Science.gov

Sample records for amyloid beta peptides

  1. Amyloid beta peptide immunotherapy in Alzheimer disease.

    PubMed

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation.

  2. In vitro oligomerization and fibrillogenesis of amyloid-beta peptides.

    PubMed

    Benseny-Cases, Núria; Klementieva, Oksana; Cladera, Josep

    2012-01-01

    The amyloid beta Ab(1-40) and Ab(1-42) peptides are the main components of the fibrillar plaques characteristically found in the brains affected by Alzheimer's disease. Fibril formation has been thoroughly studied in vitro using synthetic amyloid peptides and has been described to be a nucleation dependent polymerization process. During this process, defined by a slow nucleation phase followed by a rapid exponential elongation reaction, a whole range of aggregated species (low and high molecular weight aggregates) precede fibril formation. Toxic species related to the onset and development of Alzheimer's disease are thought to be found among these prefibrillar aggregates. Two main procedures are used to experimentally monitor fibril formation kinetics: through the measurement of the light scattered by the different peptide aggregates and using the fluorescent dye thioflavin T, which fluorescence increases when specifically interacting with amyloid fibrils. Reproducibility may, however, be difficult to achieve when measuring and characterizing fibril formation kinetics. This fact is mainly due to the difficulty in experimentally handling amyloid peptides, which is directly related to the difficulty of having them in a monomeric form at the beginning of the polymerization process. This has to do mainly with the type of solvent used for the preparation of the peptide stock solutions (water, DMSO, TFE, HFIP) and the control of determinant physicochemical parameters such as pH. Moreover, kinetic progression turns out to be highly dependent on the type of peptide counter-ion used, which will basically determine the duration of the nucleation phase and the rate at which high molecular weight oligomers are formed. Centrifugation and filtration procedures used in the preparation of the peptide stock solutions will also greatly influence the duration of the fibril formation process. In this chapter, a survey of the alluded experimental procedures is provided and a general

  3. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    PubMed Central

    Gutiérrez-Lerma, Armando I.; Ordaz, Benito; Peña-Ortega, Fernando

    2013-01-01

    Soluble amyloid beta peptide (Aβ) is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM). We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function. PMID:23878547

  4. Self-Assembly and Anti-Amyloid Cytotoxicity Activity of Amyloid beta Peptide Derivatives.

    PubMed

    Castelletto, V; Ryumin, P; Cramer, R; Hamley, I W; Taylor, M; Allsop, D; Reza, M; Ruokolainen, J; Arnold, T; Hermida-Merino, D; Garcia, C I; Leal, M C; Castaño, E

    2017-03-08

    The self-assembly of two derivatives of KLVFF, a fragment Aβ(16-20) of the amyloid beta (Aβ) peptide, is investigated and recovery of viability of neuroblastoma cells exposed to Aβ (1-42) is observed at sub-stoichiometric peptide concentrations. Fluorescence assays show that NH2-KLVFF-CONH2 undergoes hydrophobic collapse and amyloid formation at the same critical aggregation concentration (cac). In contrast, NH2-K(Boc)LVFF-CONH2 undergoes hydrophobic collapse at a low concentration, followed by amyloid formation at a higher cac. These findings are supported by the β-sheet features observed by FTIR. Electrospray ionization mass spectrometry indicates that NH2-K(Boc)LVFF-CONH2 forms a significant population of oligomeric species above the cac. Cryo-TEM, used together with SAXS to determine fibril dimensions, shows that the length and degree of twisting of peptide fibrils seem to be influenced by the net peptide charge. Grazing incidence X-ray scattering from thin peptide films shows features of β-sheet ordering for both peptides, along with evidence for lamellar ordering of NH2-KLVFF-CONH2. This work provides a comprehensive picture of the aggregation properties of these two KLVFF derivatives and shows their utility, in unaggregated form, in restoring the viability of neuroblastoma cells against Aβ-induced toxicity.

  5. Self-Assembly and Anti-Amyloid Cytotoxicity Activity of Amyloid beta Peptide Derivatives

    PubMed Central

    Castelletto, V.; Ryumin, P.; Cramer, R.; Hamley, I. W.; Taylor, M.; Allsop, D.; Reza, M.; Ruokolainen, J.; Arnold, T.; Hermida-Merino, D.; Garcia, C. I.; Leal, M. C.; Castaño, E.

    2017-01-01

    The self-assembly of two derivatives of KLVFF, a fragment Aβ(16–20) of the amyloid beta (Aβ) peptide, is investigated and recovery of viability of neuroblastoma cells exposed to Aβ (1–42) is observed at sub-stoichiometric peptide concentrations. Fluorescence assays show that NH2-KLVFF-CONH2 undergoes hydrophobic collapse and amyloid formation at the same critical aggregation concentration (cac). In contrast, NH2-K(Boc)LVFF-CONH2 undergoes hydrophobic collapse at a low concentration, followed by amyloid formation at a higher cac. These findings are supported by the β-sheet features observed by FTIR. Electrospray ionization mass spectrometry indicates that NH2-K(Boc)LVFF-CONH2 forms a significant population of oligomeric species above the cac. Cryo-TEM, used together with SAXS to determine fibril dimensions, shows that the length and degree of twisting of peptide fibrils seem to be influenced by the net peptide charge. Grazing incidence X-ray scattering from thin peptide films shows features of β-sheet ordering for both peptides, along with evidence for lamellar ordering of NH2-KLVFF-CONH2. This work provides a comprehensive picture of the aggregation properties of these two KLVFF derivatives and shows their utility, in unaggregated form, in restoring the viability of neuroblastoma cells against Aβ-induced toxicity. PMID:28272542

  6. Alzheimer's disease amyloid beta peptides in vitro electrochemical oxidation.

    PubMed

    Enache, Teodor Adrian; Oliveira-Brett, Ana Maria

    2017-04-01

    The oxidative behaviour of the human amyloid beta (Aβ1-40 and Aβ1-42) peptides and a group of similar peptides: control inverse (Aβ40-1 and Aβ42-1), mutants (Aβ1-40Phe(10) and Aβ1-40Nle(35)), rat Aβ1-40Rat, and fragments (Aβ1-28, Aβ1-16, Aβ10-20, Aβ12-28, and Aβ17-42), in solution or adsorbed, at a glassy carbon electrode, by cyclic and differential pulse voltammetry, were investigated and compared. Structurally the Aβ1-40 and Aβ1-42 sequences contain five electroactive amino acid residues, one tyrosine (Tyr(10)), three histidines (His(6), His(13) and His(14)) and one methionine (Met(35)). The Aβ peptide 3D structure influenced the exposure of the redox residues to the electrode surface and their oxidation peak currents. Depending on the amino acid sequence length and content, the Aβ peptides gave one or two oxidation peaks. The first electron transfer reaction corresponded to the tyrosine amino acid residue oxidation, and the second to both histidines and methionine amino acid residues. The highest contribution to the second oxidation peak current was from His(13), followed by His(14) and His(6) residues, and Met(35) residue had the lowest contribution. The Aβ peptides electron transfer depended on peptide hydrophobicity and 3D structure, the redox residues position in the sequence, the redox residues close to N-termini giving the highest oxidation peak currents.

  7. Solvent effects on self-assembly of beta-amyloid peptide.

    PubMed Central

    Shen, C L; Murphy, R M

    1995-01-01

    beta-amyloid peptide (A beta) is the primary protein component of senile plaques in Alzheimer's disease patients. Synthetic A beta spontaneously assembles into amyloid fibrils and is neurotoxic to cortical cultures. Neurotoxicity has been associated with the degree of peptide aggregation, yet the mechanism of assembly of A beta into amyloid fibrils is poorly understood. In this work, A beta was dissolved in several different solvents commonly used in neurotoxicity assays. In pure dimethylsulfoxide (DMSO), A beta had no detectable beta-sheet content; in 0.1% trifluoroacetate, the peptide contained one-third beta-sheet; and in 35% acetonitrile/0.1% trifluoroacetate, A beta was two-thirds beta-sheet, equivalent to the fibrillar peptide in physiological buffer. Stock solutions of peptide were diluted into phosphate-buffered saline, and fibril growth was followed by static and dynamic light scattering. The growth rate was substantially faster when the peptide was predissolved in 35% acetonitrile/0.1% trifluoroacetate than in 0.1% trifluoroacetate, 10% DMSO, or 100% DMSO. Differences in growth rate were attributed to changes in the secondary structure of the peptide in the stock solvent. These results suggest that formation of an intermediate with a high beta-sheet content is a controlling step in A beta self-assembly. PMID:8527678

  8. Antagonistic effects of beta-site amyloid precursor protein-cleaving enzymes 1 and 2 on beta-amyloid peptide production in cells.

    PubMed

    Basi, Guriqbal; Frigon, Normand; Barbour, Robin; Doan, Tam; Gordon, Grace; McConlogue, Lisa; Sinha, Sukanto; Zeller, Michelle

    2003-08-22

    The deposition of extracellular beta-amyloid peptide (A beta) in the brain is a pathologic feature of Alzheimer's disease. The beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), an integral membrane aspartyl protease responsible for cleavage of amyloid precursor protein (APP) at the beta-site, promotes A beta production. A second integral membrane aspartyl protease related to BACE1, referred to as beta-site amyloid precursor protein cleaving enzyme 2 (BACE2) has also been demonstrated to cleave APP at the beta-cleavage site in transfected cells. The role of endogenous BACE2 in A beta production remains unresolved. We investigated the role of endogenous BACE2 in A beta production in cells by selective inactivation of its transcripts using RNA interference. We are able to reduce steady state levels for mRNA for each enzyme by >85%, and protein amounts by 88-94% in cells. Selective inactivation of BACE1 by RNA interference results in decreased beta-cleaved secreted APP and A beta peptide secretion from cells, as expected. Selective inactivation of BACE2 by RNAi results in increased beta-cleaved secreted APP and A beta peptide secretion from cells. Simultaneous targeting of both enzymes by RNA interference does not have any net effect on A beta released from cells. Our observations of changes in APP metabolism and A beta are consistent with a role of BACE2 in suppressing A beta production in cells that co-express both enzymes.

  9. Cupric-amyloid beta peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical.

    PubMed

    Dikalov, Sergey I; Vitek, Michael P; Mason, Ronald P

    2004-02-01

    A growing body of evidence supports an important role for oxidative stress in the pathogenesis of Alzheimer's disease. Recently, a number of papers have shown a synergistic neurotoxicity of amyloid beta peptide and cupric ions. We hypothesized that complexes of cupric ions with neurotoxic amyloid beta peptides (Abeta) can stimulate copper-mediated free radical formation. We found that neurotoxic Abeta (1-42), Abeta (1-40), and Abeta (25-35) stimulated copper-mediated oxidation of ascorbate, whereas nontoxic Abeta (40-1) did not. Formation of ascorbate free radical was significantly increased by Abeta (1-42) in the presence of ceruloplasmin. Once cupric ion is reduced to cuprous ion, it can be oxidized by oxygen to generate superoxide radical or it can react with hydrogen peroxide to form hydroxyl radical. Hydrogen peroxide greatly increased the oxidation of cyclic hydroxylamines and ascorbate by cupric-amyloid beta peptide complexes, implying redox cycling of copper ions. Using the spin-trapping technique, we have shown that toxic amyloid beta peptides led to a 4-fold increase in copper-mediated hydroxyl radical formation. We conclude that toxic Abeta peptides do indeed stimulate copper-mediated oxidation of ascorbate and generation of hydroxyl radicals. Therefore, cupric-amyloid beta peptide-stimulated free radical generation may be involved in the pathogenesis of Alzheimer's disease.

  10. Structural Transformation and Aggregation of cc-beta Peptides Into Amyloid Proto-fibrils

    NASA Astrophysics Data System (ADS)

    Bhandari, Yuba; Steckmann, Timothy; Chapagain, Prem; Gerstman, Bernard

    2013-03-01

    The study of amyloid fibrils has important implications in understanding and treatment of various neurodegenerative diseases such as Alzheimer's and Parkinson's. During the formation of amyloid fibrils, peptide polymers manifest fascinating physical behavior by undergoing complicated structural transformations. We examine the behavior of a small engineered peptide called cc-beta, that was designed to mimic the structural changes of the much larger, naturally occurring amyloid beta proteins. Molecular dynamics (MD) simulations are performed to uncover the underlying physics that is responsible for the large scale structural transformations. By using implicit solvent replica exchange MD simulations, we examined the behavior of 12 peptides, initially arranged in four different cc-beta alpha helix trimers. We observed various intermediate stages of aggregation, as well as an organized proto-fibril beta aggregate. We discuss the time evolution and the various interactions involved in the structural transformation.

  11. Conversion of non-fibrillar {beta}-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation

    SciTech Connect

    Benseny-Cases, Nuria; Cocera, Mercedes; Cladera, Josep

    2007-10-05

    A{beta}(1-40) is one of the main components of the fibrils found in amyloid plaques, a hallmark of brains affected by Alzheimer's disease. It is known that prior to the formation of amyloid fibrils in which the peptide adopts a well-ordered intermolecular {beta}-sheet structure, peptide monomers associate forming low and high molecular weight oligomers. These oligomers have been previously described in electron microscopy, AFM, and exclusion chromatography studies. Their specific secondary structures however, have not yet been well established. A major problem when comparing aggregation and secondary structure determinations in concentration-dependent processes such as amyloid aggregation is the different concentration range required in each type of experiment. In the present study we used the dye Thioflavin T (ThT), Fourier-transform infrared spectroscopy, and electron microscopy in order to structurally characterize the different aggregated species which form during the A{beta}(1-40) fibril formation process. A unique sample containing 90 {mu}M peptide was used. The results show that oligomeric species which form during the lag phase of the aggregation kinetics are a mixture of unordered, helical, and intermolecular non-fibrillar {beta}-structures. The number of oligomers and the amount of non-fibrillar {beta}-structures grows throughout the lag phase and during the elongation phase these non-fibrillar {beta}-structures are transformed into fibrillar (amyloid) {beta}-structures, formed by association of high molecular weight intermediates.

  12. Amyloid-beta peptide binds to microtubule-associated protein 1B (MAP1B).

    PubMed

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H; Manoutcharian, Karen

    2008-05-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer's disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer's disease.

  13. Conversion of non-fibrillar beta-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation.

    PubMed

    Benseny-Cases, Núria; Cócera, Mercedes; Cladera, Josep

    2007-10-05

    Abeta(1-40) is one of the main components of the fibrils found in amyloid plaques, a hallmark of brains affected by Alzheimer's disease. It is known that prior to the formation of amyloid fibrils in which the peptide adopts a well-ordered intermolecular beta-sheet structure, peptide monomers associate forming low and high molecular weight oligomers. These oligomers have been previously described in electron microscopy, AFM, and exclusion chromatography studies. Their specific secondary structures however, have not yet been well established. A major problem when comparing aggregation and secondary structure determinations in concentration-dependent processes such as amyloid aggregation is the different concentration range required in each type of experiment. In the present study we used the dye Thioflavin T (ThT), Fourier-transform infrared spectroscopy, and electron microscopy in order to structurally characterize the different aggregated species which form during the Abeta(1-40) fibril formation process. A unique sample containing 90microM peptide was used. The results show that oligomeric species which form during the lag phase of the aggregation kinetics are a mixture of unordered, helical, and intermolecular non-fibrillar beta-structures. The number of oligomers and the amount of non-fibrillar beta-structures grows throughout the lag phase and during the elongation phase these non-fibrillar beta-structures are transformed into fibrillar (amyloid) beta-structures, formed by association of high molecular weight intermediates.

  14. Membrane Pore Formation by Amyloid beta (25-35) Peptide

    NASA Astrophysics Data System (ADS)

    Kandel, Nabin; Tatulian, Suren

    Amyloid (A β) peptide contributes to Alzheimer's disease by a yet unidentified mechanism. One of the possible mechanisms of A β toxicity is formation of pores in cellular membranes. We have characterized the formation of pores in phospholipid membranes by the Aβ25 - 35 peptide (GSNKGAIIGLM) using fluorescence, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) techniques. CD and FTIR identified formation of β-sheet structure upon incubation of the peptide in aqueous buffer for 2 hours. Unilamellar vesicles composed of a zwitterionic lipid, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 70 % POPC plus 30 % of an acidic lipid, 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), are made in 30 mM CaCl2. Quin-2, a fluorophore that displays increased fluorescence upon Ca2+ binding, is added to the vesicles externally. Peptide addition results in increased Quin-2 fluorescence, which is interpreted by binding of the peptide to the vesicles, pore formation, and Ca2+ leakage. The positive and negative control measurements involve addition of a detergent, Triton X-100, which causes vesicle rupture and release of total calcium, and blank buffer, respectively.

  15. Ethyl ether fraction of Gastrodia elata Blume protects amyloid beta peptide-induced cell death.

    PubMed

    Kim, Hyeon-Ju; Moon, Kwang-Deog; Lee, Dong-Seok; Lee, Sang-Han

    2003-01-01

    Alzheimer's disease is the most common cause of dementia in the elderly. Recently, it has been reported that Alzheimer's disease is associated with cell death in neuronal cells including the hippocampus. Amyloid beta-peptide stimulates neuronal cell death, but the underlying signaling pathways are poorly understood. In order to develop anti-dementia agents with potential therapeutic value, we examined the effect of the herbal compound Gastrodia elata Blume (GEB) on neuronal cell death induced by amyloid beta-peptide in IMR-32 neuroblastoma cells. The fractionation of GEB was carried out in various solvents. The hydroxyl radical scavenging effect of the ethyl ether fraction was more potent than any other fractions. In cells treated with amyloid beta-peptide, the neuroprotective effect of the ethyl ether, chloroform, and butanol fractions was 92, 44, and 39%, respectively, compared with control. Taken together, these results suggest that the ethyl ether fraction of GEB contains one or more compounds that dramatically reduce amyloid beta-peptide induced neuronal cell death in vitro.

  16. Energy landscape theory for Alzheimer's amyloid beta-peptide fibril elongation.

    PubMed

    Massi, F; Straub, J E

    2001-02-01

    Recent experiments on the kinetics of deposition and fibril elongation of the Alzheimer's beta-amyloid peptide on preexisting fibrils are analyzed. A mechanism is developed based on the dock-and-lock scheme recently proposed by Maggio and coworkers to organize their experimental observations of the kinetics of deposition of beta-peptide on preexisting amyloid fibrils and deposits. Our mechanism includes channels for (1) a one-step prion-like direct deposition on fibrils of activated monomeric peptide in solution, and (2) a two-step deposition of unactivated peptide on fibrils and subsequent reorganization of the peptide-fibril complex. In this way, the mechanism and implied "energy landscape" unify a number of schemes proposed to describe the process of fibril elongation. This beta-amyloid landscape mechanism (beta ALM) is found to be in good agreement with existing experimental data. A number of experimental tests of the mechanism are proposed. The mechanism leads to a clear definition of overall equilibrium or rate constants in terms of the energetics of the elementary underlying processes. Analysis of existing experimental data suggests that fibril elongation occurs through a two-step mechanism of nonspecific peptide absorption and reorganization. The mechanism predicts a turnover in the rate of fibril elongation as a function of temperature and denaturant concentration. Proteins 2001;42:217-229.

  17. Amyloid Beta Mediates Memory Formation

    ERIC Educational Resources Information Center

    Garcia-Osta, Ana; Alberini, Cristina M.

    2009-01-01

    The amyloid precursor protein (APP) undergoes sequential cleavages to generate various polypeptides, including the amyloid [beta] (1-42) peptide (A[beta][1-42]), which is believed to play a major role in amyloid plaque formation in Alzheimer's disease (AD). Here we provide evidence that, in contrast with its pathological role when accumulated,…

  18. Competitive Mirror Image Phage Display Derived Peptide Modulates Amyloid Beta Aggregation and Toxicity

    PubMed Central

    Rudolph, Stephan; Klein, Antonia Nicole; Tusche, Markus; Schlosser, Christine; Elfgen, Anne; Brener, Oleksandr; Teunissen, Charlotte; Gremer, Lothar; Funke, Susanne Aileen; Kutzsche, Janine; Willbold, Dieter

    2016-01-01

    Alzheimer´s disease is the most prominent type of dementia and currently no causative treatment is available. According to recent studies, oligomeric species of the amyloid beta (Aβ) peptide appear to be the most toxic Aβ assemblies. Aβ monomers, however, may be not toxic per se and may even have a neuroprotective role. Here we describe a competitive mirror image phage display procedure that allowed us to identify preferentially Aβ1–42 monomer binding and thereby stabilizing peptides, which destabilize and thereby eliminate toxic oligomer species. One of the peptides, called Mosd1 (monomer specific d-peptide 1), was characterized in more detail. Mosd1 abolished oligomers from a mixture of Aβ1–42 species, reduced Aβ1–42 toxicity in cell culture, and restored the physiological phenotype in neuronal cells stably transfected with the gene coding for human amyloid precursor protein. PMID:26840229

  19. Cytosolic amyloid-{beta} peptide 42 escaping from degradation induces cell death

    SciTech Connect

    Lee, Eun Kyung; Park, Yong Wook; Shin, Dong Yeon; Mook-Jung, Inhee; Yoo, Yung Joon . E-mail: yjyoo@gist.ac.kr

    2006-06-02

    Accumulating evidence suggests that intracellular amyloid-{beta} (A{beta}) peptide triggers the early pathological events in Alzheimer's disease (AD). However, little is known about the consequence of cytosolic A{beta}. In this study, we ectopically expressed A{beta}42 in the cytoplasm of SH-SY5Y neuroblastoma cells by expressing a fusion protein of GFP-tagged ubiquitin and A{beta}42 (GFPUb-A{beta}42). Although GFPUb and A{beta}42 are stochastically produced with the same molar ratio in the cytoplasm, A{beta}42 was completely degraded in more than 50% of the GFPUb-expressing cells. However, if A{beta}42 was not degraded in their cytoplasm, then A{beta}42-expressing cells underwent apoptosis. The number of A{beta}42-expressing cells is significantly increased by the inhibition of proteasome with MG132. Cytosolic A{beta}42 which has escaped degradation inhibits proteasome and thereby may accelerate the accumulation of A{beta}42 and its detrimental effects. Our findings suggest that cells have the potential to degrade A{beta}42 in their cytoplasm but if A{beta}42 appears in the cytoplasm due to its incomplete degradation, it accumulates and may trigger the fatal cascade of pathology of AD.

  20. Amyloid beta peptide 22-35 induces a negative inotropic effect on isolated rat hearts

    PubMed Central

    Yousefirad, Neda; Kaygısız, Ziya; Aydın, Yasemin

    2016-01-01

    Evidences indicate that deposition of amyloid beta peptides (Aβs) plays an important role in the pathogenesis of Alzheimer disease. Aβs may influence cardiovascular system and ileum contractions. But the effect of amyloid beta peptide 22-35 (Aβ22-35) on cardiovascular functions and contractions of ileum has not been studied. Therefore, the present study aimed to investigate the possible effects of this peptide on isolated rat heart and ileum smooth muscle. Langendorff-perfused rat heart preparations were established. The hearts were perfused under constant pressure (60 mmHg) with modified Krebs-Henseleit solution. Aβ22-35 at doses of 1, 10 and 100 nM significantly decreased left ventricular developed pressure (LVDP; an index of cardiac contractility) and maximal rate of pressure development of left ventricle (+dP/dtmax; another index of cardiac contractility). This peptide at doses studied had no significant effect on heart rate, coronary flow, monophasic action potential amplitude (MAPamp), MAP duration at 90% repolarization (MAP90) and ileum contractions. We suggest that Aβ22-35 exerts a negative inotropism on isolated rat hearts with unchanged heart rate, coronary flow, MAPamp, MAP90 and smooth muscle contractility of ileum. PMID:28078053

  1. Amyloid beta (Aβ) peptide modulators and other current treatment strategies for Alzheimer’s disease (AD)

    PubMed Central

    Lukiw, Walter J.

    2012-01-01

    Introduction Alzheimer’s disease (AD) is a common, progressive neurological disorder whose incidence is reaching epidemic proportions. The prevailing ‘amyloid cascade hypothesis’, which maintains that the aberrant proteolysis of beta-amyloid precursor protein (βAPP) into neurotoxic amyloid beta (Aβ)-peptides is central to the etiopathology of AD, continues to dominate pharmacological approaches to the clinical management of this insidious disorder. This review is a compilation and update on current pharmacological strategies designed to down-regulate Aβ42-peptide generation in an effort to ameliorate the tragedy of AD. Areas Covered This review utilized on-line data searches at various open online-access websites including the Alzheimer Association, Alzheimer Research Forum; individual drug company databases; the National Institutes of Health (NIH) Medline; Pharmaprojects database; Scopus; inter-University research communications and unpublished research data. Expert Opinion Aβ immunization-, anti-acetylcholinesterase-, β-secretase-, chelation-, γ-secretase-, N-methyl D-aspartate (NMDA) receptor antagonist-, statin-based and other strategies to modulate βAPP processing have dominated pharmacological approaches directed against AD-type neurodegenerative pathology. Cumulative clinical results of these efforts remain extremely disappointing, and have had little overall impact on the clinical management of AD. While a number of novel approaches are in consideration and development, to date there is still no effective treatment or cure for this expanding healthcare concern. PMID:22439907

  2. Acetylcholinesterase (AChE)--amyloid-beta-peptide complexes in Alzheimer's disease. the Wnt signaling pathway.

    PubMed

    Inestrosa, Nibaldo C; Urra, Soledad; Colombres, Marcela

    2004-11-01

    Alzheimer's disease (AD) is characterized by selective neuronal cell death, which is probably caused by amyloid beta-peptide (Abeta) oligomers and fibrils. We have found that acetylcholinesterase (AChE), a senile plaque component, increases amyloid fibril assembly with the formation of highly toxic complexes (Abeta-AChE). The neurotoxic effect induced by Abeta-AChE complexes was higher than that induced by the Abeta peptide alone as shown both in vitro (hippocampal neurons) and in vivo (rats injected with Abeta peptide in the dorsal hippocampus). Interestingly, treatment with Abeta-AChE complexes decreases the cytoplasmic beta-catenin level, a key component of Wnt signaling. Conversely, the activation of this signaling pathway by Wnt-3a promotes neuronal survival and rescues changes in Wnt components (activation or subcellular localization). Moreover Frzb-1, a Wnt antagonist reverses the Wnt-3a neuroprotection effect against Abeta neurotoxicity. Compounds that mimic the Wnt signaling or modulate the cross-talking with this pathway could be used as neuroprotective agents for therapeutic strategies in AD patients.

  3. p75NTR antagonistic cyclic peptide decreases the size of beta amyloid-induced brain inflammation.

    PubMed

    Yaar, Mina; Arble, Bennet L; Stewart, Kenneth B; Qureshi, Nazer H; Kowall, Neil W; Gilchrest, Barbara A

    2008-12-01

    Amyloid beta (Abeta) was shown to bind the 75 kD neurotrophin receptor (p75(NTR)) to induce neuronal death. We synthesized a p75(NTR) antagonistic peptide (CATDIKGAEC) that contains the KGA motif that is present in the toxic part of Abeta and closely resembles the binding site of NGF for p75(NTR). In vivo injections of Abeta into the cerebral cortex of B57BL/6 mice together with the peptide produced significantly less inflammation than simultaneous injections of Abeta and a control (CKETIADGAC, scrambled) peptide injected into the contralateral cortex. These data suggest that blocking the binding of Abeta to p75(NTR) may reduce neuronal loss in Alzheimer's disease.

  4. Three-dimensional structures of the amyloid beta peptide (25-35) in membrane-mimicking environment.

    PubMed

    Kohno, T; Kobayashi, K; Maeda, T; Sato, K; Takashima, A

    1996-12-17

    The three-dimensional structure of amyloid beta peptide (25-35), which has neurotoxic activity, in lithium dodecyl sulfate micelles was determined by two-dimensional 1H NMR spectroscopy with simulated annealing calculations. A total of 20 converged amyloid beta peptide structures were obtained on the basis of 110 experimental constraints, including 106 distance constraints reduced from the nuclear Overhauser effect (NOE) connectivities and four torsion angle (phi) constraints. The atomic root mean square difference about averaged coordinates is 1.04 +/- 0.25 A for the backbone atoms (N, C alpha, C) and 1.39 +/- 0.27 A for all heavy atoms of the entire peptide. The molecular structure of amyloid beta peptide in membrane-mimicking environment is composed of a short alpha helix in the C terminal position. The three residues from the N-terminus are disordered, but the remaining eight C-terminal residues are well-ordered, which is supported by the RMSD values of the C-terminal region, Lys28-Leu34. In this region, the RMS differences from averaged coordinates are 0.26 +/- 0.11 A for the backbone atoms (N, C alpha, C) and 0.77 +/- 0.21 A for all heavy atoms, which is very low compared with those for the entire peptide. The four amino acid residues from the N-terminus are hydrophilic and the other seven amino acid residues in C-terminus are hydrophobic. So, our results show that the C-terminal region of amyloid beta peptide (25-35) is buried in the membrane and assumes alpha-helical structure, whereas the N-terminal region is exposed to the solvent with a flexible structure. This structure is very similar to membrane-mediated structure of substance P previously reported. The three-dimensional structure of a non-neurotoxic mutant of amyloid beta peptide (25-35), where Asn27 is replaced by Ala, in lithium dodecyl sulfate micelles was also determined. The structure is similar to that of the wild type amyloid beta peptide (25-35) in the C-terminal region, but the N

  5. MALDI, AP/MALDI and ESI techniques for the MS detection of amyloid [beta]-peptides

    NASA Astrophysics Data System (ADS)

    Grasso, Giuseppe; Mineo, Placido; Rizzarelli, Enrico; Spoto, Giuseppe

    2009-04-01

    Amyloid [beta]-peptides (A[beta]s) are involved in several neuropathological conditions such as Alzheimer's disease and considerable experimental evidences have emerged indicating that different proteases play a major role in regulating the accumulation of A[beta]s in the brain. Particularly, insulin-degrading enzyme (IDE) has been shown to degrade A[beta]s at different cleavage sites, but the experimental results reported in the literature and obtained by mass spectrometry methods are somehow fragmentary. The detection of A[beta]s is often complicated by solubility issues, oxidation artifacts and spontaneous aggregation/cleavage and, in order to rationalize the different reported results, we analyzed A[beta]s solutions by three different MS approaches: matrix assisted laser desorption ionization-time of flight (MALDI-TOF), atmospheric pressure (AP) MALDI ion trap and electrospray ionization (ESI) ion trap. Differences in the obtained results are discussed and ESI is chosen as the most suitable MS method for A[beta]s detection. Finally, cleavage sites produced by interaction of A[beta]s with IDE are identified, two of which had never been reported in the literature.

