Science.gov

Sample records for amylase

  1. Amylase - blood

    MedlinePlus

    ... amylase levels may occur due to: Acute pancreatitis Cancer of the pancreas , ovaries, or lungs Cholecystitis Gallbladder attack caused by ... open) Decreased amylase levels may occur due to: Cancer of the pancreas Damage to the pancreas Kidney disease Toxemia of ...

  2. Advances in microbial amylases.

    PubMed

    Pandey, A; Nigam, P; Soccol, C R; Soccol, V T; Singh, D; Mohan, R

    2000-04-01

    This review makes a comprehensive survey of microbial amylases, i.e. alpha-amylase, beta-amylase and glucoamylase. Amylases are among the most important enzymes and are of great significance in present-day biotechnology. Although they can be derived from several sources, such as plants, animals and micro-organisms, the enzymes from microbial sources generally meet industrial demands. Microbial amylases could be potentially useful in the pharmaceutical and fine-chemical industries if enzymes with suitable properties could be prepared. With the advent of new frontiers in biotechnology, the spectrum of amylase application has widened in many other fields, such as clinical, medicinal and analytical chemistries, as well as their widespread application in starch saccharification and in the textile, food, brewing and distilling industries. In this review, after a brief description of the sources of amylases, we discuss the molecular biology of amylases, describing structures, cloning, sequences, and protoplast fusion and mutagenesis. This is followed by sections on their production and finally the properties of various amylases.

  3. Amylase, isoamylase and macroamylase.

    PubMed

    Goldberg, D M; Spooner, R J

    1975-01-01

    Hyperamylasaemia has long been regarded as pathognomonic of acute pancreatitis. However, recent work has revealed a number of conditions where a gross elevation may be an incidental finding, notably diabetic ketoacidosis. The recent discovery of 'macroamylase', a high molecular weight amylase-protein complex capable of producing hyperamylasaemia with low urine amylase, has further complicated diagnosis and has led to the introduction of the ratio of amylase clearance to creatinine clearance as a diagnostic aid. Serum amylase may be resolved, by most electrophoretic media, into bands which correspond to those obtained when pancreatic homogenates or saliva are electrophoresed. The initial promise of this technique has not been realised at the routine diagnostic level. Duodenal juice amylase has been the classical enzyme used in assessing exocrine pancreatic function and although it is still of value it is being amplified by other enzyme tests.

  4. Amylase activity in human bile.

    PubMed

    Donaldson, L A; Joffe, S N; McIntosh, W; Brodie, M J

    1979-03-01

    The mean amylase level in 42 human bile samples was 154 IU/l and there was no significant difference in the amylase activity of 32 paired serum and bile samples. Estimation of the amylase thermolability of bile showed it to be similar to that of serum. This suggests that the amylase activity in bile may have filtered through the liver from the hepatic circulation rather than refluxed from the pancreatic duct. The presence of amylase in human bile provides further evidence that the liver might have a role in the regulation of serum amylase.

  5. Proteinaceous alpha-amylase inhibitors.

    PubMed

    Svensson, Birte; Fukuda, Kenji; Nielsen, Peter K; Bønsager, Birgit C

    2004-02-12

    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous alpha-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological approaches have been outlined for exploitation of the inhibitory function. PMID:14871655

  6. Detergent-compatible bacterial amylases.

    PubMed

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  7. Acyclic peptide inhibitors of amylases.

    PubMed

    Pohl, Nicola

    2005-12-01

    In this issue of Chemistry and Biology, a library screening approach reveals a linear octapeptide inhibitor of alpha-amylases reached by de novo design . The selected molecule shares characteristics with naturally occurring protein inhibitors -- a result that suggests general rules for the design of peptide-based amylase inhibitors may be achievable.

  8. [Amylase in serum, amylase excretion and the amylase-creatinine-ratio. Individual variation and diagnostic specifity (author's transl)].

    PubMed

    Koch, C D; Rommel, K

    1981-06-01

    The amylase activity in serum, the amylase excretion and the amylase-creatinine-ratio was investigated in 25 volunteers monthly for one year and daily for two weeks. The intraindividual variation of the amylase-activity in serum showed only small oscillations. The large refernce value of the group and the need to use individual reference values prefer the 24 hour amylase excretion as a diagnostic tool. The amylase-creatinine-ratio showed individual and seasonal large variations. Therefore the ratio is not suitable for diagnostic questions.

  9. Concerted evolution of human amylase genes

    SciTech Connect

    Gumucio, D.L.; Wiebauer, K.; Caldwell, R.M.; Samuelson, L.C.; Meisler, M.H.

    1988-03-01

    Cosmid clones containing 250 kilobases of genomic DNA from the human amylase gene cluster have been isolated. These clones contain seven distinct amylase genes which appear to comprise the complete multigene family. By sequence comparison with the cDNAs, the authors have identified two pancreatic amylase gene and three salivary amylase genes. Two truncated pseudogenes were also recovered. Intergenic distances of 17 to 22 kilobases separate the amylase gene copies. Within the past 10 million years, duplications, gene conversion, and unequal crossover events have resulted in a very high level of sequence similarity among human amylase gene copies. To identify sequence elements involved in tissue-specific expression and hormonal regulation, the promoter regions of the human amylase genes were sequenced and compared with those of the corresponding mouse genes. The promoters of the human and mouse pancreatic amylase genes are highly homologous between nucleotide - 160 and the cap site. Two sequence elements througth to influence pancreas-specific expression of the rodent genes are present in the human genes. In contrast, similarity in the 5' lanking sequences of the salivary amylase genes is limited to several short sequence elements whose positions and orientations differ in the two species. Some of these sequence elements are also associated with other parotid-specific genes and may be involved in their tissue-specific expression. A glucocorticoid response element and a general enhancer element are closely associated in several of the amylase promoters.

  10. Salivary Amylase: Digestion and Metabolic Syndrome.

    PubMed

    Peyrot des Gachons, Catherine; Breslin, Paul A S

    2016-10-01

    Salivary amylase is a glucose-polymer cleavage enzyme that is produced by the salivary glands. It comprises a small portion of the total amylase excreted, which is mostly made by the pancreas. Amylases digest starch into smaller molecules, ultimately yielding maltose, which in turn is cleaved into two glucose molecules by maltase. Starch comprises a significant portion of the typical human diet for most nationalities. Given that salivary amylase is such a small portion of total amylase, it is unclear why it exists and whether it conveys an evolutionary advantage when ingesting starch. This review will consider the impact of salivary amylase on oral perception, nutrient signaling, anticipatory metabolic reflexes, blood sugar, and its clinical implications for preventing metabolic syndrome and obesity. PMID:27640169

  11. Amylase creatinine clearance ratio after biliary surgery.

    PubMed

    Donaldson, L A; McIntosh, W; Joffe, S N

    1977-01-01

    The amylase creatinine clearance ratio (ACCR) is considered to be a more sensitive index of acute pancreatitis than the serum amylase level. Serial ACCR estimations were undertaken in 25 patients undergoing an elective cholecystectomy. Using accepted criteria, 28% of these patients developed, in the postoperative period, biochemical evidence of pancreatic gland damage, although the serum amylase level remained normal. This raised ACCR was particularly noted in patients who had undergone an exploration of the common bile duct. The ACCR would appear to be a more sensitive index of pancreatic gland disruption secondary to biliary surgery than the serum amylase level.

  12. Amylase creatinine clearance ratio after biliary surgery.

    PubMed

    Donaldson, L A; McIntosh, W; Joffe, S N

    1977-01-01

    The amylase creatinine clearance ratio (ACCR) is considered to be a more sensitive index of acute pancreatitis than the serum amylase level. Serial ACCR estimations were undertaken in 25 patients undergoing an elective cholecystectomy. Using accepted criteria, 28% of these patients developed, in the postoperative period, biochemical evidence of pancreatic gland damage, although the serum amylase level remained normal. This raised ACCR was particularly noted in patients who had undergone an exploration of the common bile duct. The ACCR would appear to be a more sensitive index of pancreatic gland disruption secondary to biliary surgery than the serum amylase level. PMID:402305

  13. Electrophoretic behaviour of human urinary amylase

    PubMed Central

    Franzini, C.

    1965-01-01

    A saccharogenic method is described for estimating amylase activity in human urine. Results accord with those reported elsewhere except that in this study the peak in the beta zone is a new finding. Comparison between normal and pathological urines suggests that the amylase activity of the beta peak is not of pancreatic origin. PMID:5835450

  14. Specific Determination of α-Amylase Activity in Crude Plant Extracts Containing β-Amylase 1

    PubMed Central

    Doehlert, Douglas C.; Duke, Stanley H.

    1983-01-01

    The specific measurement of α-amylase activity in crude plant extracts is difficult because of the presence of β-amylases which directly interfere with most assay methods. Methods compared in this study include heat treatment at 70°C for 20 min, HgCl2 treatment, and the use of the α-amylase specific substrate starch azure. In comparing alfalfa (Medicago sativa L.), soybeans (Glycine max [L.] Merr.), and malted barley (Hordeum vulgare L.), the starch azure assay was the only satisfactory method for all tissues. While β-amylase can liberate no color alone, over 10 International units per milliliter β-amylase activity has a stimulatory effect on the rate of color release. This stimulation becomes constant (about 4-fold) at β-amylase activities over 1,000 International units per milliliter. Two starch azure procedures were developed to eliminate β-amylase interference: (a) the dilution procedure, the serial dilution of samples until β-amylase levels are below levels that interfere; (b) the β-amylase saturation procedure, addition of exogenous β-amylase to increase endogenous β-amylase activity to saturating levels. Both procedures yield linear calibrations up to 0.3 International units per milliliter. These two procedures produced statistically identical results with most tissues, but not for all tissues. Differences between the two methods with some plant tissues was attributed to inaccuracy with the dilution procedure in tissues high in β-amylase activity or inhibitory effects of the commercial β-amylase. The β-amylase saturation procedure was found to be preferable with most species. The heat treatment was satisfactory only for malted barley, as α-amylases in alfalfa and soybeans are heat labile. Whereas HgCl2 proved to be a potent inhibitor of β-amylase activity at concentrations of 10 to 100 micromolar, these concentrations also partially inhibited α-amylase in barley malt. The reported α-amylase activities in crude enzyme extracts from a number

  15. Production of alpha-amylase by yeast

    SciTech Connect

    Thomse, K.K.

    1987-01-01

    The enzyme alpha-amylase confers to an organism the enzymatic activity for the degradation of polyglucosides with alpha-1,4 glycosidic bonds such as starch and glycogen which are among the major storage compounds in plants and animals. Most alpha-amylases are single polypeptides of molecular weights around 50,000 dalton. They are generally found in the digestive tract of animals and in germinating seeds. Among the products released upon enzymatic degradation of polyglucosides maltose, a sugar that can be utilized as carbon source by yeast, is a major constituent. A cDNA segment complementary to mouse salivary amylase messenger RNA has been inserted into the yeast expression vector pMA56 behind the promoter of the gene encoding alcohol dehydrogenase I of yeast. Yeast transformants harboring plasmids with the normal orientation of the promoter and the mouse amylase cDNA gene produce amylase and release the enzyme in free form into the culture medium. Approximately 90% of the amylase activity is found in the medium. Yeast strains carrying MAL allele and transformed with a plasmid which directed the synthesis of mouse alpha-amylase were tested on plates containing starch and in batch fermentations using different high molecular weight sugars and oligosaccharides as carbon source. The results of these experiments will be discussed. (Refs. 21).

  16. Characterization of recombinant β-amylases from Oryza sativa.

    PubMed

    Koide, Tomojiro; Ohnishi, Yasuo; Horinouchi, Sueharu

    2011-01-01

    Four putative β-amylase genes found in the Oryza sativa cDNA sequence database (KOME) were expressed in Escherichia coli. Recombinant proteins from two of these genes showed β-amylase activity. Similarly to β-amylases from other plants, the optimum pH of the recombinant rice β-amylases was about 5.5-6.0, but they exhibited inferior heat stability to soybean β-amylase.

  17. Beta-Amylases from Alfalfa (Medicago sativa L.) Roots 1

    PubMed Central

    Doehlert, Douglas C.; Duke, Stanley H.; Anderson, Laurens

    1982-01-01

    Amylase was found in high activity (193 international units per milligram protein) in the tap root of alfalfa (Medicago sativa L. cv. Sonora). The activity was separated by gel filtration chromatography into two fractions with molecular weights of 65,700 (heavy amylase) and 41,700 (light amylase). Activity staining of electrophoretic gels indicated the presence of one isozyme in the heavy amylase fraction and two in the light amylase fraction. Three amylase isozymes with electrophoretic mobilities identical to those in the heavy and the light amylase fractions were the only amylases identified in crude root preparations. Both heavy and light amylases hydrolyzed amylopectin, soluble starch, and amylose but did not hydrolyze pullulan or β-limit dextrin. The ratio of viscosity change to reducing power production during starch hydrolysis was identical for both alfalfa amylase fractions and sweet potato β-amylase, while that of bacterial α-amylase was considerably higher. The identification of maltose and β-limit dextrin as hydrolytic end-products confirmed that these alfalfa root amylases are all β-amylases. The pH optimum for both β-amylase fractions was 6.0. Both light and heavy β-amylases showed normal Michaelis-Menten kinetics, with soluble starch as substrate, and had respectively Km values of 5.9 and 6.8 milligrams starch per milliliter and Vmax of 640 and 130 international units per milligram protein. Arrhenius plots indicated that the energy of activation for the heavy β-amylase remained relatively unchanged (12.7 to 13.0 kilocalories per mole) from 0 to 30°C, whereas the energy of activation for the light amylase increased from 12.0 to about 28.0 kilocalories per mole at 8.7°C as temperature was lowered. The light amylase was shown to be inhibited by maltose. Images PMID:16662350

  18. Performance evaluation of salivary amylase activity monitor.

    PubMed

    Yamaguchi, Masaki; Kanemori, Takahiro; Kanemaru, Masashi; Takai, Noriyasu; Mizuno, Yasufumi; Yoshida, Hiroshi

    2004-10-15

    In order to quantify psychological stress and to distinguish eustress and distress, we have been investigating the establishment of a method that can quantify salivary amylase activity (SMA). Salivary glands not only act as amplifiers of a low level of norepinephrine, but also respond more quickly and sensitively to psychological stress than cortisol levels. Moreover, the time-course changes of the salivary amylase activity have a possibility to distinguish eustress and distress. Thus, salivary amylase activity can be utilized as an excellent index for psychological stress. However, in dry chemistry system, a method for quantification of the enzymatic activity still needs to be established that can provide with sufficient substrate in a testing tape as well as can control enzymatic reaction time. Moreover, it is necessary to develop a method that has the advantages of using saliva, such as ease of collection, rapidity of response, and able to use at any time. In order to establish an easy method to monitor the salivary amylase activity, a salivary transcription device was fabricated to control the enzymatic reaction time. A fabricated salivary amylase activity monitor consisted of three devices, the salivary transcription device, a testing-strip and an optical analyzer. By adding maltose as a competitive inhibitor to a substrate Ga1-G2-CNP, a broad-range activity testing-strip was fabricated that could measure the salivary amylase activity with a range of 0-200 kU/l within 150 s. The calibration curve of the monitor for the salivary amylase activity showed R2=0.941, indicating that it was possible to use this monitor for the analysis of the salivary amylase activity without the need to determine the salivary volume quantitatively. In order to evaluate the assay variability of the monitor, salivary amylase activity was measured using Kraepelin psychodiagnostic test as a psychological stressor. A significant difference of salivary amylase activity was recognized

  19. Serum amylase isozymes in patients with chronic pancreatitis with hyperamylasemia.

    PubMed

    Wakabayashi, A; Saeki, M; Mori, R; Oshiba, S

    1977-01-01

    In order to clarify the relationship between hyperamylasemia and clinical states in chronic pancreatitis, serum amylase isozymes were studied in 39 cases of chronic pancreatitis including 13 cases of alcoholic pancreatitis. Hyperamylasemia in chronic pancreatitis is generally due to high pancreatic type isoamylase (P-amylase) activity in acute exacerbation, sometimes accompanied by a transient elevation in salivary type isoamylase (S-amylase). On remission, however, hyperamylasemia due to high S-amylase activity has been found. These were cases of advanced alcoholic pancreatitis, which exhibited a characteristic pattern of low serum P-amylase and high serum S-amylase activities while the clearance ratio (Cam/Ccr) was normal despite high S-amylase activity. It should be noted that hyperamylasemia in chronic pancreatitis may be caused by high S-amylase activity in addition to high P-amylase activity, especially in alcoholic pancreatitis.

  20. Biliary amylase and congenital choledochal dilatation.

    PubMed

    Davenport, M; Stringer, M D; Howard, E R

    1995-03-01

    The relationship between levels of biliary amylase measured at operation and clinical features was studied in a series of 55 children with congenital biliary dilatation (choledochal cyst) who presented between 1976 and 1993. There were 36 cystic and 19 fusiforms dilatations in the series. The most common modes of presentation were painless jaundice (n = 23) and pancreatitis (n = 22). Five infants presented with abnormal antenatal ultrasound examinations. Children with pancreatitis were older than those with painless jaundice (4.2 versus 1.5 years; P = .005), and a higher proportion had raised levels of biliary amylase (100% versus 44%; P < .0001). There was no difference in the age at presentation (P = .32), clinical mode of presentation (P = .3), or the level of biliary amylase (P = .25) between cystic and fusiform dilatations. A correlation was found between age at surgery and biliary amylase in the cystic (rs = 0.55; P = .001) but not in the fusiform group (P = .22). All infants with antenatal diagnoses were cystic dilatations. Choledochal cystic dilatations that were diagnosed antenatally did not have significant amylase reflux, suggesting that the aetiology of this subgroup is truly congenital. Children who present at a later age with pancreatitis invariably have high levels of biliary amylase, which is presumed to occur because of a common channel and reflux of biliary and pancreatic secretions.

  1. Effect of changes in circulating amylase levels on amylase output in bile.

    PubMed

    Grendell, J H; Rothman, S S

    1982-07-01

    The relation between plasma and biliary amylase activity and their relationship to the functional state of the pancreas were studied in anesthetized rabbits. Repetitive intravenous injections of cholecystokinin resulted in a 25-fold rise in the secretion of amylase via the pancreatic duct, followed at first by a 50% increase in plasma amylase concentration and later by a 270% increase in biliary amylase concentration. There was then a gradual, roughly synchronous decline in both plasma and biliary values toward basal level despite a continued highly augmented rate of pancreatic ductal secretion. "Near-total" pancreatectomy completely abolished the effect. These observations are consistent with a cholecystokinin-induced basolateral secretion of amylase from pancreas into blood and its subsequent movement from blood into bile down a concentration gradient. The output of amylase in bile, however, was quite small and does not suggest that biliary transport of amylase has an important function either as a means of secreting and recycling digestive enzyme into the gut or as a major excretory pathway for circulating amylase in the rabbit.

  2. β-Amylase from Mustard (Sinapis alba L.) Cotyledons 1

    PubMed Central

    Subbaramaiah, Kotha; Sharma, Rameshwar

    1989-01-01

    A polyclonal antiserum against mustard (Sinapis alba L.) β-amylase was obtained by injecting a homogeneously purified enzyme preparation in rabbits. The formation of β-amylase specific antibodies was confirmed by staining the precipitin line in double diffusion gel for β-amylase activity. The monospecificity of antiserum against mustard β-amylase was also ascertained by Western blotting. The antiserum efficiently recognised both the denatured and the native form of β-amylase, but it did not cross-react with other higher plant β-amylase. The mode of photoregulation of β-amylase activity in mustard cotyledons was investigated by a variety of immunochemical techniques. Immunotitration experiments ruled out the possible contribution of enzyme activation/inactivation in photoregulation of β-amylase activity. The use of single radial immunodiffusion, rocket immunoelectrophoresis, and immunotitration confirmed that the light mediated increase in β-amylase activity quantitatively corresponds with the increase in β-amylase protein level. The in vivo labeling with l-[35S] methionine and pulse chase studies of in vivo labeled β-amylase protein revealed that the photoregulated increase in β-amylase activity in mustard cotyledon exclusively results from an increase in the rate of de novo synthesis of β-amylase protein against a very low background rate of enzyme degradation. Images Figure 1 Figure 2 PMID:16666633

  3. Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases.

    PubMed

    Franco, Octávio L; Rigden, Daniel J; Melo, Francislete R; Grossi-De-Sá, Maria F

    2002-01-01

    Insect pests and pathogens (fungi, bacteria and viruses) are responsible for severe crop losses. Insects feed directly on the plant tissues, while the pathogens lead to damage or death of the plant. Plants have evolved a certain degree of resistance through the production of defence compounds, which may be aproteic, e.g. antibiotics, alkaloids, terpenes, cyanogenic glucosides or proteic, e.g. chitinases, beta-1,3-glucanases, lectins, arcelins, vicilins, systemins and enzyme inhibitors. The enzyme inhibitors impede digestion through their action on insect gut digestive alpha-amylases and proteinases, which play a key role in the digestion of plant starch and proteins. The natural defences of crop plants may be improved through the use of transgenic technology. Current research in the area focuses particularly on weevils as these are highly dependent on starch for their energy supply. Six different alpha-amylase inhibitor classes, lectin-like, knottin-like, cereal-type, Kunitz-like, gamma-purothionin-like and thaumatin-like could be used in pest control. These classes of inhibitors show remarkable structural variety leading to different modes of inhibition and different specificity profiles against diverse alpha-amylases. Specificity of inhibition is an important issue as the introduced inhibitor must not adversely affect the plant's own alpha-amylases, nor the nutritional value of the crop. Of particular interest are some bifunctional inhibitors with additional favourable properties, such as proteinase inhibitory activity or chitinase activity. The area has benefited from the recent determination of many structures of alpha-amylases, inhibitors and complexes. These structures highlight the remarkable variety in structural modes of alpha-amylase inhibition. The continuing discovery of new classes of alpha-amylase inhibitor ensures that exciting discoveries remain to be made. In this review, we summarize existing knowledge of insect alpha-amylases, plant alpha-amylase

  4. Susceptibility to corrosion of laser welding composite arch wire in artificial saliva of salivary amylase and pancreatic amylase.

    PubMed

    Zhang, Chao; Liu, Jiming; Yu, Wenwen; Sun, Daqian; Sun, Xinhua

    2015-10-01

    In this study, laser-welded composite arch wire (CAW) with a copper interlayer was exposed to artificial saliva containing salivary amylase or pancreatic amylase, and the resultant corrosion behavior was studied. The purpose was to determine the mechanisms by which salivary amylase and pancreatic amylase contribute to corrosion. The effects of amylase on the electrochemical resistance of CAW were tested by potentiodynamic polarization measurements. The dissolved corrosion products were determined by ICP-OES, and the surfaces were analyzed by SEM, AFM and EDS. The results showed that both exposure to salivary amylase and pancreatic amylase significantly improved the corrosion resistance of CAW. Even isozyme could have different influences on the alloy surface. When performing in vitro research of materials to be used in oral cavity, the effect of α-amylase should be taken into account since a simple saline solution does not entirely simulate the physiological situation.

  5. [Microbe amylases: characteristic, properties and practical use].

    PubMed

    Kubrak, O I; Lushchak, V I

    2007-01-01

    Current data concerning structure, properties and methods of purification ofmicrobial amylolytic enzymes are summarized in this paper. A short characteristic of the main methods of amylase activity measuring is presented, the advantages and disadvantages of each method are shown. It is proposed that novel techniques of enzyme immobilization stabilize the structure of amylases and allow their multiple uses. Scientific interest to amylases is analyzed that is explained by a number of their unique properties such as thermostability and pH-tolerance. Authors have demonstrated some examples of the practical using ofamylases in different fields of industry: textile, paper, food industries, brewing and wine-making. The prospects of their possible using in detergent preparing for laundries and dishwashers are presented. It is supposed that future investigations in this trend for isolating new amrnylases from native producers will be developed.

  6. Kidney ageing and renal excretion of amylase.

    PubMed

    Brohée, D; Rondelez, L; Bain, H; de Maertelaer, V

    1982-01-01

    In a cross-sectional study, the amylase to creatinine clearance ratio (ACCR) was determined in 180 patients, age range 18-93 years. An inverse correlation was found between ACCR and creatinine clearance (r = -0.40, p less than 0.001) in keeping with the known inverse relationship between the sieving fraction of macromolecules and the glomerular filtration rate. The fractional clearance of amylase was not significantly affected by amylasemia nor by age when the creatinine clearance was also considered in a multiple regression analysis. No increase in ACCR was observed in patients with low molecular weight proteinuria or with induced urine dilution. The authors assume that the tubular reabsorption of amylase is minimal and that the enhancement of ACCR in the elderly mainly reflects modifications in the glomerular filtration dynamics.

  7. Kidney ageing and renal excretion of amylase.

    PubMed

    Brohée, D; Rondelez, L; Bain, H; de Maertelaer, V

    1982-01-01

    In a cross-sectional study, the amylase to creatinine clearance ratio (ACCR) was determined in 180 patients, age range 18-93 years. An inverse correlation was found between ACCR and creatinine clearance (r = -0.40, p less than 0.001) in keeping with the known inverse relationship between the sieving fraction of macromolecules and the glomerular filtration rate. The fractional clearance of amylase was not significantly affected by amylasemia nor by age when the creatinine clearance was also considered in a multiple regression analysis. No increase in ACCR was observed in patients with low molecular weight proteinuria or with induced urine dilution. The authors assume that the tubular reabsorption of amylase is minimal and that the enhancement of ACCR in the elderly mainly reflects modifications in the glomerular filtration dynamics. PMID:6186575

  8. Detection of pulmonary amylase activity in exhaled breath condensate.

    PubMed

    Zweifel, M; Rechsteiner, T; Hofer, M; Boehler, A

    2013-12-01

    Amylase activity in exhaled breath condensate (EBC) is usually interpreted as an indication of oropharyngeal contamination despite the fact that amylase can be found in pulmonary excretions. The aim of this study was to recruit and refine an amylase assay in order to detect amylase activity in any EBC sample and to develop a method to identify EBC samples containing amylase of pulmonary origin. EBC was collected from 40 volunteers with an EcoScreen condenser. Amylase assays and methods to discriminate between oropharyngeal and pulmonary proteins were tested and developed using matched EBC and saliva samples. Our refined 2-chloro-4-nitrophenyl-α-D-maltotriosid (CNP-G3) assay was 40-fold more sensitive than the most sensitive commercial assay and allowed detection of amylase activity in 30 µl of EBC. We developed a dot-blot assay which allowed detection of salivary protein in saliva diluted up to 150 000-fold. By plotting amylase activity against staining intensity we identified a few EBC samples with high amylase activity which were aligned with diluted saliva. We believe that EBC samples aligned with diluted saliva contain amylase activity introduced during EBC collection and that all other EBC samples contain amylase activity of pulmonary origin and are basically free of oropharyngeal protein contamination.

  9. Clinical evaluation of amylase-creatinine clearance ratio and amylase isoenzyme clearance in chronic renal failure.

    PubMed

    Maeda, M; Otsuki, M; Okano, K; Yamasaki, T; Baba, S

    1981-01-01

    Amylase-creatinine clearance ratio (ACCR) and amylase isoenzyme clearance were determined simultaneously in patients with chronic renal failure. ACCR in patients with compensated renal failure (3.5 +/- 0.4%) was not significantly different from normals (2.6 +/- 0.2%), while that in patients with non-compensated renal failure (6.7 +/- 0.4%) was significantly higher than that in normals. Clearance ratio of pancreatic isoamylase (Amylase-1) relative to creatinine clearance (CAmy . 1/Ccr) in patients with both compensated (5.9 +/- 1.0%) and non-compensated (6.8 +/- 0.4%) renal failure was as high as that in patients with acute pancreatitis (6.6 +/- 0.5%). On the other hand, clearance ratio of salivary isoamylase (Amylase-3) relative to creatinine clearance (CAmy . 3/CCr) in patients with compensated renal failure (1.5 +/- 0.3%) was almost the same as that in normals (2.1 +/- 0.1%), while that in patients with non-compensated renal failure was 5.9 +/- 0.7%, which was significantly higher than that in normals. The present study revealed that elevated ACCR in patients with severely impaired renal function was due to the increase of the clearance ratio for both pancreatic and salivary amylase. These facts suggested that glomerular permeability and tubular reabsorption for pancreatic and salivary amylase might play an important role on ACCR in patients with severely impaired renal function.

  10. Influence of amylase assay technique on renal clearance of amylase-creatinine ratio.

    PubMed

    Levitt, M D; Johnson, S G; Ellis, C J; Engel, R R

    1977-06-01

    The influence of amylase assay technique on the renal amylase/creatinine clearance measurement was determined by analysis of serum and urine specimens obtained from 10 normal subjects. CAm/CCr averaged 2.19 +/- 0.18% with a saccharogenic technique, 1.52 +/- 0.2% with an iodometric technique, and 0.80 +/- 0.08% with a chromogenic technique. Each of these values differed significantly (P less than 0.05) from the other two. Recovery studies were carried out by adding partially purified human salivary or pancreatic amylase to human newborn serum or urine (which contain minimal endogenous amylase). Equal amylase activity was recovered from serum and urine by the saccharogenic technique whereas recovery from urine was less than 50% of that from serum using the iodometric and chromogenic techniques. The accuracy of the chromogenic technique is markedly improved by the addition of albumin to the urine assay system. Although it appears that only the saccharogenic method provides an accurate estimate of CAm/CCr, each assay technique distinguished the elevated CAm/CCr of patients with pancreatitis from the normal range established for that technique. Accurate clinical interpretation of CAm/CCr measurment requires knowledge of the amylase assay technique used.

  11. Clinical evaluation of amylase-creatinine clearance ratio and amylase isoenzyme clearance in chronic renal failure.

    PubMed

    Maeda, M; Otsuki, M; Okano, K; Yamasaki, T; Baba, S

    1981-01-01

    Amylase-creatinine clearance ratio (ACCR) and amylase isoenzyme clearance were determined simultaneously in patients with chronic renal failure. ACCR in patients with compensated renal failure (3.5 +/- 0.4%) was not significantly different from normals (2.6 +/- 0.2%), while that in patients with non-compensated renal failure (6.7 +/- 0.4%) was significantly higher than that in normals. Clearance ratio of pancreatic isoamylase (Amylase-1) relative to creatinine clearance (CAmy . 1/Ccr) in patients with both compensated (5.9 +/- 1.0%) and non-compensated (6.8 +/- 0.4%) renal failure was as high as that in patients with acute pancreatitis (6.6 +/- 0.5%). On the other hand, clearance ratio of salivary isoamylase (Amylase-3) relative to creatinine clearance (CAmy . 3/CCr) in patients with compensated renal failure (1.5 +/- 0.3%) was almost the same as that in normals (2.1 +/- 0.1%), while that in patients with non-compensated renal failure was 5.9 +/- 0.7%, which was significantly higher than that in normals. The present study revealed that elevated ACCR in patients with severely impaired renal function was due to the increase of the clearance ratio for both pancreatic and salivary amylase. These facts suggested that glomerular permeability and tubular reabsorption for pancreatic and salivary amylase might play an important role on ACCR in patients with severely impaired renal function. PMID:6167484

  12. Clinical use of amylase clearance and isoamylase measurements.

    PubMed

    Levitt, M D

    1979-07-01

    Isoamylase determinations and measurements of the ratio of the renal clearance of amylase relative to creatinine (CAm/CCr) were employed in an attempt to improve the diagnostic accuracy of the standard amylase measurement. An elevated CAm/CCr reflects defective proximal tubular reabsorption of amylase which occurs in virtually all patients with clear-cut acute pancreatitis. However, other conditions that apparently are associated with acute defective tubular function, such as burns and diabetic acidosis, may cause an elevated ratio. Thus, elevations of CAm/CCr cannot be considered to be specific for acute pancreatitis. Pancreatic isoamylase represents, on the average, about 33% of the normal serum amylase activity, whereas about 66% is salivary-type isoamylase. Isoamylase measurements are useful in determining whether an elevated value for serum amylase activity is of pancreatic origin. However, this measurement is not useful for determining whether patients with normal serum amylase activity have pancreatitis.

  13. Segments of amino acid sequence similarity in beta-amylases.

    PubMed

    Friedberg, F; Rhodes, C

    1988-01-01

    In alpha-amylases from animals, plants and bacteria and in beta-amylases from plants and bacteria a number of segments exhibit amino acid sequence similarity specific to the alpha or to the beta type, respectively. In the case of the beta-amylases the similar sequence regions are extensive and they are disrupted only by short interspersed dissimilar regions. Close to the C terminus, however, no such sequence similarity exist. PMID:2464171

  14. Serum amylase determinations and amylase to creatinine clearance ratios in patients with chronic renal insufficiency.

    PubMed

    Tedesco, F J; Harter, H R; Alpers, D H

    1976-10-01

    Patients with severe chronic renal failure may have significant hyperamylasemia in the absence of clinical symptoms or signs of acute pancreatitis. Amylase to creatinine clearance (CA/CC) ratios were usually elevated in patients with chronic renal failure and were not helpful in evaluating the possibility of acute pancreatitis. The mean amylase to creatinine clearance ratio for the controls with normal renal function was 1.24 +/- 0.13. In patients with chronic renal failure, it was 3.17 +/- 0.42 (P less than 0.001). Serum amylase isoenzyme patterns revealed no difference in salivary to pancreatic isoenzyme ratios between normals (1.04 +/- 0.12) and patients with severe renal insufficiency without evidence of pancreatic disease (1.07 +/- 0.13). The isoenzymes were helpful in excluding the diagnosis of pancreatic in 1 renal failure patient whose hyperamylasemia was primarily salivary in origin and in confirming the diagnosis in another who had only a pancreatic band.

  15. Amylase-creatinine clearance ratios and serum amylase isoenzymes in moderate renal insufficiency.

    PubMed

    Banks, P A; Sidi, S; Gelman, M L; Lee, K H; Warshaw, A L

    1979-12-01

    Both the amylase-creatinine clearance ratio (normal 1.55%) and proportion of pancreatic isoamylase in serum (normal 41.0%) increase in acute pancreatitis, and are therefore useful measurements to support that diagnosis. Whether renal insufficiency interferes with the accuracy and specificity of these tests has been debated. Our study indicates that even moderate renal insufficiency (creatinine clearance 30.5 ml/minute) raises the amylase-creatinine clearance ratio (3.23%) close enough to values characteristic of acute pancreatitis (4.41%) to cause potential diagnostic confusion. The fraction of pancreatic isoamylase in serum is also increased (69.9%), but not to the levels of acute pancreatitis (91.0%). We therefore caution against the use of the amylase-creatinine clearance ratio for the diagnosis of acute pancreatitis in patients with moderate renal insufficiency.

  16. Variation in amylase activities in radish (Raphanus sativus) cultivars.

    PubMed

    Hara, Masakazu; Ito, Fumio; Asai, Tatsuo; Kuboi, Toru

    2009-09-01

    The radish (Raphanus sativus) is a root vegetable of the Brassicaceae family which shows amylolytic activity in the taproot. However, there is little information about differences in these amylolytic activities among radish cultivars. We analyzed the amylase activities and starch contents of 7 kinds of radish cultivars. The Koshin cultivar showed the highest amylase activity, with a level approximately 6 times higher than that of the Sobutori cultivar, which had the lowest. Cultivars with higher amylase activities showed higher starch contents. These results suggest that there are intraspecies variations in amylolytic activities in radishes, and positive correlations between amylase activity and starch content.

  17. Thermal adaptation of α-amylases: a review.

    PubMed

    Hiteshi, Kalpana; Gupta, Reena

    2014-11-01

    The temperature adaptation of α-amylase can be gained by different adjustments in protein structure with consecutive effects on the stability and flexibility of the protein. In this review, meso, thermo and cold-active α-amylases have been compared with respect to their structure and intramolecular interactions. With decrease in temperature, the number of ionic interactions also decreases, leading to greater flexibility of proteins. It has also been observed that the proline and arginine content is higher in thermophilic amylases as compared to meso and psychrophilic amylases, increasing the rigidity and structural stability of protein molecule.

  18. Functional significance of amylase polymorphism in Drosophila melanogaster. III. Ontogeny of amylase and some alpha-glucosidases.

    PubMed

    Hoorn, A J; Scharloo, W

    1980-02-01

    Changes in amylase (E.C. 3.2.1.1), maltase (E.C. 3.2.1.20), sucrase, and PNPGase activities in relation to changes in wet weight and protein content were studied during the development of larvae and adult flies from two strains of Drosophila melanogaster, homozygous for different amylase alleles. All alpha-glucosidase activities increase exponentially during a large part of larval development, parallel to the increase in weight, and drop at the end of the third instar. Amylase activity of the Amy1 strain follows the same pattern. In contrast, amylase activity of the Amy4,6 strain continues its exponential increase longer. In the third larval instar amylase activity in the Amy4,6 strain becomes much higher than in the Amy1 strain. During the first hours of adult life amylase activity of the two strains does not differ. Then Amy4,6 activity starts to rise and becomes much higher (4-5 times) than Amy1 amylase activity, which remains approximately constant. All adult enzyme activities are much higher than in larvae. Comparison of enzyme activity of amylase and alpha-glucosidases in larvae and adults confirms that differences in amylase activities can become important only when starch is a limiting factor in the food.

  19. Optimization of Amylase Application in Raw Sugar Manufacture. Part I: Characterization of Commercial Alpha-Amylases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there have been warnings by some U.S. refineries that there may be a penalty for high starch concentrations in raw sugar if starch control is not improved. Most commercial amylases used by the U.S. sugar industry to control starch have intermediate temperature stability (up to 85 de...

  20. a-Amylase activity during pullulan production and a-Amylase gene analyses of Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Aureobasidium pullulans is the source of commercially produced pullulan, a high molecular weight polysaccharide that is used in the manufacture of edible films. It has been proposed that alpha-amylase negatively affects the molecular weight of pullulan in late cultures. Based on a recen...

  1. Distribution of alpha-amylase activity in selected broiler tissues.

    PubMed

    Rodeheaver, D P; Wyatt, R D

    1986-02-01

    In an examination of broiler alpha-amylase, significant variation in the serum enzyme activity level was noted, adult levels were lower than those of young chicks. Analysis of alpha-amylase activity in various body fluids and tissues of 11-day and 7-week-old broilers indicated that the liver cannot be considered a source of alpha-amylase, although there was activity in both liver tissue and bile of 10 units/g wet weight and 35 units/100 ml, respectively. Fluid from the oral cavity had low levels of alpha-amylase activity, less than 100 units/100 ml, which decreased with age, indicating that the salivary glands may synthesize some alpha-amylase but are not a primary source. Sonication of the pancreatic homogenates was found to significantly increase the apparent activity of alpha-amylase 35-fold over unsonicated homogenates. The pancreas was the major source of alpha-amylase with activities ranging from 89 X 10(2) to 445 X 10(2) units/g wet weight. The level of activity increased with age of the bird. The electrophoretic zymograms of serum, liver, and pancreatic homogenates indicate a similar pancreatic origin for the alpha-amylase found in each tissue or fluid.

  2. The Amylase Project: Creating a Classroom of Biotechnologists.

    ERIC Educational Resources Information Center

    Sweeney, Diane

    1998-01-01

    A biotechnologist-turned-teacher introduces a series of laboratory modules incorporating concepts from microbiology, cellular biology, molecular biology, biochemistry, and evolution. The Amylase Project aims to distill the biotechnology process into a few short steps using amylase, the easiest enzyme to detect of those commonly produced by…

  3. Method for using a yeast alpha-amylase promoter

    DOEpatents

    Gao, Johnway; Skeen, Rodney S.; Hooker, Brian S.; Anderson, Daniel B.

    2003-04-22

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  4. Modified chitosan microspheres in non-aggregated amylase immobilization.

    PubMed

    Rana, Medha; Kumari, Amita; Chauhan, Ghanshyam S; Chauhan, Kalpana

    2014-05-01

    Immobilized enzymes are useful as reusable catalysts in industrial processes. In this study, α-amylase was used as a model enzyme to evaluate the propensity of synthesized porous chitosan microspheres as immobilization matrix. Chitosan microspheres were synthesized by grafting and covalent gelation technique using acrylamide (AAm) and glutaraldehyde (GA) as chemical agents, respectively. The synthesized chitosan-cl-poly(AAm) demonstrated amylase immobilization capacity of 350 mg/g. Furthermore, SEM results supported the porous microsphere structure for chitosan-cl-poly(AAm) with non-aggregated amylase immobilization, which accounts for comparable activity of immobilized amylase (3.28 μmol/ml/min) in contrast to free amylase (3.46 μmol/ml/min). The immobilized α-amylase was characterized for optimal pH and temperature activity and showed better resistance to temperature and pH inactivation in contrast to free amylase. The immobilized amylase retained more than 60% of its initial activity when stored at 4°C for 30 days and retained 50% of its initial activity after seven successive repeated-use cycles. In conclusion, the study can be used as base for the immobilization of competent industrial biocatalysts in non-aggregated active structure.

  5. Temperature impacts the multiple attack action of amylases.

    PubMed

    Bijttebier, Annabel; Goesaert, Hans; Delcour, Jan A

    2007-03-01

    The action pattern of several amylases was studied at 35, 50, and 70 degrees C using potato amylose, a soluble (Red Starch) and insoluble (cross-linked amylose) chromophoric substrate. With potato amylose as substrate, Bacillus stearothermophilus alpha-amylase (BStA) and porcine pancreatic alpha-amylase displayed a high degree of multiple attack (DMA, i.e., the number of bonds broken during the lifetime of an enzyme-substrate complex minus one), the fungal alpha-amylase from Aspergillus oryzae a low DMA, and the alpha-amylases from B. licheniformis, Thermoactinomyces vulgaris, B. amyloliquifaciens, and B. subtilis an intermediate DMA. These data are discussed in relation to structural properties of the enzymes. The level of multiple attack (LMA), based on the relation between the drop in iodine binding of amylose and the increase in total reducing value, proved to be a good alternative for DMA measurements. The LMA of the endo-amylases increased with temperature to a degree depending on the amylase. In contrast, BStA showed a decreased LMA when temperature was raised. Furthermore, different enzymes had different activities on Red Starch and cross-linked amylose. Hence, next to the temperature, the action pattern of alpha-amylases is influenced by structural parameters of the starch substrate.

  6. The activity of granulocyte alpha-amylase in acute appendicitis.

    PubMed

    Zakrzewska, I; Gajda, R

    1994-01-01

    The activity of alpha-amylase was measured in isolated granulocytes, serum and urine of 35 patients with acute appendicitis. The measurements were performed before operation and on the 7th day after operation. Slightly increased activity of alpha-amylase was found in the serum and urine of 15 patients. On the 7th day after operation the activity of this enzyme reached normal value. The activity of granulocyte alpha-amylase was elevated in 22 patients. In 2 of them the increased activity still maintained on the 7th day after operation. Positive correlation between the serum and granulocyte alpha-amylase activities was found. These observations allow to conclude that granulocytes are the source of increased alpha-amylase activity in the serum of patients with acute appendicitis.

  7. Flow-injection-type biosensor system for salivary amylase activity.

    PubMed

    Yamaguchi, Masaki; Kanemaru, Masashi; Kanemori, Takahiro; Mizuno, Yasufumi

    2003-05-01

    The authors aim to establish a method that can quantitatively evaluate vital reactions to stress. We have been examining the correlation between stress and salivary amylase activity in order to verify its validity as a stress index. In order to quantify human stress, which changes over time, the relationship between stress and salivary amylase activity must be verified by fast and repeated analysis of salivary amylase activity. Standard biosensors are designed such that the enzyme immobilized on an electrode (enzyme electrode) and the substrate-dependent activity is measured. The reverse approach of measuring the alpha-amylase-dependent activity was adopted. We fabricated an amylase activity analytical system. Maltopentaose was selected as a substrate for alpha-amylase and a flow-injection-type device was used to supply maltopentaose continuously. alpha-Glucosidase, having relatively low enzyme activity, was immobilized on a pre-activated membrane so that it could be enclosed in a pre-column, Glucose oxidase, having higher enzyme activity, was immobilized on a working electrode so that it could function as an amperometric biosensor. A saliva-collecting device was fabricated to make saliva pretreatment unnecessary. As a result, an amylase activity analytical system was fabricated that enabled us to measure salivary amylase activity from 0 to 30 kU/l, with an R(2) value of 0.97. The time-course changes in the salivary amylase activities for 1 week were 5.1%, and the initial sensitivity remained nearly constant. Through this study, we were able to verify the possible development of the amylase activity analytical system.

  8. The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity.

    PubMed

    Zhang, Huiling; Liu, Jun; Hou, Juan; Yao, Ying; Lin, Yuan; Ou, Yongbin; Song, Botao; Xie, Conghua

    2014-09-01

    Potato cold-induced sweetening (CIS) is critical for the postharvest quality of potato tubers. Starch degradation is considered to be one of the key pathways in the CIS process. However, the functions of the genes that encode enzymes related to starch degradation in CIS and the activity regulation of these enzymes have received less attention. A potato amylase inhibitor gene known as SbAI was cloned from the wild potato species Solanum berthaultii. This genetic transformation confirmed that in contrast to the SbAI suppression in CIS-resistant potatoes, overexpressing SbAI in CIS-sensitive potatoes resulted in less amylase activity and a lower rate of starch degradation accompanied by a lower reducing sugar (RS) content in cold-stored tubers. This finding suggested that the SbAI gene may play crucial roles in potato CIS by modulating the amylase activity. Further investigations indicated that pairwise protein-protein interactions occurred between SbAI and α-amylase StAmy23, β-amylases StBAM1 and StBAM9. SbAI could inhibit the activities of both α-amylase and β-amylase in potato tubers primarily by repressing StAmy23 and StBAM1, respectively. These findings provide the first evidence that SbAI is a key regulator of the amylases that confer starch degradation and RS accumulation in cold-stored potato tubers.

  9. Activity and storage of commercial amylases in the 2013 Louisiana grinding season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A current problem in the application of amylases at sugarcane factories is the existence of a wide variation in the activities and activity per unit cost of commercial amylases. The efficiency of amylase action to break down starch in the factory is related to the activity of the amylase used. Until...

  10. The influence of hydrochlorothiazide and tripamide on serum and urinary amylase.

    PubMed

    Conrad, K A; Fagan, T C; Simons, J A

    1988-05-01

    Pancreatitis and asymptomatic elevations of serum amylase have been reported after therapy with thiazide diuretics. In the current study, the effects of hydrochlorothiazide and tripamide treatment on serum and urinary amylase excretion were investigated in 12 hypertensive volunteers. Two patients developed modest elevations of the serum amylase above the normal range after 12 weeks of treatment with hydrochlorothiazide 50 mg daily, but the mean serum amylase did not change. Hydrochlorothiazide did not produce a statistically significant increase in urinary amylase excretion but did reduce the ratio of salivary amylase/creatinine clearance in a two-hour urine collection. Tripamide 10 mg daily had no effect on serum or urinary amylase.

  11. Albumin activation of urinary amylase as determined with the Du Pont aca.

    PubMed

    Garber, C C; Carey, R N

    1978-04-01

    Protein activation of urinary alpha-amylase (EC 3.2.1.1) activity was observed during an evaluation of the Du Pont aca procedure for the determination of urinary alpha-amylase. This activation effect became constant for urinary albumin concentrations exceeding 1.50 g/liter. It is recommended that urinary alpha-amylase be analyzed with sufficient albumin added to maximize this effect. The aca alpha-amylase procedure is compared to an amyloclastic method for both serum and urine analysis. Expected ranges are presented for the aca method for serum and urinary amylase, amylase clearance, and the amylase clearance/creatinine clearance ratio.

  12. Sensitivity of the amylase-creatinine clearance ratio in acute pancreatitis.

    PubMed

    Farrar, W H; Calkins, G

    1978-06-01

    An elevated amylase-creatinine clearance ratio has been established as being highly specific for the diagnosis of acute pancreatitis. In the present study, the sensitivity of this test was compared to that of the serum amylase and the one-hour urinary amylase test in 29 patients with acute pancreatitis. Abnormal elevations of the amylase-creatinine clearance ratio were found less frequently than abnormal elevations of the serum and one-hour urinary amylases. Moreover, abnormal elevations of the amylase-creatinine clearance ratio showed less deviation from normal and values returned to normal sooner than those of the serum and one-hour urinary amylases. When compared to the serum amylase and the one-hour urinary amylase tests, the amylase-creatinine clearance ratio is a relatively insensitive test in patients with acute pancreatitis.

  13. Activity and cellular localization of amylases of rabbit cecal bacteria.

    PubMed

    Sirotek, K; Marounek, M; Suchorská, O

    2006-01-01

    Five 11-week-old rabbits, fed a commercial granulated feed, were slaughtered and cecal starch-degrading bacteria enumerated; total concentration of cultivable bacteria utilizing starch averaged 5.5 x 10(10) CFU/g. The activity and cellular localization of amylases was determined in 9 bacteria identified as Actinomyces israeli (strains AA2 and AD4), Bacteroides spp. (strain AA3), Dichelobacter nodosus (strain AA4), Mitsuokella multiacidus (strain AA6), Eubacterium spp. (strains AA7 and AB2), Clostridium spp. (strains AD1 and AA5). Four strains (AA3, AA4, AA5, AD4) produced extracellular amylases with an activity of 26-35 micromol of reducing sugars per h per mg of protein; in five strains (AA2, AA6, AA7, AB2, AD1) amylases were membrane-bound with an activity of 14-18 micromol of reducing sugars per h per mg of protein. All strains exhibited a low intracellular amylolytic activity. The pH optimum of amylases was 6.8-7.0. In strains producing extracellular amylases a substantial loss of viscosity was observed during incubations of cultivation supernatant with starch, similar to viscosity reduction in starch solutions treated with alpha-amylase; this indicates an endo-type (random cleavage) of extracellular amylase reaction in the bacteria under study. No strain possessed glucoamylase activity.

  14. Drain amylase aids detection of anastomotic leak after esophagectomy

    PubMed Central

    Baker, Erin H.; Hill, Joshua S.; Reames, Mark K.; Symanowski, James; Hurley, Susie C.

    2016-01-01

    Background Anastomotic leak following esophagectomy is associated with significant morbidity and mortality. As hospital length of stay decreases, the timely diagnosis of leak becomes more important. We evaluated CT esophagram, white blood count (WBC), and drain amylase levels in the early detection of anastomotic leak. Methods The diagnostic performance of CT esophagram, drain amylase >800 IU/L, and WBC >12,000/µL within the first 10 days after surgery in predicting leak at any time after esophagectomy was calculated. Results Anastomotic leak occurred in 13 patients (13%). CT esophagram performed within 10 days of surgery diagnosed six of these leaks with a sensitivity of 0.54. Elevation in drain amylase level within 10 days of surgery diagnosed anastomotic leak with a sensitivity of 0.38. When the CT esophagram and drain amylase were combined, the sensitivity rose to 0.69 with a specificity of 0.98. WBC elevation had a sensitivity of 0.92, with a specificity of 0.34. Among 30 patients with normal drain amylase and a normal WBC, one developed an anastomotic leak. Conclusions Drain amylase adds to the sensitivity of CT esophagram in the early detection of anastomotic leak. Selected patients with normal drain amylase levels and normal WBC may be able to safely forgo CT esophagram. PMID:27034784

  15. [Determination of exogenous gamma-amylase residue in honey].

    PubMed

    Fei, Xiaoqing; Wu, Bin; Shen, Chongyu; Zhang, Rui; Ding, Tao; Li, Lihua

    2012-08-01

    A novel method for the determination of exogenous gamma-amylase residue in honey using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) was established. After pre-separation by gel column chromatography, the gamma-amylase in honey samples was separated from the sugars. The gamma-amylase was then used to catalyze maltose into glucose. This enzymatic reaction was under the conditions of 55 degrees C and 0.03 mol/L phosphate buffer solution (pH 4.5) for 48 h. The maltose and glucose in the above enzymatic reaction solution were separated using liquid chromatography. By measuring the content of glucose with isotope ratio mass spectrometry, the gamma-amylase in honey can be determined. The linear range of gamma-amylase was 5 - 200 U/kg with the quantification limit of 5 U/kg. The recoveries were between 89.6% and 108.2% with the relative standard deviations from 3.3% to 4.9%. This method was used to analyze 38 honey and rice syrup samples, and the detection rate of gamma-amylase was 76.3%. To further verify the detection capability of this method, an authentic honey was adulterated with 15% (mass fraction) rice syrup. The gamma-amylase content in this sample was 10.2 U/kg. This method can effectively identify honey adulteration with rice syrups from the perspective of enzymology.

  16. [Determination of exogenous gamma-amylase residue in honey].

    PubMed

    Fei, Xiaoqing; Wu, Bin; Shen, Chongyu; Zhang, Rui; Ding, Tao; Li, Lihua

    2012-08-01

    A novel method for the determination of exogenous gamma-amylase residue in honey using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) was established. After pre-separation by gel column chromatography, the gamma-amylase in honey samples was separated from the sugars. The gamma-amylase was then used to catalyze maltose into glucose. This enzymatic reaction was under the conditions of 55 degrees C and 0.03 mol/L phosphate buffer solution (pH 4.5) for 48 h. The maltose and glucose in the above enzymatic reaction solution were separated using liquid chromatography. By measuring the content of glucose with isotope ratio mass spectrometry, the gamma-amylase in honey can be determined. The linear range of gamma-amylase was 5 - 200 U/kg with the quantification limit of 5 U/kg. The recoveries were between 89.6% and 108.2% with the relative standard deviations from 3.3% to 4.9%. This method was used to analyze 38 honey and rice syrup samples, and the detection rate of gamma-amylase was 76.3%. To further verify the detection capability of this method, an authentic honey was adulterated with 15% (mass fraction) rice syrup. The gamma-amylase content in this sample was 10.2 U/kg. This method can effectively identify honey adulteration with rice syrups from the perspective of enzymology. PMID:23256379

  17. Polymorphism in rice amylases at an early stage of seed germination.

    PubMed

    Mitsunaga, S; Kawakami, O; Numata, T; Yamaguchi, J; Fukui, K; Mitsui, T

    2001-03-01

    A polymorphism in rice amylases at an early stage of seed germination is analyzed by zymogram. In non-glutinous cultivars of rice, alpha-amylase isozymes are mainly confirmed in germinating seeds. However, in glutinous cultivars, beta-amylase isozymes, which are not confirmed in nonglutinous cultivars, make up the major part of the total amylase activity and the expression of alpha-amylases are repressed. PMID:11330685

  18. Characterisation of three starch degrading enzymes: thermostable β-amylase, maltotetraogenic and maltogenic α-amylases.

    PubMed

    Derde, L J; Gomand, S V; Courtin, C M; Delcour, J A

    2012-11-15

    Maltogenic α-amylase from Bacillus stearothermophilus (BStA) is widely used as bread crumb anti-firming enzyme. A maltotetraose-forming α-amylase from Pseudomonas saccharophila (PSA) was recently proposed as alternative, hence the need to compare both exo-acting enzymes with some endo-action component. A purely exo-acting thermostable β-amylase from Clostridium thermosulfurogenes (CTB) was included for reference purposes. Under the experimental conditions used, temperature optima of the enzymes are rather similar (60-65 °C), but temperature stability decreased in the order BStA, PSA and CTB. The action of the enzymes on different substrates and their impact on the rheological behaviour of maize starch suspensions demonstrated that, while CTB acts exclusively through an exo-action mechanism, BStA displayed limited endo-action which became more pronounced at higher temperatures. PSA has more substantial endo-action than BStA, which is rather temperature independent. This is important for their impact in processes such as breadmaking, where temperature is gradually increased.

  19. Extracellular amylase(s) production by fungi Botryodiplodia theobromae and Rhizopus oryzae grown on cassava starch residue.

    PubMed

    Ray, R C

    2004-10-01

    The fungi Botryodiplodia theobromae and Rhizopus oryzae produce extracellular amylase when grown on a liquid medium containing 2% (WN) soluble starch or cassava starch residue(CSR) (as starch equivalent), a waste generated after extraction of starch from cassava, as the sole carbon source. Using CSR as the sole carbon source, the highest amylase activity of 3.25 and 3.8 units (mg, glucose released x ml(-1) x h(-1)) were obtained in shake flask cultures during the late stationary phase of growth of B. theobromae and R. oryzae, respectively. These values were slightly lower than the values obtained using soluble starch as the carbon source. Maximum enzyme synthesis in CSR incorporated medium occurred at the growth temperature of 30 degrees C and pH 6.0. Presence of inorganic NH4+ salts like ammonium acetate and ammonium nitrate in culture medium yielded more amylase than the other nitrogen sources. Amylase(s) production in the controlled environment of a Table-Top glass Jar Fermenter (2-L capacity) was 4.8 and 5.1 units for B. theobromae and R. oryzae, respectively using CSR as the carbon substrate. It is concluded that CSR, a cheap agricultural waste obtained after starch extraction from cassava could replace soluble starch as carbon substrate for commercial production of fungal amylase(s).

  20. Inhibition of Sunn pest, Eurygaster integriceps, α-amylases by α-amylase inhibitors (T-αAI) from Triticale.

    PubMed

    Mehrabadi, Mohammad; Bandani, Ali R; Saadati, Fatemeh

    2010-01-01

    The effect of triticale α-amylases inhibitors on starch hydrolysis catalyzed by the Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) midgut amylases was examined. Biochemical studgawies showed that inhibitors from Triticale (a hybrid of wheat and rye) had inhibitiory effects on E. integriceps α-amylases. The effects of the triticale α-amylase inhibitor (T-αAI) on α-amylase of E. integriceps showed a dose dependent manner of inhibition, e.g. less inhibition of enzyme activity (around 10%) with a lower dose (0.25 mg protein) and high inhibition of enzyme activity (around 80%) when a high dose of inhibitor was used (1.5 mg protein). The enzyme kinetic studies using Michaelis-Menten and Lineweaver-Burk equations showed the K(m) remained constant (0.58%) but the maximum velocity (V(max)) decreased in the presence of a crude extract of Triticale inhibitors, indicating mixed inhibition. The temperature giving 50% inactivation of enzyme (T(50)) during a 30-min incubation at pH 7.0 was 73° C. The maximum inhibitory activity was achieved at 35° C and pH 5.0. Gel assays showed the meaningful inhibition of E. integriceps α-amylases by various concentrations of Triticale inhibitors. Based on the data presented in this study, it could be said that the T-αAI has good inhibitory activity on E. integriceps gut α-amylase.

  1. [Amylases of the fungus Aspergillus flavipes associated with Fucus evanescens].

    PubMed

    Frolova, G M; Sil'chenko, A S; Pivkin, M V; Mikhaĭlov, V V

    2002-01-01

    A promising producer of extracellular amylases, Aspergillus flavipes, was selected from 245 strains of marine fungi. Depending on the conditions of growth, this strain produced diverse amylolytic complexes. When grown on medium containing peptone and yeast extract (pH 7.0), A. flavipes synthesized three forms of amylase, differing in pH optimum (5.5, 6.0, and 7.5). A single form of the enzyme was synthesized either in the absence of peptone from the medium or at the initial pH value of the medium, equal to 8.6. The activity of the isolated amylase forms decreased in the presence of proteolytic enzymes. New, highly stable forms of amylase (with pH optima of 5.5 and 7.5 and maximum activity at 60-80 degrees C) were synthesized in the presence of diisopropyl fluorophosphate, an inhibitor of proteases.

  2. Nanoactivator mediated modifications in thermostable amylase from Bacillus licheniformis.

    PubMed

    Khairnar, Rajendra S; Mahabole, Megha P; Pathak, Anupama P

    2012-12-01

    Gram-positive rod-shaped thermophilic bacteria were isolated using samples collected from terrestrial natural thermal spring located at Unkeshwar (Longitude 78.22 degree East to 78.34 degree East, Latitude 19 degree 34' North to 19 degree 40' North), District Nanded, Maharashtra State, India. The isolates were then cultivated using selective media and identified using culture-dependent techniques. One prominent isolate (UN1) exhibited high temperature stability and remarkable amylase production and was identified as Bacillus licheniformis. Amylase production was carried out in starch media and the enzyme was partially purified and characterized for optimization of pH and temperature. Amylolytic activity of the enzyme was determined. Nanoactivator-mediated modifications were carried out to enhance amylolytic activity of the partially purified amylase. Three-fold increase in catalytic efficiency of amylase was obtained after modification. PMID:23350283

  3. Nanoactivator mediated modifications in thermostable amylase from Bacillus licheniformis.

    PubMed

    Khairnar, Rajendra S; Mahabole, Megha P; Pathak, Anupama P

    2012-12-01

    Gram-positive rod-shaped thermophilic bacteria were isolated using samples collected from terrestrial natural thermal spring located at Unkeshwar (Longitude 78.22 degree East to 78.34 degree East, Latitude 19 degree 34' North to 19 degree 40' North), District Nanded, Maharashtra State, India. The isolates were then cultivated using selective media and identified using culture-dependent techniques. One prominent isolate (UN1) exhibited high temperature stability and remarkable amylase production and was identified as Bacillus licheniformis. Amylase production was carried out in starch media and the enzyme was partially purified and characterized for optimization of pH and temperature. Amylolytic activity of the enzyme was determined. Nanoactivator-mediated modifications were carried out to enhance amylolytic activity of the partially purified amylase. Three-fold increase in catalytic efficiency of amylase was obtained after modification.

  4. Characterization of salivary alpha-amylase binding to Streptococcus sanguis

    SciTech Connect

    Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.; Levine, M.J. )

    1989-09-01

    The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase was the prominent salivary component eluted from S. sanguis. Studies with {sup 125}I-labeled HSMSL or {sup 125}I-labeled HPS also demonstrated a component with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of ({sup 125}I)alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch.

  5. [Purification and characterization of thermostable amylases from two bacterial species].

    PubMed

    Dong, Yongcun; Liu, Yang; Chen, Yuanyuan; Niu, Dandan; Zhang, Liang; Shi, Guiyang; Wang, Zhengxiang

    2008-02-01

    Two thermophilic bacterial isolates, strain 173 and strain 174, with raw starch-digesting activities were selected from thermophilic bacteria growing in hot spring of Tengchong County, Yunnan Province, China. By amplification, sequencing and alignment analysis of 16S ribosomal DNAs, they were identified as members of genus Geobacillus. In shaker flask culture Geobacillus sp. 173 produced 14.5 U/mL amylase and for Geobacillus sp. 174 with 12.9 U/mL. Both amylases were purified by starch absorption-desorption and chromatograph. The amylases from strain 173 and strain 174 purified to about 50 and 29 folds were respectively achieved with an overall yield of 34% and 41%. The maximum gelatinized-starch-digesting activity of the purified amylases were at 70 degrees C and pH 5.0 - 5.5. The high raw-starch-digesting activity of these enzymes were observed at 50 degrees C - 60 degrees C (from strain 173) and 40 degrees C - 60 degrees C (from strain 174). Both enzymes were not sensitive to ions including mental ions (Na+, K+, Mg2+, Ca2+, Mn2+, Zn2+) and others (EDTA, Citrate), but were slightly inhibited by ions such as Co2+, Cu2+ for amylase from strain 173 and Cu2+ for amylase from strain 174. Both enzyme had specificity of starch substrates.

  6. Extracellular Transglucosylase and α-Amylase of Streptococcus equinus1

    PubMed Central

    Boyer, Ernest W.; Hartman, Paul A.

    1971-01-01

    Culture filtrates of Streptococcus equinus 1091 contained α-amylase and transglucosylase. The effects of calcium carbonate, age of inoculum, concentration of maltose, and duration of the fermentation on α-amylase and transglucosylase production were determined. The extracellular α-amylase was purified 48-fold and was free of transglucosylase activity. The α-amylase (amylose substrate) required Cl− for maximum activity; ethylenediaminetetraacetic acid (EDTA) partially inhibited activity, but CaCl2 prevented EDTA inhibition. The temperature optimum was 38 C at pH 7.0, and the pH optimum was 7.0 at 37 C in the presence of CaCl2. Predominant final products of amylose hydrolysis, in order of decreasing prevalence, were maltose, maltotriose, maltotetraose, and glucose. The α-amylase showed no evidence of multiple attack. The extracellular transglucosylase was purified 27-fold, but a small amount of α-amylase remained. Transglucosylase activity (amylose substrate) was not increased in the presence of CaCl2. The temperature optimum was 37 C at pH 6.5, and the pH optimum was 6.0 at 37 C. Carbohydrates that served as acceptors for the transglucosylase to degrade amylose were, in order of decreasing acceptor efficiency: d-glucose, d-mannose, l-sorbose, maltose, sucrose, and trehalose. The extracellular transglucosylase of S. equinus 1091 synthesized higher maltodextrins in the medium when the cells were grown in the presence of maltose. Images PMID:4995651

  7. Some studies of alpha-amylase production using Aspergillus oryzae.

    PubMed

    Esfahanibolandbalaie, Z; Rostami, K; Mirdamadi, S S

    2008-11-15

    The extracellular alpha-amylase production by Aspergillus oryzae was studied in submerged fermentation using an Adlof-Kuhner orbital shaker. The effect of initial pH values in the range of 4 to 7.5 on enzyme production was investigated and initial pH medium of 6.2 +/- 0.1 resulted in enhanced alpha-amylase production. The effect of carbon and nitrogen source and composition was examined and it has been observed that corn starch concentration of 15 g L(-1) has sound effect on enzyme production. The medium containing corn starch, sodium nitrate resulted in considerable higher enzyme production. Further, the yeast extract of 2.5 g L(-1) in the medium produced higher enzyme in view to other organic nitrogen sources. The effect of temperature on alpha-amylase production from 20 to 40 degrees C has been studied and at 35 +/- 1 degrees C higher alpha-amylase has been obtained. The effect of shaker's speed on alpha-amylase production from 50 to 200 rpm was investigated. And at about 180 rpm higher enzyme production has been observed. In the present study, it has been found that glucose has repressing effect on a-amylase production using A. oryzae PTCC5164. PMID:19260332

  8. Elevated amylase creatinine clearance ratio and normal serum amylase levels in chronic relapsing pancreatitis after partial pancreatectomy.

    PubMed

    Cattau, E L; Garcia-Torres, F

    1980-12-01

    A 29-year-old woman admitted for alcohol detoxification five years after a 90% distal pancreatectomy for chronic pancreatitis had abdominal pain similar to that associated with preoperative pancreatitis. Although her clinical course was consistent with recurrent pancreatitis, the serum amylase level remained normal, but the amylase creatinine clearance ratio became elevated and then returned to normal, paralleling her clinical course. The ACCR may be a useful laboratory method in diagnosing chronic recurrent pancreatitis in patients with decreased functional pancreatic tissue.

  9. Changes of serum amylase, its isozyme fractions and amylase-creatinine clearance ratio in dogs with experimentally induced acute pancreatitis.

    PubMed

    Akuzawa, M; Morizono, M; Nagata, K; Hayano, S; Sakamoto, H; Yasuda, N; Okamoto, K; Kawasaki, Y; Deguchi, E

    1994-04-01

    To investigate the diagnostic application of amylase to canine pancreatic diseases, serum amylase activities, its isozyme fractions and amylase-creatinine clearance ratio (ACCR) were analyzed in normal intact dogs and dogs experimentally induced acute pancreatitis. There was no statistic difference between normal male and female dogs. Amylase specific activities in pancreatic tissue extracts were more than 2,300 times higher than that in serum, and were also higher than those in other tissues; parotid and mandibular salivary glands, lung, heart, liver, spleen, duodenum, jejunum, ileum and kidney. Following the chloroform injection into the pancreatic tissue, WBC increased from 6 to 240 hr and serum glucose significantly increased at 72 and 96 hr, and no urine glucose was detected. BUN as well as serum and urine creatinine showed normal levels. ACCR increased until 96 hr without statistic significance. Serum amylase activities increased significantly after 3 hr and its isozyme was separated into 4 fractions (Amy1-Amy4) in contrast to 3 fractions (Amy2-Amy4) in intact dogs. Since this extra Amy1 seen from 1 hr increasing after 6 hr similarly to other 3 fractions, the evaluation of serum amylase and its isozyme fractions was indicated to be useful for the diagnosis of acute pancreatitis in dogs.

  10. Changes of serum amylase, its isozyme fractions and amylase-creatinine clearance ratio in dogs with experimentally induced acute pancreatitis.

