and late withdrawal. We also assessed the effect of muscimol+baclofen reversible inactivation of vmPFC, dmPFC, and OFC on ‘incubated' cue-induced methamphetamine seeking during late withdrawal. Lever presses in the cue-induced methamphetamine extinction tests were higher during late withdrawal than during early withdrawal (incubation of methamphetamine craving). Muscimol+baclofen injections into CeA but not BLA decreased cue-induced methamphetamine seeking during late but not early withdrawal. Muscimol+baclofen injections into dmPFC, vmPFC, or OFC during late withdrawal had no effect on incubated cue-induced methamphetamine seeking. Together with previous studies, results indicate that the CeA has a critical role in incubation of both drug and non-drug reward craving and demonstrate an unexpected dissociation in mechanisms of incubation of methamphetamine vs cocaine craving. PMID:25475163
Role of habenula and amygdala dysfunction in Parkinson disease patients with punding.
Markovic, Vladana; Agosta, Federica; Canu, Elisa; Inuggi, Alberto; Petrovic, Igor; Stankovic, Iva; Imperiale, Francesca; Stojkovic, Tanja; Kostic, Vladimir S; Filippi, Massimo
2017-06-06
To assess whether a functional dysregulation of the habenula and amygdala, as modulators of the reward brain circuit, contributes to Parkinson disease (PD) punding. Structural and resting-state functional MRI were obtained from 22 patients with PD punding, 30 patients with PD without any impulsive-compulsive behavior (ICB) matched for disease stage and duration, motor impairment, and cognitive status, and 30 healthy controls. Resting-state functional connectivity of the habenula and amygdala bilaterally was assessed using a seed-based approach. Habenula and amygdala volumes and cortical thickness measures were obtained. Compared to both healthy controls and PD cases without any ICB (PD-no ICB), PD-punding patients showed higher functional connectivity of habenula and amygdala with thalamus and striatum bilaterally, and lower connectivity between bilateral habenula and left frontal and precentral cortices. In PD-punding relative to PD-no ICB patients, a lower functional connectivity between right amygdala and hippocampus was also observed. Habenula and amygdala volumes were not different among groups. PD-punding patients showed a cortical thinning of the left superior frontal and precentral gyri and right middle temporal gyrus and isthmus cingulate compared to healthy controls, and of the right inferior frontal gyrus compared to both controls and PD-no ICB patients. A breakdown of the connectivity among the crucial nodes of the reward circuit (i.e., habenula, amygdala, basal ganglia, frontal cortex) might be a contributory factor to punding in PD. This study provides potential instruments to detect and monitor punding in patients with PD. © 2017 American Academy of Neurology.
Emotion and cognition and the amygdala: from "what is it?" to "what's to be done?".
Pessoa, Luiz
2010-10-01
The amygdala is a fascinating, complex structure that lies at the center of much of our current thinking about emotion. Here, I will review data that suggest that the amygdala is involved in several processes linked to determining what a stimulus is and what the organism should therefore do - the two questions that are part of the title. This piece will focus on three main aspects of amygdala function, namely attention, value representation, and decision making, by reviewing both non-human and human data. Two mechanisms of affective attention will be described. The first involves projections from the central nucleus of the amygdala to the basal forebrain, which has extensive and diffuse projections throughout the cortical mantle. The second involves projections from the basal amygdala to multiple levels across the visual cortex. I will also describe how the basolateral amygdala is important for the representation of value and in decision making. Overall, it will be argued that the amygdala plays a key role in solving the following problem: How can a limited-capacity information processing system that receives a constant stream of diverse inputs be designed to selectively process those inputs that are most significant to the objectives of the system? "What is it?" and "What's to be done?" processes can then be viewed as important building blocks in the construction of emotion, a process that is intertwined with cognition. Furthermore, answering the two questions directs how resources should be mobilized as the organism seeks out additional information from the environment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Emotion and Cognition and the Amygdala: From “what is it?” to “what’s to be done?”