  6. Measurement of beta-amyloid peptides in specific cells using a photo thin-film transistor.

    PubMed

    Kim, Chang-Beom; Chae, Cheol-Joo; Shin, Hye-Rim; Song, Ki-Bong

    2012-01-06

    The existence of beta-amyloid [Aβ] peptides in the brain has been regarded as the most archetypal biomarker of Alzheimer's disease [AD]. Recently, an early clinical diagnosis has been considered a great importance in identifying people who are at high risk of AD. However, no microscale electronic sensing devices for the detection of Aβ peptides have been developed yet. In this study, we propose an effective method to evaluate a small quantity of Aβ peptides labeled with fluorescein isothiocyanate [FITC] using a photosensitive field-effect transistor [p-FET] with an on-chip single-layer optical filter. To accurately evaluate the quantity of Aβ peptides within the cells cultured on the p-FET device, we measured the photocurrents which resulted from the FITC-conjugated Aβ peptides expressed from the cells and measured the number of photons of the fluorochrome in the cells using a photomultiplier tube. Thus, we evaluated the correlation between the generated photocurrents and the number of emitted photons. We also evaluated the correlation between the number of emitted photons and the amount of FITC by measuring the FITC volume using AFM. Finally, we estimated the quantity of Aβ peptides of the cells placed on the p-FET sensing area on the basis of the binding ratio between FITC molecules and Aβ peptides.

  7. Binding of amyloid beta peptide to beta2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity.

    PubMed

    Wang, Dayong; Govindaiah, G; Liu, Ruijie; De Arcangelis, Vania; Cox, Charles L; Xiang, Yang K

    2010-09-01

    Progressive decrease in neuronal function is an established feature of Alzheimer's disease (AD). Previous studies have shown that amyloid beta (Abeta) peptide induces acute increase in spontaneous synaptic activity accompanied by neurotoxicity, and Abeta induces excitotoxic neuronal death by increasing calcium influx mediated by hyperactive alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. An in vivo study has revealed subpopulations of hyperactive neurons near Abeta plaques in mutant amyloid precursor protein (APP)-transgenic animal model of Alzheimer's disease (AD) that can be normalized by an AMPA receptor antagonist. In the present study, we aim to determine whether soluble Abeta acutely induces hyperactivity of AMPA receptors by a mechanism involving beta(2) adrenergic receptor (beta(2)AR). We found that the soluble Abeta binds to beta(2)AR, and the extracellular N terminus of beta(2)AR is critical for the binding. The binding is required to induce G-protein/cAMP/protein kinase A (PKA) signaling, which controls PKA-dependent phosphorylation of GluR1 and beta(2)AR, and AMPA receptor-mediated excitatory postsynaptic currents (EPSCs). beta(2)AR and GluR1 also form a complex comprising postsynaptic density protein 95 (PSD95), PKA and its anchor AKAP150, and protein phosphotase 2A (PP2A). Both the third intracellular (i3) loop and C terminus of beta(2)AR are required for the beta(2)AR/AMPA receptor complex. Abeta acutely induces PKA phosphorylation of GluR1 in the complex without affecting the association between two receptors. The present study reveals that non-neurotransmitter Abeta has a binding capacity to beta(2)AR and induces PKA-dependent hyperactivity in AMPA receptors.

  8. Glutamatergic synaptic depression by synthetic amyloid beta-peptide in the medial septum.

    PubMed

    Santos-Torres, Julio; Fuente, Antonio; Criado, Jose Maria; Riolobos, Adelaida Sanchez; Heredia, Margarita; Yajeya, Javier

    2007-02-15

    The medial septum/diagonal band region, which participates in learning and memory processes via its cholinergic and GABAergic projection to the hippocampus, is one of the structures affected by beta amyloid (betaA) deposition in Alzheimer's disease (AD). The acute effects of betaA (25-35 and 1-40) on action potential generation and glutamatergic synaptic transmission in slices of the medial septal area of the rat brain were studied using current and patch-clamp techniques. The betaA mechanism of action through M1 muscarinic receptors and voltage-dependent calcium channels was also addressed. Excitatory evoked responses decreased (30-60%) in amplitude after betaA (2 microM) perfusion in 70% of recorded cells. However, the firing properties were unaltered at the same concentration. This depression was irreversible in most cases, and was not prevented or reversed by nicotine (5 microM). In addition, the results obtained using a paired-pulse protocol support pre- and postsynaptic actions of the peptide. The betaA effect was blocked by calcicludine (50 nM), a selective antagonist of L-type calcium channels, and also by blocking muscarinic receptors with atropine (5 muM) or pirenzepine (1 microM), a more specific M1-receptor blocker. We show that in the medial septal area this oligomeric peptide acts through calcium channels and muscarinic receptors. As blocking any of these pathways blocks the betaA effects, we propose a joint action through both mechanisms. These results may contribute to a better understanding of the pathophysiology at the onset of AD. This understanding will be required for the development of new therapeutic agents.

  9. Dynamics in Alzheimer's disease: the role of peptide flexibility on amyloid beta aggregation

    NASA Astrophysics Data System (ADS)

    Antonieta Sanchez Farran, Maria; Maranas, Janna

    2010-03-01

    Aggregates of the amyloid beta peptide (Aβ) are thought to trigger brain cell death in Alzheimer's patients. Two different types of Aβ aggregates have been identified: soluble, and insoluble. Soluble aggregates are formed in early stages of peptide association, whereas insoluble aggregates are the final state of aggregation. Interestingly, it is the soluble aggregates, not the insoluble ones, which correlate with disease progression. Despite the relevance of soluble aggregates as a target for Alzheimer's disease, their mechanism of formation is unknown. The role of local flexibility in protein function has recently received attention: in this study we ask if local flexibility plays a similar role in how soluble aggregates form. To answer this question, we perform all-atom molecular dynamics simulations of the wild-type Aβ monomer, and two mutated forms that vary in their ability to form soluble aggregates. We find that enhanced flexibility facilitates the formation and availability of nucleation sites by allowing the peptide to more easily access the conformations most favorable to association. Peptides with high flexibility show larger conformational changes than less flexible peptides, the extent of these changes could determine the ability of Aβ to self associate.

  10. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters.

    PubMed

    Toneff, Thomas; Funkelstein, Lydiane; Mosier, Charles; Abagyan, Armen; Ziegler, Michael; Hook, Vivian

    2013-08-01

    Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1-40) and Aβ(1-42) with peptide neurotransmitters (galanin, enkephalin, and NPY) and catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine). Regulated secretion from chromaffin cells was stimulated by KCl depolarization and nicotine. Forskolin, stimulating cAMP, also induced co-secretion of Aβ peptides with peptide and catecholamine neurotransmitters. These data suggested the co-localization of Aβ with neurotransmitters in dense core secretory vesicles (DCSV) that store and secrete such chemical messengers. Indeed, Aβ was demonstrated to be present in DCSV with neuropeptide and catecholamine transmitters. Furthermore, the DCSV organelle contains APP and its processing proteases, β- and γ-secretases, that are necessary for production of Aβ. Thus, Aβ can be generated in neurotransmitter-containing DCSV. Human IMR32 neuroblastoma cells also displayed regulated secretion of Aβ(1-40) and Aβ(1-42) with the galanin neurotransmitter. These findings illustrate that Aβ peptides are present in neurotransmitter-containing DCSV, and undergo co-secretion with neuropeptide and catecholamine neurotransmitters that regulate brain functions.

  11. Isoflurane and desflurane at clinically relevant concentrations induce amyloid {beta}-peptide oligomerization: An NMR study

    SciTech Connect

    Mandal, Pravat K Fodale, Vincenzo

    2009-02-13

    Current understanding on Alzheimer's disease (AD) reveals that soluble amyloid {beta}-peptide (A{beta}) oligomeric formation plays an important role in AD pathophysiology. A potential role for several inhaled anesthetics in promoting A{beta} oligomer formation has been suggested. Using a nuclear magnetic resonance (NMR) study, we previously demonstrated that at a high concentration (higher than clinically relevant concentrations), the inhaled anesthetics halothane and isoflurane, interact with specific amino acid residues (G29, A30, and I31) and induce A{beta} oligomerization. The present study confirms this is true at a clinically relevant concentration. Isoflurane and desflurane induce A{beta} oligomerization by inducing chemical shift changes of the critical amino acid residues (G29, A30, and I31), reinforcing the evidence that perturbation of these three crucial residues indeed plays an important role in oligomerization. These findings support the emerging hypothesis that several commonly used inhaled anesthetics could be involved in neurodegeneration, as well as risk factor for accelerating the onset of AD.

  12. Clearance mechanisms of Alzheimer's amyloid-beta peptide: implications for therapeutic design and diagnostic tests.

    PubMed

    Bates, K A; Verdile, G; Li, Q-X; Ames, D; Hudson, P; Masters, C L; Martins, R N

    2009-05-01

    Currently, the 'amyloid hypothesis' is the most widely accepted explanation for the pathogenesis of Alzheimer's disease (AD). According to this hypothesis, altered metabolism of the amyloid-beta (Abeta) peptide is central to the pathological cascade involved in the pathogenesis of AD. Although Abeta is produced by almost every cell in the body, a physiological function for the peptide has not been determined, and the pathways by which Abeta leads to cognitive dysfunction and cell death are unclear. Numerous therapeutic approaches that target the production, toxicity and removal of Abeta are being developed worldwide. Although therapeutic treatment for AD may be imminent, the value and effectiveness of such treatment are largely dependent on early diagnosis of the disease. This review summarizes current knowledge of Abeta clearance, transport and degradation, and evaluates the use of such information in the development of diagnostic tools. The conflicting results of plasma Abeta ELISAs are discussed, as are the more promising results of Abeta imaging by positron emission tomography. Current knowledge of Abeta-binding proteins and Abeta-degrading enzymes is analysed in the context of a potential therapy for AD. Transport across the blood-brain barrier by the receptor for advanced glycation end products and efflux via the multi-ligand lipoprotein receptor LRP-1 is also reviewed. Enhancing clearance and degradation of Abeta remains an attractive therapeutic strategy, and improved understanding of Abeta clearance may lead to advances in diagnostics and interventions designed to prevent or delay the onset of AD.

  13. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.

    PubMed

    Baweja, Lokesh; Balamurugan, Kanagasabai; Subramanian, Venkatesan; Dhawan, Alok

    2015-09-01

    The interactions between nanomaterials (NMs) and amyloid proteins are central to the nanotechnology-based diagnostics and therapy in neurodegenerative disorders such as Alzheimer's and Parkinson's. Graphene oxide (GO) and its derivatives have shown to modulate the aggregation pattern of disease causing amyloid beta (Aβ) peptide. However, the mechanism is still not well understood. Using molecular dynamics simulations, the effect of graphene oxide (GO) and reduced graphene oxide (rGO) having carbon:oxygen ratio of 4:1 and 10:1, respectively, on the conformational transitions (alpha-helix to beta-sheet) and the dynamics of the peptide was investigated. GO and rGO decreased the beta-strand propensity of amino acid residues in Aβ. The peptide displayed different modes of adsorption on GO and rGO. The adsorption on GO was dominated by electrostatic interactions, whereas on rGO, both van der Waals and electrostatic interactions contributed in the adsorption of the peptide. Our study revealed that the slight increase in the hydrophobic patches on rGO made it more effective inhibitor of conformational transitions in the peptide. Alpha helix-beta sheet transition in Aβ peptide could be one of the plausible mechanism by which graphene oxide may inhibit amyloid fibrillation.

  14. X-ray absorption and diffraction studies of the metal binding sites in amyloid beta-peptide.

    PubMed

    Streltsov, Victor

    2008-03-01

    A major source of neurodegeneration observed in Alzheimer's disease is believed to be caused by the toxicity from reactive oxygen species produced in the brain mediated by the A beta protein and mainly copper species. An atomic model of an amyloid beta-peptide (A beta) Cu2+ complex or at least the structure of the metal binding site is of great interest. Accurate information about the Cu-binding site of A beta protein can facilitate simulation of redox chemistry using high level quantum mechanics. Complementary X-ray diffraction and X-ray absorption techniques can be employed to obtain such accurate information. This review provides a blend of X-ray diffraction results on amyloid structures and selected works on A beta Cu2+ binding based on spectroscopic measurements with emphasis on the X-ray absorption technique.

  15. The killing of neurons by beta-amyloid peptides, prions, and pro-inflammatory cytokines.

    PubMed

    Chiarini, Anna; Dal Pra, Ilaria; Whitfield, James F; Armato, Ubaldo

    2006-01-01

    Reportedly, beta-amyloid peptides (Abeta40 and Abeta42) induce the neurodegenerative changes of Alzheimer's disease (AD) both directly by interacting with components of the cell surface to trigger apoptogenic signaling and indirectly by activating astrocytes and microglia to produce excess amounts of inflammatory cytokines. A possible cell surface target for Abetas is the p75 neurotrophin receptor (p75(NTR)). By using SK-N-BE neuroblastoma cells without neurotrophin receptors or engineered to express the full-length p75(NTR) or various parts of it, we have proven that p75(NTR) does mediate the Abeta-induced cell killing via its intracellular death domain (DD). This signaling via the DD activates caspase-8, which then activates caspase-3 and apoptogenesis. We also found a strong cytocidal interaction of direct p75(NTR)-mediated and indirect pro-inflammatory cytokine-mediated neuronal damage induced by Abeta. In fact, pro-inflammatory cytokines such as TNF-alpha and IL-1beta from Abeta-activated microglia potentiated the neurotoxic action of Aalpha mediated by p75(NTR) signaling. The pro-inflammatory cytokines probably amplify neuronal damage and killing by causing astrocytes to flood their associated neurons with NO and its lethal oxidizing ONOO- derivative. Indeed, we have found that a combination of three major pro-inflammatory cytokines, IL-1beta+IFN-gamma+TNF-alpha, causes normal adult human astrocytes (NAHA) to express nitric oxide synthase-2 (NOS-2) and make dangerously large amounts of NO via mitogen-activated protein kinases (MAPKs). Soluble Abeta40, the major amyloid precursor protein cleavage product, by itself stimulates astrocytes to express NOS-2 and make NO, possibly by activating p75(NTR) receptors, which they share with neurons, and can considerably amplify NOS-2 expression by the pro-inflammatory cytokine trio. These observations have uncovered a deadly synergistic interaction of Abeta peptides with pro-inflammatory cytokines in the neuron

  16. A bifunctional non-natural tetrapeptide modulates amyloid-beta peptide aggregation in the presence of Cu(ii).

    PubMed

    Márquez, Maripaz; Blancas-Mejía, Luis M; Campos, Adriana; Rojas, Luis; Castañeda-Hernández, Gilberto; Quintanar, Liliana

    2014-12-01

    Amyloid-beta peptide (Aβ) aggregation is one of the hallmarks of Alzheimer's disease (AD), and metal ions such as Cu(ii) have been proposed to play a role in amyloid formation and the onset of this progressive neurodegenerative disorder. This study reports the design and characterization of a novel bifunctional non-natural tetrapeptide, Met-Asp-d-Trp-Aib, that is capable of binding copper, competing with Aβ for Cu(ii), and modulating Aβ aggregation. The study of this tetrapeptide provides further insights into the role of Cu(ii) in the Aβ aggregation pathway, and into the design of compounds with therapeutic potential for Alzheimer's disease.

  17. Aloe arborescens Extract Protects IMR-32 Cells against Alzheimer Amyloid Beta Peptide via Inhibition of Radical Peroxide Production.

    PubMed

    Clementi, Maria Elisabetta; Tringali, Giuseppe; Triggiani, Doriana; Giardina, Bruno

    2015-11-01

    Aloe arborescens is commonly used as a pharmaceutical ingredient for its effect in burn treatment and ability to increase skin wound healing properties. Besides, it is well known to have beneficial phytotherapeutic, anticancer, and radio-protective properties. In this study, we first provided evidence that A. arborescens extract protects IMR32, a neuroblastoma human cellular line, from toxicity induced by beta amyloid, the peptide responsible for Alzheimer's disease. In particular, pretreatment with A. arborescens maintains an elevated cell viability and exerts a protective effect on mitochondrial functionality, as evidenced by oxygen consumption experiments. The protective mechanism exerted by A. arborescens seems be related to lowering of oxidative potential of the cells, as demonstrated by the ROS measurement compared with the results obtained in the presence of amyloid beta (1-42) peptide alone. Based on these preliminary observations we suggest that use ofA. arborescens extract could be developed as agents for the management of AD.

  18. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed Central

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-01-01

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  19. Oxidation of cholesterol catalyzed by amyloid beta-peptide (Abeta)-Cu complex on lipid membrane.

    PubMed

    Yoshimoto, Noriko; Tasaki, Makoto; Shimanouchi, Toshinori; Umakoshi, Hiroshi; Kuboi, Ryoichi

    2005-10-01

    A catalytic reaction of H2O2 production by an amyloid beta-peptide (Abeta)-Cu complex with cholesterol incorporated in a liposome was kinetically analyzed. The Michaelis-Menten model was applied to the H2O2 production reaction using cholesterol as the substrate catalyzed by the Abeta-Cu complex. The Km value for the Abeta-Cu complex catalytic reaction with cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes (Km=0.436 microM for Abeta(1-40); Km=0.641 microM for Abeta(1-42)) was found to be smaller than that with cholesterol-containing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes (Km=0.585 microM for Abeta(1-40), Km=0.890 microM for Abeta(1-42)). The results imply that membrane properties could play an important role in the interactions of the Abeta-Cu complex with cholesterol in these liposomes. Considering the physical states of the cholesterol/POPC (liquid disordered phase) and cholesterol/DPPC (liquid ordered phase) liposomes in the present reaction conditions, the data obtained suggests that the H2O2-generating activity of the Abeta-Cu complex, accompanied by oxidation of membrane-incorporated cholesterol, could be effected by the phase of the liposome membranes.

  20. Alzheimer's disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme.

    PubMed

    Eckman, Elizabeth A; Watson, Mona; Marlow, Laura; Sambamurti, Kumar; Eckman, Christopher B

    2003-01-24

    The abnormal accumulation of beta-amyloid (Abeta) in the brain is an early and invariant feature in Alzheimer's disease (AD) and is believed to play a pivotal role in the etiology and pathogenesis of the disease. As such, a major focus of AD research has been the elucidation of the mechanisms responsible for the generation of Abeta. As with any peptide, however, the degree of Abeta accumulation is dependent not only on its production but also on its removal. In cell-based and in vitro models we have previously characterized endothelin-converting enzyme-1 (ECE-1) as an Abeta-degrading enzyme that appears to act intracellularly, thus limiting the amount of Abeta available for secretion. To determine the physiological significance of this activity, we analyzed Abeta levels in the brains of mice deficient for ECE-1 and a closely related enzyme, ECE-2. Significant increases in the levels of both Abeta40 and Abeta42 were found in the brains of these animals when compared with age-matched littermate controls. The increase in Abeta levels in the ECE-deficient mice provides the first direct evidence for a physiological role for both ECE-1 and ECE-2 in limiting Abeta accumulation in the brain and also provides further insight into the factors involved in Abeta clearance in vivo.

  1. P3 beta-amyloid peptide has a unique and potentially pathogenic immunohistochemical profile in Alzheimer's disease brain.

    PubMed Central

    Higgins, L. S.; Murphy, G. M.; Forno, L. S.; Catalano, R.; Cordell, B.

    1996-01-01

    The presence of beta-amyloid in brain tissue is characteristic of Alzheimer's disease (AD). A naturally occurring derivative of the beta-amyloid peptide, p3, possesses all of the structural determinants required for fibril assembly and neurotoxicity. p3-specific antibodies were used to examine the distribution of this peptide in brain. p3 reactivity was absent or sparse in aged non-AD brains but was prevalent in selected areas of AD brain in diffuse deposits and in a subset of dystrophic neurites. p3-reactive dystrophic neurites were found both independent in the neuropil and associated with plaques. Little or no reactivity was observed to amyloid cores in classical plaques or to amyloid in the cerebral vasculature. The exclusive appearance of p3 reactivity in AD brain plus the selective localization of p3 reactivity to abnormal structures in the temporal lobe limbic system suggests that p3 may be a contributing factor to AD pathology. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8701997

  2. Non-fibrillar amyloid-{beta} peptide reduces NMDA-induced neurotoxicity, but not AMPA-induced neurotoxicity

    SciTech Connect

    Niidome, Tetsuhiro; Goto, Yasuaki; Kato, Masaru; Wang, Pi-Lin; Goh, Saori; Tanaka, Naoki; Akaike, Akinori; Kihara, Takeshi; Sugimoto, Hachiro

    2009-09-04

    Amyloid-{beta} peptide (A{beta}) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that A{beta} has important physiological roles in addition to its pathological roles. We recently demonstrated that A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between A{beta}42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar A{beta}42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar A{beta}42 on glutamate-induced neurotoxicity. Non-fibrillar A{beta}42, but not fibrillar A{beta}42, protected hippocampal neurons from glutamate-induced neurotoxicity. Furthermore, non-fibrillar A{beta}42 decreased both neurotoxicity and increases in the intracellular Ca{sup 2+} concentration induced by N-methyl-D-aspartate (NMDA), but not by {alpha}-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.

  3. Bilirubin and amyloid-beta peptide induce cytochrome c release through mitochondrial membrane permeabilization.

    PubMed Central

    Rodrigues, C. M.; Solá, S.; Silva, R.; Brites, D.

    2000-01-01

    BACKGROUND: The pathogenesis of bilirubin encephalopathy and Alzheimer's disease appears to result from accumulation of unconjugated bilirubin (UCB) and amyloid-beta (Abeta) peptide, respectively, which may cause apoptosis. Permeabilization of the mitochondrial membrane, with release of intermembrane proteins, has been strongly implicated in cell death. Inhibition of the mitochondrial permeability is one pathway by which ursodeoxycholate (UDC) and tauroursodeoxycholate (TUDC) protect against apoptosis in hepatic and nonhepatic cells. In this study, we further characterize UCB- and Abeta-induced cytotoxicty in isolated neural cells, and investigate membrane perturbation during incubation of isolated mitochondria with both agents. In addition, we evaluate whether the anti-apoptotic drugs UDC and TUDC prevent any changes from occurring. MATERIALS AND METHODS: Primary rat neuron and astrocyte cultures were incubated with UCB or Abeta peptide, either alone or in the presence of UDC. Apoptosis was assessed by DNA fragmentation and nuclear morphological changes. Isolated mitochondria were treated with each toxic, either alone or in combination with UDC, TUDC, or cyclosporine A. Mitochondrial swelling was measured spectrophotometrically and cytochrome c protein levels determined by Western blot. RESULTS: Incubation of neural cells with both UCB and Abeta induced apoptosis (p < 0.01). Coincubation with UDC reduced apoptosis by > 50% (p < 0.05). Both toxins caused membrane permeabilization in isolated mitochondria (p < 0.001); whereas, pretreatment with UDC was protective (p < 0.05). TUDC was even more effective at preventing matrix swelling mediated by Abeta (p < 0.01). UDC and TUDC markedly reduced cytochrome c release associated with mitochondrial permeabilization induced by UCB and Abeta, respectively (p < 0.05). Moreover, cyclosporine A significantly inhibited mitochondrial swelling and cytochrome c efflux mediated by UCB (p < 0.05). CONCLUSION: UCB and Abeta peptide

  4. Estimation of electrokinetic and hydrodynamic global properties of relevant amyloid-beta peptides through the modeling of their effective electrophoretic mobilities and analysis of their propensities to aggregation.

    PubMed

    Deiber, Julio A; Piaggio, Maria V; Peirotti, Marta B

    2014-09-01

    Neuronal activity loss may be due to toxicity caused by amyloid-beta peptides forming soluble oligomers. Here amyloid-beta peptides (1-42, 1-40, 1-39, 1-38, and 1-37) are characterized through the modeling of their experimental effective electrophoretic mobilities determined by a capillary zone electrophoresis method as reported in the literature. The resulting electrokinetic and hydrodynamic global properties are used to evaluate amyloid-beta peptide propensities to aggregation through pair particles interaction potentials and Brownian aggregation kinetic theories. Two background electrolytes are considered at 25°C, one for pH 9 and ionic strength I = 40 mM (aggregation is inhibited through NH4OH) the other for pH 10 and I = 100 mM (without NH4OH). Physical explanations of peptide oligomerization mechanisms are provided. The effect of hydration, electrostatic, and dispersion forces in the amyloidogenic process of amyloid-beta peptides (1-40 and 1-42) are quantitatively presented. The interplay among effective charge number, hydration, and conformation of chains is described. It is shown that amyloid-beta peptides (1-40 and 1-42) at pH 10, I = 100 mM and 25°C, may form soluble oligomers, mainly of order 2 and 4, after an incubation of 48 h, which at higher times evolve and end up in complex structures (protofibrils and fibrils) found in plaques associated with Alzheimer's disease.

  5. The Structure of the Amyloid-[beta] Peptide High-Affinity Copper II Binding Site in Alzheimer Disease

    SciTech Connect

    Streltsov, Victor A.; Titmuss, Stephen J.; Epa, V. Chandana; Barnham, Kevin J.; Masters, Colin L.; Varghese, Joseph N.

    2008-11-03

    Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-{beta} (A{beta}) protein bound primarily to copper ions. The evidence for an oxidative stress role of A{beta}-Cu redox chemistry is still incomplete. Details of the copper binding site in A{beta} may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of A{beta} peptides complexed with Cu{sup 2+} in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl) concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length A{beta}-Cu{sup 2+} peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the A{beta}-Cu{sup 2+} complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu{sup 2+} binding site is consistent with the hypothesis that the redox activity of the metal ion bound to A{beta} can lead to the formation of dityrosine-linked dimers found in AD.

  6. Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity.

    PubMed

    Yu, Man-Shan; Lai, Cora Sau-Wan; Ho, Yuen-Shan; Zee, Sze-Yong; So, Kwok-Fai; Yuen, Wai-Hung; Chang, Raymond Chuen-Chung

    2007-08-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. There are increasing lines of evidence showing that the molecular signaling pathways in aged cells are altered so that cells are susceptible to injury. We and other laboratories have demonstrated the significant involvement of double-stranded RNA-dependent protein kinase (PKR) in beta-amyloid (A beta) peptide neurotoxicity and in AD. Fructus lycii (the fruit of Lycium barbarum) has long been used in oriental medicine as an anti-aging agent. Our previous studies demonstrated that the aqueous extract isolated from L. barbarum exhibited significant protection on cultured neurons against harmful chemical toxins such as A beta and dithiothreitol. We also showed that the polysaccharide-containing extract (LBP) from L. barbarum exhibited neuroprotective effects in the retina against ocular hypertension in a laser-induced glaucoma animal model. In this study, we aimed to investigate whether LBP can elicit neuroprotection to neurons stressed by A beta peptides. Furthermore, we planned to isolate and identify the neuroprotective agent from LBP using chromatographic methods. Our results showed that pretreatment of LBP effectively protected neurons against A beta-induced apoptosis by reducing the activity of both caspase-3 and -2, but not caspase-8 and -9. A new arabinogalactan-protein (LBP-III) was isolated from LBP and attenuated A beta peptide-activated caspase-3-like activity. LBP-III markedly reduced the phosphorylation of PKR triggered by A beta peptide. Since the phosphorylation state of PKR increased with age, reduction of its phosphorylation triggered by A beta peptide may implicate that LBP-III from Fructus lycii is a potential neuroprotective agent in AD. As herbal medicine has received increasing attention for the treatment of AD, our study will open a window for the development of a neuroprotective agent for anti-aging from Chinese medicine.