    PubMed

    Akuzawa, M; Morizono, M; Nagata, K; Hayano, S; Sakamoto, H; Yasuda, N; Okamoto, K; Kawasaki, Y; Deguchi, E

    1994-04-01

    To investigate the diagnostic application of amylase to canine pancreatic diseases, serum amylase activities, its isozyme fractions and amylase-creatinine clearance ratio (ACCR) were analyzed in normal intact dogs and dogs experimentally induced acute pancreatitis. There was no statistic difference between normal male and female dogs. Amylase specific activities in pancreatic tissue extracts were more than 2,300 times higher than that in serum, and were also higher than those in other tissues; parotid and mandibular salivary glands, lung, heart, liver, spleen, duodenum, jejunum, ileum and kidney. Following the chloroform injection into the pancreatic tissue, WBC increased from 6 to 240 hr and serum glucose significantly increased at 72 and 96 hr, and no urine glucose was detected. BUN as well as serum and urine creatinine showed normal levels. ACCR increased until 96 hr without statistic significance. Serum amylase activities increased significantly after 3 hr and its isozyme was separated into 4 fractions (Amy1-Amy4) in contrast to 3 fractions (Amy2-Amy4) in intact dogs. Since this extra Amy1 seen from 1 hr increasing after 6 hr similarly to other 3 fractions, the evaluation of serum amylase and its isozyme fractions was indicated to be useful for the diagnosis of acute pancreatitis in dogs. PMID:7521216

  11. Activity of wheat alpha-amylase inhibitors towards bruchid alpha-amylases and structural explanation of observed specificities.

    PubMed

    Franco, O L; Rigden, D J; Melo, F R; Bloch, C; Silva, C P; Grossi de Sá, M F

    2000-04-01

    Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Five alpha-amylase inhibitors of the structural 0.19 family were isolated from wheat kernels, and assayed against three insect alpha-amylases and porcine pancreatic alpha-amylase, revealing several intriguing differences in inhibition profiles, even between proteins sharing sequence identity of up to 98%. Inhibition of the enzyme from a commercially important pest, the bean weevil Acanthoscelides obtectus, is observed for the first time. Using the crystal structure of an insect alpha-amylase in complex with a structurally related inhibitor, models were constructed and refined of insect and human alpha-amylases bound to 0.19 inhibitor. Four key questions posed by the differences in biochemical behaviour between the five inhibitors were successfully explained using these models. Residue size and charge, loop lengths, and the conformational effects of a Cys to Pro mutation, were among the factors responsible for observed differences in specificity. The improved structural understanding of the bases for the 0.19 structural family inhibitor specificity reported here may prove useful in the future for the rational design of inhibitors possessing altered inhibition characteristics.

  12. [Alpha-amylase determination in acute pancreatitis: selection of a reference standard].

    PubMed

    Bachmann, C; Colombo, J P; Lorenz, E

    1979-09-01

    It has been investigated which of the amylase determinations agrees most closely with the clinical diagnosis in a group of patients with acute pancreatitis and in a group with other diseases producing amylase elevation. By measuring the amylase in a urine specimen related to its creatinine concentration fewer values within the range of reference in patients with pancreatitis and also fewer falsely elevated values in the second group were observed when compared to amylase in plasma, urinary amylase activity per volume or the amylase/creatinine clearance ratio.

  13. Suitability of control materials in the differential inhibition assay for human pancreatic and salivary amylase.

    PubMed

    O'Donnell, M D; McGeeney, K F

    1983-03-01

    We investigated the behavior of 26 quality-control sera with the inhibitor method for differential amylase (EC 3.2.1.1) assay. We also studied the sensitivity to the wheat-derived inhibitor of pancreatic amylases from 10 different animals in comparison with human pancreatic and salivary amylase. The results indicate that only control materials containing human amylases can be measured accurately. The animal amylases (bovine, equine, porcine) used in many quality control sera are relatively insensitive to the inhibitor as compared with human pancreatic and salivary amylase. PMID:6186414

  14. Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota.

    PubMed

    Yan, Shaomin; Wu, Guang

    2016-02-01

    Amylase is one of the earliest characterized enzymes and has many applications in clinical and industrial settings. In biotechnological industries, the amylase activity is enhanced through modifying amylase structure and through cloning and expressing targeted amylases in different species. It is important to understand how engineered amylases can survive from generation to generation. This study used phylogenetic and statistical approaches to explore general patterns of amylases evolution, including 3118 α-amylases and 280 β-amylases from archaea, eukaryota and bacteria with fully documented taxonomic lineage. First, the phylogenetic tree was created to analyze the evolution of amylases with focus on individual amylases used in biofuel industry. Second, the average pairwise p-distance was computed for each kingdom, phylum, class, order, family and genus, and its diversity implies multi-time and multi-clan evolution. Finally, the variance was further partitioned into inter-clan variance and intra-clan variance for each taxonomic group, and they represent horizontal and vertical gene transfer. Theoretically, the results show a full picture on the evolution of amylases in manners of vertical and horizontal gene transfer, and multi-time and multi-clan evolution as well. Practically, this study provides the information on the surviving chance of desired amylase in a given taxonomic group, which may potentially enhance the successful rate of cloning and expression of amylase gene in different species.

  15. Elevated Gene Copy Number Does Not Always Explain Elevated Amylase Activities in Fishes.

    PubMed

    German, Donovan P; Foti, Dolly M; Heras, Joseph; Amerkhanian, Hooree; Lockwood, Brent L

    2016-01-01

    Amylase activity variation in the guts of several model organisms appears to be explained by amylase gene copy number variation. We tested the hypothesis that amylase gene copy number is always elevated in animals with high amylolytic activity. We therefore sequenced the amylase genes and examined amylase gene copy number in prickleback fishes (family Stichaeidae) with different diets including two species of convergently evolved herbivores with the elevated amylase activity phenotype. We found elevated amylase gene copy number (six haploid copies) with sequence variation among copies in one herbivore (Cebidichthys violaceus) and modest gene copy number (two to three haploid copies) with little sequence variation in the remaining taxa, which included herbivores, omnivores, and a carnivore. Few functional differences in amylase biochemistry were observed, and previous investigations showed similar digestibility among the convergently evolved herbivores with differing amylase genetics. Hence, the phenotype of elevated amylase activity can be achieved by different mechanisms (i.e., elevated expression of fewer genes, increased gene copy number, or expression of more efficient amylase proteins) with similar results. Phylogenetic and comparative genomic analyses of available fish amylase genes show mostly lineage-specific duplication events leading to gene copy number variation, although a whole-genome duplication event or chromosomal translocation may have produced multiple amylase copies in the Ostariophysi, again showing multiple routes to the same result. PMID:27327179

  16. Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota.

    PubMed

    Yan, Shaomin; Wu, Guang

    2016-02-01

    Amylase is one of the earliest characterized enzymes and has many applications in clinical and industrial settings. In biotechnological industries, the amylase activity is enhanced through modifying amylase structure and through cloning and expressing targeted amylases in different species. It is important to understand how engineered amylases can survive from generation to generation. This study used phylogenetic and statistical approaches to explore general patterns of amylases evolution, including 3118 α-amylases and 280 β-amylases from archaea, eukaryota and bacteria with fully documented taxonomic lineage. First, the phylogenetic tree was created to analyze the evolution of amylases with focus on individual amylases used in biofuel industry. Second, the average pairwise p-distance was computed for each kingdom, phylum, class, order, family and genus, and its diversity implies multi-time and multi-clan evolution. Finally, the variance was further partitioned into inter-clan variance and intra-clan variance for each taxonomic group, and they represent horizontal and vertical gene transfer. Theoretically, the results show a full picture on the evolution of amylases in manners of vertical and horizontal gene transfer, and multi-time and multi-clan evolution as well. Practically, this study provides the information on the surviving chance of desired amylase in a given taxonomic group, which may potentially enhance the successful rate of cloning and expression of amylase gene in different species. PMID:26745984

  17. The mechanism of increased renal clearance of amylase in acute pancreatitis.

    PubMed

    Warshaw, A L; Lee, K H

    1976-09-01

    Amylase isoenzymes, separated by polyacrylamide gel electrophoresis, were measures in 25 normal persons (mean amylase to creatinine clearance ratio 3.0%), 15 patients with acute pancreatitis (mean clearance ratio 9.5%, P less than 0.0001), and 6 patients with hyperamylasemia due to common duct stones (mean clearance ratio 4.1%). Two isoamylases (P1, P2) resembling pancreatic isoenzymes and three isoamylases (S1, S2, S3) resembling salivary isoenzymes appeared regularly in normal serum and urine. Salivary amylases predominated in serum, but pancreatic amylases predominated in urine. This finding is consistent with renal clearance of pancreatic amylases exceeding that of salivary amylases under normal conditions. In patients with pancreatitis or common duct stones, essentially all of the increased amylase activity in serum and urine was due to pancreatic isoamylases (P1 and P2) in their normal proportions. No new or altered amylase isoenzymes were detected. The fraction of pancreatic amylases in the serum or urine was identical for the two diseases. Whereas the difference in amylase to creatinine clearance ratios observed between the two groups of patients is not a function of different amylase isoenzymes presented to the kidney, we conclude that the increased amylase clearance in acute pancreatitis is caused by an alteration of renal transfer of amylase, either at the glomerulus or tubule.

  18. Elevated Gene Copy Number Does Not Always Explain Elevated Amylase Activities in Fishes.

    PubMed

    German, Donovan P; Foti, Dolly M; Heras, Joseph; Amerkhanian, Hooree; Lockwood, Brent L

    2016-01-01

    Amylase activity variation in the guts of several model organisms appears to be explained by amylase gene copy number variation. We tested the hypothesis that amylase gene copy number is always elevated in animals with high amylolytic activity. We therefore sequenced the amylase genes and examined amylase gene copy number in prickleback fishes (family Stichaeidae) with different diets including two species of convergently evolved herbivores with the elevated amylase activity phenotype. We found elevated amylase gene copy number (six haploid copies) with sequence variation among copies in one herbivore (Cebidichthys violaceus) and modest gene copy number (two to three haploid copies) with little sequence variation in the remaining taxa, which included herbivores, omnivores, and a carnivore. Few functional differences in amylase biochemistry were observed, and previous investigations showed similar digestibility among the convergently evolved herbivores with differing amylase genetics. Hence, the phenotype of elevated amylase activity can be achieved by different mechanisms (i.e., elevated expression of fewer genes, increased gene copy number, or expression of more efficient amylase proteins) with similar results. Phylogenetic and comparative genomic analyses of available fish amylase genes show mostly lineage-specific duplication events leading to gene copy number variation, although a whole-genome duplication event or chromosomal translocation may have produced multiple amylase copies in the Ostariophysi, again showing multiple routes to the same result.

  19. Amylase:creatinine clearance ratios, serum amylase, and lipase after operations with cardiopulmonary bypass.

    PubMed

    Smith, C R; Schwartz, S I

    1983-09-01

    Forty-two adults who underwent cardiac operations were studied prospectively for evidence of clinical or subclinical pancreatitis. Clinically detectable pancreatitis was not seen. Serum amylase and lipase levels did not change significantly following operation. The amylase:creatinine clearance ratio (ACCR) immediately following operation was abnormally elevated in 31% of the samples obtained, and the mean ACCR increased from 2.08 +/- 1.85% before operation to 6.2% +/- 6.77% (P less than 0.05). An abnormally elevated ACCR was most often associated with a low urine creatinine concentration. The mean urine creatinine level decreased significantly from 78 +/- 53 mg/dl before operation to 38 +/- 49 mg/dl immediately following operation (P less than 0.02), and 73% of the samples obtained at that time had an abnormally low urine creatinine level (P less than 0.01). The abnormalities observed in ACCR and urine creatinine could not be related to any of several variables presumed to reflect the degree of perioperative physiologic stress, nor could they be related to postoperative hemodynamic performance. It was concluded that ACCR rises following cardiac operation because of perioperative changes in renal function, and not as a reflection of subclinical pancreatic injury.

  20. Amylase:creatinine clearance ratios, serum amylase, and lipase after operations with cardiopulmonary bypass.

    PubMed

    Smith, C R; Schwartz, S I

    1983-09-01

    Forty-two adults who underwent cardiac operations were studied prospectively for evidence of clinical or subclinical pancreatitis. Clinically detectable pancreatitis was not seen. Serum amylase and lipase levels did not change significantly following operation. The amylase:creatinine clearance ratio (ACCR) immediately following operation was abnormally elevated in 31% of the samples obtained, and the mean ACCR increased from 2.08 +/- 1.85% before operation to 6.2% +/- 6.77% (P less than 0.05). An abnormally elevated ACCR was most often associated with a low urine creatinine concentration. The mean urine creatinine level decreased significantly from 78 +/- 53 mg/dl before operation to 38 +/- 49 mg/dl immediately following operation (P less than 0.02), and 73% of the samples obtained at that time had an abnormally low urine creatinine level (P less than 0.01). The abnormalities observed in ACCR and urine creatinine could not be related to any of several variables presumed to reflect the degree of perioperative physiologic stress, nor could they be related to postoperative hemodynamic performance. It was concluded that ACCR rises following cardiac operation because of perioperative changes in renal function, and not as a reflection of subclinical pancreatic injury. PMID:6193594

  1. Effect of plant a-amylase inhibitors on sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), alpha-amylase activity.

    PubMed

    Bandani, A R

    2005-01-01

    Plant-insect interaction is a dynamic system, subjected to continual variation and change. In order to reduce insect attack, plants developed different defence mechanisms including chemical and physical barriers such as the induction of defensive proteins, volatiles that attract predators of the insect herbivores and secondary metabolites. Proteinaceous inhibitors of alpha-amylase and proteases are widely distributed in cereals, legumes and some other plants. Because of the possible importance of these inhibitors in plant physiology and animal nutrition, extensive research has been conducted on their properties and biological effects. Sunn pest like other insect pests of wheat lives on a polysaccharide-rich diet and depends to a large extent on effectiveness of their alpha-amylases for survival, a-amylase (1-4-alpha-D-glucan glucanohydrolase) hydrolyses starch, and related polysaccharides by randomly cleaving internal alpha-1,4-glucosidic linkages and has a major role in the utilization of polysaccharides. The enzyme inhibitors act on key insect gut digestive hydrolyses, alpha-amylase. Several kinds of a-amylase inhibitors present in seeds and vegetative organs of plant, act to regulate number of phytophagous insects. Therefore, the aim of the current study is to study cereal proteinaceous inhibitors of insect digestive enzymes and their potential use as resistance factors against Sunn pest. The proteinaceous inhibitors from different cereal species including barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) were extracted and tested in in vitro condition against Sunn pest alpha-amylase. Extraction was made with NaCl (0.15 M) at room temperature and further purification was done by ammonium sulphate precipitation. It was found that fractions obtained from barley had more inhibitory effect on amylase activity of Sunn pest than fractions obtained from wheat. Knowledge gained through these studies can be used to select resistant plant against insect pest.

  2. Effects of a new microbial α-amylase inhibitor protein on Helicoverpa armigera larvae.

    PubMed

    Zeng, Fanrong; Wang, Xiaojing; Cui, Jinjie; Ma, Yan; Li, Qiannan

    2013-03-01

    A new microbial α-amylase inhibitor gene was cloned and characterized. The encoded, recombinant, α-amylase inhibitor protein was induced and expressed by isopropyl β-d-1-thiogalactopyranoside (IPTG) in Escherichia coli M15 cells. The effects of the α-amylase inhibitor protein on Helicoverpa armigera larvae were studied. Compared to the control, the weight of H. armigera larvae fed the diet with recombinant α-amylase inhibitor protein added at a concentration of 20 μg/g was reduced by 49.8%. The total soluble protein of H. armigera larvae fed the diet with the α-amylase inhibitor protein added was also reduced by 36.8% compared to the control. The recombinant α-amylase inhibitor protein showed inhibition activity against α-amylase of H. armigera. These results suggested that this α-amylase inhibitor protein may be a promising bioinsecticide candidate for controlling H. armigera.

  3. Computer-aided subsite mapping of α-amylases.

    PubMed

    Mótyán, János A; Gyémánt, Gyöngyi; Harangi, János; Bagossi, Péter

    2011-02-15

    Subsite mapping is a crucial procedure in the characterization of α-amylases (EC 3.2.1.1), which are extensively used in starch-based industries and in diagnosis of pancreatic and salivary glands disorders. A computer-aided method has been developed for subsite mapping of α-amylases, which substitutes the difficult, expensive, and time-consuming experimental determination of action patterns to crystal structures based energy calculations. Interaction energies between enzymes and carbohydrate substrates were calculated after short energy minimization by a molecular mechanics program. A training set of wild type and mutant amylases with known experimental action patterns of 13 enzymes of wide range of origin was used to set up the procedure. Calculations for training set resulted in good correlation in case of subsite binding energies (r(2)=0.827-0.929) and bond cleavage frequencies (r(2)=0.727-0.835). A set of eight novel barley amylase 1 mutants was used to test our model. Subsite binding energies were predicted with r(2)=0.502 correlation coefficient, while bond cleavage frequency prediction resulted in r(2)=0.538. Our computer-aided procedure may supplement the experimental subsite mapping methods to predict and understand characteristic features of α-amylases.

  4. Alpha-amylase from the Hyperthermophilic Archaeon Thermococcus thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, E. C. M. J.; Pusey, M. L.; Ng, M. L.; Garriott, O. K.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments such as hot springs. The ability of survival at extreme conditions has rendered enzymes from extremophiles to be of interest in industrial applications. One approach to producing these extremozymes entails the expression of the enzyme-encoding gene in a mesophilic host such as E.coli. This method has been employed in the effort to produce an alpha-amylase from a hyperthermophile (an organism that displays optimal growth above 80 C) isolated from a hydrothermal vent at the Rainbow vent site in the Atlantic Ocean. alpha-amylases catalyze the hydrolysis of starch to produce smaller sugars and constitute a class of industrial enzymes having approximately 25% of the enzyme market. One application for thermostable alpha-amylases is the starch liquefaction process in which starch is converted into fructose and glucose syrups. The a-amylase encoding gene from the hyperthermophile Thermococcus thioreducens was cloned and sequenced, revealing high similarity with other archaeal hyperthermophilic a-amylases. The gene encoding the mature protein was expressed in E.coli. Initial characterization of this enzyme has revealed an optimal amylolytic activity between 85-90 C and around pH 5.3-6.0.

  5. The amylase creatinine clearance ratio in acute pancreatitis.

    PubMed

    Murray, W R; Mackay, C

    1977-03-01

    One hundred and twenty-two patients have been studied in order to evaluate the usefulness of the amylase creatinine clearance ratio (ACCR) as a simple diagnostic test for acute pancreatitis. Sixteen out of 17 patients with acute pancreatitis had significant elevations in ACCR; in only 10 of these 17 cases was the serum amylase greater than 1200iu/l. The mean ACCR was within the normal range in control patients, in patients with chronic gastro-intestinal disease and in patients with acute abdominal conditions excluding pancreatitis; however, the mean serum amylase was significantly greater in patients with acute abdominal conditions than in the control group (P less than 0-05). The ACCR remained significantly elevated in patients with acute pancreatitis for longer than either serum or urine amylase values. The findings of the study suggest that the amylase creatinine clearance ratio is a simple yet reliable diagnostic test which could be used when screening patients suspected of having acute pancreatitis.

  6. The amylase creatinine clearance ratio in acute pancreatitis.

    PubMed

    Murray, W R; Mackay, C

    1977-03-01

    One hundred and twenty-two patients have been studied in order to evaluate the usefulness of the amylase creatinine clearance ratio (ACCR) as a simple diagnostic test for acute pancreatitis. Sixteen out of 17 patients with acute pancreatitis had significant elevations in ACCR; in only 10 of these 17 cases was the serum amylase greater than 1200iu/l. The mean ACCR was within the normal range in control patients, in patients with chronic gastro-intestinal disease and in patients with acute abdominal conditions excluding pancreatitis; however, the mean serum amylase was significantly greater in patients with acute abdominal conditions than in the control group (P less than 0-05). The ACCR remained significantly elevated in patients with acute pancreatitis for longer than either serum or urine amylase values. The findings of the study suggest that the amylase creatinine clearance ratio is a simple yet reliable diagnostic test which could be used when screening patients suspected of having acute pancreatitis. PMID:890263

  7. An ELISA method for the identification of salivary amylase.

    PubMed

    Quarino, Lawrence; Dang, Qui; Hartmann, John; Moynihan, Nora

    2005-07-01

    An ELISA method for the detection of salivary amylase in dried stains using a monoclonal anti-human salivary amylase antibody was developed. Studies demonstrated the assay to be sensitive down to 0.0002 Sigma units and showed a linear response between absorbance and salivary amylase activity between 0.002 and 0.2 units. The assay showed no cross reactivity with either commercially purchased human pancreatic or bacterial amylase. Sample studies utilizing swabs from several human body fluids showed that 100% of all saliva containing swabs (sixteen of sixteen) and 13% of non-saliva human body fluid swabs (eight of sixty-three) showed a net absorbance with the method. Of these eight non-saliva swabs yielding a net absorbance, none exceeded a salivary amylase activity of 0.003 units. In contrast, only three of the sixteen saliva-containing swabs (swabs produced from saliva diluted 1:5, 1:6, and 1:10, respectively) showed an activity below 0.2 units. Of these swabs, the 1:100 dilution showed the lowest activity (0.048). This value is still more than ten times that of the non-saliva containing swab with the highest activity.

  8. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    NASA Astrophysics Data System (ADS)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  9. [Sensitivity and specificity of blood amylase, amylase and creatinine clearance ratio and urinary amylase/urinary creatinine ratio in the diagnosis of acute pancreatitis].

    PubMed

    Ligny, G; Meunier, J C; Hayard, P; Ligny, C; Van Cauter, J

    1987-12-01

    The sensitivity and specificity of amylasemia, the ratios of amylase/creatinine clearance and amylasuria/creatininuria were determined in four groups of patients: a control group (n = 43), patients with acute pancreatitis detected on computed tomography (n = 30, 25 cases of alcoholic pancreatitis), patients with an acute surgical abdomen without pancreatitis (n = 25), and patients with renal failure (n = 20). Sensitivity was defined for the acute pancreatitis group and specificity for the other groups. When amylasemia was greater than 20 UI/dl and the amylasuria/creatininuria ratio greater than 100, sensitivity was 98 per cent. The specificity of these two results in patients with an acute surgical abdomen was 98 per cent. When the ratio amylase/creatinine clearance ratio was greater than 4 sensitivity was 73 per cent and specificity in patients with acute surgical abdomen was 75 per cent. These two values were lower than those of the two preceding tests (p less than 0.01). Sensitivity of the association of an amylasemia greater than 13 UI/dl (m + 2SD) with a clearance ratio greater than 4 was 73 per cent. The amylase/creatinine clearance ratio did not seem to be reliable since its change was delayed with respect to the increase of amylasemia and amylasuria. This ratio has a poor specificity as it increased when the clearance of creatinine decreased in the group with an acute surgical abdomen associated with functional or organic renal failure. In these two groups, the correlation between the amylase/creatinine clearance ratio and creatininemia was significant. This suggested that the clearance of creatinine fell more rapidly than the clearance of amylase as renal failure increased.

  10. Production of Amylase in Liquid Culture by a Strain of Aspergillus oryzae

    PubMed Central

    Kundu, A. K.; Das, S.

    1970-01-01

    The effect of different media and pH on the formation of amylase by Aspergillus oryzae EI 212 is described. Depending upon the composition of the medium and growth conditions, the fungus was found to secrete α- or β-amylase, or both. Some of the properties of the partially purified α-amylase were found to be different from α-amylases from other sources. PMID:5418942

  11. Purification of alpha-amylases using magnetic alginate beads.

    PubMed

    Teotia, S; Gupta, M N

    2001-03-01

    Magnetic alginate beads were used to purify alpha-amylases from porcine pancreas, starchzyme, BAN 240L (a commercial purification from Bacillus subtilis), and wheat germ. The beads bound a significant level of alpha-amylase activity from porcine pancreas, BAN 240L, and wheat germ. In each case, the enzyme activity could be eluted by using 1.0 M maltose, a known competitive inhibitor of alpha-amylase. In the case of BAN 240L, 3.6-fold purification with 72% recovery of activity was observed. In the case of wheat germ enzyme, starting from the crude extract, 48-fold purification with 70% activity recovery was observed. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis also indicated considerable purification in the latter case.

  12. Enhancement of the amylase-creatinine clearance ratio in pregnancy.

    PubMed

    Naeije, R; Neuray, F; Van Melsen, A; Delcourt, A

    1979-01-01

    The renal clearance of amylase, expressed as a proportion of simultaneous creatinine clearance (Cam/-Ccr), was determined in 131 women in various stages of pregnancy. No abnormal serum levels of amylase were found. A moderate but significant increase in Cam/Ccr occurred during the last 15 weeks of pregnancy. Possible causes for this change were investigated in smaller groups of subjects. No increase in rapidly cleared isoamylase could be detected. No modification in renal tubular handling of protein could be evidenced, as assessed by measurements of the renal clearance of beta 2 microglobulin, expressed as a proportion of simultaneous creatinine clearance. An incrased glomerular permeability to amylase probably accounts for elevated Cam/Ccr in pregnancy.

  13. Immobilization of α-Amylase onto Luffa operculata Fibers

    PubMed Central

    Morais, Ricardo R.; Pascoal, Aline M.; Caramori, Samantha S.; Lopes, Flavio M.; Fernandes, Kátia F.

    2013-01-01

    A commercial amylase (amy) was immobilized by adsorption onto Luffa operculata fibers (LOFs). The derivative LOF-amy presented capacity to hydrolyze starch continuously and repeatedly for over three weeks, preserving more than 80% of the initial activity. This system hydrolyzed more than 97% of starch during 5 min, at room temperature. LOF-amy was capable to hydrolyze starch from different sources, such as maize (93.96%), wheat (85.24%), and cassava (79.03%). A semi-industrial scale reactor containing LOF-amy was prepared and showed the same yield of the laboratory-scale system. After five cycles of reuse, the LOF-amy reactor preserved over 80% of the initial amylase activity. Additionally, the LOF-amy was capable to operate as a kitchen grease trap component in a real situation during 30 days, preserving 30% of their initial amylase activity. PMID:23606948

  14. Electrophoretically unique amylases in rat livers: phylogenic and ontogenic study on the mammalian liver.

    PubMed

    Koyama, Iwao; Komine, Shin-Ichi; Hokari, Shigeru; Matsunaga, Toshiyuki; Nakamura, Koh-Ich; Komoda, Tsugikazu

    2002-09-01

    Liver amylase activity in rodents was assayed with Blue Starch as substrate, and found to be higher than in humans or pigs. Based on the result of concanavalin A affinity chromatography, we found that the sugar moieties of amylase molecules increased in parallel with amylase activity in the tested mammals. However, the amounts of amylase proteins determined by Western bloting with anti-human salivary-type antibody as the probe, were similar to the levels in mammalian livers. Moreover, a similar expression of amylase mRNA was also detected in the mammalian livers by a reverse transcriptional-polymerase chain reaction using primers specific for the human salivary and/or pancreatic amylase complementary DNA (cDNA) sequences. The amylase was detected at the catalytic activity, protein molecule and mRNA levels in rat liver at all ages from fetus to adult. Salivary-type liver amylase activity increased up to one week after birth, and was maintained at the adult level thereafter. However, based on the results of the electrophoretic mobility test, livers with accelerated amylase activity, e.g., at 2-4 weeks after birth or during liver regeneration after partial hepatectomy, were also found to express an amylase electrophoretical identical to pancreatic-type amylase in addition to salivary-type activity. These results suggest that the liver may express an etopic amylase in a certain condition.

  15. Elevated amylase creatinine clearance ratio and normal serum amylase levels in chronic relapsing pancreatitis after partial pancreatectomy.

    PubMed

    Cattau, E L; Garcia-Torres, F

    1980-12-01

    A 29-year-old woman admitted for alcohol detoxification five years after a 90% distal pancreatectomy for chronic pancreatitis had abdominal pain similar to that associated with preoperative pancreatitis. Although her clinical course was consistent with recurrent pancreatitis, the serum amylase level remained normal, but the amylase creatinine clearance ratio became elevated and then returned to normal, paralleling her clinical course. The ACCR may be a useful laboratory method in diagnosing chronic recurrent pancreatitis in patients with decreased functional pancreatic tissue. PMID:6160621

  16. Extraction, Purification and Characterization of Thermostable, Alkaline Tolerant α-Amylase from Bacillus cereus.

    PubMed

    Annamalai, N; Thavasi, R; Vijayalakshmi, S; Balasubramanian, T

    2011-10-01

    Thermostable alkaline α-amylase producing bacterium Bacilluscereus strain isolated from Cuddalore harbour waters grew maximally in both shake flask and fermentor, and produced α-amylase at 35°C, pH 7.5 and 1.0% of substrate concentrations. α-Amylase activity was maximum at 65°C, pH 8.0, 89% of its activity was sustained even at pH 11.0. Added with MnCl(2,) α-amylase activity showed 4% increase but it was inhibited by EDTA. The molecular weight of the purified α-amylase is 42 kDa.

  17. Effect of pancreatic stimulation on serum and urine amylase isoenzymes in man.

    PubMed

    Derugin, N; MacGregor, I L

    1979-10-01

    Alpha amylase of pancreatic origin is cleared by the kidney more rapidly than the salivary isoamylase. To determine whether alterations in the ratio of pancreatic to salivary amylase in sera caused alterations in over all renal clearance, the clearance of amylase was measured before and after the exocrine pancreas was stimulated with a prolonged intravenous infusion of secretin plus cholecystokinin. Serum and urine samples collected prior to and following stimulation were analyzed for amylase activity and creatinine concentration. Amylase isoenzymes were separated using isoelectric focusing. Over all renal clearance of amylase and of the separated amylase isoenzymes were calculated as a percentage of the clearance of creatinine. The hormone infusion was associated with an increase in serum and urine amylase activities, this increase being mainly accounted for by pancreatic amylase. The renal clearance of the salivary and pancreatic isoamylases was not altered by the hormone infusion but the over all amylase clearance by the kidney rose from 2.31 +/- 0.74 to 3.42 +/- 1.46% of creatinine clearance. In some cases the renal clearance of amylase following stimulation entered the range considered diagnostic for acute pancreatitis.

  18. Macroamylasemia with a markedly increased amylase clearance ratio in a patient with renal cell carcinoma.

    PubMed

    Kazmierczak, S C; Van Lente, F; McHugh, A M; Katzin, W E

    1988-02-01

    We report hyperamylasemia, macroamylasemia, and a markedly increased amylase clearance/creatinine clearance ratio in a patient with renal cell carcinoma. Serum amylase activity was characterized as macroamylase by gel exclusion chromatography. Electrophoretic separation revealed an atypical band of amylase, migrating anodal to the S2 control fraction. Electrophoresis of urine revealed the presence of both S1 and S2 fractions, but not the atypical band found in serum. Quantification of the salivary- and pancreatic-type amylase fractions showed amylase in urine to be 100% salivary. Immunofixation disclosed the macroamylase to consist of an immune complex between amylase and IgA-lambda antibody. Binding-capacity studies showed that the serum immunoglobulin was present in excess and could bind 46% and 49% additional S-type amylase activity derived from saliva and the patient's urine, respectively. The amylase clearance/creatinine clearance ratio was markedly supranormal (0.134), unexpected in a patient with macroamylasemia. A biopsy specimen of the renal cell tumor was found to contain significant salivary-type amylase activity. These results suggest production of amylase by tumor tissue in the renal carcinoma and secretion of S-type amylase into the patient's urine. Evidently, macroamylase should be confirmed by gel exclusion chromatography.

  19. Screening of polysaccharides for preparation of α-amylase conjugate to enhance stability and storage life.

    PubMed

    Jadhav, Swati B; Singhal, Rekha S

    2013-02-15

    Nine polysaccharides differing in structure and chemical nature were screened for their ability to conjugate with α-amylase by covalent binding for enhancing the thermal and pH stability of α-amylase. Among these polysaccharides, agar, dextran, pectin and xanthan showed better results but dextran stood out among all the polysaccharide for providing both thermal and pH stability to α-amylase. α-Amylase conjugated with agar, dextran, pectin and xanthan showed antimicrobial property with added preservative (0.2% sodium benzoate) in liquid formulation of α-amylase challenged with Bacillus subtilis and Escherichia coli. Dextran was the only polysaccharide which showed significant reduction of microbial growth of challenged organisms and aerobic flora without any preservative added. Aerobic flora could flourish well in the liquid α-amylase, but low temperature (4 °C), dextran, and preservative showed synergistic effect in efficiently increasing the storage life of liquid α-amylase.

  20. Purification and characterization of camel (Camelus dromedarius) milk amylase.

    PubMed

    El-Fakharany, Esmail M; Serour, Ehab A; Abdelrahman, Aref M; Haroun, Bakry M; Redwan, El-Rashdy M

    2009-01-01

    Skimmed camel milk contains 59,900 U/L amylase, which is 39,363 times less than serum and plasma amylase. Camel milk beta-amylase was purified as a 61 KDa band using DEAE-Sepharose and Sephadex G-100 and yielded 561 U/mg. The optimum working pH, Km and temperature were 7.0, 13.6 mg/Lstarch, 30-40 degrees C, respectively. The enzyme has been shown higher affinity toward amylose and soluble starch than glycogen, amylopectin, dextrin, or pullulan. Magnesium chloride, CaCl(2) and NaCl activated the amylase, while EDTA and EGTA decreased its activity. While its activity was increased in the presence of Triton X-100 and Triton X-114. Phenylmethanesulfonyl fluoride did not show any effect on enzyme activity. However, the enzyme activity was inhibited by urea, SDS, DTNB, iodoacetamide, N-ethylmalimide, aprotinin, and trypsin inhibitor. It worked on starch to yield a maltose. Scanning electron microscope images demonstrated a nano-degrading ability on starch granules from various sources (potato, corn, cassava, and rice). PMID:19291574

  1. Wheat grain preharvest sprouting and late maturity alpha-amylase.

    PubMed

    Mares, Daryl J; Mrva, Kolumbina

    2014-12-01

    Preharvest sprouting (PHS) and late maturity α-amylase (LMA) are the two major causes of unacceptably high levels of α-amylase in ripe wheat grain. High α-amylase activity in harvested grain results in substantially lower prices for wheat growers and at least in the case of PHS, is associated with adverse effects on the quality of a range of end-products and loss of viability during storage. The high levels of α-amylase are reflected in low falling number, the internationally accepted measure for grain receival and trade. Given the significant losses that can occur, elimination of these defects remains a major focus for wheat breeding programs in many parts of the world. In addition, the genetic, biochemical and molecular mechanisms involved in the control of PHS and LMA as well as the interactions with environmental factors have attracted a sustained research interest. PHS and LMA are independent, genetically controlled traits that are strongly influenced by the environment, where the effects of particular environmental factors vary substantially depending on the stage of grain development and ripening. This review is a summary and an assessment of results of recent research on these important grain quality defects.

  2. Optimization of alpha-amylase application in raw sugar manufacture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there have been warnings by some U.S. refineries that there may be a penalty for high starch concentration sin raw sugar if starch control is not improved. Most commercial alpha-amylases used by the U.S. sugar industry to control starch have intermediate temperature stability (up to...

  3. Wheat grain preharvest sprouting and late maturity alpha-amylase.

    PubMed

    Mares, Daryl J; Mrva, Kolumbina

    2014-12-01

    Preharvest sprouting (PHS) and late maturity α-amylase (LMA) are the two major causes of unacceptably high levels of α-amylase in ripe wheat grain. High α-amylase activity in harvested grain results in substantially lower prices for wheat growers and at least in the case of PHS, is associated with adverse effects on the quality of a range of end-products and loss of viability during storage. The high levels of α-amylase are reflected in low falling number, the internationally accepted measure for grain receival and trade. Given the significant losses that can occur, elimination of these defects remains a major focus for wheat breeding programs in many parts of the world. In addition, the genetic, biochemical and molecular mechanisms involved in the control of PHS and LMA as well as the interactions with environmental factors have attracted a sustained research interest. PHS and LMA are independent, genetically controlled traits that are strongly influenced by the environment, where the effects of particular environmental factors vary substantially depending on the stage of grain development and ripening. This review is a summary and an assessment of results of recent research on these important grain quality defects. PMID:25257145

  4. Allele-dependent barley grain beta-amylase activity.

    PubMed

    Erkkilä, M J; Leah, R; Ahokas, H; Cameron-Mills, V

    1998-06-01

    The wild ancestor of cultivated barley, Hordeum vulgare subsp. spontaneum (K. Koch) A. & Gr. (H. spontaneum), is a source of wide genetic diversity, including traits that are important for malting quality. A high beta-amylase trait was previously identified in H. spontaneum strains from Israel, and transferred into the backcross progeny of a cross with the domesticated barley cv Adorra. We have used Southern-blot analysis and beta-amy1 gene characterization to demonstrate that the high beta-amylase trait in the backcross line is co-inherited with the beta-amy1 gene from the H. spontaneum parent. We have analyzed the beta-amy1 gene organization in various domesticated and wild-type barley strains and identified three distinct beta-amy1 alleles. Two of these beta-amy1 alleles were present in modern barley, one of which was specifically found in good malting barley cultivars. The third allele, linked with high grain beta-amylase activity, was found only in a H. spontaneum strain from the Judean foothills in Israel. The sequences of three isolated beta-amy1 alleles are compared. The involvement of specific intron III sequences, in particular a 126-bp palindromic insertion, in the allele-dependent expression of beta-amylase activity in barley grain is proposed.

  5. Allele-Dependent Barley Grain β-Amylase Activity1

    PubMed Central

    Erkkilä, Maria J.; Leah, Robert; Ahokas, Hannu; Cameron-Mills, Verena

    1998-01-01

    The wild ancestor of cultivated barley, Hordeum vulgare subsp. spontaneum (K. Koch) A. & Gr. (H. spontaneum), is a source of wide genetic diversity, including traits that are important for malting quality. A high β-amylase trait was previously identified in H. spontaneum strains from Israel, and transferred into the backcross progeny of a cross with the domesticated barley cv Adorra. We have used Southern-blot analysis and β-amy1 gene characterization to demonstrate that the high β-amylase trait in the backcross line is co-inherited with the β-amy1 gene from the H. spontaneum parent. We have analyzed the β-amy1 gene organization in various domesticated and wild-type barley strains and identified three distinct β-amy1 alleles. Two of these β-amy1 alleles were present in modern barley, one of which was specifically found in good malting barley cultivars. The third allele, linked with high grain β-amylase activity, was found only in a H. spontaneum strain from the Judean foothills in Israel. The sequences of three isolated β-amy1 alleles are compared. The involvement of specific intron III sequences, in particular a 126-bp palindromic insertion, in the allele-dependent expression of β-amylase activity in barley grain is proposed. PMID:9625721

  6. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Amylase test system. 862.1070 Section 862.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  7. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Amylase test system. 862.1070 Section 862.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  8. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Amylase test system. 862.1070 Section 862.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  9. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Amylase test system. 862.1070 Section 862.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  10. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Amylase test system. 862.1070 Section 862.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  11. Characterization of the native form and the carboxy-terminally truncated halotolerant form of α-amylases from Bacillus subtilis strain FP-133.

    PubMed

    Takenaka, Shinji; Miyatake, Ayaka; Tanaka, Kosei; Kuntiya, Ampin; Techapun, Charin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Watanabe, Masanori; Yoshida, Ken-ichi

    2015-06-01

    Two amylases, amylase I and amylase II from Bacillus subtilis strain FP-133, were purified to homogeneity and characterized. Their stabilities toward temperature, pH, and organic solvents, and their substrate specificities toward polysaccharides and oligosaccharides were similar. Under moderately high salt conditions, both amylases were more stable than commercial B. licheniformis amylase, and amylase I retained higher amylase activity than amylase II. The N-terminal amino acid sequence, genomic southern blot analysis, and MALDI-TOFF-MS analysis indicated that the halotolerant amylase I was produced by limited carboxy-terminal truncation of the amylase II peptide. The deduced amino acid sequence of amylase II was >95% identical to that of previously reported B. subtilis α-amylases, but their carboxy-terminal truncation points differed. Three recombinant amylases--full-length amylase corresponding to amylase II, an artificially truncated amylase corresponding to amylase I, and an amylase with a larger artificial C-terminal truncation--were expressed in B. subtilis. The artificially truncated recombinant amylases had the same high amylase activity as amylase I under moderately high salt conditions. Sequence comparisons indicated that an increased ratio of Asp/Glu residues in the enzyme may be one factor responsible for increasing halotolerance.

  12. Characterization of a Hydrophobic Amylase Inhibitor from Corn (Zea mays) Seeds with Activity Against Amylase from Fusarium verticillioides.

    PubMed

    Figueira, Edson L Z; Hirooka, Elisa Y; Mendiola-Olaya, Elizabeth; Blanco-Labra, Alejandro

    2003-08-01

    ABSTRACT A hydrophobic 19.7-kDa amylase inhibitor (AI) was purified from corn kernels by 95% ethanol extraction and anionic exchange chromatography. The AI has an isoelectric point of 3.6 and was very stable at different pH values and high temperatures, maintaining 47.6% activity after heating to 94 degrees C for 60 min. Amino acid analysis indicated high valine, leucine, glycine, alanine, and glutamic acid/glutamine content, and especially high valine content (41.2 mol%). This inhibitor is not a glycoprotein. It required 30-min preincubation to maximize complex enzyme-inhibitor formation when the amylase from Fusarium verticillioides was tested. The optimal pH of interaction was 6.5. It showed broad-spectrum activity including the following amylases: human saliva, porcine pancreas, F. verticillioides, as well as those from some insects of agricultural importance (Acanthoscelides obtectus, Zabrotes subfasciatus, Sitophilus zeamais, and Prostephanus truncatus). This novel hydrophobic protein not only inhibited the amylase from F. verticillioides but also decreased the conidia germination. Thus, this protein represents an approach to decrease the production of fumonisin in corn, either by using it as a molecular marker to detect fungal resistance or through genetic engineering. PMID:18943857

  13. Expression of the human amylase genes: Recent origin of a salivary amylase promoter from an actin pseudogene

    SciTech Connect

    Samuelson, L.C.; Gumucio, D.L.; Meisler, M.H. ); Wiebauer, K. )

    1988-09-12

    The human genes encoding salivary amylase (AMY1) and pancreatic amylase (AMY2) are nearly identical in structure and sequence. The authors have used ribonuclease protection studies to identify the functional gene copies in this multigene family. Riboprobes derived from each gene were hybridized to RNA from human pancreas, parotid and liver. The sizes of the protected fragments demonstrated that both pancreatic genes are expressed in pancreas. One of the pancreatic genes, AMY2B, is also transcribed at a low level in liver, but not from the promoter used in pancreas. AMY1 transcripts were detected in parotid, but not in pancreas or liver. Unexpected fragments protected by liver RNA led to the discovery that the 5{prime} regions of the five human amylase genes contain a processed {gamma}-actin pseudogene. The promoter and start site for transcription of AMY1 are recently derived from the 3{prime} untranslated region of {gamma}-actin. In addition, insertion of an endogenous retrovirus has interrupted the {gamma}-actin pseudogene in four of the five amylase genes.

  14. Characterization of a Hydrophobic Amylase Inhibitor from Corn (Zea mays) Seeds with Activity Against Amylase from Fusarium verticillioides.

    PubMed

    Figueira, Edson L Z; Hirooka, Elisa Y; Mendiola-Olaya, Elizabeth; Blanco-Labra, Alejandro

    2003-08-01

    ABSTRACT A hydrophobic 19.7-kDa amylase inhibitor (AI) was purified from corn kernels by 95% ethanol extraction and anionic exchange chromatography. The AI has an isoelectric point of 3.6 and was very stable at different pH values and high temperatures, maintaining 47.6% activity after heating to 94 degrees C for 60 min. Amino acid analysis indicated high valine, leucine, glycine, alanine, and glutamic acid/glutamine content, and especially high valine content (41.2 mol%). This inhibitor is not a glycoprotein. It required 30-min preincubation to maximize complex enzyme-inhibitor formation when the amylase from Fusarium verticillioides was tested. The optimal pH of interaction was 6.5. It showed broad-spectrum activity including the following amylases: human saliva, porcine pancreas, F. verticillioides, as well as those from some insects of agricultural importance (Acanthoscelides obtectus, Zabrotes subfasciatus, Sitophilus zeamais, and Prostephanus truncatus). This novel hydrophobic protein not only inhibited the amylase from F. verticillioides but also decreased the conidia germination. Thus, this protein represents an approach to decrease the production of fumonisin in corn, either by using it as a molecular marker to detect fungal resistance or through genetic engineering.

  15. Digestive alpha-amylases from Tecia solanivora larvae (Lepidoptera: Gelechiidae): response to pH, temperature and plant amylase inhibitors.

    PubMed

    Valencia-Jiménez, A; Arboleda, J W; López Avila, A; Grossi-de-Sá, M F

    2008-12-01

    The biochemical properties of the digestive alpha-amylase from Tecia solanivora larvae, an important and invasive insect pest of potato (Solanum tuberosum), were studied. This insect has three major digestive alpha-amylases with isoelectric points 5.30, 5.70 and 5.98, respectively, which were separated using native and isoelectric focusing gels. The alpha-amylase activity has an optimum pH between 7.0 and 10.0 with a peak at pH 9.0. The enzymes are stable when heated to 50 degrees C and were inhibited by proteinaceous inhibitors from Phaseolus coccineus (70% inhibition) and P. vulgaris cv. Radical (87% inhibition) at pH 6.0. The inhibitors present in an amaranth hybrid inhibited 80% of the activity at pH 9.0. The results show that the alpha-amylase inhibitor from amaranth seeds may be a better candidate to make genetically-modified potatoes resistant to this insect than inhibitors from common bean seeds.

  16. Alpha-amylase inhibitor, CS-1036 binds to serum amylase in a concentration-dependent and saturable manner.

    PubMed

    Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi

    2014-03-01

    (2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats.

  17. Amylase-producing lung cancer: case report and review of the literature.

    PubMed

    Katayama, S; Ikeuchi, M; Kanazawa, Y; Akanuma, Y; Kosaka, K; Takeuchi, T; Nakayama, T

    1981-12-01

    A case of hyperamylasemia with lung cancer is described. Macroamylasemia was excluded by a normal amylase/creatinine clearance ratio and by a sedimentation constant obtained by sucrose density gradient centrifugation. Positive immunofluorescent staining of tumor cells with a specific antibody against human salivary amylase and significant amylase activity in the primary tumor and metastases support the hypothesis of independent production of amylase by the lung tumor. Cellulose--acetate membrane electrophoresis demonstrated three bands of amylase activity. The major component corresponded to normal salivary amylase in electrophoretic mobility, isoelectric point and molecular size. The minor bands, one of which occupied about 10% of the total amylase activity in serum, urine and tissue homogenates, demonstrated a lower electrophoretic mobility and a more acidic isoelectric point. Gel filtration and electrophoresis disclosed that these minor bands were derived from an amylase isozyme with a larger molecular size than that of normal salivary amylase. The results suggest ectopic tumor production of heterogenous amylase isozymes, with the larger form being secreted into the circulation.

  18. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants.

    PubMed

    Kotkar, Hemlata M; Sarate, Priya J; Tamhane, Vaijayanti A; Gupta, Vidya S; Giri, Ashok P

    2009-08-01

    Midgut digestive amylases and proteinases of Helicoverpa armigera, a polyphagous and devastating insect pest of economic importance have been studied. We also identified the potential of a sorghum amylase inhibitor against H. armigera midgut amylase. Amylase activities were detected in all the larval instars, pupae, moths and eggs; early instars had lower amylase levels which steadily increased up to the sixth larval instar. Qualitative and quantitative differences in midgut amylases of H. armigera upon feeding on natural and artificial diets were evident. Natural diets were categorized as one or more members of legumes, vegetables, flowers and cereals belonging to different plant families. Amylase activity and isoform patterns varied depending on host plant and/or artificial diet. Artificial diet-fed H. armigera larvae had comparatively high amylase activity and several unique amylase isoforms. Correlation of amylase and proteinase activities of H. armigera with the protein and carbohydrate content of various diets suggested that H. armigera regulates the levels of these digestive enzymes in response to macromolecular composition of the diet. These adjustments in the digestive enzymes of H. armigera may be to obtain better nourishment from the diet and avoid toxicity due to nutritional imbalance. H. armigera, a generalist feeder experiences a great degree of nutritional heterogeneity in its diet. An investigation of the differences in enzyme levels in response to macronutrient balance and imbalance highlight their importance in insect nutrition.

  19. Potential of the bean alpha-amylase inhibitor alpha-AI-1 to inhibit alpha-amylase activity in true bugs(Hemiptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    True bugs (Hemiptera) are an important pest complex not controlled by Bt crops. An alternative source of resistance includes inhibitors of digestive enzymes. aAI-1, an a-amylase inhibitor from the common bean, has been shown to inhibit a-amylases of bruchid pests of grain legumes. Here we quantify t...

  20. Characterization of the Activity and Stability of Amylase from Saliva and Detergent: Laboratory Practicals for Studying the Activity and Stability of Amylase from Saliva and Various Commercial Detergents

    ERIC Educational Resources Information Center

    Valls, Cristina; Rojas, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2012-01-01

    This article presents two integrated laboratory exercises intended to show students the role of [alpha]-amylases (AAMYs) in saliva and detergents. These laboratory practicals are based on the determination of the enzymatic activity of amylase from saliva and different detergents using the Phadebas test (quantitative) and the Lugol test…

  1. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut.

    PubMed

    Elpidina, E N; Vinokurov, K S; Gromenko, V A; Rudenskaya, Y A; Dunaevsky, Y E; Zhuzhikov, D P

    2001-12-01

    Compartmentalization of proteinases, amylases, and pH in the midgut of Nauphoeta cinerea Oliv. (Blattoptera:Blaberidae) was studied in order to understand the organization of protein and starch digestion. Total proteolytic activity measured with azocasein was maximal at pH 11.5 both in anterior (AM) and posterior (PM) halves of the midgut, but the bulk of activity (67%) was found in PM. Total AM and PM preparations were fractionated on a Sephadex G-50 column and further analysed by means of activity electrophoresis and specific inhibitors and activators. The major activity in PM was classified as an unusual SH-dependent proteinase with M(r) 24,000 and pH optimum with synthetic substrate BApNA at 10.0. The enzyme was 43-fold activated in the presence of 1 mM DTT, insensitive to synthetic inhibitors of serine (PMSF, TLCK, TPCK) and cysteine (IAA, E-64) proteinases, strongly inhibited by STI, and displayed four active bands on zymograms. In PM, activities of trypsin-like, chymotrypsin-like, subtilisin-like, and cysteine proteinases were observed. Aspartic and metalloproteinases were not detected. In AM, activity of unusual SH-dependent proteinase also dominated and activity of chymotrypsin-like proteinase was observed, but their levels were much lower than in PM. Distribution of amylase activity, exhibiting an optimum at pH 6.0, was quite the opposite. The major part of it (67%) was located in AM. Treatment of amylase preparation with proteinases from AM and PM reduced amylase activity twofold. pH of the midgut contents was 6.0-7.2 in AM, 6.4-7.6 in the first and 8.8-9.3 in the second halves of PM. Thus, pH in AM is in good agreement with the optimal pH of amylase, located in this compartment, but the activity of proteinases, including the ability to degrade amylase, in such an environment is low. Active proteolysis takes place in the second half of PM, where pH of the gut is close to the optimal pH of proteinases.

  2. Formation of Amylase in Disks of Bean Hypocotyl 1

    PubMed Central

    Clum, Harold H.

    1967-01-01

    Amylase activity has been studied in disks of hypocotyl of Phaseolus vulgaris L. Although some activity is present in untreated hypocotyls, it is greatly increased when disks are incubated 4 days in water containing kinetin (5 mg/liter). Gibberellic acid and 2,4-dichlorophenoxyacetic acid do not increase this activity appreciably. The increased activity can be shown by subsequently incubating the disks on starch agar plates and testing these with iodine-potassium iodide solution, or by using the original incubation medium and extracts of the disks in reactions with soluble starch. A variety of tests favor the assumption that the enzyme is α-amylase and that it is synthesized during the incubation period. PMID:16656539

  3. Study of fluorescence quenching of Barley α-amylase

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Shanthi, B.; Bhuvanapriya, T.

    2012-05-01

    The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (Kg &Ke) have been calculated. From the calculated binding constants (Kg &Ke) the free energy changes for the ground (ΔGg) and excited (ΔGe) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.

  4. [Amylase-creatinine clearance ratios in burned patients (author's transl)].

    PubMed

    Minaire, Y; Marichy, J; Forichon, J; Motin, J

    1978-09-01

    The amylase/creatinine clearance ratio (ACCR) has been examined every 3 days, in 34 burned patients during the 20 days following the accident. This ratio was often abnormal since it was found increased at least on one occasion, in 75% of these patients, to be compared with 23 and 13% for amylase in serum and urine respectively. In another group of 9 burned patients, the ACCR was monitored for time-period between 10 to 52 days. It was observed that a high frequency in increased ACCR was associated with a fatal outcome. Finally simultaneous measurements of ACCR and of the beta2 microglobulin/creatinine clearance ratio (MCCR) showed that increased ACCR were statistically associated with increased MCCR suggesting a decreased renal tubular reabsorption of low molecular weight proteins in these burned patients.

  5. [Amylase-creatinine clearance ratios in burned patients (author's transl)].

    PubMed

    Minaire, Y; Marichy, J; Forichon, J; Motin, J

    1978-09-01

    The amylase/creatinine clearance ratio (ACCR) has been examined every 3 days, in 34 burned patients during the 20 days following the accident. This ratio was often abnormal since it was found increased at least on one occasion, in 75% of these patients, to be compared with 23 and 13% for amylase in serum and urine respectively. In another group of 9 burned patients, the ACCR was monitored for time-period between 10 to 52 days. It was observed that a high frequency in increased ACCR was associated with a fatal outcome. Finally simultaneous measurements of ACCR and of the beta2 microglobulin/creatinine clearance ratio (MCCR) showed that increased ACCR were statistically associated with increased MCCR suggesting a decreased renal tubular reabsorption of low molecular weight proteins in these burned patients. PMID:360162

  6. Identification of alpha amylase inhibitors from Syzygium cumini Linn seeds.

    PubMed

    Karthic, K; Kirthiram, K S; Sadasivam, S; Thayumanavan, B

    2008-09-01

    The aqueous extract of S. cumini or Eugenia jambolana seeds and Psidium guajava leaves showed higher inhibition against the porcine pancreatic alpha-amylase among the medicinal plants studied. The alpha-amylase inhibitors from S. cumini seeds were separated from the extract by preparative thin layer chromatography into fractions with different Rf values. The fraction with Rf value between 0.285 and 0.43, which showed maximum inhibitory activity, was eluted and analyzed through LC-MS. The compounds identified from the seed extract ofS. cumini were betulinic acid and 3,5,7,4'-tetrahydroxy flavanone, which were reported earlier from S. formosanum and other plants. Dixon plot showed that the inhibition was noncompetitive in nature. PMID:18949899

  7. Stabilization of α-amylase by using anionic surfactant during the immobilization process

    NASA Astrophysics Data System (ADS)

    El-Batal, A. I.; Atia, K. S.; Eid, M.

    2005-10-01

    This work describes the entrapment of α-amylase into butylacrylate-acrylic acid copolymer (BuA/AAc) using γ irradiation. The effect of an anionic surfactant (AOT), the reuse efficiency, and kinetic behavior of immobilized α-amylase were studied. Covering of α-amylase with bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) made the enzyme more stable than the uncovered form. The hydrolytic activity of the pre-coated immobilized α-amylase was increased below the critical micelle concentration (cmc) (10 mmol/L). The results showed an increase in the relative activity with increase in the degree of hydration. The pre-coated immobilized α-amylase showed a higher k/K and lower activation energy compared to the free and uncoated-immobilized preparation, respectively. The results suggest that the immobilization of α-amylase is a potentially useful approach for commercial starch hydrolysis in two-phase systems.

  8. Optimization of Amylase Production from B. amyloliquefaciens (MTCC 1270) Using Solid State Fermentation.

    PubMed

    Saha, Koel; Maity, Sujan; Roy, Sudeshna; Pahan, Koustav; Pathak, Rishija; Majumdar, Susmita; Gupta, Suvroma

    2014-01-01

    Demand for microbial amylase production persists because of its immense importance in wide spectrum industries. The present work has been initiated with a goal of optimization of solid state fermentation condition for amylase using agroindustrial waste and microbial strain like B. amyloliquefaciens (MTCC 1270). In an aim to improve the productivity of amylase, fermentation has been carried out in the presence of calcium (Ca(+2)), Nitrate (NO3 (-)), and chloride ions (Cl(-)) as well as in the presence of D-inositol and mannitol. Amylase needs calcium ion for the preservation of its structure, activity and stability that proves beneficial also for amylase production using solid state fermentation. The inclusion of ions and sugars in the SSF media is promising which can be explained by the protection offered by them against thermal decay of amylase at various incubation periods at 37°C.

  9. Imunohistochemical Localization of alpha-Amylase in Cotyledons of Vigna mungo Seedlings.

    PubMed

    Tomura, H; Koshiba, T; Minamikawa, T

    1985-12-01

    We studied the localization of alpha-amylase with indirect fluorescence microscopy in transversely sectioned cotyledons of Vigna mungo seedlings. Tissue sections were fixed in periodate-lysine-paraformaldehyde and treated with anti-alpha-amylase immunoglobulin G followed by fluorescein isothiocyanate labeled goat anti-rabbit immunoglobulin G. alpha-Amylase appeared in the cells farthest from vascular bundles on the second day of growth and appeared gradually closer to the vascular bundles as growth progressed. The pattern of alpha-amylase appearance was similar in detached cotyledons, indicating that attachment of the embryonic axis has no effect on this pattern. However, in attached cotyledons, alpha-amylase disappeared from the regions where starch grains had been digested, but in detached cotyledons there was no disappearance of alpha-amylase, and digestion was slower than in intact cotyledons.

  10. Imunohistochemical Localization of α-Amylase in Cotyledons of Vigna mungo Seedlings 1

    PubMed Central

    Tomura, Hideaki; Koshiba, Tomokazu; Minamikawa, Takao

    1985-01-01

    We studied the localization of α-amylase with indirect fluorescence microscopy in transversely sectioned cotyledons of Vigna mungo seedlings. Tissue sections were fixed in periodate-lysine-paraformaldehyde and treated with anti-α-amylase immunoglobulin G followed by fluorescein isothiocyanate labeled goat anti-rabbit immunoglobulin G. α-Amylase appeared in the cells farthest from vascular bundles on the second day of growth and appeared gradually closer to the vascular bundles as growth progressed. The pattern of α-amylase appearance was similar in detached cotyledons, indicating that attachment of the embryonic axis has no effect on this pattern. However, in attached cotyledons, α-amylase disappeared from the regions where starch grains had been digested, but in detached cotyledons there was no disappearance of α-amylase, and digestion was slower than in intact cotyledons. Images Fig. 1 Fig. 2 Fig. 3 PMID:16664548

  11. Complete starch hydrolysis by the synergistic action of amylase and glucoamylase: impact of calcium ions.

    PubMed

    Presečki, Ana Vrsalović; Blažević, Zvjezdana Findrik; Vasić-Rački, Durđa

    2013-11-01

    Starch hydrolysis was performed by the synergistic action of amylase and glucoamylase. For that purpose glucoamylase (Dextrozyme) and two amylases (Liquozyme and Termamyl) in different combinations were investigated. Experiments were carried out in the repetitive- and fed-batch modes at 65 °C and pH 5.5 with and without the addition of Ca(2+) ions. 100 % conversion of starch to glucose was achieved in batch experiments. Calcium ions significantly enhanced stability of the amylase Termamyl. The intensity of synergism between amylase Termamyl and glucoamylase Dextrozyme was higher than in the experiments carried out with amylase Liquozyme and Dextrozyme. Mathematical model of the complete reaction system was developed. Using the model, a possible explanation of the synergism between the amylase and glucoamylase was provided.

  12. Digestive amylase of a primitive animal, the scorpion: purification and biochemical characterization.

    PubMed

    Louati, Hanen; Zouari, Nacim; Fendri, Ahmed; Gargouri, Youssef

    2010-04-01

    Scorpion, one of the most ancient invertebrates was chosen, as a model of a primitive animal, to purify and characterize an amylase located in the hepatopancreas. The scorpion digestive amylase (SDA) was purified. Pure SDA was obtained after heat treatment followed by ammonium sulfate fractionation and three steps of chromatography. The pure amylase is not glycosylated and has a molecular mass of 59,101 Da determined by MALDI-TOF MS analysis. The maximal amylase activity was measured at pH 7.0 and 50 degrees C, in the presence of Ca2+ and using potato starch as substrate. The enzyme was able to hydrolyze also, glycogen and amylose. The 23 NH2-terminal amino acid SDA residues were sequenced. The sequence obtained is similar to those of mammalian and avian pancreatic amylases. Nevertheless, polyclonal antibodies directed against SDA failed to recognize classical digestive amylases like the porcine pancreatic one.

  13. Early changes of urinary amylase isoenzymes in diabetes mellitus.

    PubMed

    Recio, F; Villamil, F; Recio, C; Ferrer, C

    1992-10-01

    The altered excretion of isoenzymes of amylase in urine was used as an early indicator of the loss of electric charges in the glomerular basement membrane, in 202 juvenile-onset insulin-dependent diabetic patients, compared with the pattern of excretion in 51 normal subjects matched for age and sex. Diabetics showed an increased excretion of salivary amylase. The salivary to pancreatic amylase ratio in urine (S/P ratio) was always below 1 in control subjects, but was elevated in 33.2% of diabetics, although microalbuminuria was present in only 26.2% of diabetic patients. The concentrations of other proteins in urine were within the reference ranges in nearly all patients, indicating that the kidney was not seriously affected. The increased salivary amylase excretion was not due to changes in the plasma concentration of any of the isoamylases, but to a real increase in excretion, as its fractional excretion in relation to creatinine clearance was clearly increased (1.0 +/- 0.7 vs. 1.52 +/- 1.99, p < 0.05), and the ratio of their clearances was also increased (0.35 +/- 0.18 vs. 0.49 +/- 0.61, p > 0.05). Moreover, the prevalence of altered S/P ratios was higher than the prevalence of microalbuminuria (36.6% vs. 18.8% of patients in the first decade of evolution of insulin-dependent diabetes mellitus). Altered S/P ratios were most prevalent in the first decade, whereas microalbuminuria was most prevalent in the second decade of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Anaerobic Threshold and Salivary α-amylase during Incremental Exercise.

    PubMed

    Akizuki, Kazunori; Yazaki, Syouichirou; Echizenya, Yuki; Ohashi, Yukari

    2014-07-01

    [Purpose] The purpose of this study was to clarify the validity of salivary α-amylase as a method of quickly estimating anaerobic threshold and to establish the relationship between salivary α-amylase and double-product breakpoint in order to create a way to adjust exercise intensity to a safe and effective range. [Subjects and Methods] Eleven healthy young adults performed an incremental exercise test using a cycle ergometer. During the incremental exercise test, oxygen consumption, carbon dioxide production, and ventilatory equivalent were measured using a breath-by-breath gas analyzer. Systolic blood pressure and heart rate were measured to calculate the double product, from which double-product breakpoint was determined. Salivary α-amylase was measured to calculate the salivary threshold. [Results] One-way ANOVA revealed no significant differences among workloads at the anaerobic threshold, double-product breakpoint, and salivary threshold. Significant correlations were found between anaerobic threshold and salivary threshold and between anaerobic threshold and double-product breakpoint. [Conclusion] As a method for estimating anaerobic threshold, salivary threshold was as good as or better than determination of double-product breakpoint because the correlation between anaerobic threshold and salivary threshold was higher than the correlation between anaerobic threshold and double-product breakpoint. Therefore, salivary threshold is a useful index of anaerobic threshold during an incremental workload.

  15. Kinetic studies of amylase and biomass production by Calvatia gigantea

    SciTech Connect

    Kekos, D.; Macris, B.J.

    1987-01-01

    Production of alpha-amylase (alpha-4, glucan 4-glucanohydrolase, EC 3.2.1.1) by microorganisms has been practiced for many years in small and large scale operations and the literature on this enzyme is voluminous. Aspergillus niger and Aspergillus oryzae have been reported as the main fungal species used for commercial production of the enzyme. On the other hand, large volumes of low-cost agricultural products such as acorn (the perisperm-free dry seed contains approximately 60% starch) are wasted in many countries and provide a challenge to biotechnology to efficiently utilize these rich sources of starch for the production of high added value products like enzymes. C. gigantea is an edible puffball excreting high levels of alpha-amylase when cultivated on different sources of starch containing elevated quantities of toxic tannic compounds. This fungus has been employed for the production of microbial protein from wastes and acorns containing high levels of toxic tannic compounds. The same fungus was also reported to grow on both hydrolyzable and condensed tannins as sole carbon sources. The present work was undertaken to investigate certain kinetic characteristics of alpha-amylase and biomass production by C. gigantea grown on soluble and acorn starch in a lab fermenter. (Refs. 18).

  16. Biosynthesis of α-Amylase in Vigna mungo Cotyledon 1

    PubMed Central

    Tomura, Hideaki; Koshiba, Tomokazu

    1985-01-01

    In vitro translation of RNA extracted from Vigna mungo cotyledons showed that α-amylase is synthesized as a polypeptide with a molecular mass of 45,000, while cotyledons contain a form of α-amylase with a molecular mass of 43,000. To find out whether the 45,000 molecular mass polypeptide is a precursor to the 43,000 found in vivo, the cell free translation systems were supplemented with canine microsomal membrane; when mRNA was translated in the wheat germ system supplemented with canine microsomes, the 45,000 molecular mass form was not processed to a smaller form but the precursor form was partly processed in the membrane-supplemented reticulocyte lysate system. When V. mungo RNA was translated in Xenopus oocyte system, only the smaller form (molecular mass 43,000) was detected. Involvement of contranslational glycosylation in the maturating process of the α-amylase was ruled out because there was no effect of tunicamycin, and the polypeptide was resistant to endo-β-H or endo-β-D digestion. We interpret these results to mean that the 45,000 molecular mass form is a precursor with a signal peptide or transit sequence, and that the 43,000 molecular mass is the mature form of the protein. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16664549

  17. Biosynthesis of alpha-Amylase in Vigna mungo Cotyledon.

    PubMed

    Tomura, H; Koshiba, T

    1985-12-01

    In vitro translation of RNA extracted from Vigna mungo cotyledons showed that alpha-amylase is synthesized as a polypeptide with a molecular mass of 45,000, while cotyledons contain a form of alpha-amylase with a molecular mass of 43,000. To find out whether the 45,000 molecular mass polypeptide is a precursor to the 43,000 found in vivo, the cell free translation systems were supplemented with canine microsomal membrane; when mRNA was translated in the wheat germ system supplemented with canine microsomes, the 45,000 molecular mass form was not processed to a smaller form but the precursor form was partly processed in the membrane-supplemented reticulocyte lysate system. When V. mungo RNA was translated in Xenopus oocyte system, only the smaller form (molecular mass 43,000) was detected. Involvement of contranslational glycosylation in the maturating process of the alpha-amylase was ruled out because there was no effect of tunicamycin, and the polypeptide was resistant to endo-beta-H or endo-beta-D digestion. We interpret these results to mean that the 45,000 molecular mass form is a precursor with a signal peptide or transit sequence, and that the 43,000 molecular mass is the mature form of the protein.

  18. Response of Fatty Acid Synthesis Genes to the Binding of Human Salivary Amylase by Streptococcus gordonii

    PubMed Central

    Nikitkova, Anna E.; Haase, Elaine M.; Vickerman, M. Margaret; Gill, Steven R.

    2012-01-01

    Streptococcus gordonii, an important primary colonizer of dental plaque biofilm, specifically binds to salivary amylase via the surface-associated amylase-binding protein A (AbpA). We hypothesized that a function of amylase binding to S. gordonii may be to modulate the expression of chromosomal genes, which could influence bacterial survival and persistence in the oral cavity. Gene expression profiling by microarray analysis was performed to detect genes in S. gordonii strain CH1 that were differentially expressed in response to the binding of purified human salivary amylase versus exposure to purified heat-denatured amylase. Selected genes found to be differentially expressed were validated by quantitative reverse transcription-PCR (qRT-PCR). Five genes from the fatty acid synthesis (FAS) cluster were highly (10- to 35-fold) upregulated in S. gordonii CH1 cells treated with native amylase relative to those treated with denatured amylase. An abpA-deficient strain of S. gordonii exposed to amylase failed to show a response in FAS gene expression similar to that observed in the parental strain. Predicted phenotypic effects of amylase binding to S. gordonii strain CH1 (associated with increased expression of FAS genes, leading to changes in fatty acid synthesis) were noted; these included increased bacterial growth, survival at low pH, and resistance to triclosan. These changes were not observed in the amylase-exposed abpA-deficient strain, suggesting a role for AbpA in the amylase-induced phenotype. These results provide evidence that the binding of salivary amylase elicits a differential gene response in S. gordonii, resulting in a phenotypic adjustment that is potentially advantageous for bacterial survival in the oral environment. PMID:22247133

  19. The value of the amylase/creatinine clearance ratio in the diagnosis of acute pancreatitis.

    PubMed

    Solomon, A R

    1978-01-01

    Acute pancreatitis usually confronts the clinician with a difficult diagnostic task. For years, the primary laboratory diagnostic tests were the serum and urine amylase and the serum lipase determinations. Recent studies have introduced the concept of the amylase/creatinine clearance ratio as a means of increasing the specificity of the laboratory diagnosis. This paper reviews the laboratory evaluation of acute pancreatitis with emphasis on the rationale, derivation, and specificity of the amylase/creatinine clearance ratio.