Pessoa, Luiz
2010-01-01
The amygdala is a fascinating, complex structure that lies at the center of much of our current thinking about emotion. Here, I will review data that suggest that the amygdala is involved in several processes linked to determining what a stimulus is and what the organism should therefore do – the two questions that are part of the title. This piece will focus on three main aspects of amygdala function, namely attention, value representation, and decision making, by reviewing both non-human and human data. Two mechanisms of affective attention will be described. The first involves projections from the central nucleus of the amygdala to the basal forebrain, which has extensive and diffuse projections throughout the cortical mantle. The second involves projections from the basal amygdala to multiple levels across the visual cortex. I will also describe how the basolateral amygdala is important for the representation of value and in decision making. Overall, it will be argued that the amygdala plays a key role in solving the following problem: How can a limited-capacity information processing system that receives a constant stream of diverse inputs be designed to selectively process those inputs that are most significant to the objectives of the system? “What is it?” and “What’s to be done?” processes can then be viewed as important building blocks in the construction of emotion, a process that is intertwined with cognition. Furthermore, answering the two questions directs how resources should be mobilized as the organism seeks out additional information from the environment. PMID:20619280
Shi, Li-Hong; Luo, Fei; Woodward, Donald J.; McIntyre, Dan C.; Chang, Jing-Yu
2007-01-01
We used a multiple channel, single unit recording technique to investigate the neural activity in different corticolimbic and basal ganglia regions in freely moving rats before and during generalized amygdala kindled seizures. Neural activity was recorded simultaneously in the sensorimotor cortex (Ctx), hippocampus, amygdala, substantia nigra pars reticulata (SNr) and the subthalamic nucleus (STN). We observed massive synchronized activity among neurons of different brain regions during seizure episodes. Neurons in the kindled amygdala led other regions in synchronized firing, revealed by time lags of neurons in other regions in crosscorrelogram analysis. While there was no obvious time lag between Ctx and SNr, the STN and hippocampus did lag behind the Ctx and SNr in correlated firing. Activity in the amygdala and SNr contralateral to the kindling stimulation site lagged behind their ipsilateral counterparts. However no time lag was found between the kindling and contralateral sides of Ctx, hippocampus and STN. Our data confirm that the amygdala is an epileptic focus that emits ictal discharges to other brain regions. The observed temporal pattern indicates that ictal discharges from the amygdala arrive first at Ctx and SNr, and then spread to the hippocampus and STN. The simultaneous activation of both sides of the Ctx suggests that the neocortex participates in kindled seizures as a unisonant entity to provoke the clonic motor seizures. Early activation of the SNr (before the STN and hippocampus) points to an important role of the SNr in amygdala kindled seizures and supports the view that different SNr manipulations may be effective ways to control seizures. PMID:17049434
Prior cocaine exposure disrupts extinction of fear conditioning
Burke, Kathryn A.; Franz, Theresa M.; Gugsa, Nishan; Schoenbaum, Geoffrey
2008-01-01
Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we tested cocaine-treated rats in a fear conditioning, inflation, and extinction task, known to depend on medial prefrontal cortex and amygdala. Cocaine-treated rats conditioned and inflated similar to saline controls but displayed slower extinction learning. These results support the hypothesis that control processes in the medial prefrontal cortex are impaired by cocaine exposure. PMID:16847305
Prior cocaine exposure disrupts extinction of fear conditioning.
Burke, Kathryn A; Franz, Theresa M; Gugsa, Nishan; Schoenbaum, Geoffrey
2006-01-01
Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we tested cocaine-treated rats in a fear conditioning, inflation, and extinction task, known to depend on medial prefrontal cortex and amygdala. Cocaine-treated rats conditioned and inflated similar to saline controls but displayed slower extinction learning. These results support the hypothesis that control processes in the medial prefrontal cortex are impaired by cocaine exposure.
Heat shock protein defenses in the neo- and allocortex of the telencephalon
Posimo, Jessica M.; Weilnau, Justin N.; Gleixner, Amanda M.; Broeren, Matthew T.; Weiland, Nicole L.; Brodsky, Jeffrey L.; Wipf, Peter; Leak, Rehana K.
2015-01-01
The telencephalic allocortex develops protein inclusions before the neocortex in many age-related proteinopathies. One major defense mechanism against proteinopathic stress is the heat shock protein (Hsp) network. We therefore contrasted Hsp defenses in stressed primary neo- and allocortical cells. Neocortical neurons were more resistant to the proteasome inhibitor MG132 than neurons from three allocortical subregions: entorhinal cortex, piriform cortex, and hippocampus. However, allocortical neurons exhibited higher MG132-induced increases in Hsp70 and Hsc70. MG132-treated allocortical neurons also exhibited greater levels of protein ubiquitination. Inhibition of Hsp70/Hsc70 activity synergistically exacerbated MG132 toxicity in allocortical neurons more than neocortical neurons, suggesting that the allocortex is more reliant on these Hsp defenses. In contrast, astrocytes harvested from neo- or allocortex did not differ in their response to Hsp70/Hsc70 inhibition. Consistent with the idea that chaperones are maximally engaged in allocortical neurons, an increase in Hsp70/Hsc70 activity was protective only in neocortical neurons. Finally, the levels of select Hsps were altered in neocortex and allocortex in vivo with aging. PMID:25771395