  7. AIP-1 ameliorates beta-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer's disease model.

    PubMed

    Hassan, Wail M; Merin, David A; Fonte, Virginia; Link, Christopher D

    2009-08-01

    Multiple neurodegenerative diseases are causally linked to aggregation-prone proteins. Cellular mechanisms involving protein turnover may be key defense mechanisms against aggregating protein disorders. We have used a transgenic Caenorhabditis elegans Alzheimer's disease model to identify cellular responses to proteotoxicity resulting from expression of the human beta amyloid peptide (Abeta). We show up-regulation of aip-1 in Abeta-expressing animals. Mammalian homologues of AIP-1 have been shown to associate with, and regulate the function of, the 26S proteasome, leading us to hypothesize that induction of AIP-1 may be a protective cellular response directed toward modulating proteasomal function in response to toxic protein aggregation. Using our transgenic model, we show that overexpression of AIP-1 protected against, while RNAi knockdown of AIP-1 exacerbated, Abeta toxicity. AIP-1 overexpression also reduced accumulation of Abeta in this model, which is consistent with AIP-1 enhancing protein degradation. Transgenic expression of one of the two human aip-1 homologues (AIRAPL), but not the other (AIRAP), suppressed Abeta toxicity in C. elegans, which advocates the biological relevance of the data to human biology. Interestingly, AIRAPL and AIP-1 contain a predicted farnesylation site, which is absent from AIRAP. This farnesylation site was shown by others to be essential for an AIP-1 prolongevity function. Consistent with this, we show that an AIP-1 mutant lacking the predicted farnesylation site failed to protect against Abeta toxicity. Our results implicate AIP-1 in the regulation of protein turnover and protection against Abeta toxicity and point at AIRAPL as the functional mammalian homologue of AIP-1.

  8. Copper enhances amyloid-beta peptide neurotoxicity and non beta-aggregation: a series of experiments conducted upon copper-bound and copper-free amyloid-beta peptide.

    PubMed

    Dai, Xueling; Sun, Yaxuan; Gao, Zhaolan; Jiang, Zhaofeng

    2010-05-01

    Alzheimer's disease is characterized by the abnormal aggregation of amyloid-beta peptide (Abeta) in extracellular deposits known as senile plaques. However, the nature of the toxic Abeta species and its precise mechanism of action remain unclear. Previous reports suggest that the histidine residues are involved in copper-Abeta interaction, by which resulting in the neurotoxicity of Abeta and free radical damage. Here, we employed a mutant Abeta (Abeta H13R) in which a histidine residue was replaced by arginine. Copper facilitated the precipitation of both wild-type and mutant Abeta in the spectrophotometric absorbance assay but suppressed beta-structure aggregates according to Thioflavine-T assay. Wild-type Abeta alone is more cytotoxic but produced less amount of H(2)O(2) than AbetaH13R-copper complexes, suggesting that Abeta-membrane interaction may also implicated in the pathologic progress. Abeta toxicity is in positive correlation to its competence to aggregate despite the aggregation is mainly composed of non-beta fibril substances. In short, these findings may provide further evidence on the role of copper in the pathogenesis of Alzheimer's disease.

  9. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer's disease.

    PubMed

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin; Nicolas, Julien; Taverna, Myriam; Kóňa, Juraj; Lettiero, Barbara; Hashemi, S Hossein; De Kimpe, Line; Canovi, Mara; Gobbi, Marco; Nicolas, Valérie; Scheper, Wiep; Moghimi, S Moein; Tvaroška, Igor; Couvreur, Patrick; Andrieux, Karine

    2012-07-24

    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aβ(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the interaction with monomeric and soluble oligomeric forms of Aβ(1-42) peptide was demonstrated by capillary electrophoresis, surface plasmon resonance, thioflavin T assay, and confocal microscopy, where the binding affected peptide aggregation kinetics. The capture of peptide by NPs in serum was also evidenced by fluorescence spectroscopy and ELISA. Moreover, in silico and modeling experiments highlighted the mode of PEG interaction with the Aβ(1-42) peptide and its conformational changes at the nanoparticle surface. Finally, Aβ(1-42) peptide binding to NPs affected neither complement activation in serum nor apolipoprotein-E (Apo-E) adsorption from the serum. These observations have crucial implications in NP safety and clearance kinetics from the blood. Apo-E deposition is of prime importance since it can also interact with the Aβ(1-42) peptide and increase the affinity of NPs for the peptide in the blood. Collectively, our results suggest that these engineered long-circulating NPs may have the ability to capture the toxic forms of the Aβ(1-42) peptide from the systemic circulation and potentially improve Alzheimer's disease condition through the proposed "sink effect".

  10. Lipid peroxidation and 4-hydroxy-2-nonenal formation by copper ion bound to amyloid-beta peptide.

    PubMed

    Hayashi, Takaaki; Shishido, Naomi; Nakayama, Kenji; Nunomura, Akihiko; Smith, Mark A; Perry, George; Nakamura, Masao

    2007-12-01

    The lipid peroxidation product 4-hydroxy-2-nonenal (HNE) is proposed to be a toxic factor in the pathogenesis of Alzheimer disease. The primary products of lipid peroxidation are phospholipid hydroperoxides, and degraded reactive aldehydes, such as HNE, are considered secondary peroxidation products. In this study, we investigated the role of amyloid-beta peptide (A beta) in the formation of phospholipid hydroperoxides and HNE by copper ion bound to A beta. The A beta1-42-Cu2+ (1:1 molar ratio) complex showed an activity to form phospholipid hydroperoxides from a phospholipid, 1-palmitoyl-2-linoleoyl phosphatidylcholine, through Cu2+ reduction in the presence of ascorbic acid. The phospholipid hydroperoxides were considered to be a racemic mixture of 9-hydroperoxide and 13-hydroperoxide of the linoleoyl residue. When Cu2+ was bound to 2 molar equivalents of A beta(1-42) (2 A beta1-42-Cu2+), lipid peroxidation was inhibited. HNE was generated from one of the phospholipid hydroperoxides, 1-palmitoyl-2-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl) phosphatidylcholine (PLPC-OOH), by free Cu2+ in the presence of ascorbic acid through Cu2+ reduction and degradation of PLPC-OOH. HNE generation was markedly inhibited by equimolar concentrations of A beta(1-40) (92%) and A beta(1-42) (92%). However, A beta(1-42) binding 2 or 3 molar equivalents of Cu2+ (A beta1-42-2Cu2+, A beta1-42-3Cu2+) acted as a pro-oxidant to form HNE from PLPC-OOH. These findings suggest that, at moderate concentrations of copper, A beta acts primarily as an antioxidant to prevent Cu2+-catalyzed oxidation of biomolecules, but that, in the presence of excess copper, pro-oxidant complexes of A beta with Cu2+ are formed.

  11. Arginine metabolising enzymes as therapeutic tools for Alzheimer's disease: peptidyl arginine deiminase catalyses fibrillogenesis of beta-amyloid peptides.

    PubMed

    Mohlake, Peter; Whiteley, Chris G

    2010-06-01

    The accumulation of arginine in the cerebrospinal fluid and brains of patients suffering from acute neurodegenerative diseases like Alzheimer's disease, point to defects in the metabolic pathways involving this amino acids. The deposits of neurofibrillary tangles and senile plaques perhaps as a consequence of fibrillogenesis of beta-amyloid peptides has also been shown to be a hallmark in the aetiology of certain neurodegenerative diseases. Peptidylarginine deiminase (PAD II) is an enzyme that uses arginine as a substrate and we now show that PAD II not only binds with the peptides Abeta(1-40), Abeta(22-35), Abeta(17-28), Abeta(25-35) and Abeta(32-35) but assists in the proteolytic degradation of these peptides with the concomitant formation of insoluble fibrils. PAD was purified in 12.5% yield and 137 fold with a specific activity of 59 micromol min(-1) mg(-1) from bovine brain by chromatography on diethylaminoethyl (DEAE)-Sephacel. Characterisation of the enzyme gave a pH and temperature optima of 7.5 degrees C and 68 degrees C, respectively, and the enzyme lost 50% activity within 38 min at this temperature. Michaelis-Menten kinetics established a V(max) and K(m) of 1.57 micromol min(-1) ml(-1) and 1.35 mM, respectively, with N-benzoyl arginine ethyl ester as substrate. Kinetic analysis was used to measure the affinity (K(i)) of the amyloid peptides to PAD with values between 1.4 and 4.6 microM. The formation of Abeta fibrils was rate limiting involving an initial lag time of about 24 h that was dependent on the concentration of the amyloid peptides. Turbidity measurements at 400 nm, Congo Red assay and Thioflavin-T staining fluorescence were used to establish the aggregation kinetics of PAD-induced fibril formation.

  12. Peptide Amyloid Surface Display

    PubMed Central

    2015-01-01

    Homomeric self-assembly of peptides into amyloid fibers is a feature of many diseases. A central role has been suggested for the lateral fiber surface affecting gains of toxic function. To investigate this, a protein scaffold that presents a discrete, parallel β-sheet surface for amyloid subdomains up to eight residues in length has been designed. Scaffolds that present the fiber surface of islet amyloid polypeptide (IAPP) were prepared. The designs show sequence-specific surface effects apparent in that they gain the capacity to attenuate rates of IAPP self-assembly in solution and affect IAPP-induced toxicity in insulin-secreting cells. PMID:25541905

  13. Structural Studies of Copper(I) Complexes of Amyloid-Beta Peptide Fragments: Formation of Two-Coordinate Bis(Histidine) Complexes

    SciTech Connect

    Himes, R.A.; Park, G.Young.; Siluvai, G.Sutha.; Blackburn, N.J.; Karlin, K.D.

    2009-05-18

    The beta bind: Copper(I) binds to amyloid {beta}-peptide fragments (see structure) as a stable bis(histidine), two-coordinate, near-linear complex, even in the presence of potential additional ligands. As has been proposed or assumed in other studies, the copper(I)-peptide complexes react with dioxygen to form the reactive oxygen species H{sub 2}O{sub 2}, without the need for a third histidine ligand to promote the chemistry.

  14. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    SciTech Connect

    Drochioiu, Gabi; Ion, Laura; Murariu, Manuela; Habasescu, Laura

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloidpeptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  15. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Drochioiu, Gabi; Murariu, Manuela; Ion, Laura; Habasescu, Laura

    2014-10-01

    An elevation in the concentration of heavy metal ions in Alzheimer's disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1-3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloidpeptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  16. Structural and Functional Properties of Peptides Based on the N-terminus of HIV-1 gp41 and the C-terminus of the Amyloid-Beta Protein

    PubMed Central

    Gordon, Larry M.; Nisthal, Alex; Lee, Andy B.; Eskandari, Sepehr; Ruchala, Piotr; Jung, Chun-Ling; Waring, Alan J.; Mobley, Patrick W.

    2008-01-01

    Given their high alanine and glycine levels, plaque formation, α-helix to β-sheet interconversion and fusogenicity, FP (i.e., the N-terminal fusion peptide of HIV-1 gp41; 23 residues) and amyloids were proposed as belonging to the same protein superfamily. Here, we further test whether FP may exhibit ‘amyloid-like’ characteristics, by contrasting its structural and functional properties with those of Aβ(26–42), a 17-residue peptide from the C-terminus of the amyloid-beta protein responsible for Alzheimer’s. FTIR spectroscopy, electron microscopy, light scattering and predicted amyloid structure aggregation (PASTA) indicated that aqueous FP and Aβ(26–42) formed similar networked β-sheet fibrils, although the FP fibril interactions were weaker. FP and Aβ(26–42) both lysed and aggregated human erythrocytes, with the hemolysis-onsets correlated with the conversion of α-helix to β-sheet for each peptide in liposomes. Congo red (CR), a marker of amyloid plaques in situ, similarly inhibited either FP- or Aβ(26–42)-induced hemolysis, and surface plasmon resonance indicated that this may be due to direct CR-peptide binding. These findings suggest that membrane-bound β-sheets of FP may contribute to the cytopathicity of HIV in vivo through an amyloid-type mechanism, and support the classification of HIV-1 FP as an ‘amyloid homolog’ (or ‘amylog’). PMID:18515070

  17. Pramipexole prevents neurotoxicity induced by oligomers of beta-amyloid.

    PubMed

    Uberti, Daniela; Bianchi, Irene; Olivari, Luca; Ferrari-Toninelli, Giulia; Canonico, PierLuigi; Memo, Maurizio

    2007-08-27

    Here we demonstrate that pramipexole, an antiparkinsonian dopamine receptor agonist drug, exerts neuroprotective effects against beta-amyloid neurotoxicity. Using a specific protocol to test individually oligomers, fibrils, or unaggregated amyloid beta-peptide, we found pramipexole able to protect cells against oligomers and fibrils. Unaggregated amyloid beta-peptide was found unable to cause cell death. Fibrils and oligomers were also found to produce elevated amount of free radicals, and this effect was prevented by pramipexole. We propose pramipexole may become in the future a coadjuvant in the treatment of neuropathologies, besides Parkinson's disease, where amyloid beta-peptide-mediated oxidative injury exerts a relevant role.

  18. Increased production of 4 kDa amyloid beta peptide in serum deprived human primary neuron cultures: possible involvement of apoptosis.

    PubMed

    LeBlanc, A

    1995-12-01

    The etiology of the amyloid beta peptide in sporadic Alzheimer's disease (AD) is not known. Amyloid beta peptide (A beta), a proteolytic product of the amyloid precursor protein (APP), is deposited in the senile plaques and cerebrovascular tissues of individuals with either sporadic or familial AD (FAD). Increased A beta production from mutant APPs in FAD fosters the hypothesis that overexpression of A beta plays a primary role in the pathogenesis of AD. The absence of APP mutations in sporadic AD which displays identical pathological features than FAD such as synapse and neuronal loss, senile plaques and neurofibrillary tangles, suggests other causes for overexpression and/or deposition of A beta. To investigate the effect of neuronal death on APP metabolism and A beta secretion, human primary neuron cultures were induced to undergo apoptosis by serum deprivation. Serum deprived neurons display shrunken and rounded morphology, contain condensed chromatine and fragmented DNA, which are characteristic of apoptosis. In serum deprived neurons, metabolism of APP through the nonamyloidogenic secretory pathway is decreased to 20% from 40% in control cultures whereas 4kDa A beta is increased three- to fourfold. The results suggest that human neurons undergoing apoptosis generate excess A beta and indicates a possible mechanism for increased A beta in the absence of APP mutations.

  19. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    SciTech Connect

    Altman, Robin; Ly, Sonny; Hilt, Silvia; Petrlova, Jitka; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Jin, Lee-Way; Laurence, Ted A.; Voss, John C.

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.

  20. Charge regulation phenomenon predicted from the modeling of polypeptide electrophoretic mobilities as a relevant mechanism of amyloid-beta peptide oligomerization.

    PubMed

    Deiber, Julio A; Peirotti, Marta B; Piaggio, Maria V

    2016-03-01

    Electrophoretic mobilities of amyloid-beta (1-40) and (1-42) peptides and their aggregates are modeled to study the amyloidogenic pathway associated with Alzheimer´s Disease. The near molecule pH generated by the intraparticle charge regulation phenomenon during the oligomerization of amyloid-beta (1-40) and (1-42) peptides is evaluated and discussed as a relevant mechanism supporting the "amyloid cascade hypothesis" proposed in the literature. A theoretical framework associated with the oligomerization of amyloid-beta peptides including simple scaling laws and the consideration of electrokinetic and hydrodynamic global properties of oligomers is presented. The central finding is the explanation of the near molecule pH change toward the pI when the oligomerization number increases. These results allow one to rationalize consecutive physical stages that validate the amyloid cascade hypothesis. Concluding remarks involving mainly the effects of pair and intraparticle charge regulation phenomena on the amyloidogenic pathway with some suggestions for future research are provided.

  1. Mechanical Dilution of Beta-amyloid Peptide and Phosphorylated Tau Protein in Alzheimer's Disease: Too Simple to be True?

    PubMed Central

    2017-01-01

    The neuropathology of Alzheimer's disease (AD) is characterized by the widespread accumulation of neuritic plaques and neurofibrillary tangles composed of deposits of beta-amyloid peptide (Aβ) and abnormally phosphorylated tau protein (phospho-tau) respectively. Considerable effort has been expended to identify methods to retard the deposition of these proteins or to enhance their clearance. It is strikingly surprising that until now, very few researchers have attempted to remove these proteins using mechanical procedures. In this article, we start by showing the rationale of mechanical dilution of cerebrospinal fluid (CSF) as a therapeutic approach in AD. Then, we present models of implantable systems allowing mechanical dilution of CSF by means of CSF replacement and CSF filtration (liquorpheresis). We conclude that even though this approach seems simplistic, it is feasible and deserves exploration.

  2. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    PubMed Central

    Altman, Robin; Ly, Sonny; Hilt, Silvia; Petrlova, Jitka; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Jin, Lee-Way; Laurence, Ted A.; Voss, John C.

    2015-01-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer’s disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. Furthermore, the circular dichroism (CD) spectrum of untreated Aβ shows a continuous, progressive change over a 24-hour period, while the spectrum of Aβ treated with SLF remains relatively constant following initial incubation. These findings suggest the conformation of Aβ within the oligomer provides a complementary determinant of Aβ toxicity in addition to oligomer growth and size. Although SLF does not produce a dominant state of secondary structure in Aβ, it does induce a net reduction in beta secondary content compared to untreated samples of Aβ. The FCS results, combined with electron paramagnetic resonance spectroscopy and CD spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers, while retaining Aβ as a population of smaller, yet largely disordered oligomers. PMID:26374940

  3. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms

    NASA Astrophysics Data System (ADS)

    Iljina, Marija; Garcia, Gonzalo A.; Dear, Alexander J.; Flint, Jennie; Narayan, Priyanka; Michaels, Thomas C. T.; Dobson, Christopher M.; Frenkel, Daan; Knowles, Tuomas P. J.; Klenerman, David

    2016-06-01

    Multiple isoforms of aggregation-prone proteins are present under physiological conditions and have the propensity to assemble into co-oligomers with different properties from self-oligomers, but this process has not been quantitatively studied to date. We have investigated the amyloid-β (Aβ) peptide, associated with Alzheimer’s disease, and the aggregation of its two major isoforms, Aβ40 and Aβ42, using a statistical mechanical modelling approach in combination with in vitro single-molecule fluorescence measurements. We find that at low concentrations of Aβ, corresponding to its physiological abundance, there is little free energy penalty in forming co-oligomers, suggesting that the formation of both self-oligomers and co-oligomers is possible under these conditions. Our model is used to predict the oligomer concentration and size at physiological concentrations of Aβ and suggests the mechanisms by which the ratio of Aβ42 to Aβ40 can affect cell toxicity. An increased ratio of Aβ42 to Aβ40 raises the fraction of oligomers containing Aβ42, which can increase the hydrophobicity of the oligomers and thus promote deleterious binding to the cell membrane and increase neuronal damage. Our results suggest that co-oligomers are a common form of aggregate when Aβ isoforms are present in solution and may potentially play a significant role in Alzheimer’s disease.

  4. Minocycline recovers MTT-formazan exocytosis impaired by amyloid beta peptide.

    PubMed

    Kreutzmann, Peter; Wolf, Gerald; Kupsch, Kathleen

    2010-10-01

    Minocycline, a tetracycline antibiotic, has been reported to exert beneficial effects in models of Alzheimer's disease (AD). To characterize the mechanisms underlying the putative minocycline-related neuroprotection, we studied its effect in an in vitro model of AD. Primary hippocampal cultures were treated with β-amyloid peptide (Aβ) and cell viability was assessed by standard MTT-assay. Incubation with 10 μM Aβ for 24 h significantly inhibits cellular MTT-reduction without inducing morphological signs of enhanced cell death or increase in release of lactate dehydrogenase. This indicates that cell viability was not affected. The inhibition of MTT-reduction by Aβ was due to an acceleration of MTT-formazan exocytosis. Intriguingly, the Aβ-triggered increase in MTT-formazan exocytosis was abolished by co-treatment with minocycline. In vehicle-treated cells minocycline had no effect on formazan exocytosis. This hitherto unrecognized property of minocycline has to be noticed in the elucidation of the underlying mechanism of this promising neuroprotectant.

  5. Loss of proteostasis induced by amyloid beta peptide in brain endothelial cells.

    PubMed

    Fonseca, Ana Catarina; Oliveira, Catarina R; Pereira, Cláudia F; Cardoso, Sandra M

    2014-06-01

    Abnormal accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). In addition to neurotoxic effects, Aβ also damages brain endothelial cells (ECs) and may thus contribute to the degeneration of cerebral vasculature, which has been proposed as an early pathogenic event in the course of AD and is able to trigger and/or potentiate the neurodegenerative process and cognitive decline. However, the mechanisms underlying Aβ-induced endothelial dysfunction are not completely understood. Here we hypothesized that Aβ impairs protein quality control mechanisms both in the secretory pathway and in the cytosol in brain ECs, leading cells to death. In rat brain RBE4 cells, we demonstrated that Aβ1-40 induces the failure of the ER stress-adaptive unfolded protein response (UPR), deregulates the ubiquitin-proteasome system (UPS) decreasing overall proteasome activity with accumulation of ubiquitinated proteins and impairs the autophagic protein degradation pathway due to failure in the autophagic flux, which culminates in cell demise. In conclusion, Aβ deregulates proteostasis in brain ECs and, as a consequence, these cells die by apoptosis.

  6. Mitochondrial Cholesterol Loading Exacerbates Amyloid Beta Peptide-Induced Inflammation and Neurotoxicity

    PubMed Central

    Fernández, Anna; Llacuna, Laura; Fernández-Checa, José C.; Colell., Anna

    2009-01-01

    The role of cholesterol in Alzheimer's disease has been linked to the generation of toxic amyloid β peptides (Aβ). Using genetic mouse models of cholesterol loading, we examined whether mitochondrial cholesterol regulates Aβ neurotoxicity and AD pathology. Isolated mitochondria from brain or cortical neurons of transgenic mice overexpressing SREBP-2 (sterol regulatory element binding protein 2) or NPC1 (Niemann-Pick type C1) knockout mice exhibited mitochondrial cholesterol accumulation, mitochondrial GSH (mGSH) depletion and increased susceptibility to Aβ1-42-induced oxidative stress and release of apoptogenic proteins. Similar findings were observed in pharmacologically GSH-restricted rat brain mitochondria, while selective mGSH depletion sensitized human neuronal and glial cell lines to Aβ1-42-mediated cell death. Intracerebroventricular human Aβ delivery co-localized with mitochondria resulting in oxidative stress, neuroinflammation and neuronal damage that were enhanced in Tg-SREBP-2 mice and prevented upon mGSH recovery by GSH ethyl ester co-infusion, with a similar protection observed by i.p. administration of GSH ethyl ester. Finally, APP/PS1 mice, a transgenic AD mouse model, exhibited mitochondrial cholesterol loading and mGSH depletion. Thus, mitochondrial cholesterol accumulation emerges as a novel pathogenic factor in AD by modulating Aβ toxicity via mGSH regulation; strategies boosting the particular pool of mGSH may be of relevance to slow down disease progression. PMID:19458211

  7. Antagonizing beta-amyloid peptide neurotoxicity of the anti-aging fungus Ganoderma lucidum.

    PubMed

    Lai, Cora Sau-Wan; Yu, Man-Shan; Yuen, Wai-Hung; So, Kwok-Fai; Zee, Sze-Yong; Chang, Raymond Chuen-Chung

    2008-01-23

    Ganoderma lucidum (Leyss. ex Fr.) Karst. (Lingzhi) is a medicinal fungus used clinically in many Asian countries to promote health and longevity. Synaptic degeneration is another key mode of neurodegeneration in Alzheimer's disease (AD). Recent studies have shown the loss of synaptic density proteins in each individual neuron during the progression of AD. It was recently reported that beta-amyloid (Abeta) could cause synaptic dysfunction and contribute to AD pathology. In this study, we reported that aqueous extract of G. lucidum significantly attenuated Abeta-induced synaptotoxicity by preserving the synaptic density protein, synaptophysin. In addition, G. lucidum aqueous extract antagonized Abeta-triggered DEVD cleavage activities in a dose-dependent manner. Further studies elucidated that phosphorylation of c-Jun N-terminal kinase, c-Jun, and p38 MAP kinase was attenuated by G. lucidum in Abeta-stressed neurons. Taken together, the results prove a hypothesis that anti-aging G. lucidum can prevent harmful effects of the exterminating toxin Abeta in AD.

  8. Biochemical studies in Normal Pressure Hydrocephalus (NPH) patients: change in CSF levels of amyloid precursor protein (APP), amyloid-beta (Aβ) peptide and phospho-tau.

    PubMed

    Ray, Balmiki; Reyes, Patricio F; Lahiri, Debomoy K

    2011-04-01

    Normal Pressure Hydrocephalus (NPH) is one of the causes of dementia of the elderly characterized by impaired mental function, gait difficulties and urinary incontinence. Previously, it was proposed that some of the NPH patients may develop Alzheimer's disease (AD) like pathology. Aim of this study was to compare levels of different CSF biomarkers, including total secreted β-amyloid precursor protein (sAPP), sAPP-alpha form (sAPPα), amyloid-beta (Aβ) peptide, total-tau protein and hyperphosphorylated-tau protein in subjects from NPH and Non-NPH Control (NNC). CSF was collected from 23 NPH patients and 13 Non-NPH controls by lumber puncture. Western blot analysis was performed to measure levels of sAPP-total. ELISA was used separately to determine levels of sAPPα, Aβ peptide, total-tau and phospho-tau proteins. We found a significant decrease in levels of total secreted APP, sAPPα and Aβ (1-42) in the CSF sample of NPH patients vs. NNC. We did not observe any change in levels of total-tau or phospho-tau in NPH vs. NNC subjects. Notably, phospho-tau level was significantly increased in the NPH patients, who were suffering from the disease for more than one year, vs. NNC. Among five biomarkers studied, decreased sAPP, sAPPα and Aβ (1-42) levels in CSF can be molecular markers to distinguish NPH cases from NNC. Disease severity can also be assessed by increased levels of CSF phospho-tau protein and the ratio of phospho-tau to Aβ (1-42), which might be a useful tool for predicting conversion of NPH individuals to other neurodegenerative disorders including Alzheimer's disease (AD).

  9. Microfluidic Isoelectric Focusing of Amyloid Beta Peptides Followed by Micropillar-Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry.

    PubMed

    Mikkonen, Saara; Jacksén, Johan; Roeraade, Johan; Thormann, Wolfgang; Emmer, Åsa

    2016-10-18

    A novel method for preconcentration and purification of the Alzheimer's disease related amyloid beta (Aβ) peptides by isoelectric focusing (IEF) in 75 nL microchannels combined with their analysis by micropillar-matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) is presented. A semiopen chip-based setup, consisting of open microchannels covered by a lid of a liquid fluorocarbon, was used. IEF was performed in a mixture of four small and chemically well-defined amphoteric carriers, glutamic acid, aspartyl-histidine (Asp-His), cycloserine (cSer), and arginine, which provided a stepwise pH gradient tailored for focusing of the C-terminal Aβ peptides with a pI of 5.3 in the boundary between cSer and Asp-His. Information about the focusing dynamics and location of the foci of Aβ peptides and other compounds was obtained using computer simulation and by performing MALDI-MS analysis directly from the open microchannel. With the established configuration, detection was performed by direct sampling of a nanoliter volume containing the focused Aβ peptides from the microchannel, followed by deposition of this volume onto a chip with micropillar MALDI targets. In addition to purification, IEF preconcentration provides at least a 10-fold increase of the MALDI-MS-signal. After immunoprecipitation and concentration of the eluate in the microchannel, IEF-micropillar-MALDI-MS is demonstrated to be a suitable platform for detection of Aβ peptides in human cerebrospinal fluid as well as in blood plasma.

  10. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    NASA Astrophysics Data System (ADS)

    Kremennaya, M. A.; Soldatov, M. A.; Streltsov, V. A.; Soldatov, A. V.

    2016-05-01

    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloidpeptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloidpeptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloidpeptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  11. Beta-secretase cleavage at amino acid residue 34 in the amyloid beta peptide is dependent upon gamma-secretase activity.

    PubMed

    Shi, Xiao-Ping; Tugusheva, Katherine; Bruce, James E; Lucka, Adam; Wu, Guo-Xin; Chen-Dodson, Elizabeth; Price, Eric; Li, Yueming; Xu, Min; Huang, Qian; Sardana, Mohinder K; Hazuda, Daria J

    2003-06-06

    The amyloid beta peptides (Abeta) are the major components of the senile plaques characteristic of Alzheimer's disease. Abeta peptides are generated from the cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Beta-secretase (BACE), a type-I transmembrane aspartyl protease, cleaves APP first to generate a 99-amino acid membrane-associated fragment (CT99) containing the N terminus of Abeta peptides. Gamma-secretase, a multi-protein complex, then cleaves within the transmembrane region of CT99 to generate the C termini of Abeta peptides. The production of Abeta peptides is, therefore, dependent on the activities of both BACE and gamma-secretase. The cleavage of APP by BACE is believed to be a prerequisite for gamma-secretase-mediated processing. In the present study, we provide evidence both in vitro and in cells that BACE-mediated cleavage between amino acid residues 34 and 35 (Abeta-34 site) in the Abeta region is dependent on gamma-secretase activity. In vitro, the Abeta-34 site is processed specifically by BACE1 and BACE2, but not by cathepsin D, a closely related aspartyl protease. Moreover, the cleavage of the Abeta-34 site by BACE1 or BACE2 occurred only when Abeta 1- 40 peptide, a gamma-secretase cleavage product, was used as substrate, not the non-cleaved CT99. In cells, overexpression of BACE1 or BACE2 dramatically increased the production of the Abeta 1-34 species. More importantly, the cellular production of Abeta 1-34 species induced by overexpression of BACE1 or BACE2 was blocked by a number of known gamma-secretase inhibitors in a concentration-dependent manner. These gamma-secretase inhibitors had no effect on enzymatic activity of BACE1 or BACE2 in vitro. Our data thus suggest that gamma-secretase cleavage of CT99 is a prerequisite for BACE-mediated processing at Abeta-34 site. Therefore, BACE and gamma-secretase activity can be mutually dependent.