  20. The screening value of the amylase-creatinine clearance ratio in acute pancreatitis.

    PubMed

    Van Hee, R; Hubens, A

    1979-01-01

    The screening value of the amylase creatinine clearance ratio in acute pancreatitis is studied. A series of 28 patients with pancreatic disease is compared with 80 controls and 82 patients with other intra-abdominal disease. The greatest specificity of the amylase creatinine clearance ratio value is reached at the 3.5 level. The amylase creatinine clearance ratio value proves to be of interest, not only in the diagnosis of acute pancreatitis but also in differentiating mild and heavy forms of pancreatitis.

  1. Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry.

    PubMed

    Singh, Shalini; Singh, Sanamdeep; Bali, Vrinda; Sharma, Lovleen; Mangla, Jyoti

    2014-01-01

    The study aimed at isolation and screening of fungal amylase producer, optimization of solid state fermentation conditions for maximum amylase production by the best amylase producer, and characterization of the crude amylases, so produced. Aspergillus fumigatus NTCC1222 showed the highest amylase activity (164.1 U/mL) in secondary screening under SSF conditions and was selected for further studies. The test strain showed maximum amylase production (341.7 U/mL) and supernatant protein concentration (9.7 mg/mL) for incubation period (6 days), temperature (35 °C), initial pH (6.0), nutrient salt solution as moistening agent, and beef extract as nitrogen source. Pomegranate peel produced maximum amylase activity, but wheat bran (only slightly lesser amylase activity as compared to that of pomegranate peel) was chosen for further studies, keeping in mind the seasonal availability of pomegranate peel. TLC confirmed the amylase produced to be α -type and 60 kDa was the molecular weight of the partially purified amylase. The enzyme showed maximum enzyme activity at pH 6.0, temperature of 55 °C, and incubation time of 60 minutes. UV (616.0 U/mL) and chemical (814.2 U/mL) mutation enhanced amylase activity as compared to wild test strain. The study indicates that Aspergillus fumigatus NTCC1222 can be an important source of amylase and the crude enzyme, hence obtained, can be cost effectively applied in multiple sections of textile wet processing. PMID:24527439

  2. Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry.

    PubMed

    Singh, Shalini; Singh, Sanamdeep; Bali, Vrinda; Sharma, Lovleen; Mangla, Jyoti

    2014-01-01

    The study aimed at isolation and screening of fungal amylase producer, optimization of solid state fermentation conditions for maximum amylase production by the best amylase producer, and characterization of the crude amylases, so produced. Aspergillus fumigatus NTCC1222 showed the highest amylase activity (164.1 U/mL) in secondary screening under SSF conditions and was selected for further studies. The test strain showed maximum amylase production (341.7 U/mL) and supernatant protein concentration (9.7 mg/mL) for incubation period (6 days), temperature (35 °C), initial pH (6.0), nutrient salt solution as moistening agent, and beef extract as nitrogen source. Pomegranate peel produced maximum amylase activity, but wheat bran (only slightly lesser amylase activity as compared to that of pomegranate peel) was chosen for further studies, keeping in mind the seasonal availability of pomegranate peel. TLC confirmed the amylase produced to be α -type and 60 kDa was the molecular weight of the partially purified amylase. The enzyme showed maximum enzyme activity at pH 6.0, temperature of 55 °C, and incubation time of 60 minutes. UV (616.0 U/mL) and chemical (814.2 U/mL) mutation enhanced amylase activity as compared to wild test strain. The study indicates that Aspergillus fumigatus NTCC1222 can be an important source of amylase and the crude enzyme, hence obtained, can be cost effectively applied in multiple sections of textile wet processing.

  3. Production of Fungal Amylases Using Cheap, Readily Available Agriresidues, for Potential Application in Textile Industry

    PubMed Central

    Singh, Sanamdeep; Bali, Vrinda; Mangla, Jyoti

    2014-01-01

    The study aimed at isolation and screening of fungal amylase producer, optimization of solid state fermentation conditions for maximum amylase production by the best amylase producer, and characterization of the crude amylases, so produced. Aspergillus fumigatus NTCC1222 showed the highest amylase activity (164.1 U/mL) in secondary screening under SSF conditions and was selected for further studies. The test strain showed maximum amylase production (341.7 U/mL) and supernatant protein concentration (9.7 mg/mL) for incubation period (6 days), temperature (35°C), initial pH (6.0), nutrient salt solution as moistening agent, and beef extract as nitrogen source. Pomegranate peel produced maximum amylase activity, but wheat bran (only slightly lesser amylase activity as compared to that of pomegranate peel) was chosen for further studies, keeping in mind the seasonal availability of pomegranate peel. TLC confirmed the amylase produced to be α-type and 60 kDa was the molecular weight of the partially purified amylase. The enzyme showed maximum enzyme activity at pH 6.0, temperature of 55°C, and incubation time of 60 minutes. UV (616.0 U/mL) and chemical (814.2 U/mL) mutation enhanced amylase activity as compared to wild test strain. The study indicates that Aspergillus fumigatus NTCC1222 can be an important source of amylase and the crude enzyme, hence obtained, can be cost effectively applied in multiple sections of textile wet processing. PMID:24527439

  4. Specificity of serum amylase and amylase creatinine clearance ratio in the diagnosis of acute and chronic pancreatitis.

    PubMed

    Grosberg, S J; Wapnick, S; Purow, E; Purow, J R

    1979-07-01

    In 31 patients with pancreatitis, the amylase to creatinine clearance ratio (CACR) was significantly greater than for controls (10.7 +/- 1.7 vs. 2.6 +/- 0.3, P less than .001). Sixteen pancreatitis patients with serum amylase (SAm) within the normal range had a mean CACR significantly greater than that of 19 hospital control patients with normal SAm (9.2 +/- 1.5 vs. 3.0 +/- 0.4, P less than .001). For control patients a highly significant inverse correlation between SAm and CACR was observed. No relationship was detected between these parameters for pancreatitis patients. The results suggest that the CACR may be of aid in establishing the diagnosis of pancreatitis even in patients without hyperamylasemia.

  5. [Amylase inhibitors from Streptomyces lucensis VKPM Ac-1743 and Streptomyces violaceus VKPM Ac-1734].

    PubMed

    Sharova, N Iu

    2015-01-01

    Inhibitors synthesized by the Streptomyces lucensis VKPM AS-1743 and Streptomyces violaceus VKPM AS-1734 strains were studied for their influence on amylases of different origin. The effect of the inhibitors was shown to be different on fungal amylase, pancreatic amylase, and amylase from human blood. It has been found that the studied inhibitors are substances of a pseudooligosaccharide nature and exhibit their activity and stability over a wide range of pH and temperature values. The physico-chemical and biochemical properties of isolated inhibitors were compared with those of known microbial inhibitors of α-glucosidases. PMID:25842903

  6. Production and biochemical characterization of an alpha-amylase from the moderate halophile Halomonas meridiana.

    PubMed

    Coronado, M; Vargas, C; Hofemeister, J; Ventosa, A; Nieto, J J

    2000-02-01

    Extracellular amylase production by the moderate halophile Halomonas meridiana was optimized and the enzyme was characterized biochemically. The highest amylase production was achieved by growing H. meridiana cultures in media with 5% salts and starch, in the absence of glucose until the end of the exponential phase. The amylase exhibited maximal activity at pH 7.0, being relatively stable in alkaline conditions. Optimal temperature and salinity for activity were 37 degrees C and 10% NaCl, respectively. Moreover, activity at salinity as high as 30% salts was detected. Maltose and maltotriose were the main end products of starch hydrolysis, indicating an alpha-amylase activity.

  7. Paper-based α-amylase detector for point-of-care diagnostics.

    PubMed

    Dutta, Satarupa; Mandal, Nilanjan; Bandyopadhyay, Dipankar

    2016-04-15

    We report the fabrication of a paper-sensor for quantitative detection of α-amylase activity in human blood serum. Pieces of filter papers were coated with starch-iodine solution leading to an intense blue coloration on the surface. Dispensing α-amylase solution on the starch-iodine coated paper reduced the intensity of the color because of starch-hydrolysis catalyzed by amylase. The variation in the intensity of the color with the concentration of amylase was estimated in three stages: (i) initially, the paper-surface was illuminated with a light emitting diode, (ii) then, the transmitted (reflected) rays emitted through (from) the paper were collected on a photoresistor, and (iii) the variations in the electrical resistance of the photoresistor were correlated with the amylase concentration in analyte. The resistance of photoresistor decreased monotonically with an increase in amylase concentration because the intensity of the reflected (transmitted) rays collected from (through) the paper increased with reduction in the color intensity on the paper surface. Since a specific bio-reaction was employed to detect the activity of amylase, the sensor was found to be equally efficient in detecting unknown quantities of amylase in human blood serum. The reported sensor has shown the potential to graduate into a point-of-care detection tool for α-amylase. PMID:26655186

  8. A very high amylase can be benign in paediatric Crohn's disease.

    PubMed

    Venkataraman, Devasmitha; Howarth, Lucy; Beattie, Robert Mark; Afzal, Nadeem Ahmad

    2012-07-10

    A 12.5-year-old boy with Crohn's disease with abdominal pain had a raised amylase of 1835 IU/l with normal lipase levels. Ultrasound showed no evidence of inflammation of pancreas. The amylase to creatinine clearance ratio, was 0.8% (reference interval 2%-5%; >6% consistent with acute pancreatitis; <1.6% with macroamylasemia), suggesting he had raised serum amylase with a corresponding reduced clearance of amylase in his urine, positively supporting the diagnosis of macroamylasemia. Macroamylasemia has no clinical significance other than misdiagnosis as acute pancreatitis. Awareness of this condition is important and a positive diagnosis should always be made to avoid unnecessary changes in treatments.

  9. Amylase: creatinine clearance ratio and urinary excretion of lysozyme in acute pancreatitis and acute duodenal perforation.

    PubMed

    Berger, G M; Cowlin, J; Turner, T J

    1976-09-18

    The amylase:creatinine clearance ratio in patients suffering from acute pancreatitis or acute duodenal perforation was higher than normal in both groups of patients. These findings cast doubt on the value of this parameter as a specific index of acute pancreatitis. The mechanism or mechanisms underlying the increased amylase excretion have not been determined. However, the markedly elevated urinary excretion of lysozyme observed in some patients suggests, by analogy, that diminished tubular reabsorption of amylase may contribute towards the elevated amylase:creatinine ratio.

  10. Determination of renal clearances of amylase/creatinine with chromogenic and enzymatic methods.

    PubMed

    Hohenwallner, W; Wimmer, E; Sommer, R

    1979-12-01

    Urinary amylase was estimated by chromogenic (amylochrome Roche) as well as enzymatic methods (SKI and Beckman: substrate starch and substrate maltotetraose respectively). Random and timed urines (24 hour collections) were analysed. Clearances of amylase gave different results dependent upon the amylase-test used and the glomerular filtration rate. Correlation between chromogenic and enzymatic methods (starch as substrate) was poor. The ratio of amylase and creatinine clearance was used to test different methods. Reference values for this ratio for the amylochrome method (N = 106) were 2.85 +/- 0.99% and for the Beckman-DS method (N = 60) 2.82 +/- 0.87%.

  11. Renal clearance of pancreatic and salivary amylase relative to creatinine in patients with chronic renal insufficiency.

    PubMed

    Keogh, J B; McGeeney, K F; Drury, M I; Counihan, T B; O'Donnell, M D

    1978-12-01

    Pancreatic and salivary amylase/creatinine clearance ratios in patients with various degrees of renal impairment were compared with those obtained for control subjects. In chronic renal insufficiency (mean GFR 30 ml/min +/- 15 SD; n = 13) the clearance ratios for pancreatic (mean 3.5 +/- 1.85 SD) and salivary (mean 2.3 +/- 1.3 SD) amylase were significantly higher (P less than 0.05) than those in controls. Corresponding control values (n = 26) were 2.64 +/- 0.86 (pancreatic) and 1.64 +/- 0.95 (salivary). Three patients showed values above the normal limit. In the diabetic group (mean GFR 41 ml/min +/- 22 SD; n = 10) salivary amylase/creatinine clearance ratios (mean 2.36 +/- 1.55 SD) were significantly higher than in controls (P less than 0.05). Three patients showed raised values. Pancreatic amylase clearance was raised in only one of these patients. Three patients with terminal disease (mean GFR 10 ml/min) showed markedly raised (two- to threefold) clearance ratios for both salivary and pancreatic amylase. Of a total of 26 patients, eight had increased total amylase/creatinine clearance ratios. Pancreatic amylase/creatinine clearance was increased in seven patients, while nine patients showed raised salivary amylase/creatinine ratios. Patients with raised clearance ratios did not have clinical evidence of pancreatitis. We suggest that, in the presence of impaired renal function, a high amylase/creatinine clearance ratio need not be indicative of pancreatic disease.

  12. Paper-based α-amylase detector for point-of-care diagnostics.

    PubMed

    Dutta, Satarupa; Mandal, Nilanjan; Bandyopadhyay, Dipankar

    2016-04-15

    We report the fabrication of a paper-sensor for quantitative detection of α-amylase activity in human blood serum. Pieces of filter papers were coated with starch-iodine solution leading to an intense blue coloration on the surface. Dispensing α-amylase solution on the starch-iodine coated paper reduced the intensity of the color because of starch-hydrolysis catalyzed by amylase. The variation in the intensity of the color with the concentration of amylase was estimated in three stages: (i) initially, the paper-surface was illuminated with a light emitting diode, (ii) then, the transmitted (reflected) rays emitted through (from) the paper were collected on a photoresistor, and (iii) the variations in the electrical resistance of the photoresistor were correlated with the amylase concentration in analyte. The resistance of photoresistor decreased monotonically with an increase in amylase concentration because the intensity of the reflected (transmitted) rays collected from (through) the paper increased with reduction in the color intensity on the paper surface. Since a specific bio-reaction was employed to detect the activity of amylase, the sensor was found to be equally efficient in detecting unknown quantities of amylase in human blood serum. The reported sensor has shown the potential to graduate into a point-of-care detection tool for α-amylase.

  13. Characterization of an amylase-binding component of Streptococcus gordonii G9B.

    PubMed

    Scannapieco, F A; Haraszthy, G G; Cho, M I; Levine, M J

    1992-11-01

    The goal of the present study was to begin characterizing the amylase-binding component(s) on the surface of Streptococcus gordonii G9B. Alkali extracts but not phenol-water extracts of this bacterium inhibited 125I-amylase binding to S. gordonii G9B. To identify the bacterial components involved in amylase binding, the alkali extract was subjected to affinity chromatography on amylase-Sepharose. Immunoblotting with a rabbit antiserum against S. gordonii G9B revealed that a 20-kDa streptococcal component was eluted from the amylase-Sepharose with 1% sodium dodecyl sulfate (SDS), 2 M KSCN, or 0.1 M sodium citrate buffer, pH 4.5. Subsequently, the 20-kDa component was prepared from alkali extracts by electroelution from preparative SDS electrophoresis or by gel filtration chromatography. This component was trypsin sensitive, and an antibody raised against it inhibited the binding of 125I-amylase to S. gordonii G9B. Indirect immunofluorescence microscopy and immunogold electron microscopy demonstrated that both bound amylase and the 20-kDa component were localized to the cell division septum on dividing cells or to polar zones on single cells. In addition, exponentially growing bacteria bound more 125I-amylase than stationary-phase cells did. Collectively, these results suggest that a 20-kDa amylase-binding component is present on the surface of the nascent streptococcal cell wall.

  14. [Amylase inhibitors from Streptomyces lucensis VKPM Ac-1743 and Streptomyces violaceus VKPM Ac-1734].

    PubMed

    Sharova, N Iu

    2015-01-01

    Inhibitors synthesized by the Streptomyces lucensis VKPM AS-1743 and Streptomyces violaceus VKPM AS-1734 strains were studied for their influence on amylases of different origin. The effect of the inhibitors was shown to be different on fungal amylase, pancreatic amylase, and amylase from human blood. It has been found that the studied inhibitors are substances of a pseudooligosaccharide nature and exhibit their activity and stability over a wide range of pH and temperature values. The physico-chemical and biochemical properties of isolated inhibitors were compared with those of known microbial inhibitors of α-glucosidases.

  15. Cloning and starch degradation profile of maltotriose-producing amylases from Streptomyces species.

    PubMed

    Kashiwagi, Norimasa; Miyake, Michiru; Hirose, Shuichi; Sota, Masahiro; Ogino, Chiaki; Kondo, Akihiko

    2014-11-01

    The end products from starch hydrolysis by amylases have important applications in various industries. Here, two amylases derived from two Streptomyces species that hydrolyze soluble starch from potato produced maltotriose as the primary maltooligosaccharide product. The genes, annotated as putative glycoside hydrolases, were cloned and expressed in Streptomyces lividans. These amylases displayed hydrolysis activity from pH 3 to 9.5 and were not affected by Ca(2+.) Optimal production of maltotriose was between 20 and 30 °C at pH 6.5. At the optimal temperature, both amylases produced maltotriose-rich end products rather than either maltose or maltotetraose.

  16. Properties of an amylase from thermophilic Bacillus SP

    PubMed Central

    de Carvalho, Raquel Vieira; Côrrea, Thamy Lívia Ribeiro; da Silva, Júlia Caroline Matos; de Oliveira Mansur, Luciana Ribeiro Coutinho; Martins, Meire Lelis Leal

    2008-01-01

    α-Amylase production by thermophilic Bacillus sp strain SMIA-2 cultivated in liquid cultures containing soluble starch as a carbon source and supplemented with 0.05% whey protein and 0.2% peptone reached a maximum activity at 32 h, with levels of 37 U/mL. Studies on the amylase characterization revealed that the optimum temperature of this enzyme was 90°C. The enzyme was stable for 1 h at temperatures ranging from 40-50°C while at 90°C, 66% of its maximum activity was lost. However, in the presence of 5 mM CaCl2, the enzyme was stable at 90°C for 30 min and retained about 58% residual activity after 1 h. The optimum pH of the enzyme was found to be 8.5. After incubation of enzyme for 2 h at pH 9.5 and 11.0 was observed a decrease of about 6.3% and 16.5% of its original activity. At pH 6.0 the enzyme lost about 36% of its original activity. The enzyme was strongly inhibited by Co2+, Cu2+ and Ba2+, but less affected by Mg2+, Na+ and K+. In the presence of 2.0 M NaCl, 63% of amylase activity was retained after 2 h incubation at 45°C. The amylase exhibited more than 70% activity when incubated for 1 h at 50°C with sodium dodecyl sulphate. However, very little residual activity was obtained with sodium hypochlorite and with hydrogen peroxide the enzyme was completely inhibited. The compatibility of Bacillus sp SMIA-2 amylase with certain commercial detergents was shown to be good as the enzyme retained 86%, 85% and 75% of its activity after 20 min incubation at 50°C in the presence of the detergent brands Omo®, Campeiro® and Tide®, respectively. PMID:24031188

  17. Isolation of a novel amylase and lipase-producing Pseudomonas luteola strain: study of amylase production conditions.

    PubMed

    Khannous, Lamia; Jrad, Mouna; Dammak, Mouna; Miladi, Ramzi; Chaaben, Nour; Khemakhem, Bassem; Gharsallah, Néji; Fendri, Imen

    2014-01-01

    An amylase and lipase producing bacterium (strain C2) was enriched and isolated from soil regularly contaminated with olive washing wastewater in Sfax, Tunisia. Cell was aerobic, mesophilic, Gram-negative, motile, non-sporulating bacterium, capable of growing optimally at pH 7 and 30°C and tolerated maximally 10% (W/V) NaCl. The predominant fatty acids were found to be C(18:1)ω7c (32.8%), C(16:1)ω7c (27.3%) and C16:0 (23.1%). Phylogenetic analysis of the 16S rRNA gene revealed that this strain belonging to the genus Pseudomonas. Strain C2 was found to be closely related to Pseudomonas luteola with more than 99% of similarity. Amylase optimization extraction was carried out using Box Behnken Design (BBD). Its maximal activity was found when the pH and temperature ranged from 5.5 to 6.5 and from 33 to 37°C, respectively. Under these conditions, amylase activity was found to be about 9.48 U/ml. PMID:24405763

  18. Isolation of a novel amylase and lipase-producing Pseudomonas luteola strain: study of amylase production conditions

    PubMed Central

    2014-01-01

    An amylase and lipase producing bacterium (strain C2) was enriched and isolated from soil regularly contaminated with olive washing wastewater in Sfax, Tunisia. Cell was aerobic, mesophilic, Gram-negative, motile, non-sporulating bacterium, capable of growing optimally at pH 7 and 30°C and tolerated maximally 10% (W/V) NaCl. The predominant fatty acids were found to be C18:1ω7c (32.8%), C16:1ω7c (27.3%) and C16:0 (23.1%). Phylogenetic analysis of the 16S rRNA gene revealed that this strain belonging to the genus Pseudomonas. Strain C2 was found to be closely related to Pseudomonas luteola with more than 99% of similarity. Amylase optimization extraction was carried out using Box Behnken Design (BBD). Its maximal activity was found when the pH and temperature ranged from 5.5 to 6.5 and from 33 to 37°C, respectively. Under these conditions, amylase activity was found to be about 9.48 U/ml. PMID:24405763

  19. Isolation of a novel amylase and lipase-producing Pseudomonas luteola strain: study of amylase production conditions.

    PubMed

    Khannous, Lamia; Jrad, Mouna; Dammak, Mouna; Miladi, Ramzi; Chaaben, Nour; Khemakhem, Bassem; Gharsallah, Néji; Fendri, Imen

    2014-01-09

    An amylase and lipase producing bacterium (strain C2) was enriched and isolated from soil regularly contaminated with olive washing wastewater in Sfax, Tunisia. Cell was aerobic, mesophilic, Gram-negative, motile, non-sporulating bacterium, capable of growing optimally at pH 7 and 30°C and tolerated maximally 10% (W/V) NaCl. The predominant fatty acids were found to be C(18:1)ω7c (32.8%), C(16:1)ω7c (27.3%) and C16:0 (23.1%). Phylogenetic analysis of the 16S rRNA gene revealed that this strain belonging to the genus Pseudomonas. Strain C2 was found to be closely related to Pseudomonas luteola with more than 99% of similarity. Amylase optimization extraction was carried out using Box Behnken Design (BBD). Its maximal activity was found when the pH and temperature ranged from 5.5 to 6.5 and from 33 to 37°C, respectively. Under these conditions, amylase activity was found to be about 9.48 U/ml.

  20. Starch supplementation modulates amylase enzymatic properties and amylase B mRNA level in the digestive gland of the Pacific oyster Crassostrea gigas.

    PubMed

    Huvet, A; Jeffroy, F; Daniel, J Y; Quéré, C; Le Souchu, P; Van Wormhoudt, A; Boudry, P; Moal, J; Samain, J F

    2012-09-01

    In the oyster Crassostrea gigas consumption-related traits, amylase properties and growth were found to be linked through genotypes that differed for polymorphism in the two amylase genes AMYA and AMYB. Modulation of AMYA mRNA level had already been observed in response to food availability, whereas the functional role of AMYB was still unknown. To improve knowledge about the regulation of amylase expression in C. gigas and the respective roles of the two genes, we made an assay of amylase expression at mRNA and enzymatic levels in the digestive gland of oysters that had received dietary supplements of starch. After 18 days, a significant increase of translatable mRNA for AMYB was observed, with a correlated increase in Michaelis-Menten constant Km values and a decrease in total amylase activity. This modulation is the first evidence of observable functioning of AMYB in digestive processes. Amylase B is suggested to display a higher Km than amylase A, offering a means of adapting to high substrate concentrations. The highest starch supplement level (10 mgL(-1)) induced alteration in oyster physiology. The 1 mgL(-1) treatment should be tested as a practical food supplement that could lead to growth benefits for oysters.

  1. Sequence-structural features and evolutionary relationships of family GH57 α-amylases and their putative α-amylase-like homologues.

    PubMed

    Janeček, Stefan; Blesák, Karol

    2011-08-01

    The glycoside hydrolase family 57 (GH57) contains α-amylase and a few other amylolytic specificities. It counts ~400 members from Archaea (1/4) and Bacteria (3/4), mostly of extremophilic prokaryotes. Only 17 GH57 enzymes have been biochemically characterized. The main goal of the present bioinformatics study was to analyze sequences having the clear GH57 α-amylase features. Of the 107 GH57 sequences, 59 were evaluated as α-amylases (containing both GH57 catalytic residues), whereas 48 were assigned as GH57 α-amylase-like proteins (having a substitution in one or both catalytic residues). Forty-eight of 59 α-amylases were from Archaea, but 42 of 48 α-amylase-like proteins were of bacterial origin. The catalytic residues were substituted in most cases in Bacteroides and Prevotella by serine (instead of catalytic nucleophile glutamate) and glutamate (instead of proton donor aspartate). The GH57 α-amylase specificity has thus been evolved and kept enzymatically active mainly in Archaea.

  2. Purification and characterization of α-Amylase from Miswak Salvadora persica

    PubMed Central

    2014-01-01

    Background The miswak (Salvadora persica) is a natural toothbrush. It is well known that very little information has been reported on enzymes in miswak as medicinal plant. Recently, we study peroxidase in miswak. In the present study, the main goal of this work is to purify and characterize α-amylase from miswak. The second goal is to study the storage stability of α-amylase in toothpaste. Method The purification method included chromatographaphy of miswak α-amylase on DEAE-Sepharose column and Sephacryl S-200 column. Molecular weight was determined by gel filtration and SDS-PAGE. Results Five α-amylases A1, A4a, A4b, A5a and A5b from miswak were purified and they had molecular weights of 14, 74, 16, 30 and 20 kDa, respectively. α-Amylases had optimum pH from 6 to 8. Affinity of the substrates toward all enzymes was studied. Miswak α-amylases A1, A4a, A4b, A5a and A5b had Km values for starch and glycogen of 3.7, 3.7, 7.1, 0.52, 4.3 mg/ml and 5.95, 5.9 4.16, 6.3, 6.49 mg/ml, respectively. The optimum temperature for five enzymes ranged 40°C- 60°C. Miswak α-amylases were stable up to 40°C- 60°C after incubation for 30 min. Ca+2 activated all the miswak α-amylases, while Ni2+, Co+2 and Zn+2 activated or inhibited some of these enzymes. The metal chelators, EDTA, sodium citrate and sodium oxalate had inhibitory effects on miswak α-amylases. PMSF, p-HMB, DTNB and 1,10 phenanthroline caused inhibitory effect on α-amylases. The analysis of hydrolytic products after starch hydrolysis by miswak α-amylases on paper chromatography revealed that glucose, maltose, maltotriose and oligosaccharide were the major products. Crude miswak α-amylase in the toothpaste retained 55% of its original activity after 10 months of storage at room temperature. Conclusions From these findings, α-amylases from miswak can be considered as beneficial enzymes for pharmaceuticals. Therefore, we study the storage stability of the crude α-amylase of miswak, which contained the five

  3. Biochemical properties of alpha-amylase from peel of Citrus sinensis cv. Abosora.

    PubMed

    Mohamed, Saleh Ahmed; Drees, Ehab A; El-Badry, Mohamed O; Fahmy, Afaf S

    2010-04-01

    alpha-Amylase activity was screened in the peel, as waste fruit, of 13 species and cultivars of Egyptian citrus. The species Citrus sinensis cv. Abosora had the highest activity. alpha-Amylase AI from Abosora peel was purified to homogeneity using anion and cation-exchange, and gel filtration chromatographies. Molecular weight of alpha-amylase AI was found to be 42 kDa. The hydrolysis properties of alpha-amylase AI toward different substrates indicated that corn starch is the best substrate. The alpha-amylase had the highest activity toward glycogen compared with amylopectin and dextrin. Potato starch had low affinity toward alpha-amylase AI but it did not hydrolyze beta-cyclodextrin and dextran. Apparent Km for alpha-amylase AI was 5 mg (0.5%) starch/ml. alpha-Amylase AI showed optimum activity at pH 5.6 and 40 degrees C. The enzyme was thermally stable up to 40 degrees C and inactivated at 70 degrees C. The effect of mono and divalent metal ions were tested for the alpha-amylase AI. Ba2+ was found to have activating effect, where as Li+ had negligible effect on activity. The other metals caused inhibition effect. Activity of the alpha-amylase AI was increased one and half in the presence of 4 mM Ca2+ and was found to be partially inactivated at 10 mM Ca2+. The reduction of starch viscosity indicated that the enzyme is endoamylase. The results suggested that, in addition to citrus peel is a rich source of pectins and flavanoids, alpha-amylase AI from orange peel could be involved in the development and ripening of citrus fruit and may be used for juice processing. PMID:19941088

  4. GA Enhanced a-Amylase Synthesis in Halved Grains of Barley (Hordeum vulgare): A Simple Laboratory Demonstration

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1972-01-01

    A laboratory demonstration is suggested for the formation of a-amylase enzyme in halved grains of barley. Data presented in the article provide some information of the pattern of a- and b-amylase activity during germination. (PS)

  5. Application of microbial α-amylase in industry – A review

    PubMed Central

    de Souza, Paula Monteiro; de Oliveira Magalhães, Pérola

    2010-01-01

    Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:24031565

  6. Use of activated carbons to remove undesirable residual amylase from factory and refinery streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been increased world-wide concern over residual (carry-over) activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food and end-user industries. HT and VHT stable amylases were develope...

  7. Structure of waxy maize starch hydrolyzed by maltogenic alpha-amylase in relation to its retrogradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maltogenic a-amylase is widely used as an antistaling agent in bakery foods. The objective of this study was to determine the degree of hydrolysis (DH) and starch structure after maltogenic amylase treatments in relation to its retrogradation. Waxy maize starch was cooked and hydrolyzed to different...

  8. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation.

    PubMed

    Raul, Dibyangana; Biswas, Tania; Mukhopadhyay, Suchita; Kumar Das, Shrayan; Gupta, Suvroma

    2014-01-01

    Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents, desiring of textiles, modified starches, hydrolysis of oil-field drilling fluids, and paper recycling. In the present work, solid state fermentation (SSF) for α -amylase production has been used in lieu of submerged fermentation (SmF) due to its simple technique, low capital investment, lower levels of catabolite repression, and better product recovery. Bacillus subtilis has been well known as producer of alpha amylase and was tested using solid state fermentation for 48 hours at 37°C with wheat bran as substrate. Comparison between different fermentation hours demonstrated high yield of alpha amylase after 48 hours. This alpha amylase has optimum pH and temperature at 7.1 and 40°C, respectively. With the goal to purify alpha amylase, 30-70% (NH4)2SO4 cut concentrated the amylase activity threefold with respect to crude fermented extract. This was verified in quantitative DNS assay method as well as in zymogram gel profile. The exact molecular weight of the amylase is yet to be determined with the aid of other protein purification techniques.

  9. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... CFR part 51. Copies are available from the National Academy Press, 2101 Constitution Ave. NW... 21 Food and Drugs 3 2014-04-01 2014-04-01 false α-Amylase enzyme preparation from Bacillus... Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from...

  10. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... 21 Food and Drugs 3 2011-04-01 2011-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase...

  11. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... 21 Food and Drugs 3 2012-04-01 2012-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase...

  12. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... 21 Food and Drugs 3 2013-04-01 2013-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase...

  13. The evaluation of possible false positives with detergents when performing amylase serological testing on clothing.

    PubMed

    Feia, Andrea; Novroski, Nicole

    2013-01-01

    For almost 40 years, detergent companies have been adding enzymes such as amylases to their products as an effective method of breaking down tough stains created by polysaccharides and proteins. The possibility that α-amylases present in common household laundry detergents may contribute to the positive detection of α-amylase on evidentiary samples during forensic presumptive screening procedures is a potential problem that has not yet been investigated. To determine whether α-amylase detection is possible following routine laundering, five different fabrics were laundered in a variety of detergents, and presumptive testing using RSID(™)-Saliva and Phadebas(®) Amylase Test was conducted. Our results demonstrate that clothing laundered in detergents known to contain enzymes does not retain any detectable levels of α-amylase following a typical wash cycle. We also show that, unlike laundered clothing, undiluted detergents do contain detectable levels of α-amylase; however, these findings were only observed using the Phadebas(®) Amylase Test.

  14. Further Experiments on Gibberellin-Stimulated Amylase Production in Cereal Grains

    ERIC Educational Resources Information Center

    Coppage, Jo; Hill, T. A.

    1973-01-01

    Experiments conducted on wheat and barley grains to analyze activities of alpha- and beta-amylase enzymes. Gibberellins were used exogenously. Techniques are described in detail. Results on different cultivars revealed that beta-amylase was not an invariable result of imbibition. Techniques employed can be used by school students. (PS)

  15. A simplified method for detecting macroamylasemia by measuring serum amylase activity at different reaction temperatures.

    PubMed

    Koda, T; Kuratsune, H; Kurahori, T

    1983-06-01

    Amylase activity in serum and urine, and isoamylase, were measured in 300 patients with abdominal pain to detect cases of macroamylasemia. Of these patients, 9 had hyperamylasemia and 2 were diagnosed as cases of macroamylasemia on the basis of their amylase/creatinine clearance ratio, the gel filtration pattern of their amylase on a dextran column, and results of immunological analysis. Amylase activity in macroamylasemia is reported to show an anomalous response to increase in reaction-temperature. In this report, measurements of the temperature-activity relationships of serum amylase confirmed that the ratio of serum amylase activity at 50 degrees C to that at 25 degrees C (AMY-50 degrees C/AMY-25 degrees C ratio) in patients with macroamylasemia was higher than that in normal subjects or patients with pancreatitis. Moreover, when macromolecular amylase in the sera of patients with macroamylasemia was separated from amylase of normal molecular weight by dextran gel chromatography, it showed a significantly higher AMY-50 degrees C/AMY-25 degrees C ratio than the latter. Measurement of this AMY-50 degrees C/AMY-25 degrees C ratio seems to be a convenient and useful method for differential diagnosis of hyperamylasemia.

  16. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation.

    PubMed

    Raul, Dibyangana; Biswas, Tania; Mukhopadhyay, Suchita; Kumar Das, Shrayan; Gupta, Suvroma

    2014-01-01

    Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents, desiring of textiles, modified starches, hydrolysis of oil-field drilling fluids, and paper recycling. In the present work, solid state fermentation (SSF) for α -amylase production has been used in lieu of submerged fermentation (SmF) due to its simple technique, low capital investment, lower levels of catabolite repression, and better product recovery. Bacillus subtilis has been well known as producer of alpha amylase and was tested using solid state fermentation for 48 hours at 37°C with wheat bran as substrate. Comparison between different fermentation hours demonstrated high yield of alpha amylase after 48 hours. This alpha amylase has optimum pH and temperature at 7.1 and 40°C, respectively. With the goal to purify alpha amylase, 30-70% (NH4)2SO4 cut concentrated the amylase activity threefold with respect to crude fermented extract. This was verified in quantitative DNS assay method as well as in zymogram gel profile. The exact molecular weight of the amylase is yet to be determined with the aid of other protein purification techniques. PMID:24672727

  17. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  18. Structure and expression of alpha-amylase gene from Vigna mungo.

    PubMed

    Yamauchi, D; Takeuchi, H; Minamikawa, T

    1994-06-01

    A single copy of the alpha-amylase gene, composed of three introns and four exons, was found in Vigna mungo. Examination of levels of alpha-amylase and its mRNA in detached cotyledons indicated that attachment of the embryonic axis is not required for expression of the gene in cotyledons of germinating seeds.

  19. Serum amylase activity and renal amylase activity clearance in patients with severely impaired renal function and in patients treated with renal allotransplantation.

    PubMed

    Pedersen, E B; Brock, A; Kornerup, H J

    1976-03-01

    Serum amylase activity was measured in 29 nondialysed patients with severe renal failure, in 24 uraemic patients treated with chronic haemodialysis, and in 29 patients treated with renal allotransplantation. Simultaneous measurement of renal amylase activity clearance (CAm) and creatinine clearance (CCr) was performed in 25 patients with severe renal failure and in 19 transplanted patients. Serum amylase activity was elevated in all three groups. CAm was significantly correlated to CCr both in the group with severe renal failure and in the transplanted group. Unlike in the group of transplanted patients, the ratio CAm/CCr was significantly increased in patients with severe impaired renal function. It is concluded that the elevation of serum amylase activity in patients with impaired renal function is primarily due to decreased glomerular filtration rate. The value of CAm/CCr for diagnosing acute pancreatitis is doubtful in patients with severe renal disease.

  20. Clinical significance of elevated serum and urine amylase levels in patients with appendicitis.

    PubMed

    Swensson, E E; Maull, K I

    1981-12-01

    During the 45 month period beginning January 1977, 251 patients with a pathologically confirmed diagnosis of acute appendicitis underwent celiotomy at the Medical College of Virginia Hospital. A preoperative serum or urine amylase determination was recorded in 155 of the patients (62 percent). Of this group, 15 patients (10 percent) had elevation of serum amylase or 2 hour urine amylase. Hyperamylasemia or hyperamylasuria directly led to misdiagnosis or treatment delay in 5 of the 15 patients. Appendiceal rupture occurred in three patients, two of whom had prolonged (greater than 1 month) hospitalizations directly attributable to the misdiagnosis. As a result of this study, we conclude that (1) acute appendicitis and elevated amylase levels may occur concurrently, (2) hyperamylasemia or hyperamylasuria should not dissuade the surgeon from early operation if other clinical features suggest appendicitis, and (3) abdominal pain and elevation of amylase level define significant intraabdominal disease, not specifically pancreatic disease.

  1. Structural basis for the inhibition of mammalian and insect alpha-amylases by plant protein inhibitors.

    PubMed

    Payan, Françoise

    2004-02-12

    Alpha-amylases are ubiquitous proteins which play an important role in the carbohydrate metabolism of microorganisms, animals and plants. Living organisms use protein inhibitors as a major tool to regulate the glycolytic activity of alpha-amylases. Most of the inhibitors for which three-dimensional (3-D) structures are available are directed against mammalian and insect alpha-amylases, interacting with the active sites in a substrate-like manner. In this review, we discuss the detailed inhibitory mechanism of these enzymes in light of the recent determination of the 3-D structures of pig pancreatic, human pancreatic, and yellow mealworm alpha-amylases in complex with plant protein inhibitors. In most cases, the mechanism of inhibition occurs through the direct blockage of the active center at several subsites of the enzyme. Inhibitors exhibiting "dual" activity against mammalian and insect alpha-amylases establish contacts of the same type in alternative ways.

  2. Identification and phylogenetic characterization of a new subfamily of α-amylase enzymes from marine microorganisms.

    PubMed

    Liu, Yang; Lei, Yin; Zhang, Xuecheng; Gao, Yi; Xiao, Yazhong; Peng, Hui

    2012-06-01

    A gene encoding a starch-hydrolyzing enzyme was isolated from a marine metagenomic library and overexpressed in Escherichia coli. The enzyme, designated AmyP, shows very low similarity to full-length sequences of known α-amylases, although a catalytic domain correlated with the α-amylase superfamily was identified. Based on the range of substrate hydrolysis and the product profile, the protein was clearly defined as a saccharifying-type α-amylase. Sequence comparison indicated that AmyP was related to four putative glycosidases previously identified only in bacterial genome sequences. They were all from marine bacteria and formed a new subfamily of glycoside hydrolase GH13. Moreover, this subfamily was closely related to the probable genuine bacterial α-amylases (GH13_19). The results suggested that the subfamily may be an independent clade of ancestral marine bacterial α-amylases.

  3. Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations.

    PubMed

    Mitidieri, Sydnei; Souza Martinelli, Anne Helene; Schrank, Augusto; Vainstein, Marilene Henning

    2006-07-01

    There is a wide range of biotechnological applications for amylases, including the textile, pharmaceutical, food and laundry industries. Hydrolytic enzymes are 100% biodegradable and enzymatic detergents can achieve effective cleaning with lukewarm water. Microorganisms and culture media were tested for amylase production and the best producer was Aspergillus niger L119 (3.9 U ml(-1) +/- 0.2) in submerged culture and its amylase demonstrated excellent activity at 50-55 degrees C and pH 4.0, remaining stable at 53 degrees C for up to 200 h. In order to establish the potential uses of this enzyme in detergents, different formulations were tested using the A. niger amylase extract. Enzyme activity was compared with three commercial formulations. The detergents are used in hospitals to clean surgical and endoscopy equipment. The presence of amylase in the formulation is because of its action within hospital drainage system, whether or not it has any function in cleaning the equipment.

  4. Amylase/creatinine clearance ratio in diabetic ketoacidosis: a case report.

    PubMed

    Boybeyi, Ozlem; Ergür, Ayça Törel; Dursun, Zarife Esra; Gülerman, Fulya

    2014-11-01

    Diabetic ketoacidosis (DKA) accompanies any other intra-abdominal pathology. Serum amylase/lipase levels are commonly used in order to rule out acute pancreatitis in patients having abdominal pain in DKA. A more specific and noninvasive diagnostic tool - amylase/creatinine clearance ratio (ACCR) - can be used to rule out pancreatitis in patients with DKA. A 14-year-old girl was admitted with abdominal pain and nausea. She had been followed up for type 1 diabetes mellitus for the last 5 years. The serum amylase levels were increased up to 687 U/L (normal: 28-120 U/L) on the third day of hospitalization. Simultaneous serum and urinary amylase concentrations were measured, and ACCR was calculated (1.2%). The diagnosis of pancreatitis was ruled out. The serum amylase levels decreased in the following days, and she was discharged. ACCR determination is a simple and specific test to diagnose pancreatitis, especially in patients with DKA.

  5. Influence of Cotyledons upon α-Amylase Activity in Pea Embryonic Axes

    PubMed Central

    Davis, Bill D.

    1979-01-01

    α-Amylase activity remained relatively low in the axes of intact etiolated pea seedlings; the activity was predominantly confined to the epicotyl. Starch accumulated slightly. When the cotyledons were removed and the axes cultured on medium containing no carbon source, the starch reserve in the axes disappeared within a few days. This was accompanied by a 10- to 15-fold increase in α-amylase activity, in the absence of additional epicotyl growth. The phenonemon was observed for axes throughout early growth, although the relative accumulation of α-amylase activity in cultured axes was less for older seedlings. This change was attributed to a reduced response by nongrowing tissues. There was no corresponding change in β-amylase activity. These observations, described for several varieties of peas, demonstrate the control of cotyledons upon the utilization of stored reserves within the axis, with α-amylase as a key enzyme. PMID:16660848

  6. Amylase/creatinine clearance ratio in diabetic ketoacidosis: a case report.

    PubMed

    Boybeyi, Ozlem; Ergür, Ayça Törel; Dursun, Zarife Esra; Gülerman, Fulya

    2014-11-01

    Diabetic ketoacidosis (DKA) accompanies any other intra-abdominal pathology. Serum amylase/lipase levels are commonly used in order to rule out acute pancreatitis in patients having abdominal pain in DKA. A more specific and noninvasive diagnostic tool - amylase/creatinine clearance ratio (ACCR) - can be used to rule out pancreatitis in patients with DKA. A 14-year-old girl was admitted with abdominal pain and nausea. She had been followed up for type 1 diabetes mellitus for the last 5 years. The serum amylase levels were increased up to 687 U/L (normal: 28-120 U/L) on the third day of hospitalization. Simultaneous serum and urinary amylase concentrations were measured, and ACCR was calculated (1.2%). The diagnosis of pancreatitis was ruled out. The serum amylase levels decreased in the following days, and she was discharged. ACCR determination is a simple and specific test to diagnose pancreatitis, especially in patients with DKA. PMID:25153214

  7. Alpha-amylase inhibitor changes during processing of sweet potato and taro tubers.

    PubMed

    Rekha, M R; Padmaja, G

    2002-01-01

    Alpha-amylase inhibitor changes during processing of sweet potatoes (Ipomoea batatas) and taro (Colocasia esculenta) indicated that varietal differences profoundly influence the thermal inactivation profile. The alpha-amylase inhibitors of taro were almost totally inactivated during oven drying of the chips at 90 degrees C and 100 degrees C for 24 h, while 0.8-10% activity was retained in sweet potato chips under the same conditions. Relatively better thermal stability was exhibited by the sweet potato amylase inhibitors at lower temperatures (70 and 80 degrees C) as well. Cooking by boiling the tuber pieces in water resulted in retention of 29-59% amylase inhibitor in sweet potato and 11-16% in taro. Microwave baking was a better method for inactivation of amylase inhibitors in these tubers. Flour prepared from the tubers retained only trivial amounts of the inhibitor.

  8. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases.

    PubMed

    Janeček, Štefan; Svensson, Birte; MacGregor, E Ann

    2014-04-01

    α-Amylase (EC 3.2.1.1) represents the best known amylolytic enzyme. It catalyzes the hydrolysis of α-1,4-glucosidic bonds in starch and related α-glucans. In general, the α-amylase is an enzyme with a broad substrate preference and product specificity. In the sequence-based classification system of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α-amylase family, forms clan GH-H together with families GH70 and GH77 that, however, contain no α-amylase. Within the family GH13, the α-amylase specificity is currently present in several subfamilies, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, and, possibly in a few more that are not yet defined. The α-amylases classified in family GH13 employ a reaction mechanism giving retention of configuration, share 4-7 conserved sequence regions (CSRs) and catalytic machinery, and adopt the (β/α)8-barrel catalytic domain. Although the family GH57 α-amylases also employ the retaining reaction mechanism, they possess their own five CSRs and catalytic machinery, and adopt a (β/α)7-barrel fold. These family GH57 attributes are likely to be characteristic of α-amylases from the family GH119, too. With regard to family GH126, confirmation of the unambiguous presence of the α-amylase specificity may need more biochemical investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases.

  9. Study of conformation and thermodynamics of α-amylase interaction with ethylene in vitro.

    PubMed

    Hu, Yiwei; Zhang, Guangxian; Zhang, Fengxiu

    2016-10-01

    In this article, the conformation and thermodynamics of α-amylase interaction with ethylene in vitro were investigated. The ultraviolet (UV) absorption showed a strong peak of α-amylase treated with 6.04, 29.32 and 262.11μmolL(-1) ethylene appears at ~222nm and a weak peak at 278nm blue-shifted 1nm. Circular dichroism (CD) spectra indicated that the conformations of α-amylase treated with 29.32 and 262.11μmolL(-1) ethylene were obviously changed in which α-helix content were decreased by 20 and 31% respectively, and β-sheet, β-turn and random coil contents were increased by contrast. Fluorescence spectra suggested that the peak intensities of α-amylase at 342nm were obviously increased with the ethylene increase from 6.04 to 525.75μmolL(-1) and more than control group. The binding constants K between ethylene and α-amylase were 3.318×10(6), 4.407×10(6) and 5.125×10(6)Lmol(-1) at 288, 298 and 308K, respectively. And the calculated values of ΔH(0) and ΔS(0) are positive, which suggests that the interaction between ethylene and α-amylase is an endothermic reaction. The negative ΔG(0) values implied that the direct effect of ethylene on α-amylase conformation was spontaneous. The possible reason is that ethylene molecules were easily embedded into the interior of α-amylase in term of the hydrophobic force between α-amylase and ethylene, causing the conformation and thermodynamics changes of α-amylase. PMID:27551859

  10. Low serum amylase and obesity, diabetes and metabolic syndrome: A novel interpretation

    PubMed Central

    Nakajima, Kei

    2016-01-01

    For the last decade, low serum amylase (hypoamylasemia) has been reported in certain common cardiometabolic conditions such as obesity, diabetes (regardless of type), and metabolic syndrome, all of which appear to have a common etiology of insufficient insulin action due to insulin resistance and/or diminished insulin secretion. Some clinical studies have shown that salivary amylase may be preferentially decreased in obese individuals, whereas others have revealed that pancreatic amylase may be preferentially decreased in diabetic subjects with insulin dependence. Despite this accumulated evidence, the clinical relevance of serum, salivary, and pancreatic amylase and the underlying mechanisms have not been fully elucidated. In recent years, copy number variations (CNVs) in the salivary amylase gene (AMY1), which range more broadly than the pancreatic amylase gene (AMY2A and AMY2B), have been shown to be well correlated with salivary and serum amylase levels. In addition, low CNV of AMY1, indicating low salivary amylase, was associated with insulin resistance, obesity, low taste perception/satiety, and postprandial hyperglycemia through impaired insulin secretion at early cephalic phase. In most populations, insulin-dependent diabetes is less prevalent (minor contribution) compared with insulin-independent diabetes, and obesity is highly prevalent compared with low body weight. Therefore, obesity as a condition that elicits cardiometabolic diseases relating to insulin resistance (major contribution) may be a common determinant for low serum amylase in a general population. In this review, the novel interpretation of low serum, salivary, and pancreas amylase is discussed in terms of major contributions of obesity, diabetes, and metabolic syndrome. PMID:27022442

  11. Characterization of two coleopteran α-amylases and molecular insights into their differential inhibition by synthetic α-amylase inhibitor, acarbose.

    PubMed

    Channale, Sonal M; Bhide, Amey J; Yadav, Yashpal; Kashyap, Garima; Pawar, Pankaj K; Maheshwari, V L; Ramasamy, Sureshkumar; Giri, Ashok P

    2016-07-01

    Post-harvest insect infestation of stored grains makes them unfit for human consumption and leads to severe economic loss. Here, we report functional and structural characterization of two coleopteran α-amylases viz. Callosobruchus chinensis α-amylase (CcAmy) and Tribolium castaneum α-amylase (TcAmy) along with their interactions with proteinaceous and non-proteinaceous α-amylase inhibitors. Secondary structural alignment of CcAmy and TcAmy with other coleopteran α-amylases revealed conserved motifs, active sites, di-sulfide bonds and two point mutations at spatially conserved substrate or inhibitor-binding sites. Homology modeling and molecular docking showed structural differences between these two enzymes. Both the enzymes had similar optimum pH values but differed in their optimum temperature. Overall, pattern of enzyme stabilities were similar under various temperature and pH conditions. Further, CcAmy and TcAmy differed in their substrate affinity and catalytic efficiency towards starch and amylopectin. HPLC analysis detected common amylolytic products like maltose and malto-triose while glucose and malto-tetrose were unique in CcAmy and TcAmy catalyzed reactions respectively. At very low concentrations, wheat α-amylase inhibitor was found to be superior over the acarbose as far as complete inhibition of amylolytic activities of CcAmy and TcAmy was concerned. Mechanism underlying differential amylolytic reaction inhibition by acarbose was discussed. PMID:27132147

  12. Characterization of two coleopteran α-amylases and molecular insights into their differential inhibition by synthetic α-amylase inhibitor, acarbose.

    PubMed

    Channale, Sonal M; Bhide, Amey J; Yadav, Yashpal; Kashyap, Garima; Pawar, Pankaj K; Maheshwari, V L; Ramasamy, Sureshkumar; Giri, Ashok P

    2016-07-01

    Post-harvest insect infestation of stored grains makes them unfit for human consumption and leads to severe economic loss. Here, we report functional and structural characterization of two coleopteran α-amylases viz. Callosobruchus chinensis α-amylase (CcAmy) and Tribolium castaneum α-amylase (TcAmy) along with their interactions with proteinaceous and non-proteinaceous α-amylase inhibitors. Secondary structural alignment of CcAmy and TcAmy with other coleopteran α-amylases revealed conserved motifs, active sites, di-sulfide bonds and two point mutations at spatially conserved substrate or inhibitor-binding sites. Homology modeling and molecular docking showed structural differences between these two enzymes. Both the enzymes had similar optimum pH values but differed in their optimum temperature. Overall, pattern of enzyme stabilities were similar under various temperature and pH conditions. Further, CcAmy and TcAmy differed in their substrate affinity and catalytic efficiency towards starch and amylopectin. HPLC analysis detected common amylolytic products like maltose and malto-triose while glucose and malto-tetrose were unique in CcAmy and TcAmy catalyzed reactions respectively. At very low concentrations, wheat α-amylase inhibitor was found to be superior over the acarbose as far as complete inhibition of amylolytic activities of CcAmy and TcAmy was concerned. Mechanism underlying differential amylolytic reaction inhibition by acarbose was discussed.

  13. Expression of α-amylase inhibitors in diploid Triticum species.

    PubMed

    Zoccatelli, Gianni; Sega, Michela; Bolla, Michela; Cecconi, Daniela; Vaccino, Patrizia; Rizzi, Corrado; Chignola, Roberto; Brandolini, Andrea

    2012-12-15

    The aim of the work was to characterize the expression of various α-amylase inhibitors (αAIs), well known anti-nutritional compounds, for the development of healthier diploid wheat-based functional foods. The salt-soluble protein fractions from the seeds of 53 accessions among Triticum monococcum subsp. monococcum (T.m.), T. monococcum subsp. boeoticum (T.b.) and Triticum urartu (T.u.) were analyzed by immunoblotting after SDS-PAGE and Urea-PAGE using polyclonal antibodies (PABs) raised against 0.19 and 0.28 αAIs expressed in bread-wheat. Reverse zymography with human saliva and Tenebrio molitor α-amylases was used to assay inhibition activity. A great variability of the expression of αAI-related proteins was observed among T.b. and T.u. PABs, and reverse zymography revealed different bands, often not correlating with those present in bread-wheat. Two-dimensional electrophoresis followed by immunoblotting and mass spectrometric analysis identified these proteins as αAIs. Interestingly, no signal was observed within T.m. accessions. This makes T.m. an important candidate for the production of novel functional foods.

  14. Amylase Variation in the Salt Marsh Amphipod, GAMMARUS PALUSTRIS

    PubMed Central

    Borowsky, Richard; Borowsky, Betty; Milani, Haleh; Greenberg, Pietra

    1985-01-01

    There are two common alleles at the Amylase-2 locus in populations of Gammarus palustris, the salt marsh amphipod. Intensive sampling of individuals from two localities at Jamaica Bay revealed a consistent pattern of heterozygote deficiency.—Five possible sources of heterozygote deficiency were examined in this study. Four of them—selection against heterozygotes, null alleles at the locus, assortative mating for amylase genotype and inbreeding—are inconsistent with the evidence and are rejected. The fifth possibility, Wahlund effects due to genetic differentiation of the population, is tentatively accepted. Although there is no direct evidence for differentiation within this population, separate populations along the Eastern seaboard are highly differentiated in a nonclinal pattern. Furthermore, the Wahlund hypothesis is consistent with observations on differences in degree of deficiency exhibited among collections at Jamaica Bay.—Animals from this population exhibit feeding preferences correlated with genotype. Given the choice of two green algae, Enteromorpha or Ulva, the frequency of the slow allele among individuals choosing Enteromorpha was higher than among those choosing Ulva. This suggests that the animals assort themselves in the field into subpopulations with different allelic frequencies. This assortment could contribute to the maintenance of the polymorphism and to the observed heterozygote deficiency. We hypothesize that genotype influences behavior in this system through the action of enzyme on substrate, which determines the nature of the oligosaccharide pool liberated early in amylolysis. PMID:17246300

  15. Production and Characterization of Amylase from Calvatia gigantea

    PubMed Central

    Kekos, D.; Macris, B. J.

    1983-01-01

    α-Amylase (EC 3.2.1.1) was excreted by Calvatia gigantea in liquid growth media containing different sources of starch. Among the factors affecting enzyme production in shake flasks were the type and the concentration of starch and the nitrogen source supplied. Optimum cultural conditions for maximum enzyme production were: soluble starch concentration, 5%; inoculum size, 3.75 × 105 conidia per ml; 5-day cultivation time at 28 to 30°C. The observed maximum yield of 81.3 U of saccharifying enzyme activity per ml of growth medium was the highest ever reported in the literature for submerged cultures. Partially purified enzyme functioned optimally at pH 4.5 to 5.5 and 53 to 58°C. The activation energy of enzymic hydrolysis of starch in the range of 20 to 40°C was 8,125 cal/mol (ca. 3.41 × 104 J). The apparent Km value of the enzyme at 25°C was 7.68 × 10−4 g/ml. Some of the properties of the enzyme under investigation were similar to those of α-amylases excreted from molds producing large amounts of the enzyme. PMID:16346256

  16. Amylase to creatine clearance ratio in renal diseases.

    PubMed

    Andriulli, A; Bergia, R; Masoero, G; Baiardi, P; Pellegrino, S; Tondolo, M

    1979-07-01

    In order to assess to what extent glomerular or tubular function is involved in the renal handling of amylase and the lysozyme to creatine clearance ratios (CAm/CCr and CLys/CCr) were evaluated in 22 healthy volunteers and in 71 patients with different renal diseases. In normal controls, the mean CAm/CCr was 2.55 +/-1.54 SD, with an upper normal limit of 5.56. A normal ratio was found in patients with glomerulonephritis, with or without a nephrotic syndrome, and in patients with pyelonephritis. A significantly elevated ratio (P less than 0.001) was instead found in patients with uremia and in patients with uremia and in patients with either chronic or acute tubular damage. The CLus/CCr ratio was elevated in all the groups, except in patients with glomerulonephritis and minimal proteinuria. These results show that in humans, as in animals, the amylase filtered load undergoes partial tubular reabsorption. In renal diseases, an increase of the CAm/CCr is caused by either a marked reduction of functioning nephrons or a severe tubular damage, while the glomerular permeability does not seem to be involved. Some other mechanism is probably involved in the elevation of the CAm/CCr during acute pancreatitis.

  17. α-Amylase-assisted extraction of polysaccharides from Panax ginseng.

    PubMed

    Sun, Lin; Wu, Di; Ning, Xin; Yang, Guang; Lin, Ziheng; Tian, Meihong; Zhou, Yifa

    2015-04-01

    In this paper, α-amylase-assisted extraction was used to isolate the polysaccharide that remained in hot water-extracted ginseng. The yield of the polysaccharide was 9.0%, almost equal to that of the hot water-extracted polysaccharide. Using anion exchange and gel permeation chromatography, the polysaccharide was fractionated into a neutral polysaccharide fraction and six pectic fractions. The neutral fraction accounted for 76% of the polysaccharide and contained both amylopectin and amylose. The pectic polysaccharide fractions were identified to be arabinogalactan, type-I rhamnogalacturonan and homogalacturonan-type pectin by high-performance liquid chromatography, Fourier transform-infrared and nuclear magnetic resonance analysis. Structural and lymphocyte proliferation activity results showed that these polysaccharides were different from those extracted by hot water, indicating that ginseng contains complex polysaccharides with diverse structures, which results in its diverse pharmacological activities. The α-amylase-assisted extraction is a novel method for preparing ginseng polysaccharides and could be applied toward the further study and exploration of ginseng. These findings provide technical and theoretical support for ginseng pharmacology.

  18. High-activity barley alpha-amylase by directed evolution.

    PubMed

    Wong, Dominic W S; Batt, Sarah B; Lee, Charles C; Robertson, George H

    2004-10-01

    Barley alpha-amylase isozyme 2 was cloned into and constitutively secreted by Saccharomyces cervisiae. The gene coding for the wild-type enzyme was subjected to directed evolution. Libraries of mutants were screened by halo formation on starch agar plates, followed by high-throughput liquid assay using dye-labeled starch as the substrate. The concentration of recombinant enzyme in the culture supernatant was determined by immunodetection, and used for the calculation of specific activity. After three rounds of directed evolution, one mutant (Mu322) showed 1000 times the total activity and 20 times the specific activity of the wild-type enzyme produced by the same yeast expression system. Comparison of the amino acid sequence of this mutant with the wild type revealed five substitutions: Q44H, R303K and F325Y in domain A, and T94A and R128Q in domain B. Two of these mutations. Q44H and R303K, result in amino acids highly conserved in cereal alpha-amylases. R303K and F325Y are located in the raw starch-binding fragment of the enzyme molecule. PMID:15635937

  19. Salivary Alpha-Amylase Reactivity in Breast Cancer Survivors

    PubMed Central

    Wan, Cynthia; Couture-Lalande, Marie-Ève; Narain, Tasha A.; Lebel, Sophie; Bielajew, Catherine

    2016-01-01

    The two main components of the stress system are the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. While cortisol has been commonly used as a biomarker of HPA functioning, much less attention has been paid to the role of the SAM in this context. Studies have shown that long-term breast cancer survivors display abnormal reactive cortisol patterns, suggesting a dysregulation of their HPA axis. To fully understand the integrity of the stress response in this population, this paper explored the diurnal and acute alpha-amylase profiles of 22 breast cancer survivors and 26 women with no history of cancer. Results revealed that breast cancer survivors displayed identical but elevated patterns of alpha-amylase concentrations in both diurnal and acute profiles relative to that of healthy women, F (1, 39) = 17.95, p < 0.001 and F (1, 37) = 7.29, p = 0.010, respectively. The average area under the curve for the diurnal and reactive profiles was 631.54 ± 66.94 SEM and 1238.78 ± 111.84 SEM, respectively. This is in sharp contrast to their cortisol results, which showed normal diurnal and blunted acute patterns. The complexity of the stress system necessitates further investigation to understand the synergistic relationship of the HPA and SAM axes. PMID:27023572

  20. Antidiabetic Indian plants: a good source of potent amylase inhibitors.

    PubMed

    Bhat, Menakshi; Zinjarde, Smita S; Bhargava, Shobha Y; Kumar, Ameeta Ravi; Joshi, Bimba N

    2011-01-01

    Diabetes is known as a multifactorial disease. The treatment of diabetes (Type II) is complicated due to the inherent patho-physiological factors related to this disease. One of the complications of diabetes is post-prandial hyperglycemia (PPHG). Glucosidase inhibitors, particularly α-amylase inhibitors are a class of compounds that helps in managing PPHG. Six ethno-botanically known plants having antidiabetic property namely, Azadirachta indica Adr. Juss.; Murraya koenigii (L.) Sprengel; Ocimum tenuflorum (L.) (syn: Sanctum); Syzygium cumini (L.) Skeels (syn: Eugenia jambolana); Linum usitatissimum (L.) and Bougainvillea spectabilis were tested for their ability to inhibit glucosidase activity. The chloroform, methanol and aqueous extracts were prepared sequentially from either leaves or seeds of these plants. It was observed that the chloroform extract of O. tenuflorum; B. spectabilis; M. koenigii and S. cumini have significant α-amylase inhibitory property. Plants extracts were further tested against murine pancreatic, liver and small intestinal crude enzyme preparations for glucosidase inhibitory activity. The three extracts of O. tenuflorum and chloroform extract of M. koenigi showed good inhibition of murine pancreatic and intestinal glucosidases as compared with acarbose, a known glucosidase inhibitor. PMID:18955350

  1. Amylase Variation in the Salt Marsh Amphipod, GAMMARUS PALUSTRIS.

    PubMed

    Borowsky, R; Borowsky, B; Milani, H; Greenberg, P

    1985-10-01

    There are two common alleles at the Amylase-2 locus in populations of Gammarus palustris, the salt marsh amphipod. Intensive sampling of individuals from two localities at Jamaica Bay revealed a consistent pattern of heterozygote deficiency.-Five possible sources of heterozygote deficiency were examined in this study. Four of them-selection against heterozygotes, null alleles at the locus, assortative mating for amylase genotype and inbreeding-are inconsistent with the evidence and are rejected. The fifth possibility, Wahlund effects due to genetic differentiation of the population, is tentatively accepted. Although there is no direct evidence for differentiation within this population, separate populations along the Eastern seaboard are highly differentiated in a nonclinal pattern. Furthermore, the Wahlund hypothesis is consistent with observations on differences in degree of deficiency exhibited among collections at Jamaica Bay.-Animals from this population exhibit feeding preferences correlated with genotype. Given the choice of two green algae, Enteromorpha or Ulva, the frequency of the slow allele among individuals choosing Enteromorpha was higher than among those choosing Ulva. This suggests that the animals assort themselves in the field into subpopulations with different allelic frequencies. This assortment could contribute to the maintenance of the polymorphism and to the observed heterozygote deficiency. We hypothesize that genotype influences behavior in this system through the action of enzyme on substrate, which determines the nature of the oligosaccharide pool liberated early in amylolysis. PMID:17246300

  2. Effects of dietary amylase and sucrose on productivity of cows fed low-starch diets.

    PubMed

    Vargas-Rodriguez, C F; Engstrom, M; Azem, E; Bradford, B J

    2014-07-01

    Recent studies have observed positive effects of both sucrose and exogenous amylase on the productivity of dairy cattle. Our objective was to evaluate direct effects and interactions of amylase and sucrose on dry matter intake (DMI), milk production, and milk components. Forty-eight multiparous Holstein cows between 70 and 130 d in milk were randomly assigned to each of 4 pens (12 cows/pen). Pens were randomly assigned to treatment sequence in a 4 × 4 Latin square design, balanced for carryover effects. Treatment periods were 28 d, with 24 d for diet adaptation and 4d for sample and data collection. The treatments were a control diet (36% NDF and 21% starch), the control diet with amylase [0.5 g/kg of DM; Ronozyme RumiStar 600 (CT); DSM Nutritional Products Ltd., Basel, Switzerland], a diet with sucrose replacing corn grain at 2% of DM, and the sucrose diet with amylase (0.5 g/kg of DM). All data were analyzed with mixed models, including the fixed effects of sugar, amylase, and their interaction, and the random effects of period and pen. Milk data included the random effects of cow nested within pen and pen × period to provide the error term for the pen-level analysis. Dry matter intake was not affected by treatments. Milk yield and milk composition were not altered by the inclusion of sucrose or amylase; however, a tendency for an amylase × sucrose interaction was observed for milk protein content, reflecting slightly lower milk protein concentrations for amylase and sucrose treatments (3.00 and 2.99 ± 0.03%) compared with the control and amylase + sucrose treatments (3.02 and 3.03 ± 0.03%). Solids-corrected and fat-corrected milk yields were not significantly altered by treatment, although the direct effect of amylase approached significance for both variables, suggesting possible small increases with amylase supplementation (~0.5 kg/d). Feed efficiency (energy-corrected milk divided by dry matter intake) numerically increased with either amylase (1.57 ± 0

  3. The influence of nitrogen sources on the alpha-amylase productivity of Aspergillus oryzae in continuous cultures.

    PubMed

    Pedersen, H; Nielsen, J

    2000-03-01

    The influence of the nitrogen source on the alpha-amylase productivity of Aspergillus oryzae was quantified in continuous cultivations. Both inorganic and complex nitrogen sources were investigated and glucose was used as the carbon and energy sources. For production of alpha-amylase, nitrate was shown to be inferior to ammonia as a nitrogen source. A mixture of ammonia and complex nitrogen sources, such as yeast extract or casein hydrolysate, was better than with ammonia as the sole nitrogen source. Even a low concentration of casein hydrolysate (0.05 g l(-1)) resulted in a 35% increase in the alpha-amylase productivity. The higher alpha-amylase productivity during growth on casein hydrolysate was not caused by increased transcription of the alpha-amylase genes but was caused by a faster secretion of alpha-amylase or by a lower binding of alpha-amylase to the biomass.

  4. Where do animal alpha-amylases come from? An interkingdom trip.

    PubMed

    Da Lage, Jean-Luc; Danchin, Etienne G J; Casane, Didier

    2007-08-21

    Alpha-amylases are widely found in eukaryotes and prokaryotes. Few amino acids are conserved among these organisms, but at an intra-kingdom level, conserved protein domains exist. In animals, numerous conserved stretches are considered as typical of animal alpha-amylases. Searching databases, we found no animal-type alpha-amylases outside the Bilateria. Instead, we found in the sponge Reniera sp. and in the sea anemone Nematostella vectensis, alpha-amylases whose most similar cognate was that of the amoeba Dictyostelium discoideum. We found that this "Dictyo-type" alpha-amylase was shared not only by these non-Bilaterian animals, but also by other Amoebozoa, Choanoflagellates, and Fungi. This suggested that the Dictyo-type alpha-amylase was present in the last common ancestor of Unikonts. The additional presence of the Dictyo-type in some Ciliates and Excavates, suggests that horizontal gene transfers may have occurred among Eukaryotes. We have also detected putative interkingdom transfers of amylase genes, which obscured the historical reconstitution. Several alternative scenarii are discussed.