Addiction as a Stress Surfeit Disorder
Koob, George F.; Buck, Cara L.; Cohen, Ami; Edwards, Scott; Park, Paula E.; Schlosburg, Joel E.; Schmeichel, Brooke; Vendruscolo, Leandro F.; Wade, Carrie L.; Whitfield, Timothy W.; George, Olivier
2013-01-01
Drug addiction has been conceptualized as a chronically relapsing disorder of compulsive drug seeking and taking that progresses through three stages: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from positive reinforcement (binge/intoxication stage) to negative reinforcement (withdrawal/negative affect stage). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. Our hypothesis is that the negative emotional state that drives such negative reinforcement is derived from dysregulation of key neurochemical elements involved in the brain stress systems within the frontal cortex, ventral striatum, and extended amygdala. Specific neurochemical elements in these structures include not only recruitment of the classic stress axis mediated by corticotropin-releasing factor (CRF) in the extended amygdala as previously hypothesized but also recruitment of dynorphin-κ opioid aversive systems in the ventral striatum and extended amygdala. Additionally, we hypothesized that these brain stress systems may be engaged in the frontal cortex early in the addiction process. Excessive drug taking engages activation of CRF not only in the extended amygdala, accompanied by anxiety-like states, but also in the medial prefrontal cortex, accompanied by deficits in executive function that may facilitate the transition to compulsive-like responding. Excessive activation of the nucleus accumbens via the release of mesocorticolimbic dopamine or activation of opioid receptors has long been hypothesized to subsequently activate the dynorphin-κ opioid system, which in turn can decrease dopaminergic activity in the mesocorticolimbic dopamine system. Blockade of the κ opioid system can also block anxiety-like and reward deficits associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress/anti-reward system that contributes to compulsive drug seeking. Thus, brain stress response systems are hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the development and persistence of addiction. The recruitment of anti-reward systems provides a powerful neurochemical basis for the negative emotional states that are responsible for the dark side of addiction. PMID:23747571
d'Arbeloff, Tracy C; Kim, M Justin; Knodt, Annchen R; Radtke, Spenser R; Brigidi, Bartholomew D; Hariri, Ahmad R
2018-05-21
Cognitive reappraisal is a commonly used form of emotion regulation that utilizes frontal-executive control to reframe an approaching emotional event to moderate its potential psychological impact. Use of cognitive reappraisal has been associated with diminished experience of anxiety and depressive symptoms, as well as greater overall well-being. Using data from a study of 647 healthy young adults, we provide initial evidence that an association between typical use of cognitive reappraisal in daily life and the experience of anxiety and depressive symptoms is moderated by the microstructural integrity of the uncinate fasciculus, which provides a major anatomical link between the amygdala and prefrontal cortex. Our findings are consistent with the nature of top-down regulation of bottom-up negative emotions and suggest the uncinate fasciculus may be a useful target in the search for biomarkers predicting not only disorder risk but also response to psychotherapy utilizing cognitive reappraisal. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment
Burgos-Robles, Anthony; Kimchi, Eyal Y.; Izadmehr, Ehsan M.; Porzenheim, Mary Jane; Ramos-Guasp, William A.; Nieh, Edward H.; Felix-Ortiz, Ada C.; Namburi, Praneeth; Leppla, Christopher A.; Presbrey, Kara N.; Anandalingam, Kavitha K.; Pagan-Rivera, Pablo A.; Anahtar, Melodi; Beyeler, Anna; Tye, Kay M.
2017-01-01
Orchestrating appropriate behavioral responses in the face of competing signals that predict either rewards or threats in the environment is crucial for survival. The basolateral amygdala (BLA) and prelimbic (PL) medial prefrontal cortex (mPFC) have been implicated in reward-seeking and fear-related responses, but how information flows between these reciprocally-connected structures to coordinate behavior is unknown. We recorded neuronal activity from the BLA and PL while rats performed a task where in shock- and sucrose-predictive cues were simultaneously presented to induce competition. The correlated firing primarily displayed a BLA→PL directionality during the shock-associated cue. Furthermore, the majority of optogenetically-identified PL-projecting BLA neurons recorded encoded the shock-associated cue, and more accurately predicted behavioral responses during competition than unidentified BLA neurons. Finally, BLA→PL photostimulation increased freezing, whereas both chemogenetic and optogenetic inhibition reduced freezing. The BLA→PL circuit plays a critical role in governing the selection of behavioral responses in the face of competing signals. PMID:28436980
Atlas, Lauren Y; Doll, Bradley B; Li, Jian; Daw, Nathaniel D; Phelps, Elizabeth A
2016-01-01