  12. Molecular mechanisms linking diabetes mellitus and Alzheimer disease: beta-amyloid peptide, insulin signaling, and neuronal function.

    PubMed

    Takeda, Shuko; Sato, Naoyuki; Rakugi, Hiromi; Morishita, Ryuichi

    2011-06-01

    The incidence of Alzheimer disease (AD) and diabetes mellitus (DM) is increasing at an alarming rate and has become a major public health concern worldwide. Recent epidemiological studies have provided direct evidence that DM is a strong risk factor for AD; this finding is now attracting attention. However, the underlying mechanisms for this association remain largely unknown. Previous in vitro and in vivo studies reported that diabetic conditions could cause an increase in the beta-amyloid peptide (Aβ) levels, which exhibits neurotoxic properties and plays a causative role in AD. However, unexpectedly, recent clinicopathological studies have shown no evidence that the pathological hallmarks of AD, including amyloid plaque, were increased in the brains of diabetic patients, suggesting that DM could affect the pathogenesis of AD through mechanisms other than modulation of Aβ metabolism. One possible mechanism is the alteration in brain insulin signaling. It has been shown that insulin signaling is involved in a variety of neuronal functions, and that it also plays a significant role in the pathophysiology of AD. Thus, the modification of neuronal insulin signaling by diabetic conditions may contribute to AD progression. Another possible mechanism is cerebrovascular alteration, a common pathological change observed in both diseases. Accumulating evidence has suggested the importance of Aβ-induced cerebrovascular dysfunction in AD, and indicated that pathological interactions between the receptor for advanced glycation end products (RAGE) and Aβ peptides may play a role in this dysfunction. Our study has provided a further understanding of the potential underlying mechanisms linking DM and AD by establishing novel mouse models showing pathological manifestations of both diseases. The current review summarizes the results from recent studies on the pathological relationship between DM and AD while focusing on brain insulin signaling and cerebrovascular alteration

  13. The structure of the amyloid-beta peptide high-affinity copper II binding site in Alzheimer disease.

    PubMed

    Streltsov, Victor A; Titmuss, Stephen J; Epa, V Chandana; Barnham, Kevin J; Masters, Colin L; Varghese, Joseph N

    2008-10-01

    Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-beta (Abeta) protein bound primarily to copper ions. The evidence for an oxidative stress role of Abeta-Cu redox chemistry is still incomplete. Details of the copper binding site in Abeta may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of Abeta peptides complexed with Cu(2+) in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl) concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length Abeta-Cu(2+) peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the Abeta-Cu(2+) complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu(2+) binding site is consistent with the hypothesis that the redox activity of the metal ion bound to Abeta can lead to the formation of dityrosine-linked dimers found in AD.

  14. Comparison of the amyloid pore forming properties of rat and human Alzheimer's beta-amyloid peptide 1-42: Calcium imaging data.

    PubMed

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-03-01

    The data here consists of calcium imaging of human neuroblastoma SH-SY5Y cells treated with the calcium-sensitive dye Fluo-4AM and then incubated with nanomolar concentrations of either human or rat Alzheimer's β-amyloid peptide Aβ1-42. These data are both of a qualitative (fluorescence micrographs) and semi-quantitative nature (estimation of intracellular calcium concentrations of cells probed by Aβ1-42 peptides vs. control untreated cells). Since rat Aβ1-42 differs from its human counterpart at only three amino acid positions, this comparative study is a good assessment of the specificity of the amyloid pore forming assay. The interpretation of this dataset is presented in the accompanying study "Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides" [1].

  15. Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer's disease.

    PubMed Central

    Wilson, D. M.; Binder, L. I.

    1997-01-01

    Alzheimer's disease is a degenerative disorder of the central nervous system, characterized by the concomitant deposition of extracellular filaments composed of beta-amyloid peptides and intracellular filaments composed of the microtubule-associated protein tau. We have discovered that free fatty acids (FFAs) stimulate the assembly of both amyloid and tau filaments in vitro. The minimal concentration of arachidonic acid observed to stimulate tau assembly ranged from 10 to 20 mumol/L, depending on the source of the purified tau. Tau preparations that do not exhibit spontaneous assembly were among those induced to polymerize by arachidonic acid. All long-chain FFAs tested enhanced assembly to some extent, although greater stimulation was usually associated with unsaturated forms. Utilizing fluorescence spectroscopy, unsaturated FFAs were also demonstrated to induce beta-amyloid assembly. The minimal concentration of oleic or linoleic acid observed to stimulate the assembly of amyloid was 40 mumol/L. The filamentous nature of these thioflavin-binding amyloid polymers was verified by electron microscopy. These data define a new set of tools for examining the polymerization of amyloid and tau proteins and suggest that cortical elevations of FFAs may constitute a unifying stimulatory event driving the formation of two of the obvious pathogenetic lesions in Alzheimer's disease. Images Figure 2 Figure 4 PMID:9176408

  16. Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation.

    PubMed

    Guo, Q; Sebastian, L; Sopher, B L; Miller, M W; Ware, C B; Martin, G M; Mattson, M P

    1999-03-01

    Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Overexpression of PS1 mutations in cultured PC12 cells increases their vulnerability to apoptosis-induced trophic factor withdrawal and oxidative insults. We now report that primary hippocampal neurons from PS1 mutant knock-in mice, which express the human PS1M146V mutation at normal levels, exhibit increased vulnerability to amyloid beta-peptide toxicity. The endangering action of mutant PS1 was associated with increased superoxide production, mitochondrial membrane depolarization, and caspase activation. The peroxynitrite-scavenging antioxidant uric acid and the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone protected hippocampal neurons expressing mutant PS1 against cell death induced by amyloid beta-peptide. Increased oxidative stress may contribute to the pathogenic action of PS1 mutations, and antioxidants may counteract the adverse property of such AD-linked mutations.

  17. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    SciTech Connect

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.; Jap, Bing K.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLa cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins, such as APP

  18. Homocysteine and folate deficiency sensitize oligodendrocytes to the cell death-promoting effects of a presenilin-1 mutation and amyloid beta-peptide.

    PubMed

    Pak, Kirk J; Chan, Sic L; Mattson, Mark P

    2003-01-01

    Although damage to white matter occurs in the brains of patients with Alzheimer's disease (AD), the underlying mechanisms are unknown. Recent findings suggest that individuals with elevated levels of homocysteine are at increased risk of AD. Here we show that oligodendrocytes from mice expressing a mutant form of presenilin-1 (PS1) that causes familial AD exhibit increased sensitivity to death induced by homocysteine compared to oligodendrocytes from wild-type control mice. Homocysteine also sensitized oligodendrocytes to the cytotoxicity of amyloid beta-peptide. Folate deficiency, which is known to result in elevated levels of homocysteine in vivo, also sensitized oligodendrocytes to the cell-death-promoting actions of mutant PS1 and amyloid beta-peptide. Inhibitors of poly (ADP-ribose) polymerase and p53 protected oligodendrocytes against cell death induced by homocysteine and amyloid beta-peptide, consistent with a role for a DNA-damage response in the cell death process. These findings demonstrate an adverse effect of homocysteine on oligodendrocytes, and suggest roles for homocysteine and folate deficiency in the white matter damage in AD and related neurodegenerative disorders.

  19. Dutch and arctic mutant peptides of {beta} amyloid{sub 1-40} differentially affect the FGF-2 pathway in brain endothelium

    SciTech Connect

    Solito, Raffaella; Corti, Federico; Fossati, Silvia; Mezhericher, Emiliya; Donnini, Sandra; Ghiso, Jorge; Giachetti, Antonio; Rostagno, Agueda; Ziche, Marina

    2009-02-01

    Single point mutations of the amyloid precursor protein generate A{beta} variants bearing amino acid substitutions at positions 21-23. These mutants are associated with distinct hereditary phenotypes of cerebral amyloid angiopathy, manifesting varying degrees of tropism for brain vessels, and impaired microvessel remodeling and angiogenesis. We examined the differential effects of E22Q (Dutch), and E22G (Arctic) variants in comparison to WT A{beta} on brain endothelial cell proliferation, angiogenic phenotype expression triggered by fibroblast growth factor (FGF-2), pseudo-capillary sprouting, and induction of apoptosis. E22Q exhibited a potent anti-angiogenic profile in contrast to E22G, which had a much weaker effect. Investigations on the FGF-2 signaling pathway revealed the greatest differences among the peptides: E22Q and WT peptides suppressed FGF-2 expression while E22G had barely any effect. Phosphorylation of the FGF-2 receptor, FGFR-1, and the survival signal Akt were abolished by E22Q and WT peptides, but not by E22G. The biological dissimilar effect of the mutant and WT peptides on cerebral EC cannot be assigned to a particular A{beta} structure, suggesting that the toxic effect of the A{beta} assemblies goes beyond mere multimerization.

  20. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity

    PubMed Central

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders; Crowther, Damian C.

    2016-01-01

    Amyloid beta (Aβ) peptide aggregation is linked to the initiation of Alzheimer's disease; accordingly, aggregation-prone isoforms of Aβ, expressed in the brain, shorten the lifespan of Drosophila melanogaster. However, the lethal effects of Aβ are not apparent until after day 15. We used shibireTS flies that exhibit a temperature-sensitive paralysis phenotype as a reporter of proteostatic robustness. In this model, we found that increasing age but not Aβ expression lowered the flies' permissive temperature, suggesting that Aβ did not exert its lethal effects by proteostatic disruption. Instead, we observed that chemical challenges, in particular oxidative stressors, discriminated clearly between young (robust) and old (sensitive) flies. Using nuclear magnetic resonance spectroscopy in combination with multivariate analysis, we compared water-soluble metabolite profiles at various ages in flies expressing Aβ in their brains. We observed 2 genotype-linked metabolomic signals, the first reported the presence of any Aβ isoform and the second the effects of the lethal Arctic Aβ. Lethality was specifically associated with signs of oxidative respiration dysfunction and oxidative stress. PMID:27103517

  1. Ameliorative effect of 1,2-benzenedicarboxylic acid dinonyl ester against amyloid beta peptide-induced neurotoxicity.

    PubMed

    Jung Choi, Soo; Kim, Mi Jeong; Jin Heo, Ho; Kim, Jae Kyeum; Jin Jun, Woo; Kim, Hye Kyung; Kim, Eun-Ki; Ok Kim, Myeong; Yon Cho, Hong; Hwang, Han-Joon; Jun Kim, Young; Shin, Dong-Hoon

    2009-03-01

    Amyloid beta peptide (Abeta)-induced oxidative stress may be linked to neurodegenerative disease. Ethanol extracts of Rosa laevigata protected PC12 cells from hydrogen peroxide-induced oxidative stress. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) reduction assays revealed a significant increase in cell viability when oxidatively stressed PC12 cells were treated with R. laevigata extract. The effect of R. laevigata on oxidative stress-induced cell death was further investigated by lactate dehydrogenase release assays and trypan blue exclusion assays. Administration of 1,2-benzenedicarboxylic acid dinonyl ester from R. laevigata extract to mice infused with Abeta significantly reversed learning and memory impairment in behavioural tests. After behavioural testing, the mice were sacrificed and brains were collected for the examination of lipid peroxidation, catalase activity and acetylcholinesterase (AchE) activity. These results suggest that 1,2-benzenedicarboxylic acid dinonyl ester from R. laevigata extract may be able to reduce Abeta-induced neurotoxicity, possibly by reducing oxidative stress. Therefore, R. laevigata extract may be useful for the prevention of oxidative stress-induced neurodegenerative disorders.

  2. Global properties and propensity to dimerization of the amyloid-beta (12-28) peptide fragment through the modeling of its monomer and dimer diffusion coefficients and electrophoretic mobilities.

    PubMed

    Deiber, Julio A; Peirotti, Marta B; Piaggio, Maria V

    2015-03-01

    Neuronal activity loss may be due to toxicity caused mainly by amyloid-beta (1-40) and (1-42) peptides forming soluble oligomers. Here the amyloid-beta (12-28) peptide fragment (monomer) and its dimer are characterized at low pH through the modeling of their diffusion coefficients and effective electrophoretic mobilities. Translational diffusion coefficient experimental values of monomer and dimer analogs of this peptide fragment and monomer and dimer mixtures at thermodynamic equilibrium are used as reported in the literature for different monomer initial concentrations. The resulting electrokinetic and hydrodynamic global properties are employed to evaluate the amyloid-beta (12-28) peptide fragment propensity to dimerization through a thermodynamic theoretical framework. Therefore equilibrium constants are considered at pH 2.9 to elucidate one of the amyloidogenic mechanisms involving the central hydrophobic region LVFFA of the peptide spanning residues 17-21 associated with phenylalanine at positions 19 and 20 in the amino acid sequence of amyloid-beta peptides. An analysis demonstrating that peptide aggregation is a concentration-dependent process is provided, where both pair and intraparticle charge regulation phenomena become relevant. It is shown that the modeling of the effective electrophoretic mobility of the amyloid-beta (12-28) peptide fragment is crucial to understand the effect of hydrophobic region LVFFA in the amyloidogenic process.

  3. Memantine Lowers Amyloid-beta Peptide Levels in Neuronal Cultures and in APP/PS1 Transgenic Mice

    PubMed Central

    Alley, George M.; Bailey, Jason A; Chen, DeMao; Ray, Balmiki; Puli, Lakshman K.; Tanila, Heikki; Banerjee, Pradeep K; Lahiri, Debomoy K.

    2009-01-01

    Memantine is a moderate-affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that stabilizes cognitive, functional, and behavioral decline in patients with moderate to severe Alzheimer’s disease (AD). In AD, the extracellular deposition of fibrillogenic amyloid-beta peptides (Aβ) occurs due to aberrant processing of the full-length Aβ precursor protein (APP). Memantine protects neurons from the neurotoxic effects of Aβ and improves cognition in transgenic mice with high brain levels of Aβ. However, it is unknown how memantine protects cells against neurodegeneration and affects APP processing and Aβ production. We report the effects of memantine in three different systems. In human neuroblastoma cells, memantine, at therapeutically relevant concentrations (1-4 μM), decreased levels of secreted APP and Aβ1-40. Levels of the potentially amylodogenic Aβ1-42 were undetectable in these cells. In primary rat cortical neuronal cultures, memantine treatment lowered Aβ1-42 secretion. At the concentrations used, memantine treatment was not toxic to neuroblastoma or primary cultures and increased cell viability and/or metabolic activity under certain conditions. In APP/presenilin-1 (PS1) transgenic mice exhibiting high brain levels of Aβ1-42, oral dosing of memantine (20 mg/kg/day for 8 days) produced plasma drug concentration of 0.96 μM and significantly reduced the cortical levels of soluble Aβ1-42. The ratio of Aβ1-40/Aβ1-42 increased in treated mice, suggesting effects on the γ-secretase complex. Thus, memantine reduces the levels of Aβ peptides at therapeutic concentrations and may inhibit the accumulation of fibrillogenic Aβ in mammalian brains. Memantine’s ability to preserve neuronal cells against neurodegeneration, increase metabolic activity, and lower Aβ level has therapeutic implications for neurodegenerative disorders. PMID:19642202

  4. Amyloid Beta as a Modulator of Synaptic Plasticity

    PubMed Central

    Parihar, Mordhwaj S; Brewer, Gregory J

    2011-01-01

    Alzheimer’s disease is associated with synapse loss, memory dysfunction and pathological accumulation of amyloid beta in plaques. However, an exclusively pathological role for amyloid beta is being challenged by new evidence for an essential function of amyloid beta at the synapse. Amyloid beta protein exists in different assembly states in the central nervous system and plays distinct roles ranging from synapse and memory formation to memory loss and neuronal cell death. Amyloid beta is present in the brain of symptom-free people where it likely performs important physiological roles. New evidence indicates that synaptic activity directly evokes the release of amyloid beta at the synapse. At physiological levels, amyloid beta is a normal, soluble product of neuronal metabolism that regulates synaptic function beginning early in life. Monomeric amyloid beta 40 and 42 are the predominant forms required for synaptic plasticity and neuronal survival. With age, some assemblies of amyloid beta are associated with synaptic failure and Alzheimer’s disease pathology, possibly targeting the N-methyl-D-aspartic acid (NMDA) receptor through the α7-nicotinic acetylcholine receptor (α7-nAChR), mitochondrial amyloid-β alcohol dehydrogenase (ABAD) and cyclophilin D. But emerging data suggests a distinction between age effects on the target response in contrast to the assembly state or the accumulation of the peptide. Both aging and beta amyloid independently decrease neuronal plasticity. Our laboratory has reported that amyloid beta, glutamate and lactic acid are each increasingly toxic with neuron age. The basis of the age-related toxicity partly resides in age-related mitochondrial dysfunction and an oxidative shift in mitochondrial and cytoplasmic redox potential. In turn, signaling through phosphorylated extracellular signal-regulated protein kinases (pERK) is affected along with an age-independent increase in phosphorylated cAMP response element-binding protein (p

  5. Effect of trehalose on amyloid beta (29-40)-membrane interaction.

    PubMed

    Reddy, Allam S; Izmitli, Aslin; de Pablo, J J

    2009-08-28

    A growing body of experimental evidence indicates that the interaction between amyloid beta peptide and lipid bilayer membranes plays an important role in the development of Alzheimer disease. Recent experimental evidence also suggests that trehalose, a simple disaccharide, reduces the toxicity of amyloid beta peptide. Molecular simulations are used to examine the effect of trehalose on the conformational stability of amyloid beta peptide in aqueous solution and its effect on the interaction between amyloid beta peptide and a model phospholipid bilayer membrane. It is found that, in aqueous solution, the peptide exhibits a random coil conformation but, in the presence of trehalose, it adopts an alpha helical conformation. It is then shown that the insertion of amyloid beta peptide into a membrane is more favorable when the peptide is folded into an alpha-helix than in a random coil conformation, thereby suggesting that trehalose promotes the insertion of alpha-helical amyloid beta into biological membranes.

  6. An improved method for high-level soluble expression and purification of recombinant amyloid-beta peptide for in vitro studies.

    PubMed

    Chhetri, Gaurav; Pandey, Tripti; Chinta, Ramesh; Kumar, Awanish; Tripathi, Timir

    2015-10-01

    Amyloid-beta (Aβ) peptide mediates several neurodegenerative diseases. The 42 amino acid (Aβ1-42) is the predominant form of peptide found in the neuritic plaques and has been demonstrated to be neurotoxic in vivo and in vitro. The availability of large quantities of Aβ peptide will help in several biochemical and biophysical studies that may help in exploring the aggregation mechanism and toxicity of Aβ peptide. We report a convenient and economical method to obtain such a peptide biologically. Synthetic oligonucleotides encoding Aβ1-42 were constructed and amplified through the polymerase cycling assembly (also known as assembly PCR), followed by the amplification PCR. Aβ1-42 gene was cloned into pET41a(+) vector for expression. Interestingly, the addition of 3% (v/v) ethanol to the culture medium resulted in the production of large amounts of soluble Aβ fusion protein. The Aβ fusion protein was subjected to a Ni-NTA affinity chromatography followed by enterokinase digestion, and the Aβ peptide was purified using glutathione Sepharose affinity chromatography. The peptide yield was ∼15mg/L culture, indicating the utility of this method for high-yield production of soluble Aβ peptide. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and immunoblotting with anti-His antibody confirmed the identity of purified Aβ fusion protein and Aβ peptide. In addition, this method provides an advantage over the chemical synthesis and other conventional methods used for large-scale production of recombinant Aβ peptide.

  7. Low molecular weight oligomers of amyloid peptides display beta-barrel conformations: a replica exchange molecular dynamics study in explicit solvent.

    PubMed

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-28

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 micros show that low molecular weight oligomers in explicit solvent consist of beta-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient beta-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  8. Activation of the endoplasmic reticulum stress response by the amyloid-beta 1-40 peptide in brain endothelial cells.

    PubMed

    Fonseca, Ana Catarina R G; Ferreiro, Elisabete; Oliveira, Catarina R; Cardoso, Sandra M; Pereira, Cláudia F

    2013-12-01

    Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration.

  9. Low-dose intraperitoneal Freund's adjuvant: toxicity and immunogenicity in mice using an immunogen targeting amyloid-beta peptide.

    PubMed

    Oscherwitz, Jon; Hankenson, F C; Yu, Fen; Cease, Kemp B

    2006-04-05

    Complete Freund's adjuvant (CFA) is effective for potentiating immune responses in mice when administered subcutaneously, and is often more potent when given intraperitoneally (i.p.). However, the the potential toxicity of i.p. administration in mice has led investigators and Institutional Animal Care and Use committees to increasingly view the use of CFA i.p. with reservation. We evaluated whether an 80% reduction in the dose of CFA administered i.p. to mice, compared to the i.p. doses used in a previous analysis, could abrogate the untoward effects associated with its use, while still maintaining adjuvanticity. Using a novel immunogen targeting the N-terminus of the 42-amino acid amyloid-beta peptide, we compared low dose CFA administered i.p., with three other commonly used adjuvants given i.p.: alum, incomplete Freunds adjuvant (IFA) and monophoshoryl lipid A + trehalose dicorynomycolate (MPL + TDM). The results of the study showed that, though the reduction in intraperitoneal dose of CFA mitigated transient weight loss and leukocytosis observed previously with higher doses of i.p. CFA, all mice administered CFA or IFA i.p. developed abdominal adhesions and granulomatous peritonitis. Mice from all adjuvant groups, however, appeared to tolerate the respective adjuvants well and excellent comparative immunogenicity was observed in mice immunized with the Freunds and MPL + TDM adjuvants. Consequently, we conclude that though a high-titered, humoral response may be generated using low dose CFA administered i.p., the accompanying toxicity remains significant, and thus alternative adjuvants and/or routes should be considered.

  10. Protective effects of Lingguizhugan decoction on amyloid-beta peptide (25-35)-induced cell injury: Anti-inflammatory effects☆

    PubMed Central

    Xi, Feifei; Sang, Feng; Zhou, Chunxiang; Ling, Yun

    2012-01-01

    In the present study, a human neuroblastoma cell line (SH-SY5Y) and BV-2 microglia were treated with amyloidpeptide (25–35), as a model of Alzheimer’s disease, to evaluate the protective effects of 10-3–10-8 g/mL Lingguizhugan decoction and to examine the underlying anti-inflammatory mechanism. Lingguizhugan decoction significantly enhanced the viability of SH-SY5Y cells with amyloidpeptide-induced injury, and lowered levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and nitric oxide in the culture supernatant of activated BV-2 microglia. The effects of 10-3 g/mL Lingguizhugan decoction were more significant. These results suggest that Lingguizhugan decoction can protect SH-SY5Y cells against amyloidpeptide (25–35)-induced injury in a dose-dependent manner by inhibiting overexpression of inflammatory factors by activated microglia. PMID:25317138

  11. Ovine colostrum nanopeptide affects amyloid beta aggregation.

    PubMed

    Janusz, Maria; Woszczyna, Mirosław; Lisowski, Marek; Kubis, Adriana; Macała, Józefa; Gotszalk, Teodor; Lisowski, Józef

    2009-01-05

    A colostral proline-rich polypeptide complex (PRP) consisting of over 30 peptides shows beneficial effects in Alzheimer's disease (AD) patients when administered in the form of sublinqual tablets called Colostrinin. The aim of the present studies was to investigate whether nanopeptide fragment of PRP (NP) - one of the PRP complex components can affect aggregation of amyloid beta (Abeta1-42). The effect of NP on Abeta aggregation was studied using Thioflavin T (ThT) binding, atomic force microscopy, and analyzing circular dichroism spectra. Results presented suggest that NP can directly interact with amyloid beta, inhibit its aggregation and disrupt existing aggregates acting as a beta sheet breaker and reduce toxicity induced by aggregated forms of Abeta.

  12. Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against beta-amyloid peptide neurotoxicity.

    PubMed

    Yu, Man-Shan; Leung, Sarana Ka-Yan; Lai, Sau-Wan; Che, Chi-Ming; Zee, Sze-Yong; So, Kwok-Fai; Yuen, Wai-Hung; Chang, Raymond Chuen-Chung

    2005-01-01

    As aged population dramatically increases in these decades, efforts should be made on the intervention for curing age-associated neurodegenerative diseases such as Alzheimer's disease (AD). Natural plant extracts of Lycium barbarum are well-known to exhibit anti-aging effects. We therefore hypothesized that they exhibit neuroprotective effects against toxins in aging-related neurodegenerative diseases. In this study, we aimed to investigate whether extracts from L. barbarum have neuroprotective effects against toxicity of fibrillar Abeta(1-42) and Abeta(25-35) fragments. Primary rat cortical neurons exposed to Abeta peptides resulted in apoptosis and necrosis. Pre-treatment with extract isolated from L. barbarum significantly reduced the release of lactate dehydrogenase (LDH). In addition, it attenuated Abeta peptide-activated caspases-3-like activity. The extract elicited a typical dose-dependent neuroprotective effect. Effective dosage of this extract was wider than that of a well-known western neuroprotective medicine lithium chloride (LiCl). We have further examined the underlying mechanisms of the neuroprotective effects. In agreement with other laboratories, Abeta peptides induce a rapid activation of c-Jun N-terminal kinase (JNK) by phosphorylation. Pre-treatment of aqueous extract markedly reduced the phosphorylation of JNK-1 (Thr183/Tyr185) and its substrates c-Jun-I (Ser 73) and c-Jun-II (Ser 63). Taken together, we have proved our hypothesis by showing neuroprotective effects of the extract from L. barbarum. Study on anti-aging herbal medicine like L. barbarum may open a new therapeutic window for the prevention of AD.

  13. AN APOLIPOPROTEIN E4 FRAGMENT CAN PROMOTE INTRACELLULAR ACCUMULATION OF AMYLOID PEPTIDE BETA 42

    PubMed Central

    Dafnis, Ioannis; Stratikos, Efstratios; Tzinia, Athina; Tsilibary, Effie C.; Zannis, Vassilis I.; Chroni, Angeliki

    2010-01-01

    Apolipoprotein E (apoE) plays a crucial role in lipid transport in circulation and the brain. The apoE4 isoform is a major risk factor for Alzheimer's disease (AD). ApoE4 is more susceptible to proteolysis than other apoE isoforms and apoE4 fragments have been found in brains of AD patients. These apoE4 fragments have been hypothesized to be involved in the pathogenesis of AD, although the mechanism is not clear. In this study we examined the effect of lipid-free apoE4 on amyloid precursor protein (APP) processing and Aβ40 and Aβ42 levels in human neuroblastoma SK-N-SH cells. We discovered that a specific apoE4 fragment, apoE4[Δ(166-299)], can promote the cellular uptake of extracellular Aβ40 and Aβ42 either generated after APP transfection or added exogenously. A longer length fragment, apoE4[Δ(186-299)], or full-length apoE4 failed to elicit this effect. ApoE4[Δ(166-299)] effected a 20% reduction of cellular sphingomyelin levels, as well as changes in cellular membrane micro-fluidity. Following uptake, approximately 50% of Aβ42 remained within the cell for at least 24h, and led to increased formation of reactive oxygen species. Overall, our findings suggest a direct link between two early events in the pathogenesis of AD, apoE4 proteolysis and intraneuronal presence of Aβ. PMID:20412390

  14. Interaction of PiB-derivative metal complexes with beta-amyloid peptides: selective recognition of the aggregated forms.

    PubMed

    Martins, André F; Dias, David M; Morfin, Jean-François; Lacerda, Sara; Laurents, Douglas V; Tóth, Éva; Geraldes, Carlos F G C

    2015-03-27

    Metal complexes are increasingly explored as imaging probes in amyloid peptide related pathologies. We report the first detailed study on the mechanism of interaction between a metal complex and both the monomer and the aggregated form of Aβ1-40 peptide. We have studied lanthanide(III) chelates of two PiB-derivative ligands (PiB=Pittsburgh compound B), L(1) and L(2), differing in the length of the spacer between the metal-complexing DO3A macrocycle (DO3A=1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid) and the peptide-recognition PiB moiety. Surface plasmon resonance (SPR) and saturation transfer difference (STD) NMR spectroscopy revealed that they both bind to aggregated Aβ1-40 (KD =67-160 μM), primarily through the benzothiazole unit. HSQC NMR spectroscopy on the (15) N-labeled, monomer Aβ1-40 peptide indicates nonsignificant interaction with monomeric Aβ. Time-dependent circular dichroism (CD), dynamic light scattering (DLS), and TEM investigations of the secondary structure and of the aggregation of Aβ1-40 in the presence of increasing amounts of the metal complexes provide coherent data showing that, despite their structural similarity, the two complexes affect Aβ fibril formation distinctly. Whereas GdL(1), at higher concentrations, stabilizes β-sheets, GdL(2) prevents aggregation by promoting α-helical structures. These results give insight into the behavior of amyloid-targeted metal complexes in general and contribute to a more rational design of metal-based diagnostic and therapeutic agents for amyloid- associated pathologies.