  5. An analytical method for measuring α-amylase activity in starch-containing foods.

    PubMed

    Koyama, Kazuo; Hirao, Takashi; Toriba, Akira; Hayakawa, Kazuichi

    2013-05-01

    The quality of starch-containing foods may be significantly impaired by contamination with very small amounts of α-amylase, which can enzymatically hydrolyze the starch and cause viscosity loss. Thus, for quality control, it is necessary to have an analytical method that can measure low amylase activity. We developed a sensitive analytical method for measuring the activity of α-amylase (from Bacillus subtilis) in starch-containing foods. The method consists of six steps: (1) crude extraction of α-amylase by centrifugation and filtration; (2) α-amylase purification by desalting and anion-exchange chromatography; (3) reaction of the purified amylase with boron-dipyrromethene (BODIPY)-labeled substrate, which releases a fluorescent fragment upon digestion of the substrate, thus avoiding interference from starch derivatives in the sample; (4) stopping the reaction with acetonitrile; (5) reversed-phase solid-phase extraction of the fluorescent substrate to remove contaminating dye and impurities; and (6) separation and measurement of BODIPY fluorescence by HPLC. The proposed method could quantify α-amylase activities as low as 10 mU/mL, which is enough to reduce the viscosity of starch-containing foods.

  6. Effects of alpha-amylase on in vitro growth of Legionella pneumophila.

    PubMed Central

    Bortner, C A; Miller, R D; Arnold, R R

    1983-01-01

    Sterile parotid saliva inhibited growth of Legionella pneumophila on solid media, and the salivary component involved in this inhibition has been shown to be amylase. Disk diffusion and well plate assays were used to study possible mechanisms for this effect. The amylolytic activity of saliva copurified with inhibitory activity, and both activities were sensitive to proteinase K digestion and heat treatment. In addition, purified alpha-amylase from several sources (bacteria, fungi, porcine pancreas, and human saliva) exhibited similar activity. Incorporation of charcoal or bovine serum albumin into media blocked inhibition by amylase. Replacement of Bacto-Agar with Noble agar (both from Difco Laboratories) prevented growth inhibition in the absence of starch. However, when corn starch was present with Noble agar, amylase-induced growth inhibition occurred. Purification of starch by washing with methanol eliminated some toxic component. The toxic component from starch could be recovered from the methanol wash and inhibited growth of L. pneumophila in the absence of amylase activity. The results suggest that toxic substances exist in media components which may be unmasked during salivary amylase digestion of starch. This effect may explain, in part, the difficulty in recovery of the organism from clinical specimens containing amylase. PMID:6190756

  7. Berry polyphenols inhibit α-amylase in vitro: identifying active components in rowanberry and raspberry.

    PubMed

    Grussu, Dominic; Stewart, Derek; McDougall, Gordon J

    2011-03-23

    Polyphenol-rich extracts from a range of berries inhibited α-amylase in vitro, but the most effective were from raspberry and rowanberry (IC50 values of 21.0 and 4.5 μg/mL, respectively). The inhibitory components were examined by different approaches. Extracts from yellow and red raspberries were equally able to inhibit α-amylase. Because the yellow raspberry extracts effectively lacked anthocyanins, this suggested that they were not crucial for amylase inhibition. Notably, however, higher levels of other phenolic components in yellow raspberries (particularly, ellagitannins) did not increase amylase inhibition. Amylase inhibition in rowanberry was recovered in a fraction enriched in proanthocyanidins (PACs). Inhibition was ameliorated by bovine serum albumin, suggesting that PACs acted by binding to amylase. Co-incubation of rowanberry PACs with acarbose reduced the concentration of acarbose required for effective amylase inhibition. Such synergistic interactions could have implications for the current clinical use of acarbose for postprandial glycaemic control in type-2 diabetics.

  8. Hormonal Regulation of alpha-Amylase Gene Transcription in Wild Oat (Avena fatua L.) Aleurone Protoplasts.

    PubMed

    Zwar, J A; Hooley, R

    1986-02-01

    The time of appearance and relative amounts of alpha-amylase mRNA in wild oat (Avena fatua L.) aleurone protoplasts incubated with 1 micromolar gibberellin A(4) (GA(4)) were closely correlated with the amounts of alpha-amylase enzyme secreted by the protoplasts. In the absence of GA(4), or when protoplasts were incubated with 25 micromolar abscisic acid (ABA) together with 1 micromolar GA(4) no alpha-amylase mRNA was detected and only very low levels of alpha-amylase were secreted. Nuclei were isolated in high yields (65-71%) from aleurone protoplasts and in an in vitro transcription system displayed characteristics of a faithful DNA-dependent RNA synthesizing system. The time course of incorporation of [(3)H]-UTP suggested that the RNA synthesized was mainly ;run off' transcription and therefore that the transcripts produced in vitro were those being synthesized in the protoplasts at the times when the nuclei were isolated. By hybridizing in vitro synthesized [(32)P]RNA to barley alpha-amylase cDNA and control filters we have estimated that 90 +/- 10 ppm of the transcripts synthesized by nuclei isolated from GA(4) treated protoplasts can be attributed to alpha-amylase sequences and that statistically insignificant amounts of these transcripts are obtained from control and GA(4) plus ABA treatments. The results suggest that GA(4) and ABA influence the transcription of alpha-amylase genes in aleurone protoplasts of wild oat.

  9. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature.

    PubMed

    Hakata, Makoto; Kuroda, Masaharu; Miyashita, Tomomi; Yamaguchi, Takeshi; Kojima, Mikiko; Sakakibara, Hitoshi; Mitsui, Toshiaki; Yamakawa, Hiromoto

    2012-12-01

    High temperature impairs rice (Oryza sativa) grain filling by inhibiting the deposition of storage materials such as starch, resulting in mature grains with a chalky appearance, currently a major problem for rice farming in Asian countries. Such deterioration of grain quality is accompanied by the altered expression of starch metabolism-related genes. Here we report the involvement of a starch-hydrolyzing enzyme, α-amylase, in high temperature-triggered grain chalkiness. In developing seeds, high temperature induced the expression of α-amylase genes, namely Amy1A, Amy1C, Amy3A, Amy3D and Amy3E, as well as α-amylase activity, while it decreased an α-amylase-repressing plant hormone, ABA, suggesting starch to be degraded by α-amylase in developing grains under elevated temperature. Furthermore, RNAi-mediated suppression of α-amylase genes in ripening seeds resulted in fewer chalky grains under high-temperature conditions. As the extent of the decrease in chalky grains was highly correlated to decreases in the expression of Amy1A, Amy1C, Amy3A and Amy3B, these genes would be involved in the chalkiness through degradation of starch accumulating in the developing grains. The results show that activation of α-amylase by high temperature is a crucial trigger for grain chalkiness and that its suppression is a potential strategy for ameliorating grain damage from global warming.

  10. alpha. -Amylase of Clostridium thermosulfurogenes EM1: Nucleotide sequence of the gene, processing of the enzyme, and comparison to other. alpha. -amylases

    SciTech Connect

    Bahl, H.; Burchhardt, G.; Spreinat, A.; Haeckel, K.; Wienecke, A.; Antranikian, G.; Schmidt, B. )

    1991-05-01

    The nucleotide sequence of the {alpha}-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes Em1 suggested that the {alpha}-amylase is translated form mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature {alpha}-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 {alpha}-amylase with those from other bacterial and eukaryotic {alpha}-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca{sup 2+}-binding site (consensus region I) of this Ca{sub 2+}-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the {alpha}-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the {beta}-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains.

  11. Serum amylase and lipase in the evaluation of acute abdominal pain.

    PubMed

    Chase, C W; Barker, D E; Russell, W L; Burns, R P

    1996-12-01

    The purpose of this study was to determine 1) the incidence and magnitude of elevation in admission serum amylase and lipase levels in extrapancreatic etiologies of acute abdominal pain, and 2) the test most closely associated with the diagnosis of acute pancreatitis. Serum amylase and lipase levels were obtained in 306 patients admitted for evaluation of acute abdominal pain. Patients were categorized by anatomic location of identified pathology. Logistic regression analysis was used to compare the enzyme levels between patient groups and to determine the correlation between elevation in serum amylase and lipase. Twenty-seven (13%) of 208 patients with an extrapancreatic etiology of acute abdominal pain demonstrated an elevated admission serum amylase level with a maximum value of 385 units (U)/L (normal range 30-110 U/L). Twenty-six (12.5%) of these 208 patients had an elevated admission serum lipase value with a maximum of 3685 U/L (normal range 5-208 U/L). Of 48 patients with abdominal pain resulting from acute pancreatitis, admission serum amylase ranged from 30 to 7680 U/L and lipase ranged from 5 to 90,654 U/L. Both serum amylase and lipase elevations were positively associated with a correct diagnosis of acute pancreatitis (P < 0.001) with diagnostic efficiencies of 91 and 94 per cent, respectively. A close correlation between elevation of admission serum amylase and lipase was observed (r = 0.87) in both extrapancreatic and pancreatic disease processes. Serum amylase and lipase levels may be elevated in nonpancreatic disease processes of the abdomen. Significant elevations (greater than three times upper limit of normal) in either enzyme are uncommon in these disorders. The strong correlation between elevations in the two serum enzymes in both pancreatic and extrapancreatic etiologies of abdominal pain makes them redundant measures. Serum lipase is a better test than serum amylase either to exclude or to support a diagnosis of acute pancreatitis.

  12. Alpha-amylase production is induced by sulfuric acid in rice aleurone cells.

    PubMed

    Mitsunaga, Shin-ichiro; Kobayashi, Midori; Fukui, Satoe; Fukuoka, Kayoko; Kawakami, Osamu; Yamaguchi, Junji; Ohshima, Masahiro; Mitsui, Toshiaki

    2007-12-01

    The hydrolytic enzyme alpha-amylase (EC 3.2.1.1) is produced mainly in aleurone cells of germinating cereals, and the phytohormone gibberellin (GA) is essential for its induction. However, in rice (Oryza sativa L.), sulfuric acid (H(2)SO(4)) induces alpha-amylase production in aleurone tissue even in the absence of GA. Here, the pre-treatment of rice aleurone cells with H(2)SO(4) and incubation in water induced alpha-amylase activity, as if the cells had been incubated in GA solution. PMID:17988885

  13. Limitation of amylase creatinine clearance ratio as a diagnostic test for postoperative pancreatitis.

    PubMed

    Wapnick, S; Evans, M I; Hadas, N; Grosberg, S J

    1980-05-01

    The mean +/- S.E.M. ratio of amylase to creatinine clearance significantly increased at 24 hours after operations on the stomach and gallbladder but not after operations at sites remote from the abdominal cavity. Clinically, the elevated amylase to creatinine clearance ratio was not accompanied by pancreatitis. In dogs, surgical handling of the pancreas alone caused a significant increase in this measurement. The amylase to creatinine clearance ratio is not likely to be helpful in predicting the rare, but serious, postoperative complication of pancreatitis.

  14. Capillary electrophoresis as a screening tool for alpha amylase inhibitors in plant extracts

    PubMed Central

    Hamdan, Imad I.; Afifi, Fatima U.

    2010-01-01

    Capillary electrophoresis (CE) method was developed for screening plant extract for potential alpha amylase (AA) inhibitory activity. The method was validated against a well established UV method. Overall, the proposed method was shown able to detect plants with significant alpha amylase inhibitory activity but not those with rather clinically insignificant activities. Fifty plant species were screened using both the proposed CE method and the UV method and seven plant species were found to possess significant AA inhibitory activities. Two plant species were proved to have alpha amylase inhibitory activity for the first time. PMID:24115900

  15. Seeking new mutation clues from Bacillus licheniformis amylase by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lu, Tao

    2009-07-01

    Amylase is one of the most important industrial enzymes in the world. Researchers have been searching for a highly thermal stable mutant for many years, but most focus on point mutations of one or few nitrogenous bases. According to this molecular dynamic simulation of amylase from Bacillus licheniformis (BLA), the deletion of some nitrogenous bases would be more efficacious than point mutations. The simulation reveals strong fluctuation of the BLA structure at optimum temperature. The fluctuation of the outer domains of BLA is stronger than that of the core domain. Molecular simulation provides a clue to design thermal stable amylases through deletion mutations in the outer domain.

  16. Analysis of α-amylase inhibitor from corni fructus by coupling magnetic cross-linked enzyme aggregates of α-amylase with HPLC-MS.

    PubMed

    Liu, Liangliang; Cen, Yin; Liu, Fang; Yu, Jingang; Jiang, Xinyu; Chen, Xiaoqing

    2015-07-15

    As a carrier-free immobilization strategy, magnetic cross-linked enzyme aggregates (MCLEAs) showed improved enzyme activity, stability and magnetic response. In this study, MCLEAs of α-amylase (MCLEAs-amylase) was prepared under optimized conditions and characterized with scanning electron microscope and vibrating sample magnetometer. The prepared MCLEAs-amylase showed an amorphous structure and the saturation magnetization was 33.5emu/g, which was sufficient for magnetic separation. Then MCLEAs-amylase coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS) was utilized to screen and identify α-amylase inhibitors from ethyl acetate extract of corni fructus. The experiment conditions were optimized. At the optimum conditions (incubation time: 10min, pH: 7.0 and temperature: 20°C), querciturone was successfully screened and identified with weak non-specific binding. The screening result was verified by inhibition assays and the IC50 value of querciturone was 22.5μg/mL. This method provided a rapid way to screen active compounds from natural products.

  17. Salivary alpha amylase levels in youths with anxiety disorders.

    PubMed

    Yorbik, Ozgur; Mutlu, Caner; Ozturk, Ozlem; Altinay, Derya Koc; Tanju, Ilhan Asya; Kurt, Ismail

    2016-01-30

    It is suggested that salivary alpha-amylase (sAA) may be a marker of sympathoadrenal medullary system activity. Thus, it can be a possible relationship sAA and anxiety disorders. The aim of this study is to investigate sAA in children and adolescents with anxiety disorders and healthy controls. Thirty drug-free youths, aged 8-16 years, who were diagnosed as any anxiety disorders and 36 healthy controls with similar socio-demographic characteristics were included in this study. The sAA was found to be significantly increased in anxiety group compared to control group. However, there was no correlation between sAA and any anxiety scores of the scales. Present study suggested that anxiety disorders in youths may be associated with increased autonomic activity. PMID:26699881

  18. Optimization of alpha-amylase immobilization in calcium alginate beads.

    PubMed

    Ertan, Figen; Yagar, Hulya; Balkan, Bilal

    2007-01-01

    alpha-Amylase enzyme was produced by Aspergillus sclerotiorum under SSF conditions, and immobilized in calcium alginate beads. Effects of immobilization conditions, such as alginate concentration, CaCl(2) concentration, amount of loading enzyme, bead size, and amount of beads, on enzymatic activity were investigated. Optimum alginate and CaCl(2) concentration were found to be 3% (w/v). Using a loading enzyme concentration of 140 U mL(-1), and bead (diameter 3 mm) amount of 0.5 g, maximum enzyme activity was observed. Beads prepared at optimum immobilization conditions were suitable for up to 7 repeated uses, losing only 35% of their initial activity. Among the various starches tested, the highest enzyme activity (96.2%) was determined in soluble potato starch hydrolysis for 120 min at 40 degrees C.

  19. Functionality of porous starch obtained by amylase or amyloglucosidase treatments.

    PubMed

    Dura, A; Błaszczak, W; Rosell, C M

    2014-01-30

    Porous starch is attracting very much attention for its absorption and shielding ability in many food applications. The effect of two different enzymes, fungal α-amylase (AM) or amyloglucosidase (AMG), on corn starch at sub-gelatinization temperature was studied as an alternative to obtain porous starch. Biochemical features, thermal and structural analyses of treated starches were studied. Microscopic analysis of the granules confirmed the enzymatic modification of the starches obtaining porous structures with more agglomerates in the case of AMG treated starches. Several changes in thermal properties and hydrolysis kinetics were observed in enzymatically modified starches. Hydration properties were significantly affected by enzymatic modification being greater influenced by AMG activity, and the opposite trend was observed in the pasting properties. Overall, results showed that enzymatic modification at sub-gelatinization temperatures really offer an attractive alternative for obtaining porous starch granules to be used in a variety of foods applications.

  20. Comparison of some recent methods for the differentiation of elevated serum amylase and the detection of macroamylasaemia.

    PubMed

    Van Deun, A; Cobbaert, C; Van Orshoven, A; Claeys, G; Lissens, W

    1989-09-01

    A pancreatic isoamylase method (Pancreatic Alpha-Amylase EPS, Boehringer) that uses monoclonal antibodies showed almost complete immunoinhibition of salivary (S) amylase activity with only a minor decrease of pancreatic (P) amylase activity. The method displayed good sensitivity and linearity. The correlations of P-amylase activities determined by this technique with a wheat-germ inhibition method and with agarose electrophoresis followed by densitometric scanning were excellent. However, both the wheat-germ and monoclonal inhibition methods failed to detect macroamylasaemia. To recognise macroamylases we used the PEG precipitation method and confirmed the results with agarose electrophoresis. Of 161 serum samples with elevated amylase activities, only four out of five with macroamylasaemia were detected by the PEG precipitation method. No false positives were demonstrated. After PEG precipitation of 28 samples, P-amylase determinations were performed on the supernatants. Again, four out of five with macroamylasaemia were recognised. We consider P-amylase measurement and, when macroamylasaemia is suspected, the combined use of the PEG precipitation method and P-amylase or total amylase determination to be the most practical way to differentiate between elevated serum amylase levels.

  1. Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment

    PubMed Central

    Wang, Shihui; Lin, Chaoyang; Liu, Yun; Shen, Zhicheng; Jeyaseelan, Jenasia; Qin, Wensheng

    2016-01-01

    Aspergillus niger is the most commonly used fungus for commercial amylase production, the increase of amylase activity will be beneficial to the amylase industry. Herein we report a high α-amylase producing (HAP) A. niger WLB42 mutated from A. niger A4 by ethyl methanesulfonate treatment. The fermentation conditions for the amylase production were optimized. The results showed that both the amylase activity and total protein content reached highest after 48-h incubation in liquid medium using starch as the sole carbon source. The enzyme production reached maximum at temperature of 30°C, pH 7, with 40 g/L starch in the medium inoculated with 1.4% v/v spore. When 0.3% w/v urea was added to the liquid medium as a nitrogen source, the amylase activity was elevated by 20%. Nine monosaccharides and derivatives were tested for α-amylase induction, glucose was the best inducer. Furthermore, the enzymology characterization of amylase was conducted. The molecular weight of amylase was determined to be 50 kD by SDS-PAGE. The amylase had maximum activity at 45°C and pH 7. The activity could be dramatically triggered by adding 1 mM Co2+, increased to 250%. The activity was inhibited by detergents SDS and Triton X-100. Six different brands of starch were tested for amylase activity, the results demonstrated that the more soluble of the starch, the higher hydrolyzability of the substrate by amylase. PMID:27335681

  2. Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment.

    PubMed

    Wang, Shihui; Lin, Chaoyang; Liu, Yun; Shen, Zhicheng; Jeyaseelan, Jenasia; Qin, Wensheng

    2016-01-01

    Aspergillus niger is the most commonly used fungus for commercial amylase production, the increase of amylase activity will be beneficial to the amylase industry. Herein we report a high α-amylase producing (HAP) A. niger WLB42 mutated from A. niger A4 by ethyl methanesulfonate treatment. The fermentation conditions for the amylase production were optimized. The results showed that both the amylase activity and total protein content reached highest after 48-h incubation in liquid medium using starch as the sole carbon source. The enzyme production reached maximum at temperature of 30°C, pH 7, with 40 g/L starch in the medium inoculated with 1.4% v/v spore. When 0.3% w/v urea was added to the liquid medium as a nitrogen source, the amylase activity was elevated by 20%. Nine monosaccharides and derivatives were tested for α-amylase induction, glucose was the best inducer. Furthermore, the enzymology characterization of amylase was conducted. The molecular weight of amylase was determined to be 50 kD by SDS-PAGE. The amylase had maximum activity at 45°C and pH 7. The activity could be dramatically triggered by adding 1 mM Co(2+), increased to 250%. The activity was inhibited by detergents SDS and Triton X-100. Six different brands of starch were tested for amylase activity, the results demonstrated that the more soluble of the starch, the higher hydrolyzability of the substrate by amylase. PMID:27335681

  3. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes.

    PubMed

    Karimi, M; Biria, D

    2016-06-01

    The impact of adding soluble starch on biodegradation of n-alkanes (C10-C14) by Bacillus subtilis TB1 was investigated. Gas chromatography was employed to measure the residual hydrocarbons in the system. It was observed that the efficiency of biodegradation improved with the presence of starch and the obtained residual hydrocarbons in the system were 53% less than the samples without starch. The produced bacterial enzymes were studied through electrophoresis and reverse zymography for explaining the observations. The results indicated that the produced amylase by the bacteria can degrade hydrocarbons and the same was obtained by the application of a commercial alpha amylase sample. In addition, in silico docking of alpha-amylase with n-alkanes with different molecular weights was studied by Molegro virtual docker which showed high negative binding energies and further substantiated the experimental observations. Overall, the findings confirmed the catalytic effect of alpha amylase on n-alkanes degradation.

  4. Purification of extrachloroplastic. beta. -amylase from leaves of starchless and wild type Arabidopsis

    SciTech Connect

    Somerville, C.; Monroe, J.; Preiss, J. )

    1989-04-01

    Amylase activity in crude leaf extracts from starchless mutants of Arabidopsis thaliana is 5 to 10 fold higher than in the wild type (WT) when plants are grown under a 12 h photoperiod. Visualized on native PAGE, the increased activity is attributed primarily to a previously characterized extrachloroplastic {beta}-(exo)amylase. The {beta}-amylases from phosoglucomutase deficient (starchless) and WT leaves were purified to homogeneity in two steps utilizing polyethylene glycol fractionation, and cyclohexaamylose affinity chromatography. The enzyme from both mutant and WT leaves had negligible activity toward either {beta}-limit dextrin or pullulan. The specific activities of both purified enzymes were similar indicating that the protein is over-expressed in the mutant. Preliminary antibody neutralization experiments suggest that the two {beta}-amylases are not different.

  5. Biochemical features and kinetic properties of α-amylases from marine organisms.

    PubMed

    Homaei, Ahmad; Ghanbarzadeh, Mehri; Monsef, Ferial

    2016-02-01

    Marine organisms have the ability of producing enzymes with unique properties compared to those of the same enzymes from terrestrial organisms. α-Amylases are among the most important extracellular enzymes found in various groups of organisms such as plants, animals and microorganisms. They play important roles in their carbohydrates metabolism of each organism. Microbial production of α-amylases is more effective than other sources of the enzyme. Many microorganisms are known to produce α-amylase including bacteria, yeasts, fungi and actinomycetes. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. This review deals with what is known about the kinetics, biochemical properties and applications of these enzymes that have only been found in them and not in other α-amylases, and discussing their mechanistic and regulatory implications.

  6. From carbohydrates to drug-like fragments: Rational development of novel α-amylase inhibitors.

    PubMed

    Al-Asri, Jamil; Fazekas, Erika; Lehoczki, Gábor; Perdih, Andrej; Görick, Cornelia; Melzig, Matthias F; Gyémánt, Gyöngyi; Wolber, Gerhard; Mortier, Jérémie

    2015-10-15

    Starch catabolism leading to high glucose level in blood is highly problematic in chronic metabolic diseases, such as type II diabetes and obesity. α-Amylase catalyzes the hydrolysis of starch, increasing blood sugar concentration. Its inhibition represents a promising therapeutic approach to control hyperglycaemia. However, only few drug-like molecule inhibitors without sugar moieties have been discovered so far, and little information on the enzymatic mechanism is available. This work aims at the discovery of novel small α-amylase binders using a systematic in silico methodology. 3D-pharmacophore-based high throughput virtual screening of small compounds libraries was performed to identify compounds with high α-amylase affinity. Twenty-seven compounds were selected and biologically tested, revealing IC50 values in the micromolar range and ligand efficiency higher than the one of the bound form of acarbose, which is used as a reference for α-amylase inhibition.

  7. The Use of Commercially Available Alpha-Amylase Compounds to Inhibit and Remove Staphylococcus aureus Biofilms

    PubMed Central

    Craigen, Bradford; Dashiff, Aliza; Kadouri, Daniel E

    2011-01-01

    Staphylococcus aureus, a versatile human pathogen, is commonly associated with medical device infections. Its capacity to establish and maintain these infections is thought to be related to its ability to form adherent biofilms. In this study, commercially available α-amylase compounds from various biological sources were evaluated for their ability to reduce and prevent biofilm formation of several S. aureus isolates. Our data demonstrates that α-amylase compounds can rapidly detach biofilms of S. aureus, as well as inhibit biofilm formation. Our data also demonstrates that α-amylase compounds have an ability to reduce and disassociate S. aureus cell-aggregates grown in liquid suspension. These findings suggest that commercially available α-amylase compounds could be used in the future to control S. aureus biofilm-related infections. PMID:21760865

  8. Augmentation of cholinergic-mediated amylase release by forskolin in mouse parotid gland

    SciTech Connect

    Watson, E.L.; Singh, J.C.; Jacobson, K.L.

    1985-12-30

    Cholinergic-mediated amylase release in mouse parotid acini was augmented by forskolin; the potency but not the maximal response to carbachol was altered. Amylase released by carbachol plus forskolin was dependent on extracellular calcium and was mimicked by the calcium ionophore, A23187 plus forskolin. Forskolin was also shown to enhance carbachol-stimulated /sup 45/Ca/sup 2 +/ uptake into isolated acini. Hydroxylamine, nitroprusside, and 8-bromo-c-GMP each in combination with forskolin mimicked the effects of carbachol plus forskolin on amylase release. In the presence of carbachol (10/sup -8/M) forskolin did not augment c-AMP levels. However, in the presence of carbachol (5 x 10/sup -7/ M) or hydroxylamine (50 ..mu..M) forskolin did significantly augment c-AMP accumulation. These results suggest that calcium and c-GMP may mediate the augmentation of cholinergic-mediated amylase release by effects on c-AMP metabolism. 21 references, 1 figure, 3 tables.

  9. Biochemical features and kinetic properties of α-amylases from marine organisms.

    PubMed

    Homaei, Ahmad; Ghanbarzadeh, Mehri; Monsef, Ferial

    2016-02-01

    Marine organisms have the ability of producing enzymes with unique properties compared to those of the same enzymes from terrestrial organisms. α-Amylases are among the most important extracellular enzymes found in various groups of organisms such as plants, animals and microorganisms. They play important roles in their carbohydrates metabolism of each organism. Microbial production of α-amylases is more effective than other sources of the enzyme. Many microorganisms are known to produce α-amylase including bacteria, yeasts, fungi and actinomycetes. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. This review deals with what is known about the kinetics, biochemical properties and applications of these enzymes that have only been found in them and not in other α-amylases, and discussing their mechanistic and regulatory implications. PMID:26657843

  10. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes.

    PubMed

    Karimi, M; Biria, D

    2016-06-01

    The impact of adding soluble starch on biodegradation of n-alkanes (C10-C14) by Bacillus subtilis TB1 was investigated. Gas chromatography was employed to measure the residual hydrocarbons in the system. It was observed that the efficiency of biodegradation improved with the presence of starch and the obtained residual hydrocarbons in the system were 53% less than the samples without starch. The produced bacterial enzymes were studied through electrophoresis and reverse zymography for explaining the observations. The results indicated that the produced amylase by the bacteria can degrade hydrocarbons and the same was obtained by the application of a commercial alpha amylase sample. In addition, in silico docking of alpha-amylase with n-alkanes with different molecular weights was studied by Molegro virtual docker which showed high negative binding energies and further substantiated the experimental observations. Overall, the findings confirmed the catalytic effect of alpha amylase on n-alkanes degradation. PMID:26971168

  11. Characterization of extracellular amylase produced by haloalkalophilic strain Kocuria sp. HJ014.

    PubMed

    Soto-Padilla, Marisela Y; Gortáres-Moroyoqui, Pablo; Cira-Chávez, Luis A; Levasseur, Anthony; Dendooven, Luc; Estrada-Alvarado, María Isabel

    2016-08-01

    The haloalkaliphilic bacterium Kocuria sp. (HJ014) has the ability to produce extracellular amylase. The aim of this study was to purify and characterize this protein. The amylase enzyme with a specific activity of 753,502 U/mg was purified 5.7- fold using Sepharose 4B and Sephacryl S-300 gel filtration columns. The molecular weight of the enzyme was 45,000 Da as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The amylase showed maximum activity at pH 9 and 50°C in the presence of 3.5 M NaCl. The Km was 3.0 mg/ml and Vmax 90.09 U/ml. It was found that extracellular amylase from Kocuria sp. has a high industrial potential. PMID:26813880

  12. Synergistic action of. alpha. -amylase and glucoamylase on hydrolysis of starch

    SciTech Connect

    Fujii, M.; Kawamura, Y.

    1985-03-01

    Synergistic action of ..alpha..-amylase and glucoamylase on hydrolysis of starch is modeled by the kinetic equations presented in this paper. At the early stage of the reaction ..alpha..-amylase acts as a contributor of newly formed non-reducing ends of starch molecules to glucoamylase by splitting the original starch molecules. This is expressed by the simultaneous differential equations which consist of each rate equation for ..alpha.. amylase and glucoamylase. After the molecular weight of the substrate decreases to the value of about 5000, which is obtained experimentally in this work, the action of ..alpha.. amylase can be neglected and the rate of formation of glucose obeys only the rate equation for glucoamylase. 5 references.

  13. Relationship among physiological quality, heterosis, and amylase gene expression in maize seeds.

    PubMed

    Oliveira, G E; Von Pinho, E V R; Andrade, T; Souza, J C; Caixeta, F; Ferreira, R A D C

    2015-07-31

    In this study, we analyzed heterosis, amylase enzyme gene expression, and the physiological quality of maize seeds with different genotypes and sizes, which were subjected to aging and not subjected to aging. We used seeds from 2 maize lines that differed with regard to physiological quality, the hybrid, and the reciprocal hybrid; they were classified into 2 sizes and were subjected to aging and not subjected to aging. Physiological quality was assessed by performing tests for germination, emergence, emergence speed index, and artificial aging. Expressions of the genes alpha amylase B73, alpha amylase (LOC542522), isoamylase mRNA clone 353244, and the endogenous controls ubiquitin and alcohol dehydrogenase in the seeds were studied using quantitative real-time-polymerase chain reaction. We observed heterosis for seed quality and for expression of amylase genes in the genotypes studied. We found no difference in seed quality between large and small seeds.

  14. Effect of oilseed cakes on alpha-amylase production by Bacillus licheniformis CUMC305.

    PubMed Central

    Krishnan, T; Chandra, A K

    1982-01-01

    The effects of oilseed cakes on extracellular thermostable alpha-amylase production by Bacillus licheniformis CUMC305 was investigated. Each oilseed cake was made of groundnut, mustard, sesame, linseed, coconut copra, madhuca, or cotton. alpha-Amylase production was considerably improved in all instances and varied with the oilseed cake concentration in basal medium containing peptone and beef extract. Maximum increases were effected by a low concentration (0.5 to 1.0%) of groundnut or coconut, a high concentration (3%) of linseed or mustard, and an Rintermediate concentration (2%) of cotton, madhuca, or sesame. The oilseed cakes made of groundnut or mustard could completely replace the conventional peptone-beef extract medium as the fermentation base for the production of alpha-amylase by B. licheniformis. The addition of corn steep liquor to cotton, linseed, sesame, or madhuca cake in the medium improved alpha-amylase production. PMID:6181738

  15. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    PubMed

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-01

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme.

  16. A very high amylase can be benign in paediatric Crohn’s disease

    PubMed Central

    Venkataraman, Devasmitha; Howarth, Lucy; Beattie, Robert Mark; Afzal, Nadeem Ahmad

    2012-01-01

    A 12.5-year-old boy with Crohn’s disease with abdominal pain had a raised amylase of 1835 IU/l with normal lipase levels. Ultrasound showed no evidence of inflammation of pancreas. The amylase to creatinine clearance ratio, was 0.8% (reference interval 2%–5%; >6% consistent with acute pancreatitis; <1.6% with macroamylasemia), suggesting he had raised serum amylase with a corresponding reduced clearance of amylase in his urine, positively supporting the diagnosis of macroamylasemia. Macroamylasemia has no clinical significance other than misdiagnosis as acute pancreatitis. Awareness of this condition is important and a positive diagnosis should always be made to avoid unnecessary changes in treatments. PMID:22783000

  17. The frequency of marcroamylasemia and the diagnostic value of the amylase to creatinine clearance ratio in patients with elevated serum amylase activity.

    PubMed

    Dürr, H K; Bindrich, D; Bode, J C

    1977-01-01

    190 patients with elevated serum amylase levels were tested for macroamylasemia and the amylase to creatinine clearance ratio. Macroamylasemia was found in 3 patients. In these patients macroamylasemia persisted after the total activity of serum amylase had fallen to nearly normal levels. The Cam/Ccr-ratios were determined 14 times in the 3 macroamylasemic patients. Only one of the 14 values was clearly less than 1%. Cam/Ccr-ratios above 4% were found in 83 patients. In 56 of them the diagnosis of acute pancreatitis could not be confirmed. 19 out of 46 patients with the established diagnosis of acute pancreatitis had Cam/Ccr-ratios below 4%. Cam/Ccr-ratios below 1% were also found in patients without macroamylasemia. It is concluded that high and low Cam/Ccr-ratios are not specific for acute pancreatitis and macroamylasemia, respectively, and--moreover--that a normal Cam/Ccr-ratio excludes neither acute pancreatitis nor macroamylesemia.

  18. New perspectives on the role of α- and β-amylases in transient starch synthesis.

    PubMed

    Wu, Alex Chi; Ral, Jean-Philippe; Morell, Matthew K; Gilbert, Robert G

    2014-01-01

    Transient starch in leaves is synthesized by various biosynthetic enzymes in the chloroplasts during the light period. This paper presents the first mathematical model for the (bio)synthesis of the chain-length distribution (CLD) of transient starch to aid the understanding of this synthesis. The model expresses the rate of change of the CLD in terms of the actions of the enzymes involved. Using this to simulate the experimental CLD with different enzyme combinations is a new means to test for enzymes that are significant to the rate of change of the CLD during synthesis. Comparison between the simulated CLD from different enzyme combinations and the experimental CLD in the leaves of the model plant Arabidopsis thaliana indicate α-amylase, in addition to the core starch biosynthetic enzymes, is also involved in the modification of glucans for the synthesis of insoluble starch granules. The simulations suggest involvement of β-amylase, in the absence of α-amylase in mutants, slows the rate of attaining a crystalline-competent CLD for crystallization of glucans to form insoluble starch. This suggests a minor role of β-amylase in shaping normal starch synthesis. The model simulation predicts that debranching of glucans is an efficient mechanism for the attainment of crystalline-competent CLD; however, attaining this is still possible, albeit slower, through combinations of α- and β-amylase in the absence of isoamylase-type debranching enzyme. In Arabidopsis defective in one of the isoamylase-type debranching enzymes, the impact of α-amylase in starch synthesis is reduced, while β-amylase becomes significantly involved, slowing the rate of synthesis in this mutant. Modeling of transient starch CLD brings to light previously unrecognized but significant effects of α- and β-amylase on the rate of transient starch synthesis.

  19. Subsite mapping of the binding region of alpha-amylases with a computer program.

    PubMed

    Gyémánt, Gyöngyi; Hovánszki, György; Kandra, Lili

    2002-11-01

    A computer program has been evaluated for subsite map calculations of depolymerases. The program runs in windows and uses the experimentally determined bond cleavage frequencies (BCFs) for determination of the number of subsites, the position of the catalytic site and for calculation of subsite binding energies. The apparent free energy values were optimized by minimization of the differences of the measured and calculated BCF data. The program called suma (SUbsite Mapping of alpha-Amylases) is freely available for research and educational purposes via the Internet (E-mail: gyemant@tigris.klte.hu). The advantages of this program are demonstrated through alpha-amylases of different origin, e.g. porcine pancreatic alpha-amylase (PPA) studied in our laboratory, in addition to barley and rice alpha-amylases published in the literature. Results confirm the popular 'five subsite model' for PPA with three glycone and two aglycone binding sites. Calculations for barley alpha-amylase justify the '6 + 2 + (1) model' prediction. The binding area of barley alpha-amylase is composed of six glycone, two aglycone binding sites followed by a barrier subsite at the reducing end of the binding site. Calculations for rice alpha-amylase represent an entirely new map with a '(1) + 2 + 5 model', where '(1)' is a barrier subsite at the nonreducing end of the binding site and there are two glycone and five aglycone binding sites. The rice model may be reminiscent of the action of the bacterial maltogenic amylase, that is, suggesting an exo-mechanism for this enzyme.

  20. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant α-Amylase in Pichia pastoris.

    PubMed

    Gandhi, Sivasangkary; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Chor Leow, Thean; Oslan, Siti Nurbaya

    2015-01-01

    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL(-1) at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg(-1). The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0-8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t₁/₂) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification. PMID:26090417

  1. High-resolution α-amylase assay combined with high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy for expedited identification of α-amylase inhibitors: proof of concept and α-amylase inhibitor in cinnamon.

    PubMed

    Okutan, Leyla; Kongstad, Kenneth T; Jäger, Anna K; Staerk, Dan

    2014-11-26

    Type 2 diabetes affects millions of people worldwide, and new improved drugs or functional foods containing selective α-amylase inhibitors are needed for improved management of blood glucose. In this article the development of a microplate-based high-resolution α-amylase inhibition assay with direct photometric measurement of α-amylase activity is described. The inhibition assay is based on porcine pancreatic α-amylase with 2-chloro-4-nitrophenyl-α-D-maltotriose as substrate, which this gives a stable, sensitive, and cheap inhibition assay as requested for high-resolution purposes. In combination with HPLC-HRMS-SPE-NMR, this provides an analytical platform that allows simultaneous chemical and biological profiling of α-amylase inhibitors in plant extracts. Proof-of-concept with an artificial mixture of six compounds-of which three are known α-amylase inhibitors-showed that the high-resolution α-amylase inhibition profiles allowed detection of sub-microgram amounts of the α-amylase inhibitors. Furthermore, the high-resolution α-amylase inhibition assay/HPLC-HRMS-SPE-NMR platform allowed identification of cinnamaldehyde as the α-amylase inhibitor in cinnamon (Cinnamomum verum Presl.).

  2. [Diagnostic significance of index alpha-amylase/glucose in amniotic fluid in prediction of fetal maturity].

    PubMed

    Krasomski, G; Sałacińska, B; Broniarczyk, D; Swiatkowska, E

    2001-09-01

    An increase in alpha-amylase activity with parallel decrease in glucose concentration in amniotic fluid is observed during pregnancy. This interdependence is a theoretical basis for using an alpha-amylase/glucose index in fetal maturity evaluation. The aim of the study was to investigate usefulness of the alpha-amylase/glucose index in amniotic fluid in prenatal fetal maturity diagnosis. The study was carried out on 180 pregnant women, chosen by random selection, hospitalized in Polish Mother's Health Centre Hospital in the period from 15.06.1994 to 31.12.1995. 223 samples of amniotic fluid were tested for glucose concentration and alpha-amylase activity. It was found that the alpha-amylase/glucose < 6.0 index indicates a possibility of RDS occurring in neonates born before 72 hours of performed determination. The alpha-amylase/glucose > or = 6.0 index has high diagnostic value (95.8%) in prenatal prediction of fetal lung maturity. PMID:11757480

  3. [Microbial alpha-amylases: physicochemical properties, substrate specificity and domain structure].

    PubMed

    Avdiiuk, K V; Varbanets', L D

    2013-01-01

    The current literature data on producers, physico-chemical properties and substrate specificity of a-amylases produced by microbes from different taxonomic groups such as bacteria, fungi and yeasts are discussed in the survey. Synthesis of alpha-amylase majority is an inducible process which is stimulated in the presence of starch or products of its hydrolysis. It is possible to increase enzymes activity level by optimization of cultivation conditions of strains-producers. alpha-Amylases, isolated from different sources are distinguished in their physico-chemical properties, particularly in their molecular weights, pH- and thermooptimums, inhibitors and activators. The enzymes hydrolyse soluble starch, amylose, amylopectin, glycogen, maltodextrins, alpha- and beta3-cyclodextrins and other carbohydrate substrates. It is well known that alpha-amylases belong to GH-13 family of glycosyl-hydrolases, which contain the catalytic domain A as (beta/alpha)8-barrel. In addition to domain A, alpha-amylases contain two other domains: B and C, which are localized approximately on opposite sides of (beta/alpha)8-barrel. Most of the known alpha-amylases contain calcium ion, which is located on the surface between domains A and B and plays an important role in stability and activity of the enzyme.

  4. The small GTPase Rab33A participates in regulation of amylase release from parotid acinar cells.

    PubMed

    Imai, Akane; Tsujimura, Maiko; Yoshie, Sumio; Fukuda, Mitsunori

    2015-06-01

    Amylase is released from exocrine parotid acinar cells via typical exocytosis. Exocytosis of amylase-containing granules occurs through several steps, including formation, maturation, and transport of granules. These steps are thought to be regulated by members of the small GTPase Rab family. We previously demonstrated that Rab27 and its effectors mediate amylase release from parotid acinar cells, but the functional involvement of other Rab proteins in exocrine granule exocytosis remains largely unknown. Here, we studied isoproterenol (IPR)-induced amylase release from parotid acinar cells to investigate the possible involvement of Rab33A, which was recently suggested to regulate exocytosis in hippocampal neurons and PC12 cells. Rab33A was endogenously expressed in parotid acinar cells and present in secretory granules and the Golgi body. Functional ablation of Rab33A with anti-Rab33A antibody or a dominant-negative Rab33A-T50N mutant significantly reduced IPR-induced amylase release. Our results indicated that Rab33A is a novel component of IPR-stimulated amylase secretion from parotid acinar cells.

  5. Cholecystokinin receptors: disparity between phosphoinositide breakdown and amylase releasing activity of CCK analogues in pancreas

    SciTech Connect

    Lin, C.W.; Grant, D.; Bianchi, B.; Miller, T.; Witte, D.; Shue, Y.K.; Nadzan, A.

    1986-03-05

    Cholecystokinin (CCK) peptides are a family of hormones which also occur in brain. In pancreas CCK stimulates the release of amylase, a process that is dependent on the mobilization of intracellular Ca/sup 2 +/. Recent evidence suggests that inositol 1,4,5-trisphosphate, the breakdown product of phosphatidylinositol 4,5-bisphosphate, is responsible for the rise in intracellular Ca/sup 2 +/. Their laboratory has developed assays to study synthetic CCK analogues using radioligand binding, PI breakdown and amylase release. They have shown that there are good correlations among these three assay systems for the carboxy terminal fragments of CCK/sub 8/. Recently, they have discovered synthetic analogues of CCK/sub 4/ that are full agonists in amylase release but are ineffective in causing PI breakdown. In particular, A-61576, Boc-5-amino-2-indolemethylene-pent-2-ene-1-oyl-Leu-Asp-Phe-NH/sub 2/, is a full agonist in the amylase releasing assay, but is devoid of PI stimulating activity. A-61576 completely reverses the stimulation of PI response induced by CCK/sub 8/, indicative of an antagonist. Since a mechanism other than the PI breakdown is responsible for amylase release by A-61576, they suggest that separate receptors are responsible for PI breakdown and amylase release.

  6. LEADER 3—Lipase and Amylase Activity in Subjects With Type 2 Diabetes

    PubMed Central

    Steinberg, William M.; Nauck, Michael A.; Zinman, Bernard; Daniels, Gilbert H.; Bergenstal, Richard M.; Mann, Johannes F.E.; Steen Ravn, Lasse; Moses, Alan C.; Stockner, Mette; Baeres, Florian M.M.; Marso, Steven P.; Buse, John B.

    2014-01-01

    Objectives This report from the LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results) trial describes baseline lipase and amylase activity in type 2 diabetic subjects without acute pancreatitis symptoms before randomization to the glucagonlike peptide analog liraglutide or placebo. Methods The LEADER is an international randomized placebo-controlled trial evaluating the cardiovascular safety of liraglutide in 9340 type 2 diabetic patients at high cardiovascular risk. Fasting lipase and amylase activity was assessed at baseline, before receiving liraglutide or placebo, using a commercial assay (Roche) with upper limit of normal values of 63 U/L for lipase and 100 U/L for amylase. Results Either or both enzymes were above the upper limit of normal in 22.7% of subjects; 16.6% (n = 1540) had an elevated lipase level (including 1.2% >3-fold elevated), and 11.8% (n = 1094) had an elevated amylase level (including 0.2% >3-fold elevated). In multivariable regression models, severely reduced kidney function was associated with the largest effect on increasing activity of both. However, even among subjects with normal kidney function, 12.2% and 7.7% had elevated lipase and amylase levels. Conclusions In this large study of type 2 diabetic patients, nearly 25% had elevated lipase or amylase levels without symptoms of acute pancreatitis. The clinician must take these data into account when evaluating abdominal symptoms in type 2 diabetic patients. PMID:25275271

  7. Effect of glucagon infusion on the renal clearance of amylase relative to creatinine.

    PubMed

    Tedesco, F J; Davila, E; Gardner, L B

    1978-10-01

    Recent data seem to support a tubular defect as the mechanism of the elevated renal clearance of amylase relative to creatinine in acute pancreatitis. Glucagon has been proposed by some to be an important factor in this phenomenon. To examine the role of glucagon as this "tubular dysfunction factor", we investigated the effect of intravenously infused glucagon on the fractional excretion of amylase and the tubular handling of a low molecular weight protein, beta2 microglobulin, in normal, healthy volunteers. At glucagon levels far in excess of those seen in pancreatitis, the clearance ratio of beta2 microglobulin relative to creatinine increased, whereas the clearance ratio of amylase relative to creatinine did not increase above the normal range. The dissociation between beta2 microglobulin clearance and amylase clearance allows one to question the theory that tubular dysfunction is the mechanism of the elevated renal clearance of amylase relative to creatinine in acute pancreatitis. Glucagon does not appear to be the sole factor responsible for the elevation of renal clearance of amylase relative to creatinine in acute pancreatitis.

  8. Effect of an herb root extract, herbal dentifrice and synthetic dentifrice on human salivary amylase

    PubMed Central

    Sapra, Gaurav; Vyas, Yogesh Kumar; Agarwal, Rahul; Aggarwal, Ashish; Chandrashekar, K T; Sharma, Kanika

    2013-01-01

    Background: Salivary amylase is an enzyme, which plays a vital role in formation of dental plaque. It has the ability to bind on the bacterial surfaces and to hydrolyze starch, giving rise to products that are transformed into acids leading to dental caries. Suppression of salivary amylase activity can lead to decrease in risk of dental caries and plaque associated periodontal diseases. The aim of this study was to evaluate the effect of an herb, Spilanthes calva (in form of a test dentifrice) on human salivary amylase activity and to compare it with other dentifrices. Materials and Methods: A total of 80 subjects of age 18-35 years were randomly selected and divided equally into 4 groups. Group 1 subjects were assigned to use Test Dentifrice (with S. calva root extract), while Group 2, Group 3, and Group 4 subjects were assigned to use Herbal Dentifrice (Arodent™), Synthetic Dentifrice (Colgate®), and Control Dentifrice respectively. Salivary amylase activity was determined by Bernfeld method in each group, before and after using the given dentifrices. Results: Maximum inhibition of salivary amylase activity was found in the group using test dentifrice as compared to others. Conclusion: The present study indicates that, the root extract of S. calva possess significant inhibitory activity for salivary amylase. Use of S. calva root extract will provide a wider protection against different pathogenic oral microflora. Use of this extract singly or in combination is strongly recommended in the dentifrice formulations. PMID:24130585

  9. Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate.

    PubMed

    Okamoto, Shusuke; Chin, Taejun; Nagata, Keisuke; Takahashi, Tetsuya; Ohara, Hitomi; Aso, Yuji

    2015-05-01

    Several studies on fermentative production of a vinyl monomer itaconic acid from hydrolyzed starch using Aspergillus terreus have been reported. Herein, we report itaconic acid production by Escherichia coli expressing recombinant α-amylase, using soluble starch as its sole carbon source. To express α-amylase in E. coli, we first constructed recombinant plasmids expressing α-amylases by using cell surface display technology derived from two amylolytic bacteria, Bacillus amyloliquefaciens NBRC 15535(T) and Streptococcus bovis NRIC 1535. The recombinant α-amylase from S. bovis (SBA) showed activity at 28°C, which is the optimal temperature for production of itaconic acid, while α-amylase from B. amyloliquefaciens displayed no noticeable activity. E. coli cells expressing SBA produced 0.15 g/L itaconic acid after 69 h cultivation under pH-stat conditions, using 1% starch as the sole carbon source. In fact, E. coli cells expressing SBA had similar growth rates when grown in the presence of 1% glucose or starch, thereby highlighting the expression of an active α-amylase that enabled utilization of starch to produce itaconic acid in E. coli.

  10. Immobilization of α-amylase onto a calix[4]arene derivative: Evaluation of its enzymatic activity.

    PubMed

    Veesar, Irshad Ali; Solangi, Imam Bakhsh; Memon, Shahabuddin

    2015-06-01

    In order to enhance the cost-effectiveness practicability of enzymes in many industries such as pharmaceutical, food, medical and some other technological processes, there is great need to immobilize them onto a solid supports. In this study, a new and efficient immobilization of α-amylase from Saccharomyces cerevisiae has been developed by using the surface functionalization of calix[4]arene as support. A glutaraldehyde-containing amino group functionalized calix[4]arene was used to immobilize α-amylase covalently. In this procedure, imide bonds are formed between amino groups on the protein and aldehyde groups on the calix[4]arene surface. The surface modified support was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM). The effect of various preparation conditions on the immobilized α-amylase process such as immobilization time, enzyme concentration, temperature and pH were investigated. The influence of pH and temperature on the activity of free and immobilized α-amylase was also studied using starch as substrate. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized α-amylase were 25°C and 7, respectively. Compared to the free enzyme, the immobilized α-amylase retained 85% of its original activity and exhibited significant thermal stability than the free one and excellent durability.

  11. Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces variotii.

    PubMed

    Michelin, Michele; Silva, Tony M; Benassi, Vivian M; Peixoto-Nogueira, Simone C; Moraes, Luiz Alberto B; Leão, Juliana M; Jorge, João A; Terenzi, Héctor F; Polizeli, Maria de Lourdes T M

    2010-11-01

    An α-amylase produced by Paecilomyces variotii was purified by DEAE-cellulose ion exchange chromatography, followed by Sephadex G-100 gel filtration and electroelution. The α-amylase showed a molecular mass of 75 kDa (SDS-PAGE) and pI value of 4.5. Temperature and pH optima were 60°C and 4.0, respectively. The enzyme was stable for 1 h at 55°C, showing a t₅₀ of 53 min at 60°C. Starch protected the enzyme against thermal inactivation. The α-amylase was more stable in alkaline pH. It was activated mainly by calcium and cobalt, and it presented as a glycoprotein with 23% carbohydrate content. The enzyme preferentially hydrolyzed starch and, to a lower extent, amylose and amylopectin. The K(m) of α-amylase on Reagen® and Sigma® starches were 4.3 and 6.2 mg/mL, respectively. The products of starch hydrolysis analyzed by TLC were oligosaccharides such as maltose and maltotriose. The partial amino acid sequence of the enzyme presented similarity to α-amylases from Bacillus sp. These results confirmed that the studied enzyme was an α-amylase ((1→4)-α-glucan glucanohydrolase).

  12. Improved performance of α-amylase immobilized on poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads.

    PubMed

    He, Tian; Tian, Yong-Le; Qi, Liang; Zhang, Jing; Zhang, Zhi-Qi

    2014-04-01

    α-Amylase was successfully immobilized onto poly(glycidyl methacrylate-co-ethylenedimethacrylate) (PGMA/EDMA) beads with high immobilization efficiency of 87.8%. PGMA/EDMA beads with a relatively uniform diameter of 2-3 μm were prepared by single-step swelling polymerization. After amination with ethanediamine and activation with glutaraldehyde, PGMA/EDMA beads showed commendable α-amylase immobilization capacity of 35.1 mg g(-1) carrier. Compared with free form, immobilized α-amylase had increasement of 12.94 mg mL(-1) for Km and 0.124 mmol mL(-1) min(-1) for Vmax, improved acid resistance (the optimal pH from 7 to 5), presented better thermal stability by retaining 61% activity than 40% at 90 °C, and displayed high operational reusability by retaining 58% of its initial activity after nine uses. Moreover, less than 10% of the free enzyme and more than 80% of the immobilized enzyme retained activity after 180 min pre-incubation at 50 °C. The easy modification, high immobilization efficiency and good properties of immobilized α-amylase in the present study indicate that PGMA/EDMA beads are suitable for α-amylase immobilization. The enhancement of acid resistance and thermo stability is doubtless of benefit for the industrial use of α-amylase.

  13. Sex-related differences in effect of ethanol administration and folic acid supplementation on pancreatic amylase in rats.

    PubMed

    García-Benítez, Olga; Delgado-Villa, Maria Jesús; Murillo, Maria Luisa; Carreras, Olimpia

    2004-01-01

    The present study was designed to determine whether folic acid supplement is sufficient to reverse the negative effects of ethanol consumption on amylase activity during gestation, lactation, and growth. Moreover, this study investigated the sex-related differences in amylase content in the pancreatic tissue, serum, and urine. The animals were randomized into three groups: Control group (CG) received water and a basic rat diet during pregnancy, lactation, and growth; Ethanol-rats (EG) were fed an ethanol diet during pregnancy, the suckling period, and growth until death; and Ethanol + folic acid group (E + FG) were handled the same way as those of EG, except they received a folic acid supplement from reproduction until the end of experimental period. Our results showed that ethanol consumption decreased the pancreatic amylase level in offspring rats at 2 months postpartum. Folic acid supplementation did not alter pancreatic amylase activities. In offspring males, ethanol administration decreased serum amylase activity at 2 months postpartum. Folic acid supplementation in males resulted in higher serum amylase levels than those corresponding to the ethanol-fed group. In females, no significant differences between groups in serum amylase levels were found. Ethanol consumption decreased urinary amylase excretion (at 30 days and 2 months postpartum), but the folic acid-supplemented group showed a more pronounced decrease in urine amylase activity than in the ethanol-fed group. At 30 days postpartum, no sex difference in urinary amylase was identified. However, in general, males showed higher values for urine amylase than females at 2 months postpartum. A folic acid-supplemented diet exerts an advantageous effect on amylase in serum in offspring males at 2 months postpartum of mothers fed ethanol during gestation and lactation periods, because amylase renal absorption is increased. In offspring females, amylase renal absorption is also increased, but we did not observed

  14. Molecular, Biochemical, and Dietary Regulation Features of α-Amylase in a Carnivorous Crustacean, the Spiny Lobster Panulirus argus

    PubMed Central

    Martos-Sitcha, Juan Antonio; Perdomo-Morales, Rolando; Casuso, Antonio; Montero-Alejo, Vivian; García-Galano, Tsai; Martínez-Rodríguez, Gonzalo; Mancera, Juan Miguel

    2016-01-01

    Alpha-amylases are ubiquitously distributed throughout microbials, plants and animals. It is widely accepted that omnivorous crustaceans have higher α-amylase activity and number of isoforms than carnivorous, but contradictory results have been obtained in some species, and carnivorous crustaceans have been less studied. In addition, the physiological meaning of α-amylase polymorphism in crustaceans is not well understood. In this work we studied α-amylase in a carnivorous lobster at the gene, transcript, and protein levels. It was showed that α-amylase isoenzyme composition (i.e., phenotype) in lobster determines carbohydrate digestion efficiency. Most frequent α-amylase phenotype has the lowest digestion efficiency, suggesting this is a favoured trait. We revealed that gene and intron loss have occurred in lobster α-amylase, thus lobsters express a single 1830 bp cDNA encoding a highly conserved protein with 513 amino acids. This protein gives rise to two isoenzymes in some individuals by glycosylation but not by limited proteolysis. Only the glycosylated isoenzyme could be purified by chromatography, with biochemical features similar to other animal amylases. High carbohydrate content in diet down-regulates α-amylase gene expression in lobster. However, high α-amylase activity occurs in lobster gastric juice irrespective of diet and was proposed to function as an early sensor of the carbohydrate content of diet to regulate further gene expression. We concluded that gene/isoenzyme simplicity, post-translational modifications and low Km, coupled with a tight regulation of gene expression, have arose during evolution of α-amylase in the carnivorous lobster to control excessive carbohydrate digestion in the presence of an active α-amylase. PMID:27391425

  15. Molecular, Biochemical, and Dietary Regulation Features of α-Amylase in a Carnivorous Crustacean, the Spiny Lobster Panulirus argus.

    PubMed

    Rodríguez-Viera, Leandro; Perera, Erick; Martos-Sitcha, Juan Antonio; Perdomo-Morales, Rolando; Casuso, Antonio; Montero-Alejo, Vivian; García-Galano, Tsai; Martínez-Rodríguez, Gonzalo; Mancera, Juan Miguel

    2016-01-01

    Alpha-amylases are ubiquitously distributed throughout microbials, plants and animals. It is widely accepted that omnivorous crustaceans have higher α-amylase activity and number of isoforms than carnivorous, but contradictory results have been obtained in some species, and carnivorous crustaceans have been less studied. In addition, the physiological meaning of α-amylase polymorphism in crustaceans is not well understood. In this work we studied α-amylase in a carnivorous lobster at the gene, transcript, and protein levels. It was showed that α-amylase isoenzyme composition (i.e., phenotype) in lobster determines carbohydrate digestion efficiency. Most frequent α-amylase phenotype has the lowest digestion efficiency, suggesting this is a favoured trait. We revealed that gene and intron loss have occurred in lobster α-amylase, thus lobsters express a single 1830 bp cDNA encoding a highly conserved protein with 513 amino acids. This protein gives rise to two isoenzymes in some individuals by glycosylation but not by limited proteolysis. Only the glycosylated isoenzyme could be purified by chromatography, with biochemical features similar to other animal amylases. High carbohydrate content in diet down-regulates α-amylase gene expression in lobster. However, high α-amylase activity occurs in lobster gastric juice irrespective of diet and was proposed to function as an early sensor of the carbohydrate content of diet to regulate further gene expression. We concluded that gene/isoenzyme simplicity, post-translational modifications and low Km, coupled with a tight regulation of gene expression, have arose during evolution of α-amylase in the carnivorous lobster to control excessive carbohydrate digestion in the presence of an active α-amylase. PMID:27391425

  16. Molecular, Biochemical, and Dietary Regulation Features of α-Amylase in a Carnivorous Crustacean, the Spiny Lobster Panulirus argus.

    PubMed

    Rodríguez-Viera, Leandro; Perera, Erick; Martos-Sitcha, Juan Antonio; Perdomo-Morales, Rolando; Casuso, Antonio; Montero-Alejo, Vivian; García-Galano, Tsai; Martínez-Rodríguez, Gonzalo; Mancera, Juan Miguel

    2016-01-01

    Alpha-amylases are ubiquitously distributed throughout microbials, plants and animals. It is widely accepted that omnivorous crustaceans have higher α-amylase activity and number of isoforms than carnivorous, but contradictory results have been obtained in some species, and carnivorous crustaceans have been less studied. In addition, the physiological meaning of α-amylase polymorphism in crustaceans is not well understood. In this work we studied α-amylase in a carnivorous lobster at the gene, transcript, and protein levels. It was showed that α-amylase isoenzyme composition (i.e., phenotype) in lobster determines carbohydrate digestion efficiency. Most frequent α-amylase phenotype has the lowest digestion efficiency, suggesting this is a favoured trait. We revealed that gene and intron loss have occurred in lobster α-amylase, thus lobsters express a single 1830 bp cDNA encoding a highly conserved protein with 513 amino acids. This protein gives rise to two isoenzymes in some individuals by glycosylation but not by limited proteolysis. Only the glycosylated isoenzyme could be purified by chromatography, with biochemical features similar to other animal amylases. High carbohydrate content in diet down-regulates α-amylase gene expression in lobster. However, high α-amylase activity occurs in lobster gastric juice irrespective of diet and was proposed to function as an early sensor of the carbohydrate content of diet to regulate further gene expression. We concluded that gene/isoenzyme simplicity, post-translational modifications and low Km, coupled with a tight regulation of gene expression, have arose during evolution of α-amylase in the carnivorous lobster to control excessive carbohydrate digestion in the presence of an active α-amylase.

  17. Regulation of the synthesis of barley aleurone. cap alpha. -amylase by gibberellic acid and calcium ions

    SciTech Connect

    Jones, R.L.; Carbonell, J.

    1984-09-01

    The effects of gibberellic acid (GA/sub 3/) and calcium ions on the production of ..cap alpha..-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA/sub 3/ or CA/sup 2 +/ show qualitative and quantitative changes in hydrolase production following incubation in either GA/sub 3/ or CA/sup 2 +/ or both. In cubation in H/sub 2/O or CA/sup 2 +/ results in the production of low levels of ..cap alpha..-amylase or acid phosphatase. The addition of GA/sub 3/ to the incubation medium causes 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of CA/sup 2 +/ at 10 millimolar causes a further 8- to 9-fold increase in ..cap alpha..-amylase release and a 75% increase in phosphatase release. Production of ..cap alpha..-amylase isoenzymes is also modified by the levels of GA/sub 3/ and CA/sup 2 +/ in the incubation medium. ..cap alpha..-amylase 2 is produced under all conditions of incubation, while ..cap alpha..-amylase 1 appears only when layers are incubated in GA/sub 3/ or GA/sub 3/ plus CA/sup 2 +/. The synthesis of ..cap alpha..-amylases 3 and 4 requires the presence of both GA/sub 3/ and CA/sup 2 +/ in the incubation medium. Laurell rocket immunoelectrophoresis shows that two distinct groups of ..cap alpha..-amylase antigens are present in incubation media of aleurone layers incubated with both GA/sub 3/ and CA/sup 2 +/, while only one group of antigens is found in media of layers incubated in GA/sub 3/ alone. Strontium ions can be substituted for CA/sup 2 +/ in increasing hydrolase production, although higher concentrations of Sr/sup 2 +/ are requried for maximal response. We conclude that GA/sub 3/ is required for the production of ..cap alpha..-amylase 1 and that both GA/sub 3/ and either CA/sup 2 +/ or Sr/sup 2 +/ are required for the production of isoenzymes 3 and 4 of barley aleurone ..cap alpha..-amylase. 22 references, 8

  18. Evidence that cleavage of the precursor enzyme by autocatalysis caused secretion of multiple amylases by Aspergillus niger.

    PubMed

    Ravi-Kumar, K; Venkatesh, K S; Umesh-Kumar, S

    2004-01-16

    The observation that a mutant strain of Aspergillus niger isolated for protease overproduction accumulated Taka-amylase supported an earlier report that processing of the precursor amylase by protease resulted in the secretion of multiple amylases. Studies using a mutant strain revealed that such processing was not due to aspergillopepsin but to autocatalysis by an inherent protease activity of the precursor and glucoamylase. Alignment of protease sequences with glucoamylase showed regions of consensus with serine carboxypeptidase of A. niger. Thus point mutations in this region due to ultraviolet radiation apparently caused the mutant to evolve with enhanced protease activity that degraded the precursor and accumulated Taka-amylase.

  19. Alpha-Amylase Activity in Blood Increases after Pharmacological, But Not Psychological, Activation of the Adrenergic System

    PubMed Central

    Nater, Urs M.; La Marca, Roberto; Erni, Katja; Ehlert, Ulrike

    2015-01-01

    Background & Aim Alpha-amylase in both blood and saliva has been used as a diagnostic parameter. While studies examining alpha-amylase activity in saliva have shown that it is sensitive to physiological and psychological challenge of the adrenergic system, no challenge studies have attempted to elucidate the role of the adrenergic system in alpha-amylase activity in blood. We set out to examine the impact of psychological and pharmacological challenge on alpha-amylase in blood in two separate studies. Methods In study 1, healthy subjects were examined in a placebo-controlled, double-blind paradigm using yohimbine, an alpha2-adrenergic antagonist. In study 2, subjects were examined in a standardized rest-controlled psychosocial stress protocol. Alpha-amylase activity in blood was repeatedly measured in both studies. Results Results of study 1 showed that alpha-amylase in blood is subject to stronger increases after injection of yohimbine compared to placebo. In study 2, results showed that there was no significant effect of psychological stress compared to rest. Conclusions Alpha-amylase in blood increases after pharmacological activation of the adrenergic pathways suggesting that sympathetic receptors are responsible for these changes. Psychological stress, however, does not seem to have an impact on alpha-amylase in blood. Our findings provide insight into the mechanisms underlying activity changes in alpha-amylase in blood in healthy individuals. PMID:26110636

  20. Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom Archea, Prokaryotes and Eukaryotes.

    PubMed

    Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra

    2014-01-01

    Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry. PMID:25187685

  1. Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom Archea, Prokaryotes and Eukaryotes.

    PubMed

    Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra

    2014-01-01

    Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry.

  2. Phage display selects for amylases with improved low pH starch-binding.

    PubMed

    Verhaert, Raymond M D; Beekwilder, Jules; Olsthoorn, René; van Duin, Jan; Quax, Wim J

    2002-06-13

    Directed evolution of secreted industrial enzymes is hampered by the lack of powerful selection techniques. We have explored surface display to select for enzyme variants with improved binding performance on complex polymeric substrates. By a combination of saturation mutagenesis and phage display we selected alpha-amylase variants, which have the ability to bind starch substrate at industrially preferred low pH conditions. First we displayed active alpha-amylase on the surface of phage fd. Secondly we developed a selection system that is based on the ability of alpha-amylase displaying phages to bind to cross-linked starch. This system was used to probe the involvement of specific beta-strands in substrate interaction. Finally, a saturated library of alpha-amylase mutants with one or more amino acid residues changed in their Cbeta4 starch-binding domain was subjected to phage display selection. Mutant molecules with good starch-binding and hydrolytic capacity could be isolated from the phage library by repeated binding and elution of phage particles at lowered pH value. Apart from the wild type alpha-amylase a specific subset of variants, with only changes in three out of the seven possible positions, was selected. All selected variants could hydrolyse starch and heptamaltose at low pH. Interestingly, variants were found with a starch hydrolysis ratio at pH 4.5/7.5 that is improved relative to the wild type alpha-amylase. These data demonstrate that useful alpha-amylase mutants can be selected via surface display on the basis of their binding properties to starch at lowered pH values.

  3. Purification and characterization of the extracellular. alpha. -amylase from Clostridium acetobutylicum ATCC 824

    SciTech Connect

    Paquet, V.; Croux, C.; Goma, G.; Soucaille, P. )

    1991-01-01

    The extracellular {alpha}-amylase (1,4-{alpha}-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (Mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying {alpha}-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the {alpha}-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. {alpha}-Amylase activity on soluble starch was optimal at pH 5.6 and 45{degree}C. The {alpha}-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a K{sub m} of 3.6 g {center dot} liter{sup {minus}1} and a K{sub cat} of 122 mol of reducing sugars {center dot} s{sup {minus}1} {center dot} mol{sup {minus}1}. The {alpha}-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the {alpha}-amylase.