Socially-conveyed rules and instructions strongly shape expectations and emotions. Yet most neuroscientific studies of learning consider reinforcement history alone, irrespective of knowledge acquired through other means. We examined fear conditioning and reversal in humans to test whether instructed knowledge modulates the neural mechanisms of feedback-driven learning. One group was informed about contingencies and reversals. A second group learned only from reinforcement. We combined quantitative models with functional magnetic resonance imaging and found that instructions induced dissociations in the neural systems of aversive learning. Responses in striatum and orbitofrontal cortex updated with instructions and correlated with prefrontal responses to instructions. Amygdala responses were influenced by reinforcement similarly in both groups and did not update with instructions. Results extend work on instructed reward learning and reveal novel dissociations that have not been observed with punishments or rewards. Findings support theories of specialized threat-detection and may have implications for fear maintenance in anxiety. DOI: http://dx.doi.org/10.7554/eLife.15192.001 PMID:27171199
Hultman, Rainbo; Mague, Stephen D.; Li, Qiang; Katz, Brittany M.; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K.; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D.; Dzirasa, Kafui
2016-01-01
Summary Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (<1Hz) dynamics across these networks, and PFC dysfunction is implicated in stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social-defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. PMID:27346529
Stolyarova, Alexandra; Izquierdo, Alicia
2017-01-01
We make choices based on the values of expected outcomes, informed by previous experience in similar settings. When the outcomes of our decisions consistently violate expectations, new learning is needed to maximize rewards. Yet not every surprising event indicates a meaningful change in the environment. Even when conditions are stable overall, outcomes of a single experience can still be unpredictable due to small fluctuations (i.e., expected uncertainty) in reward or costs. In the present work, we investigate causal contributions of the basolateral amygdala (BLA) and orbitofrontal cortex (OFC) in rats to learning under expected outcome uncertainty in a novel delay-based task that incorporates both predictable fluctuations and directional shifts in outcome values. We demonstrate that OFC is required to accurately represent the distribution of wait times to stabilize choice preferences despite trial-by-trial fluctuations in outcomes, whereas BLA is necessary for the facilitation of learning in response to surprising events. DOI: http://dx.doi.org/10.7554/eLife.27483.001 PMID:28682238
Ostrander, Serena; Cazares, Victor A.; Kim, Charissa; Cheung, Shauna; Gonzalez, Isabel; Izquierdo, Alicia
2011-01-01
The orbitofrontal cortex (OFC) and basolateral nucleus of the amygdala (BLA) are important neural regions in responding adaptively to changes in the incentive value of reward. Recent evidence suggests these structures may be differentially engaged in effort and cue-guided choice behavior. In two t-maze experiments, we examined the effects of bilateral lesions of either BLA or OFC on 1) effortful choices where rats could climb a barrier for a high reward or select a low reward with no effort and 2) effortful choices when a visual cue signaled changes in reward magnitude. In both experiments, BLA rats displayed transient work aversion, choosing the effortless low reward option. OFC rats were work averse only in the no cue conditions, displaying a pattern of attenuated recovery from the cue conditions signaling reward unavailability in the effortful arm. Control measures rule out an inability to discriminate the cue in either lesion group. PMID:21639604
Lupien, Sonia J; Juster, Robert-Paul; Raymond, Catherine; Marin, Marie-France
2018-04-01
For the last five decades, science has managed to delineate the mechanisms by which stress hormones can impact on the human brain. Receptors for glucocorticoids are found in the hippocampus, amygdala and frontal cortex, three brain regions involved in memory processing and emotional regulation. Studies have shown that chronic exposure to stress is associated with reduced volume of the hippocampus and that chronic stress can modulate volumes of both the amygdala and frontal cortex, suggesting neurotoxic effects of stress hormones on the brain. Yet, other studies report that exposure to early adversity and/or familial/social stressors can increase vulnerability to stress in adulthood. Models have been recently developed to describe the roles that neurotoxic and vulnerability effects can have on the developing brain. These models suggest that developing early stress interventions could potentially counteract the effects of chronic stress on the brain and results going along with this hypothesis are summarized. Copyright © 2018 Elsevier Inc. All rights reserved.
A Distributed Network for Social Cognition Enriched for Oxytocin Receptors
Mitre, Mariela; Marlin, Bianca J.; Schiavo, Jennifer K.; Morina, Egzona; Norden, Samantha E.; Hackett, Troy A.; Aoki, Chiye J.
2016-01-01
Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent–infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition. SIGNIFICANCE STATEMENT Oxytocin is an important peptide hormone involved in maternal behavior and social cognition, but it has been unclear what elements of neural circuits express oxytocin receptors due to the paucity of suitable antibodies. Here, we developed new antibodies to the mouse oxytocin receptor. Oxytocin receptors were found in discrete brain regions and at cortical synapses for modulating excitatory-inhibitory balance and plasticity. These antibodies should be useful for future studies of oxytocin and social behavior. PMID:26911697
Blasi, Giuseppe; Bianco, Luciana Lo; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Fazio, Leonardo; Papazacharias, Apostolos; Di Giorgio, Annabella; Caforio, Grazia; Rampino, Antonio; Masellis, Rita; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Bertolino, Alessandro
2010-01-01