  15. Alzheimer's beta-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner.

    PubMed

    Bergamaschini, L; Canziani, S; Bottasso, B; Cugno, M; Braidotti, P; Agostoni, A

    1999-03-01

    beta-Amyloid (beta-A) accumulates in the brain of patients with Alzheimer's disease (AD) and is presumably involved in the pathogenesis of this disease, on account of its neurotoxicity and complement-activating ability. Although assembly of beta-A in particular aggregates seems to be crucial, soluble non-fibrillar beta-A may also be involved. Non-fibrillar beta-A does not bind C1q, so we investigated alternative mechanisms of beta-A-dependent complement activation in vitro. On incubation with normal human plasma, non-fibrillar beta-A 1-42, and truncated peptide 1-28, induced dose-dependent activation of C1s and C4, sparing C3, as assessed by densitometric analysis of immunostained membrane after SDS-PAGE and Western blotting. The mechanism of C4 activation was not dependent on C1q, because non-fibrillar beta-A can still activate C1s and C4 in plasma genetically deficient in C1q (C1qd). In Factor XII-deficient plasma (F.XIId) the amount of cleaved C4 was about 5-10% less that in C1qd and in normal EDTA plasma; the reconstitution of F.XIId plasma with physiologic concentrations of F.XII resulted in an increased (8-15%) beta-A-dependent cleavage of C4. Thus our results indicate that the C1q-independent activation of C1 and C4 can be partially mediated by the activation products of contact system. Since the activation of contact system and of C4 leads to generation of several humoral inflammatory peptides, non-fibrillar beta-A might play a role in initiating the early inflammatory reactions leading to a multistep cascade contributing to neuronal and clinical dysfunction of AD brain.

  16. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-{beta} peptide

    SciTech Connect

    Ghalebani, Leila; Wahlstroem, Anna; Danielsson, Jens; Waermlaender, Sebastian K.T.S.; Graeslund, Astrid

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cu(II) and Zn(II) display pH-dependent binding to the A{beta}(1-40) peptide. Black-Right-Pointing-Pointer At pH 7.4 both metal ions display residue-specific binding to the A{beta} peptide. Black-Right-Pointing-Pointer At pH 5.5 the binding specificity is lost for Zn(II). Black-Right-Pointing-Pointer Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-{beta} (A{beta}) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with {sup 15}N- and {sup 13}C,{sup 15}N-labeled A{beta}(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to A{beta} may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the A{beta} peptide under these conditions.

  17. Structural evolution and membrane interactions of Alzheimer's amyloid-beta peptide oligomers: New knowledge from single-molecule fluorescence studies

    PubMed Central

    Johnson, Robin D; Steel, Duncan G; Gafni, Ari

    2014-01-01

    Amyloidpeptide (Aβ) oligomers may represent the proximal neurotoxin in Alzheimer's disease. Single-molecule microscopy (SMM) techniques have recently emerged as a method for overcoming the innate difficulties of working with amyloid-β, including the peptide's low endogenous concentrations, the dynamic nature of its oligomeric states, and its heterogeneous and complex membrane interactions. SMM techniques have revealed that small oligomers of the peptide bind to model membranes and cells at low nanomolar-to-picomolar concentrations and diffuse at rates dependent on the membrane characteristics. These methods have also shown that oligomers grow or dissociate based on the presence of specific inhibitors or promoters and on the ratio of Aβ40 to Aβ42. Here, we discuss several types of single-molecule imaging that have been applied to the study of Aβ oligomers and their membrane interactions. We also summarize some of the recent insights SMM has provided into oligomer behavior in solution, on planar lipid membranes, and on living cell membranes. A brief overview of the current limitations of the technique, including the lack of sensitive assays for Aβ-induced toxicity, is included in hopes of inspiring future development in this area of research. PMID:24753305

  18. Amyloid Beta Peptides Affect Pregnenolone and Pregnenolone Sulfate Levels in PC-12 and SH-SY5Y Cells Depending on Cholesterol.

    PubMed

    Calan, Ozlem Gursoy; Akan, Pinar; Cataler, Aysenur; Dogan, Cumhur; Kocturk, Semra

    2016-07-01

    Increased amyloid beta (AB) peptide concentration is one of the initiating factors in the neurodegeneration process. It has been suggested that cholesterol induces the synthesis of AB peptide from amyloid precursor protein or facilitates the formation of amyloid plaque by lowering the aggregation threshold of the peptide. It is also shown that AB peptides may affect cholesterol metabolism and the synthesis of steroid hormones such as progesterone and estradiol. Pregnenolone (P) and pregnenolone sulfate (PS) are the major steroids produced from cholesterol in neural tissue. In toxicity conditions, the effect of AB peptides on P and PS levels has not yet been determined. Furthermore, it has not been clearly defined how changes in cellular P and PS levels affect neuronal cell survival. The aim of this study was to determine the effects of AB peptides on cellular changes in P and PS levels depending on the level of their main precursor, cholesterol. Cholesterol and toxic concentrations of AB fragments (AB 25-35, AB 1-40 and AB 1-42) were applied to PC-12 and SH-SY5Y cells. Changes in cellular cholesterol, P and PS levels were determined simultaneously in a dose-and time-dependent manner. The cell viability and cell death types were also evaluated. AB peptides affected both cell viability and P/PS levels. Steroid levels were altered depending on AB fragment type and the cholesterol content of the cells. Treatment with each of the AB fragments alone increased P levels by twofold. However, combined treatment with AB peptides and cholesterol increased P levels by approximately sixfold, while PS levels were increased only about 2.5 fold in both cell lines. P levels in the groups treated with AB 25-35 were higher than those in AB 1-40 and AB 1-42 groups. The cell viabilities were significantly low in the group treated by AB and cholesterol (9 mM). The effect of AB peptides on P levels might be a result of cellular self-defense. On the other hand, the rate of P increase

  19. Wild-type amyloid beta 1-40 peptide induces vascular smooth muscle cell death independently from matrix metalloprotease activity.

    PubMed

    Blaise, Régis; Mateo, Véronique; Rouxel, Clotilde; Zaccarini, François; Glorian, Martine; Béréziat, Gilbert; Golubkov, Vladislav S; Limon, Isabelle

    2012-06-01

    Cerebral amyloid angiopathy (CAA) is an important cause of intracerebral hemorrhages in the elderly, characterized by amyloid-β (Aβ) peptide accumulating in central nervous system blood vessels. Within the vessel walls, Aβ-peptide deposits [composed mainly of wild-type (WT) Aβ(1-40) peptide in sporadic forms] induce impaired adhesion of vascular smooth muscle cells (VSMCs) to the extracellular matrix (ECM) associated with their degeneration. This process often results in a loss of blood vessel wall integrity and ultimately translates into cerebral ischemia and microhemorrhages, both clinical features of CAA. In this study, we decipher the molecular mechanism of matrix metalloprotease (MMP)-2 activation in WT-Aβ(1-40) -treated VSMC and provide evidence that MMP activity, although playing a critical role in cell detachment disrupting ECM components, is not involved in the WT-Aβ(1-40) -induced degeneration of VSMCs. Indeed, whereas this peptide clearly induced VSMC apoptosis, neither preventing MMP-2 activity nor hampering the expression of membrane type1-MMP, or preventing tissue inhibitors of MMPs-2 (TIMP-2) recruitment (two proteins evidenced here as involved in MMP-2 activation), reduced the number of dead cells. Even the use of broad-range MMP inhibitors (GM6001 and Batimastat) did not affect WT-Aβ(1-40) -induced cell apoptosis. Our results, in contrast to those obtained using the Aβ(1-40) Dutch variant suggesting a link between MMP-2 activity, VSMC mortality and degradation of specific matrix components, indicate that the ontogenesis of the Dutch familial and sporadic forms of CAAs is different. ECM degradation and VSMC degeneration would be tightly connected in the Dutch familial form while being two independent processes in sporadic forms of CAA.

  20. Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death.

    PubMed

    Mark, R J; Hensley, K; Butterfield, D A; Mattson, M P

    1995-09-01

    The amyloid beta-peptide (A beta) that accumulates as insoluble plaques in the brain in Alzheimer's disease can be directly neurotoxic and can increase neuronal vulnerability to excitotoxic insults. The mechanism of A beta toxicity is unclear but is believed to involve generation of reactive oxygen species (ROS) and loss of calcium homeostasis. We now report that exposure of cultured rat hippocampal neurons to A beta 1-40 or A beta 25-35 causes a selective reduction in Na+/K(+)-ATPase activity which precedes loss of calcium homeostasis and cell degeneration. Na+/K(+)-ATPase activity was reduced within 30 min of exposure to A beta 25-35 and declined to less than 40% of basal level by 3 hr. A beta did not impair other Mg(2+)-dependent ATPase activities or Na+/Ca2+ exchange. Experiments with ouabain, a specific inhibitor of the Na+/K(+)-ATPase, demonstrated that impairment of this enzyme was sufficient to induce an elevation of [Ca2+]i and neuronal injury. Impairment of Na+/K(+)-ATPase activity appeared to be causally involved in the elevation of [Ca2+]i and neurotoxicity since suppression of Na+ influx significantly reduced A beta- and ouabain-induced [Ca2+]i elevation and neuronal death. Neuronal degeneration induced by ouabain appeared to be of an apoptotic form as indicated by nuclear condensation and DNA fragmentation. The antioxidant free radical scavengers vitamin E and propylgallate significantly attenuated A beta-induced impairment of Na+/K(+)-ATPase activity, elevation of [Ca2+]i and neurotoxicity, suggesting a role for ROS. Finally, exposure of synaptosomes from postmortem human hippocampus to A beta resulted in a significant and specific reduction in Na+/K(+)-ATPase and Ca(2+)-ATPase activities, without affecting other Mg(2+)-dependent ATPase activities or Na+/Ca2+ exchange. These data suggest that impairment of ion-motive ATPases may play a role in the pathogenesis of neuronal injury in Alzheimer's disease.

  1. The effect of tachykinin neuropeptides on amyloid {beta} aggregation

    SciTech Connect

    Flashner, Efrat; Raviv, Uri; Friedler, Assaf

    2011-04-01

    Research highlights: {yields} Mechanistic explanation of how tachykinin neuropeptides reduce A{beta}-induced neurotoxicity. {yields} Biophysical studies suggest that tachykinins do not modulate the distribution of A{beta} oligomeric states, but rather may incorporate into the fibrils. {yields} A possible strategy to inhibit toxicity of amyloid fibrils. -- Abstract: A hallmark of Alzheimer's disease is production of amyloid {beta} peptides resulting from aberrant cleavage of the amyloid precursor protein. Amyloid {beta} assembles into fibrils under physiological conditions, through formation of neurotoxic intermediate oligomers. Tachykinin peptides are known to affect amyloid {beta} neurotoxicity in cells. To understand the mechanism of this effect, we studied how tachykinins affect A{beta}(1-40) aggregation in vitro. Fibrils grown in the presence of tachykinins exhibited reduced thioflavin T (ThT) fluorescence, while their morphology, observed in transmission electron microscopy (TEM), did not alter. Cross linking studies revealed that the distribution of low molecular weight species was not affected by tachykinins. Our results suggest that there may be a specific interaction between tachykinins and A{beta}(1-40) that allows them to co-assemble. This effect may explain the reduction of A{beta}(1-40) neurotoxicity in cells treated with tachykinins.

  2. Characterization of new polyclonal antibodies specific for 40 and 42 amino acid-long amyloid beta peptides: their use to examine the cell biology of presenilins and the immunohistochemistry of sporadic Alzheimer's disease and cerebral amyloid angiopathy cases.

    PubMed Central

    Barelli, H.; Lebeau, A.; Vizzavona, J.; Delaere, P.; Chevallier, N.; Drouot, C.; Marambaud, P.; Ancolio, K.; Buxbaum, J. D.; Khorkova, O.; Heroux, J.; Sahasrabudhe, S.; Martinez, J.; Warter, J. M.; Mohr, M.; Checler, F.

    1997-01-01

    BACKGROUND: In Alzheimer's disease (AD), the main histological lesion is a proteinaceous deposit, the senile plaque, which is mainly composed of a peptide called A beta. The aggregation process is thought to occur through enhanced concentration of A beta 40 or increased production of the more readily aggregating 42 amino acid-long A beta 42 species. MATERIALS AND METHODS: Specificity of the antibodies was assessed by dot blot, Western blot, ELISA, and immunoprecipitation procedures on synthetic and endogenous A beta produced by secreted HK293 cells. A beta and p3 production by wild-type and mutated presenilin 1-expressing cells transiently transfected with beta APP751 was monitored after metabolic labeling and immunoprecipitation procedures. Immunohistochemical analysis was performed on brains of sporadic and typical cerebrovascular amyloid angiopathy (CAA) cases. RESULTS: Dot and Western blot analyses indicate that IgG-purified fractions of antisera recognize native and denaturated A beta s. FCA3340 and FCA 3542 display full specificity for A beta 40 and A beta 42, respectively. Antibodies immunoprecipitate their respective synthetic A beta species but also A beta s and their related p3 counterparts endogenously secreted by transfected human kidney 293 cells. This allowed us to show that mutations on presenilin 1 triggered similar increased ratios of A beta 42 and its p 342 counterpart over total A beta and p3. ELISA assays allow detection of about 25-50 pg/ml of A beta s and remain linear up to 750 to 1500 pg/ml without any cross-reactivity. FCA18 and FCA3542 label diffuse and mature plaques of a sporadic AD case whereas FCA3340 only reveals the mature lesions and particularly labels their central dense core. In a CAA case, FCA18 and FCA3340 reveal leptomeningeal and cortical arterioles whereas FCA3542 only faintly labels such structures. CONCLUSIONS: Polyclonal antibodies exclusively recognizing A beta 40 (FCA 3340) or A beta 42 (FCA3542) were obtained. These

  3. ACAT inhibition and amyloid beta reduction.

    PubMed

    Bhattacharyya, Raja; Kovacs, Dora M

    2010-08-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disorder. Accumulation and deposition of the beta-amyloid (Abeta) peptide generated from its larger amyloid precursor protein (APP) is one of the pathophysiological hallmarks of AD. Intracellular cholesterol was shown to regulate Abeta production. Recent genetic and biochemical studies indicate that not only the amount, but also the distribution of intracellular cholesterol is critical to regulate Abeta generation. Acyl-coenzyme A: cholesterol acyl-transferase (ACAT) is a family of enzymes that regulates the cellular distribution of cholesterol by converting membrane cholesterol into hydrophobic cholesteryl esters for cholesterol storage and transport. Using pharmacological inhibitors and transgenic animal models, we and others have identified ACAT1 as a potential therapeutic target to lower Abeta generation and accumulation. Here we discuss data focusing on ACAT inhibition as an effective strategy for the prevention and treatment of AD.

  4. Laser-induced propagation and destruction of amyloid beta fibrils.

    PubMed

    Yagi, Hisashi; Ozawa, Daisaku; Sakurai, Kazumasa; Kawakami, Toru; Kuyama, Hiroki; Nishimura, Osamu; Shimanouchi, Toshinori; Kuboi, Ryoichi; Naiki, Hironobu; Goto, Yuji

    2010-06-18

    The amyloid deposition of amyloid beta (Abeta) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of beta(2)-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Abeta fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Abeta fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD.

  5. Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture.

    PubMed

    Chen, Yueh-Sheng; Chen, Shang-Der; Wu, Chia-Lin; Huang, Shiang-Suo; Yang, Ding-I

    2014-03-01

    Accumulation of amyloid β-peptide (Aβ) in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neurodegeneration. Recent studies suggested sestrin2 as a crucial mediator for reactive oxygen species (ROS) scavenging and autophagy regulation that both play a pivotal role in age-dependent neurodegenerative diseases. However, the potential link between sestrin2 and Aβ neurotoxicity has never been explored. The present study was therefore undertaken to test whether sestrin2 may be induced by Aβ and its possible role in modulating Aβ neurotoxicity. We showed that sestrin2 expression was elevated in primary rat cortical neurons upon Aβ exposure; a heightened extent of sestrin2 expression was also detected in the cortices of 12-month-old APPswe/PSEN1dE9 transgenic mice. Exposure of cortical neurons to Aβ led to formation of LC3B-II, an autophagic marker; an increased LC3B-II level was also observed in the cortices of 12-month-old AD transgenic mice. More importantly, downregulation of sestrin2 by siRNA abolished LC3B-II formation caused by Aβ that was accompanied by more severe neuronal death. Inhibition of autophagy by bafilomycin A1 also enhanced Aβ neurotoxicity. Together, these results indicate that sestrin2 induced by Aβ plays a protective role against Aβ neurotoxicity through, at least in part, regulation of autophagy.

  6. Intravenous immunoglobulin protects neurons against amyloid beta-peptide toxicity and ischemic stroke by attenuating multiple cell death pathways.

    PubMed

    Widiapradja, Alexander; Vegh, Viktor; Lok, Ker Zhing; Manzanero, Silvia; Thundyil, John; Gelderblom, Mathias; Cheng, Yi-Lin; Pavlovski, Dale; Tang, Sung-Chun; Jo, Dong-Gyu; Magnus, Tim; Chan, Sic L; Sobey, Christopher G; Reutens, David; Basta, Milan; Mattson, Mark P; Arumugam, Thiruma V

    2012-07-01

    Intravenous immunoglobulin (IVIg) preparations obtained by fractionating blood plasma, are increasingly being used increasingly as an effective therapeutic agent in treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke and Alzheimer's disease has been proposed, but little is known about the neuroprotective mechanisms of IVIg. In this study, we investigated the effect of IVIg on downstream signaling pathways that are involved in neuronal cell death in experimental models of stroke and Alzheimer's disease. Treatment of cultured neurons with IVIg reduced simulated ischemia- and amyloid βpeptide (Aβ)-induced caspase 3 cleavage, and phosphorylation of the cell death-associated kinases p38MAPK, c-Jun NH2 -terminal kinase and p65, in vitro. Additionally, Aβ-induced accumulation of the lipid peroxidation product 4-hydroxynonenal was attenuated in neurons treated with IVIg. IVIg treatment also up-regulated the anti-apoptotic protein, Bcl2 in cortical neurons under ischemia-like conditions and exposure to Aβ. Treatment of mice with IVIg reduced neuronal cell loss, apoptosis and infarct size, and improved functional outcome in a model of focal ischemic stroke. Together, these results indicate that IVIg acts directly on neurons to protect them against ischemic stroke and Aβ-induced neuronal apoptosis by inhibiting cell death pathways and by elevating levels of the anti-apoptotic protein Bcl2.

  7. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    PubMed Central

    Rosales-Corral, Sergio; Acuna-Castroviejo, Dario; Tan, Dun Xian; López-Armas, Gabriela; Cruz-Ramos, José; Munoz, Rubén; Melnikov, Valery G.; Manchester, Lucien C.; Reiter, Russel J.

    2012-01-01

    Amyloid-beta (Aβ) pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS). Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer's disease (AD) brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance. PMID:22666521

  8. Effect of metal chelators on the aggregation of beta-amyloid peptides in the presence of copper and iron.

    PubMed

    Tahmasebinia, Foozhan; Emadi, Saeed

    2017-04-01

    Amyloid β (Aβ) fibrils and amorphous aggregates are found in the brain of patients with Alzheimer's disease (AD), and are implicated in the etiology of AD. The metal imbalance is also among leading causes of AD, owing to the fact that Aβ aggregation takes place in the synaptic cleft where Aβ, Cu(II) and Fe(III) are found in abnormally high concentrations. Aβ40 and Aβ42 are the main components of plaques found in afflicted brains. Coordination of Cu(II) and Fe(III) ions to Aβ peptides have been linked to Aβ aggregation and production of reactive oxygen species, two key events in the development of AD pathology. Metal chelation was proposed as a therapy for AD on the basis that it might prevent Aβ aggregation. In this work, we first examined the formation of Aβ40 and Aβ42 aggregates in the presence of metal ions, i.e. Fe(III) and Cu(II), which were detected by fluorescence spectroscopy and atomic force microscopy. Second, we studied the ability of the two chelators, ethylenediaminetetraacetic acid and 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol), to investigate their effect on the availability of these metal ions to interact with Aβ and thereby their effect on Aβ accumulation. Our findings show that Fe(III), but not Cu(II), promote aggregation of both Aβ40 and Aβ42. We also found that only clioquinol decreased significantly iron ion-induced aggregation of Aβ42. The presence of ions and/or chelators also affected the morphology of Aβ aggregates.

  9. Cysteine Cathepsins in the Secretory Vesicle Produce Active Peptides: Cathepsin L Generates Peptide Neurotransmitters and Cathepsin B Produces Beta-Amyloid of Alzheimer’s Disease

    PubMed Central

    Hook, Vivian; Funkelstein, Lydiane; Wegrzyn, Jill; Bark, Steven; Kindy, Mark; Hook, Gregory

    2011-01-01

    Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles has been demonstrated as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β-amyloid (Aβ) peptides that accumulate in Alzheimer’s disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrasts with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin function. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. PMID:21925292

  10. IgG-assisted age-dependent clearance of Alzheimer's amyloid beta peptide by the blood-brain barrier neonatal Fc receptor.

    PubMed

    Deane, Rashid; Sagare, Abhay; Hamm, Katie; Parisi, Margaret; LaRue, Barbra; Guo, Huang; Wu, Zhenhua; Holtzman, David M; Zlokovic, Berislav V

    2005-12-14

    The role of blood-brain barrier (BBB) transport in clearance of amyloid beta-peptide (Abeta) by Abeta immunotherapy is not fully understood. To address this issue, we studied the effects of peripherally and centrally administered Abeta-specific IgG on BBB influx of circulating Abeta and efflux of brain-derived Abeta in APPsw(+/-) mice, a model that develops Alzheimer's disease-like amyloid pathology, and wild-type mice. Our data show that anti-Abeta IgG blocks the BBB influx of circulating Abeta in APPsw(+/-) mice and penetrates into the brain to sequester brain Abeta. In young mice, Abeta-anti-Abeta complexes were cleared from brain to blood by transcytosis across the BBB via the neonatal Fc receptor (FcRn) and the low-density lipoprotein receptor-related protein (LRP), whereas in older mice, there was an age-dependent increase in FcRn-mediated IgG-assisted Abeta BBB efflux and a decrease in LRP-mediated clearance of Abeta-anti-Abeta complexes. Inhibition of the FcRn pathway in older APPsw(+/-) mice blocked clearance of endogenous Abeta40/42 by centrally administered Abeta immunotherapy. Moreover, deletion of the FcRn gene in wild-type mice inhibited clearance of endogenous mouse Abeta40/42 by systemically administered anti-Abeta. Our data suggest that the FcRn pathway at the BBB plays a crucial role in IgG-assisted Abeta removal from the aging brain.

  11. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation.

    PubMed

    Wong, Gwendolyn T; Manfra, Denise; Poulet, Frederique M; Zhang, Qi; Josien, Hubert; Bara, Thomas; Engstrom, Laura; Pinzon-Ortiz, Maria; Fine, Jay S; Lee, Hu-Jung J; Zhang, Lili; Higgins, Guy A; Parker, Eric M

    2004-03-26

    Inhibition of gamma-secretase, one of the enzymes responsible for the cleavage of the amyloid precursor protein (APP) to produce the pathogenic beta-amyloid (Abeta) peptides, is an attractive approach to the treatment of Alzheimer disease. In addition to APP, however, several other gamma-secretase substrates have been identified (e.g. Notch), and altered processing of these substrates by gamma-secretase inhibitors could lead to unintended biological consequences. To study the in vivo consequences of gamma-secretase inhibition, the gamma-secretase inhibitor LY-411,575 was administered to C57BL/6 and TgCRND8 APP transgenic mice for 15 days. Although most tissues were unaffected, doses of LY-411,575 that inhibited Abeta production had marked effects on lymphocyte development and on the intestine. LY-411,575 decreased overall thymic cellularity and impaired intrathymic differentiation at the CD4(-)CD8(-)CD44(+)CD25(+) precursor stage. No effects on peripheral T cell populations were noted following LY-411,575 treatment, but evidence for the altered maturation of peripheral B cells was observed. In the intestine, LY-411,575 treatment increased goblet cell number and drastically altered tissue morphology. These effects of LY-411,575 were not seen in mice that were administered LY-D, a diastereoisomer of LY-411,575, which is a very weak gamma-secretase inhibitor. These studies show that inhibition of gamma-secretase has the expected benefit of reducing Abeta in a murine model of Alzheimer disease but has potentially undesirable biological effects as well, most likely because of the inhibition of Notch processing.

  12. Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent.

    PubMed

    Lu, Yan; Derreumaux, Philippe; Guo, Zhi; Mousseau, Normand; Wei, Guanghong

    2009-06-01

    Aggregation of the full-length amyloid-beta (Abeta) and beta2-microglobulin (beta2m) proteins is associated with Alzheimer's disease and dialysis-related amyloidosis, respectively. This assembly process is not restricted to full-length proteins, however, many short peptides also assemble into amyloid fibrils in vitro. Remarkably, the kinetics of amyloid-fibril formation of all these molecules is generally described by a nucleation-polymerization process characterized by a lag phase associated with the formation of a nucleus, after which fibril elongation occurs rapidly. In this study, we report using long molecular dynamics simulations with the OPEP coarse-grained force field, the thermodynamics and dynamics of the octamerization for two amyloid 7-residue peptides: the beta2m83-89 NHVTLSQ and Abeta16-22 KLVFFAE fragments. Based on multiple trajectories run at 310 K, totaling 2.2 mus (beta2m83-89) and 4.8 mus (Abeta16-22) and starting from random configurations and orientations of the chains, we find that the two peptides not only share common but also very different aggregation properties. Notably, an increase in the hydrophobic character of the peptide, as observed in Abeta16-22 with respect to beta2m83-89 impacts the thermodynamics by reducing the population of bilayer beta-sheet assemblies. Higher hydrophobicity is also found to slow down the dynamics of beta-sheet formation by enhancing the averaged lifetime of all configuration types (CT) and by reducing the complexity of the CT transition probability matrix. Proteins 2009. (c) 2008 Wiley-Liss, Inc.

  13. Amyloid fibrils compared to peptide nanotubes.

    PubMed

    Zganec, Matjaž; Zerovnik, Eva

    2014-09-01

    Prefibrillar oligomeric states and amyloid fibrils of amyloid-forming proteins qualify as nanoparticles. We aim to predict what biophysical and biochemical properties they could share in common with better researched peptide nanotubes. We first describe what is known of amyloid fibrils and prefibrillar aggregates (oligomers and protofibrils): their structure, mechanisms of formation and putative mechanism of cytotoxicity. In distinction from other neuronal fibrillar constituents, amyloid fibrils are believed to cause pathology, however, some can also be functional. Second, we give a review of known biophysical properties of peptide nanotubes. Finally, we compare properties of these two macromolecular states side by side and discuss which measurements that have already been done with peptide nanotubes could be done with amyloid fibrils as well.

  14. The pathological cross talk between apolipoprotein E and amyloid-beta peptide in Alzheimer's disease: emerging gene-based therapeutic approaches.

    PubMed

    Iurescia, Sandra; Fioretti, Daniela; Mangialasche, Francesca; Rinaldi, Monica

    2010-01-01

    Apolipoprotein E (ApoE) plays a key role in lipid transport in the plasma and in the central nervous system through its interaction with members of the low-density lipoprotein receptor family. The three common isoforms of ApoE (ApoE2, ApoE3, and ApoE4) differ in their ability to perform neuronal maintenance and repair functions and differentially affect the risk of developing neurodegenerative disorders. The ApoE4 isoform is a strong genetic risk factor for Alzheimer's disease. Up-to-date knowledge about the structural and biophysical features of ApoE4 shed light on the molecular basis underlying the isoform-specific pathogenic role of ApoE4 and its contribution to AD pathology through several different mechanisms. ApoE4 impacts on amyloid-beta (Abeta) production, Abeta clearance, Abeta fibrillation, and tangle formation as well as on mitochondrial functions leading to neuronal toxicity and synaptic damage. This review summarizes the pathological cross talk between ApoE and Abeta peptide in Alzheimer's disease. Lastly, we examine emerging gene-based therapeutic approaches encompassing the use of ApoE and their potential opportunities to preventing or treating Alzheimer's disease.

  15. Different configurational states of beta-amyloid and their distributions relative to plaques and tangles in Alzheimer disease.