  4. Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity

    PubMed Central

    Saeidnia, Soodabeh; Ara, Leila; Hajimehdipoor, Homa; Read, Roger W.; Arshadi, Sattar; Nikan, Marjan

    2016-01-01

    α-Amylase inhibitors play a critical role in the control of diabetes and many of medicinal plants have been found to act as α-amylase inhibitors. Swertia genus, belonging to the family Gentianaceae, comprises different species most of which have been used in traditional medicine of several cultures as antidiabetic, anti-pyretic, analgesic, liver and gastrointestinal tonic. Swertia longifolia Boiss. is the only species of Swertia growing in Iran. In the present investigation, phytochemical study of S. longifolia was performed and α-amylase inhibitory effects of the plant fractions and purified compounds were determined. Aerial parts of the plant were extracted with hexane, chloroform, methanol and water, respectively. The components of the hexane and chloroform fractions were isolated by different chromatographic methods and their structures were determined by 1H NMR and 13C NMR data. α-Amylase inhibitory activity was determined by a colorimetric assay using 3,5-dinitro salysilic acid. During phytochemical examination, α-amyrin, β-amyrin and β-sitosterol were purified from the hexane fraction, while ursolic acid, daucosterol and swertiamarin were isolated from chloroform fraction. The results of the biochemical assay revealed α-amylase inhibitory activity of hexane, chloroform, methanol and water fractions, of which the chloroform and methanol fractions were more potent (IC50 16.8 and 18.1 mg/ml, respectively). Among examined compounds, daucosterol was found to be the most potent α-amylase inhibitor (57.5% in concentration 10 mg/ml). With regard to α-amylase inhibitory effects of the plant extracts, purified constituents, and antidiabetic application of the species of Swertia genus in traditional medicine of different countries, S. longifolia seems more appropriate species for further mechanistic antidiabetic evaluations. PMID:27051429

  5. Different polyphenolic components of soft fruits inhibit alpha-amylase and alpha-glucosidase.

    PubMed

    McDougall, Gordon J; Shpiro, Faina; Dobson, Patricia; Smith, Pauline; Blake, Alison; Stewart, Derek

    2005-04-01

    Polyphenol-rich extracts from soft fruits were tested for their ability to inhibit alpha-amylase and alpha-glucosidase. All extracts tested caused some inhibition of alpha-amylase, but there was a 10-fold difference between the least and most effective extracts. Strawberry and raspberry extracts were more effective alpha-amylase inhibitors than blueberry, blackcurrant, or red cabbage. Conversely, alpha-glucosidase was more readily inhibited by blueberry and blackcurrant extracts. The extent of inhibition of alpha-glucosidase was related to their anthocyanin content. For example, blueberry and blackcurrant extracts, which have the highest anthocyanin content, were the most effective inhibitors of alpha-glucosidase. The extracts most effective in inhibiting alpha-amylase (strawberry and raspberry) contain appreciable amounts of soluble tannins. Other tannin-rich extracts (red grape, red wine, and green tea) were also effective inhibitors of alpha-amylase. Indeed, removing tannins from strawberry extracts with gelatin also removed inhibition. Fractionation of raspberry extracts on Sephadex LH-20 produced an unbound fraction enriched in anthocyanins and a bound fraction enriched in tannin-like polyphenols. The unbound anthocyanin-enriched fraction was more effective against alpha-glucosidase than the original extract, whereas the alpha-amylase inhibitors were concentrated in the bound fraction. The LH-20 bound sample was separated by preparative HPLC, and fractions were assayed for inhibition of alpha-amylase. The inhibitory components were identified as ellagitannins using LC-MS-MS. This study suggests that different polyphenolic components of fruits may influence different steps in starch digestion in a synergistic manner. PMID:15796622

  6. Arabidopsis thaliana AMY3 Is a Unique Redox-regulated Chloroplastic α-Amylase*

    PubMed Central

    Seung, David; Thalmann, Matthias; Sparla, Francesca; Abou Hachem, Maher; Lee, Sang Kyu; Issakidis-Bourguet, Emmanuelle; Svensson, Birte; Zeeman, Samuel C.; Santelia, Diana

    2013-01-01

    α-Amylases are glucan hydrolases that cleave α-1,4-glucosidic bonds in starch. In vascular plants, α-amylases can be classified into three subfamilies. Arabidopsis has one member of each subfamily. Among them, only AtAMY3 is localized in the chloroplast. We expressed and purified AtAMY3 from Escherichia coli and carried out a biochemical characterization of the protein to find factors that regulate its activity. Recombinant AtAMY3 was active toward both insoluble starch granules and soluble substrates, with a strong preference for β-limit dextrin over amylopectin. Activity was shown to be dependent on a conserved aspartic acid residue (Asp666), identified as the catalytic nucleophile in other plant α-amylases such as the barley AMY1. AtAMY3 released small linear and branched glucans from Arabidopsis starch granules, and the proportion of branched glucans increased after the predigestion of starch with a β-amylase. Optimal rates of starch digestion in vitro was achieved when both AtAMY3 and β-amylase activities were present, suggesting that the two enzymes work synergistically at the granule surface. We also found that AtAMY3 has unique properties among other characterized plant α-amylases, with a pH optimum of 7.5–8, appropriate for activity in the chloroplast stroma. AtAMY3 is also redox-regulated, and the inactive oxidized form of AtAMY3 could be reactivated by reduced thioredoxins. Site-directed mutagenesis combined with mass spectrometry analysis showed that a disulfide bridge between Cys499 and Cys587 is central to this regulation. This work provides new insights into how α-amylase activity may be regulated in the chloroplast. PMID:24089528

  7. Salivary amylase and stress during stressful environment: three Mars analog mission crews study.

    PubMed

    Rai, Balwant; Kaur, Jasdeep; Foing, Bernard H

    2012-06-14

    After the establishment of the space age physicians, human factors engineers, neurologist and psychologists and their special attention to work on people's capability to meet up the physical, psychological, neuroscience and interpersonal strains of working in space, it has been regarded as an issue that seeks urgent consideration. Not study was conducted on effect of simulated Mars analog environment on stress and salivary amylase. So, this study aimed to confirm whether salivary amylase is act as stress biomarker in crew members who took part in Mars analog mission in an isolated and stressful environment. The 18 crew members were selected who took part in Mars Analog Research Station, Utah. Salivary amylase was measured using a biosensor of salivary amylase monitor and State-Trait Anxiety Inventory score at pre-extravehicular activity, post-extravehicular activity and on before mission. The state and trait anxiety scores at pre-extravehicular activity for each commander were elevated as compared to after extravehicular activity. There were significant differences in the state and trait anxiety scores between before extravehicular activity and after extravehicular activity of Commander and other members, also there were significant differences in values of before-extravehicular activity between commanders and other members. There were significant differences in values of salivary amylase at before extravehicular activity and after extravehicular activity between commander group and other members. There was significant correlation between salivary amylase and state and trait anxiety scores in all groups. Measuring salivary amylase level could be useful for stress assessment of crew members and population working in a stressful and isolated environment.

  8. Hormonal Regulation of α-Amylase Gene Transcription in Wild Oat (Avena fatua L.) Aleurone Protoplasts

    PubMed Central

    Zwar, John A.; Hooley, Richard

    1986-01-01

    The time of appearance and relative amounts of α-amylase mRNA in wild oat (Avena fatua L.) aleurone protoplasts incubated with 1 micromolar gibberellin A4 (GA4) were closely correlated with the amounts of α-amylase enzyme secreted by the protoplasts. In the absence of GA4, or when protoplasts were incubated with 25 micromolar abscisic acid (ABA) together with 1 micromolar GA4 no α-amylase mRNA was detected and only very low levels of α-amylase were secreted. Nuclei were isolated in high yields (65-71%) from aleurone protoplasts and in an in vitro transcription system displayed characteristics of a faithful DNA-dependent RNA synthesizing system. The time course of incorporation of [3H]-UTP suggested that the RNA synthesized was mainly `run off' transcription and therefore that the transcripts produced in vitro were those being synthesized in the protoplasts at the times when the nuclei were isolated. By hybridizing in vitro synthesized [32P]RNA to barley α-amylase cDNA and control filters we have estimated that 90 ± 10 ppm of the transcripts synthesized by nuclei isolated from GA4 treated protoplasts can be attributed to α-amylase sequences and that statistically insignificant amounts of these transcripts are obtained from control and GA4 plus ABA treatments. The results suggest that GA4 and ABA influence the transcription of α-amylase genes in aleurone protoplasts of wild oat. Images Fig. 1 Fig. 2 PMID:16664643

  9. Salivary amylase and stress during stressful environment: three Mars analog mission crews study.

    PubMed

    Rai, Balwant; Kaur, Jasdeep; Foing, Bernard H

    2012-06-14

    After the establishment of the space age physicians, human factors engineers, neurologist and psychologists and their special attention to work on people's capability to meet up the physical, psychological, neuroscience and interpersonal strains of working in space, it has been regarded as an issue that seeks urgent consideration. Not study was conducted on effect of simulated Mars analog environment on stress and salivary amylase. So, this study aimed to confirm whether salivary amylase is act as stress biomarker in crew members who took part in Mars analog mission in an isolated and stressful environment. The 18 crew members were selected who took part in Mars Analog Research Station, Utah. Salivary amylase was measured using a biosensor of salivary amylase monitor and State-Trait Anxiety Inventory score at pre-extravehicular activity, post-extravehicular activity and on before mission. The state and trait anxiety scores at pre-extravehicular activity for each commander were elevated as compared to after extravehicular activity. There were significant differences in the state and trait anxiety scores between before extravehicular activity and after extravehicular activity of Commander and other members, also there were significant differences in values of before-extravehicular activity between commanders and other members. There were significant differences in values of salivary amylase at before extravehicular activity and after extravehicular activity between commander group and other members. There was significant correlation between salivary amylase and state and trait anxiety scores in all groups. Measuring salivary amylase level could be useful for stress assessment of crew members and population working in a stressful and isolated environment. PMID:22554904

  10. Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity.

    PubMed

    Saeidnia, Soodabeh; Ara, Leila; Hajimehdipoor, Homa; Read, Roger W; Arshadi, Sattar; Nikan, Marjan

    2016-01-01

    α-Amylase inhibitors play a critical role in the control of diabetes and many of medicinal plants have been found to act as α-amylase inhibitors. Swertia genus, belonging to the family Gentianaceae, comprises different species most of which have been used in traditional medicine of several cultures as antidiabetic, anti-pyretic, analgesic, liver and gastrointestinal tonic. Swertia longifolia Boiss. is the only species of Swertia growing in Iran. In the present investigation, phytochemical study of S. longifolia was performed and α-amylase inhibitory effects of the plant fractions and purified compounds were determined. Aerial parts of the plant were extracted with hexane, chloroform, methanol and water, respectively. The components of the hexane and chloroform fractions were isolated by different chromatographic methods and their structures were determined by (1)H NMR and (13)C NMR data. α-Amylase inhibitory activity was determined by a colorimetric assay using 3,5-dinitro salysilic acid. During phytochemical examination, α-amyrin, β-amyrin and β-sitosterol were purified from the hexane fraction, while ursolic acid, daucosterol and swertiamarin were isolated from chloroform fraction. The results of the biochemical assay revealed α-amylase inhibitory activity of hexane, chloroform, methanol and water fractions, of which the chloroform and methanol fractions were more potent (IC50 16.8 and 18.1 mg/ml, respectively). Among examined compounds, daucosterol was found to be the most potent α-amylase inhibitor (57.5% in concentration 10 mg/ml). With regard to α-amylase inhibitory effects of the plant extracts, purified constituents, and antidiabetic application of the species of Swertia genus in traditional medicine of different countries, S. longifolia seems more appropriate species for further mechanistic antidiabetic evaluations. PMID:27051429

  11. Salivary Alpha Amylase-Cortisol Asymmetry in Maltreated Youth

    PubMed Central

    Gordis, Elana B.; Granger, Douglas A.; Susman, Elizabeth J.; Trickett, Penelope K.

    2008-01-01

    Background Maltreatment represents a major stressor in the lives of many youth. Given the known effects of stress exposure on subsequent biological stress response systems, researchers have been interested in the effects of maltreatment on the functioning of these systems. Experimental studies reveal that previous exposure to stress affects the symmetry between components of the physiological stress response to subsequent stress. The present study examined asymmetry between salivary alpha amylase (sAA), a sympathetic indicator, and cortisol reactivity to a social stressor among maltreated and comparison youth age 9 to 14 years. Consistent with earlier studies suggesting that stress leads to asymmetry between hypothalamic-pituitary-adrenal axis and sympathetic nervous system activity, we expected that maltreated youth would exhibit greater sAA-cortisol asymmetry than would comparison youth. Methods Forty-seven maltreated and 37 comparison youth visited the lab and engaged in a social stress protocol. We collected 2 saliva samples before the stressor and 4 after, at 0 minutes post stress and every 10 minutes for 30 minutes. Results Maltreatment status moderated the relation between sAA and cortisol activity in response to the stressor. Comparison youth showed significant links between the sAA and cortisol responses; maltreated youth had no significant associations between responses in the two biomarkers. Conclusion The data were consistent with sAA-cortisol asymmetry among maltreated youth. Further research should seek to replicate this finding and investigate its implication for developmental trajectories. PMID:17945232

  12. The amylase-creatinine clearance ratio following cardiopulmonary bypass.

    PubMed

    Murray, W R; Mittra, S; Mittra, D; Roberts, L B; Taylor, K M

    1981-08-01

    The incidence of unexplained pancreatitis in patients dying after cardiac operations has been recorded as 16%, with evidence to implicate ischemia in the pathogenesis of the pancreatitis. Increased amylase--to--creatinine clearance ratios (ACCR), suggesting pancreatic dysfunction, have been reported in patients following nonpulsatile cardiopulmonary bypass (CPB). Pulsatile CPB is increasingly recognized to be a more physiological form of perfusion, particularly with respect to capillary blood flow. In this study the ACCR has been determined before, during, and after cardiac operations performed with both nonpulsatile and pulsatile CPB. Twenty patients undergoing elective cardiac operations were studied. Ten patients had nonpulsatile CPB (nonpulsatile group) and 10 had pulsatile CPB (pulsatile group). The two groups were comparable as regards perioperative variables and perfusion parameters. In both groups the ACCR was estimated preoperatively, on three occasions during the operation, and daily on the first 5 postoperative days. A significant elevation in ACCR was observed in nine of 10 patients in the nonpulsatile group but in only one of 10 patients in the pulsatile group (p less than 0.001). The significant improvement of ACCR stability following pulsatile CPB may indicate that this form of perfusion will reduce the risk of pancreatitis following cardiac operations performed with CPB.

  13. Salivary cortisol, salivary alpha amylase, and the dental anxiety scale.

    PubMed

    Sadi, Hana; Finkelman, Matthew; Rosenberg, Morton

    2013-01-01

    The aim of this study was to investigate the correlation between dental anxiety, salivary cortisol, and salivary alpha amylase (sAA) levels. Furthermore, the aim was to look into individual differences such as age, race, gender, any existing pain, or traumatic dental experience and their effect on dental anxiety. This study followed a cross-sectional design and included a convenience sample of 46. Every patient was asked to complete the Dental Anxiety Scale (DAS) and a basic demographic/dental history questionnaire. A saliva sample, utilizing the method of passive drooling, was then collected in 2-mL cryovials. Samples were analyzed for salivary cortisol and sAA levels by Salimetrics. Significant associations were observed between DAS scores and presence of pain and history of traumatic dental experience. However, no significant correlations were observed between DAS, cortisol, and sAA levels. Our study reconfirms that dental anxiety is associated with presence of pain and a history of traumatic dental experience. On the other hand, our study was the first to our knowledge to test the correlation between the DAS and sAA; nevertheless, our results failed to show any significant correlation between dental anxiety, cortisol, and sAA levels.

  14. The amylase-creatinine clearance ratio following cardiopulmonary bypass.

    PubMed

    Murray, W R; Mittra, S; Mittra, D; Roberts, L B; Taylor, K M

    1981-08-01

    The incidence of unexplained pancreatitis in patients dying after cardiac operations has been recorded as 16%, with evidence to implicate ischemia in the pathogenesis of the pancreatitis. Increased amylase--to--creatinine clearance ratios (ACCR), suggesting pancreatic dysfunction, have been reported in patients following nonpulsatile cardiopulmonary bypass (CPB). Pulsatile CPB is increasingly recognized to be a more physiological form of perfusion, particularly with respect to capillary blood flow. In this study the ACCR has been determined before, during, and after cardiac operations performed with both nonpulsatile and pulsatile CPB. Twenty patients undergoing elective cardiac operations were studied. Ten patients had nonpulsatile CPB (nonpulsatile group) and 10 had pulsatile CPB (pulsatile group). The two groups were comparable as regards perioperative variables and perfusion parameters. In both groups the ACCR was estimated preoperatively, on three occasions during the operation, and daily on the first 5 postoperative days. A significant elevation in ACCR was observed in nine of 10 patients in the nonpulsatile group but in only one of 10 patients in the pulsatile group (p less than 0.001). The significant improvement of ACCR stability following pulsatile CPB may indicate that this form of perfusion will reduce the risk of pancreatitis following cardiac operations performed with CPB. PMID:6166815

  15. Immobilization of diastase α-amylase on nano zinc oxide.

    PubMed

    Antony, Navya; Balachandran, S; Mohanan, P V

    2016-11-15

    Diastase α-amylase extracted from malt, catalyses break down of starch into maltose. It is commonly used in food and fermentation industry. In the present study nano zinc oxide is used as support for this starch hydrolyzing enzyme. IR study revealed that the enzyme got adsorbed via electrostatic interaction with the functional groups on the support. The immobilized enzyme possessed a better heat-resistance than free enzyme. The kinetic parameters were determined using Lineweaver-Burk plot. The immobilized enzyme showed higher Km 2.08mg/ml than the free enzyme whose Km is 0.45±.05mg/ml. The Vmax of immobilized enzyme was about 2.92±.02mg/ml/min and that of free enzyme was 7.14±.02mg/ml/min, showing decrease in activity after immobilization. The immobilized enzyme showed 70% activity after 30days of storage while free enzyme lost its activity within 7days. About 80% of enzyme retained activity after 4 cycles of reuse.

  16. Salivary α-amylase response to endotoxin administration in humans.

    PubMed

    Grigoleit, Jan-Sebastian; Kullmann, Jennifer S; Oberbeck, Reiner; Schedlowski, Manfred; Engler, Harald

    2013-09-01

    Salivary α-amylase (sAA) is a digestive enzyme that plays also an important role in mucosal immunity. Secretion of the sAA is largely under the control of the autonomic nervous system and increases in sAA activity have repeatedly been observed in response to various stressors. The present study aimed at investigating whether and to what extent sAA activity levels are affected during systemic inflammation. Fourteen healthy male volunteers received intravenous injections of either bacterial endotoxin or placebo at two different occasions in a randomized and double-blinded manner. sAA activity was monitored over a period of 6h together with inflammatory markers, plasma norepinephrine (NE) and salivary cortisol levels, vital parameters, and state anxiety. Endotoxin administration elicited a transient inflammatory response reflected by increases in body temperature, whole blood cell counts, and circulating levels of interleukin (IL)-6. The immune changes were accompanied by a transient increase in sAA activity, elevations in salivary cortisol and plasma NE concentrations, as well as increases in heart rate and state anxiety. Although sAA and plasma NE responses showed distinct time courses, a significant positive correlation over the total observation period was found. Whether the observed sAA response is driven by an increase in sympathetic activity or more generally reflects inflammation induced changes in sympathetic-parasympathetic balance remains to be elucidated.

  17. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes.

    PubMed

    Carpenter, Danielle; Dhar, Sugandha; Mitchell, Laura M; Fu, Beiyuan; Tyson, Jess; Shwan, Nzar A A; Yang, Fengtang; Thomas, Mark G; Armour, John A L

    2015-06-15

    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs of AMY2A/AMY2B. Read-depth and experimental data show that different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number. We show that the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations.

  18. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes

    PubMed Central

    Carpenter, Danielle; Dhar, Sugandha; Mitchell, Laura M.; Fu, Beiyuan; Tyson, Jess; Shwan, Nzar A.A.; Yang, Fengtang; Thomas, Mark G.; Armour, John A.L.

    2015-01-01

    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs of AMY2A/AMY2B. Read-depth and experimental data show that different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number. We show that the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations. PMID:25788522

  19. Starch-binding domain affects catalysis in two Lactobacillus alpha-amylases.

    PubMed

    Rodríguez-Sanoja, R; Ruiz, B; Guyot, J P; Sanchez, S

    2005-01-01

    A new starch-binding domain (SBD) was recently described in alpha-amylases from three lactobacilli (Lactobacillus amylovorus, Lactobacillus plantarum, and Lactobacillus manihotivorans). Usually, the SBD is formed by 100 amino acids, but the SBD sequences of the mentioned lactobacillus alpha-amylases consist of almost 500 amino acids that are organized in tandem repeats. The three lactobacillus amylase genes share more than 98% sequence identity. In spite of this identity, the SBD structures seem to be quite different. To investigate whether the observed differences in the SBDs have an effect on the hydrolytic capability of the enzymes, a kinetic study of L. amylovorus and L. plantarum amylases was developed, with both enzymes acting on several starch sources in granular and gelatinized forms. Results showed that the amylolytic capacities of these enzymes are quite different; the L. amylovorus alpha-amylase is, on average, 10 times more efficient than the L. plantarum enzyme in hydrolyzing all the tested polymeric starches, with only a minor difference in the adsorption capacities.

  20. Purification and characterization of amylases from small abalone (Sulculus diversicolor aquatilis).

    PubMed

    Tsao, Ching-Yu; Pan, Yun-Zu; Jiang, Shann-Tzong

    2003-02-12

    Amylases II-1 and II-2 with molecular weights of 55.7 and 65 kDa, respectively, were purified to electrophoretical homogeneity from small abalone (Sulculus diversicolor aquatilis) by ammonium sulfate fractionation, Sepharose CL-6B, CM-Sepharose CL-6B, and Sephacryl S-100 chromatographs. They had optimal temperatures of 45 and 50 degrees C and an optimal pH of 6.0. The purified amylases were stable at pH 5.0-8.0 and 6.0-8.0, respectively. They were completely or partially inhibited by Hg(2+), Cu(2+), Cd(2+), Zn(2+), iodoacetamide, phenylmethanesulfonyl fluoride, and N-ethylmaleimide, suggesting the existence of cysteine at their active sites. Digestion tests against various polysaccharides suggested that the purified amylases II-1 and II-2 are neoamylases which can hydrolyze both alpha-1,4 and alpha-1,6 glucosidic bonds. Amylase II-2 might be an exo- and II-1 an endo-/exo-amylase.

  1. Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases.

    PubMed

    Peixoto, Simone C; Jorge, João A; Terenzi, Héctor F; Polizeli, Maria de Lourdes T M

    2003-12-01

    The effect of several nutritional and environmental parameters on growth and amylase production from Rhizopus microsporus var. rhizopodiformis was analysed. This fungus was isolated from soil of the Brazilian "cerrado" and produced high levels of amylolytic activity at 45 degrees C in liquid medium supplemented with starch, sugar cane bagasse, oat meal or cassava flour. Glucose in the culture medium drastically repressed the amylolytic activity. The products of hydrolysis were analysed by thin layer chromatography, and glucose was detected as the main component. The amylolytic activity hydrolysed several substrates, such as amylopectin, amylase, glycogen, pullulan, starch, and maltose. Glucose was always the main end product detected by high-pressure liquid chromatography analysis. These results indicated that the amylolytic activity studied is a glucoamylase, but there were also low levels of alpha-amylase. As compared to other fungi, R. microsporus var. rhizopodiformis can be considered an efficient producer of thermostable amylases, using raw residues of low cost as substrates. This information is of technological value, considering the importance of amylases for industrial hydrolysis.

  2. Characterization of two Acanthoscelides obtectus alpha-amylases and their inactivation by wheat inhibitors.

    PubMed

    Franco, Octávio L; Melo, Francislete R; Mendes, Paulo A; Paes, Norma S; Yokoyama, Massaru; Coutinho, Marise V; Bloch, Carlos; Grossi-de-Sá, Maria F

    2005-03-01

    Wheat alpha-amylase inhibitors represent an important tool in engineering crop plants against bean bruchids. Because Acanthoscelides obtectus is a devastating storage bean insect-pest, we attempted to purify and characterize its gut alpha-amylases, to study their interaction with active proteinaceous inhibitors. Two digestives alpha-amylases (AoA1 and AoA2) were purified from gut larvae, showing molecular masses of 30 and 45 kDa for each one, respectively. The stoichiometry interaction between these alpha-amylases with two wheat inhibitors (0.19 and 0.53) showed a binding complex of 1:1 enzyme:inhibitor. In vivo activities of these inhibitors against A. obtectus were also evaluated using a rich ammonium sulfate inhibitor fraction (F(20)(-)(40)) and purified inhibitors after reversed phase high-performance liquid chromatography columns. Incorporation of three different inhibitor concentrations (0.25, 0.5, and 1.0% w/w) into artificial seeds showed that addition of the purified 0.19 inhibitor at the highest concentration (1.0%) reduced the larval weight by 80%. Similar data were observed when 0.53 inhibitor was incorporated at 0.5%. When the concentration of purified 0.53 was enhanced to 1.0%, no larvae or adult emergence were observed. Our data suggest that these alpha-amylase inhibitors present great potential for use in Phaseolus genetic improvement programs.

  3. Effects of four benzoxazinoids on gibberellin-induced alpha-amylase activity in barley seeds.

    PubMed

    Kato-Noguchi, Hisashi

    2008-12-01

    Germination of barley seeds was inhibited by 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) at concentrations greater than 0.03mmol/L, and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) and benzoxazolin-2(3H)-one (BOA) at concentrations greater than 0.1mmol/L. These benzoxazinoids also inhibited the induction of alpha-amylase activity in the barley seeds, and inhibited gibberellin-induced alpha-amylase activity in de-embryonated barley seeds. Significant inhibition in the germination and alpha-amylase induction were observed as concentrations of DIMBOA, DIBOA, MBOA and BOA increased. These results suggest that DIMBOA, DIBOA, MBOA and BOA may inhibit the germination of barley seeds by inhibiting the gibberellin-induced process, leading to alpha-amylase production. The inhibitory activities of germination and alpha-amylase induction of DIMBOA and DIBOA were greater than those of their degraded substances MBOA and BOA, respectively, and the inhibitory activities of DIMBOA and MBOA were greater than those of their demethoxylated analogues DIBOA and BOA, respectively.

  4. Effect of anthranilic acid on the catabolite repression of a Drosophila amylase gene in E. coli

    SciTech Connect

    Stevens, S.M.; Moehring, J.M.; Chernin, M.I.

    1987-05-01

    A Drosophila pseudoobscura amylase pseudogene cloned in Escherichia coli is expressed at high levels. The expression of this pseudogene is repressed when glucose (0.5% final conc) is added to a starch minimal medium culture of E. coli cells that contain the amylase plasmid pAMY17F. Addition of anthranilic acid (7 mM final conc.) to catabolite repressed cells acts like adenosine 3',5' cyclic monophosphate (cAMP) by derepressing the amylase pseudogene at the promoter. This is consistent with the Metabolite Gene Regulation (MGR) model proposed by Kline et al. which suggests that small molecules can circumvent the necessity for cAMP. Catabolite repression of the amylase structural gene of D. pseudoobscura has been previously shown. This would suggest that the amylase pseudogene expression in E. coli is either from a Drosophila structural gene promoter co-cloned with the pseudogene or a catabolite repressible E. coli promoter placed in the proper orientation and reading frame during the rearrangement of pAMY17F.

  5. Carboxylic ester hydrolase and amylase in ischemic pancreatitis in the guinea pig.

    PubMed

    Blind, P J; Bläckberg, L; Lundström, E B; Emdin, S O; Hernell, O

    1996-05-01

    The observation that an elevated level of pancreatic carboxylic ester hydrolase (CEH) in serum is a more sensitive and specific marker of acute pancreatitis than is elevated serum amylase activity prompted us to explore whether these findings could be confirmed in an experimental model and, if so, to find the explanation behind this difference. We therefore developed a model for ischemic pancreatitis in the guinea pig and a sandwich enzyme-linked immunosorbent assay for determination of CEH in this species. There was a strong correlation between duration of ischemia and severity of pancreatic inflammation and between severity of inflammation and serum CEH level. In contrast, serum amylase was elevated only in animals with the most severe grade of inflammation. Amylase was, however, increased in urine in animals with mild inflammation, but the level did not increase with severity of inflammation. Only one of 31 animals had detectable CEH in urine. In animals with intermediate serum CEH levels the serum and biliary concentrations correlated, indicating that CEH may be cleared by the liver. Amylase was detectable in bile only in animals with high serum levels. The results confirm our observations made in previous clinical studies. A likely explanation for differences in serum levels of CEH and amylase is clearance from the circulation at different rates and, at least partly, via different routes, e.g., the liver and kidney, respectively.

  6. Sugar-inducible expression of a gene for beta-amylase in Arabidopsis thaliana.

    PubMed Central

    Mita, S; Suzuki-Fujii, K; Nakamura, K

    1995-01-01

    The levels of beta-amylase activity and of the mRNA for beta-amylase in rosette leaves of Arabidopsis thaliana (L.) Heynh. increased significantly, with the concomitant accumulation of starch, when whole plants or excised mature leaves were supplied with sucrose. A supply of glucose or fructose, but not of mannitol or sorbitol, to plants also induced the expression of the gene for beta-amylase, and the induction occurred not only in rosette leaves but also in roots, stems, and bracts. These results suggest that the gene for beta-amylase of Arabidopsis is subject to regulation by a carbohydrate metabolic signal, and expression of the gene in various tissues may be regulated by the carbon partitioning and sink-source interactions in the whole plant. The sugar-inducible expression of the gene in Arabidopsis was severely repressed in the absence of light. The sugar-inducible expression in the light was not inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea or by chloramphenicol, but it was inhibited by cycloheximide. These results suggest that a light-induced signal and de novo synthesis of proteins in the cytoplasm are involved in the regulation. A fusion gene composed of the 5' upstream region of the gene for beta-amylase from Arabidopsis and the coding sequence of beta-glucuronidase showed the sugar-inducible expression in a light-dependent manner in rosette leaves of transgenic Arabidopsis. PMID:7716246

  7. Existence of hydroxylated MWCNTs demotes the catalysis effect of amylases against starch degradation.

    PubMed

    Sekar, Gajalakshmi; Sivakumar, Amaravathy; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2016-05-01

    Possible interaction between amylase and Multi Walled Carbon Nanotubes (MWCNTs) has been elucidated with spectroscopic methods. Hyperchromism of the UV-visible spectra of amylase-CNT conjugates suggested ground state complex formation between them. On contrary, the decreasing fluorescence emission spectra revealed the fate of quenching mechanism to be static. Stoke shift observed from the synchronous and 3D spectra suggested the possibilities of disturbances to the aromatic micro-environment of amylases by OH-MWCNTS. FTIR and FT-Raman spectra showed alteration in the amide I band, that corresponds to their effect on alpha-helical structures. Loss of alpha-helical structures and alteration in the dichroic band again revealed possible conformational change and effect towards the stability of polypeptide backbone structures. In addition, the shift observed in the SPR band and FTIR peaks of CNTs-amylase conjugates suggested possible alteration in their optical and structural properties. On the functional aspect, amylase activity on starch degradation and hydrolysis were found to be decreased in the presence of CNTs. PMID:26812109

  8. Effect of perioperative somatostatin administration of sphincteroplasty-induced increase of amylase.

    PubMed

    Roncoroni, L; De Bernardinis, M; Violi, V; Montanari, M; Peracchia, A

    1986-06-01

    Twenty patients undergoing sphincteroplasty for cholelithiasis were randomly divided into two groups of 10. The former (T) were treated with a 4-h somatostatin intravenous drip (250 micrograms/h), started at the beginning of operation, while the latter (C) made up the control group. Serum and urine amylase, amylase creatinine clearance ratio, and liver function tests were assessed for 2 days before surgery, after the operation and for a period of 5 postoperative days. Homogeneity between the two series was verified in experimental conditions. Statistical differences occurred postoperatively in amylase creatinine clearance ratio, which proved higher in C group, and gamma-GT, which was higher in T group. Short-term somatostatin administration proved effective in reducing the postoperative amylase creatinine clearance ratio, although more evident results are reported after long-term administration. Cholestasis or any serious impairment in liver function did not occur, suggesting the suitability of somatostatin use even in patients with jaundice. Since a relationship between postoperative amylase levels and risk of pancreatitis has not yet been proved, the value of somatostatin in the prevention of postoperative pancreatitis after sphincteroplasty needs to be further verified.

  9. Renal handling of beta-2-microglobulin, amylase and albumin in acute pancreatitis.

    PubMed

    Karlsson, F A; Jacobson, G

    1979-01-01

    The renal handling of beta-2-microglobulin, amylase and albumin was studied in patients with acute pancreatitis. The data were compared with results obtained from patients with glomerular proteinuria and from patients with tubular proteinuria. Initially during acute pancreatitis, the clearance ratio (clearance protein/clearance creatinine) for beta-2-microglobulin was increased dramatically (77-fold) compared to normals. After four to seven days this ratio had fallen and was elevated only 7-fold. The corresponding figures for amylase were 3.3 and 1.8 times and for albumin 9 and 5 times respectively. In glomerular disease, the clearance ratios for beta-2-microglobulin, amylase and albumin were increased 6, 1.1, and 154 times and in tubular disease 448, 1.1, and 28 times, respectively. The electrophoretic pattern of the urinary proteins during pancreatitis was mostly normal. In a few cases, slight tubular proteinuria was noticed. Amylase activity in serum and urine from patients with pancreatitis was found to sediment, (S20,W = 4.6) in a sucrose gradient, identical to amylase from normal serum and urine. The marked increase in the excretion of beta-2-microglobulin probably reflects interference of the kidney function at the proximal tubular level. Determinations of this protein in urine may be of value in studies of kidney dysfunction that can accompany pancreatitis.

  10. The nutraceutical role of the Phaseolus vulgaris alpha-amylase inhibitor.

    PubMed

    Obiro, Wokadala Cuthbert; Zhang, Tao; Jiang, Bo

    2008-07-01

    The present review assesses the potential of the Phaseolus vulgaris alpha-amylase inhibitor isoform 1 (alpha-AI1) starch blockers as a widely used remedy against obesity and diabetes. Consumption of the alpha-amylase inhibitor causes marginal intraluminal alpha-amylase activity facilitated by the inhibitor's appropriate structural, physico-chemical and functional properties. As a result there is decreased postprandial plasma hyperglycaemia and insulin levels, increased resistance of starch to digestion and increased activity of colorectal bacteria. The efficacy and safety of the amylase inhibitor extracts, however, depend on the processing and extraction techniques used. The extracts are potential ingredients in foods for increased carbohydrate tolerance in diabetics, decreased energy intake for reducing obesity and for increased resistant starch. Research developments in the distribution and biosynthesis of the alpha-amylase inhibitor, relevant physico-chemical properties, the molecular starch-blocking mechanism, anti-obesity and anti-diabetes effects, safety of extracts and the need for research into their potential anti-colorectal cancer effect are discussed.

  11. Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implications.

    PubMed

    Dhital, Sushil; Gidley, Michael J; Warren, Frederick J

    2015-06-01

    We report on inhibition of α-amylase activity by cellulose based on in vitro experiments. The presence of cellulose in the hydrolysing medium reduced the initial velocity of starch hydrolysis in a concentration dependent manner. α-Amylase adsorption to cellulose was reversible, attaining equilibrium within 30min of incubation, and showed a higher affinity at 37°C compared to 20 and 0°C. The adsorption was almost unchanged in the presence of maltose (2.5-20mM) but was hindered in the presence of excess protein, suggesting non-specific adsorption of α-amylase to cellulose. Kinetic analyses of α-amylase hydrolysis of maize starch in the presence of cellulose showed that the inhibition is of a mixed type. The dissociation constant (Kic) of the EI complex was found to be ca. 3mg/mL. The observed inhibition of α-amylase activity suggests that cellulose in the diet can potentially attenuate starch hydrolysis.

  12. Existence of hydroxylated MWCNTs demotes the catalysis effect of amylases against starch degradation.

    PubMed

    Sekar, Gajalakshmi; Sivakumar, Amaravathy; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2016-05-01

    Possible interaction between amylase and Multi Walled Carbon Nanotubes (MWCNTs) has been elucidated with spectroscopic methods. Hyperchromism of the UV-visible spectra of amylase-CNT conjugates suggested ground state complex formation between them. On contrary, the decreasing fluorescence emission spectra revealed the fate of quenching mechanism to be static. Stoke shift observed from the synchronous and 3D spectra suggested the possibilities of disturbances to the aromatic micro-environment of amylases by OH-MWCNTS. FTIR and FT-Raman spectra showed alteration in the amide I band, that corresponds to their effect on alpha-helical structures. Loss of alpha-helical structures and alteration in the dichroic band again revealed possible conformational change and effect towards the stability of polypeptide backbone structures. In addition, the shift observed in the SPR band and FTIR peaks of CNTs-amylase conjugates suggested possible alteration in their optical and structural properties. On the functional aspect, amylase activity on starch degradation and hydrolysis were found to be decreased in the presence of CNTs.

  13. Purification and characterization of thermostable α-amylase from thermophilic Anoxybacillus flavithermus.

    PubMed

    Agüloğlu Fincan, S; Enez, B; Özdemir, S; Matpan Bekler, F

    2014-02-15

    This study reports on the purification and characterization of thermostable α-amylase (α-1-4 D-glucan glucanohydrolase EC 3.2.1.1) from a newly isolated Anoxybacillus flavithermus. A. flavithermus was used, which was isolated from hot water springs of Ömer, Afyonkarahisar, Turkey. The gram-positive, spore-forming, motile, moderately thermophilic bacteria were found to be a strain of A. flavithermus analysed by 16S rRNA comparison. The optimal conditions for bacterial growth were determined to be at 20 thh, 55 °C and pH 6.0. Maximum α-amylase activity was obtained at 55 °C at pH 7.0 after 24h of incubation. Thermostable α-amylase from A. flavithermus was purified by 70% (NH4)2SO4 and ion-exchange chromatography (5.2-fold; 65.8% yield). The molecular weight of α-amylase was 60 kDa, as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The α-amylase hydrolyzed soluble starch at 55 °C with Km: 0.005 mM and Vmax: 3.5 μmol min(-1).

  14. New thermostable amylase from Bacillus cohnii US147 with a broad pH applicability.

    PubMed

    Ghorbel, Raoudha Ellouz; Maktouf, Sameh; Massoud, Ezedine Ben; Bejar, Samir; Chaabouni, Semia Ellouz

    2009-04-01

    A new thermophilic bacterial strain identified as Bacillus cohnii US147 was isolated from the southern Tunisian soil. The identification was based on physiological tests and molecular techniques related to the 16S ribosomal ribonucleic acid. The isolated strain produced amylase, which was purified. This amylase had an apparent molecular mass of 30 kDa as estimated by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. Amylase US147 showed K (m) and V (max) values of 0.7 mg/ml and 2.2 U/ml, respectively, with starch as the substrate. The enzyme was active in acid and basic pH and had a maximal activity on starch at pH 9 and 70 degrees C. The enzyme was stable at pH 9 for 72 h and retained half of its activity after incubation at 70 degrees C for 150 min. A partially inhibition (15%, 25%, 23%, 20%, and 22%) was obtained with 1 mM SDS, 1 mM NaBO(3), 1 mM H(2)O(2,) 1 mM Zn(+2), and 5 mM ethylenediamine tetraacetic acid (EDTA), respectively. The amylase recovered its original activity by the addition of 10 mM Ca (2+) to the 5 mM EDTA. These properties indicated a possible use of this amylase in starch saccharification, in detergent, and in other industrial applications.

  15. Thermal stability and starch degradation profile of α-amylase from Streptomyces avermitilis.

    PubMed

    Hwang, Sang Youn; Nakashima, Kazunori; Okai, Naoko; Okazaki, Fumiyoshi; Miyake, Michiru; Harazono, Koichi; Ogino, Chiaki; Kondo, Akihiko

    2013-01-01

    Amylases from Streptomyces are useful in the production of maltooligosaccharides, but they have weak thermal stability at temperatures higher than 40 °C. In this study, α-amylase (SAV5981 gene of Streptomyces avermitilis) was expressed from Streptomyces lividans 1326 and purified by ammonium sulfate fractionation followed by anionic chromatography (Q-HP sepharose). The properties of the purified SAV5981 amylase were determined by the starch-iodine method. The effect of metal ions on amylase activity was investigated. The optimal temperature shifted from 25 to 50 °C with the addition of the Ca(2+) ion. The thermal stability of SAV5981 was also dramatically enhanced by the addition of 10 mM CaCl2. Improvement of the thermal stability of SAV5981 was examined by CD spectra in the presence and the absence of the Ca(2+) ion. Thin-layer chromatography (TLC) analysis and HPLC analysis of starch degradation revealed that SAV5981 mainly produced maltose and maltotriose, not glucose. The maltoorigosaccharide-producing amylase examined in this study has the potential in the industrial application of oligosaccharide production.

  16. Crystal structure of α-amylase from Oryza sativa: molecular insights into enzyme activity and thermostability.

    PubMed

    Ochiai, Akihito; Sugai, Hiroshi; Harada, Kazuki; Tanaka, Seiya; Ishiyama, Yohei; Ito, Kosuke; Tanaka, Takaaki; Uchiumi, Toshio; Taniguchi, Masayuki; Mitsui, Toshiaki

    2014-01-01

    AmyI-1 is an α-amylase from Oryza sativa (rice) and plays a crucial role in degrading starch in various tissues and at various growth stages. This enzyme is a glycoprotein with an N-glycosylated carbohydrate chain, a unique characteristic among plant α-amylases. In this study, we report the first crystal structure of AmyI-1 at 2.2-Å resolution. The structure consists of a typical (β/α)8-barrel, which is well-conserved among most α-amylases in the glycoside hydrolase family-13. Structural superimposition indicated small variations in the catalytic domain and carbohydrate-binding sites between AmyI-1 and barley α-amylases. By contrast, regions around the N-linked glycosylation sites displayed lower conservation of amino acid residues, including Asn-263, Asn-265, Thr-307, Asn-342, Pro-373, and Ala-374 in AmyI-1, which are not conserved in barley α-amylases, suggesting that these residues may contribute to the construction of the structure of glycosylated AmyI-1. These results increase the depths of our understanding of the biological functions of AmyI-1.

  17. Development of an industrial method to quantitatively measure carry-over amylase activity in raw and refined sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been increased concern over carry-over activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food manufacturing industries and other end-users. HT and VHT stable amylases were developed...

  18. General Subject 1. Report to ICUMSA on the determination of commercial alpha-amylase activity by a spectrophotometric method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A report is given on a new industrial method for the determination of the activity or strength of commercial alpha-amylase at a sugarcane factory or refinery, as well as a recommendation. At the present time, the activities or strengths of commercial alpha-amylases cannot be directly compared becau...

  19. The need for and development of a method to measure carry-over amylase activity in raw and refined sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been increased world-wide concern over carry-over activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in refined sugars to various food and end-user industries. HT and VHT stable amylases were developed for much larger markets than the...

  20. Mechanism of removal of undesirable residual amylase, insoluble starch, and select colorants from refinery streams by powdered activated carbons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need in the world-wide sugar industry to find a practical and economical solution to remove or inactivate residual alpha-amylase that are high temperature stable from factory or refinery streams. A survey of refineries that used amylase and had activated carbon systems for decolorization,...

  1. An In Vitro and In Vivo Study of the α-Amylase Activity of Phaseolamin

    PubMed Central

    de Gouveia, Neire Moura; Alves, Fernanda Vieira; Furtado, Fabiana Barcelos; Scherer, Danielli Luana; Mundim, Antonio Vicente

    2014-01-01

    Abstract We evaluated the polypeptide profiles, inhibition of human salivary α-amylase activity, and hemagglutination properties of a commercial phaseolamin sample. We also performed an in vivo assay to investigate the effects of a commercial phaseolamin treatment (100, 500, or 1500 mg/kg) over 20 days on the glycemia, body weight, and serum biochemical parameters (total cholesterol, triglycerides, alanine aminotransferase, and aspartate aminotransferase) of nondiabetic and streptozotocin-induced diabetic rats. The in vitro evaluation showed defined protein profiles, low hemagglutination activity, and high α-amylase inhibition. None of the experimental groups treated with phaseolamin or acarbose showed decreases in body weight. Our data demonstrate that phaseolamin inhibits amylase activity in vitro, reduces blood glucose levels, decreases or attenuates some of the renal and hepatic effects of diabetes in streptozotocin-induced rats, and could therefore have therapeutic potential in the treatment or prevention of the complications of diabetes. PMID:24650210

  2. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications.

    PubMed

    Mehta, Deepika; Satyanarayana, Tulasi

    2016-01-01

    Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications. PMID:27516755

  3. Potent Human α-Amylase Inhibition by the β-Defensin-like Protein Helianthamide

    PubMed Central

    2016-01-01

    Selective inhibitors of human pancreatic α-amylase (HPA) are an effective means of controlling blood sugar levels in the management of diabetes. A high-throughput screen of marine natural product extracts led to the identification of a potent (Ki = 10 pM) peptidic HPA inhibitor, helianthamide, from the Caribbean sea anemone Stichodactyla helianthus. Active helianthamide was produced in Escherichia coli via secretion as a barnase fusion protein. X-ray crystallographic analysis of the complex of helianthamide with porcine pancreatic α-amylase revealed that helianthamide adopts a β-defensin fold and binds into and across the amylase active site, utilizing a contiguous YIYH inhibitory motif. Helianthamide represents the first of a novel class of glycosidase inhibitors and provides an unusual example of functional malleability of the β-defensin fold, which is rarely seen outside of its traditional role in antimicrobial peptides. PMID:27066537

  4. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications.

    PubMed

    Mehta, Deepika; Satyanarayana, Tulasi

    2016-01-01

    Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications.

  5. Smart phone: a popular device supports amylase activity assay in fisheries research.

    PubMed

    Thongprajukaew, Karun; Choodum, Aree; Sa-E, Barunee; Hayee, Ummah

    2014-11-15

    Colourimetric determinations of amylase activity were developed based on a standard dinitrosalicylic acid (DNS) staining method, using maltose as the analyte. Intensities and absorbances of red, green and blue (RGB) were obtained with iPhone imaging and Adobe Photoshop image analysis. Correlation of green and analyte concentrations was highly significant, and the accuracy of the developed method was excellent in analytical performance. The common iPhone has sufficient imaging ability for accurate quantification of maltose concentrations. Detection limits, sensitivity and linearity were comparable to a spectrophotometric method, but provided better inter-day precision. In quantifying amylase specific activity from a commercial source (P>0.02) and fish samples (P>0.05), differences compared with spectrophotometric measurements were not significant. We have demonstrated that iPhone imaging with image analysis in Adobe Photoshop has potential for field and laboratory studies of amylase.

  6. An isoquinoline alkaloid, berberine, can inhibit fungal alpha amylase: enzyme kinetic and molecular modeling studies.

    PubMed

    Tintu, Ignatius; Dileep, Kalarickal V; Augustine, Anu; Sadasivan, Chittalakkottu

    2012-10-01

    Aspergillus flavus is a commonly found fungal pathogen, which produces aflatoxins, highly toxic and hepatocarcinogenic natural compounds. Inhibition of fungal alpha amylase activity has been found to limit the ability of the fungus to produce aflatoxins. Berberine, an isoquinoline alkaloid commonly found in many medicinal plants, was identified to inhibit the growth of A. flavus. The amount of berberine required to inhibit the fungal mycelial growth was determined. The compound was also found to inhibit the alpha amylase from the A. flavus. The binding affinity of the compound toward alpha amylase and the enzyme inhibitory activity have been determined by enzyme kinetic studies and Isothermal Titration Calorimetric analysis. Molecular modeling and docking studies were carried out to understand the enzyme-ligand interactions.

  7. Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase.

    PubMed

    Talekar, Sachin; Ghodake, Vishal; Ghotage, Trupti; Rathod, Pavan; Deshmukh, Priyant; Nadar, Shamraja; Mulla, Mosin; Ladole, Mayur

    2012-11-01

    Novel magnetic cross-linked enzyme aggregates of alpha amylase were prepared by chemical cross-linking of enzyme aggregates with amino functionalized magnetite nanoparticles which can be separated from reaction mixture using magnetic field. Of the initially applied alpha amylase activity 100% was recovered in magnetic CLEAs, whereas only 45% was recovered in CLEAs due to the low content of Lys residues in alpha amylase. Scanning electron microscopy analysis showed that CLEAs and magnetic CLEAs were spherical structures. The CLEAs and magnetic CLEAs displayed a shift in optimal pH towards the acidic side, whereas optimal temperature of magnetic CLEAs was improved compared to free enzyme and CLEAs. Although V(max) of enzyme in CLEAs and magnetic CLEAs did not change, substrate affinity of the enzyme increased. The magnetic CLEAs also enhanced the thermal stability and storage stability. Moreover, the magnetic CLEAs retained 100% initial activity even after 6 cycles of reuse.

  8. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications

    PubMed Central

    Mehta, Deepika; Satyanarayana, Tulasi

    2016-01-01

    Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications. PMID:27516755

  9. Thermal stability of alpha-amylase from Aspergillus oryzae entrapped in polyacrylamide gel.

    PubMed

    Raviyan, Patcharin; Tang, Juming; Rasco, Barbara A

    2003-08-27

    To determine the suitability as a time-temperature indicator for dielectric pasteurization processes, the thermal stability (50-75 degrees C) of Aspergillus oryzae alpha-amylase immobilized in polyacrylamide gel in phosphate buffer, mashed potatoes, and minced shrimp was examined. Changing the cross-linking agent concentration from 3.3 to 5.3% and adding 2% salt did not markedly affect the thermal stability of the immobilized alpha-amylase. Thermal inactivation was first order, and immobilization generally improved the thermal stability of alpha-amylase. z values of the immobilized system in test food systems were 10.2 degrees C (phosphate buffer), 8.45 degrees C (minced shrimp), and 7.78 degrees C (mashed potatoes). PMID:12926898

  10. [Test strips for the rapid determination of alpha-amylase in urine. A cooperative study].

    PubMed

    1983-09-01

    The value of a test-strip for the rapid determination of alpha-amylase in urine (Rapignost-Amylase) was tested at eleven different centres in four countries (Austria, Germany, Sweden, Switzerland) on a total of 1294 urine samples. Results were compared with those obtained by chromolytic and saccharogenic methods. The analytical efficiency of amylase determination in urine with the test-strip was 96%. There were 3.7% false-positive and 0.4% false-negative results. The test-strip readings were not influenced by erythrocytes or haemoglobin, glucose, protein, urobilinogen, barbiturates, benzodiazepines, codeine, amphetamine and ascorbic acid. Only bilirubin in very dark urine samples interfered with a correct reading of the test-strip.

  11. Nucleotide sequence of the alpha-amylase-pullulanase gene from Clostridium thermohydrosulfuricum.

    PubMed

    Melasniemi, H; Paloheimo, M; Hemiö, L

    1990-03-01

    The nucleotide sequence of the gene (apu) encoding the thermostable alpha-amylase-pullulanase of Clostridium thermohydrosulfuricum was determined. An open reading frame of 4425 bp was present. The deduced polypeptide (Mr 165,600), including a 31 amino acid putative signal sequence, comprised 1475 amino acids, with no cysteine residues. The structural gene was preceded by the consensus promoter sequence TTGACA TATAAT, a putative regulatory sequence and a putative ribosome-binding sequence AAAGGGGG. The codon usage resembled that of Bacillus genes. The deduced sequence of the mature apu product showed similarities to various amylolytic enzymes, especially the neopullulanase of Bacillus stearothermophilus, whereas the signal sequence showed similarity to those of the alpha-amylases of B. stearothermophilus and B. subtilis. Three regions thought to be highly conserved in the primary structure of alpha-amylases could also be distinguished in the apu product, two being partly 'duplicated' in this alpha-1,4/alpha-1,6-active enzyme.

  12. Purification and crystallization of α-amylases from mucoid and non-mucoid B. amyloliquefaciens strains

    NASA Astrophysics Data System (ADS)

    Sarikaya, Elif; Mikami, Bunzo

    2001-11-01

    The purified α-amylases from mucoid and non-mucoid B. amyloliquefaciens strains were crystallized in forms suitable for X-ray diffraction analysis. Crystals were grown by the hanging-drop vapor diffusion method. Very thin crystals of α-amylase of non-mucoid strain were obtained in the presence 15% propanol, 12% PEG 6000 and 0.1 M PIPES (pH: 7.1) at the end of 3 months and these were not suitable for X-ray diffraction analysis. Crystals of the mucoid strain of B. amyloliquefaciens α-amylase were obtained with 30% PEG 6000, 0.2 M (NH 4) 2SO 4 and 0.1 M PIPES (pH: 6.5) at the end of 3 months and these were suitable for X-ray diffraction analysis.

  13. A highly efficient and thermostable α-amylase from soya bean seeds.

    PubMed

    Prakash, Om; Jaiswal, Nivedita

    2010-12-01

    The α-amylase from soya bean seeds was purified by affinity precipitation, resulting in approx. 20-fold purification with approx. 84% recovery. The purified α-amylase had an optimum pH of 5.5, optimum temperature of 75 °C, Arrhenius energy of activation of 6.03 kcal/mol (1 kcal≈4.184 kJ) and a Km of 2.427 mg/ml (starch substrate). The enzyme had maximum substrate specificity for starch. Among the various metal ions tested, Co2+ and Mn2+ were found to be strong activators. The effect of thiol group modifying agents showed that the thiols of soya bean α-amylase are not directly involved in catalysis. The thermostability of the enzyme makes it suitable for starch liquefaction and the detergent industry respectively.

  14. Metabolism of glycosylated human salivary amylase: in vivo plasma clearance by rat hepatic endothelial cells and in vitro receptor mediated pinocytosis by rat macrophages

    SciTech Connect

    Niesen, T.E.; Alpers, D.H.; Stahl, P.D.; Rosenblum, J.L.

    1984-09-01

    Salivary-type amylase normally comprises about 60% of the amylase activity in human serum, but only a small fraction is a glycosylated isoenzyme (amylase A). In contrast, 1/3 of amylase in human saliva is glycosylated. Since glycosylation can affect circulatory clearance, we studied the clearance of amylase A in rats and its uptake by rat alveolar macrophages. Following intravenous injection, /sup 125/I-labeled amylase A disappeared rapidly from plasma (t 1/2 . 9 min) and accumulated in the liver. Simultaneous injection of mannose-albumin slowed its clearance to a rate comparable to that of /sup 125/I-labeled nonglycosylated salivary amylase (t 1/2 . 45 min). In contrast, galactose-albumin had no effect. Electron microscope autoradiography of the liver following injection of /sup 125/I-labeled amylase A revealed a localization of grains over the hepatic endothelial cells. In vitro studies indicated that amylase A is taken up by alveolar macrophages via receptor-mediated pinocytosis. Uptake was linear over time, saturable, and inhibited by mannan and mannose-albumin, but not by galactose-albumin. We conclude that amylase A, which is a naturally occurring human glycoprotein with at most three terminal L-fucose residues per molecule, is recognized in rats by a mannose receptor located on hepatic endothelial cells. We speculate that this receptor, by rapidly clearing circulating amylase A, may be responsible for the low level of amylase A in human serum.

  15. Regulation of amylase, cellulase and chitinase secretion in the digestive tract of the two-spotted field cricket, Gryllus bimaculatus.

    PubMed

    Weidlich, Sandy; Müller, Sonja; Hoffmann, Klaus H; Woodring, Joseph

    2013-06-01

    The secretion of amylase and cellulase in Gryllus bimaculatus is determined by increased food intake, whereby shortly after molting food consumption increases. About half of the standing amylase concentration (activity) in the endothelial cells can be secreted within 30 min. The peak of amylase and cellulase secretion that occurs in the photophase is related to the feeding peak in the previous scotophase. The secretion of chitinase on the other hand is primarily controlled by the molting cycle. Only amylase secretion was affected by calcium in the incubation medium, suggesting an apocrine release mechanism. Refeeding experiments (after 5 days without food) suggest that the release of amylase in response to a nutrient in the lumen (glucose) is not due to simple stimulation of exocytosis, but rather a stimulation of synthesis. PMID:23585293

  16. Amylase activity, protein and urea in saliva of the red kangaroo (Macropus rufus).

    PubMed

    Beal, A M

    1987-01-01

    Parotid and mandibular salivas, produced at flow rates of 0.055 +/- 0.0038 to 4.45 +/- 0.101 and 0.052 +/- 0.0059 to 4.30 +/- 0.072 ml min-1 respectively by intracarotid infusion of acetylcholine or methacholine, were analysed. During acetylcholine stimulation, the protein concentration ranged from 86.4 +/- 10.17 to 235.0 +/- 23.5 mg l-1 in parotid and from 102.9 +/- 11.54 to 379.6 +/- 38.01 mg l-1 in mandibular saliva. The minimum protein concentrations in parotid and mandibular salivas occurred at 0.5 and 1.0 ml min-1 respectively with the concentration rising progressively at lower and higher flow rates. Both glands maintained constant levels of protein during 90 min of sustained stimulation at constant flow rates of 0.5 and 2.0 ml min-1. The optimum pH for salivary amylase activity lay between 7.4 and 7.9 (mean 7.5-7.6). The amylase activity of parotid saliva ranged between 32.2 +/- 3.81 and 94.5 +/- 24.05 mukat l-1 and the activity/protein ratio was similar at all flow rates (mean, 0.39 +/- 0.049 mukat amylase/mg protein). Amylase levels in arterial plasma were constant within experiments but varied from 8.0 +/- 0.07 to 26.4 +/- 0.24 mukat l-1 between experiments, and were always less than corresponding parotid values. Mandibular amylase activities were low, highly variable or often absent. Methacholine-evoked parotid saliva had lower protein concentrations but similar amylase/protein ratios to acetylcholine-stimulated saliva. Urea concentrations in arterial plasma were constant within experiments but varied from 6.71 +/- 0.092 to 14.2 +/- 0.14 mmol l-1 between experiments.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. A lectin gene encodes the alpha-amylase inhibitor of the common bean.

    PubMed Central

    Moreno, J; Chrispeels, M J

    1989-01-01

    An alpha-amylase inhibitor that inhibits insect and mammalian alpha-amylases but not plant alpha-amylases, is present in seeds of the common bean (Phaseolus vulgaris). We have purified the alpha-amylase inhibitor by using a selective heat treatment in acidic medium and affinity chromatography with porcine pancreas alpha-amylase coupled to agarose. Under sodium dodecyl sulfate gel electrophoresis, the purified inhibitor gave rise to five bands with mobilities corresponding to molecular masses ranging from 14 to 19 kDa. N-terminal sequencing (up to 15 amino acids) of the polypeptides obtained from these bands resulted in only two different sequences matching two stretches of the amino acid sequence deduced from an already described lectin gene [Hoffman, L. M. (1984) J. Mol. Appl. Gen. 2,447-453]. This gene is different from but closely related to the genes that code for phytohemagglutinin, the major lectin of bean. Further evidence based on amino acid composition, identification of a precursor, and recognition of the product of the gene (expressed in Escherichia coli) by an anti-alpha-amylase inhibitor serum confirms that the inhibitor is encoded by this or a closely related lectin gene. This finding assigns a biological function, which has been described at the molecular level, to a plant lectin gene product and supports the defense role postulated for seed lectins. The lack of homology with other families of enzyme inhibitors suggests that this may be the first member of a new family of plant enzyme inhibitors. Images PMID:2682631

  18. Identification of a new oat β-amylase by functional proteomics.

    PubMed

    Ben Halima, Nihed; Khemakhem, Bassem; Fendri, Imen; Ogata, Hiroyuki; Baril, Patrick; Pichon, Chantal; Abdelkafi, Slim

    2016-01-01

    Oat (Avena sativa L.) seed extracts exhibited a high degree of catalytic activity including amylase activities. Proteins in the oat seed extracts were optimized for their amylolytic activities. Oat extract with amylolytic activity was separated by SDS-PAGE and a major protein band with an apparent molecular mass of 53 kDa was subjected to tryptic digestion. The generated amino acid sequences were analyzed by liquid chromatography–tandem mass spectrometry (LC/ESI/MS/MS) and database searches. These sequences were used to identify a partial cDNA from expressed sequence tags (ESTs) of A. sativa L. Based upon EST sequences, a predicted full-length gene was identified, with an open reading frame of 1464 bp encoding a protein of 488 amino acid residues (AsBAMY), with a theoretical molecular mass of 55 kDa identified as a β-amylase belonging to the plant β-amylase family. Primary structure of oat β-amylase (AsBAMY) protein indicated high similarity with other β-amylase from other cereals such as wheat (Triticum aestivum), barley (Hordeum vulgare), and rye (Secale cereale) with two conserved Glu residues (E184 and E378) assigned as the “putative” catalytic residues which would act as an acid and base pair in the catalytic process. In addition, a 3D-model of AsBAMY was built from known X-ray structures and sequence alignments. A similar core (β/α)8-barrel architecture was found in AsBAMY like the other cereal β-amylases with a specific location of the active site in a pocket-like cavity structure made at one end of this core (β/α)8-barrel domain suggesting an accessibility of the non-reducing end of the substrate and thus confirming the results of AsBAMY exo-acting hydrolase. PMID:26455400

  19. Identification of a new oat β-amylase by functional proteomics.

    PubMed

    Ben Halima, Nihed; Khemakhem, Bassem; Fendri, Imen; Ogata, Hiroyuki; Baril, Patrick; Pichon, Chantal; Abdelkafi, Slim

    2016-01-01

    Oat (Avena sativa L.) seed extracts exhibited a high degree of catalytic activity including amylase activities. Proteins in the oat seed extracts were optimized for their amylolytic activities. Oat extract with amylolytic activity was separated by SDS-PAGE and a major protein band with an apparent molecular mass of 53 kDa was subjected to tryptic digestion. The generated amino acid sequences were analyzed by liquid chromatography–tandem mass spectrometry (LC/ESI/MS/MS) and database searches. These sequences were used to identify a partial cDNA from expressed sequence tags (ESTs) of A. sativa L. Based upon EST sequences, a predicted full-length gene was identified, with an open reading frame of 1464 bp encoding a protein of 488 amino acid residues (AsBAMY), with a theoretical molecular mass of 55 kDa identified as a β-amylase belonging to the plant β-amylase family. Primary structure of oat β-amylase (AsBAMY) protein indicated high similarity with other β-amylase from other cereals such as wheat (Triticum aestivum), barley (Hordeum vulgare), and rye (Secale cereale) with two conserved Glu residues (E184 and E378) assigned as the “putative” catalytic residues which would act as an acid and base pair in the catalytic process. In addition, a 3D-model of AsBAMY was built from known X-ray structures and sequence alignments. A similar core (β/α)8-barrel architecture was found in AsBAMY like the other cereal β-amylases with a specific location of the active site in a pocket-like cavity structure made at one end of this core (β/α)8-barrel domain suggesting an accessibility of the non-reducing end of the substrate and thus confirming the results of AsBAMY exo-acting hydrolase.

  20. EFFECT OF CARBON SOURCES ON FORMATION OF ALPHA-AMYLASE BY BACILLUS STEAROTHERMOPHILUS.

    PubMed

    WELKER, N E; CAMPBELL, L L

    1963-10-01

    Welker, N. E. (Western Reserve University, Cleveland, Ohio) and L. Leon Campbell. Effect of carbon sources on formation of alpha-amylase by Bacillus stearothermophilus. J. Bacteriol. 86:681-686. 1963.-A chemically defined medium was devised for use in alpha-amylase induction studies. The addition of 0.1% casein hydrolysate to the chemically defined medium permitted growth on fructose, and with glucose, sucrose, maltose, starch, and glycerol it shortened the lag period and increased both the growth rate and the total enzyme produced. Growth did not occur when gluconate, acetate, or succinate were used as carbon sources. alpha-Amylase was produced during the logarithmic phase of growth; the amount produced was inversely proportional to the rate of growth. The poorer the carbon source for growth (glycerol, k = 0.24; glucose, k = 0.26; sucrose, k = 0.42), the higher was the amount of enzyme produced (glycerol, 109 units/ml; glucose, 103 units/ml; sucrose, 45 units/ml). Cells grown on technical-grade maltose (k = 0.26) or starch (k = 0.42) did not conform to this relationship in that unusually large amounts of alpha-amylase were produced (362 and 225 units/ml, respectively). Cells grown on fructose or sucrose had the same growth rate (k = 0.42), but smaller amounts of alpha-amylase were produced on fructose (fructose, 0 to 4 units/ml; sucrose, 45 units/ml). An intracellular alpha-amylase was not detected in Bacillus stearothermophilus.

  1. Cloning, Purification and Characterization of a Highly Thermostable Amylase Gene of Thermotoga petrophila into Escherichia coli.

    PubMed

    Zafar, Asma; Aftab, Muhammad Nauman; ud Din, Zia; Aftab, Saima; Iqbal, Irfana; ul Haq, Ikram

    2016-02-01

    A putative α-amylase gene of Thermotoga petrophila was cloned and expressed in Escherichia coli BL21 (DE3) using pET-21a (+), as an expression vector. The growth conditions were optimized for maximal expression of the α-amylase using various parameters, such as pH, temperature, time of induction and addition of an inducer. The optimum temperature and pH for the maximum expression of α-amylase were 22 °C and 7.0 pH units, respectively. Purification of the recombinant enzyme was carried out by heat treatment method, followed by ion exchange chromatography with 34.6-fold purification having specific activity of 126.31 U mg(-1) and a recovery of 56.25%. Molecular weight of the purified α-amylase, 70 kDa, was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 100 °C temperature and at pH of 7.0. The enzyme activity was increased in the presence of metal ions especially Ca(+2) and decreased in the presence of EDTA indicating that the α-amylase was a metalloenzyme. However, addition of 1% Tween 20, Tween 80 and β-mercaptoethanol constrained the enzyme activity to 87, 96 and 89%, respectively. No considerable effect of organic solvents (ethanol, methanol, isopropanol, acetone and n-butanol) was observed on enzyme activity. With soluble starch as a substrate, the enzyme activity under optimized conditions was 73.8 U mg(-1). The α-amylase enzyme was active to hydrolyse starch forming maltose. PMID:26526464

  2. Identification of an extracellular thermostable glycosyl hydrolase family 13 α-amylase from Thermotoga neapolitana.

    PubMed

    Choi, Kyoung-Hwa; Hwang, Sungmin; Lee, Hee-Seob; Cha, Jaeho

    2011-08-01

    We cloned the gene for an extracellular α-amylase, AmyE, from the hyperthermophilic bacterium Thermotoga neapolitana and expressed it in Escherichia coli. The molecular mass of the enzyme was 92 kDa as a monomer. Maximum activity was observed at pH 6.5 and temperature 75°C and the enzyme was highly thermostable. AmyE hydrolyzed the typical substrates for α-amylase, including soluble starch, amylopectin, and maltooli-gosaccharides. The hydrolytic pattern of AmyE was similar to that of a typical α-amylase; however, unlike most of the calcium (Ca(2+))-dependent α-amylases, the activity of AmyE was unaffected by Ca(2+). The specific activities of AmyE towards various substrates indicated that the enzyme preferred maltooligosaccharides which have more than four glucose residues. AmyE could not hydrolyze maltose and maltotriose. When maltoheptaose was incubated with AmyE at the various time courses, the products consisting of maltose through maltopentaose was evenly formed indicating that the enzyme acts in an endo-fashion. The specific activity of AmyE (7.4 U/mg at 75° C, pH 6.5, with starch as the substrate) was extremely lower than that of other extracellular α-amylases, which indicates that AmyE may cooperate with other highly active extracellular α-amylases for the breakdown of the starch or α-glucans into maltose and maltotriose before transport into the cell in the members of Thermotoga sp.

  3. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch.

    PubMed

    Say, R; Şenay, R Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. Km values were 0.26 and 0.87 mM and Vmax values were 0.36 IU mg(-1) and 22.32 IU mg(-1) for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70-80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst.

  4. Regional distant sequence homology between amylases, alpha-glucosidases and transglucanosylases.

    PubMed

    Svensson, B

    1988-03-28

    Amylases possess short, conserved regions near functional side chains. Sequence comparison extends this relationship to comprise a maltase and a cyclodextrin glucanotransferase. Similarity also exists with intestinal sucrase-isomaltase and fungal glucoamylase near identified essential carboxyl groups. Homology between COOH-terminal regions of glucoamylase and cyclodextrin glucanotranserase may indicate raw-starch binding areas. It is suggested that amylases, alpha-glucosidases, and transglucanosylases acting on 1,4- and 1,6-alpha-glucosidic linkages share key structural features in the active centres.

  5. [Ratio of amylase clearance and creatinine clearance in the diagnosis of acute pancreatitis].

    PubMed

    Haffter, D; Reichlin, B; Gyr, K

    1981-05-30

    In 21 healthy volunteers the ratio of amylase clearance and creatinine clearance (Cam/Ccr) was determined in urine collected at admission, after a 1-hour collection period and after a 2-hour collection period. The normal values were 1.8 +/- 1.6%, 1.9 +/- 2% and 2.0 +/- 1.7% respectively. They were comparable with those published by others. The reproducibility of the method was acceptable (r = 0.62). When compared with serum amylase determinations, Cam/Ccr showed neither better sensitivity in 19 patients suffering an acute episode of proven pancreatitis, nor better specificity in 19 patients with acute abdomen but no evidence of pancreatitis.