Personality traits related to emotion processing are, at least in part, heritable and genetically determined. Dopamine D2 receptor signaling is involved in modulation of emotional behavior and activity of associated brain regions such as the amygdala and the prefrontal cortex. An intronic single nucleotide polymorphism within the D2 receptor gene (DRD2, rs1076560, guanine>thymine - G>T) shifts splicing of the two protein isoforms (D2 short, D2S, mainly presynaptic, and D2 long, D2L) and has been associated with modulation of memory performance and brain activity. Here, our aim was to investigate the association of DRD2 rs1076560 genotype with personality traits of emotional stability and with brain physiology during processing of emotionally relevant stimuli. DRD2 genotype and Big Five Questionnaire scores were evaluated in 134 healthy subjects demonstrating that GG subjects have reduced ‘emotion control’ compared with GT subjects. fMRI in a sample of 24 individuals indicated greater amygdala activity during implicit processing and greater dorsolateral prefrontal cortex (DLPFC) response during explicit processing of facial emotional stimuli in GG subjects compared with GT. Other results also demonstrate an interaction between DRD2 genotype and facial emotional expression on functional connectivity of both amygdala and dorsolateral prefrontal regions with overlapping medial prefrontal areas. Moreover, rs1076560 genotype is associated with differential relationships between amygdala/DLPFC functional connectivity and emotion control scores. These results suggest that genetically determined D2 signaling may explain part of personality traits related to emotion processing and individual variability in specific brain responses to emotionally relevant inputs. PMID:19940176
Blasi, Giuseppe; Lo Bianco, Luciana; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Fazio, Leonardo; Papazacharias, Apostolos; Di Giorgio, Annabella; Caforio, Grazia; Rampino, Antonio; Masellis, Rita; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Bertolino, Alessandro
2009-11-25
Personality traits related to emotion processing are, at least in part, heritable and genetically determined. Dopamine D(2) receptor signaling is involved in modulation of emotional behavior and activity of associated brain regions such as the amygdala and the prefrontal cortex. An intronic single nucleotide polymorphism within the D(2) receptor gene (DRD2) (rs1076560, guanine > thymine or G > T) shifts splicing of the two protein isoforms (D(2) short, mainly presynaptic, and D(2) long) and has been associated with modulation of memory performance and brain activity. Here, our aim was to investigate the association of DRD2 rs1076560 genotype with personality traits of emotional stability and with brain physiology during processing of emotionally relevant stimuli. DRD2 genotype and Big Five Questionnaire scores were evaluated in 134 healthy subjects demonstrating that GG subjects have reduced "emotion control" compared with GT subjects. Functional magnetic resonance imaging in a sample of 24 individuals indicated greater amygdala activity during implicit processing and greater dorsolateral prefrontal cortex (DLPFC) response during explicit processing of facial emotional stimuli in GG subjects compared with GT. Other results also demonstrate an interaction between DRD2 genotype and facial emotional expression on functional connectivity of both amygdala and dorsolateral prefrontal regions with overlapping medial prefrontal areas. Moreover, rs1076560 genotype is associated with differential relationships between amygdala/DLPFC functional connectivity and emotion control scores. These results suggest that genetically determined D(2) signaling may explain part of personality traits related to emotion processing and individual variability in specific brain responses to emotionally relevant inputs.
London, Edythe D; Simon, Sara L; Berman, Steven M; Mandelkern, Mark A; Lichtman, Aaron M; Bramen, Jennifer; Shinn, Ann K; Miotto, Karen; Learn, Jennifer; Dong, Yun; Matochik, John A; Kurian, Varughese; Newton, Thomas; Woods, Roger; Rawson, Richard; Ling, Walter
2004-01-01
Mood disturbances in methamphetamine (MA) abusers likely influence drug use, but the neurobiological bases for these problems are poorly understood. To assess regional brain function and its possible relationships with negative affect in newly abstinent MA abusers. Two groups were compared by measures of mood and cerebral glucose metabolism ([18F]fluorodeoxyglucose positron emission tomography) during performance of a vigilance task. Participants were recruited from the general community to a research center. Seventeen abstaining (4-7 days) MA abusers (6 women) were compared with 18 control subjects (8 women). Self-reports of depressive symptoms and anxiety were measured, as were global and relative glucose metabolism in the orbitofrontal, cingulate, lateral prefrontal, and insular cortices and the amygdala, striatum, and cerebellum. Abusers of MA provided higher self-ratings of depression and anxiety than control subjects and differed significantly in relative regional glucose metabolism: lower in the anterior cingulate and insula and higher in the lateral orbitofrontal area, middle and posterior cingulate, amygdala, ventral striatum, and cerebellum. In MA abusers, self-reports of depressive symptoms covaried positively with relative glucose metabolism in limbic regions (eg, perigenual anterior cingulate gyrus and amygdala) and ratings of state and trait anxiety covaried negatively with relative activity in the anterior cingulate cortex and left insula. Trait anxiety also covaried negatively with relative activity in the orbitofrontal cortex and positively with amygdala activity. Abusers of MA have abnormalities in brain regions implicated in mood disorders. Relationships between relative glucose metabolism in limbic and paralimbic regions and self-reports of depression and anxiety in MA abusers suggest that these regions are involved in affective dysregulation and may be an important target of intervention for MA dependence.
Taylor, William; Kalmbach, Brian; Desai, Niraj S.