    PubMed Central

    Spillantini, M G; Goedert, M; Jakes, R; Klug, A

    1990-01-01

    Antibodies have been raised against synthetic peptides corresponding to different parts of the beta-amyloid sequence. These antibodies stain different kinds of amyloid distributions in the hippocampal formation in Alzheimer disease, suggesting the existence of different states of aggregation and/or folding of beta-amyloid molecules. An antibody directed against the middle region of beta-amyloid stained mostly amyloid plaques without cores, whereas an antibody directed against the carboxyl-terminal region of beta-amyloid stained only amyloid plaques with cores. An antiserum directed against the amino terminus of beta-amyloid stained numerous tangle-bearing cells and bodies, as well as the neuritic component of plaques and neuropil threads. These antibodies, in conjunction with anti-tau antibodies, were used to demonstrate a close spatial relationship between amyloid deposits and neurofibrillary tangles. Images PMID:2111023

  16. Evidence for Novel [beta]-Sheet Structures in Iowa Mutant [beta]-Amyloid Fibrils

    SciTech Connect

    Tycko, Robert; Sciarretta, Kimberly L.; Orgel, Joseph P.R.O.; Meredith, Stephen C.

    2009-07-24

    Asp23-to-Asn mutation within the coding sequence of {beta}-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-A{beta}40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-A{beta}40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10{sup -3} min{sup -1} and 1.07 x 10{sup -4} min{sup -1} for D23N-A{beta}40 and the wild-type peptide WT-A{beta}40, respectively) and without a lag phase. Electron microscopy shows that D23N-A{beta}40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-{beta} pattern, with a sharp reflection at 4.7 {angstrom} and a broad reflection at 9.4 {angstrom}, which is notably smaller than the value for WT-A{beta}40 fibrils (10.4 {angstrom}). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-A{beta}40 fibrils containing the in-register, parallel {beta}-sheet structure commonly found in WT-A{beta}40 fibrils and most other amyloid fibrils. Antiparallel {beta}-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through 13C-13C and 15N-13C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-A{beta}40 fibrils and the unusual vasculotropic clinical picture in these patients.

  17. Ferulic acid destabilizes preformed {beta}-amyloid fibrils in vitro

    SciTech Connect

    Ono, Kenjiro; Hirohata, Mie; Yamada, Masahito . E-mail: m-yamada@med.kanazawa-u.ac.jp

    2005-10-21

    Inhibition of the formation of {beta}-amyloid fibrils (fA{beta}), as well as the destabilization of preformed fA{beta} in the CNS, would be attractive therapeutic targets for the treatment of Alzheimer's disease (AD). We reported previously that curcumin (Cur) inhibits fA{beta} formation from A{beta} and destabilizes preformed fA{beta} in vitro. Using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies, we examined the effects of ferulic acid (FA) on the formation, extension, and destabilization of fA{beta} at pH 7.5 at 37 deg C in vitro. We next compared the anti-amyloidogenic activities of FA with Cur, rifampicin, and tetracycline. Ferulic acid dose-dependently inhibited fA{beta} formation from amyloid {beta}-peptide, as well as their extension. Moreover, it destabilized preformed fA{beta}s. The overall activity of the molecules examined was in the order of: Cur > FA > rifampicin = tetracycline. FA could be a key molecule for the development of therapeutics for AD.

  18. Amyloid-beta aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths.

    PubMed Central

    Snyder, S W; Ladror, U S; Wade, W S; Wang, G T; Barrett, L W; Matayoshi, E D; Huffaker, H J; Krafft, G A; Holzman, T F

    1994-01-01

    One of the clinical manifestations of Alzheimer's disease is the deposition of the 39-43 residue amyloid-beta (A beta) peptide in aggregated fibrils in senile plaques. Characterization of the aggregation behavior of A beta is one of the critical issues in understanding the role of A beta in the disease process. Using solution hydrodynamics, A beta was observed to form three types of species in phosphate-buffered saline: insoluble aggregates with sedimentation coefficients of approximately 50,000 S and molecular masses of approximately 10(9) Da, "soluble aggregates" with sedimentation coefficients of approximately 30 S and masses of approximately 10(6) Da, and monomer. When starting from monomer, the aggregation kinetics of A beta 1-40 (A beta 40) and A beta 1-42 (A beta 42), alone and in combination, reveal large differences in the tendency of these peptides to aggregate as a function of pH and other solution conditions. At pH 4.1 and 7.0-7.4, aggregation is significantly slower than at pH 5 and 6. Under all conditions, aggregation of the longer A beta 42 was more rapid than A beta 40. Oxidation of Met-35 to the sulfoxide in A beta 40 enhances the aggregation rate over that of the nonoxidized peptide. Aggregation was found to be dependent upon temperature and to be strongly dependent on peptide concentration and ionic strength, indicating that aggregation is driven by a hydrophobic effect. When A beta 40 and A beta 42 are mixed together, A beta 40 retards the aggregation of A beta 42 in a concentration-dependent manner. Shorter fragments have a decreasing ability to interfere with A beta 42 aggregation. Conversely, the rate of aggregation of A beta 40 can be significantly enhanced by seeding slow aggregating solutions with preformed aggregates of A beta 42. Taken together, the inhibition of A beta 42 aggregation by A beta 40, the seeding of A beta 40 aggregation by A beta 42 aggregates, and the chemical oxidation of A beta 40 suggest that the relative abundance and

  19. Effect of chloroquine and leupeptin on intracellular accumulation of amyloid-beta (A beta) 1-42 peptide in a murine N9 microglial cell line.

    PubMed

    Chu, T; Tran, T; Yang, F; Beech, W; Cole, G M; Frautschy, S A

    1998-10-09

    Murine N9 microglia accumulated A beta from media containing 0.67 microM A beta within 6 h. In N9 and in primary rat microglia, chloroquine, which disrupts lysosomal pH, increased A beta-induced accumulation of A beta, particularly A beta1-42. Leupeptin similarly enhanced A beta accumulation. The scavenger receptor antagonist fucoidan did not affect acute chloroquine-dependent A beta1-42 accumulation, demonstrating uptake of non-aggregated A beta. After prolonged incubations, chloroquine enhanced A beta multimer (8-12 kDa) accumulation, an effect inhibited by fucoidan. Disruptions of the lysosomal system enhance A beta and its multimer formation. Despite negligible effects of fucoidan on initial A beta uptake, chronic exposure inhibits multimer accumulation, demonstrating a role for scavenger receptor in multimer accumulation.

  20. Inhibitor of Differentiation-1 and Hypoxia-Inducible Factor-1 Mediate Sonic Hedgehog Induction by Amyloid Beta-Peptide in Rat Cortical Neurons.

    PubMed

    Hung, Yu-Hsing; Chang, Shih-Hsin; Huang, Chao-Tzu; Yin, Jiu-Haw; Hwang, Chi-Shin; Yang, Liang-Yo; Yang, Ding-I

    2016-03-01

    One major pathological hallmark of Alzheimer's disease (AD) is the accumulation of senile plaques mainly composed of neurotoxic amyloid beta-peptide (Aβ) in the patients' brains. Sonic hedgehog (SHH) is a morphogen critically involved in the embryonic development of the central nervous system (CNS). In the present study, we tested whether Aβ may induce SHH expression and explored its underlying mechanisms. We found that both Aβ25-35 and Aβ1-42 enhanced SHH expression in the primary cortical neurons derived from fetal rat brains. Immunohistochemistry revealed heightened expression of SHH in the cortex and hippocampus of aged (9 and 12 months old) AD transgenic mouse brains as compared to age-matched littermate controls. Chromatin immunoprecipitation (ChIP) assay demonstrated that Aβ25-35 enhanced binding of hypoxia-inducible factor-1 (HIF-1) to the promoter of the Shh gene in primary cortical cultures; consistently, Aβ25-35 induction of SHH was abolished by HIF-1α small interfering RNA (siRNA). Aβ25-35 also time-dependently induced inhibitor of differentiation-1 (Id1) that has been shown to stabilize HIF-1α; further, Aβ25-35-mediated induction of HIF-1α and SHH was both suppressed by Id1 siRNA. Pharmacological induction of HIF-1α by cobalt chloride and application of the cell-permeable recombinant Id1 proteins were both sufficient to induce SHH expression. Finally, both the SHH pathway inhibitor cyclopamine and its neutralizing antibody attenuated Aβ cytotoxicity, albeit to a minor extent. These results thus established a signaling cascade of "Aβ → Id1 → HIF-1 → SHH" in primary rat cortical cultures; furthermore, SHH may in part contribute to Aβ neurotoxicity.

  1. The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific

    PubMed Central

    Dafnis, Ioannis; Argyri, Letta; Sagnou, Marina; Tzinia, Athina; Tsilibary, Effie C.; Stratikos, Efstratios; Chroni, Angeliki

    2016-01-01

    The apolipoprotein (apo) E4 isoform is the strongest risk factor for late-onset Alzheimer’s disease (AD). ApoE4 is more susceptible to proteolysis than apoE2 and apoE3 isoforms and carboxyl-terminal truncated apoE4 forms have been found in AD patients’ brain. We have previously shown that a specific apoE4 fragment, apoE4-165, promotes amyloid-peptide beta 42 (Aβ42) accumulation in human neuroblastoma SK-N-SH cells and increased intracellular reactive oxygen species formation, two events considered to occur early in AD pathogenesis. Here, we show that these effects are allele-dependent and absolutely require the apoE4 background. Furthermore, the exact length of the fragment is critical since longer or shorter length carboxyl-terminal truncated apoE4 forms do not elicit the same effects. Structural and thermodynamic analyses showed that apoE4-165 has a compact structure, in contrast to other carboxyl-terminal truncated apoE4 forms that are instead destabilized. Compared however to other allelic backgrounds, apoE4-165 is structurally distinct and less thermodynamically stable suggesting that the combination of a well-folded structure with structural plasticity is a unique characteristic of this fragment. Overall, our findings suggest that the ability of apoE fragments to promote Aβ42 intraneuronal accumulation is specific for both the apoE4 isoform and the particular structural and thermodynamic properties of the fragment. PMID:27476701

  2. HLA-DR alleles in amyloid beta-peptide autoimmunity: a highly immunogenic role for the DRB1*1501 allele.

    PubMed

    Zota, Victor; Nemirovsky, Anna; Baron, Rona; Fisher, Yair; Selkoe, Dennis J; Altmann, Daniel M; Weiner, Howard L; Monsonego, Alon

    2009-09-01

    Active amyloid beta-peptide (Abeta) immunization of patients with Alzheimer's disease (AD) caused meningoencephalitis in approximately 6% of immunized patients in a clinical trial. In addition, long-term studies of AD patients show varying degrees of Abeta Ab responses, which correlate with the extent of Abeta clearance from the brain. In this study, we examined the contribution of various HLA-DR alleles to these immune-response variations by assessing Abeta T cell reactivity, epitope specificity, and immunogenicity. Analysis of blood samples from 133 individuals disclosed that the abundant DR haplotypes DR15 (found in 36% of subjects), DR3 (in 18%), DR4 (12.5%), DR1 (11%), and DR13 (8%) were associated with Abeta-specific T cell responses elicited via distinct T cell epitopes within residues 15-42 of Abeta. Because the HLA-DRB1*1501 occurred most frequently, we examined the effect of Abeta challenge in humanized mice bearing this allele. The observed T cell response was remarkably strong, dominated by secretion of IFN-gamma and IL-17, and specific to the same T cell epitope as that observed in the HLA-DR15-bearing humans. Furthermore, following long-term therapeutic immunization of an AD mouse model bearing the DRB1*1501 allele, Abeta was effectively cleared from the brain parenchyma and brain microglial activation was reduced. The present study thus characterizes HLA-DR alleles directly associated with specific Abeta T cell epitopes and demonstrates the highly immunogenic properties of the abundant allele DRB1*1501 in a mouse model of AD. This new knowledge enables us to explore the basis for understanding the variations in naturally occurring Abeta-reactive T cells and Abeta immunogenicity among humans.

  3. Degradation of soluble amyloid beta-peptides 1-40, 1-42, and the Dutch variant 1-40Q by insulin degrading enzyme from Alzheimer disease and control brains.

    PubMed

    Pérez, A; Morelli, L; Cresto, J C; Castaño, E M

    2000-02-01

    Insulin degrading enzyme (IDE) is a metalloprotease that has been involved in amyloid beta peptide (A(beta)) degradation in the brain. We analyzed the ability of human brain soluble fraction to degrade A(beta) analogs 1-40, 1-42 and the Dutch variant 1-40Q at physiological concentrations (1 nM). The rate of synthetic 125I-A(beta) degradation was similar among the A(beta) analogs, as demonstrated by trichloroacetic acid precipitation and SDS-PAGE. A 110 kDa protein, corresponding to the molecular mass of IDE, was affinity labeled with either 125I-insulin, 125I-Abeta 1-40 or 125I-A(beta) 1-42 and both A(beta) degradation and cross-linking were specifically inhibited by an excess of each peptide. Sensitivity to inhibitors was consistent with the reported inhibitor profile of IDE. Taken together, these results suggested that the degradation of A(beta) analogs was due to IDE or a closely related protease. The apparent Km, as determined using partially purified IDE from rat liver, were 2.2 +/- 0.4, 2.0 +/- 0.1 and 2.3 +/- 0.3 microM for A(beta) 1-40, A(beta) 1-42 and A(beta) 1-40Q, respectively. Comparison of IDE activity from seven AD brain cytosolic fractions and six age-matched controls revealed a significant decrease in A(beta) degrading activity in the first group, supporting the hypothesis that a reduced IDE activity may contribute to A(beta) accumulation in the brain.

  4. Identification and quantification of amyloid beta-related peptides in human plasma using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    PubMed Central

    KANEKO, Naoki; YAMAMOTO, Rie; SATO, Taka-Aki

    2014-01-01

    Proteolytic processing of the amyloid precursor protein (APP) by β-secretase and γ-secretase leads to the generation and deposition of amyloid β (Aβ) in Alzheimer’s disease (AD). N-terminally or C-terminally truncated Aβ variants have been found in human cerebrospinal fluid and cultured cell media using immunoprecipitation and mass spectrometry. Unfortunately, the profile of plasma Aβ variants has not been revealed due to the difficulty of isolating Aβ from plasma. We present here for the first time studies of Aβ and related peptides in human plasma. Twenty-two Aβ-related peptides including novel peptides truncated before the β-secretase site were detected in human plasma and 20 of the peptides were identified by tandem mass spectrometry. Using an internal standard, we developed a quantitative assay for the Aβ-related peptides and demonstrated plasma dilution linearity and the precision required for their quantitation. The present method should enhance the understanding of APP processing and clearance in AD progression. PMID:24621957

  5. Surface Mediated Self-Assembly of Amyloid Peptides

    NASA Astrophysics Data System (ADS)

    Fakhraai, Zahra

    2015-03-01

    Amyloid fibrils have been considered as causative agents in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes and amyloidosis. Amyloid fibrils form when proteins or peptides misfold into one dimensional crystals of stacked beta-sheets. In solution, amyloid fibrils form through a nucleation and growth mechanism. The rate limiting nucleation step requires a critical concentration much larger than those measured in physiological conditions. As such the exact origins of the seeds or oligomers that result in the formation of fully mature fibrils in the body remain topic intense studies. It has been suggested that surfaces and interfaces can enhance the fibrillization rate. However, studies of the mechanism and kinetics of the surface-mediated fibrillization are technologically challenging due to the small size of the oligomer and protofibril species. Using smart sample preparation technique to dry the samples after various incubation times we are able to study the kinetics of fibril formation both in solution and in the vicinity of various surfaces using high-resolution atomic force microscopy. These studies elucidate the role of surfaces in catalyzing amyloid peptide formation through a nucleation-free process. The nucleation free self-assembly is rapid and requires much smaller concentrations of peptides or proteins. We show that this process resembles diffusion limited aggregation and is governed by the peptide adhesion rate, two -dimensional diffusion of the peptides on the surface, and preferential interactions between the peptides. These studies suggest an alternative pathway for amyloid formation may exist, which could lead to new criteria for disease prevention and alternative therapies. Research was partially supported by a seed grant from the National Institute of Aging of the National Institutes of Health (NIH) under Award Number P30AG010124 (PI: John Trojanowski) and the University of Pennsylvania.

  6. Inhibition of beta-amyloid aggregation by fluorescent dye labels

    NASA Astrophysics Data System (ADS)

    Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.; Rolinski, Olaf J.

    2014-02-01

    The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelled Aβ peptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.

  7. Copper(II) ions and the Alzheimer's amyloidpeptide: Affinity and stoichiometry of binding

    NASA Astrophysics Data System (ADS)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  8. Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides.

    PubMed

    Wang, Lan; Liu, Qian; Chen, Jin-Chun; Cui, Yi-Xian; Zhou, Bing; Chen, Yong-Xiang; Zhao, Yu-Fen; Li, Yan-Mei

    2012-07-01

    Human islet amyloid polypeptide (hIAPP) shows an antimicrobial activity towards two types of clinically relevant bacteria. The potency of hIAPP varies with its aggregation states. Circular dichroism was employed to determine the interaction between hIAPP and bacteria lipid membrane mimic. The antimicrobial activity of each aggregate species is associated with their ability to induce membrane disruption. Our findings provide new evidence revealing the antimicrobial activity of amyloid peptide, which suggest a possible connection between amyloid peptides and antimicrobial peptides.

  9. Statins promote the degradation of extracellular amyloid {beta}-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion.

    PubMed

    Tamboli, Irfan Y; Barth, Esther; Christian, Leonie; Siepmann, Martin; Kumar, Sathish; Singh, Sandesh; Tolksdorf, Karen; Heneka, Michael T; Lütjohann, Dieter; Wunderlich, Patrick; Walter, Jochen

    2010-11-26

    Epidemiological studies indicate that intake of statins decrease the risk of developing Alzheimer disease. Cellular and in vivo studies suggested that statins might decrease the generation of the amyloid β-peptide (Aβ) from the β-amyloid precursor protein. Here, we show that statins potently stimulate the degradation of extracellular Aβ by microglia. The statin-dependent clearance of extracellular Aβ is mainly exerted by insulin-degrading enzyme (IDE) that is secreted in a nonconventional pathway in association with exosomes. Stimulated IDE secretion and Aβ degradation were also observed in blood of mice upon peripheral treatment with lovastatin. Importantly, increased IDE secretion upon lovastatin treatment was dependent on protein isoprenylation and up-regulation of exosome secretion by fusion of multivesicular bodies with the plasma membrane. These data demonstrate a novel pathway for the nonconventional secretion of IDE via exosomes. The modulation of this pathway could provide a new strategy to enhance the extracellular clearance of Aβ.

  10. Molecular basis for amyloid-[beta] polymorphism

    SciTech Connect

    Colletier, Jacques-Philippe; Laganowsky, Arthur; Landau, Meytal; Zhao, Minglei; Soriaga, Angela B.; Goldschmidt, Lukasz; Flot, David; Cascio, Duilio; Sawaya, Michael R.; Eisenberga, David

    2011-10-19

    Amyloid-beta (A{beta}) aggregates are the main constituent of senile plaques, the histological hallmark of Alzheimer's disease. A{beta} molecules form {beta}-sheet containing structures that assemble into a variety of polymorphic oligomers, protofibers, and fibers that exhibit a range of lifetimes and cellular toxicities. This polymorphic nature of A{beta} has frustrated its biophysical characterization, its structural determination, and our understanding of its pathological mechanism. To elucidate A{beta} polymorphism in atomic detail, we determined eight new microcrystal structures of fiber-forming segments of A{beta}. These structures, all of short, self-complementing pairs of {beta}-sheets termed steric zippers, reveal a variety of modes of self-association of A{beta}. Combining these atomic structures with previous NMR studies allows us to propose several fiber models, offering molecular models for some of the repertoire of polydisperse structures accessible to A{beta}. These structures and molecular models contribute fundamental information for understanding A{beta} polymorphic nature and pathogenesis.

  11. How changes in the sequence of the peptide CLPFFD-NH2 can modify the conjugation and stability of gold nanoparticles and their affinity for beta-amyloid fibrils.

    PubMed

    Olmedo, Ivonne; Araya, Eyleen; Sanz, Fausto; Medina, Elias; Arbiol, Jordi; Toledo, Pedro; Alvarez-Lueje, Alejandro; Giralt, Ernest; Kogan, Marcelo J

    2008-06-01

    In a previous work, we studied the interaction of beta-amyloid fibrils (Abeta) with gold nanoparticles (AuNP) conjugated with the peptide CLPFFD-NH2. Here, we studied the effect of changing the residue sequence of the peptide CLPFFD-NH2 on the efficiency of conjugation to AuNP, the stability of the conjugates, and the affinity of the conjugates to the Abeta fibrils. We conjugated the AuNP with CLPFFD-NH 2 isomeric peptides (CDLPFF-NH2 and CLPDFF-NH2) and characterized the resulting conjugates with different techniques including UV-Vis, TEM, EELS, XPS, analysis of amino acids, agarose gel electrophoresis, and CD. In addition, we determined the proportion of AuNP bonded to the Abeta fibrils by ICP-MS. AuNP-CLPFFD-NH2 was the most stable of the conjugates and presented more affinity for Abeta fibrils with respect to the other conjugates and bare AuNP. These findings help to better understand the way peptide sequences affect conjugation and stability of AuNP and their interaction with Abeta fibrils. The peptide sequence, the steric effects, and the charge and disposition of hydrophilic and hydrophobic residues are crucial parameters when considering the design of AuNP peptide conjugates for biomedical applications.

  12. The peptide sequence Arg-Glu-Arg, present in the amyloid precursor protein, protects against memory loss caused by A beta and acts as a cognitive enhancer.

    PubMed

    Mileusnic, R; Lancashire, C L; Rose, S P R

    2004-04-01

    Amino acid sequences containing the palindromic tripeptide RER, matching amino acids 328-330 of the amyloid precursor protein APP, when injected intracerebrally prior to or just after training, protect against memory loss induced by amyloid-beta (A beta) in a one-trial passive avoidance task in the young chick. RER also acts as a cognitive enhancer, strengthening memory for a weak version of the task. N-terminal acylation of RER protects it against rapid degradation, and AcRER is effective in restoring memory if administered peripherally. Biotinylated RER binds to chick neuronal perikarya in an APP-displaceable manner via 66 and approximately 110 kDa neuronal cell membrane proteins. We suggest that RER binding is likely to exert effects on memory retention via receptor-mediated events that include activation of second messenger pathways. These findings suggest that RER and its derivatives may offer a novel approach to enhancing the neuroprotective effects of APP and alleviating the effects of memory loss in the early stages of Alzheimer's disease.

  13. Detection of Alzheimer's amyloid beta aggregation by capturing molecular trails of individual assemblies

    SciTech Connect

    Vestergaard, Mun'delanji Hamada, Tsutomu; Saito, Masato; Yajima, Yoshifumi; Kudou, Monotori; Tamiya, Eiichi; Takagi, Masahiro

    2008-12-12

    Assembly of Amyloid beta (A{beta}) peptides, in particular A{beta}-42 is central to the formation of the amyloid plaques associated with neuro-pathologies such as Alzheimer's disease (AD). Molecular assembly of individual A{beta}-42 species was observed using a simple fluorescence microscope. From the molecular movements (aka Brownian motion) of the individual peptide assemblies, we calculated a temporal evolution of the hydrodynamic radius (R{sub H}) of the peptide at physiological temperature and pH. The results clearly show a direct relationship between R{sub H} of A{beta}-42 and incubation period, corresponding to the previously reported peptide's aggregation kinetics. The data correlates highly with in solution-based label-free electrochemical detection of the peptide's aggregation, and A{beta}-42 deposited on a solid surface and analysed using atomic force microscopy (AFM). To the best of our knowledge, this is the first analysis and characterisation of A{beta} aggregation based on capturing molecular trails of individual assemblies. The technique enables both real-time observation and a semi-quantitative distribution profile of the various stages of A{beta} assembly, at microM peptide concentration. Our method is a promising candidate for real-time observation and analysis of the effect of other pathologically-relevant molecules such as metal ions on pathways to A{beta} oligomerisation and aggregation. The method is also a promising screening tool for AD therapeutics that target A{beta} assembly.

  14. Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid beta-peptide (1-42), HO and kainic acid: implications for Alzheimer's disease.

    PubMed

    Mohmmad Abdul, Hafiz; Sultana, Rukhsana; Keller, Jeffrey N; St Clair, Daret K; Markesbery, William R; Butterfield, D Allan

    2006-03-01

    Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.

  15. Age and Amyloid Effects on Human CNS Amyloid-Beta Kinetics

    PubMed Central

    Patterson, Bruce W.; Elbert, Donald L.; Mawuenyega, Kwasi G.; Kasten, Tom; Ovod, Vitaliy; Ma, Shengmei; Xiong, Chengjie; Chott, Robert; Yarasheski, Kevin; Sigurdson, Wendy; Zhang, Lily; Goate, Alison; Phil, D.; Benzinger, Tammie; Morris, John C.; Holtzman, David; Bateman, Randall J.

    2015-01-01

    Objective Age is the single greatest risk factor for Alzheimer’s disease with the incidence doubling every 5 years after age 65. However, our understanding of the mechanistic relationship between increasing age and the risk for Alzheimer’s disease is currently limited. We therefore sought to determine the relationship between age, amyloidosis, and amyloid-beta kinetics in the central nervous system (CNS) of humans Methods Amyloid-beta kinetics were analyzed in 112 participants and compared to the ages of participants and the amount of amyloid deposition. Results We found a highly significant correlation between increasing age and slowed amyloid-beta turnover rates (2.5-fold longer half-life over five decades of age). In addition, we found independent effects on amyloid-beta42 kinetics specifically in participants with amyloid deposition. Amyloidosis was associated with a higher (>50%) irreversible loss of soluble amyloid-beta42 and a 10-fold higher amyloid-beta42 reversible exchange rate. Interpretation These findings reveal a mechanistic link between human aging and the risk of amyloidosis which may be due to a dramatic slowing of amyloid-beta turnover, increasing the likelihood of protein misfolding that leads to deposition. Alterations in amyloid-beta kinetics associated with aging and amyloidosis suggest opportunities for diagnostic and therapeutic strategies. More generally, this study provides an example of how changes in protein turnover kinetics can be used to detect physiologic and pathophysiologic changes and may be applicable to other proteinopathies. PMID:26040676

  16. AMYLOIDPEPTIDE BINDS TO MICROTUBULE-ASSOCIATED PROTEIN 1B (MAP1B)

    PubMed Central

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H.; Manoutcharian, Karen

    2008-01-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer’s disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer’s disease. PMID:18079022

  17. [The influence of dipole modifiers on the channel-forming activity of amyloid and amyloid-like peptides in lipid bilayers].

    PubMed

    Efimova, S S; Zakharov, V V; Ostroumova, O S

    2015-01-01

    We have studied the steady-state transmembrane current induced by amyloid and amyloid-like peptides in lipid bilayers in the presence of dipole modifiers. It has been shown that the addition of dipole modifier, phloretin, to the membrane bathing solutions leads to an increase in the multichannel activity of amyloid beta-peptide fragment 25-35, [Gly35]-amyloid beta-peptide fragment 25--35, prion protein fragment 106-126 and amyloid-like peptides myr-BASP1 (1--13), myr-BASP1(1--19) and GAP-43(1--40). We have found that the effect of phloretin is not the result of dipole potential changes due to adsorption of this modifier on the membrane. Using the various fragments of amyloid beta-peptide, presenilin, prion protein and neuronal proteins BASP1 and GAP-43 allowes to conclude that the steady-state peptide-induced transmembrane current in the case of addition of phloretin is due to the electrostatic interaction between the positively charged channel-forming agents and negatively charged dipole modifier. The results obtained by electron microscopy have demonstrated that this interaction increases degree of peptide oligomerization.

  18. Alcadein cleavages by amyloid beta-precursor protein (APP) alpha- and gamma-secretases generate small peptides, p3-Alcs, indicating Alzheimer disease-related gamma-secretase dysfunction.

    PubMed

    Hata, Saori; Fujishige, Sayaka; Araki, Yoichi; Kato, Naoko; Araseki, Masahiko; Nishimura, Masaki; Hartmann, Dieter; Saftig, Paul; Fahrenholz, Falk; Taniguchi, Miyako; Urakami, Katsuya; Akatsu, Hiroyasu; Martins, Ralph N; Yamamoto, Kazuo; Maeda, Masahiro; Yamamoto, Tohru; Nakaya, Tadashi; Gandy, Sam; Suzuki, Toshiharu

    2009-12-25

    Alcadeins (Alcs) constitute a family of neuronal type I membrane proteins, designated Alc(alpha), Alc(beta), and Alc(gamma). The Alcs express in neurons dominantly and largely colocalize with the Alzheimer amyloid precursor protein (APP) in the brain. Alcs and APP show an identical function as a cargo receptor of kinesin-1. Moreover, proteolytic processing of Alc proteins appears highly similar to that of APP. We found that APP alpha-secretases ADAM 10 and ADAM 17 primarily cleave Alc proteins and trigger the subsequent secondary intramembranous cleavage of Alc C-terminal fragments by a presenilin-dependent gamma-secretase complex, thereby generating "APP p3-like" and non-aggregative Alc peptides (p3-Alcs). We determined the complete amino acid sequence of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma), whose major species comprise 35, 37, and 31 amino acids, respectively, in human cerebrospinal fluid. We demonstrate here that variant p3-Alc C termini are modulated by FAD-linked presenilin 1 mutations increasing minor beta-amyloid species Abeta42, and these mutations alter the level of minor p3-Alc species. However, the magnitudes of C-terminal alteration of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma) were not equivalent, suggesting that one type of gamma-secretase dysfunction does not appear in the phenotype equivalently in the cleavage of type I membrane proteins. Because these C-terminal alterations are detectable in human cerebrospinal fluid, the use of a substrate panel, including Alcs and APP, may be effective to detect gamma-secretase dysfunction in the prepathogenic state of Alzheimer disease subjects.