  6. alpha-Amylase and programmed cell death in aleurone of ripening wheat grains.

    PubMed

    Mrva, Kolumbina; Wallwork, Meredith; Mares, Daryl J

    2006-01-01

    Late maturity alpha-amylase (LMA) in wheat is a genetic defect that may result in the accumulation of unacceptable levels of high pI alpha-amylase in grain in the absence of germination or weather damage. During germination, gibberellin produced in the embryo triggers expression of alpha-Amy genes, the synthesis of alpha-amylase and, subsequently, cell death in the aleurone. LMA also involves the aleurone and whilst LMA appears to be independent of the embryo there is nevertheless some evidence that gibberellin is involved. The aim of this investigation was to determine whether the increase in alpha-amylase activity in LMA-prone genotypes, like alpha-amylase synthesis by aleurone cells in germinating or GA-challenged grains, is followed by aleurone cell death. Programmed cell death was seen in aleurone layers from developing, ripe and germinated grains using confocal microscopy and fluorescent probes specific for dead or living cells. Small pockets of dying cells were observed distributed at random throughout the aleurone of ripening LMA-affected grains and by harvest-ripeness these cells were clearly dead. The first appearance of dying cells, 35 d post-anthesis, coincided with the later part of the 'window of sensitivity' in grain development in LMA-prone wheat cultivars. No dead or dying cells were present in ripening or fully ripe grains of control cultivars. In germinating grains, dying cells were observed in the aleurone adjacent to the scutellum and, as germination progressed, the number of dead cells increased and the affected area extended further towards the distal end of the grain. Aside from the obvious differences in spatial distribution, dying cells in 20-24 h germinated grains were similar to dying cells in developing LMA-affected grains, consistent with previous measurements of alpha-amylase activity. The increase in high pI alpha-amylase activity in developing grains of LMA-prone cultivars, like alpha-amylase synthesis in germinating grains, is

  7. Exposure to inhalable dust, wheat flour and alpha-amylase allergens in industrial and traditional bakeries.

    PubMed

    Bulat, Petar; Myny, Katrien; Braeckman, Lutgart; van Sprundel, Marc; Kusters, Edouard; Doekes, Gert; Pössel, Kerstin; Droste, Jos; Vanhoorne, Michel

    2004-01-01

    This study was designed to characterize exposure to inhalable dust, wheat flour and alpha-amylase allergens in industrial and traditional bakeries. The study included 70 bakeries from the northern part of Belgium. Based on the degree of automation and a clear division of individual job tasks, four bakeries were identified as industrial and the remaining 66 were identified as traditional ones. Personal, as well as stationary, samples of inhalable dust were collected during full shift periods, usually 5-7 h. The portable pumps aspirated 2 l/min through Teflon personal dust samplers (Millipore, pore size 1.0 microm) mounted in PAS-6 sampling heads. In the collected samples the inhalable dust, wheat flour and alpha-amylase allergens were determined. Wheat flour allergens were measured using enzyme-linked immunosorbent assay inhibition and an antiwheat IgG4 serum pool. The alpha-amylase allergens were measured using a sandwich enzyme immunoassay with affinity-purified polyclonal rabbit IgG antibodies. In total, 440 samples (300 personal and 140 stationary) were processed. The highest inhalable dust exposure was observed in traditional bakeries among bread [geometric mean (GM) 2.10 mg/m3] and bread and pastry workers (GM 1.80 mg/m3). In industrial bakeries the highest dust exposure was measured in bread-producing workers (GM 1.06 mg/m3). Similar relations were observed for wheat flour and alpha-amylase allergens. Bread baking workers in traditional bakeries had the highest exposure to both allergens (wheat flour GM 22.33 microg/m(3), alpha-amylase GM 0.61 ng/m3). The exposure to wheat flour and alpha-amylase allergens in industrial bakeries was higher in bread baking workers (wheat flour GM 6.15 microg/m3, alpha-amylase GM 0.47 ng/m3) than in bread packing workers (wheat flour GM 2.79 microg/m3, alpha-amylase GM 0.15 ng/m3). The data presented suggest that, on average, exposure in the Belgium bakeries studied-industrial as well as traditional-is lower than or similar to

  8. Componential profile and amylase inhibiting activity of phenolic compounds from Calendula officinalis L. leaves.

    PubMed

    Olennikov, Daniil N; Kashchenko, Nina I

    2014-01-01

    An ethanolic extract and its ethyl acetate-soluble fraction from leaves of Calendula officinalis L. (Asteraceae) were found to show an inhibitory effect on amylase. From the crude extract fractions, one new phenolic acid glucoside, 6'-O-vanilloyl-β-D-glucopyranose, was isolated, together with twenty-four known compounds including five phenolic acid glucosides, five phenylpropanoids, five coumarins, and nine flavonoids. Their structures were elucidated based on chemical and spectral data. The main components, isoquercitrin, isorhamnetin-3-O-β-D-glucopyranoside, 3,5-di-O-caffeoylquinic acid, and quercetin-3-O-(6''-acetyl)-β-D-glucopyranoside, exhibited potent inhibitory effects on amylase.

  9. Dose- and tissue-specific interaction of monoterpenes with the gibberellin-mediated release of potato tuber bud dormancy, sprout growth and induction of α-amylases and β-amylases.

    PubMed

    Rentzsch, Sonja; Podzimska, Dagmara; Voegele, Antje; Imbeck, Madeleine; Müller, Kerstin; Linkies, Ada; Leubner-Metzger, Gerhard

    2012-01-01

    Gibberellins (GA) are involved in bud dormancy release in several species. We show here that GA-treatment released bud dormancy, initiated bud sprouting and promoted sprout growth of excised potato tuber bud discs ('eyes'). Monoterpenes from peppermint oil (PMO) and S-(+)-carvone (CAR) interact with the GA-mediated bud dormancy release in a hormesis-type response: low monoterpene concentrations enhance dormancy release and the initiation of bud sprouting, whereas high concentrations inhibit it. PMO and CAR did, however, not affect sprout growth rate after its onset. We further show that GA-induced dormancy release is associated with tissue-specific regulation of α- and β-amylases. Molecular phylogenetic analysis shows that potato α-amylases cluster into two distinct groups: α-AMY1 and α-AMY2. GA-treatment induced transcript accumulation of members of both α-amylase groups, as well as α- and β-amylase enzyme activity in sprout and 'sub-eye' tissues. In sprouts, CAR interacts with the GA-mediated accumulation of α-amylase transcripts in an α-AMY2-specific and dose-dependent manner. Low CAR concentrations enhance the accumulation of α-AMY2-type α-amylase transcripts, but do not affect the α-AMY1-type transcripts. Low CAR concentrations also enhance the accumulation of α- and β-amylase enzyme activity in sprouts, but not in 'sub-eye' tissues. In contrast, high CAR concentrations have no appreciable effect in sprouts on the enzyme activities and the α-amylase transcript abundances of either group. The dose-dependent effects on the enzyme activities and the α-AMY2-type α-amylase transcripts in sprouts are specific for CAR but not for PMO. Different monoterpenes therefore may have specific targets for their interaction with hormone signalling pathways.

  10. Occurrence of toxicity among protease, amylase, and color mutants of a nontoxic soy sauce koji mold

    SciTech Connect

    Kalayanamitr, A.; Bhumiratana, A.; Flegel, T.W.; Glinsukon, T.; Shinmyo, A.

    1987-08-01

    A soy sauce koji mold, Aspergillus flavus var. columnaris Raper and Fennel (ATCC 44310), was treated with UV irradiation to obtain mutant strains possessing high protease activities, high amylase activities, and light-colored conidia. Selected mutant strains were tested for toxicity, and some were found acutely toxic to weanling rats, although all were negative for aflatoxin production.

  11. Identification of amylase inhibitor deficient mutants in pigeonpea (Cajanus cajan (L.) Millisp.).

    PubMed

    Chougule, N P; Giri, A P; Hivrale, V K; Chhabda, P J; Kachole, M S

    2004-06-01

    We have developed and analyzed several mutant lines (M6 generation) of pigeonpea (Cajanus cajan (L.) Millsp.) for the content of defensive proteins and antinutritional factors. Inhibitors of proteinase and of amylase, lectins, and raffinose family oligosaccharides were analyzed in mature seeds of different pigeonpea accessions (untreated) and compared with mutant lines. Proteinase inhibitor profiles were similar in terms of number and intensities of activity bands but they differ marginally in the activity units in pigeonpea accessions and mutants. Pigeonpea mutants showed significant differences in amylase inhibitor profiles as well as activity units from those of pigeonpea accessions. Interestingly, two mutants (A6-5-1 and A7-3-2) were identified to have absence of amylase inhibitor isoforms. Hemagglutinating activity and raffinose family oligosaccharides content were found to be significantly higher in mutants than in accessions. It is evident from the results that proteinase inhibitors of pigeonpea are stable while amylase inhibitors, lectins, and raffinose family oligosaccharides show altered expression upon mutagen treatments. These mutants will be ideal candidates for further evaluation. PMID:15260142

  12. Scandium stimulates the production of amylase and bacilysin in Bacillus subtilis.

    PubMed

    Inaoka, Takashi; Ochi, Kozo

    2011-11-01

    We investigated the effects of rare earth elements on enzyme production and secondary metabolism in Bacillus subtilis. Addition of scandium to the growth medium stimulated the production of both amylase and bacilysin at the transcriptional level, thus showing scandium to have a remarkable impact in B. subtilis.

  13. The bean. alpha. -amylase inhibitor is encoded by a lectin gene

    SciTech Connect

    Moreno, J.; Altabella, T.; Chrispeels, M.J. )

    1989-04-01

    The common bean, Phaseolus vulgaris, contains an inhibitor of insect and mammalian {alpha}-amylases that does not inhibit plant {alpha}-amylase. This inhibitor functions as an anti-feedant or seed-defense protein. We purified this inhibitor by affinity chromatography and found that it consists of a series of glycoforms of two polypeptides (Mr 14,000-19,000). Partial amino acid sequencing was carried out, and the sequences obtained are identical with portions of the derived amino acid sequence of a lectin-like gene. This lectin gene encodes a polypeptide of MW 28,000, and the primary in vitro translation product identified by antibodies to the {alpha}-amylase inhibitor has the same size. Co- and posttranslational processing of this polypeptide results in glycosylated polypeptides of 14-19 kDa. Our interpretation of these results is that the bean lectins constitute a gene family that encodes diverse plant defense proteins, including phytohemagglutinin, arcelin and {alpha}-amylase inhibitor.

  14. Improvement of Starch Digestion Using α-Amylase Entrapped in Pectin-Polyvinyl Alcohol Blend

    PubMed Central

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L−1 sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications. PMID:25949991

  15. The noncatalytic triad of alpha-amylases: a novel structural motif involved in conformational stability.

    PubMed

    Marx, Jean-Claude; Poncin, Johan; Simorre, Jean-Pierre; Ramteke, Pramod W; Feller, Georges

    2008-02-01

    Chloride-activated alpha-amylases contain a noncatalytic triad, independent of the glycosidic active site, perfectly mimicking the catalytic triad of serine-proteases and of other active serine hydrolytic enzymes. Mutagenesis of Glu, His, and Ser residues in various alpha-amylases shows that this pattern is a structural determinant of the enzyme conformation that cannot be altered without losing the intrinsic stability of the protein. (1)H-(15)N NMR spectra of a bacterial alpha-amylase reveal proton signals that are identical with the NMR signature of catalytic triads and especially a deshielded proton involving a protonated histidine and displaying properties similar to that of a low barrier hydrogen bond. It is proposed that the H-bond between His and Glu of the noncatalytic triad is an unusually strong interaction, responsible for the observed NMR signal and for the weak stability of the triad mutants. Furthermore, a stringent template-based search of the Protein Data Bank demonstrated that this motif is not restricted to alpha-amylases, but is also found in 80 structures from 33 different proteins, amongst which SH2 domain-containing proteins are the best representatives.

  16. Conquering the control of insoluble and soluble starch with novel applications of amylase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The new knowledge that there is markedly more insoluble starch than previously considered in products across both the sugarcane factory and refinery has processing implications. This includes the application of a-amylases in the factory to control not only soluble but insoluble starch. Studies wer...

  17. How Do Detergents Work? A Qualitative Assay to Measure Amylase Activity

    ERIC Educational Resources Information Center

    Novo, M. Teresa; Casanoves, Marina; Garcia-Vallvé, Santi; Pujadas, Gerard; Mulero, Miquel; Valls, Cristina

    2016-01-01

    We present a practical activity focusing on two main goals: to give learners the opportunity to experience how the scientific method works and to increase their knowledge about enzymes in everyday situations. The exercise consists of determining the amylase activity of commercial detergents. The methodology is based on a qualitative assay using a…

  18. Increased production of alpha-amylase by Bacillus amyloliquefaciens in the presence of glycine

    SciTech Connect

    Zhang, Q.; Tsukagoshi, N.; Miyashiro, S.; Udaka, S.

    1983-07-01

    The production of alpha-amylase by Bacillus amyloliquefaciens increased by a factor of 300 when glycine was added to a chemically defined simple medium at the early-logarithmic phase of growth. Glycine was not metabolized to a significant extent under the conditions used, but it considerably prevented the lowering of the pH of the culture. (Refs. 10).

  19. [The activity of thermolability amylase in serum nonsmoking and smoking healthy persons and patients with pancreatitis].

    PubMed

    Sliwińska-Mossoń, Mariola; Milnerowicz, Halina

    2008-01-01

    The aim of this study is to prove the influence of tobacco smoking on total and thermolability amylase activity in the serum of non-smoking and smoking health persons and patients with diagnosed acute (AP), chronic exaggerated (CEP) and chronic pancreatitis (CP) and patients with diabetes. The blood has been collected from 28 healthy persons and 52 patients. The enzyme total activity has been determined using the colorimetric method with substrate 1,2-odilauryl-rac-glycero-3-glutaric acid -(6-methylresorufin) ester. The thermolability activity has been determined using the thermolability test. The tobacco smoke has been examined on the basic of concentration of cotinine in the serum of health persons and patients. The highest amylase total activity and her thermolability form have been found in smoking patients with diabetes. It has been noted that the serum amylase activity is significantly higher in smoking and healthy persons (p < 0.0002; p < 0.002) then in non-smoking and healthy patients. However no significant differences have been found between the thermolability total activity, however it has been noted higher thermolability thermolability activity in smoking patients with CP and nonsmoking patients with CP. Smoking patients with AP and CEP have been found to have a significantly increased enzyme and her form thermolability activity (p > 0.001; p > 0.005 respectively) when compared to non-smoking patients. Results of examination indicate that tobacco smoking has a significant influence on pancreatic amylase activity.

  20. Peer Victimization and Aggression: Moderation by Individual Differences in Salivary Cortisol and Alpha-Amylase

    ERIC Educational Resources Information Center

    Rudolph, Karen D.; Troop-Gordon, Wendy; Granger, Douglas A.

    2010-01-01

    This research examined whether variations in salivary measures of the hypothalamic-pituitary-adrenal axis (cortisol) and autonomic nervous system (alpha amylase [sAA]) contribute to individual differences in the association between peer victimization and aggression. Children (N = 132; M age = 9.46 years, SD = 0.33) completed a measure of peer…

  1. Investigating the Hydrolysis of Starch Using "a"-Amylase Contained in Dishwashing Detergent and Human Saliva

    ERIC Educational Resources Information Center

    Munegumi, Toratane; Inutsuka, Masato; Hayafuji, Yukitaka

    2016-01-01

    Although saliva has commonly been used to teach about digestion by organisms, the phenomenon of digestion is actually caused by enzymes as catalytic substances. This activity explores the hydrolysis of starch by "a"-amylase in cleaning materials as well as a comparison with the similar reaction using human saliva. The fact that the…

  2. Enhancing Maritime Education and Training: Measuring a Ship Navigator's Stress Based on Salivary Amylase Activity

    ERIC Educational Resources Information Center

    Murai, Koji; Wakida, Shin-Ichi; Miyado, Takashi; Fukushi, Keiichi; Hayashi, Yuji; Stone, Laurie C.

    2009-01-01

    Purpose: The purpose of this paper is to propose that the measurement of salivary amylase activity is an effective index to evaluate the stress of a ship navigator for safe navigation training and education. Design/methodology/approach: Evaluation comes from the simulator and actual on-board experiments. The subjects are real captains who have…

  3. Kinetic Analysis of Amylase Using Quantitative Benedict's and Iodine Starch Reagents

    ERIC Educational Resources Information Center

    Cochran, Beverly; Lunday, Deborah; Miskevich, Frank

    2008-01-01

    Quantitative analysis of carbohydrates is a fundamental analytical tool used in many aspects of biology and chemistry. We have adapted a technique developed by Mathews et al. using an inexpensive scanner and open-source image analysis software to quantify amylase activity using both the breakdown of starch and the appearance of glucose. Breakdown…

  4. Optimization of Alpha-Amylase Application in U.S. Factories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there have been warnings by some U.S. refineries that there may be a penalty for high starch concentrations in raw sugar if starch control is not improved. Most commercial alpha-amylases used by the U.S. sugar industry to control starch have intermediate temperature stability (up to...

  5. Optimization of Amylase Applications in Raw Sugar Manufacture that Directly Concern Refiners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there have been warnings by some U.S. refineries that there may be a penalty for high starch concentrations in raw sugar if starch control is not improved. Most commercial alpha-amylases used by the U.S. sugar industry to control starch have intermediate temperature stability (up to...

  6. Optimization of Amylase Application in Raw Sugar Manufacture. Part II: Factory Trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there have been warnings by some U.S. refineries that there may be a penalty for high starch concentrations in raw sugar if starch control is not improved. Most commercial amylases used by the U.S. sugar industry to control starch have intermediate temperature stability (up to 85 de...

  7. Optimization of Amylase Applications in Raw Sugar Manufacture that Directly Concern Refiners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there have been warnings by some US refineries that there may be a penalty for high starch concentrations in raw sugar if starch control is not improved. Most commercial alpha-amylases used by the US sugar industry to control starch have intermediate temperature stability (up to 85 ...

  8. Specificity of increased amylase to creatinine clearance ratio in acute pancreatitis.

    PubMed

    Lankisch, P G; Koop, H; Otto, J; Oberdieck, U; Winckler, K; Wolfrum, D I

    1977-01-01

    The amylase to creatinine clearance ratio was found to be normal in 11 of 33 patients with acute pancreatitis. The ratio was elevated in 10 of 19 patients with renal insufficiency. Thus, it does not seem to be a specific index in the diagnosis of acute pancreatitis.

  9. Mechanism of increased renal clearnace of amylase/creatinine in acute pancreatitis.

    PubMed

    Johnson, S G; Ellis, C J; Levitt, M D

    1976-11-25

    We investigated three possible causes of the increased ratio of amylase/creatinine clearance observed in acute pancreatitis. The presence of rapidly cleared isoamylase was excluded by studies of serum and urine, which demonstrated no anomalous isoamylases. In pancreatitis, the ratios (+/-1 S.E.M.) of both pancreatic isoamylase (9.2+/-0.6 per cent) and salivary isoamylase (8.6+/-1.6 per cent) were significantly (P less than 0.01) elevated over respective control values (2.4+/-0.2 and 1.8+/-0.2 per cent). Increased glomerular permeability to amylase was excluded by the demonstration of normal renal clearance of dextrans. We tested tubular reabsorption of protein by measuring the renal clearance of beta2-microglobulin, which is relatively freely filtered at the glomerulus and then avidly reabsorbed by the normal tubule. During acute pancreatitis the ratio of the renal clearance of beta2-microglobulin to that of creatinine was 1.22+/-0.52 per cent, an 80-fold increase over normal (0.015+/-0.002 per cent), with a rapid return toward normal during convalescence. Presumably, this reversible renal tubular defect also reduces amylase reabsorption and accounts for the elevated renal clearance of amylase/creatinine observed in acute pancreatitis.

  10. Extraction and purification of beta-amylase from stems of Abrus precatorius by three phase partitioning.

    PubMed

    Sagu, Sorel Tchewonpi; Nso, Emmanuel Jong; Homann, Thomas; Kapseu, César; Rawel, Harshadrai M

    2015-09-15

    The stems of Abrus precatorius were used to extract a beta-amylase enriched fraction. A three phase partitioning method and a Doehlert design with 3 variables (ratio of crude extract/t-butanol, the ammonium sulphate saturation and pH) were used. The data was fitted in a second-order polynomial model and the parameters were optimized to enrich beta-amylase. Experimental responses for the modulation were recovery of activity and the purification factor. The optimal conditions were: a ratio of crude extract/t-butanol of 0.87 (v/v), saturation in ammonium sulphate of 49.46% (w/v) and a pH of 5.2. An activity recovery of 156.2% and a purification factor of 10.17 were found. The enriched enzyme was identified as a beta-amylase and its molecular weight was 60.1kDa. Km and Vmax values were 79.37mg/ml and 5.13U/ml, respectively and the highest activity was registered at a temperature of 70°C and a pH between 6 and 6.5. A significant stabilization of the beta-amylase was observed up to 65°C.

  11. Fucoidan - An α-amylase inhibitor from Sargassum wightii with relevance to NIDDM.

    PubMed

    Lakshmana Senthil, S; Vinoth Kumar, T; Geetharamani, D; Suja, G; Yesudas, Rincy; Chacko, Amrutha

    2015-11-01

    The present experiment was conducted to screen the α-amylase inhibitory activity of fucoidan extracted from Sargassum wightii collected at the coastal area of Mandapam, Tamil Nadu, India. Fucoidan was extracted from the sporophyll of S. Wightii by ethanol and CaCl2 precipitation method. The average yield was 1.8±0.16% and the extracted fucoidan was found to contain 53±0.52% of fucose and 36±0.60% of sulphate. Structural elucidation (FT-IR and NMR) and in vitro α-amylase activity of purified fucoidon were performed. Fucoidan at the concentration of 62.5, 125 and 250μg exhibited 24.81, 62.50 and 99.24% inhibition against α-amylase, respectively, in a dose dependent manner. Fucoidan from S. wightii also inhibits α-glucosidase which clearly indicates dual inhibitory activity of the compound. The IC50 value against α-amylase of fucoidan is found to be 103.83μg which is more effective than that of acarbose (16mg).

  12. ALPHA-AMYLASE ACTIVITY IN VARIOUS CONCENTRATIONS OF THE IONIC LIQUID, 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch is an extremely abundant, economical and versatile industrial commodity. Many industrial uses of starch depend on hydrolyzing the polymer for the conversion of glucose and maltodextrins. Starch hydrolysis is frequently achieved by utilizing alpha-amylase, which is an endo-acting enzyme that...

  13. Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Kang, Kyong-Hwa; Sivakumar, Kannan; Park, Sun-Joo; Kim, Se-Kwon

    2015-01-01

    Marine actinobacterial synthesis of gold nanoparticles has good potential to develop simple, cost-effective and eco-friendly methods for production of important biomaterials. In this context, gold nanoparticles have attracted considerable attention in recent years, owing to their various applications. In this paper, we report on the production of α-amylase for the extracellular synthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Medium composition and culture conditions for α-amylase production were statistically optimized. Plackett-Burman design was employed to find out the optimal medium constituents and culture conditions to enhance α-amylase production. Box-Behnken design revealed that three independent variables namely soluble starch (5.8484 g), peptone (3.5191 g), and NaCl (0.3829) significantly influenced α-amylase production. The gold nanoparticles were characterized by ultraviolet-visible (UV-vis) spectrometer, X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXA), and transmission electron microscopy (TEM). The particles synthesized using the optimized enzyme activity ranged from 20 to 80 nm with an average particle size of 40 nm and therefore can be extended to various medicinal applications.

  14. Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities

    PubMed Central

    Liu, Ge; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    A multifunctional enzyme is one that performs multiple physiological functions, thus benefiting the organism. Characterization of multifunctional enzymes is important for researchers to understand how organisms adapt to different environmental challenges. In the present study, we report the discovery of a novel multifunctional enzyme Amy63 produced by marine bacterium Vibrio alginolyticus 63. Remarkably, Amy63 possesses amylase, agarase and carrageenase activities. Amy63 is a substrate promiscuous α-amylase, with the substrate priority order of starch, carrageenan and agar. Amy63 maintains considerable amylase, carrageenase and agarase activities and stabilities at wide temperature and pH ranges, and optimum activities are detected at temperature of 60 °C and pH of 6.0, respectively. Moreover, the heteroexpression of Amy63 dramatically enhances the ability of E. coli to degrade starch, carrageenan and agar. Motif searching shows three continuous glycosyl hydrolase 70 (GH70) family homologs existed in Amy63 encoding sequence. Combining serial deletions and phylogenetic analysis of Amy63, the GH70 homologs are proposed as the determinants of enzyme promiscuity. Notably, such enzymes exist in all kingdoms of life, thus providing an expanded perspective on studies of multifunctional enzymes. To our knowledge, this is the first report of an amylase having additional agarase and carrageenase activities. PMID:26725302

  15. Production of a raw starch saccharifying amylase byBacillus alvei grown on different agricultural substrates.

    PubMed

    Achi, O K; Nijoku-Obi, A N

    1992-03-01

    Maximum activity of the amylase ofBacillus alvei was attained after growth of the organism on sorghum starch. Rice, corn, yam, cassava and potato starch gave high enzyme activities as did soluble starch. Glucose, maltose and glycerol were less effective. Optimum conditions for both growth and enzyme production were pH 6.8 at 40°C.

  16. Control of the formation of amylases and proteases in the cotyledons of germinating peas.

    PubMed

    Yomo, H; Varner, J E

    1973-04-01

    Protease activity increased in attached cotyledons of germinated peas (Pisum sativum L. cv. Alaska) as the stored proteins declined but did not increase in excised cotyledons incubated for the same length of time. Cotyledons of seeds germinated in the presence of a casein hydrolysate solution developed less protease activity than did those germinated on water. These results suggest that accumulation of amino acids regulates the protease level in the cotyledons of germinating peas.In contrast to protease, alpha- and beta-amylase increased during incubation of excised pea cotyledons. Their increase was inhibited by abscisic acid. Abscisic acid did not inhibit (14)C-leucine incorporation into protein or reduce the respiratory rate in the cotyledons; hence, its effect on amylase formation was not the result of a general inhibition of metabolism. An ether-soluble acid fraction, which would contain any abscisic acid present in the material, inhibited amylase formation more when it was obtained from imbibed seeds than when it was obtained from cotyledons of seeds germinated for 10 days. These and other results suggest that amylase formation in germinating peas is regulated by abscisic acid.

  17. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    PubMed

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-01

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme. PMID:27516322

  18. Scandium Stimulates the Production of Amylase and Bacilysin in Bacillus subtilis▿

    PubMed Central

    Inaoka, Takashi; Ochi, Kozo

    2011-01-01

    We investigated the effects of rare earth elements on enzyme production and secondary metabolism in Bacillus subtilis. Addition of scandium to the growth medium stimulated the production of both amylase and bacilysin at the transcriptional level, thus showing scandium to have a remarkable impact in B. subtilis. PMID:21948839

  19. Persimmon-Tannin, an α-Amylase Inhibitor, Retards Carbohydrate Absorption in Rats.

    PubMed

    Tsujita, Takahiro

    2016-01-01

    Inhibitors of carbohydrate-hydrolyzing enzymes play an important role in controlling postprandial blood glucose levels. Thus the effect of persimmon tannin on pancreatic α-amylase and intestinal α-glucosidase has been investigated. Persimmon tannin inhibits pancreatic α-amylase and intestinal α-glucosidase in a concentration-dependent manner with the 50% inhibition concentration (IC50) for amylase, maltase and sucrase being 1.7 μg/mL, 632 μg/mL and 308 μg/mL, respectively. The effect of persimmon-tannin extract on carbohydrate absorption in rats has also been investigated. Oral administration of persimmon tannin to normal rats fed cornstarch (2 g/kg body weight) significantly suppressed the increase in blood glucose levels and the area under the curve (AUC) after starch loading in a dose-dependent manner. The effective dose of persimmon tannin required to achieve 50% suppression of the rise in blood glucose level was estimated to be 300 mg/kg body weight. Administration of persimmon tannin to rats fed maltose or sucrose delayed the increase of blood glucose level and slightly suppressed AUC, but not significantly. These results suggest that persimmon tannin retards absorption of carbohydrate and reduces post-prandial hyperglycemia mainly through inhibition of α-amylase. PMID:27465726

  20. Improvement of starch digestion using α-amylase entrapped in pectin-polyvinyl alcohol blend.

    PubMed

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L(-1) sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications.

  1. Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica

    PubMed Central

    Cotârleţ, Mihaela; Negoiţă, Teodor Gh.; Bahrim, Gabriela E.; Stougaard, Peter

    2011-01-01

    The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100% identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20°C, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20°C. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures. PMID:24031702

  2. [Characteristics of alpha-amylase isozymes in cytologenetically different wheat cultivars].

    PubMed

    Netsvetaev, V P; Badaeva, E D

    2014-07-01

    The isoenzyme composition of alpha-amylase is studied by polyacrylamide gel electrophoresis in Tris-glycine (pH 8.3) system in wheat cultivars with different genome composition. We show that durum wheat (Triticum durum, 2n=4x=28, BBAA) lacks the isoenzymes encoded by 6D and 7D chromosomes that are present in common wheat zymograms (Triticum aestivum, 2n=6x=42, BBAADD). A similar pattern is observed in a synthetic allohexaploid carrying the BBAA genomes of wheat and the HchHch genome of barley (Hordeum chilense). Our method of electrophoresis fails to reveal additional variants of alpha-amylase encoded by the barley genome, although C-banding analysis confirms the genomic structure BBAAHChHCh of this allopolyploid. The electrophoretic spectrum of the spring common wheat cultivar Dobrynya with the wheat-Agropyron translocation 7DL-7AiL contains all of the alpha-amylase isoenzymes typical for common wheat (2n=6x=42, BBAADD) except for the zymotype encoded by the long arm of chromosome 7D. This observation confirms the results of cytogenetic analysis that identified a 7DL-7AiL translocation in this cultivar. No additional alpha-amylase isoenzymes encoded by Agropyron chromosome have been observed. Our data indicate that analysis of wheat-alien hybrids or introgressive forms should be carried out using a complex of different methods. PMID:25720140

  3. Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal alpha-amylase enzymes.

    PubMed

    van der Kaaij, R M; Janecek, S; van der Maarel, M J E C; Dijkhuizen, L

    2007-12-01

    Currently known fungal alpha-amylases are well-characterized extracellular enzymes that are classified into glycoside hydrolase subfamily GH13_1. This study describes the identification, and phylogenetic and biochemical analysis of novel intracellular fungal alpha-amylases. The phylogenetic analysis shows that they cluster in the recently identified subfamily GH13_5 and display very low similarity to fungal alpha-amylases of family GH13_1. Homologues of these intracellular enzymes are present in the genome sequences of all filamentous fungi studied, including ascomycetes and basidiomycetes. One of the enzymes belonging to this new group, Amy1p from Histoplasma capsulatum, has recently been functionally linked to the formation of cell wall alpha-glucan. To study the biochemical characteristics of this novel cluster of alpha-amylases, we overexpressed and purified a homologue from Aspergillus niger, AmyD, and studied its activity product profile with starch and related substrates. AmyD has a relatively low hydrolysing activity on starch (2.2 U mg(-1)), producing mainly maltotriose. A possible function of these enzymes in relation to cell wall alpha-glucan synthesis is discussed. PMID:18048915

  4. Interaction mechanism between green tea extract and human α-amylase for reducing starch digestion.

    PubMed

    Miao, Ming; Jiang, Bo; Jiang, Huan; Zhang, Tao; Li, Xingfeng

    2015-11-01

    This study evaluated the inhibitory effects of the green tea extract on human pancreatic α-amylase activity and its molecular mechanism. The green tea extract was composed of epicatechin (59.2%), epigallocatechin gallate (14.6%) and epicatechin gallate (26.2%) as determined by HPLC analysis. Enzyme activity measurement showed that % inhibition and IC50 of the green tea extract (10%, based on starch) were 63.5% and 2.07 mg/ml, respectively. The Michaelis-Menten constant remained unchanged but the maximal velocity decreased from 0.43 (control) to 0.07 mg/(ml × min) (4 mg/ml of the green tea extract), indicating that the green tea extract was an effective inhibitor against α-amylase with a non-competitive mode. The fluorescence data revealed that the green tea extract bound with α-amylase to form a new complex with static quenching mechanism. Docking study showed the epicatechin gallate in the green tea extract presented stronger affinity than epigallocatechin gallate, with more number of amino acid residues involved in amylase binding with hydrogen bonds and Van der Waals forces. Thus, the green tea extract could be used to manipulate starch digestion for potential health benefits.

  5. Interaction mechanism between green tea extract and human α-amylase for reducing starch digestion.

    PubMed

    Miao, Ming; Jiang, Bo; Jiang, Huan; Zhang, Tao; Li, Xingfeng

    2015-11-01

    This study evaluated the inhibitory effects of the green tea extract on human pancreatic α-amylase activity and its molecular mechanism. The green tea extract was composed of epicatechin (59.2%), epigallocatechin gallate (14.6%) and epicatechin gallate (26.2%) as determined by HPLC analysis. Enzyme activity measurement showed that % inhibition and IC50 of the green tea extract (10%, based on starch) were 63.5% and 2.07 mg/ml, respectively. The Michaelis-Menten constant remained unchanged but the maximal velocity decreased from 0.43 (control) to 0.07 mg/(ml × min) (4 mg/ml of the green tea extract), indicating that the green tea extract was an effective inhibitor against α-amylase with a non-competitive mode. The fluorescence data revealed that the green tea extract bound with α-amylase to form a new complex with static quenching mechanism. Docking study showed the epicatechin gallate in the green tea extract presented stronger affinity than epigallocatechin gallate, with more number of amino acid residues involved in amylase binding with hydrogen bonds and Van der Waals forces. Thus, the green tea extract could be used to manipulate starch digestion for potential health benefits. PMID:25976786

  6. Persimmon-Tannin, an α-Amylase Inhibitor, Retards Carbohydrate Absorption in Rats.

    PubMed

    Tsujita, Takahiro

    2016-01-01

    Inhibitors of carbohydrate-hydrolyzing enzymes play an important role in controlling postprandial blood glucose levels. Thus the effect of persimmon tannin on pancreatic α-amylase and intestinal α-glucosidase has been investigated. Persimmon tannin inhibits pancreatic α-amylase and intestinal α-glucosidase in a concentration-dependent manner with the 50% inhibition concentration (IC50) for amylase, maltase and sucrase being 1.7 μg/mL, 632 μg/mL and 308 μg/mL, respectively. The effect of persimmon-tannin extract on carbohydrate absorption in rats has also been investigated. Oral administration of persimmon tannin to normal rats fed cornstarch (2 g/kg body weight) significantly suppressed the increase in blood glucose levels and the area under the curve (AUC) after starch loading in a dose-dependent manner. The effective dose of persimmon tannin required to achieve 50% suppression of the rise in blood glucose level was estimated to be 300 mg/kg body weight. Administration of persimmon tannin to rats fed maltose or sucrose delayed the increase of blood glucose level and slightly suppressed AUC, but not significantly. These results suggest that persimmon tannin retards absorption of carbohydrate and reduces post-prandial hyperglycemia mainly through inhibition of α-amylase.

  7. Glucocorticoid and developmental regulation of amylase mRNAs in mouse liver cells.

    PubMed Central

    Samuelson, L C; Keller, P R; Darlington, G J; Meisler, M H

    1988-01-01

    We characterized alpha-amylase expression in the hepatoma cell line Hepa 1-6 and in normal mouse liver. Both Amy-1 and Amy-2 were expressed in Hepa 1-6 and were regulated by glucocorticoids. Transcription in the hepatoma cells was initiated at the same start sites as in mouse tissues. Glucocorticoid treatment increased the abundance of Amy-1 and Amy-2 transcripts by 10 to 20-fold. This increase was detected within 4 h and was maximal by 24 h. The pattern of amylase expression in this hepatoma cell line accurately reflects amylase expression in the liver in vivo. During liver development, we observed a large increase in the abundance of Amy-1 transcripts just before birth, at a time when circulating glucocorticoids are also elevated. Adult mouse liver expressed Amy-1 and Amy-2 at levels comparable to those of fully induced hepatoma cells. Liver is thus a likely source of both amylase isozymes in mouse serum. These studies demonstrate that Amy-2 expression is not limited to the pancreas but also occurs at a low level in liver cells. Images PMID:2464743

  8. Influence of carbon source on alpha-amylase production by Aspergillus oryzae.

    PubMed

    Carlsen, M; Nielsen, J

    2001-10-01

    The influence of the carbon source on alpha-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol and acetate. A. oryzae did not grow on galactose as the sole carbon source, but galactose was co-metabolized together with glucose. Relative to that on low glucose concentration (below 10 mg/l), productivity was found to be higher during growth on maltose and maltodextrins, whereas it was lower during growth on sucrose, fructose, glycerol, mannitol and acetate. During growth on acetate there was no production of alpha-amylase, whereas addition of small amounts of glucose resulted in alpha-amylase production. A possible induction by alpha-methyl-D-glucoside during growth on glucose was also investigated, but this compound was not found to be a better inducer of a-amylase production than glucose. The results strongly indicate that besides acting as a repressor via the CreA protein, glucose acts as an inducer.

  9. Improvement of starch digestion using α-amylase entrapped in pectin-polyvinyl alcohol blend.

    PubMed

    Cruz, Maurício; Fernandes, Kátia; Cysneiros, Cristine; Nassar, Reginaldo; Caramori, Samantha

    2015-01-01

    Polyvinyl alcohol (PVA) and pectin blends were used to entrap α-amylase (Termamyl) using glutaraldehyde as a cross-linker. The effect of glutaraldehyde concentration (0.25, 0.5, 0.75, 1.0, and 1.25%) on the activity of the immobilized enzyme and rate of enzyme released was tested during a 24 h period. Characteristics of the material, such as scanning electron microscopy (SEM), tensile strength (TS), elongation, and rate of dissolution in water (pH 5.7), ruminal buffering solution (pH 7.0), and reactor containing 0.1 mol L(-1) sodium phosphate buffer (pH 6.5), were also analyzed. SEM results showed that the surfaces of the pectin/PVA/amylase films were highly irregular and rough. TS values increased as a function of glutaraldehyde concentration, whereas percentage of elongation (%E) decreased. Pectin/PVA/amylase films presented similar values of solubility in the tested solvents. The material obtained with 0.25% glutaraldehyde performed best with repeated use (active for 24 h), in a phosphate buffer reactor. By contrast, the material obtained with 1.25% glutaraldehyde presented higher performance during in vitro testing using an artificial rumen. The results suggest that pectin/PVA/amylase is a highly promising material for biotechnological applications. PMID:25949991

  10. Halotolerant Ability and α-Amylase Activity of Some Saltwater Fungal Isolates

    PubMed Central

    Niknejad, Farhad; Moshfegh, Mahsa; Najafzadeh, Mohammad Javad; Houbraken, Jos; Rezaei, Shahla; Zarrini, Gholamreza; Faramarzi, Mohammad Ali; Nafissi-Varcheh, Nastaran

    2013-01-01

    Four halotolerant fungal isolates originating from the saltwater Lake Urmia in Iran were selected during a screening program for salt resistance and α-amylase activity. The isolates were identified based on sequencing the ITS region and a part of the β-tubulin gene, as Penicillium chrysogenum (isolate U1; CBS 132820), Fusarium incarnatum (isolate U2; CBS 132821), and Penicillium polonicum (isolate U3; CBS 132822, and isolate U4; CBS 132823). The growth of these isolates was determined by measuring the colony diameter and mycelia dry weight in Sabouraud dextrose agar and yeast nitrogen base medium supplemented with NaCl, KCl, and LiCl. Isolate U4 showed a growth up in 15% NaCl and U1 was the only isolate that could grow in 20% KCl. None of the strains grew in a media containing LiCl. The salt supplemented medium did not increase the size of colony diameter in all isolates (p > 0.05). The ability of the selected isolates for amylase production was quantitatively tested and showed that P. polonicum isolate U4 was the most potent producer of amylase with a yield of 260.9 U/L after 60 h, whereas P. polonicum isolate U3 was the lowest one with a production level of 97.9 U/L after 48 h. P. polonicum isolate U4 could be a suitable candidate for production of amylase on an industrial scale after optimization. PMID:24250679

  11. Fucoidan - An α-amylase inhibitor from Sargassum wightii with relevance to NIDDM.

    PubMed

    Lakshmana Senthil, S; Vinoth Kumar, T; Geetharamani, D; Suja, G; Yesudas, Rincy; Chacko, Amrutha

    2015-11-01

    The present experiment was conducted to screen the α-amylase inhibitory activity of fucoidan extracted from Sargassum wightii collected at the coastal area of Mandapam, Tamil Nadu, India. Fucoidan was extracted from the sporophyll of S. Wightii by ethanol and CaCl2 precipitation method. The average yield was 1.8±0.16% and the extracted fucoidan was found to contain 53±0.52% of fucose and 36±0.60% of sulphate. Structural elucidation (FT-IR and NMR) and in vitro α-amylase activity of purified fucoidon were performed. Fucoidan at the concentration of 62.5, 125 and 250μg exhibited 24.81, 62.50 and 99.24% inhibition against α-amylase, respectively, in a dose dependent manner. Fucoidan from S. wightii also inhibits α-glucosidase which clearly indicates dual inhibitory activity of the compound. The IC50 value against α-amylase of fucoidan is found to be 103.83μg which is more effective than that of acarbose (16mg). PMID:26325676

  12. Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas.

    PubMed

    Sharma, Sarika; Khan, Farrah Gul; Qazi, Ghulam Nabi

    2010-05-01

    The increasing demand for novel biocatalysts stimulates exploration of resources from soil. Metagenomics, a culture independent approach, represent a sheer unlimited resource for discovery of novel biocatalysts from uncultured microorganisms. In this study, a soil-derived metagenomic library containing 90,700 recombinants was constructed and screened for lipase, cellulase, protease and amylase activity. A gene (pAMY) of 909 bp encoding for amylase was found after the screening of 35,000 Escherichia coli clones. Amino acid sequence comparison and phylogenetic analysis indicated that pAMY was closely related to uncultured bacteria. The molecular mass of pAMY was estimated about 38 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Amylase activity was determined using soluble starch, amylose, glycogen and maltose as substrates. The maximal activity (2.46 U/mg) was observed at 40 degrees C under nearly neutral pH conditions with amylose; whereas it retains 90% of its activity at low temperature with all the substrates used in this study. The ability of pAMY to work at low temperature is unique for amylases reported so far from microbes of cultured and uncultured division.

  13. Structural and biochemical features of acidic α-amylase of Bacillus acidicola.

    PubMed

    Sharma, Archana; Satyanarayana, T

    2013-10-01

    The investigation is aimed at understanding structure-function aspect of α-amylase of an acidophilic bacterium Bacillus acidicola (BAamy), which is Ca(2+)-independent and active at acidic pH of native starch, and thus, suits better in starch saccharification process. The CD spectroscopic data analysis revealed that the enzyme has 30% α-helices, 14.2% β-sheets, and 55.8% random coils at 60 °C and pH 4.0. Using Bacillus stearothermophilus α-amylase (BStA) as the template, 3-D structure of rBAamy has been proposed. A complete loss in α-amylase activity was recorded when the amino acid residues (D231, E261 and D328) were substituted that confirmed their role in catalysis. The CD studies indicated a decrease in the α-helices content below and beyond the optimum pH and temperature that suggests a critical role of α-helix in maintaining the structural conformation of the enzyme. Fluorescence-quenching by N-bromosuccinimide (NBS) suggested the role of tryptophan in maintaining structural integrity of α-amylase and that by acrylamide indicated interaction by simple collision process.

  14. Halophilic alkali- and thermostable amylase from a novel polyextremophilic Amphibacillus sp. NM-Ra2.

    PubMed

    Mesbah, Noha M; Wiegel, Juergen

    2014-09-01

    Extracellular gluco-amylo-pullulanase from Amphibacillus sp. NM-Ra2 was purified to homogeneity by ethanol precipitation, anion exchange chromatography and gel filtration chromatography. Molecular mass of the enzyme was 50kDa (SDS-PAGE). The enzyme showed maximal activity at 1.9 M NaCl, pH50°C 8.0 and 54°C and was active from 0 to 4.3 M NaCl and 37 to 65°C. The enzyme was inhibited by EDTA and was stable and active in the presence of PMSF, DTT, H2O2, Triton-X-100, Tween 20 and Tween 80. Ca2+ is inessential for activity. The amylase was stimulated with K+ and inhibited with Cu2+ and Mg2+. Hg2+, Zn2+ and Fe2+ had no effect on activity. Amylase was stable and active in the presence of ethanol, methanol and benzene (25%, v/v). The enzyme hydrolyzed linear and branched polysaccharides including pullulan, glycogen and amylopectin, and hydrolyzed raw wheat starch and raw corn starch (14.6% and 13.5% over 2 h). Amylase activity was inhibited by soluble starch concentrations greater than 0.3%. The major products of soluble starch hydrolysis were maltose and maltotriose. The amylase, being halophilic and alkali-thermostable, in addition to being resistant to surfactants, oxidizing agents and organic solvents, can find applications in the starch processing, pharmaceutical, food and paper/pulp industries.

  15. Alpha-amylase activity of Rhyzopertha dominica (Coleoptera: Bostrichidae) reared on several wheat varieties and its inhibition with kernel extracts.

    PubMed

    Cinco-Moroyoqui, Francisco J; Rosas-Burgos, Ema C; Borboa-Flores, Jesús; Cortez-Rocha, Mario O

    2006-12-01

    Total progeny of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) reared on 10 wheat, Triticum aestivum L., varieties was evaluated. Higher amylase activities were detected in populations with few individuals, whereas the opposite was observed in higher populations. As protein ingested increased, reproductive success increased. However, consumption of wheat protein was inversely correlated with amylase activity levels (r = -0.66). Amylase activity in homogenates of R. dominica populations showed variable inhibition by wheat extracts prepared from wheat varieties on which they were reared. Insect populations with lowest amylase activities were inhibited more by wheat extracts than those with higher amylase activity (r = -0.77). An electrophoretic analysis revealed four phenotypes showing combinations of three isoamylases (Rm 0.70, 0.79, and 0.90) in different populations of R. dominica. Some of the insect progeny that emerged from resistant wheat varieties contained the three isoamylases, whereas progeny that emerged from the most susceptible varieties showed reduced activity of isoamylases 0.70 or 0.90. These results suggest that the alpha-amylase activity levels and the composition of isoamylases in R. dominica populations are modulated by diet and that the alpha-amylase inhibitory activity of the wheat kernels influences these variations.

  16. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes

    PubMed Central

    Arendt, Maja; Fall, Tove; Lindblad-Toh, Kerstin; Axelsson, Erik

    2014-01-01

    High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch-rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed-dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus. PMID:24975239

  17. The alpha-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization.

    PubMed

    Coronado, M J; Vargas, C; Mellado, E; Tegos, G; Drainas, C; Nieto, J J; Ventosa, A

    2000-04-01

    Two types of Tn1732-induced mutants defective in extracellular amylase activity were isolated from the moderate halophile Halomonas meridiana DSM 5425. Type I mutants displayed amylase activity in the periplasm, and were unable to use any of the carbon sources tested, including starch and its hydrolysis product maltose. The type II mutant was affected in the gene responsible for the synthesis of the extracellular alpha-amylase. This gene (amyH) was isolated by functional complementation of mutant II and sequenced. The deduced protein (AmyH) showed a high degree of homology to a proposed family of alpha-amylases consisting of enzymes from Alteromonas (Pseudoalteromonas) haloplanktis, Thermomonospora curvata, streptomycetes, insects and mammals. AmyH contained the four highly conserved regions in amylases, as well as a high content of acidic amino acids. The amyH gene was functional in the moderate halophile Halomonas elongata and, when cloned in a multicopy vector, in Escherichia coli. AmyH is believed to be the first extracellular-amylase-encoding gene isolated from a moderate halophile, a group of extremophiles of great biotechnological potential. In addition, H. meridiana and H. elongata were able to secrete the thermostable alpha-amylase from Bacillus licheniformis, indicating that members of the genus Halomonas are good candidates for use as cell factories to produce heterologous extracellular enzymes.

  18. Polyaniline-graphene based α-amylase biosensor with a linear dynamic range in excess of 6 orders of magnitude.

    PubMed

    Teixeira, Sofia Rodrigues; Lloyd, Catherine; Yao, Seydou; Andrea Salvatore Gazze; Whitaker, Iain S; Francis, Lewis; Conlan, R Steven; Azzopardi, Ernest

    2016-11-15

    α-amylase is an established marker for diagnosis of pancreatic and salivary disease, and recent research has seen a substantial expansion of its use in therapeutic and diagnostic applications for infection, cancer and wound healing. The lack of bedside monitoring devices for α-amylase detection has hitherto restricted the clinical progress of such applications. We have developed a highly sensitive α-amylase immunosensor platform, produced via in situ electropolymerization of aniline onto a screen-printed graphene support (SPE). Covalently binding an α-amylase specific antibody to a polyaniline (PANI) layer and controlling device assembly using electrochemical impedance spectroscopy (EIS), we have achieved a highly linear response against α-amylase concentration. Each stage of the assembly was characterized using a suite of high-resolution topographical, chemical and mechanical techniques. Quantitative, highly sensitive detection was demonstrated using an artificially spiked human blood plasma samples. The device has a remarkably wide limit of quantification (0.025-1000IU/L) compared to α-amylase assays in current clinical use. With potential for simple scale up to volume manufacturing though standard semiconductor production techniques and subsequently clinical application, this biosensor will enable clinical benefit through early disease detection, and better informed administration of correct therapeutic dose of drugs used to treat α-amylase related diseases. PMID:27196256

  19. Production of α-Amylase by Aspergillus terreus NCFT 4269.10 Using Pearl Millet and Its Structural Characterization.

    PubMed

    Sethi, Bijay K; Jana, Arijit; Nanda, Prativa K; DasMohapatra, Pradeep K; Sahoo, Santi L; Patra, Jayanta Kumar

    2016-01-01

    In this investigation, Aspergillus terreus NCFT4269.10 was employed in liquid static surface (LSSF) and solid state (SSF) fermentation to assess the optimal conditions for α-amylase biosynthesis. One-variable-at-a-time approach (quasi-optimum protocol) was primarily used to investigate the effect of each parameter on production of amylase. The maximum amylase production was achieved using pearl millet (PM) as substrate by SSF (19.19 ± 0.9 Ug(-1)) and also in presence of 1 mM magnesium sulfate, 0.025% (w/v) gibberellic acid, and 30 mg/100 ml (w/v) of vitamin E (~60-fold higher production of amylase) with the initial medium pH of 7.0 and incubation at 30 °C for 96 h. In addition, maltose, gelatin and isoleucine also influenced the α-amylase production. Amylase was purified to homogeneity with molecular mass around 15.3 kDa. The enzyme comprised of a typical secondary structure containing α-helix (12.2%), β-pleated sheet (23.6%), and β-turn (27.4%). Exploitation of PM for α-amylase production with better downstream makes it the unique enzyme for various biotechnological applications. PMID:27242841

  20. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes.

    PubMed

    Arendt, Maja; Fall, Tove; Lindblad-Toh, Kerstin; Axelsson, Erik

    2014-10-01

    High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch-rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed-dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus.

  1. Production of α-Amylase by Aspergillus terreus NCFT 4269.10 Using Pearl Millet and Its Structural Characterization

    PubMed Central

    Sethi, Bijay K.; Jana, Arijit; Nanda, Prativa K.; DasMohapatra, Pradeep K.; Sahoo, Santi L.; Patra, Jayanta Kumar

    2016-01-01

    In this investigation, Aspergillus terreus NCFT4269.10 was employed in liquid static surface (LSSF) and solid state (SSF) fermentation to assess the optimal conditions for α-amylase biosynthesis. One-variable-at-a-time approach (quasi-optimum protocol) was primarily used to investigate the effect of each parameter on production of amylase. The maximum amylase production was achieved using pearl millet (PM) as substrate by SSF (19.19 ± 0.9 Ug−1) and also in presence of 1 mM magnesium sulfate, 0.025% (w/v) gibberellic acid, and 30 mg/100 ml (w/v) of vitamin E (~60-fold higher production of amylase) with the initial medium pH of 7.0 and incubation at 30 °C for 96 h. In addition, maltose, gelatin and isoleucine also influenced the α-amylase production. Amylase was purified to homogeneity with molecular mass around 15.3 kDa. The enzyme comprised of a typical secondary structure containing α-helix (12.2%), β-pleated sheet (23.6%), and β-turn (27.4%). Exploitation of PM for α-amylase production with better downstream makes it the unique enzyme for various biotechnological applications. PMID:27242841

  2. The relationship between the level of salivary alpha amylase activity and pain severity in patients with symptomatic irreversible pulpitis

    PubMed Central

    Shahriari, Shahriar; Goodarzi, Mohammad Taghi; Moghimbeigi, Abbas; Jazaeri, Mina; Babaei, Parisa

    2013-01-01

    Objectives Assessment of dental pain severity is very challenging in dentistry. Previous studies have suggested that elevated salivary alpha amylase may contribute to increased physical stresses. There is a close association between salivary alpha amylase and plasma norepinephrine under stressful physical conditions. The aim of this study was to evaluate the relationship between pain severity and salivary alpha amylase levels in patients with symptomatic irreversible pulpitis. Materials and Methods Thirty-six patients (20 females and 16 males) with severe tooth pain due to symptomatic irreversible pulpitis were selected. The visual analogue scale (VAS) score was used to assess the pain severity in each patient. Unstimulated whole saliva was collected, and the level of alpha amylase activity was assessed by the spectrophotometric method. Statistical analysis was performed using SPSS 13. Results The level of alpha amylase was significantly increased in the saliva in association with pain severity assessed by VAS. The salivary alpha amylase was also elevated with increased age and in males. Conclusions There was a significant correlation between the VAS pain scale and salivary alpha amylase level, which indicates this biomarker may be a good index for the objective assessment of pain intensity. PMID:24010080

  3. α-Amylase sensor based on the degradation of oligosaccharide hydrogel films monitored with a quartz crystal sensor.

    PubMed

    Gibbs, Martin John; Biela, Anna; Krause, Steffi

    2015-05-15

    α-Amylase hydrolyses starch molecules to produce smaller oligosaccharides and sugars. Amylases are of great importance in biotechnology and find application in fermentation, detergents, food and the paper industry. The measurement of α-amylase activity in serum and urine has been used in the diagnosis of acute pancreatitis. Salivary amylase has also been shown to be a stress indicator. Sensor coatings suitable for the detection of α-amylase activity have been developed. Oligosaccharides such as glycogen and amylopectin were spin-coated onto gold coated quartz crystals with a base frequency of 10 MHz. The films were subsequently cross-linked with hexamethylene diisocyanate. Film degradation was monitored with a quartz crystal microbalance (QCM) and electrochemical impedance measurements. The films were shown to be stable in phosphate buffered saline (PBS). Addition of α-amylase to the solution resulted in the rapid degradation of the films. The maximum rate of degradation was found to be strongly dependent on the amylase activity in the range typically found in serum when diagnosing pancreatitis (0.08-8 U/ml). Sensor responses in serum were found to be very similar to those obtained in buffer indicating the absence of non-specific binding. PMID:25266253

  4. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes.

    PubMed

    Arendt, Maja; Fall, Tove; Lindblad-Toh, Kerstin; Axelsson, Erik

    2014-10-01

    High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch-rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed-dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus. PMID:24975239

  5. High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes

    NASA Astrophysics Data System (ADS)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-02-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow, whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.

  6. Purification of a. beta. -amylase that accumulates in Arabidopsis thaliana mutants defective in starch metabolism. [Arabidopsis thaliana

    SciTech Connect

    Monroe, J.D.; Preiss, J. )

    1990-11-01

    Amylase activity is elevated 5- to 10-fold in leaves of several different Arabidopsis thaliana mutants defective in starch metabolism when they are grown under a 12-hour photoperiod. Activity is also increased when plants are grown under higher light intensity. It was previously determined that the elevated activity was an extrachloroplastic {beta}-(exo)amylase. Due to the location of this enzyme outside the chloroplast, its function is not known. The enzyme was purified to homogeneity from leaves of both a starchless mutant deficient in plastid phosphoglucomutase and from the wild type using polyethylene glycol fractionation and cyclohexaamylose affinity chromatography. The molecular mass of the {beta}-amylase from both sources was 55,000 daltons as determined by denaturing gel electrophoresis. Gel filtration studies indicated that the enzyme was a monomer. The specific activities of the purified protein from mutant and wild-type sources, their substrate specificities, and K{sub m} for amylopectin were identical. Based on these results it was concluded that the mutant contained an increased level of {beta}-amylase protein. Enzyme neutralization studies using a polyclonal antiserum raised to purified {beta}-amylase showed that in each of two starchless mutants, one starch deficient mutant and one starch overproducing mutant, the elevated amylase activity was due to elevated {beta}-amylase protein.

  7. In Vivo Synthesis and Turnover of alpha-Amylase in Attached and Detached Cotyledons of Vigna mungo Seeds.

    PubMed

    Koshiba, T; Minamikawa, T

    1983-01-01

    alpha-Amylase activity increased in attached cotyledons of germinated Vigna mungo seeds until the 5th day after imbibition and decreased thereafter, whereas in detached and incubated cotyledons the activity continuously increased and, at the 6th day, reached the value more than three times that of the maximum activity of attached cotyledons. Zymograms of the activities and Ouchterlony double immunodiffusion test on the activities of attached and detached cotyledons showed that the increase of activity in detached cotyledons was due to the identical enzyme as in attached tissues. alpha-Amylase contents, determined by single radial immunodiffusion method, changed in parallel with enzyme activity in both attached and detached cotyledons, which also suggested the de novo synthesis of alpha-amylase in V. mungo cotyledons.The rate of incorporation of the label from [(3)H]leucine into alpha-amylase and the ratios of dpm in alpha-amylase/dpm in trichloroacetic acid-insoluble fraction did not show significant difference between attached and detached cotyledons. The results indicated that in attached cotyledons fluctuation of alpha-amylase activity was regulated by both synthesis and degradation of the enzyme, whereas in detached cotyledons alpha-amylase was synthesized and accumulated, because of low degrading activity during incubation.

  8. In Vivo Synthesis and Turnover of α-Amylase in Attached and Detached Cotyledons of Vigna mungo Seeds 1

    PubMed Central

    Koshiba, Tomokazu; Minamikawa, Takao

    1983-01-01

    α-Amylase activity increased in attached cotyledons of germinated Vigna mungo seeds until the 5th day after imbibition and decreased thereafter, whereas in detached and incubated cotyledons the activity continuously increased and, at the 6th day, reached the value more than three times that of the maximum activity of attached cotyledons. Zymograms of the activities and Ouchterlony double immunodiffusion test on the activities of attached and detached cotyledons showed that the increase of activity in detached cotyledons was due to the identical enzyme as in attached tissues. α-Amylase contents, determined by single radial immunodiffusion method, changed in parallel with enzyme activity in both attached and detached cotyledons, which also suggested the de novo synthesis of α-amylase in V. mungo cotyledons. The rate of incorporation of the label from [3H]leucine into α-amylase and the ratios of dpm in α-amylase/dpm in trichloroacetic acid-insoluble fraction did not show significant difference between attached and detached cotyledons. The results indicated that in attached cotyledons fluctuation of α-amylase activity was regulated by both synthesis and degradation of the enzyme, whereas in detached cotyledons α-amylase was synthesized and accumulated, because of low degrading activity during incubation. Images Fig. 1 Fig. 2 Fig. 4 PMID:16662780

  9. Polyaniline-graphene based α-amylase biosensor with a linear dynamic range in excess of 6 orders of magnitude.

    PubMed

    Teixeira, Sofia Rodrigues; Lloyd, Catherine; Yao, Seydou; Andrea Salvatore Gazze; Whitaker, Iain S; Francis, Lewis; Conlan, R Steven; Azzopardi, Ernest

    2016-11-15

    α-amylase is an established marker for diagnosis of pancreatic and salivary disease, and recent research has seen a substantial expansion of its use in therapeutic and diagnostic applications for infection, cancer and wound healing. The lack of bedside monitoring devices for α-amylase detection has hitherto restricted the clinical progress of such applications. We have developed a highly sensitive α-amylase immunosensor platform, produced via in situ electropolymerization of aniline onto a screen-printed graphene support (SPE). Covalently binding an α-amylase specific antibody to a polyaniline (PANI) layer and controlling device assembly using electrochemical impedance spectroscopy (EIS), we have achieved a highly linear response against α-amylase concentration. Each stage of the assembly was characterized using a suite of high-resolution topographical, chemical and mechanical techniques. Quantitative, highly sensitive detection was demonstrated using an artificially spiked human blood plasma samples. The device has a remarkably wide limit of quantification (0.025-1000IU/L) compared to α-amylase assays in current clinical use. With potential for simple scale up to volume manufacturing though standard semiconductor production techniques and subsequently clinical application, this biosensor will enable clinical benefit through early disease detection, and better informed administration of correct therapeutic dose of drugs used to treat α-amylase related diseases.

  10. Purification, sequencing, and biochemical characterization of a novel calcium-independent α-amylase AmyTVE from Thermoactinomyces vulgaris.

    PubMed

    El-Sayed, Ahmed K A; Abou Dobara, Mohamed I; El-Fallal, Amira A; Omar, Noha F

    2013-06-01

    α-Amylase from Thermoactinomyces vulgaris was highly purified 48.9-fold by ammonium sulfate precipitation, gel filtration on Sephadex G-50 column, and ion exchange chromatography column of DEAE-cellulose. The molecular weight of the enzyme was estimated to be 135 and 145 kDa by SDS-PAGE. Its high molecular weight is due to high glycosylation. The purified amylase exhibited maximal activity at pH 6.0 to 7.0 and was stable in the range of pH 4.0 to 9.0. The optimum temperature for its activity was 50 °C. The enzyme half-life time was 120 min at 50 °C, suggesting intermediate temperature stable α-amylase. The enzyme was sensitive to different metal ions, including NaCl, CoCl(2), and CaCl(2), and to different concentrations of EDTA. The enzyme activity was inhibited in the presence of 1 mM CaCl(2), suggesting that it is a calcium-independent α-amylase. The TLC showed that the amylase hydrolyzed starch to produce large maltooligosaccharides as the main products. A 1.1-kb DNA fragment of the putative α-amylase gene (amy TVE) from T. vulgaris was amplified by using two specific newly designed primers. Sequencing analysis showed 56.2 % similarity to other Thermoactinomyces α-amylases with two conserved active sites confirming its function.

  11. Gellan gum microspheres containing a novel α-amylase from marine Nocardiopsis sp. strain B2 for immobilization.

    PubMed

    Chakraborty, Samrat; Jana, Sougata; Gandhi, Arijit; Sen, Kalyan Kumar; Zhiang, Wang; Kokare, Chandrakant

    2014-09-01

    A Nocardiopsis sp. stain B2 with an ability to produce stable α-amylase was isolated from marine sediments. The characterization of microorganism was done by biochemical tests and 16S rDNA sequencing. The α-amylase was purified by gel filtration chromatography by using sephadex G-75. The molecular mass of the amylase was found to be 45 kDa by SDS-PAGE and gel filtration chromatography. The isolated α-amylase was immobilized by ionotropic gelation technique using gellan gum (GG). These microspheres were spherical with average particle size of 375.62±21.76 to 492.54±32.18 μm. The entrapment efficiency of these α-amylase loaded GG microspheres was found 74.76±1.32 to 87.64±1.52%. Characterization of α-amylase-gellan gum microspheres was confirmed using FTIR and SEM analysis. The in vitro amylase release kinetic have been studied by various mathematical models that follow the Korsmeyer-Peppas model (R2=0.9804-0.9831) with anomalous (non-Fickian) diffusion release mechanism.

  12. Characterization of a Digestive α-Amylase in the Midgut of Pieris brassicae L. (Lepidoptera: Pieridae).

    PubMed

    Sharifloo, Ali; Zibaee, Arash; Sendi, Jalal J; Jahroumi, Khalil Talebi

    2016-01-01

    The current study deals with a digestive α-amylase in the larvae of Pieris brassicae L. through purification, enzymatic characterization, gene expression, and in vivo effect of a specific inhibitor, Acarbose. Although α-amylase activity was the highest in the whole gut homogenate of larvae but compartmentalization of amylolytic activity showed an equal activity in posterior midgut (PM) and anterior midgut (AM). A three step purification using ammonium sulfate, Sepharyl G-100 and DEAE-Cellulose Fast flow revealed an enzyme with a specific activity of 5.18 U/mg, recovery of 13.20, purification fold of 19.25 and molecular weight of 88 kDa. The purified α-amylase had the highest activity at optimal pH and temperature of 8 and 35°C. Also, the enzyme had V max values of 4.64 and 3.02 U/mg protein and K m values of 1.37 and 1.74% using starch and glycogen as substrates, respectively. Different concentrations of acarbose, ethylenediamine tetraacetic acid, and ethylene glycol-bis (β-aminoethylether) N, N, N', N'-tetraacetic acid significantly decreased activity of the purified α-amylase. The 4th instar larvae of P. brassicae were fed on the treated leaves of Raphanus sativus L. with 0.22 mM of Acarbose to find in vivo effects on nutritional indices, α-amylase activity, and gene expression. The significant differences were only found in conversion efficiency of digested food, relative growth rate, and metabolic cost of control and fed larvae on Acarbose. Also, amylolytic activity significantly decreased in the treated larvae by both biochemical and native-PAGE experiments. Results of RT-PCR revealed a gene with 621 bp length responsible for α-amylase expression that had 75% identity with Papilio xuthus and P. polytes. Finally, qRT-PCR revealed higher expression of α-amylase in control larvae compared to acarbose-fed ones. PMID:27014094

  13. Characterization of a Digestive α-Amylase in the Midgut of Pieris brassicae L. (Lepidoptera: Pieridae)

    PubMed Central

    Sharifloo, Ali; Zibaee, Arash; Sendi, Jalal J.; Jahroumi, Khalil Talebi

    2016-01-01

    The current study deals with a digestive α-amylase in the larvae of Pieris brassicae L. through purification, enzymatic characterization, gene expression, and in vivo effect of a specific inhibitor, Acarbose. Although α-amylase activity was the highest in the whole gut homogenate of larvae but compartmentalization of amylolytic activity showed an equal activity in posterior midgut (PM) and anterior midgut (AM). A three step purification using ammonium sulfate, Sepharyl G-100 and DEAE-Cellulose Fast flow revealed an enzyme with a specific activity of 5.18 U/mg, recovery of 13.20, purification fold of 19.25 and molecular weight of 88 kDa. The purified α-amylase had the highest activity at optimal pH and temperature of 8 and 35°C. Also, the enzyme had Vmax values of 4.64 and 3.02 U/mg protein and Km values of 1.37 and 1.74% using starch and glycogen as substrates, respectively. Different concentrations of acarbose, ethylenediamine tetraacetic acid, and ethylene glycol-bis (β-aminoethylether) N, N, N′, N′-tetraacetic acid significantly decreased activity of the purified α-amylase. The 4th instar larvae of P. brassicae were fed on the treated leaves of Raphanus sativus L. with 0.22 mM of Acarbose to find in vivo effects on nutritional indices, α-amylase activity, and gene expression. The significant differences were only found in conversion efficiency of digested food, relative growth rate, and metabolic cost of control and fed larvae on Acarbose. Also, amylolytic activity significantly decreased in the treated larvae by both biochemical and native-PAGE experiments. Results of RT-PCR revealed a gene with 621 bp length responsible for α-amylase expression that had 75% identity with Papilio xuthus and P. polytes. Finally, qRT-PCR revealed higher expression of α-amylase in control larvae compared to acarbose-fed ones. PMID:27014094

  14. Pancreatic α-Amylase Controls Glucose Assimilation by Duodenal Retrieval through N-Glycan-specific Binding, Endocytosis, and Degradation*

    PubMed Central

    Date, Kimie; Satoh, Ayano; Iida, Kaoruko; Ogawa, Haruko

    2015-01-01

    α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na+/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104–23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption

  15. A simple one pot purification of bacterial amylase from fermented broth based on affinity toward starch-functionalized magnetic nanoparticle.