2015-01-01
Abstract Trace eyeblink conditioning is useful for studying the interaction of multiple brain areas in learning and memory. The goal of the current work was to determine whether trace eyeblink conditioning could be established in a mouse model in the absence of elicited startle responses and the brain circuitry that supports this learning. We show here that mice can acquire trace conditioned responses (tCRs) devoid of startle while head-restrained and permitted to freely run on a wheel. Most mice (75%) could learn with a trace interval of 250 ms. Because tCRs were not contaminated with startle-associated components, we were able to document the development and timing of tCRs in mice, as well as their long-term retention (at 7 and 14 d) and flexible expression (extinction and reacquisition). To identify the circuitry involved, we made restricted lesions of the medial prefrontal cortex (mPFC) and found that learning was prevented. Furthermore, inactivation of the cerebellum with muscimol completely abolished tCRs, demonstrating that learned responses were driven by the cerebellum. Finally, inactivation of the mPFC and amygdala in trained animals nearly abolished tCRs. Anatomical data from these critical regions showed that mPFC and amygdala both project to the rostral basilar pons and overlap with eyelid-associated pontocerebellar neurons. The data provide the first report of trace eyeblink conditioning in mice in which tCRs were driven by the cerebellum and required a localized region of mPFC for acquisition. The data further reveal a specific role for the amygdala as providing a conditioned stimulus-associated input to the cerebellum. PMID:26464998
Sebastian, C L; McCrory, E J; Dadds, M R; Cecil, C A M; Lockwood, P L; Hyde, Z H; De Brito, S A; Viding, E
2014-01-01
Children with conduct problems (CP) are a heterogeneous group. Those with high levels of callous-unemotional traits (CP/HCU) appear emotionally under-reactive at behavioural and neural levels whereas those with low levels of CU traits (CP/LCU) appear emotionally over-reactive, compared with typically developing (TD) controls. Investigating the degree to which these patterns of emotional reactivity are malleable may have important translational implications. Instructing participants with CP/HCU to focus on the eyes of fearful faces (i.e. the most salient feature) can ameliorate their fear-recognition deficits, but it is unknown whether this is mediated by amygdala response. It is also unknown whether focusing on fearful eyes is associated with increased amygdala reactivity in CP/LCU. Functional magnetic resonance imaging (fMRI) was used to measure neural responses to fearful and calm faces in children with CP/HCU, CP/LCU and TD controls (n = 17 per group). On half of trials participants looked for a blue dot anywhere within target faces; on the other half, participants were directed to focus on the eye region. Reaction time (RT) data showed that CP/LCU were selectively slowed in the fear/eyes condition. For the same condition, CP/LCU also showed increased amygdala and subgenual anterior cingulate cortex (sgACC)/orbitofrontal cortex (OFC) responses compared with TD controls. RT and amygdala response to fear/eyes were correlated in CP/LCU only. No effects of focusing on the eye region were observed in CP/HCU. These data extend the evidence base suggesting that CU traits index meaningful heterogeneity in conduct problems. Focusing on regulating reactive emotional responses may be a fruitful strategy for children with CP/LCU.
Sex Differences in the Neural Correlates of Autonomic Arousal: A Pilot PET Study
Nugent, Allison C.; Bain, Earle E.; Thayer, Julian F.; Sollers, John J.; Drevets, Wayne C.
2011-01-01
Electrophysiology, behavioral, and neuroimaging studies have revealed sex-related differences in autonomic cardiac control, as reflected in measurements of heart rate variability (HRV). Imaging studies indicate that the neurobiological correlates of autonomic nervous system (ANS) function can be investigated by measuring indices of HRV during the performance of mildly strenuous motor tasks or mildly stressful cognitive tasks. In this preliminary study, fifteen male and seven female healthy subjects underwent H215O-positron emission tomography (PET) and electrocardiograph (ECG) recording while performing a handgrip motor task and an n-back task. Indices of HRV were calculated and correlated with regional cerebral blood flow (rCBF). We hypothesized that sex differences would be evident in brain regions known to participate in autonomic regulation: the anterior insula, the anterior cingulate cortex, the orbitofrontal cortex, and the amygdala. Our study found that associations between rCBF and parasympathetic indices differed significantly between female and male subjects in the amygdala. Females showed a positive correlation between rCBF and parasympathetic indices while males exhibited negative correlations. This differential correlation of amygdala rCBF and parasympathetic activity between males and females may reflect differences in parasympathetic/sympathetic balance between sexes, consistent with known sexual dimorphism in the amygdala and closely related structures such as the hypothalamus. These preliminary imaging results are consistent with earlier reports of significant correlation between brain activity and HRV, and extend these findings by demonstrating prominent sex differences in the neural control of the ANS. While the generalizability of our results was limited by the small size of the study samples, the relatively robust effect size of the differences found between groups encourages further work in larger samples to characterize sex differences in the neural correlates of autonomic arousal. PMID:21414364
Kovacs, Gabor G; Xie, Sharon X; Robinson, John L; Lee, Edward B; Smith, Douglas H; Schuck, Theresa; Lee, Virginia M-Y; Trojanowski, John Q
2018-06-11
Aging-related tau astrogliopathy (ARTAG) describes tau pathology in astrocytes in different locations and anatomical regions. In the present study we addressed the question of whether sequential distribution patterns can be recognized for ARTAG or astroglial tau pathologies in both primary FTLD-tauopathies and non-FTLD-tauopathy cases. By evaluating 687 postmortem brains with diverse disorders we identified ARTAG in 455. We evaluated frequencies and hierarchical clustering of anatomical involvement and used conditional probability and logistic regression to model the sequential distribution of ARTAG and astroglial tau pathologies across different brain regions. For subpial and white matter ARTAG we recognize three and two patterns, respectively, each with three stages initiated or ending in the amygdala. Subependymal ARTAG does not show a clear sequential pattern. For grey matter (GM) ARTAG we recognize four stages including a striatal pathway of spreading towards the cortex and/or amygdala, and the brainstem, and an amygdala pathway, which precedes the involvement of the striatum and/or cortex and proceeds towards the brainstem. GM ARTAG and astrocytic plaque pathology in corticobasal degeneration follows a predominantly frontal-parietal cortical to temporal-occipital cortical, to subcortical, to brainstem pathway (four stages). GM ARTAG and tufted astrocyte pathology in progressive supranuclear palsy shows a striatum to frontal-parietal cortical to temporal to occipital, to amygdala, and to brainstem sequence (four stages). In Pick's disease cases with astroglial tau pathology an overlapping pattern with PSP can be appreciated. We conclude that tau-astrogliopathy type-specific sequential patterns cannot be simplified as neuron-based staging systems. The proposed cytopathological and hierarchical stages provide a conceptual approach to identify the initial steps of the pathogenesis of tau pathologies in ARTAG and primary FTLD-tauopathies.