  19. Amyloid-beta Alzheimer targets — protein processing, lipid rafts, and amyloid-beta pores

    PubMed Central

    Arbor, Sage C.; LaFontaine, Mike; Cumbay, Medhane

    2016-01-01

    Amyloid beta (Aβ), the hallmark of Alzheimer’s Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review. PMID:27505013

  20. Dissociation of ERK and Akt signaling in endothelial cell angiogenic responses to {beta}-amyloid

    SciTech Connect

    Magrane, Jordi; Christensen, Rial A.; Rosen, Kenneth M.; Veereshwarayya, Vimal; Querfurth, Henry W. . E-mail: hquerf01@granite.tufts.edu

    2006-04-15

    Cerebrovascular deposits of {beta}-amyloid (A{beta}) peptides are found in Alzheimer's disease and cerebral amyloid angiopathy with stroke or dementia. Dysregulations of angiogenesis, the blood-brain barrier and other critical endothelial cell (EC) functions have been implicated in aggravating chronic hypoperfusion in AD brain. We have used cultured ECs to model the effects of {beta}-amyloid on the activated phosphorylation states of multifunctional serine/threonine kinases since these are differentially involved in the survival, proliferation and migration aspects of angiogenesis. Serum-starved EC cultures containing amyloid-{beta} peptides underwent a 2- to 3-fold increase in nuclear pyknosis. Under growth conditions with sublethal doses of {beta}-amyloid, loss of cell membrane integrity and inhibition of cell proliferation were observed. By contrast, cell migration was the most sensitive to A{beta} since inhibition was significant already at 1 {mu}M (P = 0.01, migration vs. proliferation). In previous work, intracellular A{beta} accumulation was shown toxic to ECs and Akt function. Here, extracellular A{beta} peptides do not alter Akt activation, resulting instead in proportionate decreases in the phosphorylations of the MAPKs: ERK1/2 and p38 (starting at 1 {mu}M). This inhibitory action occurs proximal to MEK1/2 activation, possibly through interference with growth factor receptor coupling. Levels of phospho-JNK remained unchanged. Addition of PD98059, but not LY294002, resulted in a similar decrease in activated ERK1/2 levels and inhibition of EC migration. Transfection of ERK1/2 into A{beta}-poisoned ECs functionally rescued migration. The marked effect of extracellular A{beta} on the migration component of angiogenesis is associated with inhibition of MAPK signaling, while Akt-dependent cell survival appears more affected by cellular A{beta}.

  1. Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis.

    PubMed

    Liu, Y; Schubert, D

    1997-12-01

    Amyloid beta peptide (A beta) neurotoxicity is believed to play a central role in the pathogenesis of Alzheimer's disease. An early indicator of A beta toxicity is the inhibition of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction to MTT formazan, a widely used assay for measuring cell viability. In this report we show that A beta and other cytotoxic amyloid peptides such as human amylin dramatically enhance MTT formazan exocytosis, resulting in the inhibition of cellular MTT reduction. Only the amyloid peptides that are known to be cytotoxic enhanced MTT formazan exocytosis. Basal MTT formazan exocytosis and amyloid peptide-enhanced MTT formazan exocytosis are blocked by several drugs with diverse known effects. These and other data suggest that MTT formazan exocytosis is a multistep process and that cytotoxic amyloid peptides enhance MTT formazan exocytosis through an intracellular signal transduction pathway.

  2. Propagating structure of alzheimer's {beta}-amyloid is parallel {beta}-sheet with residues in exact register.

    SciTech Connect

    Benzinger, T. L. S.; Gregory, D. M.; Burkoth, T. S.; Miller-Auer, H.; Lynn, D. G.; Botto, R. E.; Meredith, S. C.; Chemistry; Univ. of Chicago

    1998-11-10

    The pathognomonic plaques of Alzheimer's disease are composed primarily of the 39- to 43-aa {beta}-amyloid (A{beta}) peptide. Crosslinking of A{beta} peptides by tissue transglutaminase (tTg) indicates that Gln15 of one peptide is proximate to Lys16 of another in aggregated A{beta}. Here we report how the fibril structure is resolved by mapping interstrand distances in this core region of the A{beta} peptide chain with solid-state NMR. Isotopic substitution provides the source points for measuring distances in aggregated A{beta}. Peptides containing a single carbonyl 13C label at Gln15, Lys16, Leu17, or Val18 were synthesized and evaluated by NMR dipolar recoupling methods for the measurement of interpeptide distances to a resolution of 0.2 Angstrom. Analysis of these data establish that this central core of A{beta} consists of a parallel {beta}-sheet structure in which identical residues on adjacent chains are aligned directly, i.e., in register. Our data, in conjunction with existing structural data, establish that the A{beta} fibril is a hydrogen-bonded, parallel {beta}-sheet defining the long axis of the A{beta} fibril propagation.

  3. Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein.

    PubMed Central

    Knauer, M F; Soreghan, B; Burdick, D; Kosmoski, J; Glabe, C G

    1992-01-01

    The A4 or beta protein is a peptide that constitutes the major protein component of senile plaques in Alzheimer disease. The A4/beta protein is derived from a larger, transmembrane amyloid precursor protein (APP). The putative abnormal processing events leading to amyloid accumulation are largely unknown. Here we report that a 42-residue synthetic peptide, beta 1-42, corresponding to one of the longer forms of the A4/beta protein, accumulates in cultured human skin fibroblasts and is stable for at least 3 days. The peptide appears to accumulate intracellularly, since it does not accumulate under conditions that prevent endocytosis and accumulation is correlated with the acquisition of resistance to removal by trypsin digestion. This intracellular accumulation is also correlated with the ability of the peptide to aggregate as determined by SDS/polyacrylamide gel electrophoresis. At low concentrations of the beta 1-42 peptide, which favor the nonaggregated state, no accumulation is observed. Shorter peptide analogs (28 or 39 residues) that are truncated at the C terminus, which lack the ability to aggregate in SDS gels, fail to accumulate. The accumulated intracellular beta 1-42 peptide is in an aggregated state and is contained in a dense organellar compartment that overlaps the distribution of late endosomes or secondary lysosomes. Immunofluorescence of the internalized peptide in permeabilized cells reveals that it is contained in granular deposits, consistent with localization in late endosomes or secondary lysosomes. Sequence analysis indicates that some of the internalized peptide is subject to N-terminal trimming. These results suggest that the aggregated A4/beta protein may be resistant to degradation and suggest that the A4/beta protein may arise, at least in part, by endosomal or lysosomal processing of APP. Our results also suggest that relatively nonspecific proteolysis may be sufficient to generate the A4/beta protein if this part of APP is selectively

  4. Peptide Detection of Fungal Functional Amyloids in Infected Tissue

    PubMed Central

    Garcia-Sherman, Melissa C.; Lysak, Nataliya; Filonenko, Alexandra; Richards, Hazel; Sobonya, Richard E.; Klotz, Stephen A.; Lipke, Peter N.

    2014-01-01

    Many fungal cell adhesion proteins form functional amyloid patches on the surface of adhering cells. The Candida albicans Agglutinin-like sequence (Als) adhesins are exemplars for this phenomenon, and have amyloid forming sequences that are conserved between family members. The Als5p amyloid sequence mediates amyloid fibril formation and is critical for cell adhesion and biofilm formation, and is also present in the related adhesins Als1p and Als3p. We have developed a fluorescent peptide probe containing the conserved Als amyloid-forming sequence. This peptide bound specifically to yeast expressing Als5p, but not to cells lacking the adhesin. The probe bound to both yeast and hyphal forms of C. albicans. Δals1/Δals3 single and double deletion strains exhibited reduced fluorescence, indicating that probe binding required expression of these proteins. Additionally, the Als peptide specifically stained fungal cells in abscesses in autopsy sections. Counterstaining with calcofluor white showed colocalization with the amyloid peptide. In addition, fungi in autopsy sections derived from the gastrointestinal tract showed colocalization of the amyloid-specific dye thioflavin T and the fluorescent peptide. Collectively, our data demonstrate that we can exploit amyloid sequence specificity for detection of functional amyloids in situ. PMID:24465872

  5. Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet- fed rats.

    PubMed

    Asadbegi, Masoumeh; Yaghmaei, Parichehreh; Salehi, Iraj; Komaki, Alireza; Ebrahim-Habibi, Azadeh

    2017-03-02

    Obesity and consumption of a high fat diet (HFD) are known to increase the risk of Alzheimer's disease (AD). In the present study, we have examined the protective and therapeutic effects of thymol (main monoterpene phenol found in thyme essential oil) on a HFD-fed rat model of AD. Fourty adult male Wistar rats were randomly assigned to 5 groups:(n = 8 rats/group): group 1, control, consumed an ordinary diet, group 2 consumed a HFD for 8 weeks, then received phosphate-buffered saline (PBS) via intrahippocampal (IHP) injection, group 3 consumed HFD for 8 weeks, then received beta-amyloid (Aβ)1-42 via IHP injections to induce AD, group 4 consumed HFD for 8 weeks, then received Aβ1-42, and was treated by thymol (30 mg/kg in sunflower oil) daily for 4 weeks, and group 5 consumed HFD for 8 week, then received Aβ1-42 after what sunflower oil was administered by oral gavage daily for 4 weeks. Biochemical tests showed an impaired lipid profile and higher glucose levels upon consumption of HFD, which was ameliorated by thymol treatment. In behavioral results, spatial memory in group 3 was significantly impaired, but groups treated with thymol showed better spatial memory compared to group 3 (p ≤ 0.01). In histological results, formation of Aβ plaque in hippocampus of group 3 increased significantly compared to group 1 and group 2 (p ≤ 0.05), but group 4 showed decreased Aβ plaques compared to group 3 (p ≤ 0.01). In conclusion, thymol decreased the effects of Aβ on memory and could be considered as neuroprotective.

  6. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes.

    PubMed

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-09-30

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1-40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1-40 peptide on the basis of their emission response.

  7. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-01-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1–40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1–40 peptide on the basis of their emission response. PMID:26419607

  8. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-09-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1-40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1-40 peptide on the basis of their emission response.

  9. ASP1 (BACE2) cleaves the amyloid precursor protein at the beta-secretase site.

    PubMed

    Hussain, I; Powell, D J; Howlett, D R; Chapman, G A; Gilmour, L; Murdock, P R; Tew, D G; Meek, T D; Chapman, C; Schneider, K; Ratcliffe, S J; Tattersall, D; Testa, T T; Southan, C; Ryan, D M; Simmons, D L; Walsh, F S; Dingwall, C; Christie, G

    2000-11-01

    Sequential proteolytic processing of the Amyloid Precursor Protein (APP) by beta- and gamma-secretases generates the 4-kDa amyloid (A beta) peptide, a key component of the amyloid plaques seen in Alzheimer's disease (AD). We and others have recently reported the identification and characterisation of an aspartic proteinase, Asp2 (BACE), as beta-secretase. Here we describe the characterization of a second highly related aspartic proteinase, Asp1 as a second beta-secretase candidate. Asp1 is expressed in brain as detected at the mRNA level and at the protein level. Transient expression of Asp1 in APP-expressing cells results in an increase in the level of beta-secretase-derived soluble APP and the corresponding carboxy-terminal fragment. Paradoxically there is a decrease in the level of soluble A beta secreted from the cells. Asp1 colocalizes with APP in the Golgi/endoplasmic reticulum compartments of cultured cells. Asp1, when expressed as an Fc fusion protein (Asp1-Fc), has the N-terminal sequence ALEP..., indicating that it has lost the prodomain. Asp1-Fc exhibits beta-secretase activity by cleaving both wild-type and Swedish variant (KM/NL) APP peptides at the beta-secretase site.

  10. Solution structures of {beta}-amyloid{sub 10-35} and {beta}-amyloid{sub 10-35} PEG3000 aggregates.

    SciTech Connect

    Benzinger, T. L. S.; Burkoth, T. S.; Gordon, D.; Lynn, D. G.; Meredith, S. C.; Morgan, D. M.; Seifert, S.; Thiyagarajan, P.; Urban, V.

    1999-07-02

    Small angle neutron and x-ray scattering (SANS/SAXS) studies were conducted on the structure of the aggregates formed from both the truncated model peptide {beta}-Amyloid(10-35) (A{beta}{sub 10-35}) and a block copolymer {beta}-Amyloid (10-35)-PEG3000 (A{beta}{sub 10-35}-PEG) in D{sub 2}O at pHs from 3.0 to 7.0. These studies indicate that A{beta}{sub 10-35} aggregates into rod-like particles (fibril) and their radii are strongly dependent on the Pm of the solution. The fibril-fibril association in A{beta}{sub 10-35} solutions is less of pH < 5.6, but becomes larger at higher pH. A{beta}{sub 10-35}-PEG also assembles into rod-like particles whose radius is larger by about 30 {angstrom} than that for A{beta}{sub 10-35} fibril at pH 4.2, while it is about 23 {angstrom} larger at higher pH. Contrast matching SAXS/SANS experiments that eliminate the coherent scattering from PEG reveal that PEG moiety is located at the periphery of the fibril. Also, the mass per unit length of the peptide portion is similar for both A{beta}{sub 10-35} and A{beta}{sub 10-35}-PEG fibrils at pH 5.6. The mass per unit length of the rods from SANS provides key information on the packing of A{beta}{sub 10-35} peptides in the fibril.

  11. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    PubMed

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  12. beta-amyloid protein of Alzheimer's disease is found in cerebral and spinal cord vascular malformations.

    PubMed Central

    Hart, M. N.; Merz, P.; Bennett-Gray, J.; Menezes, A. H.; Goeken, J. A.; Schelper, R. L.; Wisniewski, H. M.

    1988-01-01

    Congo/Red deposition with birefringence to polarized light was demonstrated focally in cerebrovascular malformations removed surgically from 4 older patients (ages 85, 74, 74, and 63), and in a spinal cord vascular malformation in a 76-year-old patient. Lesser degrees of Congophilic change were observed in cerebrovascular malformations screened from 4 of 10 patients between the ages of 30 and 59. No Congophilic change was seen in 10 cerebrovascular malformations removed from patients under 30 years of age. Congophilic areas in all cases decorated with W-2 and 85/45 polyclonal antibodies raised to peptide sequences of cerebrovascular beta-amyloid and beta-amyloid of senile plaques from patients with Alzheimer's disease. Thus, the amyloid in these vascular malformations is immunologically related to beta-amyloid protein. This finding provides another indication that vascular beta-amyloid deposition is not specific for Alzheimer's disease and suggests that an existing abnormality of vessels may be a predisposing factor. Images Figure 1 Figure 2A Figure 2B Figure 3 Figure 4 PMID:3293463

  13. Amyloidpeptide binds to cytochrome C oxidase subunit 1.

    PubMed

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  14. AmyloidPeptide Binds to Cytochrome C Oxidase Subunit 1

    PubMed Central

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H.; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1–42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1–42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1–42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1–42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1–42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD. PMID:22927926

  15. Preformed {beta}-amyloid fibrils are destabilized by coenzyme Q{sub 10} in vitro

    SciTech Connect

    Ono, Kenjiro; Hasegawa, Kazuhiro; Naiki, Hironobu; Yamada, Masahito . E-mail: m-yamada@med.kanazawa-u.ac.jp

    2005-04-29

    Inhibition of the formation of {beta}-amyloid fibrils (fA{beta}), as well as the destabilization of preformed fA{beta} in the CNS, would be attractive therapeutic targets for the treatment of Alzheimer's disease (AD). We reported previously that nordihydroguaiaretic acid (NDGA) and wine-related polyphenol, myricetin (Myr), inhibit fA{beta} formation from A{beta} and destabilize preformed fA{beta} in vitro. Using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies, we examined the effects of coenzyme Q{sub 10} (CoQ{sub 10}) on the formation, extension, and destabilization of fA{beta} at pH 7.5 at 37 deg C in vitro. We next compared the anti-amyloidogenic activities of CoQ{sub 10} with NDGA and Myr. CoQ{sub 10} dose-dependently inhibited fA{beta} formation from amyloid {beta}-peptide (A{beta}), as well as their extension. Moreover, it destabilized preformed fA{beta}s. The anti-amyloidogenic effects of CoQ{sub 10} were slightly weaker than those of NDGA and Myr. CoQ{sub 10} could be a key molecule for the development of therapeutics for AD.

  16. Bacterial enzymes effectively digest Alzheimer's β-amyloid peptide.

    PubMed

    Danilova, Yuliya Vasilyevna; Shagimardanova, Elena Ilyasovna; Margulis, Anna Borisovna; Toymentseva, Anna Aleksandrovna; Balaban, Nelly Pavlovna; Rudakova, Nataliya Leonidovna; Rizvanov, Albert Anatolyevich; Sharipova, Margarita Rashidovna; Palotás, András

    2014-09-01

    Aggregated β-amyloid peptides play key roles in the development of Alzheimer's disease, and recent evidence suggests that microbial particles, among others, can facilitate their polymerization. Bacterial enzymes, however, have been proved to be beneficial in degrading pathological fibrillar structures in clinical settings, such as strepto-kinases in resolving blood-clots. The purpose of this study was to investigate the ability of bacterial substances to effectively hydrolyze β-amyloid peptides. Degrading products of several proteinases from Bacillus pumilus were evaluated using MALDI-TOF mass-spectrometry, and their toxicity was assessed in vitro using cell-culture assays and morphological studies. These enzymes have proved to be non-toxic and were demonstrated to cleave through the functional domains of β-amyloid peptide. By yielding inactive fragments, proteinases of Bacillus pumilus may be used as candidate anti-amyloid agents.

  17. Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme.

    PubMed

    Eckman, Elizabeth A; Adams, Stephanie K; Troendle, Frederick J; Stodola, Becky A; Kahn, Murad A; Fauq, Abdul H; Xiao, Hong D; Bernstein, Kenneth E; Eckman, Christopher B

    2006-10-13

    The deposition of beta-amyloid in the brain is a pathological hallmark of Alzheimer disease (AD). Normally, the accumulation of beta-amyloid is prevented in part by the activities of several degradative enzymes, including the endothelin-converting enzymes, neprilysin, insulin-degrading enzyme, and plasmin. Recent reports indicate that another metalloprotease, angiotensin-converting enzyme (ACE), can degrade beta-amyloid in vitro and in cellular overexpression experiments. In addition, ACE gene variants are linked to AD risk in several populations. Angiotensin-converting enzyme, neprilysin and endothelin-converting enzyme function as vasopeptidases and are the targets of drugs designed to treat cardiovascular disorders, and ACE inhibitors are commonly prescribed. We investigated the potential physiological role of ACE in regulating endogenous brain beta-amyloid levels for two reasons: first, to determine whether beta-amyloid degradation might be the mechanism by which ACE is associated with AD, and second, to determine whether ACE inhibitor drugs might block beta-amyloid degradation in the brain and potentially increase the risk for AD. We analyzed beta-amyloid accumulation in brains from ACE-deficient mice and in mice treated with ACE inhibitors and found that ACE deficiency did not alter steady-state beta-amyloid concentration. In contrast, beta-amyloid levels are significantly elevated in endothelin-converting enzyme and neprilysin knock-out mice, and inhibitors of these enzymes cause a rapid increase in beta-amyloid concentration in the brain. The results of these studies do not support a physiological role for ACE in the degradation of beta-amyloid in the brain but confirm roles for endothelin-converting enzyme and neprilysin and indicate that reductions in these enzymes result in additive increases in brain amyloid beta-peptide levels.

  18. Alzheimer's disease. Beta-amyloid precursor protein expression in the nucleus basalis of Meynert.

    PubMed Central

    Murphy, G. M.; Greenberg, B. D.; Ellis, W. G.; Forno, L. S.; Salamat, S. M.; Gonzalez-DeWhitt, P. A.; Lowery, D. E.; Tinklenberg, J. R.; Eng, L. F.

    1992-01-01

    The nucleus basalis of Meynert (nbM) was examined using immunocytochemistry for beta-amyloid precursor protein (beta APP) expression in Alzheimer's disease (AD). In mild AD cases, light labeling of the cell body and proximal processes was observed, and small intracellular structures were labeled rarely. In the more severe cases, intense cytoplasmic beta APP labeling was seen, often along with small beta APP-positive structures. Double-labeling experiments demonstrated that in the more severe cases these small structures were also decorated by a neurofibrillary tangle (NFT) antiserum. Other neurons in the severe cases showed incorporation of beta APP into large inclusions, which were also labeled with the NFT antiserum. However, some large inclusions in the severe cases were labeled by the NFT antiserum but contained no beta APP. Extraneuronal NFTs did not show beta APP labeling and did not react with an antibody to the beta-amyloid peptide. These results suggest that increased expression of beta APP coincides with intracellular NFT formation in the nbM, but that the formation of extraneuronal NFTs results in a loss of beta APP immunoreactivity. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1386714

  19. Size-dependent neurotoxicity of beta-amyloid oligomers.

    PubMed

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-04-15

    The link between the size of soluble amyloid beta (Abeta) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Abeta(1-42) resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Abeta(1-42) with a mean particle z-height of 1-2 nm exhibited propensity to bind to phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. A similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Abeta(1-42) oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Abeta(1-42) induced reduction of neuronal cell densities in the CGC cultures.

  20. Can Alzheimer disease be prevented by amyloid-beta immunotherapy?

    PubMed

    Lemere, Cynthia A; Masliah, Eliezer

    2010-02-01

    Alzheimer disease (AD) is the most common form of dementia. The amyloid-beta (Abeta) peptide has become a major therapeutic target in AD on the basis of pathological, biochemical and genetic evidence that supports a role for this molecule in the disease process. Active and passive Abeta immunotherapies have been shown to lower cerebral Abeta levels and improve cognition in animal models of AD. In humans, dosing in the phase II clinical trial of the AN1792 Abeta vaccine was stopped when approximately 6% of the immunized patients developed meningoencephalitis. However, some plaque clearance and modest clinical improvements were observed in patients following immunization. As a result of this study, at least seven passive Abeta immunotherapies are now in clinical trials in patients with mild to moderate AD. Several second-generation active Abeta vaccines are also in early clinical trials. On the basis of preclinical studies and the limited data from clinical trials, Abeta immunotherapy might be most effective in preventing or slowing the progression of AD when patients are immunized before or in the very earliest stages of disease onset. Biomarkers for AD and imaging technology have improved greatly over the past 10 years and, in the future, might be used to identify presymptomatic, at-risk individuals who might benefit from Abeta immunization.

  1. Antiaggregation Potential of Padina gymnospora against the Toxic Alzheimer’s Beta-Amyloid Peptide 25–35 and Cholinesterase Inhibitory Property of Its Bioactive Compounds

    PubMed Central

    Shanmuganathan, Balakrishnan; Sheeja Malar, Dicson; Sathya, Sethuraman; Pandima Devi, Kasi

    2015-01-01

    Inhibition of β-amyloid (Aβ) aggregation in the cerebral cortex of the brain is a promising therapeutic and defensive strategy in identification of disease modifying agents for Alzheimer’s disease (AD). Since natural products are considered as the current alternative trend for the discovery of AD drugs, the present study aims at the evaluation of anti-amyloidogenic potential of the marine seaweed Padina gymnospora. Prevention of aggregation and disaggregation of the mature fibril formation of Aβ 25–35 by acetone extracts of P. gymnospora (ACTPG) was evaluated in two phases by Thioflavin T assay. The results were further confirmed by confocal laser scanning microscopy (CLSM) analysis and Fourier transform infrared (FTIR) spectroscopic analysis. The results of antiaggregation and disaggregation assay showed that the increase in fluorescence intensity of aggregated Aβ and the co-treatment of ACTPG (250 μg/ml) with Aβ 25–35, an extensive decrease in the fluorescence intensity was observed in both phases, which suggests that ACTPG prevents the oligomers formation and disaggregation of mature fibrils. In addition, ACTPG was subjected to column chromatography and the bioactivity was screened based on the cholinesterase inhibitory activity. Finally, the active fraction was subjected to LC-MS/MS analysis for the identification of bioactive compounds. Overall, the results suggest that the bioactive compound alpha bisabolol present in the alga might be responsible for the observed cholinesterase inhibition with the IC50 value < 10 μg/ml for both AChE and BuChE when compared to standard drug donepezil (IC50 value < 6 μg/ml) and support its use for the treatment of neurological disorders. PMID:26536106

  2. [Beta amyloid in blood and cerebrospinal fluid is associated with high density lipoproteins].

    PubMed

    Kudinova, N V; Kudinov, A R; Berezov, T T

    1996-01-01

    Cerebrovascular and parenchymal amyloid deposits found in brains of Alzheimer's disease, Down's syndrome and normal aging are mainly composed of aggregated amyloid beta protein (A beta), a unique peptide 39 to 44 amino acids long. A similar but soluble A beta (s A beta) has been identified in plasma, cerebrospinal fluid (CSF) and cell supernatants, indicating that it is a normal protein. We report here that s A beta in normal human plasma and CSF is complexed to high density lipoprotein (HDL) 3 and very high density lipoprotein (VHDL). Biotinylated synthetic peptide A beta 1-40 was traced in normal human plasma in in vitro experiments. Both tracer biotin-labeled A beta 1-40 and native s A beta were specifically recovered in HDL3 and VHDL as it was assessed in immunoprecipitation experiments of purified plasma lipoproteins and lipoprotein depleted plasma. This fact prompted us to ascertain whether the interaction of s A beta with HDL does occur in normal human CSF in vivo. For this purpose normals human CSF was fractionated by means of sequential flotation ultracentrifugation. The presence of s A beta in the resulting lipoprotein fractions as well as in the lipoprotein depleted CSF was analysed by immunoblot analysis, electron and immune-electron microscopy and native size exclusion chromatography. Immunoblot analysis with 6E10 monoclonal anti-A beta antibodies revealed s A beta association with all HDL subspecies of CSF, primarily HDL3 and VHDL and immunoelectron microscopy confirmed an association of s A beta with CSF-HDL particles of 16.8 + 3.2 nm. Native size exclusion chromatography followed by immunoblot analysis with antibodies against A beta and different apoliproproteins indicated an association of s A beta with HDL complexes of approximately 200 kDa molecular weight. Soluble A beta association with HDL3 and VHDL may be involved in maintaining the solubility of A beta in biological fluids and points to a possible role of lipoproteins and lipoprotein lipid

  3. Candidate genes for Alzheimer’s disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome

    PubMed Central

    Schupf, Nicole; Lee, Annie; Park, Naeun; Dang, Lam-Ha; Pang, Deborah; Yale, Alexander; Oh, David Kyung-Taek; Krinsky-McHale, Sharon J.; Jenkins, Edmund C.; Luchsinger, José A.; Zigman, Warren B.; Silverman, Wayne; Tycko, Benjamin; Kisselev, Sergey; Clark, Lorraine; Lee, Joseph H.

    2015-01-01

    We examined the contribution of candidate genes for Alzheimer’s disease (AD) on Chromosome 21 and other chromosomes to differences in Aβ peptide levels in a cohort of adults with DS, a population at high risk for AD. Participants were 254 non-demented adults with Down syndrome, 30–78 years of age. Genomic DNA was genotyped using an Illumina GoldenGate custom array. We used linear regression to examine differences in levels of Aβ peptides associated with the number of risk alleles, adjusting for age, sex, level of intellectual disability, race/ethnicity and the presence of the APOE ε4 allele. For Aβ42 levels, the strongest gene-wise association was found for a SNP on CAHLM1; for Aβ40 levels the strongest gene-wise associations were found for SNPs in IDE and SOD1, while the strongest gene-wise associations with levels of the Aβ42/Aβ40 ratio were found for SNPs in SORCS1. Broadly classified, variants in these genes may influence APP processing (CALHM1, IDE), vesicular trafficking (SORCS1), and response to oxidative stress (SOD1). PMID:26166206

  4. Amyloid beta toxicity dependent upon endothelial cell state

    PubMed Central

    Balcells, Mercedes; Wallins, Joseph S.; Edelman, Elazer R.