    PubMed

    Paul, Tanima; Chatterjee, Saptarshi; Bandyopadhyay, Arghya; Chattopadhyay, Dwiptirtha; Basu, Semanti; Sarkar, Keka

    2015-08-18

    Surface-functionalized adsorbant particles in combination with magnetic separation techniques have received considerable attention in recent years. Selective manipulation on such magnetic nanoparticles permits separation with high affinity in the presence of other suspended solids. Amylase is used extensively in food and allied industries. Purification of amylase from bacterial sources is a matter of concern because most of the industrial need for amylase is met by microbial sources. Here we report a simple, cost-effective, one-pot purification technique for bacterial amylase directly from fermented broth of Bacillus megaterium utilizing starch-coated superparamagnetic iron oxide nanoparticles (SPION). SPION was prepared by co-precipitation method and then functionalized by starch coating. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), a superconducting quantum interference device (SQUID, zeta potential, and ultraviolet-visible (UV-vis) and Fourier-transform infrared (FTIR) spectroscopy. The starch-coated nanoparticles efficiently purified amylase from bacterial fermented broth with 93.22% recovery and 12.57-fold purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the molecular mass of the purified amylase was 67 kD, and native gel showed the retention of amylase activity even after purification. Optimum pH and temperature of the purified amylase were 7 and 50°C, respectively, and it was stable over a range of 20°C to 50°C. Hence, an improved one-pot bacterial amylase purification method was developed using starch-coated SPION.

  16. Discovery and characterization of pseudocyclic cystine-knot α-amylase inhibitors with high resistance to heat and proteolytic degradation.

    PubMed

    Nguyen, Phuong Q T; Wang, Shujing; Kumar, Akshita; Yap, Li J; Luu, Thuy T; Lescar, Julien; Tam, James P

    2014-10-01

    Obesity and type 2 diabetes are chronic metabolic diseases, and those affected could benefit from the use of α-amylase inhibitors to manage starch intake. The pseudocyclics, wrightides Wr-AI1 to Wr-AI3, isolated from an Apocynaceae plant show promise for further development as orally active α-amylase inhibitors. These linear peptides retain the stability known for cystine-knot peptides in the presence of harsh treatment. They are resistant to heat treatment and endopeptidase and exopeptidase degradation, which is characteristic of cyclic cystine-knot peptides. Our NMR and crystallography analysis also showed that wrightides, which are currently the smallest proteinaceous α-amylase inhibitors reported, contain the backbone-twisting cis-proline, which is preceded by a nonaromatic residue rather than a conventional aromatic residue. The modeled structure and a molecular dynamics study of Wr-AI1 in complex with yellow mealworm α-amylase suggested that, despite having a similar structure and cystine-knot fold, the knottin-type α-amylase inhibitors may bind to insect α-amylase via a different set of interactions. Finally, we showed that the precursors of pseudocyclic cystine-knot α-amylase inhibitors and their biosynthesis in plants follow a secretory protein synthesis pathway. Together, our findings provide insights for the use of the pseudocyclic α-amylase inhibitors as useful leads for the development of orally active peptidyl bioactives, as well as an alternative scaffold for cyclic peptides for engineering metabolically stable human α-amylase inhibitors.

  17. Milk production and nutrient digestibility by dairy cows when fed exogenous amylase with coarsely ground dry corn.

    PubMed

    Weiss, W P; Steinberg, W; Engstrom, M A

    2011-05-01

    The digestibility of starch provided by coarsely ground corn is often low, which reduces the digestible energy (DE) concentration of the diet. We hypothesized that adding exogenous amylase to diets based on coarsely ground dent corn would increase dietary DE resulting in greater milk production. Total-tract nutrient digestibility was measured in a partially replicated Latin square experiment (6 cows and 4 periods) with a 2 × 2 factorial arrangement of treatments. Diets had 26 or 31% starch with or without exogenous amylase (amylase was added to the concentrate mixes at the feed mill). In the low and high starch diets, coarsely ground dry corn (mean particle size=1.42 mm) provided 43 and 62% of total dietary starch (corn silage provided most of the remaining starch). No treatment interactions were observed. High starch diets had greater dry matter (DM), organic matter, and energy digestibility than low starch diets, and diets with amylase had greater neutral detergent fiber digestibility than diets without amylase. Digestibility of starch averaged 88% and was not affected by treatment. A long-term (98-d) lactation study with 48 Holstein cows (74 d in milk) was conducted using 3 of the diets (low starch diets with and without amylase and the high starch diet without amylase). Addition of amylase to a diet with 26% starch did not affect intake, milk yield, milk composition, body weight, or body condition. Cows fed the diet with 31% starch had greater DM and DE intakes; yields of milk, fat, and protein; and feed efficiency than those fed diets with 26% starch. Milk composition was not affected by starch concentration. Adding exogenous amylase to a lower starch diet did not make the diet nutritionally equivalent to a higher starch diet.

  18. Two Strategies for Microbial Production of an Industrial Enzyme-Alpha-Amylase

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Garriott, Owen; Pusey, Marc L.; Ng, Joseph D.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments including hot springs, soda lakes and arctic water. This ability of survival at extreme conditions has rendered extremophiles to be of interest in astrobiology, evolutionary biology as well as in industrial applications. Of particular interest to the biotechnology industry are the biological catalysts of the extremophiles, the extremozymes, whose unique stabilities at extreme conditions make them potential sources of novel enzymes in industrial applications. There are two major approaches to microbial enzyme production. This entails enzyme isolation directly from the natural host or creating a recombinant expression system whereby the targeted enzyme can be overexpressed in a mesophilic host. We are employing both methods in the effort to produce alpha-amylases from a hyperthermophilic archaeon (Thermococcus) isolated from a hydrothermal vent in the Atlantic Ocean, as well as from alkaliphilic bacteria (Bacillus) isolated from a soda lake in Tanzania. Alpha-amylases catalyze the hydrolysis of internal alpha-1,4-glycosidic linkages in starch to produce smaller sugars. Thermostable alpha-amylases are used in the liquefaction of starch for production of fructose and glucose syrups, whereas alpha-amylases stable at high pH have potential as detergent additives. The alpha-amylase encoding gene from Thermococcus was PCR amplified using carefully designed primers and analyzed using bioinformatics tools such as BLAST and Multiple Sequence Alignment for cloning and expression in E.coli. Four strains of Bacillus were grown in alkaline starch-enriched medium of which the culture supernatant was used as enzyme source. Amylolytic activity was detected using the starch-iodine method.

  19. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas.

    PubMed

    Huvet, Arnaud; Béguel, Jean-Philippe; Cavaleiro, Nathalia Pereira; Thomas, Yoann; Quillien, Virgile; Boudry, Pierre; Alunno-Bruscia, Marianne; Fabioux, Caroline

    2015-06-01

    Feeding strategies and digestive capacities can have important implications for variation in energetic pathways associated with ecological and economically important traits, such as growth or reproduction in bivalve species. Here, we investigated the role of amylase in the digestive processes of Crassostrea gigas, using in vivo RNA interference. This approach also allowed us to investigate the relationship between energy intake by feeding and gametogenesis in oysters. Double-stranded (ds)RNA designed to target the two α-amylase genes A and B was injected in vivo into the visceral mass of oysters at two doses. These treatments caused significant reductions in mean mRNA levels of the amylase genes: -50.7% and -59% mRNA A, and -71.9% and -70.6% mRNA B in 15 and 75 µg dsRNA-injected oysters, respectively, relative to controls. Interestingly, reproductive knock-down phenotypes were observed for both sexes at 48 days post-injection, with a significant reduction of the gonad area (-22.5% relative to controls) and germ cell under-proliferation revealed by histology. In response to the higher dose of dsRNA, we also observed reductions in amylase activity (-53%) and absorption efficiency (-5%). Based on these data, dynamic energy budget modeling showed that the limitation of energy intake by feeding that was induced by injection of amylase dsRNA was insufficient to affect gonadic development at the level observed in the present study. This finding suggests that other driving mechanisms, such as endogenous hormonal modulation, might significantly change energy allocation to reproduction, and increase the maintenance rate in oysters in response to dsRNA injection.

  20. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family.

    PubMed

    Janeček, Štefan; Gabriško, Marek

    2016-07-01

    The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context. PMID:27154042

  1. β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress.

    PubMed

    Zanella, Martina; Borghi, Gian Luca; Pirone, Claudia; Thalmann, Matthias; Pazmino, Diana; Costa, Alex; Santelia, Diana; Trost, Paolo; Sparla, Francesca

    2016-03-01

    During photosynthesis of higher plants, absorbed light energy is converted into chemical energy that, in part, is accumulated in the form of transitory starch within chloroplasts. In the following night, transitory starch is mobilized to sustain the heterotrophic metabolism of the plant. β-amylases are glucan hydrolases that cleave α-1,4-glycosidic bonds of starch and release maltose units from the non-reducing end of the polysaccharide chain. In Arabidopsis, nocturnal degradation of transitory starch involves mainly β-amylase-3 (BAM3). A second β-amylase isoform, β-amylase-1 (BAM1), is involved in diurnal starch degradation in guard cells, a process that sustains stomata opening. However, BAM1 also contributes to diurnal starch turnover in mesophyll cells under osmotic stress. With the aim of dissecting the role of β-amylases in osmotic stress responses in Arabidopsis, mutant plants lacking either BAM1 or BAM3 were subject to a mild (150mM mannitol) and prolonged (up to one week) osmotic stress. We show here that leaves of osmotically-stressed bam1 plants accumulated more starch and fewer soluble sugars than both wild-type and bam3 plants during the day. Moreover, bam1 mutants were impaired in proline accumulation and suffered from stronger lipid peroxidation, compared with both wild-type and bam3 plants. Taken together, these data strongly suggest that carbon skeletons deriving from BAM1 diurnal degradation of transitory starch support the biosynthesis of proline required to face the osmotic stress. We propose the transitory-starch/proline interplay as an interesting trait to be tackled by breeding technologies aimingto improve drought tolerance in relevant crops. PMID:26792489

  2. Development of an amylolytic Lactobacillus plantarum silage strain expressing the Lactobacillus amylovorus alpha-amylase gene.

    PubMed Central

    Fitzsimons, A; Hols, P; Jore, J; Leer, R J; O'Connell, M; Delcour, J

    1994-01-01

    An amylolytic Lactobacillus plantarum silage strain with the starch-degrading ability displayed by Lactobacillus amylovorus was developed. An active fragment of the gene coding for alpha-amylase production in L. amylovorus was cloned and integrated into the chromosome of the competitive inoculant strain L. plantarum Lp80 at the cbh locus. The alpha-amylase gene fragment was also introduced into L. plantarum Lp80 on an autoreplicative plasmid. Both constructions were also performed in the laboratory strain L. plantarum NCIB8826. All four recombinant strains secreted levels of amylase ranging from 23 to 69 U/liter, compared with 47 U/liter for L. amylovorus. Secretion levels were higher in L. plantarum NCIB8826 than in L. plantarum Lp80 derivatives and were higher in recombinant strains containing autoreplicative plasmids than in the corresponding integrants. The L. plantarum Lp80 derivative containing the L. amylovorus alpha-amylase gene fragment integrated into the host chromosome secreted alpha-amylase to a level comparable to that of L. amylovorus and was stable over 50 generations of growth under nonselective conditions. It grew to a higher cell density than either the parent strain or L. amylovorus in MRS medium containing a mixture of starch and glucose as the fermentable carbohydrate source. This recombinant alpha-amylolytic L. plantarum strain would therefore seem to have considerable potential as a silage inoculant for crops such as alfalfa, in which water-soluble carbohydrate levels are frequently low but starch is present as an alternative carbohydrate source. Images PMID:7986030

  3. Engineering high α-amylase levels in wheat grain lowers Falling Number but improves baking properties.

    PubMed

    Ral, Jean-Philippe; Whan, Alex; Larroque, Oscar; Leyne, Emmett; Pritchard, Jeni; Dielen, Anne-Sophie; Howitt, Crispin A; Morell, Matthew K; Newberry, Marcus

    2016-01-01

    Late maturity α-amylase (LMA) and preharvest sprouting (PHS) are genetic defects in wheat. They are both characterized by the expression of specific isoforms of α-amylase in particular genotypes in the grain prior to harvest. The enhanced expression of α-amylase in both LMA and PHS results in a reduction in Falling Number (FN), a test of gel viscosity, and subsequent downgrading of the grain, along with a reduced price for growers. The FN test is unable to distinguish between LMA and PHS; thus, both defects are treated similarly when grain is traded. However, in PHS-affected grains, proteases and other degradative process are activated, and this has been shown to have a negative impact on end product quality. No studies have been conducted to determine whether LMA is detrimental to end product quality. This work demonstrated that wheat in which an isoform α-amylase (TaAmy3) was overexpressed in the endosperm of developing grain to levels of up to 100-fold higher than the wild-type resulted in low FN similar to those seen in LMA- or PHS-affected grains. This increase had no detrimental effect on starch structure, flour composition and enhanced baking quality, in small-scale 10-g baking tests. In these small-scale tests, overexpression of TaAmy3 led to increased loaf volume and Maillard-related browning to levels higher than those in control flours when baking improver was added. These findings raise questions as to the validity of the assumption that (i) LMA is detrimental to end product quality and (ii) a low FN is always indicative of a reduction in quality. This work suggests the need for a better understanding of the impact of elevated expression of specific α-amylase on end product quality.

  4. [The amylase-creatinine clearance ratio in the differential diagnosis of pancreatitis and gastroduodenal ulcer with hyperamylasemia].

    PubMed

    Pezzangora, V; Della Dora, R; Pagliarini, A; Dell'Olivo, I

    1978-04-01

    The Authors followed 29 patients, hospitaled with a diagnosis of pancreatitis. They all presented the same sympotomatology and a considerable increase of the serum amylase ad urinary amylase. The examination of the ratio between the clearance of amylasis and creatinine permitted to make a differential diagnosis for 8 cases (4rd group) that were nothing but peptic ulcera. Such a diagnosis was confirmed by the radiological contrastographic examination or by the intraoperative report. So if the ratio between the clearance of amylase and creatinine is normal we must think about a pathological situation were the iperamylasemia has a pathogenetic cause different from pancreatitis.

  5. Purification by expanded bed adsorption and characterization of an alpha-amylases FORILASE NTL from A. niger.

    PubMed

    Toledo, A L; Severo, J B; Souza, R R; Campos, E S; Santana, J C C; Tambourgi, E B

    2007-02-01

    In this work the purification and biochemistry characterization of alpha-amylases from Aspergillus niger (FORILASE NTL) were studied. The effects of expansion degree of resin bed on enzyme purification by expanded bed adsorption (EBA) have also been studied. Residence time distributions (RTD) studies were done to achieve the optimal conditions of the amylases recovery on ion-exchange resin, and glucose solution was used as a new tracer. Results showed that height equivalent of the theoretical plates (HETP), axial dispersion and the Prandt number increased with bed height, bed voidage and linear velocity. The adsorption capacity of alpha-amylases, on the resin, increased with bed height and the best condition was at four-expansion degree. alpha-Amylase characterization showed that this enzyme has high affinity with soluble starch, good hydrolysis potential and molecular weight of 116 kDa.

  6. Mixed-mode resins: taking shortcut in downstream processing of raw-starch digesting α-amylases.

    PubMed

    Lončar, Nikola; Šokarda Slavić, Marinela; Vujčić, Zoran; Božić, Nataša

    2015-10-23

    Bacillus licheniformis 9945a α-amylase is known as a potent enzyme for raw starch hydrolysis. In this paper, a mixed mode Nuvia cPrime™ resin is examined with the aim to improve the downstream processing of raw starch digesting amylases and exploit the hydrophobic patches on their surface. This resin combines hydrophobic interactions with cation exchange groups and as such the presence of salt facilitates hydrophobic interactions while the ion-exchange groups enable proper selectivity. α-Amylase was produced using an optimized fed-batch approach in a defined media and significant overexpression of 1.2 g L(-1) was achieved. This single step procedure enables simultaneous concentration, pigment removal as well as purification of amylase with yields of 96% directly from the fermentation broth.

  7. Pancreatic Amylase Is an Environmental Signal for Regulation of Biofilm Formation and Host Interaction in Campylobacter jejuni

    PubMed Central

    Jowiya, Waheed; Brunner, Katja; Abouelhadid, Sherif; Hussain, Haitham A.; Nair, Sean P.; Sadiq, Sohaib; Williams, Lisa K.; Trantham, Emma K.; Stephenson, Holly; Wren, Brendan W.; Bajaj-Elliott, Mona; Cogan, Tristan A.; Laws, Andrew P.; Wade, Jim; Dorrell, Nick

    2015-01-01

    Campylobacter jejuni is a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran by C. jejuni and that a secreted protease, Cj0511, is required. Exposure of C. jejuni to pancreatic amylase promotes biofilm formation in vitro, increases interaction with human epithelial cell lines, increases virulence in the Galleria mellonella infection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protects C. jejuni from stress conditions in vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism. PMID:26438798

  8. Pancreatic amylase is an environmental signal for regulation of biofilm formation and host interaction in Campylobacter jejuni.

    PubMed

    Jowiya, Waheed; Brunner, Katja; Abouelhadid, Sherif; Hussain, Haitham A; Nair, Sean P; Sadiq, Sohaib; Williams, Lisa K; Trantham, Emma K; Stephenson, Holly; Wren, Brendan W; Bajaj-Elliott, Mona; Cogan, Tristan A; Laws, Andrew P; Wade, Jim; Dorrell, Nick; Allan, Elaine

    2015-12-01

    Campylobacter jejuni is a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran by C. jejuni and that a secreted protease, Cj0511, is required. Exposure of C. jejuni to pancreatic amylase promotes biofilm formation in vitro, increases interaction with human epithelial cell lines, increases virulence in the Galleria mellonella infection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protects C. jejuni from stress conditions in vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism.

  9. Cloning and expression analysis of the Bombyx mori α-amylase gene (Amy) from the indigenous Thai silkworm strain, Nanglai.

    PubMed

    Ngernyuang, Nipaporn; Kobayashi, Isao; Promboon, Amornrat; Ratanapo, Sunanta; Tamura, Toshiki; Ngernsiri, Lertluk

    2011-01-01

    α-Amylase is a common enzyme for hydrolyzing starch. In the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), α-amylase is found in both digestive fluid and hemolymph. Here, the complete genomic sequence of the Amy gene encoding α-amylase from a local Thai silkworm, the Nanglai strain, was obtained. This gene was 7981 bp long with 9 exons. The full length Amy cDNA sequence was 1749 bp containing a 1503 bp open reading frame. The ORF encoded 500 amino acid residues. The deduced protein showed 81-54% identity to other insect α-amylases and more than 50% identity to mammalian enzymes. Southern blot analysis revealed that in the Nanglai strain Amy is a single-copy gene. RT- PCR showed that Amy was transcribed only in the foregut. Transgenic B. mori also showed that the Amy promoter activates expression of the transgene only in the foregut.

  10. Mixed-mode resins: taking shortcut in downstream processing of raw-starch digesting α-amylases

    PubMed Central

    Lončar, Nikola; Slavić, Marinela Šokarda; Vujčić, Zoran; Božić, Nataša

    2015-01-01

    Bacillus licheniformis 9945a α-amylase is known as a potent enzyme for raw starch hydrolysis. In this paper, a mixed mode Nuvia cPrime™ resin is examined with the aim to improve the downstream processing of raw starch digesting amylases and exploit the hydrophobic patches on their surface. This resin combines hydrophobic interactions with cation exchange groups and as such the presence of salt facilitates hydrophobic interactions while the ion-exchange groups enable proper selectivity. α-Amylase was produced using an optimized fed-batch approach in a defined media and significant overexpression of 1.2 g L−1 was achieved. This single step procedure enables simultaneous concentration, pigment removal as well as purification of amylase with yields of 96% directly from the fermentation broth. PMID:26492875

  11. Aspergillus 6V4, a Strain Isolated from Manipueira, Produces High Amylases Levels by Using Wheat Bran as a Substrate

    PubMed Central

    Celestino, Jessyca dos Reis; Duarte, Ana Caroline; Silva, Cláudia Maria de Melo; Sena, Hellen Holanda; Ferreira, Maria do Perpétuo Socorro Borges Carriço; Mallmann, Neila Hiraishi; Lima, Natacha Pinheiro Costa; Tavares, Chanderlei de Castro; de Souza, Rodrigo Otávio Silva; Souza, Érica Simplício; Souza, João Vicente Braga

    2014-01-01

    The aim of this study was screening fungi strains, isolated from manipueira (a liquid subproduct obtained from the flour production of Manihot esculenta), for amylases production and investigating production of these enzymes by the strain Aspergillus 6V4. The fungi isolated from manipueira belonged to Ascomycota phylum. The strain Aspergillus 6V4 was the best amylase producer in the screening assay of starch hydrolysis in petri dishes (ASHPD) and in the assay in submerged fermentation (ASbF). The strain Aspergillus 6V4 produced high amylase levels (335 UI/L) using wheat bran infusion as the exclusive substrate and the supplementation of this substrate with peptone decreased the production of this enzyme. The moisture content of 70% was the best condition for the production of Aspergillus 6V4 amylases (385 IU/g) in solid state fermentation (SSF). PMID:24724017

  12. Aspergillus 6V4, a Strain Isolated from Manipueira, Produces High Amylases Levels by Using Wheat Bran as a Substrate.

    PubMed

    Celestino, Jessyca Dos Reis; Duarte, Ana Caroline; Silva, Cláudia Maria de Melo; Sena, Hellen Holanda; Ferreira, Maria do Perpétuo Socorro Borges Carriço; Mallmann, Neila Hiraishi; Lima, Natacha Pinheiro Costa; Tavares, Chanderlei de Castro; de Souza, Rodrigo Otávio Silva; Souza, Erica Simplício; Souza, João Vicente Braga

    2014-01-01

    The aim of this study was screening fungi strains, isolated from manipueira (a liquid subproduct obtained from the flour production of Manihot esculenta), for amylases production and investigating production of these enzymes by the strain Aspergillus 6V4. The fungi isolated from manipueira belonged to Ascomycota phylum. The strain Aspergillus 6V4 was the best amylase producer in the screening assay of starch hydrolysis in petri dishes (ASHPD) and in the assay in submerged fermentation (ASbF). The strain Aspergillus 6V4 produced high amylase levels (335 UI/L) using wheat bran infusion as the exclusive substrate and the supplementation of this substrate with peptone decreased the production of this enzyme. The moisture content of 70% was the best condition for the production of Aspergillus 6V4 amylases (385 IU/g) in solid state fermentation (SSF).

  13. Serum Amylase Levels in Relation to Islet β Cell Function in Patients with Early Type 2 Diabetes

    PubMed Central

    Zhuang, Lei; Su, Jian-bin; Zhang, Xiu-lin; Huang, Hai-yan; Zhao, Li-hua; Xu, Feng; Chen, Tong; Wang, Xue-qin; Wu, Gang; Wang, Xiao-hua

    2016-01-01

    Objective The insulin-pancreatic acinar axis may play a major role in pancreatic function. Amylase is an exocrine enzyme that is produced by pancreatic acinar cells, and low serum amylase levels may be associated with endocrine diseases, such as metabolic syndrome and diabetes. We hypothesized that low serum amylase levels may be associated with impaired islet β cell function in type 2 diabetes. Therefore, we investigated the relationship between the serum amylase levels and islet β cell function in patients with early type 2 diabetes. Methods The cross-sectional study recruited 2327 patients with a mean of 1.71±1.62 years since their diagnosis of type 2 diabetes, and all participants were treated with lifestyle intervention alone. Serum amylase levels, the 75-g oral glucose tolerance test (OGTT) and metabolic risk factors were examined in all participants. The insulin sensitivity index (Matsuda index, ISIMatsuda) and insulin secretion index (ratio of total area-under-the-insulin-curve to glucose-curve, AUCins/glu) were derived from the OGTT. Integrated islet β cell function was assessed by the Insulin Secretion-Sensitivity Index-2 (ISSI-2) (ISIMatsuda multiplied by AUCins/glu). Results Serum amylase levels in the normal range were significantly correlated with ISIMatsuda, AUCins/glu and ISSI-2 (r = 0.203, 0.246 and 0.413, respectively, p<0.001). The association of the serum amylase levels with ISSI-2 (adjusted r = 0.363, p<0.001) was closer than the association with ISIMatsuda (adjusted r = 0.191, p<0.001) and AUCins/glu (adjusted r = 0.174, p<0.001) after adjusting for the anthropometric indices, time since the diagnosis of diabetes, lipid profiles, uric acid levels, estimated glomerular filtration rate, HbA1c levels, smoking and drinking using the partial correlation test. After adjusting for these metabolic risk factors in the multivariate regression analysis with the amylase levels as the dependent variable, ISSI-2 was the major independent contributor to

  14. Phospholipase A2 as a point of care alternative to serum amylase and pancreatic lipase

    NASA Astrophysics Data System (ADS)

    Liu, Nathan J.; Chapman, Robert; Lin, Yiyang; Bentham, Andrew; Tyreman, Matthew; Philips, Natalie; Khan, Shahid A.; Stevens, Molly M.

    2016-06-01

    Acute pancreatitis is a relatively common and potentially fatal condition, but the presenting symptoms are non-specific and diagnosis relies largely on the measurement of amylase activity by the hospital clinical laboratory. In this work we develop a point of care test for pancreatitis measuring concentration of secretory phospholipase A2 group IB (sPLA2-IB). Novel antibodies for sPLA2-IB were raised and used to design an ELISA and a lateral flow device (LFD) for the point of care measurement of sPLA2-IB concentration, which was compared to pancreatic amylase activity, lipase activity, and sPLA2-IB activity in 153 serum samples. 98 of these samples were obtained from the pathology unit of a major hospital and classified retrospectively according to presence or absence of pancreatitis, and the remaining 55 were obtained from commercial sources to serve as high lipase (n = 20), CA19-9 positive (n = 15), and healthy (n = 20) controls. sPLA2-IB concentration correlated well with the serum activity of both amylase and lipase, and performed at least as well as either markers in the differentiation of pancreatitis from controls.Acute pancreatitis is a relatively common and potentially fatal condition, but the presenting symptoms are non-specific and diagnosis relies largely on the measurement of amylase activity by the hospital clinical laboratory. In this work we develop a point of care test for pancreatitis measuring concentration of secretory phospholipase A2 group IB (sPLA2-IB). Novel antibodies for sPLA2-IB were raised and used to design an ELISA and a lateral flow device (LFD) for the point of care measurement of sPLA2-IB concentration, which was compared to pancreatic amylase activity, lipase activity, and sPLA2-IB activity in 153 serum samples. 98 of these samples were obtained from the pathology unit of a major hospital and classified retrospectively according to presence or absence of pancreatitis, and the remaining 55 were obtained from commercial sources to

  15. Isolation, purification and characterization of β-amylase from Dioscorea hispida Dennst

    NASA Astrophysics Data System (ADS)

    Oktiarni, Dwita; Lusiana, Simamora, Febri Yanti; Gaol, Jusni M. Lumban

    2015-09-01

    β-amylase (E.C 3.2.1.2) is an enzyme commonly found in plants and bacteria. The enzyme is an exo-acting carbohydrolase which hydrolyzes α-1.4-glucosidic linkages of starch, removing maltose units from the non-reducing end of the polysaccharide chain, producing β-maltose and β-limit dextrin as the final product. β-amylase is widely distributed in the higher plants such as sweet potato. Besides the use in starch hydrolysis, starch-converting enzymes are also used in a number of other industrial applications, such as laundry and porcelain detergents or as anti-stalling agents in baking. This enzyme was extracted from Dioscorea hispida Dennst in 0.05 M acetate buffer pH 4.8 and followed by ammonium sulfate fractionation at cold temperature (10°C). Ammonium sulfate fractionation was shared into fraction of 0-60%, 60-70%, 70-80% and 80-100%. The fraction containing high of specific activity (determined by Somogyi-Nelson and Lowry methods) was futher purified by dialysis. Fraction with high enzyme activity of β-amylase were fraction 60-70% and 70-80%, with specific activity of Dioscorea hispida Dennst were 1.32 and 1.55 mg sugar.mg protein-1.minute-1, whereas specific activity of crude extract enzyme was 0.21 mg sugar.mg protein-1.minute-1. After purified with dialysis, fraction with high enzyme activity of β-amylase were fraction of 60-70% and 70-80%, with specific activity of Dioscorea hispida Dennst was 2.72 and 4.24 mg sugar.mg protein-1.minute-1. The purified Dioscorea hispida Dennst β-amylase from dialysis showed increasing in spesific activity the crude enzyme as much as 24 folds. The characterization of enzyme showed that Dioscorea hispida Dennst derived enzyme had optimum pH of 5.5 and temperature of 70°C. The kinetic parameters of purified Dioscorea hispida Dennst β-amylase showed that the KMapp, Vmaxapp value and Hill constant were 0.0211 mg/ml, 9.63 mg sugar.minute-1 and 1.34, respectively.

  16. Effects of alpha-amylase and its inhibitors on acid production from cooked starch by oral streptococci.

    PubMed

    Aizawa, S; Miyasawa-Hori, H; Nakajo, K; Washio, J; Mayanagi, H; Fukumoto, S; Takahashi, N

    2009-01-01

    This study evaluated acid production from cooked starch by Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis and Streptococcus mitis, and the effects of alpha-amylase inhibitors (maltotriitol and acarbose) and xylitol on acid production. Streptococcal cell suspensions were anaerobically incubated with various carbohydrates that included cooked potato starch in the presence or absence of alpha-amylase. Subsequently, the fall in pH and the acid production rate at pH 7.0 were measured. In addition, the effects of adding alpha-amylase inhibitors and xylitol to the reaction mixture were evaluated. In the absence of alpha-amylase, both the fall in pH and the acid production rate from cooked starch were small. On the other hand, in the presence of alpha-amylase, the pH fell to 3.9-4.4 and the acid production rate was 0.61-0.92 micromol per optical density unit per min. These values were comparable to those for maltose. When using cooked starch, the fall in pH by S. sanguinis and S. mitis was similar to that by S. mutans and S. sobrinus. For all streptococci, alpha-amylase inhibitors caused a decrease in acid production from cooked starch, although xylitol only decreased acid production by S. mutans and S. sobrinus. These results suggest that cooked starch is potentially acidogenic in the presence of alpha-amylase, which occurs in the oral cavity. In terms of the acidogenic potential of cooked starch, S. sanguinis and S. mitis were comparable to S. mutans and S. sobrinus. Alpha-amylase inhibitors and xylitol might moderate this activity. PMID:19136828

  17. Natural plant enzyme inhibitors. Characterization of an unusual alpha-amylase/trypsin inhibitor from ragi (Eleusine coracana Geartn.).

    PubMed Central

    Shivaraj, B; Pattabiraman, T N

    1981-01-01

    An inhibitor I-1, capable of acting on both alpha-amylase and trypsin, was purified to homogeneity from ragi (finger-millet) grains. The factor was found to be stable to heat treatment at 100 degrees C for 1 h in the presence of NaCl and also was stable over the wide pH range 1-10. Pepsin and Pronase treatment of inhibitor I-1 resulted in gradual loss of both the inhibitory activities. Formation of trypsin-inhibitor I-1 complex, amylase-inhibitor I-1 complex and trypsin-inhibitor I-1-amylase trimer complex was demonstrated by chromatography on a Bio-Gel P-200 column. This indicated that the inhibitor is 'double-headed' in nature. The inhibitor was retained on a trypsin-Sepharose 4B column at pH 7.0. Elution at acidic pH resulted in almost complete recovery of amylase-inhibitory and trypsin-inhibitory activities. alpha-Amylase was retained on a trypsin-Sepharose column to which inhibitor I-1 was bound, but not on trypsin-Sepharose alone. Modification of amino groups of the inhibitor with 2,4,6-trinitrobenzenesulphonic acid resulted in complete loss of amylase-inhibitory activity but only 40% loss in antitryptic activity. Modification of arginine residues by cyclohexane-1,2-dione led to 85% loss of antitryptic activity after 5 h, but no effect on amylase-inhibitory activity. The results show that a single bifunctional protein factor is responsible for both amylase-inhibitory and trypsin-inhibitory activities with two different reactive sites. Images Fig. 1. Fig. 2. Fig. 3. PMID:6796040

  18. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico.

    PubMed

    Jhong, Chien-Hung; Riyaphan, Jirawat; Lin, Shih-Hung; Chia, Yi-Chen; Weng, Ching-Feng

    2015-01-01

    The alpha-glucosidase inhibitor is a common oral anti-diabetic drug used for controlling carbohydrates normally converted into simple sugars and absorbed by the intestines. However, some adverse clinical effects have been observed. The present study seeks an alternative drug that can regulate the hyperglycemia by down-regulating alpha-glucosidase and alpha-amylase activity by molecular docking approach to screen the hyperglycemia antagonist against alpha-glucosidase and alpha-amylase activities from the 47 natural compounds. The docking data showed that Curcumin, 16-hydroxy-cleroda-3,13-dine-16,15-olide (16-H), Docosanol, Tetracosanol, Antroquinonol, Berberine, Catechin, Quercetin, Actinodaphnine, and Rutin from 47 natural compounds had binding ability towards alpha-amylase and alpha-glucosidase as well. Curcumin had a better biding ability of alpha-amylase than the other natural compounds. Analyzed alpha-glucosidase activity reveals natural compound inhibitors (below 0.5 mM) are Curcumin, Actinodaphnine, 16-H, Quercetin, Berberine, and Catechin when compared to the commercial drug Acarbose (3 mM). A natural compound with alpha-amylase inhibitors (below 0.5 mM) includes Curcumin, Berberine, Docosanol, 16-H, Actinodaphnine/Tetracosanol, Catechin, and Quercetin when compared to Acarbose (1 mM). When taken together, the implication is that molecular docking is a fast and effective way to screen alpha-glucosidase and alpha-amylase inhibitors as lead compounds of natural sources isolated from medicinal plants.

  19. Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development

    PubMed Central

    Whan, Alex; Dielen, Anne-Sophie; Mieog, Jos; Bowerman, Andrew F.; Robinson, Hannah M.; Byrne, Keren; Colgrave, Michelle; Larkin, Philip J.; Howitt, Crispin A.; Morell, Matthew K.; Ral, Jean-Philippe

    2014-01-01

    Wheat starch degradation requires the synergistic action of different amylolytic enzymes. Our spatio-temporal study of wheat α-amylases throughout grain development shows that AMY3 is the most abundant isoform compared with the other known α-amylases. Endosperm-specific over-expression of AMY3 resulted in an increase of total α-amylase activity in harvested grains. Unexpectedly, increased activity did not have a significant impact on starch content or composition but led to an increase of soluble carbohydrate (mainly sucrose) in dry grain. In AMY3 overexpression lines (A3OE), germination was slightly delayed and triacylglycerol (TAG) content was increased in the endosperm of mature grain. Despite increased AMY3 transcript and protein content throughout grain development, alterations of α-amylase activity and starch granule degradation were not detected until grain maturation, suggesting a post-translational inhibition of α-amylase activity in the endosperm during the starch filling period. These findings show unexpected effects of a high level of α-amylase on grain development and composition, notably in carbon partitioning and TAG accumulation, and suggest the presence of a hitherto unknown regulatory pathway during grain filling. PMID:25053646

  20. Three alpha-amylases from malted finger millet (Ragi, Eleusine coracana, Indaf-15)--purification and partial characterization.

    PubMed

    Nirmala, M; Muralikrishna, G

    2003-01-01

    Three alpha-amylases (E.C. 3.2.1.1) were purified to apparent homogeneity from 72 h finger millet malt by three step purification via fractional acetone precipitation, DEAE-Sephacel ion exchange and Sephacryl S-200 gel permeation chromatographies with a recovery of 6.5, 2.9, 9.6% and fold purification of 26, 17 and 31, respectively. alpha-Nature of these amylases was identified by their ability to rapidly reduce the viscosity of starch solution and also in liberating oligosaccharides of higher D.P. and were accordingly designated as amylases alpha-1((b)), alpha-2 and alpha-3, respectively. These amylases, having a molecular weight of 45+/-2 kDa were found to be monomeric. The pH and temperature optima of these alpha-amylases were found to be in the range of 5.0-5.5 and 45-50 degrees C, respectively. K(m) values of these amylases for various cereal starches varied between 0.59 and 1.43%. Carbodiimide (50 mM) and metal ions such as Al(3+), Fe(2+), and Hg(2+) (5 mM) have completely inhibited these enzymes at 45 degrees C. Amino acid analysis of these enzymes indicated high amounts of glycine which is an unusual feature of these enzymes.

  1. Chloride Activated Halophilic α-Amylase from Marinobacter sp. EMB8: Production Optimization and Nanoimmobilization for Efficient Starch Hydrolysis.

    PubMed

    Kumar, Sumit; Khare, S K

    2015-01-01

    Halophiles have been perceived as potential source of novel enzymes in recent years. The interest emanates from their ability to catalyze efficiently under high salt and organic solvents. Present work encompasses production optimization and nanoimmobilization of an α-amylase from moderately halophilic Marinobacter sp. EMB8. Media ingredients and culture conditions were optimized by "one-at-a-time approach." Starch was found to be the best carbon source at 5% (w/v) concentration. Glucose acted as catabolic repressor for amylase production. Salt proved critical for amylase production and maximum production was attained at 5% (w/v) NaCl. Optimization of various culture parameters resulted in 48.0 IU/mL amylase production, a 12-fold increase over that of unoptimized condition (4.0 IU/mL). α-Amylase was immobilized on 3-aminopropyl functionalized silica nanoparticles using glutaraldehyde as cross-linking agent. Optimization of various parameters resulted in 96% immobilization efficiency. Starch hydrolyzing efficiency of immobilized enzyme was comparatively better. Immobilized α-amylase retained 75% of its activity after 5th cycle of repeated use. PMID:25667773

  2. Utilization of a maltotetraose-producing amylase as a whole wheat bread improver: dough rheology and baking performance.

    PubMed

    Bae, Woosung; Lee, Sung Ho; Yoo, Sang-Ho; Lee, Suyong

    2014-08-01

    A maltotetraose-producing enzyme (G4-amylase) was utilized to improve the baking performance of whole-grain wheat flour. Whole-grain bread dough prepared with G4-amylase showed reduced water absorption and increased development time, while the dough stability was not affected. Also, the G4-amylase-treated samples exhibited lower Mixolab torque values than the control upon heating and cooling. Rheological measurements showed the decreased ratio of Rmax /E and increased tan δ, clearly demonstrating that the viscous characteristics of whole-grain bread dough became dominant with increasing levels of G4-amylase. The use of G4-amylase produced whole-grain wheat breads with a variety of maltooligosaccharides, primarily maltotetraose that positively contributed to the bread volume (1.2-fold higher than the control). Moreover, G4-amylase delayed the crumb firming of whole-grain wheat bread during a 7-d storage period, showing that it can function as an antiretrogradation agent to enhance the quality attributes of whole-grain wheat bread.

  3. Effects of metals on {alpha}-amylase activity in the digestive gland of the green mussel, Perna viridis L.

    SciTech Connect

    Yan, T.; Teo, L.H.; Sin, Y.M.

    1996-04-01

    A number of digestive enzymes in the green mussel, Perna viridis L., have been reported, and {alpha}-amylase is believed to have a higher activity than the others. Small plankton, on which the green mussel feeds, may supply plenty of starch and glycogen. They may be an important source of nutrients for the green mussel and the ability of the latter to make good use of them depends mainly on the activities of amylase. The effect of heavy metals on amylase activity is also important as the ability of the mussel`s digestive gland to accumulate these metals is well known. High concentrations of heavy metals, especially lead, have been observed in the water around Singapore. The in vitro inhibition of some metals on the activities of digestive enzymes from the green mussel has been observed, but kinetic properties of the inhibition and the in vivo inhibition of the heavy metals on digestive enzymes are little understood. In the present study, in vitro inhibition of four metals (Pb, Cd, Zn and Hg) on the activity of {alpha}-amylase from the digestive gland of the green mussel will be compared. Their effects on the K{sub M} and V{sub max} values of {alpha}-amylase will also be compared. Finally, lead is either added to the food or water, to see how it affects the activity of {alpha}-amylase and how this effect acts in combination with starvation. 12 refs., 3 figs., 3 tabs.

  4. Control of. cap alpha. -amylase mRNA accumulation by gibberellic acid and calcium in barley aleurone layers

    SciTech Connect

    Deikman, J.; Jones, R.L.

    1985-01-01

    Pulse-labeling of barley (Hordeum vulgare L. cv Himalaya) aleurone layers incubated for 13 hours in 2.5 micromolar gibberellic acid (GA/sub 3/) with or without 5 millimolar CaCl/sub 2/ shows that ..cap alpha..-amylase isozymes 3 and 4 are not synthesized in vivo in the absence of Ca/sup 2 +/. No difference was observed in ..cap alpha..-amylase mRNA levels between layers incubated for 12 hours in 2.5 micromolar GA/sub 3/ with 5 millimolar CaCl/sub 2/ and layers incubated in GA/sub 3/ alone. RNA isolated from layers incubated for 12 hours in GA/sub 3/ with and without CA/sup 2 +/. A cDNA clone for ..cap alpha..-amylase was isolated and used to measure ..cap alpha..-amylase mRNA levels in aleurone layers incubated in the presence and absence of Ca/sup 2 +/ was translated in vitro and was found to produce the same complement of translation products regardless of the presence of Ca/sup 2 +/ in the incubation medium. Immunoprecipitation of translation products showed that the RNA for ..cap alpha..-amylase synthesized in Ca/sup 2 +/-deprived aleurone layers was translatable. Ca/sup 2 +/ is required for the synthesis of ..cap alpha..-amylase isozymes 3 and 4 at a step after mRNA accumulation and processing.

  5. Chloride Activated Halophilic α-Amylase from Marinobacter sp. EMB8: Production Optimization and Nanoimmobilization for Efficient Starch Hydrolysis

    PubMed Central

    Kumar, Sumit; Khare, S. K.

    2015-01-01

    Halophiles have been perceived as potential source of novel enzymes in recent years. The interest emanates from their ability to catalyze efficiently under high salt and organic solvents. Present work encompasses production optimization and nanoimmobilization of an α-amylase from moderately halophilic Marinobacter sp. EMB8. Media ingredients and culture conditions were optimized by “one-at-a-time approach.” Starch was found to be the best carbon source at 5% (w/v) concentration. Glucose acted as catabolic repressor for amylase production. Salt proved critical for amylase production and maximum production was attained at 5% (w/v) NaCl. Optimization of various culture parameters resulted in 48.0 IU/mL amylase production, a 12-fold increase over that of unoptimized condition (4.0 IU/mL). α-Amylase was immobilized on 3-aminopropyl functionalized silica nanoparticles using glutaraldehyde as cross-linking agent. Optimization of various parameters resulted in 96% immobilization efficiency. Starch hydrolyzing efficiency of immobilized enzyme was comparatively better. Immobilized α-amylase retained 75% of its activity after 5th cycle of repeated use. PMID:25667773

  6. alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus.

    PubMed

    Ali, Hasenah; Houghton, P J; Soumyanath, Amala

    2006-10-11

    Extracts of six selected Malaysian plants with a reputation of usefulness in treating diabetes were examined for alpha-amylase inhibition using an in vitro model. Inhibitory activity studied by two different protocols (with and without pre-incubation) showed that Phyllanthus amarus hexane extract had alpha-amylase inhibitory properties. Hexane and dichloromethane extracts of Anacardium occidentale, Lagerstroemia speciosa, Averrhoa bilimbiPithecellobium jiringa and Parkia speciosa were not active when tested without pre-incubation. Extraction and fractionation of Phyllanthus amarus hexane extract led to the isolation of dotriacontanyl docosanoate, triacontanol and a mixture of oleanolic acid and ursolic acid. Dotriacontanyl docosanoate and the mixture of oleanolic acid and ursolic acid are reported from this plant species for the first time. All compounds were tested in the alpha-amylase inhibition assay and the results revealed that the oleanolic acid and ursolic acid (2:1) mixture was a potent alpha-amylase inhibitor with IC(50)=2.01 microg/ml (4.41 microM) and that it contributes significantly to the alpha-amylase inhibition activity of the extract. Three pure pentacyclic triterpenoids, oleanolic acid, ursolic acid and lupeol were shown to inhibit alpha-amylase.

  7. Primer extension studies on alpha-amylase mRNAs in barley aleurone. II. Hormonal regulation of expression.

    PubMed

    Chandler, P M; Jacobsen, J V

    1991-04-01

    Relative levels of different alpha-amylase mRNAs were assessed by primer extension experiments using RNA prepared from aleurone of barley (Hordeum vulgare L. cv. Himalaya). Three different aleurone systems were studied: protoplasts prepared from aleurone layers, isolated aleurone layers, and aleurone from germinated grain. Oligonucleotide primers specific for the low-pI and high-pI alpha-amylase groups allowed the levels of different alpha-amylase mRNAs to be assessed both within and between the two groups. In all aleurone systems the same set of alpha-amylase mRNAs was produced in response to either applied gibberellic acid (aleurone protoplasts, isolated aleurone layers) or, presumably, native gibberellin(s) (germinated grain). This result indicates that the same set of genes is being expressed in each case. Differences were observed between the different aleurone systems in regulation of levels of alpha-amylase mRNAs. In particular, the regulation of alpha-amylase mRNA levels in aleurone of germinated grain has unique features which are not adequately explained by the response of isolated aleurone layers to gibberellic acid.

  8. alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus.

    PubMed

    Ali, Hasenah; Houghton, P J; Soumyanath, Amala

    2006-10-11

    Extracts of six selected Malaysian plants with a reputation of usefulness in treating diabetes were examined for alpha-amylase inhibition using an in vitro model. Inhibitory activity studied by two different protocols (with and without pre-incubation) showed that Phyllanthus amarus hexane extract had alpha-amylase inhibitory properties. Hexane and dichloromethane extracts of Anacardium occidentale, Lagerstroemia speciosa, Averrhoa bilimbiPithecellobium jiringa and Parkia speciosa were not active when tested without pre-incubation. Extraction and fractionation of Phyllanthus amarus hexane extract led to the isolation of dotriacontanyl docosanoate, triacontanol and a mixture of oleanolic acid and ursolic acid. Dotriacontanyl docosanoate and the mixture of oleanolic acid and ursolic acid are reported from this plant species for the first time. All compounds were tested in the alpha-amylase inhibition assay and the results revealed that the oleanolic acid and ursolic acid (2:1) mixture was a potent alpha-amylase inhibitor with IC(50)=2.01 microg/ml (4.41 microM) and that it contributes significantly to the alpha-amylase inhibition activity of the extract. Three pure pentacyclic triterpenoids, oleanolic acid, ursolic acid and lupeol were shown to inhibit alpha-amylase. PMID:16678367

  9. Molecular characterization, gene expression analysis and biochemical properties of alpha-amylase from the disk abalone, Haliotis discus discus.

    PubMed

    Nikapitiya, Chamilani; Oh, Chulhong; Whang, Ilson; Kim, Choong-Gon; Lee, Youn-Ho; Kim, Sang-Jin; Lee, Jehee

    2009-03-01

    The present study reports the molecular characterization, cloning, expression, and biochemical characterization of alpha-amylase identified from the disk abalone, Haliotis discus discus cDNA library. The full length of the alpha-amylase cDNA was 1650 bp, and it encoded a polypeptide of 511 amino acids. The predicted HdAmyI molecular mass of mature protein was 54 kDa and the estimated isoelectric point (pI) was 8.3. The alpha-amylase gene showed its characteristic motifs, catalytic sites, substrate binding sites and conserved regions with other known species of alpha-amylases. Purified recombinant HdAmyI exhibited a relatively low activity of 0.1 U/mg protein towards 1% starch. HdAmyI had an optimum temperature and pH of 50 degrees C and 6.5, respectively. It also demonstrated stability in a wide range of temperatures and pH. Tissue-specific mRNA expression results showed that HdAmyI is expressed only in the digestive tract and hepatopancreas, with the highest levels in the hepatopancreas. Over 8 weeks of starvation, alpha-amylase transcription was decreased significantly relative to basal levels. However, after starvation, mRNA transcription was increased and returned to normal level by the 2nd week of feeding, suggesting that the alpha-amylase mRNA expression changes according to variations in food availability at the transcriptional level in disk abalone.

  10. Purification, partial characterization, and covalent immobilization-stabilization of an extracellular α-amylase from Aspergillus niveus.

    PubMed

    Silva, Tony Marcio; Damásio, André Ricardo de Lima; Maller, Alexandre; Michelin, Michele; Squina, Fabio M; Jorge, João Atílio; Polizeli, Maria de Lourdes Teixeira de Moraes

    2013-11-01

    An extracellular amylase secreted by Aspergillus niveus was purified using DEAE fractogel ion exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5 % polyacrylamide gel electrophoresis (PAGE) and 10 % sodium dodecyl sulfate (SDS-PAGE). The enzyme exhibited 4.5 % carbohydrate content, 6.6 isoelectric point, and 60 and 52 kDa molar mass estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The amylase efficiently hydrolyzed glycogen, amylose, and amylopectin. The end-products formed after 24 h of starch hydrolysis, analyzed by thin layer chromatography, were maltose, maltotriose, maltotetraose, and maltopentaose, which classified the studied amylase as an α-amylase. Thermal stability of the α-amylase was improved by covalent immobilization on glyoxyl agarose (half-life of 169 min, at 70 °C). On the other hand, the free α-amylase showed a half-life of 20 min at the same temperature. The optima of pH and temperature were 6.0 and 65 °C for both free and immobilized forms.

  11. Cloning, enhanced expression and characterization of an α-amylase gene from a wild strain in B. subtilis WB800.

    PubMed

    Chen, Jing; Chen, Xianghua; Dai, Jun; Xie, Guangrong; Yan, Luying; Lu, Lina; Chen, Jianhua

    2015-09-01

    A Bacillus strain with high productivity of α-amylase isolated from a starch farm was identified as Bacillus amyloliquefaciens. The α-amylase encoding gene amy1 was cloned into pMD18-T vector and amplified in E. coli DH5α. Shuttle vector pP43MNX was reconstructed to obtain vector pP43X for heterologous expression of the α-amylase in B. subtilis WB800. Recombinant enzyme was sufficiently purified by precipitation, gel filtration and anion exchange with a specific activity of 5566 U/mg. The α-amylase sequence contains an open reading frame of 1545 bp, which encodes a protein of 514 amino acid residues with a predicted molecular mass of 58.4 kDa. The enzyme exhibited maximal activity at pH 6.0 and 60 °C. Catalytic efficiency of the recombinant α-amylase was inhibited by Hg(2+), Pb(2+) and Cu(2+), but stimulated by Li(+), Mn(2+) and Ca(2+). The purified enzyme showed decreased activity toward detergents (SDS, Tween 20 and Triton X-100). Compared with production by the wild strain, there was a 1.48-fold increase in the productivity of α-amylase in recombinant B. subtilis WB800.

  12. Functionalized Graphene Sheets As Immobilization Matrix for Fenugreek β-Amylase: Enzyme Kinetics and Stability Studies

    PubMed Central

    Srivastava, Garima; Singh, Kritika; Talat, Mahe; Srivastava, Onkar Nath; Kayastha, Arvind M.

    2014-01-01

    β-Amylase finds application in food and pharmaceutical industries. Functionalized graphene sheets were customised as a matrix for covalent immobilization of Fenugreek β-amylase using glutaraldehyde as a cross-linker. The factors affecting the process were optimized using Response Surface Methodology based Box-Behnken design of experiment which resulted in 84% immobilization efficiency. Scanning and Transmission Electron Microscopy (SEM, TEM) and Fourier Tansform Infrared (FTIR) spectroscopy were employed for the purpose of characterization of attachment of enzyme on the graphene. The enzyme kinetic studies were carried out for obtaining best catalytic performance and enhanced reusability. Optimum temperature remained unchanged, whereas optimum pH showed shift towards acidic range for immobilized enzyme. Increase in thermal stability of immobilized enzyme and non-toxic nature of functionalized graphene can be exploited for production of maltose in food and pharmaceutical industries. PMID:25412079

  13. Production of saccharogenic and dextrinogenic amylases by Rhizomucor pusillus A 13.36.

    PubMed

    Silva, Tony M; Attili-Angeli, Derlene; Carvalho, Ana Flavia Azeved; Da Silva, Roberto; Boscolo, Mauricio; Gomes, Eleni

    2005-12-01

    A newly-isolated thermophilic strain of the zygomycete fungus Rhizomucor pusillus 13.36 produced highly active dextrinogenic and saccharogenic enzymes. Cassava pulp was a good alternative substrate for amylase production. Dextrinogenic and saccharogenic amylases exhibited optimum activities at a pH of 4.0-4.5 and 5.0 respectively and at a temperature of 75 degrees C. The enzymes were highly thermostable, with no detectable loss of saccharogenic or dextrinogenic activity after 1 h and 6 h at 60 degrees C, respectively. The saccharogenic activity was inhibited by Ca(2+) while the dextrinogenic was indifferent to this ion. Both activities were inhibited by Fe(2+) and Cu(2+) Hydrolysis of soluble starch by the crude enzyme yielded 66% glucose, 19.5% maltose, 7.7% maltotriose and 6.6% oligosaccharides.

  14. Production and characterization of a thermostable alpha-amylase from Nocardiopsis sp. endophyte of yam bean.

    PubMed

    Stamford, T L; Stamford, N P; Coelho, L C; Araújo, J M

    2001-01-01

    Thermostable amylolytic enzymes have been currently investigated to improve industrial processes of starch degradation. Studies on production of alpha-amylase by Nocardiopsis sp., an endophytic actinomycete isolated from yam bean (Pachyrhizus erosus L. Urban), showed that higher enzyme levels were obtained at the end of the logarithmic growth phase after incubation for 72 h at pH 8.6. Maximum activity of alpha-amylase was obtained at pH 5.0 and 70 degrees C. The isolated enzyme exhibited thermostable properties as indicated by retention of 100% of residual activity at 70 degrees C, and 50% of residual activity at 90 degrees C for 10 min. Extracellular enzyme from Nocardiopsis sp. was purified by fractional precipitation with ammonium sulphate. After 60% saturation produced 1130 U mg-1 protein and yield was 28% with purification 2.7-fold. The enzyme produced by Nocardiopsis sp. has potential for industrial applications. PMID:11131797

  15. Purification and Some Properties of an Extracellular Amylase from a Moderate Halophile, Micrococcus halobius.

    PubMed

    Onishi, H; Sonoda, K

    1979-10-01

    A moderate halophile, Micrococcus halobius ATCC 21727, produced an extracellular dextrinogenic amylase when cultivated in media containing 1 to 3 M NaCl. The amylase was purified from the culture filtrate to an electrophoretically homogenous state by glycogen-complex formation, diethylaminoethyl-cellulose chromatography, and Bio-Gel P-200 gel filtration. The enzyme had maximal activity at pH 6 to 7 in 0.25 M NaCl or 0.75 M KCl at 50 to 55 degrees C. The activity was lost by dialysis against distilled water. Molecular weight was estimated to be 89,000 by sodium dodecyl sulfate-gel electrophoresis. The action pattern on amylose, soluble starch, and glycogen showed that the products were maltose, maltotriose, and maltotetraose, with lesser amount of glucose.

  16. Crystallization of an alpha-amylase, AmyA, from the thermophilic halophile Halothermothrix orenii.

    PubMed

    Li, Nan; Patel, Bharat K C; Mijts, Benjamin N; Swaminathan, Kunchithapadam

    2002-12-01

    This report is the first crystallographic study of an amylase from an organism that is both thermophilic and halophilic. alpha-Amylase from the thermophilic halophile Halothermothrix orenii (AmyA) is a 515-residue protein. It is stable and significantly active at 338 K in starch solution containing NaCl [up to 25%(w/v)]. Purified recombinant AmyA protein crystallizes in the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 55.126, b = 61.658, c = 147.625 A, using the hanging-drop vapour-diffusion method. The crystal diffracts X-rays to a resolution limit of 1.89 A.

  17. Convenience of immobilized Bacillus licheniformis alpha-amylase as time-temperature-integrator (TTI).

    PubMed

    De Cordt, S F; Hendrickx, M E; Maesmans, G J; Tobback, P P

    1994-02-01

    For the immobilization of Bacillus licheniformis alpha-amylase to porous glass beads, the performances of three possible linking agents, glutaric dialdehyde, benzoquinone and s-trichlorotriazine were assessed in respect of the protein yield, the enzymic activity and the thermostability of the immobilized enzyme. These three properties are to be evaluated in view of the possible use of the enzyme preparations as time-temperature-integrators (TTIs) for assessing the severity of heat pasteurization or sterilization processes of food or pharmaceuticals. All three linkers improved the enzyme's resistance to irreversible heat inactivation to a similar extent and in each case biphasic inactivation kinetics were observed, whereas the dissolved B. licheniformis alpha-amylase showed a simple first order decay. The immobilization yield, measured as protein per carrier weight, did not differ markedly for the three linkers, although the enzymic activity of the glutaric dialdehyde-linked enzyme was lower than that of the benzoquinone- and s-trichlorotriazine-linked preparations. PMID:7764538

  18. Statistical optimization of alpha-amylase production by probiotic Lactobacillus plantarum MTCC 1407 in submerged fermentation.

    PubMed

    Panda, Smita H; Swain, Manas R; Kar, Shaktimay; Ray, Ramesh C; Montet, Dider

    2008-01-01

    Production and purification of alpha-amylase by probiotic Lactobacillus plantarum MTCC 1407 has been investigated under submerged fermentation using Mann Rogassa Sharpe medium containing (1%) soluble starch in lieu of glucose (2%) as carbon source. Response Surface Methodology was used to evaluate the effect of main variables, i.e. incubation period, pH and temperature on enzyme production. A full factorial Central Composite Design was applied to study these main factors that affected alpha-amylase production. The experimental results showed that the optimum incubation period, pH and temperature were 36 h, 7.0 and 35 degrees C, respectively. The purified enzyme (by ammonium sulphate precipitation) had a molecular mass of 75 450 Da in SDS-PAGE.

  19. Expression of a bacterial alpha-amylase gene in transgenic rice seeds.

    PubMed

    Xu, Xiaoli; Fang, Jun; Wang, Wei; Guo, Jianli; Chen, Pinnan; Cheng, Jiaan; Shen, Zhicheng

    2008-08-01

    An alpha-amylase gene from Bacillus stearothermophilus under the control of the promoter of a major rice-seed storage protein was introduced into rice. The transgenic line with the highest alpha-amylase activity reached about 15,000 U/g of seeds (one unit is defined as the amount of enzyme that produces 1 mumol of reducing sugar in 1 min at 70 degrees C). The enzyme produced in the seeds had an optimum pH of 5.0-5.5 and optimum temperature of 60-70 degrees C. Without extraction or purification, the power of transgenic rice seeds was able to liquify 100 times its weight of corn powder in 2 h. Thus, the transgenic rice could be used for industrial starch liquefaction.

  20. Application of reverse micelle extraction process for amylase recovery using response surface methodology.

    PubMed

    Bera, Manav B; Panesar, Parmjit S; Panesar, Reeba; Singh, Bahadur

    2008-06-01

    The effect of different process variables of reverse micelle extraction process like pH, addition of surfactant (AOT) concentration and potassium chloride (KCl) concentration on amylase recovery has been studied and analysed. Solid-state fermentation was used for the production of amylase enzyme. Response surface methodology (RSM) using central composite rotatable design (CCRD) was employed to analyse and optimize the enzyme extraction process. The regression analysis indicates that the effect of AOT concentration, and KCl concentration were significant, whereas the effect of pH was non-significant on enzyme recovery. For the maximum recovery of enzyme, the optimum operating condition for pH, AOT concentration (M) and KCl concentration were 10.43, 0.05 and 1.00, respectively. Under these optimal conditions, the enzyme recovery was 83.16%.

  1. Evolution of serum amylase, lipase and immunoreactive trypsin during pancreatitis attacks.

    PubMed

    Courtois, P; Art, G; Vertongen, F; Franckson, J R

    1985-01-01

    The characteristics of the blood curves of alpha-amylase (SA), pancreatic lipase (SL) and immunoreactive trypsin (SIT) have been analyzed in a series of patients daily explored throughout the evolution of pancreatitis attacks; urines were also collected to estimate the amylase-creatinine clearance ratio (ACCR). The following results were obtained. a). The 3 enzymes profiles ran roughly parallel during an acute attack. b). SL rose far higher than SA at the onset of the attack but its decay displayed a shorter half-life than the latter; these features resulted in an absence of systematic difference between their times of return to normal levels at the end of the attack. c). SIT more closely correlated with SL than with SA. d). In common hospital practice, simultaneous SA and SL determinations were proving a more reliable help to diagnose pancreatitis attack than ACCR. PMID:3878108

  2. Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp.

    PubMed Central

    Saxena, Rajshree; Singh, Rajni

    2011-01-01

    Solid state fermentation was carried out using various agro- industrial wastes with the best amylase producing strain isolated from soil. Different physicochemical conditions were varied for maximum enzyme production. The strain produced about 5400 units/g of amylase at 1:3 moisture content, 20% inoculum, after 72 h of incubation with Mustard Oil seed cake as the substrate. The optimum temperature and pH of the enzyme activity were found to be 50°C and 6 respectively. The enzyme was found to be thermostable at 70°C for about 2 h without any salt. It showed stability at pH range 5–7. The metal ions as Na+, Ca++, Mg++ and Co++ enhanced the enzyme activity. PMID:24031761

  3. Rapid laser nephelometric determination of amylase activity in serum and urine.

    PubMed

    Liu, T Z; Wei, J S

    1991-03-01

    We describe herein a rapid and sensitive laser nephelometric method for the determination of serum and urinary amylase activities. Our data showed that the change in relative light scattering (RLS) of an amylopectin substrate measured by a laser nephelometer related directly with amylolytic activity of amylase from 50 to 600 IU/L. Within-run variations at 293 and 769 IU/L sera showed CV's of 5.0% and 3.1%, respectively. Day-to-day variation for the same sera showed CV's of 7.2% and 4.7%, respectively. Correlation studies using the manual Phadebas dye-starch complex method and with the Roche amylochrome method showed correlation coefficients of 0.99 and 0.95, respectively. Using urine specimens, the correlation studies also showed a correlation coefficient of 0.98. These studies indicated that the proposed method was sensitive, fast, economical and easily adaptable to emergency and routine applications.

  4. α-amylase crystal growth investigated by in situ atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Astier, J. P.; Bokern, D.; Lapena, L.; Veesler, S.

    2001-06-01

    The growth behavior of porcine pancreatic α-amylase at defined supersaturation has been investigated by means of temperature controlled in situ atomic force microscopy (AFM). The step velocities measured by AFM were in overall agreement with the normal growth rates of an individual face measured by optical microscopy. In addition, highly local growth dynamics could be visualized. Imaging in tapping mode revealed crystalline amylase aggregates attached to the basal face and their subsequent incorporation into growing terraces producing a macrodefect. At high supersaturation ( β=1.6) 2-D nucleation was found to be the dominating growth mechanism, whereas at lower supersaturation ( β=1.3) the growth process appears to be defect controlled (spiral growth). The analysis of step heights on 2-D nucleation islands (monomolecular protein layers) and growth steps (two molecules in height) in combination with results from light scattering experiments suggest that a single protein molecule is the basic growth unit.

  5. Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases.

    PubMed

    Cipolla, Alexandre; Delbrassine, François; Da Lage, Jean-Luc; Feller, Georges

    2012-09-01

    The functional and structural adaptations to temperature have been addressed in homologous chloride-dependent α-amylases from a psychrophilic Antarctic bacterium, the ectothermic fruit fly, the homeothermic pig and from a thermophilic actinomycete. This series covers nearly all temperatures encountered by living organisms. We report a striking continuum in the functional properties of these enzymes coupled to their structural stability and related to the thermal regime of the source organism. In particular, thermal stability recorded by intrinsic fluorescence, circular dichroism and differential scanning calorimetry appears to be a compromise between the requirement for a stable native state and the proper structural dynamics to sustain the function at the environmental/physiological temperatures. The thermodependence of activity, the kinetic parameters, the activations parameters and fluorescence quenching support these activity-stability relationships in the investigated α-amylases.

  6. Amylase crystalloids in salivary gland lesions: report of a case with a review of the literature.

    PubMed

    López-Ríos, F; Díaz-Bustamante, T; Serrano-Egea, A; Jiménez, J; de Agustín, P

    2001-07-01

    Several types of crystalloids may be found in fine-needle aspiration cytology of salivary gland lesions. Amylase crystalloids (sometimes referred to as nontyrosine crystalloids) are tabular structures with frequent pointed ends that have received little attention until recent years. We report on a parotid cyst containing the latter type of crystalloids in a 51-yr-old white woman. The cytologic and radiologic findings were diagnostic of sialolithiasis. To the best of our knowledge, amylase crystalloids have been observed only in benign salivary gland lesions. Although this statement may be helpful in the diagnostic workup of patients presenting with parotid lumps, we do not recommend rendering a specific diagnosis based on the presence of such crystalloids. Good clinical and radiological correlation, as well as close follow-up, is mandatory in this setting.

  7. Comparison of Antibodies with Amylase Activity from Cerebrospinal Fluid and Serum of Patients with Multiple Sclerosis

    PubMed Central

    Doronin, Vasilii B.; Parkhomenko, Taisiya A.; Castellazzi, Massimiliano; Cesnik, Edward; Buneva, Valentina N.; Granieri, Enrico; Nevinsky, Georgy A.

    2016-01-01

    We have recently shown that IgGs from serum and cerebrospinal fluid (CSF) of MS patients are active in hydrolysis of DNA and myelin basic protein. According to literature data, anti-DNA and anti-MBP abzymes may promote important neuropathologic mechanisms in this chronic inflammatory disorder and in MS pathogenesis development. At the same time, the involvement of antibodies with amylase activity in the pathogenesis of any autoimmune disease has not yet been identified. Electrophoretically and immunologically homogeneous IgGs were obtained by a sequential affinity chromatography of the CSF proteins on protein G-Sepharose and FPLC gel filtration. We are able to present the first unpredictable evidence showing that IgGs from CSF possess amylase activity and efficiently hydrolyze maltoheptaose; their average specific Ab activity is ~30-fold higher than that of antibodies from sera of the same MS patients. Specific average RA (SAA) for IgGs from healthy volunteers was approximately ~1000 lower than that for MS patients. In addition, it was shown that a relative SAA of total proteins of CSF (including Abs) ~15-fold lower than that for purified IgGs, while the relative SAA of the total sera protein is higher than that of sera IgGs by a factor of 1033. This result speaks in favor of the fact that amylolytic activity of CSF proteins is mainly caused by the activity of amylase abzymes. One cannot exclude, that amylase abzymes of CSF can play a, as yet unknown, role in the pathogenesis of MS. Some possible reasons of these findings are discussed. PMID:27196086

  8. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.

    PubMed

    Konkit, Maytiya; Kim, Wonyong

    2016-07-01

    Several enzymes are involved in the process of converting milk to lactic acid and coagulated milk to curd and, therefore, are important in dairy fermented products. Amylase, proteinase, and lipase are enzymes that play an important role in degrading milk into monomeric molecules such as oligosaccharides, amino acids, and fatty acids, which are the main molecules responsible for flavors in cheese. In the current study, we determined the amylase, proteinase, and lipase activities of Lactococcus chungangensis CAU 28(T), a bacterial strain of nondairy origin, and compared them with those of the reference strain, Lactococcus lactis ssp. lactis KCTC 3769(T), which is commonly used in the dairy industry. Lactococcus chungangensis CAU 28(T) and L. lactis ssp. lactis KCTC 3769(T) were both found to have amylase, proteinase, and lipase activities in broth culture, cream cheese, and yogurt. Notably, the proteinase and lipase activities of L. chungangensis CAU 28(T) were higher than those of L. lactis ssp. lactis KCTC 3769(T), with proteinase activity of 10.50 U/mL in tryptic soy broth and 8.64 U/mL in cream cheese, and lipase activity of 100 U/mL of tryptic soy broth, and 100 U/mL of cream cheese. In contrast, the amylase activity was low, with 5.28 U/mL in tryptic soy broth and 8.86 U/mL in cream cheese. These enzyme activities in L. chungangensis CAU 28(T) suggest that this strain has potential to be used for manufacturing dairy fermented products, even though the strain is of nondairy origin. PMID:27108177

  9. Purification and characterization of a liquefying α-amylase from alkalophilic thermophilic Bacillus sp. AAH-31.

    PubMed

    Kim, Dae Hoon; Morimoto, Naoki; Saburi, Wataru; Mukai, Atsushi; Imoto, Koji; Takehana, Toshihiko; Koike, Seiji; Mori, Haruhide; Matsui, Hirokazu

    2012-01-01

    α-Amylase (EC 3.2.1.1) hydrolyzes an internal α-1,4-glucosidic linkage of starch and related glucans. Alkalophilic liquefying enzymes from Bacillus species are utilized as additives in dishwashing and laundry detergents. In this study, we found that Bacillus sp. AAH-31, isolated from soil, produced an alkalophilic liquefying α-amylase with high thermostability. Extracellular α-amylase from Bacillus sp. AAH-31 (AmyL) was purified in seven steps. The purified enzyme showed a single band of 91 kDa on SDS-PAGE. Its specific activity of hydrolysis of 0.5% soluble starch was 16.7 U/mg. Its optimum pH and temperature were 8.5 and 70 °C respectively. It was stable in a pH range of 6.4-10.3 and below 60 °C. The calcium ion did not affect its thermostability, unlike typical α-amylases. It showed 84.9% of residual activity after incubation in the presence of 0.1% w/v of EDTA at 60 °C for 1 h. Other chelating reagents (nitrilotriacetic acid and tripolyphosphate) did not affect the activity at all. AmyL was fully stable in 1% w/v of Tween 20, Tween 80, and Triton X-100, and 0.1% w/v of SDS and commercial detergents. It showed higher activity towards amylose than towards amylopectin or glycogen. Its hydrolytic activity towards γ-cyclodextin was as high as towards short-chain amylose. Maltotriose was its minimum substrate, and maltose and maltotriose accumulated in the hydrolysis of maltooligosaccharides longer than maltotriose and soluble starch.