Gupta, Subhash C.; Hillman, Brandon G.; Prakash, Anand; Ugale, Rajesh R; Stairs, Dustin J.; Dravid, Shashank M.
2013-01-01
D-cycloserine (DCS) is currently under clinical trials for a number of neuropsychiatric conditions and has been found to augment fear extinction in rodents and exposure therapy in humans. However, the molecular mechanism of DCS action in these multiple modalities remains unclear. Here, we describe the effect of DCS administration, alone or in conjunction with extinction training, on neuronal activity (c-fos) and neuronal plasticity (phospho-extracellular signal-regulated kinase, pERK) markers using immunohistochemistry. We found that intraperitoneal administration of DCS in untrained young rats (24–28 days old) increased c-fos and pERK-stained neurons in both the prelimbic (PL) and infralimbic (IL) division of the medial prefrontal cortex (mPFC) and reduced pERK levels in the lateral nucleus (CeL) of the central amygdala (CeA). Moreover, DCS administration significantly increased GluA1, GluN1, GluN2A, and GluN2B expression in mPFC. In a separate set of animals, we found that DCS facilitated fear extinction and increased pERK levels in IL, PL, intercalated cells and CeL, compared to saline control. In synaptoneurosomal preparation, we found that extinction training increased iGluR protein expression in the mPFC, compared to context animals. No significant difference in protein expression was observed between extinction-saline and extinction-DCS groups in the mPFC. In contrast, in the amygdala DCS in conjunction with extinction training led to an increase in iGluR subunit expression, compared to extinction-saline group. Our data suggest that the efficacy of DCS in neuropsychiatric disorders may be partly due to its ability to affect neuronal activity and signaling in the mPFC and amygdala subnuclei. PMID:23551217
Pedraza, C; Sánchez-López, J; Castilla-Ortega, E; Rosell-Valle, C; Zambrana-Infantes, E; García-Fernández, M; Rodriguez de Fonseca, F; Chun, J; Santín, L J; Estivill-Torrús, G
2014-09-01
LPA1 receptor is one of the six characterized G protein-coupled receptors (LPA1-6) through which lysophosphatidic acid acts as an intercellular signaling molecule. It has been proposed that this receptor has a role in controlling anxiety-like behaviors and in the detrimental consequences of stress. Here, we sought to establish the involvement of the LPA1 receptor in emotional regulation. To this end, we examined fear extinction in LPA1-null mice, wild-type and LPA1 antagonist-treated animals. In LPA1-null mice we also characterized the morphology and GABAergic properties of the amygdala and the medial prefrontal cortex. Furthermore, the expression of c-Fos protein in the amygdala and the medial prefrontal cortex, and the corticosterone response following acute stress were examined in both genotypes. Our data indicated that the absence of the LPA1 receptor significantly inhibited fear extinction. Treatment of wild-type mice with the LPA1 antagonist Ki16425 mimicked the behavioral phenotype of LPA1-null mice, revealing that the LPA1 receptor was involved in extinction. Immunohistochemistry studies revealed a reduction in the number of neurons, GABA+ cells, calcium-binding proteins and the volume of the amygdala in LPA1-null mice. Following acute stress, LPA1-null mice showed increased corticosterone and c-Fos expression in the amygdala. In conclusion, LPA1 receptor is involved in emotional behaviors and in the anatomical integrity of the corticolimbic circuit, the deregulation of which may be a susceptibility factor for anxiety disorders and a potential therapeutic target for the treatment of these diseases.