  10. Gastric Duplication Cyst With Elevated Amylase: An Unusual Presentation Mimicking Pancreatic Cystic Neoplasm

    PubMed Central

    Karanovic, Djuro; Chalhoub, Walid; Ajmera, Akash; Maufa, Fuad; Zeck, Jay C.; Shafa, Shervin; Johnson, Lynt; Haddad, Nadim

    2015-01-01

    Enteric duplication cysts (EDCs) are benign congenital anomalies that are found incidentally in adults. Gastric duplication cysts (GDCs) are the least common subtype of EDC, but when located near the pancreas, may resemble other neoplastic conditions. We report a case of GDC adjacent to the pancreas with high cystic fluid amylase and carcinoembryonic antigen (CEA) and 3 different epithelia (respiratory, gastric, and intestinal), all diagnosed via endoscopic ultrasound with fine-needle aspiration. PMID:26157922

  11. Gastric Duplication Cyst With Elevated Amylase: An Unusual Presentation Mimicking Pancreatic Cystic Neoplasm.

    PubMed

    Sultan, Mohamed; Karanovic, Djuro; Chalhoub, Walid; Ajmera, Akash; Maufa, Fuad; Zeck, Jay C; Shafa, Shervin; Johnson, Lynt; Haddad, Nadim

    2015-01-01

    Enteric duplication cysts (EDCs) are benign congenital anomalies that are found incidentally in adults. Gastric duplication cysts (GDCs) are the least common subtype of EDC, but when located near the pancreas, may resemble other neoplastic conditions. We report a case of GDC adjacent to the pancreas with high cystic fluid amylase and carcinoembryonic antigen (CEA) and 3 different epithelia (respiratory, gastric, and intestinal), all diagnosed via endoscopic ultrasound with fine-needle aspiration.

  12. Evaluation of traditional Indian antidiabetic medicinal plants for human pancreatic amylase inhibitory effect in vitro.

    PubMed

    Ponnusamy, Sudha; Ravindran, Remya; Zinjarde, Smita; Bhargava, Shobha; Ravi Kumar, Ameeta

    2011-01-01

    Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post prandial hyperglycemia via control of starch breakdown. Eleven Ayurvedic Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on pancreatic α-amylase. Analysis of 91 extracts, showed that 10 exhibited strong Human Pancreatic Amylase (HPA) inhibitory potential. Of these, 6 extracts showed concentration dependent inhibition with IC(50) values, namely, cold and hot water extracts from Ficus bengalensis bark (4.4 and 125 μgmL(-1)), Syzygium cumini seeds (42.1 and 4.1 μgmL(-1)), isopropanol extracts of Cinnamomum verum leaves (1.0 μgmL(-1)) and Curcuma longa rhizome (0.16 μgmL(-1)). The other 4 extracts exhibited concentration independent inhibition, namely, methanol extract of Bixa orellana leaves (49 μgmL(-1)), isopropanol extract from Murraya koenigii leaves (127 μgmL(-1)), acetone extracts from C. longa rhizome (7.4 μgmL(-1)) and Tribulus terrestris seeds (511 μgmL(-1)). Thus, the probable mechanism of action of the above fractions is due to their inhibitory action on HPA, thereby reducing the rate of starch hydrolysis leading to lowered glucose levels. Phytochemical analysis revealed the presence of alkaloids, proteins, tannins, cardiac glycosides, flavonoids, saponins and steroids as probable inhibitory compounds.

  13. Hybrid on-line optimal control strategy for producing α-amylase by Bacillus subtilis.

    PubMed

    Zhao, Wei; Zheng, Jia; Zhou, Hong-Bo

    2011-01-01

    The combined effect of macronutrients in the extraction medium on α-amylase produced by Bacillus subtilis were studied by using response surface methodology in shaken flask cultures. The production of amylase was significantly affected by the interaction between wheat bran and the cotton seed extract in the extraction medium and by the interaction between the cotton seed extract and starch. The optimal combination in the extraction medium for maximum α-amylase production was determined as 10.80 g·L⁻¹ of wheat bran, 9.90 g·L⁻¹ of cotton seed extract, 0.5 g·L⁻¹ of starch, 2.0 g·L⁻¹ of yeast extract, 5.00 g·L⁻¹ of NaCl and 2.00 g·L⁻¹ of CaCl₂. A 12.55-fold increase of enzyme activity was recorded in the optimized medium compared to the result acquired in a minimum essential medium. The optimized medium was used to compare different cultivation strategies in fermenters. The pH-stat strategy for reducing cellular stress response and the substrate concentration-stat strategy for reducing substrate inhibition were independently investigated. The temperature-limited strategy has been proposed to solve the proteolytic digestion problem, although the high-pressure strategy resulted in high productivity. A hybrid strategy simultaneously controlling pH, temperature, substrate concentration and pO₂ was finally investigated to enhance the efficiency of the process. This hybrid strategy resulted in high activity of α-amylase, increasing the productivity almost three-fold as compared to an ordinary fed-batch culture.

  14. Evaluation of traditional Indian antidiabetic medicinal plants for human pancreatic amylase inhibitory effect in vitro.

    PubMed

    Ponnusamy, Sudha; Ravindran, Remya; Zinjarde, Smita; Bhargava, Shobha; Ravi Kumar, Ameeta

    2011-01-01

    Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post prandial hyperglycemia via control of starch breakdown. Eleven Ayurvedic Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on pancreatic α-amylase. Analysis of 91 extracts, showed that 10 exhibited strong Human Pancreatic Amylase (HPA) inhibitory potential. Of these, 6 extracts showed concentration dependent inhibition with IC(50) values, namely, cold and hot water extracts from Ficus bengalensis bark (4.4 and 125 μgmL(-1)), Syzygium cumini seeds (42.1 and 4.1 μgmL(-1)), isopropanol extracts of Cinnamomum verum leaves (1.0 μgmL(-1)) and Curcuma longa rhizome (0.16 μgmL(-1)). The other 4 extracts exhibited concentration independent inhibition, namely, methanol extract of Bixa orellana leaves (49 μgmL(-1)), isopropanol extract from Murraya koenigii leaves (127 μgmL(-1)), acetone extracts from C. longa rhizome (7.4 μgmL(-1)) and Tribulus terrestris seeds (511 μgmL(-1)). Thus, the probable mechanism of action of the above fractions is due to their inhibitory action on HPA, thereby reducing the rate of starch hydrolysis leading to lowered glucose levels. Phytochemical analysis revealed the presence of alkaloids, proteins, tannins, cardiac glycosides, flavonoids, saponins and steroids as probable inhibitory compounds. PMID:20953430

  15. Cell growth and alpha-amylase production characteristics of Bacillus subtilis.

    PubMed

    Dercová, K; Augustín, J; Krajcová, D

    1992-01-01

    Growth, differential rate of alpha-amylase synthesis and production characteristics of Bacillus subtilis DP 1 (isolate from starch materials) in comparison with 10 Bacillus strains were examined in batch fermentation. The effect of the carbon and nitrogen source was evaluated with regard to cell growth and enzyme production. The pH optimum of enzyme activity was 6.5 and temperature optimum of 60 degrees C.

  16. Purification and some properties of an extracellular alpha-amylase from Bacteroides amylophilus.

    PubMed Central

    McWethy, S J; Hartman, P A

    1977-01-01

    A medium was developed to obtain maximum yields of extracellular amylase from Bacteroides amylophilus 70. Crude enzyme preparation, obtained by ammonium sulfate precipitation of cell-free broth, contained six amylolytic isoenzymes that were detected by isoelectric focusing and polyacrylamide gel electrophoresis. One of these amylases was purified by diethylaminoethyl-Sephadex A-50 ion-exchange chromatography and Sephadex G-200 gel filtration techniques. Some properties of the purified extracellular alpha-amylase were: optimum pH, 6.3; optimum temperature, 43 degrees C: PH stability range, 5.8 to 7.5; isoelectric point, pH 4.6; molecular weight, 92,000 (by sodium dodecyl sulfatedisc gel electrophoresis); and sugars causing inhibition, cyclomaltoheptaose, cyclomaltohexaose, and alpha-d-phenylglucoside. In addition, Ca2+ and Co2+ were strong activators,and Hg2+ was a strong inhibitior; all other cations were slightly stimulatory. Dialysis against 0.01 M ethylenediaminetetraacetic acid caused a 58% loss of activity that was restored to 92% of the original by the addition of 0.04 M Ca2+. The enzyme affected a blue-value-reducing-value curve characteristic of alpha-type amylases. The relative rates of hydrolysis of amylose, soluble starch, amylopectin, and dextrin were 100, 97, 92, and 60%, respectively; Michaelis constants for these substrates were 18.2, 18.7, 18.2, and 16.7 mumol of d-glucosidic bond/liter, respectively. The enzyme degraded maize (corn) starch granules to some extent and had relatively little activity on potato starch granules. Images PMID:14926

  17. Application of decolourized and partially purified polygalacturonase and α-amylase in apple juice clarification

    PubMed Central

    Dey, Tapati Bhanja; Banerjee, Rintu

    2014-01-01

    Polygalacturonase and α-amylase play vital role in fruit juice industry. In the present study, polygalacturonase was produced by Aspergillus awamori Nakazawa MTCC 6652 utilizing apple pomace and mosambi orange (Citrus sinensis var mosambi) peels as solid substrate whereas, α-amylase was produced from A. oryzae (IFO-30103) using wheat bran by solid state fermentation (SSF) process. These carbohydrases were decolourized and purified 8.6-fold, 34.8-fold and 3.5-fold, respectively by activated charcoal powder in a single step with 65.1%, 69.8% and 60% recoveries, respectively. Apple juice was clarified by these decolourized and partially purified enzymes. In presence of 1% polygalacturonase from mosambi peels (9.87 U/mL) and 0.4% α-amylase (899 U/mL), maximum clarity (%T660nm = 97.0%) of juice was attained after 2 h of incubation at 50 °C in presence of 10 mM CaCl2. Total phenolic content of juice was reduced by 19.8% after clarification, yet with slightly higher %DPPH radical scavenging property. PMID:24948919

  18. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.

    PubMed

    Sun, Yecheng; Duan, Xuguo; Wang, Lei; Wu, Jing

    2016-01-10

    Maltogenic amylases are used to decrease the maltotriose content of high maltose syrups. However, due to the interplay between the hydrolysis and transglycosylation activities of maltogenic amylases, the maltotriose contents of these syrups are still greater than that necessary for pure maltose preparation. In this study, the maltogenic amylase from Bacillus stearothermophilus was engineered to decrease its transglycosylation activity with the expectation that this would enhance maltose production. Site-directed mutagenesis was used to generate Trp 177 variants W177F, W177Y, W177L, W177N, and W177S. The transglycosylation activities of the mutant enzymes decreased as the hydrophilicity of the residue at position 177 increased. The mutant enzymes exhibited notable enhancements in maltose production, with a minimum of maltotriose contents of 0.2%, compared with 3.2% for the wild-type enzyme. Detailed characterization of the mutant enzymes suggests that the best of them, W177S, will deliver performance superior to that of the wild-type under industrial conditions. PMID:26597712

  19. [Influence of amaranth on the production of alpha-amylase using Aspergillus niger NRRL 3112].

    PubMed

    Mariani, D D; Lorda, G; Balatti, A P

    2000-01-01

    In this paper the influence of the amaranth seed meal and the aeration conditions on the alpha-amylase production by Aspergillus niger NRRL 3112 were studied. The assays of selection of culture medium were carried out in a rotary shaker at 250 rpm and 2.5 cm stroke. The aeration conditions were studied in a mechanically stirred fermentor New Brunswick type. A concentration of alpha-amylase of 2750 U.Dun/ml was achieved at 120 h with a dry weight of 8.0 g/l, using a base medium with 5.0 g/l Amaranthus cruentus seed meal. In the experiment performed in a New Brunswick fermentor, the highest value was 2806 U.Dun/ml. This result was obtained after 120 h, operating at 300 rpm and an airflow of 1 l/l. min. in a limited dissolved oxygen concentration. It was determined that the increase in the agitation rate was not favorable to the enzyme production, despite that an increase was verified in the dissolved oxygen. The morphology of the microorganism, in long and ramified hyphae, was the critical factor to obtain higher levels of alpha-amylase.

  20. Application of decolourized and partially purified polygalacturonase and α-amylase in apple juice clarification.

    PubMed

    Dey, Tapati Bhanja; Banerjee, Rintu

    2014-01-01

    Polygalacturonase and α-amylase play vital role in fruit juice industry. In the present study, polygalacturonase was produced by Aspergillus awamori Nakazawa MTCC 6652 utilizing apple pomace and mosambi orange (Citrus sinensis var mosambi) peels as solid substrate whereas, α-amylase was produced from A. oryzae (IFO-30103) using wheat bran by solid state fermentation (SSF) process. These carbohydrases were decolourized and purified 8.6-fold, 34.8-fold and 3.5-fold, respectively by activated charcoal powder in a single step with 65.1%, 69.8% and 60% recoveries, respectively. Apple juice was clarified by these decolourized and partially purified enzymes. In presence of 1% polygalacturonase from mosambi peels (9.87 U/mL) and 0.4% α-amylase (899 U/mL), maximum clarity (%T(660 nm) = 97.0%) of juice was attained after 2 h of incubation at 50 °C in presence of 10 mM CaCl2. Total phenolic content of juice was reduced by 19.8% after clarification, yet with slightly higher %DPPH radical scavenging property.

  1. Structural forms of the human amylase locus and their relationships to SNPs, haplotypes, and obesity

    PubMed Central

    Usher, Christina L; Handsaker, Robert E; Esko, Tõnu; Tuke, Marcus A; Weedon, Michael N; Hastie, Alex R; Cao, Han; Moon, Jennifer E; Kashin, Seva; Fuchsberger, Christian; Metspalu, Andres; Pato, Carlos N; Pato, Michele T; McCarthy, Mark I; Boehnke, Michael; Altshuler, David M; Frayling, Timothy M; Hirschhorn, Joel N; McCarroll, Steven A

    2016-01-01

    Hundreds of genes reside in structurally complex, poorly understood regions of the human genome1-3. One such region contains the three amylase genes (AMY2B, AMY2A, and AMY1) responsible for digesting starch into sugar. The copy number of AMY1 is reported to be the genome’s largest influence on obesity4, though genome-wide association studies for obesity have found this locus unremarkable. Using whole genome sequence analysis3,5, droplet digital PCR6, and genome mapping7, we identified eight common structural haplotypes of the amylase locus that suggest its mutational history. We found that AMY1 copy number in individuals’ genomes is generally even (rather than odd) and partially correlates to nearby SNPs, which do not associate with BMI. We measured amylase gene copy number in 1,000 obese or lean Estonians and in two other cohorts totaling ~3,500 individuals. We had 99% power to detect the lower bound of the reported effects on BMI4, yet found no association. PMID:26098870

  2. Impact of amylases on biopolymer dynamics during storage of straight-dough wheat bread.

    PubMed

    Bosmans, Geertrui M; Lagrain, Bert; Fierens, Ellen; Delcour, Jan A

    2013-07-01

    When Bacillus stearothermophilus α-amylase (BStA), Pseudomonas saccharophila α-amylase (PSA), or Bacillus subtilis α-amylase (BSuA) was added to a bread recipe to impact bread firming, amylose crystal formation was facilitated, leading to lower initial crumb resilience. Bread loaves that best retained their quality were those obtained when BStA was used. The enzyme hindered formation of an extended starch network, resulting in less water immobilization and smaller changes in crumb firmness and resilience. BSuA led to extensive degradation of the starch network during bread storage with release of immobilized water, eventually resulting in partial structure collapse and poor crumb resilience. The most important effect of PSA was an increased bread volume, resulting in smaller changes in crumb firmness and resilience. A negative linear relation was found between NMR proton mobilities of water and biopolymers in the crumb and crumb firmness. The slope of that relation gave an indication of the strength of the starch network.

  3. Muscarinic receptors and amylase secretion of rat pancreatic acini during cerulein-induced acute pancreatitis.

    PubMed

    Morisset, J; Wood, J; Solomon, T E; Larose, L

    1987-08-01

    This study examines the effects of cerulein-induced acute pancreatitis on the secretory response of rat pancreatic acini to carbamylcholine and concentration of acinar muscarinic receptors. Rats were injected subcutaneously every 8 hr with cerulein, 12 micrograms/kg, for two days. They were sacrificed 2 and 4 hr after the first injection, 4 hr after the second and third, and 8 hr after the sixth. By 2 hr after the first injection, carbamylcholine showed decreased potency for stimulating amylase release; decreased potency becomes maximal after the second injection. Four hours after the first injection, carbamylcholine also showed decreased efficacy for causing maximal amylase release. In the course of development of pancreatitis, progressive reductions in muscarinic receptor concentrations were evident from 4 hr after the second injection. Following the complete treatment (8 hr after the sixth injection), no alteration could be observed in the affinity or proportions of each agonist class of muscarinic receptors. These studies indicate that the pancreatic acinar cells still remain functional after acute cerulein-induced pancreatitis, although significant reductions in potency and efficacy of carbamylcholine to cause amylase release and reduced muscarinic receptor concentration occur. PMID:2440647

  4. Cloning and Characterization of an alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus Thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Mark L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    The gene encoding an extracellular alpha-amylase, TTA, from the hyperthermophilic archaeon Thermococcus thioreducens was cloned and expressed in Escherichia coli. Primary structural analysis revealed high similarity with other a-amylases from the Thermococcus and Pyrococcus genera, as well as the four highly conserved regions typical for a-amylases. The 1374 bp gene encodes a protein of 457 amino acids, of which 435 constitute the mature protein preceded by a 22 amino acid signal peptide. The molecular weight of the purified recombinant enzyme was estimated to be 43 kDa by denaturing gel electrophoresis. Maximal enzymatic activity of recombinant TTA was observed at 90 C and pH 5.5 in the absence of exogenous Ca(2+), and the enzyme was considerably stable even after incubation at 90 C for 2 hours. The thermostability at 90 and 102 C was enhanced in the presence of 5 mM Ca(2+). The extraordinarily high specific activity (about 7.4 x 10(exp 3) U/mg protein at 90 C, pH 5.5 with soluble starch as substrate) together with its low pH optimum makes this enzyme an interesting candidate for starch processing applications.

  5. Cloning and Characterization of an Alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus Thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    The gene encoding an extracellular a-amylase, TTA, from the hyperthermophilic archaeon Thermococcus thioreducens was cloned and expressed in Escherichia coli. Primary structural analysis revealed high similarity with other a-amylases from the Thermococcus and Pyrococcus genera, as well as the four highly conserved regions typical for a-amylases. The 1374 bp gene encodes a protein of 457 amino acids, of which 435 constitute the mature protein preceded by a 22 amino acid signal peptide. The molecular weight of the purified recombinant enzyme was estimated to be 43 kDa by denaturing gel electrophoresis. Maximal enzymatic activity of recombinant TTA was observed at 90 C and pH 5.5 in the absence of exogenous Ca(2+), and the enzyme was considerably stable even after incubation at 90 C for 2 hours. The thermostability at 90 and 102 C was enhanced in the presence of 5 mM Ca(2+). The extraordinarily high specific activity (about 7.4 x 10(exp 3) U/mg protein at 90 C, pH 5.5 with soluble starch as substrate) together with its low pH optimum makes this enzyme an interesting candidate for starch processing applications.

  6. Amylase and chymotrypsinogen synthesis and secretion by the anesthetized rat pancreas

    SciTech Connect

    Iovanna, J.; Giorgi, D.; Dagorn, J.C.

    1987-01-01

    To investigate the origin of nonparallel secretion, pancreatic juice was collected in the anesthetized rat, during infusion of (/sup 3/H)phenylalanine. In the basal state, the amylase to chymotrypsinogen ratios of activities and of (/sup 3/H) incorporations were 3.5 and 2.5 times higher than in the homogenate, respectively. Both ratios decreased to the value in the homogenate upon caerulein stimulation (600 ng/kg). Inhibition of protein synthesis by cycloheximide (15 ng/kg) did not alter enzyme secretion ratios, and depressed basal protein output only partly, suggesting similar secretory pathways for basal and stimulated secretion. Finally, when (/sup 3/H)phenylalanine was given before anesthesia, the amylase to chymotrypsinogen ratio of incorporations was again higher in basal secretion than in homogenate, even when further protein synthesis was blocked by cycloheximide before urethane injection. Hence, basal secretion comes from a pancreatic compartment which is functional, although minor, in the conscious animal, and shows a higher rate of amylase synthesis, compared to chymotrypsinogen, than the rest of the gland. It could consist of a subpopulation of acinar cells.

  7. The determinants of alpha-amylase pH-activity profiles.

    PubMed

    Nielsen, J E; Borchert, T V; Vriend, G

    2001-07-01

    The glycosyl hydrolases present a large family of enzymes that are of great significance for industry. Consequently, there is considerable interest in engineering the enzymes in this family for optimal performance under a range of very diverse conditions. Until recently, tailoring glycosyl hydrolases for specific industrial processes mainly involved stability engineering, but lately there has also been considerable interest in engineering their pH-activity profiles. We mutated four neutral residues (N190, F290, N326 and Q360) in the chimeric Bacillus Ba2 alpha-amylase to both charged and neutral amino acids. The results show that the pH-activity profile of the Ba2 alpha-amylase can be changed by inserting charged residues close to the active site. The changes in the pH-activity profile for these neutral --> charged mutations do not, however, correlate with the predictions from calculations of the p K(a) values of the active site residues. More surprisingly, the neutral --> neutral mutations change the pH-activity profile as much as the neutral --> charged mutations. From these results, it is concluded that factors other than electrostatics, presumably the dynamic aspects of the active site, are important for the shape of the pH-activity profiles of the alpha-amylases. PMID:11522925

  8. A [beta]-Amylase in Potato Tubers Is Induced by Storage at Low Temperature.

    PubMed Central

    Nielsen, T. H.; Deiting, U.; Stitt, M.

    1997-01-01

    A new starch-degrading enzyme activity is induced by storage of potato (Solanum tuberosum L.) tubers at low temperatures (L. Hill, R. Reimholz, R. Schroder, T.H. Nielsen, M. Stitt [1996] Plant Cell Environ 14: 1223-1237). The cold-induced activity was separated from other amylolytic activities in zymograms based on iodine staining of polyacrylamide gels containing amylopectin. A similar band of activity was detected at normal growth temperatures in leaves, stems, and growing tubers but was present only at low activity in warm-stored tubers. The cold-induced enzyme was separated by ion-exchange chromatography from other amylolytic activities. It has a broad neutral pH optimum. Characterization of its hydrolytic activity with different substrates showed that the cold-induced activity is a [beta]-amylase present at low activity in tubers stored at 20[deg]C and induced progressively when temperatures are decreased to 5 and 3[deg]C. The first clear induction of [beta]-amylase activity was observed within 3 d of storage at 3[deg]C, and the activity increased 4- to 5-fold within 10 d. The possible involvement of the cold-induced [beta]-amylase in sugar accumulation during cold storage is discussed. PMID:12223621

  9. Identification and Characterization of Useful Fungi with α-Amylase Activity from the Korean Traditional Nuruk

    PubMed Central

    Kim, Hye-Ryun; Kim, Jae-Ho; Bai, Dong-Hoon

    2011-01-01

    The objective of this study was to find useful fungi with α-amylase activity from the Korean traditional nuruk for the quality of traditional Korean alcoholic beverage. In this study, 165 samples of traditional nuruk were collected from 170 regions throughout Korea and the fungi were isolated to a total of 384 strains. In order to investigate the effect of microflora on nuruk, α-amylase activity, saccharogenic power (SP), starch hydrolysis activity and acid producing activity were evaluated. Ten strains were selected by α-amylase activity, which ranged from 458.47 to 1,202.75 U/g. The size of the discolored zone for the starch hydrolysis activity of each fungus ranged from 0.3 to 2 cm. The SP of the 10 strains ranged from 228.8 to 433.4 SP. Of the 10 stains, three were identified as Aspergillus oryzae, two as Aspergillus flavus, two as Lichtheimia sp., one as Rhizopus oryzae and two as other strains. The total aflatoxins present in the nuruks were examined using enzyme-linked immunosorbent assay. The 10 nuruks had less than 1.11 ppb of aflatoxins. PMID:22783116

  10. Amylase clearance in differentiating acute pancreatitis from peptic ulcer with hyperamylasemia.

    PubMed

    Warshaw, A L; Lesser, P B

    1975-03-01

    Thirty-four patients with abdominal pain, tenderness, and hyperamylasemia suggesting acute pancreatitis were studied prospectively to elucidate the relationship between peptic ulcer disease and pancreatitis. Confirming evidence of pancreatitis and/or ulcer was obtained either at laparotomy of by upper gastrointestinal roentgenograms. The presence or absence of pancreatitis was substantiated by measurement of the amylase/creatinine clearance ratio, which is significantly higher (p less than 0.001) in patients with acute pancreatitis (9.3 plus or minus 0.9), than in patients without pancreatitis (3.1 plus or minus 0.2). Nine of the 34 patients were found to have gastric or duodenal ulcers. However, seven of the nine, despite an elevated serum amylase, had no sign of pancreatitis at surgery, on radiological examination, or by elevation of the amylase/creatinine clearance ratio (3.1 plus or minus 0.4). It is suggested that hyperamylasemia associated with peptic ulcer disease is most often not indicative of acute pancreatitis and that treatment is most appropriately directed at the ulcer.

  11. Rice proteins, extracted by alkali and α-amylase, differently affect in vitro antioxidant activity.

    PubMed

    Wang, Zhengxuan; Liu, Ye; Li, Hui; Yang, Lin

    2016-09-01

    Alkali treatment and α-amylase degradation are different processes for rice protein (RP) isolation. The major aim of this study was to determine the influence of two different extraction methods on the antioxidant capacities of RPA, extracted by alkaline (0.2% NaOH), and RPE, extracted by α-amylase, during in vitro digestion for 2h with pepsin and for 3h with pancreatin. Upon pepsin-pancreatin digestion, the protein hydrolysates (RPA-S, RPE-S), which were the supernatants in the absence of undigested residue, and the whole protein digests (RPA, RPE), in which undigested residue remained, were measured. RPE exhibited the stronger antioxidant responses to free radical scavenging activity, metal chelating activity, and reducing power, whereas the weakest antioxidant capacities were produced by RPE-S. In contrast, no significant differences in antioxidant activity were observed between RPA and RPA-S. The present study demonstrated that the in vitro antioxidant responses induced by the hydrolysates and the protein digests of RPs could be affected differently by alkali treatment and α-amylase degradation, suggesting that the extraction is a vital processing step to modify the antioxidant capacities of RPs. The results of the current study indicated that the protein digests, in which undigested residues remained, could exhibit more efficacious antioxidant activity compared to the hydrolysates.

  12. [An amylase from fresh fruiting bodies of the monkey head mushroom Hericium erinaceum].

    PubMed

    Du, F; Wang, H X; Ng, T B

    2013-01-01

    An amylase with a molecular mass of 55 kDa and an N-terminal sequence exhibiting similarity to enzyme from Bacteroides thetaitaomicron was isolated from fruiting bodies of the monkey head mushroom Hericium erinaceum. The purification scheme included extraction with distilled water, ion exchange chromatography on DEAE-cellulose and SP-sepharose, and gel filtration by FPLC on Superdex 75. The amylase of H. erinaceum was adsorbed on DEAE-cellulose in 10 mM Tris-HCl buffer (pH 7.4) and eluted with 0.2 M NaCl in the same buffer. The enzyme was subsequently adsorbed on SP-Sepharose in 10 mM ammonium acetate buffer (pH 4.5) and eluted with 0.3 M NaCl in the same buffer. This fraction was subsequently subjected to gel filtration on Superdex 75. The first peak eluted had a molecular mass of 55 kDa in SDS-PAGE. The amylase of H. erinaceum exhibited a pH optimum of 4.6 and a temperature optimum of 40 degrees C. The enzyme activity was enhanced by Mn2+ and Fe3+ ions, but inhibited by Hg2+ ions.

  13. Temporal variations of glandular kallikrein, protein and amylase in mixed human saliva.

    PubMed

    Jenzano, J W; Brown, C K; Mauriello, S M

    1987-01-01

    Variations in the level of glandular kallikrein in human saliva may reflect physiological changes. Diurnal or circadian variations of many salivary components are important in relating changes in such components to oral or systemic conditions especially as most clinical studies are conducted between 0800 and 1700 h. Whole saliva was collected from 14 healthy young subjects at 0800, 1100, 1400 and 1700 h on two Fridays. Samples were centrifuged at 10,000 g for 10 min at 4 degrees C and the supernatant fractions stored at -20 degrees C. The enzymic activity of kallikrein was measured with D-valylleucylarginine-p-nitro-anilide as substrate. The activity of alpha-amylase and the total protein concentration (biuret) were also determined. Results were analysed in a repeated-measures design: there were no significant differences in kallikrein levels either within days or across days. There were significant differences for total protein and alpha-amylase levels within days but, in general, not across days. Minimal individual levels for protein and alpha-amylase were mostly at 0800 h; maxima were generally at 1400 or 1700 h. Kallikrein levels had no marked pattern of maximal or minimal distribution.

  14. Genetic, hormonal, and physiological analysis of late maturity α-amylase in wheat.

    PubMed

    Barrero, Jose M; Mrva, Kolumbina; Talbot, Mark J; White, Rosemary G; Taylor, Jennifer; Gubler, Frank; Mares, Daryl J

    2013-03-01

    Late maturity α-amylase (LMA) is a genetic defect that is commonly found in bread wheat (Triticum aestivum) cultivars and can result in commercially unacceptably high levels of α-amylase in harvest-ripe grain in the absence of rain or preharvest sprouting. This defect represents a serious problem for wheat farmers, and apart from the circumstantial evidence that gibberellins are somehow involved in the expression of LMA, the mechanisms or genes underlying LMA are unknown. In this work, we use a doubled haploid population segregating for constitutive LMA to physiologically analyze the appearance of LMA during grain development and to profile the transcriptomic and hormonal changes associated with this phenomenon. Our results show that LMA is a consequence of a very narrow and transitory peak of expression of genes encoding high-isoelectric point α-amylase during grain development and that the LMA phenotype seems to be a partial or incomplete gibberellin response emerging from a strongly altered hormonal environment.

  15. Genetic, hormonal, and physiological analysis of late maturity α-amylase in wheat.

    PubMed

    Barrero, Jose M; Mrva, Kolumbina; Talbot, Mark J; White, Rosemary G; Taylor, Jennifer; Gubler, Frank; Mares, Daryl J

    2013-03-01

    Late maturity α-amylase (LMA) is a genetic defect that is commonly found in bread wheat (Triticum aestivum) cultivars and can result in commercially unacceptably high levels of α-amylase in harvest-ripe grain in the absence of rain or preharvest sprouting. This defect represents a serious problem for wheat farmers, and apart from the circumstantial evidence that gibberellins are somehow involved in the expression of LMA, the mechanisms or genes underlying LMA are unknown. In this work, we use a doubled haploid population segregating for constitutive LMA to physiologically analyze the appearance of LMA during grain development and to profile the transcriptomic and hormonal changes associated with this phenomenon. Our results show that LMA is a consequence of a very narrow and transitory peak of expression of genes encoding high-isoelectric point α-amylase during grain development and that the LMA phenotype seems to be a partial or incomplete gibberellin response emerging from a strongly altered hormonal environment. PMID:23321420

  16. Purification and characterisation of a novel amylase enzyme from red pitaya (Hylocereus polyrhizus) peel.

    PubMed

    Amid, Mehrnoush; Abd Manap, Mohd Yazid

    2014-12-15

    An amylase enzyme from pitaya peel was purified 234.2-folds with 72.1% recovery using ammonium sulphate precipitation, gel filtration and ion exchange chromatography. Gel filtration chromatography and SDS-PAGE revealed that the enzyme is monomeric with a molecular weight of 42.1kDa. The apparent Km and Vmax of the amylase were 2.7 mg/ml and 34.30 u/min/mg of protein, respectively. The enzyme was highly active and stable over a wide pH range from pH 3 to pH 11.0, with optimum activity being observed at pH 5.0. The enzyme was highly selective for soluble starch, amylopectin, glycogen and pulullan. The purified amylase did not require calcium and displayed extreme stability with regard to surfactants and oxidising agents. EDTA, a powerful chelating agent, did not have any significant effect on the stability of the enzyme. Such characteristics have not been previously reported for this type of enzyme from fruit peel. This enzyme, which possesses unique properties, could be widely used in different types of industries, especially in food and biotechnological applications.

  17. Antidiabetic Activity of Gnidia glauca and Dioscorea bulbifera: Potent Amylase and Glucosidase Inhibitors

    PubMed Central

    Ghosh, Sougata; Ahire, Mehul; Patil, Sumersing; Jabgunde, Amit; Bhat Dusane, Meenakshi; Joshi, Bimba N.; Pardesi, Karishma; Jachak, Sanjay; Dhavale, Dilip D.; Chopade, Balu A.

    2012-01-01

    Diabetes is a metabolic disorder affecting about 220 million people worldwide. One of the most critical complications of diabetes is post-prandial hyper-glycemia (PPHG). Glucosidase inhibitor and α-amylase inhibitors are class of compounds that help in managing PPHG. Low-cost herbal treatment is recommended due to their lesser side effect for treatment of diabetes. Two plants with significant traditional therapeutic potential, namely, Gnidia glauca and Dioscorea bulbifera, were tested for their efficiency to inhibit α-amylase and α-glucosidase. Stem, leaf, and flower of G. glauca and bulb of D. bulbifera were sequentially extracted with petroleum ether, ethyl acetate, and methanol as well as separately with 70% ethanol. Petroleum ether extract of flower of G. glauca was found to inhibit α-amylase significantly (78.56%). Extracts were further tested against crude murine pancreatic, small intestinal, and liver glucosidase enzyme which revealed excellent inhibitory properties. α-glucosidase inhibition provided a strong in vitro evidence for confirmation of both G. glauca and D. bulbifera as excellent antidiabetic remedy. This is the first report of its kind that provides a strong biochemical basis for management of type II diabetes using G. glauca and D. bulbifera. These results provide intense rationale for further in vivo and clinical study. PMID:21785651

  18. Pea starch (Pisum sativum L.) with slow digestion property produced using β-amylase and transglucosidase.

    PubMed

    Shi, Miaomiao; Zhang, Zhiheng; Yu, Shujuan; Wang, Kai; Gilbert, Robert G; Gao, Qunyu

    2014-12-01

    Starches extracted from wrinkled (WP) and smooth (SP) peas were treated using β-amylase (B) alone and also with a combination of β-amylase and transglucosidase (BT). After enzymatic treatment, the proportions of slowly digested starch in WP-B, WP-BT, SP-B and SP-BT samples were increased by 6%, 9%, 9% and 12%, respectively. Starches treated by a combination of β-amylase and transglucosidase exhibited a smaller amount of longer amylopectin chains, a larger amount of short amylopectin chains, and higher branching fraction. The branching fraction was significantly increased, with an increase of 8%, 10%, 13% and 14% for WP-B, WP-BT, SP-B and SP-BT, respectively. The maximum absorbance and iodine binding of enzyme-treated starches were reduced compared with their native starch parents. The C-type crystalline structure completely disappeared after enzymatic treatment. The results support previous findings that increases in the amount of shorter amylopectin chains and branch fraction are likely to contribute to the slow digestion of starch.

  19. Overexpression of salivary-type amylase reduces the sensitivity to bortezomib in multiple myeloma cells.

    PubMed

    Mizuno, Shohei; Hanamura, Ichiro; Ota, Akinobu; Karnan, Sivasundaram; Narita, Tomoko; Ri, Masaki; Mizutani, Motonori; Goto, Mineaki; Gotou, Mayuko; Tsunekawa, Norikazu; Shikami, Masato; Iida, Shinsuke; Hosokawa, Yoshitaka; Miwa, Hiroshi; Ueda, Ryuzo; Nitta, Masakazu; Takami, Akiyoshi

    2015-11-01

    Amylase-producing myeloma exhibits refractoriness to chemotherapy and a dismal prognosis. In this study, we established a human myeloma cell line, 8226/AMY1, in which a lentivirally transfected AMY1 gene was stably expressed and explored its biological characteristics. 8226/AMY1 showed a survival advantage over mock control when treated with dexamethasone, bortezomib, and lenalidomide in vitro partly through inhibition of apoptosis induced by these reagents. In a xenograft murine model, 8226/AMY1 showed rapid tumor growth and reduced sensitivity to bortezomib compared with mock. A microarray gene expression analysis identified TCL1A, which functions as a coactivator of the cell survival kinase Akt, differentially up-regulated in 8226/AMY1. The expression of phosphorylated Akt was increased in the 8226/AMY1 cells following bortezomib treatment, but not in the mock cells. In addition, treatment with perifosine, an inhibitor of Akt phosphorylation, enhanced the anti-myeloma effect of bortezomib in the 8226/AMY1 cells. Our data suggest that amylase-producing myeloma reduced the sensitivity to bortezomib in vitro and in vivo, and the up-regulation of TCL1A may influence the drug susceptibility of 8226/AMY1 via the phosphorylation of Akt. These findings provide clues for developing treatment approaches for not only amylase-producing myeloma, but also relapsed and refractory myelomas.

  20. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.

    PubMed

    Sun, Yecheng; Duan, Xuguo; Wang, Lei; Wu, Jing

    2016-01-10

    Maltogenic amylases are used to decrease the maltotriose content of high maltose syrups. However, due to the interplay between the hydrolysis and transglycosylation activities of maltogenic amylases, the maltotriose contents of these syrups are still greater than that necessary for pure maltose preparation. In this study, the maltogenic amylase from Bacillus stearothermophilus was engineered to decrease its transglycosylation activity with the expectation that this would enhance maltose production. Site-directed mutagenesis was used to generate Trp 177 variants W177F, W177Y, W177L, W177N, and W177S. The transglycosylation activities of the mutant enzymes decreased as the hydrophilicity of the residue at position 177 increased. The mutant enzymes exhibited notable enhancements in maltose production, with a minimum of maltotriose contents of 0.2%, compared with 3.2% for the wild-type enzyme. Detailed characterization of the mutant enzymes suggests that the best of them, W177S, will deliver performance superior to that of the wild-type under industrial conditions.

  1. Kinetics of fungal extracellular alpha-amylase from Fusarium solani immobilized in calcium alginate beads.

    PubMed

    Kumar, Devendra; Muthukumar, M; Garg, Neelima

    2012-11-01

    Extracellular alpha-amylase mass produced by Fusarium solani using mango kernel as substrate was immobilized in calcium alginate beads through entrapment technique. Maximum enzyme immobilization efficiency was achieved in 2 mm size beads formed by 6.5% (w/v) of sodium alginate in 2% (w/v) calcium chloride. The catalytic properties of the immobilized alpha-amylase were compared with that of free enzyme (soluble). The activity yield of the immobilized enzyme was 81% of the free enzyme. The immobilized enzyme showed optimum activityat pH 4.5-6.0 and temperature 40 degrees C, in contrast to the free enzyme at 5.5 and 30 degrees C, respectively. Thermal stability of the immobilized enzyme was found to be more than the free enzyme over a longer time interval. The immobilized enzyme retained activity upto 20% of optimum even after 180 min. While the free enzyme lost its 80% activity after 60 min and lost total activity down to zero by 120 min. The kinetic constants, viz., K(M) (Michaelis constant), V(max) and activation energy were affected by immobilization. However, the immobilized alpha-amylase in calcium alginate beads supports its long-term storage which has immense industrial applications.

  2. Thermostable α-amylase immobilization: Enhanced stability and performance for starch biocatalysis.

    PubMed

    Kumar, Gudi Satheesh; Rather, Gulam Mohmad; Gurramkonda, Chandrasekhar; Reddy, Bontha Rajasekhar

    2016-01-01

    The uses of thermostable starch hydrolytic biocatalysts are steadily increasing for the industrial application because of their obvious need for biocatalytic performance at elevated temperatures. The starch liquefaction and saccharification can be carried out simultaneously by the use of thermostable starch hydrolytic biocatalysts, thus minimizing the unit operations, time, and efforts. The cost factor hampers the industrialization of expensive soluble (free) enzymes for biocatalytic applications and the immobilization of enzymes offers promising alternative to the hurdle. The present investigation was aimed for immobilization of thermostable α-amylase using calcium alginate, and statistical optimization studies were carried out for enhanced biocatalytic performance. Initially, one-parameter at a time optimization studies were carried out for identification of significant factors influencing the immobilization. Furthermore, a statistical approach, response surface methodology, was applied for immobilization of α-amylase. The immobilized α-amylase in alginate microbeads showed enhanced stability to temperature and reusable property for up to seven cycles (with the retention of 50% initial activity). Finally, the kinetic behavior of free and immobilized enzyme showed the Km value of 1.2% and 2.6% (w/v) and Vmax of 1,020 and 1,030 U, respectively. Fifty percent reduction in affinity of the immobilized enzyme toward substrate was compensated by its longer stability. PMID:25604037

  3. An analysis of temperature adaptation in cold active, mesophilic and thermophilic Bacillus α-amylases.

    PubMed

    Mahdavi, Atiyeh; Sajedi, Reza H; Asghari, S Mohsen; Taghdir, Majid; Rassa, Mehdi

    2011-12-01

    A comparative biochemical and structural study was performed on a cold active α-amylase from Bacillus cereus (BCA) and two well-known homologous mesophilic and thermophilic α-amylases from Bacillus amyloliquefaciens (BAA) and Bacillus licheniformis (BLA). In spite of a high degree of sequence and structural similarity, drastic variations were found for T(opt) as 50, 70 and 90°C for BCA, BAA and BLA, respectively. The half-lives of thermoinactivation were 1 and 9 min for BCA and BAA at 80°C respectively, whilst there was no inactivation for BLA at this temperature. Thermodynamic studies on inactivation process suggested that lower thermostability of BCA is due to lower inactivation slope of the Arrhenius plots and subsequently, lower E(a) and ΔH(#). Increased K(m) and accessible surface area for catalytic residues along with a decreased number of internal interactions in this region in BCA compared to BLA suggest that BCA substrate-binding site might be temperature sensitive and is probably more flexible. On the other hand, fewer ion pairs, destructive substitutions and disruption of aromatic interaction networks in structurally critical regions of Bacillus α-amylases result in a severe decrease in BCA thermostability compared to its mesophilic and thermophilic homologues.

  4. Thermostable α-amylase immobilization: Enhanced stability and performance for starch biocatalysis.

    PubMed

    Kumar, Gudi Satheesh; Rather, Gulam Mohmad; Gurramkonda, Chandrasekhar; Reddy, Bontha Rajasekhar

    2016-01-01

    The uses of thermostable starch hydrolytic biocatalysts are steadily increasing for the industrial application because of their obvious need for biocatalytic performance at elevated temperatures. The starch liquefaction and saccharification can be carried out simultaneously by the use of thermostable starch hydrolytic biocatalysts, thus minimizing the unit operations, time, and efforts. The cost factor hampers the industrialization of expensive soluble (free) enzymes for biocatalytic applications and the immobilization of enzymes offers promising alternative to the hurdle. The present investigation was aimed for immobilization of thermostable α-amylase using calcium alginate, and statistical optimization studies were carried out for enhanced biocatalytic performance. Initially, one-parameter at a time optimization studies were carried out for identification of significant factors influencing the immobilization. Furthermore, a statistical approach, response surface methodology, was applied for immobilization of α-amylase. The immobilized α-amylase in alginate microbeads showed enhanced stability to temperature and reusable property for up to seven cycles (with the retention of 50% initial activity). Finally, the kinetic behavior of free and immobilized enzyme showed the Km value of 1.2% and 2.6% (w/v) and Vmax of 1,020 and 1,030 U, respectively. Fifty percent reduction in affinity of the immobilized enzyme toward substrate was compensated by its longer stability.

  5. Artificial chaperone-assisted refolding of chemically denatured alpha-amylase.

    PubMed

    Yazdanparast, Razieh; Khodagholi, Fariba; Khodarahmi, Reza

    2005-06-01

    It is now well established that alpha-cyclodextrin (alpha-CD) is a valuable folding agent in refolding processes of several denatured enzyme solutions. The refolding of Gu-HCl denatured alpha-amylase in the dilution-additive mode revealed that alpha-CD enhanced the refolding yield by 20-30% depending upon alpha-CD concentration. However, the refolding efficiency of the Gu-HCl denatured alpha-amylase through the artificial chaperone-assisted method indicated that alpha-CD enhanced the activity recovery of denatured alpha-amylase by almost 50% and also increased the reactivation rate constant relative to the unassisted control sample. The higher refolding efficiency should be due to different mechanism played by alpha-CD in this technique. In addition, our data indicated that higher refolding yields are obtained when the residual Gu-HCl concentration is low in the refolding environment and when the capture agent is removed not in a stepwise manner from the protein-detergent complexes in the stripping step of the whole process. Collectively, the results of this investigation expand the range of procedural variations used to refold different denatured proteins through artificial chaperone-assisted method.

  6. Complete sequence, subunit structure, and complexes with pancreatic alpha-amylase of an alpha-amylase inhibitor from Phaseolus vulgaris white kidney beans.

    PubMed

    Kasahara, K; Hayashi, K; Arakawa, T; Philo, J S; Wen, J; Hara, S; Yamaguchi, H

    1996-07-01

    The complete amino acid sequence of a white kidney bean (Phaseolus vulgaris) alpha-amylase inhibitor (PHA-I), which is composed of two kinds of glycopolypeptide subunits, alpha and beta, was established by conventional methods. The polypeptide molecular weight of PHA-I determined by the light-scattering technique, considered together with the sequence molecular weights revealed for the subunits, indicated that PHA-I has the subunit stoichiometry of (alpha beta)2 complex. Inhibition test of PHA-I with increasing amounts of porcine pancreatic alpha-amylase (PPA) suggested that an inactive 2:1 complex is formed between PPA and PHA-I. In fact, two complexes differing from each other in the molar ratio of PPA to PHA-I were separated by gel filtration, and molecular weight estimation by the light-scattering technique confirmed that they are complexes of PHA-I with one or two PPA molecules. The binding of PPA to PHA-I appeared to follow simple binomial statistics, suggesting that two binding sites on PHA-I are independent and of high affinity for PPA.

  7. Characterization of the activity and stability of amylase from saliva and detergent: laboratory practicals for studying the activity and stability of amylase from saliva and various commercial detergents.

    PubMed

    Valls, Cristina; Rojas, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2012-07-01

    This article presents two integrated laboratory exercises intended to show students the role of α-amylases (AAMYs) in saliva and detergents. These laboratory practicals are based on the determination of the enzymatic activity of amylase from saliva and different detergents using the Phadebas test (quantitative) and the Lugol test (qualitative) under different conditions (e.g. variations in temperature and alkalinity). This work also proposes the study of enzyme stability in the presence of several surfactants and oxidizing agents using the same technical approach. The proposed laboratory exercises promote the understanding of the physiological function of this enzyme and the biotechnological applications of AAMYs in the detergent industry. The exercises also promote the understanding that the enzymatic stability and performance are dependent on the organism of origin, and if necessary, these properties could be modified by genetic engineering. In addition, this article reinforces the development of laboratory skills, problem-solving capabilities, and the ability to write a laboratory report. The exercises are proposed primarily as an undergraduate project for advanced students in the biochemical and biotechnological sciences. These laboratory practicals are complementary to the previously published BAMBED article (Biochemistry and Molecular Biology Education Vol. 39, No. 4, pp. 280-290, 2011) on detergent proteases.

  8. Complete sequence, subunit structure, and complexes with pancreatic alpha-amylase of an alpha-amylase inhibitor from Phaseolus vulgaris white kidney beans.

    PubMed

    Kasahara, K; Hayashi, K; Arakawa, T; Philo, J S; Wen, J; Hara, S; Yamaguchi, H

    1996-07-01

    The complete amino acid sequence of a white kidney bean (Phaseolus vulgaris) alpha-amylase inhibitor (PHA-I), which is composed of two kinds of glycopolypeptide subunits, alpha and beta, was established by conventional methods. The polypeptide molecular weight of PHA-I determined by the light-scattering technique, considered together with the sequence molecular weights revealed for the subunits, indicated that PHA-I has the subunit stoichiometry of (alpha beta)2 complex. Inhibition test of PHA-I with increasing amounts of porcine pancreatic alpha-amylase (PPA) suggested that an inactive 2:1 complex is formed between PPA and PHA-I. In fact, two complexes differing from each other in the molar ratio of PPA to PHA-I were separated by gel filtration, and molecular weight estimation by the light-scattering technique confirmed that they are complexes of PHA-I with one or two PPA molecules. The binding of PPA to PHA-I appeared to follow simple binomial statistics, suggesting that two binding sites on PHA-I are independent and of high affinity for PPA. PMID:8864861

  9. Solution structure of the main alpha-amylase inhibitor from amaranth seeds.

    PubMed

    Martins, J C; Enassar, M; Willem, R; Wieruzeski, J M; Lippens, G; Wodak, S J

    2001-04-01

    The most abundant alpha-amylase inhibitor (AAI) present in the seeds of Amaranthus hypochondriacus, a variety of the Mexican crop plant amaranth, is the smallest polypeptide (32 residues) known to inhibit alpha-amylase activity of insect larvae while leaving that of mammals unaffected. In solution, 1H NMR reveals that AAI isolated from amaranth seeds adopts a major trans (70%) and minor cis (30%) conformation, resulting from slow cis-trans isomerization of the Val15-Pro16 peptide bond. Both solution structures have been determined using 2D 1H-NMR spectroscopy and XPLOR followed by restrained energy refinement in the consistent-valence force field. For the major isomer, a total of 563 distance restraints, including 55 medium-range and 173 long-range ones, were available from the NOESY spectra. This rather large number of constraints from a protein of such a small size results from a compact fold, imposed through three disulfide bridges arranged in a cysteine-knot motif. The structure of the minor cis isomer has also been determined using a smaller constraint set. It reveals a different backbone conformation in the Pro10-Pro20 segment, while preserving the overall global fold. The energy-refined ensemble of the major isomer, consisting of 20 low-energy conformers with an average backbone rmsd of 0.29 +/- 0.19 A and no violations larger than 0.4 A, represents a considerable improvement in precision over a previously reported and independently performed calculation on AAI obtained through solid-phase synthesis, which was determined with only half the number of medium-range and long-range restraints reported here, and featured the trans isomer only. The resulting differences in ensemble precision have been quantified locally and globally, indicating that, for regions of the backbone and a good fraction of the side chains, the conformation is better defined in the new solution structure. Structural comparison of the solution structure with the X-ray structure of the

  10. Digestive alpha-amylases of the flour moth Ephestia kuehniella--adaptation to alkaline environment and plant inhibitors.

    PubMed

    Pytelková, Jana; Hubert, Jan; Lepsík, Martin; Sobotník, Jan; Sindelka, Radek; Krízková, Iva; Horn, Martin; Mares, Michael

    2009-07-01

    The digestive tract of lepidopteran insects is extremely alkaline. In the present work, molecular adaptation of amylolytic enzymes to this environment was investigated in the flour moth Ephestia kuehniella, an important stored-product pest. Three digestive alpha-amylases [Ephestia kuehniella alpha-amylase isoenzymes 1-3 (EkAmy1-3)] with an alkaline pH optimum were purified from larvae and biochemically characterized. These isoenzymes differ significantly in their sensitivity to alpha-amylase inhibitors of plant origin that are directed against herbivores as antifeedants. Such functional variability renders the amylolytic system less vulnerable to suppression by plant defensive molecules. Moreover, we found that expression of alpha-amylases is upregulated in larvae feeding on a diet enriched with an alpha-amylase inhibitor. The alpha-amylases are secreted into the larval midgut by an exocytotic mechanism, as revealed by immunogold microscopy. The cDNA sequence of EkAmy3 was determined, and a homology model of EkAmy3 was built in order to analyze the structural features responsible for adaptation to alkaline pH. First, the overall fold was found to be stabilized by remodeling of ion pairs. Second, molecular simulations supported by activity measurements showed that EkAmy3 does not bind a Cl(-), owing to an Arg-to-Gln mutation in a conserved binding site. The Cl(-)-binding residues are in contact with the catalytic residues, and this change might help to fine-tune the catalytic pK(a) values to an alkaline pH optimum. We conclude that lepidopteran alpha-amylases are evolutionarily adapted in terms of structure and expression dynamics for effective functioning in the digestive system.

  11. Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment.

    PubMed

    Yamaguchi, Masaki; Deguchi, Mitsuo; Wakasugi, Junichi; Ono, Shin; Takai, Noriyasu; Higashi, Tomoyuki; Mizuno, Yasufumi

    2006-01-15

    In order to realize a hand-held monitor of the sympathetic nervous system, we fabricated a completely automated analytical system for salivary amylase activity using a dry-chemistry system. This was made possible by the fabrication of a disposable test-strip equipped with built-in collecting and reagent papers and an automatic saliva transfer device. In order to cancel out the effects of variations in environmental temperature and pH of saliva, temperature- and pH-adjusted equations were experimentally determined, and each theoretical value was input into the memory of the hand-held monitor. Within a range of salivary amylase activity between 10 and 140 kU/l, the calibration curve for the hand-held monitor showed a coefficient with R(2)=0.97. Accordingly, it was demonstrated that the hand-held monitor enabled a user to automatically measure the salivary amylase activity with high accuracy with only 30 microl sample of saliva within a minute from collection to completion of the measurement. In order to make individual variations of salivary amylase activity negligible during driver fatigue assessment, a normalized equation was proposed. The normalized salivary amylase activity correlated with the mental and physical fatigue states. Thus, this study demonstrated that an excellent hand-held monitor with an algorithm for normalization of individuals' differences in salivary amylase activity, which could be easily and quickly used for evaluating the activity of the sympathetic nervous system at any time. Furthermore, it is suggested that the salivary amylase activity might be used as a better index for psychological research.

  12. Amylase addition increases starch ruminal digestion in first-lactation cows fed high and low starch diets.

    PubMed

    Nozière, P; Steinberg, W; Silberberg, M; Morgavi, D P

    2014-01-01

    The objective of this study was to evaluate the effect of an exogenous amylase preparation on digestion of low- and high-starch diets in dairy cattle. Rumen and total-tract nutrient digestibility were measured in a 4×4 Latin square design with 28-d periods using 4 first-lactation cows cannulated at the rumen and duodenum. Corn silage-based diets had 20 or 30% starch, attained by changing the composition of concentrate, with or without addition of an exogenous amylase preparation. Effects of the enzyme additive were observed on ruminal digestibility but not at the total-tract level. Ruminal digestibility of starch increased from 75% in control to 81% with amylase supplementation. This difference in ruminal starch digestion was compensated postruminally, so that the total-tract digestibility of starch was almost complete and did not differ between treatments. The amylase supplement also increased the true ruminal digestibility of organic matter but did not affect microbial N flow to the duodenum. Amylase supplement reduced the proportion of acetate and butyrate and increased that of propionate, particularly in the high-starch diet, where it tended to increase the concentration of total volatile fatty acids in the rumen. Other effects were a higher amylase activity in the solid-associated microbial community and a tendency for lower numbers of protozoa. In contrast, we observed no changes in intake, production, dry matter and fiber (neutral detergent fiber and acid detergent fiber) digestibility, or ruminal digestion, and no or small changes on selected fibrolytic and amylolytic bacteria and on the microbial community in general. We conclude that the exogenous amylase improved starch digestion in the rumen in first-lactation cows with moderate intake and production levels.

  13. Biological and chemical evaluation of chick pea seed proteins as affected by germination, extraction and alpha-amylase treatment.

    PubMed

    Mansour, E H

    1996-06-01

    The effects of germination, extraction (double extraction with 70% ethanol and water at isoelectric point) and alpha-amylase treatments of chick pea seed flours on crude protein, total carbohydrate, protein efficiency ratio (PER), biological value (BV), true digestibility (TD), net protein utilization (NPU), essential amino acid composition, in-vitro protein digestibility (IVPD) and actual amino acid indices (essential amino acid index or amino acid score) were evaluated. Crude protein content was increased (8-149%), while total carbohydrate was decreased (11-62%) by germination, extraction and alpha-amylase treatments. Alpha-amylase treatment was more efficient in reducing total carbohydrate and increasing the protein content than that of extraction treatment. The protein quality of chick pea flours as measured by PER, BV, TD, NPU, IVPD and corrected amino acid indices (actual amino acid indices x IVPD) was significantly improved by these treatments. The protein quality of germinated-alpha-amylase treatment was comparable with casein, while germinated-alpha-amylase treaded seeds appeared nutritionally superior to casein. The results indicate that the germinated-alpha-amylase and germinated-alpha-amylase-extracted treatments could be used successfully as a source of concentrated high quality protein for baby food production. The corrected amino acid indices gave better prediction of PER, BV, TD and NPU (r = 93 to 97) than actual amino acid indices (r = 45 to 71). PER was highly correlated with corrected amino acid score (r = 0.93). The PER could be predicted from the following simple regression equation: PER = -1.827 + 0.0561 x corrected amino acid score.

  14. [Alpha-amylase inhibitors and soluble dietary fiber in rye: partial purification and effect on postprandial glycemia].

    PubMed

    Täufel, A; Lüder, W; Proll, J

    1996-06-01

    The protein inhibitor of the alpha-amylase (D-type) and the soluble arabinoxylan of rye (Var. Clou) were isolated from flour and bran, respectively. The isolation of the alpha-amylase inhibitor involves the extraction of rye flour in aqueous CaCl2-solution (2 x 10(-3) M containing the hemicellulase preparation Veron HE (2 g/100 g flour), dialysis and lyophilization (preparation I) and further fractionation with ammonsulfate, using the fraction 20-50% for isolation (preparation II). The arabinoxylan isolation is carried out using extraction of rye bran in 80% ethanol (80 degrees C), centrifugation, aqueous extraction of the sediment, dialysis and lyophilization (preparation I). The further purification using the precipitate of the fraction 20-50% leads to preparation II. The alpha-amylase inhibitor preparation II and the arabinoxylan preparation II were applied in a diet containing wheat starch and casein and fed to diabetic and healthy rats (Levis and Wistar). The postprandial increase of glucose was determined. It was detected that the postprandial increase of glucose is influenced neither by the alpha-amylase inhibitor nor by the soluble arabinoxylan in comparison to the control experiments. However, the alpha-amylase inhibitor of wheat significantly decreases the postprandial increase of glucose. The application of a test meal with alpha-amylase inhibitor of rye to health and diabetic of type-II-volunteers showed no variation of the blood glucose values. The reduction of the increase of glucose by the soluble beta-glucan of oat cannot be confirmed for the soluble arabinoxylan of rye. We conclude that the effect of the alpha-amylase inhibitor as well as the soluble pentosan or glucan has to be examined for each cereal species.

  15. The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase.

    PubMed Central

    Egelseer, E; Schocher, I; Sára, M; Sleytr, U B

    1995-01-01

    The S-layer lattice from Bacillus stearothermophilus DSM 2358 completely covers the cell surface and exhibits oblique symmetry. During growth of B. stearothermophilus DSM 2358 on starch medium, three amylases with molecular weights of 58,000, 98,000, and 184,000 were secreted into the culture fluid, but only the high-molecular-weight enzyme was found to be cell associated. Studies of interactions between cell wall components and amylases revealed no affinity of the high-molecular-weight amylase to isolated peptidoglycan. On the other hand, this enzyme was always found to be associated with S-layer self-assembly products or S-layer fragments released during preparation of spheroplasts by treatment of whole cells with lysozyme. The molar ratio of S-layer subunits to the bound amylase was approximately 8:1, which corresponded to one enzyme molecule per four morphological subunits. Immunoblotting experiments with polyclonal antisera against the high-molecular-weight amylase revealed a strong immunological signal in response to the enzyme but no cross-reaction with the S-layer protein or the smaller amylases. Immunogold labeling of whole cells with anti-amylase antiserum showed that the high-molecular-weight amylase is located on the outer face of the S-layer lattice. Because extraction of the amylase was possible without disintegration of the S-layer lattice into its constituent subunits, it can be excluded that the enzyme is incorporated into the crystal lattice and participates in the self-assembly process. Affinity experiments strongly suggest the presence of a specific recognition mechanism between the amylase molecules and S-layer protein domains either exposed on the outermost surface or inside the pores. In summary, results obtained in this study confirmed that the S-layer protein from B. stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase. PMID:7533757

  16. The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase.

    PubMed

    Egelseer, E; Schocher, I; Sára, M; Sleytr, U B

    1995-03-01

    The S-layer lattice from Bacillus stearothermophilus DSM 2358 completely covers the cell surface and exhibits oblique symmetry. During growth of B. stearothermophilus DSM 2358 on starch medium, three amylases with molecular weights of 58,000, 98,000, and 184,000 were secreted into the culture fluid, but only the high-molecular-weight enzyme was found to be cell associated. Studies of interactions between cell wall components and amylases revealed no affinity of the high-molecular-weight amylase to isolated peptidoglycan. On the other hand, this enzyme was always found to be associated with S-layer self-assembly products or S-layer fragments released during preparation of spheroplasts by treatment of whole cells with lysozyme. The molar ratio of S-layer subunits to the bound amylase was approximately 8:1, which corresponded to one enzyme molecule per four morphological subunits. Immunoblotting experiments with polyclonal antisera against the high-molecular-weight amylase revealed a strong immunological signal in response to the enzyme but no cross-reaction with the S-layer protein or the smaller amylases. Immunogold labeling of whole cells with anti-amylase antiserum showed that the high-molecular-weight amylase is located on the outer face of the S-layer lattice. Because extraction of the amylase was possible without disintegration of the S-layer lattice into its constituent subunits, it can be excluded that the enzyme is incorporated into the crystal lattice and participates in the self-assembly process. Affinity experiments strongly suggest the presence of a specific recognition mechanism between the amylase molecules and S-layer protein domains either exposed on the outermost surface or inside the pores. In summary, results obtained in this study confirmed that the S-layer protein from B. stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase.

  17. Antidiabetic Activity of Ruellia tuberosa L., Role of α-Amylase Inhibitor: In Silico, In Vitro, and In Vivo Approaches

    PubMed Central

    Ratna Wulan, Dyah; Priyo Utomo, Edi; Mahdi, Chanif

    2015-01-01

    Ruellia tuberosa L. is a folk remedy in the treatment of diabetes mellitus. However, its hypoglycemic activity has not been investigated so far. In the present study, the antidiabetic mechanism of the n-hexane fraction of methanolic extract (HFME) of this plant was investigated in silico, in vitro, and in vivo. In silico study was performed using AutoDock4.2 software. In vitro  α-amylase inhibitory activity was investigated by starch-iodine method. A single dose of 450 mg/kg HFME for 14 days was subjected to an antidiabetic screening in vivo by a multiple low dose streptozotocin (MLD-STZ) induced rats. Molecular modeling results show that Betulin exhibited noncompetitive α-amylase inhibitory activities. The effect of HFME elicited significant reductions of diabetic rat blood glucose. A single dose administration of HFME inhibited α-amylase activity in vivo (P < 0.01) compared to a diabetic control group. Moreover, this extract strongly inhibited the α-amylase activity in vitro (IC50 0.14 ± 0.005 mg/mL). It is concluded that HFME exerted an antidiabetic effect via α-amylase inhibitor. Our findings provide a possible hypoglycemic action of R. tuberosa L. as an alternative therapy in the management of diabetes. PMID:26576302

  18. [Alpha-amylase/glucose index in amniotic fluid as a new method in prenatal assessment of fetal maturity].

    PubMed

    Sałacińska, B; Krasomski, G; Broniarczyk, D; Swiatkowska, E

    2001-09-01

    Prenatal diagnosis of amniotic fluid enables fetal maturity evaluation, particularly that of fetal lungs. The aim of the study is to evaluate the diagnostic value of on alpha-amylase/glucose index in amniotic fluid in comparison to routinely performed tests, used for prenatal fetal lung maturity evaluation, particularly in respect of PG concentration, whose predictive value is almost 100%. The study was carried out on 180 pregnant women, chosen by random selection, hospitalized in Polish Mother's Health Centre Hospital in the period from 15.06.1994 to 31.12.1995. 223 samples of amniotic fluid were tested- in all samples following assays and tests were performed: bubble stability test (BST), optical density, orange cells test, phosphatidylglycerol concentration (PG), glucose concentration, alpha-amylase activity urea and creatinine concentration. The alpha-amylase/glucose index in amniotic fluid is statistically significant with PG concentration. The value of the alpha-amylase/glucose index is < 6.0 when amniotic fluid assay indicates fetal immaturity, but when amniotic fluid assay indicates fetal maturity, its value is 36.0. The evaluation of fetal lung maturity on the basis of the alpha-amylase/glucose index multiply decreases the cost of examinations. Authors make a suggestion to implement this method in all hospital departments of the country. PMID:11757481

  19. Trienzyme treatment for food folate analysis: optimal pH and incubation time for alpha-amylase and protease treatment.

    PubMed

    Aiso, K; Tamura, T

    1998-06-01

    Recent reports have indicated that trienzyme treatment before folate determination is essential to obtain the proper folate content in foods. Trienzyme treatment is performed by using alpha-amylase and protease for folate extraction from carbohydrate and protein matrices, and folate conjugase for the hydrolysis of polyglutamyl folates. We evaluated the conditions of pH and incubation time for the treatment with alpha-amylase and protease. Four food items, including fresh beef, white bread, cow's milk, and fresh spinach, were selected for this investigation. We found that optimal pHs for alpha-amylase treatment of beef and cow's milk were 7.0 and 5.0, respectively, whereas those for white bread and spinach were not distinctive at pHs from 2.0 to 7.0. The optimal incubation time for alpha-amylase was 4 h for fresh beef and cow's milk, whereas no distinctive optimal incubation period was found for white bread and fresh spinach. Our data indicate that the conditions for enzyme treatments vary depending on food items. Trienzyme treatment resulted in an increase of more than 50% in the mean folate content over folate conjugase treatment alone. It is necessary to treat food samples with not only traditional folate conjugase, but also with alpha-amylase and protease before folate determination to obtain the actual folate content.

  20. A Proposed Mechanism for the Thermal Denaturation of a Recombinant Bacillus Halmapalus Alpha-amylase - the Effect of Calcium Ions

    NASA Technical Reports Server (NTRS)

    Nielsen, Anders D.; Pusey, Marc L.; Fuglsang, Claus C.; Westh, Peter

    2003-01-01

    The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where previous crystallographic studies have identified the existence of 3 calcium binding sites in the structure. Denaturation of BHA is irreversible with a Tm of approximately 89 C, and DSC thermograms can be described using a one-step irreversible model. A 5 C increase in T(sub m) in the presence of 10 fold excess CaCl2 was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30-40 fold excess calcium chelator (EDTA or EGTA) results in a large destabilization of BHA corresponding to about 40 C lower T(sub m), as determined by both CD and DSC. Ten fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which possibly originate from different populations of BHA:calcium complexes. The observations in the present study have, in combination with structural information of homologous alpha-amylases, provided the basis for the proposal of a simple denaturation mechanism of BHA. The proposed mechanism describes the irreversible thermal denaturation of different BHA:calcium complexes and the calcium binding equilibrium involved. Furthermore, the model accounts for a temperature induced reversible structural change associated with calcium binding.