Contreras-Rodríguez, Oren; Albein-Urios, Natalia; Vilar-López, Raquel; Perales, Jose C; Martínez-Gonzalez, Jose M; Fernández-Serrano, Maria J; Lozano-Rojas, Oscar; Clark, Luke; Verdejo-García, Antonio
2016-05-01
Neural biomarkers for the active detrimental effects of cocaine dependence (CD) are lacking. Direct comparisons of brain connectivity in cocaine-targeted networks between CD and behavioural addictions (i.e. pathological gambling, PG) may be informative. This study therefore contrasted the resting-state functional connectivity networks of 20 individuals with CD, 19 individuals with PG and 21 healthy individuals (controls). Study groups were assessed to rule out psychiatric co-morbidities (except alcohol abuse and nicotine dependence) and current substance use or gambling (except PG). We first examined global connectivity differences in the corticolimbic reward network and then utilized seed-based analyses to characterize the connectivity of regions displaying between-group differences. We examined the relationships between seed-based connectivity and trait impulsivity and cocaine severity. CD compared with PG displayed increased global functional connectivity in a large-scale ventral corticostriatal network involving the orbitofrontal cortex, caudate, thalamus and amygdala. Seed-based analyses showed that CD compared with PG exhibited enhanced connectivity between the orbitofrontal and subgenual cingulate cortices and between caudate and lateral prefrontal cortex, which are involved in representing the value of decision-making feedback. CD and PG compared with controls showed overlapping connectivity changes between the orbitofrontal and dorsomedial prefrontal cortices and between amygdala and insula, which are involved in stimulus-outcome learning. Orbitofrontal-subgenual cingulate cortical connectivity correlated with impulsivity and caudate/amygdala connectivity correlated with cocaine severity. We conclude that CD is linked to enhanced connectivity in a large-scale ventral corticostriatal-amygdala network that is relevant to decision making and likely to reflect an active cocaine detrimental effect. © 2015 Society for the Study of Addiction.
Wellman, Cara L; Camp, Marguerite; Jones, V Morgan; MacPherson, Kathryn P; Ihne, Jessica; Fitzgerald, Paul; Maroun, Mouna; Drabant, Emily; Bogdan, Ryan; Hariri, Ahmad R; Holmes, Andrew
2013-12-01
Serotonin is critical for shaping the development of neural circuits regulating emotion. Pet-1 (FEV-1) is an ETS-domain transcription factor essential for differentiation and forebrain targeting of serotonin neurons. Constitutive Pet-1 knockout (KO) causes major loss of serotonin neurons and forebrain serotonin availability, and behavioral abnormalities. We phenotyped Pet-1 KO mice for fear conditioning and extinction, and on a battery of assays for anxiety- and depression-related behaviors. Morphology of Golgi-stained neurons in basolateral amygdala (BLA) and prelimbic cortex was examined. Using human imaging genetics, a common variant (rs860573) in the PET-1 (FEV) gene was tested for effects on threat-related amygdala reactivity and psychopathology in 88 Asian-ancestry subjects. Pet-1 KO mice exhibited increased acquisition and expression of fear, and elevated fear recovery following extinction, relative to wild-type (WT). BLA dendrites of Pet-1 KO mice were significantly longer than in WT. Human PET-1 variation associated with differences in amygdala threat processing and psychopathology. This novel evidence for the role of Pet-1 in fear processing and dendritic organization of amygdala neurons and in human amygdala threat processing extends a growing literature demonstrating the influence of genetic variation in the serotonin system on emotional regulation via effects on structure and function of underlying corticolimbic circuitry. © 2013.
Posner, Jonathan; Nagel, Bonnie J.; Maia, Tiago V.; Mechling, Anna; Oh, Milim; Wang, Zhishun; Peterson, Bradley S.
2011-01-01
Objective Emotional reactivity is one of the most disabling symptoms associated with ADHD. We aimed to identify neural substrates associated with emotional reactivity and assess the effects of stimulants on those substrates. Method We used functional magnetic resonance imaging (fMRI) to assess neural activity in adolescents with (N=15) and without (N=15) ADHD while they performed a task involving the subliminal presentation of fearful faces. Using dynamic causal modeling, we also examined the effective connectivity of two regions associated with emotional reactivity — the amygdala and the lateral prefrontal cortex (LPFC). The participants with ADHD were scanned both on and off stimulant medication in a counterbalanced fashion. Results During the task, we found that activity in the right amygdala was greater in adolescents with ADHD than in controls. Additionally, in adolescents with ADHD, greater connectivity was detected between the amygdala and LPFC. Stimulants had a normalizing effect on both the activity in the right amygdala and the connectivity between the amygdala and LPFC. Conclusions Our findings demonstrate that in adolescents with ADHD, a neural substrate of fear processing is atypical, as is the connectivity between the amygdala and LPFC. These findings suggest possible neural substrates for the emotional reactivity that is often present in youths with ADHD and provide putative neural targets for the development of novel therapeutic interventions for this condition. PMID:21784302
Integrating automatic and controlled processes into neurocognitive models of social cognition.
Satpute, Ajay B; Lieberman, Matthew D
2006-03-24
Interest in the neural systems underlying social perception has expanded tremendously over the past few decades. However, gaps between behavioral literatures in social perception and neuroscience are still abundant. In this article, we apply the concept of dual-process models to neural systems in an effort to bridge the gap between many of these behavioral studies and neural systems underlying social perception. We describe and provide support for a neural division between reflexive and reflective systems. Reflexive systems correspond to automatic processes and include the amygdala, basal ganglia, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and lateral temporal cortex. Reflective systems correspond to controlled processes and include lateral prefrontal cortex, posterior parietal cortex, medial prefrontal cortex, rostral anterior cingulate cortex, and the hippocampus and surrounding medial temporal lobe region. This framework is considered to be a working model rather than a finished product. Finally, the utility of this model and its application to other social cognitive domains such as Theory of Mind are discussed.