    2008-01-01

    Amyloid beta (Aβ), a peptide family produced and deposited in neurons and endothelial cells (EC), is found at subnanomolar concentrations in the plasma of healthy individuals. Simple conformational changes produce a form of Aβ Aβ42, which creates toxic plaque in the brains of Alzheimer’s patients. Oxidative stress induced blood brain barrier degeneration has been proposed as a key factor for Aβ42 toxicity, but cannot account for lack of injury from the same peptide in healthy tissues. We hypothesized that cell state mediates Aβ effect. Thus, we examined the viability of aortic EC, vascular smooth muscle cells (SMC) and epithelial cells (EPI) in different states in the presence of Aβ secreted from transfected Chinese hamster ovary cells (CHO). Aβ was more toxic to all cell types when they were subconfluent. Subconfluent EC sprouted and SMC and EPI were inhibited by Aβ. Confluent EC were virtually resistant to Aβ and suppressed Aβ production by Aβ+CHO. Products of subconfluent EC overcame this resistant state, stimulating the production and toxicity of Aβ42. Confluent EC overgrew ~35% beyond their quiescent state in the presence of Aβ conditioned in media from subconfluent EC. These findings imply that Aβ42 may well be even more cytotoxic to cells in injured or growth states and potentially explain the variable and potent effects of this protein. One may now need to consider tissue and cell state in addition to local concentration of and exposure duration to Aβ. The specific interactions of Aβ and EC in a state-dependent fashion may help understand further the common and divergent forms of vascular and cerebral toxicity of Aβ and the spectrum of AD. PMID:18601976

  5. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    SciTech Connect

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  6. Effect of Curcumin on the metal ion induced fibrillization of Amyloidpeptide

    NASA Astrophysics Data System (ADS)

    Banerjee, Rona

    2014-01-01

    The effect of Curcumin on Cu(II) and Zn(II) induced oligomerization and protofibrillization of the amyloid-beta (Aβ) peptide has been studied by spectroscopic and microscopic methods. Curcumin could significantly reduce the β-sheet content of the peptide in a time dependent manner. It also plays an antagonistic role in β-sheet formation that is promoted by metal ions like Cu(II) and Zn(II) as observed by Circular Dichroism (CD) spectroscopy. Atomic force microscopic (AFM) images show that spontaneous fibrillization of the peptide occurs in presence of Cu(II) and Zn(II) but is inhibited on incubation of the peptide with Curcumin indicating the beneficial role of Curcumin in preventing the aggregation of Aβ peptide.

  7. Prediction of Peptide and Protein Propensity for Amyloid Formation

    PubMed Central

    Família, Carlos; Dennison, Sarah R.; Quintas, Alexandre; Phoenix, David A.

    2015-01-01

    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔG° values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation. PMID:26241652

  8. Prediction of Peptide and Protein Propensity for Amyloid Formation.

    PubMed

    Família, Carlos; Dennison, Sarah R; Quintas, Alexandre; Phoenix, David A

    2015-01-01

    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔG° values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation.

  9. Estrogen has anti-amyloidogenic effects on Alzheimer's {beta}-amyloid fibrils in vitro

    SciTech Connect

    Morinaga, Akiyoshi; Hirohata, Mie; Ono, Kenjiro; Yamada, Masahito . E-mail: m-yamada@med.kanazawa-u.ac.jp

    2007-08-03

    Inhibition of the assembly of amyloid {beta}-peptide (A{beta}) as well as the destabilization of preformed {beta}-amyloid fibrils (fA{beta}) in the central nervous system could be valuable therapeutics of patients with Alzheimer's disease (AD). Epidemiological studies have indicated that estrogen therapy reduced the risk of developing AD in women. Here, we examined the effects of estrogen (estrone (E1), estradiol (E2), and estriol (E3)) and related sexual steroids (androstenedione (AND) and testosterone (TES)) on the polymerization, extension and destabilization of fA{beta}(1-42) and fA{beta}(1-40) at pH 7.5 at 37 {sup o}C in vitro, using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies. E1, E2, and E3 dose-dependently inhibited the formation, as well as destabilization of fA{beta}s. The overall anti-amyloidogenic activity of these molecules was in the order of: E3 > E2 = E1 >>AND = TES. Estrogen could be a potential therapeutic agent to prevent or delay AD progression.

  10. Increased gene expression of Alzheimer disease beta-amyloid precursor protein in senescent cultured fibroblasts.

    PubMed

    Adler, M J; Coronel, C; Shelton, E; Seegmiller, J E; Dewji, N N

    1991-01-01

    The pathological hallmark of Alzheimer disease is the accumulation of neurofibrillary tangles and neuritic plaques in the brains of patients. Plaque cores contain a 4- to 5-kDa amyloid beta-protein fragment which is also found in the cerebral blood vessels of affected individuals. Since amyloid deposition in the brain increases with age even in normal people, we sought to establish whether the disease state bears a direct relationship with normal aging processes. As a model for biological aging, the process of cellular senescence in vitro was used. mRNA levels of beta-amyloid precursor protein associated with Alzheimer disease were compared in human fibroblasts in culture at early passage and when the same fibroblasts were grown to senescence after more than 52 population doublings. A dramatic increase in mRNA was observed in senescent IMR-90 fibroblasts compared with early-passage cells. Hybridization of mRNA from senescent and early proliferating fibroblasts with oligonucleotide probes specific for the three alternatively spliced transcripts of the gene gave similar results, indicating an increase during senescence of all three forms. A similar, though more modest, increase in message levels was also observed in early-passage fibroblasts made quiescent by serum deprivation; with repletion of serum, however, the expression returned to previous low levels. ELISAs were performed on cell extracts from senescent, early proliferating, and quiescent fibroblasts, and quiescent fibroblasts repleted with serum for over 48 hr, using polyclonal antibodies to a synthetic peptide of the beta-amyloid precursor. The results confirmed that the differences in mRNA expression were partially reflected at the protein level. Regulated expression of beta-amyloid precursor protein may be an important determinant of growth and metabolic responses to serum and growth factors under physiological as well as pathological conditions.

  11. Specific interactions between amyloidpeptides in an amyloid-β hexamer with three-fold symmetry: Ab initio fragment molecular orbital calculations in water

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Tomioka, Shogo; Kadoya, Ryushi; Shimamura, Kanako; Okamoto, Akisumi; Shulga, Sergiy; Kurita, Noriyuki

    2017-03-01

    The accumulation of amyloid-beta (Aβ) aggregates in brain contributes to the onset of Alzheimer's disease (AD). Recent structural analysis for the tissue obtained from AD patients revealed that Aβ aggregates have a single structure with three-fold symmetry. To explain why this structure possesses significant stability, we here investigated the specific interactions between Aβ peptides in the aggregate, using ab initio fragment molecular orbital calculations. The results indicate that the interactions between the Aβ peptides of the stacked Aβ pair are stronger than those between the Aβ peptides of the trimer with three-fold symmetry and that the charged amino-acids are important.

  12. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells.

    PubMed

    Iuvone, Teresa; Esposito, Giuseppe; Esposito, Ramona; Santamaria, Rita; Di Rosa, Massimo; Izzo, Angelo A

    2004-04-01

    Abstract Alzheimer's disease is widely held to be associated with oxidative stress due, in part, to the membrane action of beta-amyloid peptide aggregates. Here, we studied the effect of cannabidiol, a major non-psychoactive component of the marijuana plant (Cannabis sativa) on beta-amyloid peptide-induced toxicity in cultured rat pheocromocytoma PC12 cells. Following exposure of cells to beta-amyloid peptide (1 micro g/mL), a marked reduction in cell survival was observed. This effect was associated with increased reactive oxygen species (ROS) production and lipid peroxidation, as well as caspase 3 (a key enzyme in the apoptosis cell-signalling cascade) appearance, DNA fragmentation and increased intracellular calcium. Treatment of the cells with cannabidiol (10(-7)-10(-4)m) prior to beta-amyloid peptide exposure significantly elevated cell survival while it decreased ROS production, lipid peroxidation, caspase 3 levels, DNA fragmentation and intracellular calcium. Our results indicate that cannabidiol exerts a combination of neuroprotective, anti-oxidative and anti-apoptotic effects against beta-amyloid peptide toxicity, and that inhibition of caspase 3 appearance from its inactive precursor, pro-caspase 3, by cannabidiol is involved in the signalling pathway for this neuroprotection.

  13. Distribution of precursor amyloid-. beta. -protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques

    SciTech Connect

    Lewis, D.A.; Higgins, G.A.; Young, W.G.; Goldgaber, D.; Gajdusek, D.C.; Wilson, M.C.; Morrison, J.H.

    1988-03-01

    Neurofibrillary tangles (NFT) and neuritic plaques (NP), two neuropathological markers of Alzheimer disease, may both contain peptide fragments derived from the human amyloid ..beta.. protein. However, the nature of the relationship between NFT and NP and the source of the amyloid ..beta.. proteins found in each have remained unclear. The authors used in situ hybridization techniques to map the anatomical distribution of precursor amyloid-..beta..-protein mRNA in the neocortex of brains from three subjects with no known neurologic disease and from five patients with Alzheimer disease. In brains from control subjects, positively hybridizing neurons were present in cortical regions and layers that contain a high density of neuropathological markers in Alzheimer disease, as well as in those loci that contain NP but few NFT. Quantitative analyses of in situ hybridization patterns within layers III and V of the superior frontal cortex revealed that the presence of high numbers of NFT in Alzheimer-diseased brains was associated with a decrease in the number of positively hybridizing neurons compared to controls and Alzheimer-diseased brains with few NFT. These findings suggest that the expression of precursor amyloid-..beta..-protein mRNA may be a necessary but is clearly not a sufficient prerequisite for NFT formation. In addition, these results may indicate that the amyloid ..beta.. protein, present in NP in a given region or layer of cortex, is not derived from the resident neuronal cell bodies that express the mRNA for the precursor protein.

  14. Emerging roles for the amyloid precursor protein and derived peptides in the regulation of cellular and systemic metabolism.

    PubMed

    Czeczor, Juliane K; McGee, Sean L

    2017-03-28

    The amyloid precursor protein (APP) is a transmembrane protein that can be cleaved by proteases through two different pathways to yield a number of small peptides, each with distinct physiological properties and functions. It has been extensively studied in the context of Alzheimer's disease, with the APP-derived amyloid beta (Aβ) peptide being a major constituent of the amyloid plaques observed in this disease. It has been known for some time that APP can regulate neuronal metabolism, however this review will examine evidence that APP and its peptides can also regulate key metabolic processes such as insulin action, lipid synthesis and storage and mitochondrial function in peripheral tissues. This review will present a hypothesis that amyloidogenic processing of APP in peripheral tissues plays a key role in the response to nutrient excess and that this could contribute to the pathogenesis of metabolic diseases such as obesity and type 2 diabetes (T2D). This article is protected by copyright. All rights reserved.

  15. Genes and mechanisms involved in beta-amyloid generation and Alzheimer's disease.

    PubMed

    Steiner, H; Capell, A; Leimer, U; Haass, C

    1999-01-01

    Alzheimer's disease is characterized by the invariable accumulation of senile plaques that are predominantly composed of amyloid beta-peptide (Abeta). Abeta is generated by proteolytic processing of the beta-amyloid precursor protein (betaAPP) involving the combined action of beta- and gamma-secretase. Cleavage within the Abeta domain by alpha-secretase prevents Abeta generation. In some very rare cases of familial AD (FAD), mutations have been identified within the betaAPP gene. These mutations are located close to or at the cleavage sites of the secretases and pathologically effect betaAPP processing by increasing Abeta production, specifically its highly amyloidogenic 42 amino acid variant (Abeta42). Most of the mutations associated with FAD have been identified in the two presenilin (PS) genes, particularly the PS1 gene. Like the mutations identified within the betaAPP gene, mutations in PS1 and PS2 cause the increased generation of Abeta42. PS1 has been shown to be functionally involved in Notch signaling, a key process in cellular differentation, and in betaAPP processing. A gene knock out of PS1 in mice leads to an embryonic lethal phenotype similar to that of mice lacking Notch. In addition, absence of PS1 results in reduced gamma-secretase cleavage and leads to an accumulation of betaAPP C-terminal fragments and decreased amounts of Abeta. Recent work may suggest that PS1 could be the gamma-secretase itself, exhibiting the properties of a novel aspartyl protease. Mutagenesis of either of two highly conserved intramembraneous aspartate residues of PS1 leads to reduced Abeta production as observed in the PS1 knockout. A corresponding mutation in PS2 interfered with betaAPP processing and Notch signaling suggesting a functional redundancy of both presenilins. In this issue, some of the recent work on the molecular mechanisms involved in Alzheimer's disease (AD) as well as novel diagnostic approaches and risk factors for AD will be discussed. In the first

  16. The interaction of beta-amyloid protein fragment (12-28) with lipid environments.

    PubMed Central

    Fletcher, T. G.; Keire, D. A.

    1997-01-01

    The neurotoxicity of beta-amyloid protein (beta AP) fragments may be a result of their solution conformation, which is very sensitive to solution conditions. In this work we describe NMR and CD studies of the conformation of beta AP(12-28) in lipid (micelle) environments as a function of pH and lipid type. The interaction of beta AP(12-28) with zwitterionic dodecylphosphocholine (DPC) micelles is weak and alters the conformation when compared to water solution alone. By contrast, the interaction of the peptide with anionic sodium dodecylsulfate (SDS) micelles is strong: beta AP(12-28) is mostly bound, is alpha-helical from K16 to V24, and aggregates slowly. The pH-dependent conformation changes of beta AP(12-28) in solution occur in the pH range at which the side-chain groups of E22, D23, H13, and H14 are deprotonated (pKas ca. 4 and 6.5); the interaction of beta AP(12-28) with SDS micelles alters the pH-dependent conformational transitions of the peptide whereas the weak interaction with DPC micelles causes little change. PMID:9070449

  17. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    NASA Astrophysics Data System (ADS)

    Araya, Eyleen; Olmedo, Ivonne; Bastus, Neus G.; Guerrero, Simón; Puntes, Víctor F.; Giralt, Ernest; Kogan, Marcelo J.

    2008-11-01

    Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ) amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  18. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    PubMed Central

    2008-01-01

    Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ) amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  19. Proteolytic processing of the amyloid-beta protein precursor of Alzheimer's disease.

    PubMed

    Nunan, Janelle; Small, David H

    2002-01-01

    The proteolytic processing of the amyloid-beta protein precursor plays a key role in the development of Alzheimer's disease. Cleavage of the amyloid-beta protein precursor may occur via two pathways, both of which involve the action of proteases called secretases. One pathway, involving beta- and gamma-secretase, liberates amyloid-beta protein, a protein associated with the neurodegeneration seen in Alzheimer's disease. The alternative pathway, involving alpha-secretase, precludes amyloid-beta protein formation. In this review, we describe the progress that has been made in identifying the secretases and their potential as therapeutic targets in the treatment or prevention of Alzheimer's disease.

  20. Docosahexaenoic acid-induced amelioration on impairment of memory learning in amyloid beta-infused rats relates to the decreases of amyloid beta and cholesterol levels in detergent-insoluble membrane fractions.

    PubMed

    Hashimoto, Michio; Hossain, Shahdat; Agdul, Haqu; Shido, Osamu

    2005-12-30

    We investigated the effects of dietary administration of docosahexaenoic acid (DHA; C22:6n-3) on the levels of amyloid beta (A beta) peptide (1-40) and cholesterol in the nonionic detergent Triton 100 x-insoluble membrane fractions (DIFs) of the cerebral cortex and, also, on learning-related memory in an animal model of Alzheimer's disease (AD) rats infused with A beta peptide (1-40) into the cerebral ventricle. The infusion increased the levels of A beta peptide and cholesterol in the DIFs concurrently with a significant increase in reference memory errors (measured by eight-arm radial-maze tasks) compared with those of vehicle rats. Conversely, the dietary administration of DHA to AD-model rats decreased the levels of A beta peptide and cholesterol in the DIFs, with the decrease being more prominent in the DHA-administered rats. Regression analysis revealed a significant positive correlation between A beta peptide and each of cholesterol, palmitic acid and stearic acid, and between the number of reference memory errors and each of cholesterol, palmitic, stearic and oleic acid; moreover, a significant negative correlation was observed between the number of reference memory errors and the molar ratio of DHA to palmitic plus stearic acid. These results suggest that DHA-induced protection of memory deficits in AD-model rats is related to the interactions of cholesterol, palmitic acid or stearic acid with A beta peptides in DIFs where DHA ameliorates these interactions.

  1. The metal loading ability of beta-amyloid N-terminus: a combined potentiometric and spectroscopic study of copper(II) complexes with beta-amyloid(1-16), its short or mutated peptide fragments, and its polyethylene glycol (PEG)-ylated analogue.

    PubMed

    Damante, Chiara A; Osz, Katalin; Nagy, Zoltán; Pappalardo, Giuseppe; Grasso, Giulia; Impellizzeri, Giuseppe; Rizzarelli, Enrico; Sóvágó, Imre

    2008-10-20

    Alzheimer's disease (AD) is becoming a rapidly growing health problem, as it is one of the main causes of dementia in the elderly. Interestingly, copper(II) (together with zinc and iron) ions are accumulated in amyloid deposits, suggesting that metal binding to Abeta could be involved in AD pathogenesis. In Abeta, the metal binding is believed to occur within the N-terminal region encompassing the amino acid residues 1-16. In this work, potentiometric, spectroscopic (UV-vis, circular dichroism, and electron paramagnetic resonance), and electrospray ionization mass spectrometry (ESI-MS) approaches were used to investigate the copper(II) coordination features of a new polyethylene glycol (PEG)-conjugated Abeta peptide fragment encompassing the 1-16 amino acid residues of the N-terminal region (Abeta(1-16)PEG). The high water solubility of the resulting metal complexes allowed us to obtain a complete complex speciation at different metal-to-ligand ratios ranging from 1:1 to 4:1. Potentiometric and ESI-MS data indicate that Abeta(1-16)PEG is able to bind up to four copper(II) ions. Furthermore, in order to establish the coordination environment at each metal binding site, a series of shorter peptide fragments of Abeta, namely, Abeta(1-4), Abeta(1-6), AcAbeta(1-6), and AcAbeta(8-16)Y10A, were synthesized, each encompassing a potential copper(II) binding site. The complexation properties of these shorter peptides were also comparatively investigated by using the same experimental approach.

  2. The beta-amyloid domain is essential for axonal sorting of amyloid precursor protein.

    PubMed Central

    Tienari, P J; De Strooper, B; Ikonen, E; Simons, M; Weidemann, A; Czech, C; Hartmann, T; Ida, N; Multhaup, G; Masters, C L; Van Leuven, F; Beyreuther, K; Dotti, C G

    1996-01-01

    We have analysed the axonal sorting signals of amyloid precursor protein (APP). Wild-type and mutant versions of human APP were expressed in hippocampal neurons using the Semliki forest virus system. We show that wild-type APP and mutations implicated in Alzheimer's disease and another brain beta-amyloidosis are sorted to the axon. By analysis of deletion mutants we found that the membrane-inserted APP ectodomain but not the cytoplasmic tail is required for axonal sorting. Systematic deletions of the APP ectodomain identified two regions required for axonal delivery: one encoded by exons 11-15 in the carbohydrate domain, the other encoded by exons 16-17 in the juxtamembraneous beta-amyloid domain. Treatment of the cells with the N-glycosylation inhibitor tunicamycin induced missorting of wild-type APP, supporting the importance of glycosylation in axonal sorting of APP. The data revealed a hierarchy of sorting signals on APP: the beta-amyloid-dependent membrane proximal signal was the major contributor to axonal sorting, while N-glycosylation had a weaker effect. Furthermore, recessive somatodendritic signals, most likely in the cytoplasmic tail, directed the protein to the dendrites when the ectodomain was deleted. Analysis of detergent solubility of APP and another axonally delivered protein, hemagglutinin, demonstrated that only hemagglutinin formed CHAPS-insoluble complexes, suggesting distinct mechanisms of axonal sorting for these two proteins. This study is the first delineation of sorting requirements of an axonally targeted protein in polarized neurons and indicates that the beta-amyloid domain plays a major role in axonal delivery of APP. Images PMID:8895567

  3. TANGO-Inspired Design of Anti-Amyloid Cyclic Peptides.

    PubMed

    Lu, Xiaomeng; Brickson, Claire R; Murphy, Regina M

    2016-09-21

    β-Amyloid peptide (Aβ) self-associates into oligomers and fibrils, in a process that is believed to directly lead to neuronal death in Alzheimer's disease. Compounds that bind to Aβ, and inhibit fibrillogenesis and neurotoxicity, are of interest as an anti-Alzheimer therapeutic strategy. Peptides are particularly attractive for this purpose, because they have advantages over small molecules in their ability to disrupt protein-protein interactions, yet they are amenable to tuning of their properties through chemical means, unlike antibodies. Self-complementation and peptide library screening are two strategies that have been employed in the search for peptides that bind to Aβ. We have taken a different approach, by designing Aβ-binding peptides using transthyretin (TTR) as a template. Previously, we demonstrated that a cyclic peptide, with sequence derived from the known Aβ-binding site on TTR, suppressed Aβ aggregation into fibrils and protected neurons against Aβ toxicity. Here, we searched for cyclic peptides with improved efficacy, by employing the algorithm TANGO, designed originally to identify amyloidogenic sequences in proteins. By using TANGO as a guide to predict the effect of sequence modifications on conformation and aggregation, we synthesized a significantly improved cyclic peptide. We demonstrate that the peptide, in binding to Aβ, redirects Aβ toward protease-sensitive, nonfibrillar aggregates. Cyclic peptides designed using this strategy have attractive solubility, specificity, and stability characteristics.

  4. Development and characterization of a TAPIR-like mouse monoclonal antibody to amyloid-beta.

    PubMed

    Wang, Jun; Hara, Hideo; Makifuchi, Takao; Tabira, Takeshi

    2008-06-01

    Tissue amyloid plaque immuno-reactive (TAPIR) antibody was better related to the effect of immunotherapy in Alzheimer's disease (AD) than ELISA antibody. Here we used a hybridoma technique to develop a TAPIR-like anti-human amyloid-beta (Abeta) mouse monoclonal antibody. The obtained monoclonal antibody, 3.4A10, was an IgG2b isotype and recognized N-terminal portion of Abeta1-42 without binding denatured or native amyloid-beta protein precursor. It had higher affinity to Abeta1-42 than to Abeta1-40 by Biacore affinity analysis and stained preferably the peripheral part of senile plaques and recognized the plaque core less than 4G8. It inhibited the Abeta1-42 fibril formation as well as degraded pre-aggregated Abeta1-42 peptide in a thioflavin T fluorescence spectrophotometry assay. The in vivo studies showed that 3.4A10 treatment decreased amyloid burden compared to the control group and significantly reduced Abeta42 levels rather than Abeta40 levels in brain lysates as well as the Abeta*56 oligomer (12mer) in TBS fraction of the brain lysates. 3.4A10 entered brain and decorated some plaques, which is surrounded by more Iba1-positive microglia. 3.4A10 therapy did not induce lymphocytic infiltration and obvious increase in microhemorrhage. We conclude that 3.4A10 is a TAPIR-like anti-human amyloid monoclonal antibody, and has a potential of therapeutic application for AD.

  5. The role of β-amyloid peptide in neurodegenerative diseases.

    PubMed

    Maltsev, A V; Bystryak, S; Galzitskaya, O V

    2011-09-01

    Studies of neurodegenerative disorders (NDDs) are drawing more attention of researchers worldwide due to the high incidence of Alzheimer's disease (AD). The pathophysiology of such disorders is, in part, characterized by the transition of a wild-type peptide from its native conformation into a very stable pathological isoform. Subsequently, these abnormal proteins form aggregates of amyloid fibrils that continuously increase in size. Changes in the metabolic processes of neurons (e.g. oxidative stress, hyperphosphorylation of the tau protein, and resulting secondary changes in the cell metabolism) ultimately lead to cell death. We hypothesize that extracellular deposition of β-amyloid peptide fibrils and neurofibrillary tangles represents the body's adaptation mechanism, aimed at preservation of autonomic functioning; while the cognitive decline is severe, the rest of the organ systems remain unaffected and continue to function. This hypothesis is supported by the fact that destruction of pathological plaques, fibrils, and tangles and the use of vaccines targeting β-amyloid result in undesirable side effects. To gain a better understanding of the pathophysiology of Alzheimer's disease and to develop novel therapies, continued studies of the sporadic form of disease and the mechanisms triggering conformational changes in β-amyloid peptide fragments are essential. This review is focused on studies investigating the formation of amyloid fibrils and their role in the pathogenesis of neurodegenerative diseases. In addition, we discuss a related disorder--amyloidosis--where formation of fibrils, tangles, and plaques leads to neuronal death which may occur as a result of a failed adaptation process. Further in-depth investigation and comprehensive analysis of alterations in the metabolism of APP, β-amyloid, and tau protein, which have a pathological effect on cell membrane, alter phosphate exchange, and impair other key metabolic functions of the cell long before the

  6. Design and biological activity of {beta}-sheet breaker peptide conjugates

    SciTech Connect

    Rocha, Sandra Cardoso, Isabel; Boerner, Hans; Pereira, Maria Carmo; Saraiva, Maria Joao; Coelho, Manuel

    2009-03-06

    The sequence LPFFD (iA{beta}{sub 5}) prevents amyloid-{beta} peptide (A{beta}) fibrillogenesis and neurotoxicity, hallmarks of Alzheimer's disease (AD), as previously demonstrated. In this study iA{beta}{sub 5} was covalently linked to poly(ethylene glycol) (PEG) and the activity of conjugates was assessed and compared to the activity of the peptide alone by in vitro studies. The conjugates were characterized by MALDI-TOF. Competition binding assays established that conjugates retained the ability to bind A{beta} with similar strength as iA{beta}{sub 5}. Transmission electron microscopy analysis showed that iA{beta}{sub 5} conjugates inhibited amyloid fibril formation, which is in agreement with binding properties observed for the conjugates towards A{beta}. The conjugates were also able to prevent amyloid-induced cell death, as evaluated by activation of caspase 3. These results demonstrated that the biological activity of iA{beta}{sub 5} is not affected by the pegylation process.

  7. Analysis of a compartmental model of amyloid beta production, irreversible loss and exchange in humans.

    PubMed

    Elbert, Donald L; Patterson, Bruce W; Bateman, Randall J

    2015-03-01

    Amyloid beta (Aβ) peptides, and in particular Aβ42, are found in senile plaques associated with Alzheimer's disease. A compartmental model of Aβ production, exchange and irreversible loss was recently developed to explain the kinetics of isotope-labeling of Aβ peptides collected in cerebrospinal fluid (CSF) following infusion of stable isotope-labeled leucine in humans. The compartmental model allowed calculation of the rates of production, irreversible loss (or turnover) and short-term exchange of Aβ peptides. Exchange of Aβ42 was particularly pronounced in amyloid plaque-bearing participants. In the current work, we describe in much greater detail the characteristics of the compartmental model to two distinct audiences: physician-scientists and biokineticists. For physician-scientists, we describe through examples the types of questions the model can and cannot answer, as well as correct some misunderstandings of previous kinetic analyses applied to this type of isotope labeling data. For biokineticists, we perform a system identifiability analysis and a sensitivity analysis of the kinetic model to explore the global and local properties of the model. Combined, these analyses motivate simplifications from a more comprehensive physiological model to the final model that was previously presented. The analyses clearly demonstrate that the current dataset and compartmental model allow determination with confidence a single 'turnover' parameter, a single 'exchange' parameter and a single 'delay' parameter. When combined with CSF concentration data for the Aβ peptides, production rates may also be obtained.

  8. p75NTR Antagonistic Cyclic Peptide Decreases the Size of β Amyloid-Induced Brain Inflammation

    PubMed Central

    Yaar, Mina; Arble, Bennet L.; Stewart, Kenneth B.; Qureshi, Nazer H.; Kowall, Neil W.

    2010-01-01

    Amyloid beta (Aβ) was shown to bind the 75 kD neurotrophin receptor (p75NTR) to induce neuronal death. We synthesized a p75NTR antagonistic peptide (CATDIKGAEC) that contains the KGA motif that is present in the toxic part of Aβ and closely resembles the binding site of NGF for p75NTR. In vivo injections of Aβ into the cerebral cortex of B57BL/6 mice together with the peptide produced significantly less inflammation than simultaneous injections of Aβ and a control (CKETIADGAC, scrambled) peptide injected into the contralateral cortex. These data suggest that blocking the binding of Aβ to p75NTR may reduce neuronal loss in Alzheimer’s disease. PMID:18807174

  9. Stability of amyloidpeptides in plasma and serum.

    PubMed

    Bibl, Mirko; Welge, Volker; Esselmann, Hermann; Wiltfang, Jens

    2012-02-01

    Plasma amyloidpeptide (Aβ) levels have been suggested as a biomarker candidate for detecting incipient AD. Aβ peptides are known to be sensitive to distinct preanalytical sample handling, which calls for standardised preanalytical procedures. We investigated serum and plasma samples of 19 patients with no clinical signs of dementia for different preanalytical sample handlings. Both serum and plasma were analysed by the one-dimensional Aβ-SDS-PAGE/immunoblot, either immediately or after storage at room temperature for 24 and 48 h, respectively. The panel of Aβ1-37/38/39/40/42 and Aβ2-40 was evaluated. In both analytical matrices, sample storage led to a significant loss of measurable peptide levels. This effect was most pronounced during the first 24 h of storage and stronger in serum than in plasma. There were no significant differences between the distinct analysed Aβ peptide species regarding these results. The ratios of peptides (e.g. Aβ1-42/Aβ1-40 and Aβ1-42/Aβ1-38) displayed a higher stability under the influence of storage than each single peptide. In conclusion, plasma may be more appropriate than serum for analysing Aβ peptides for routine application. At least, the analysis should be done within 24 h and peptide ratios should be created to minimise artificial results.

  10. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement.

    PubMed

    Scuderi, Caterina; Steardo, Luca; Esposito, Giuseppe

    2014-07-01

    The amyloidogenic cascade is regarded as a key factor at the basis of Alzheimer's disease (AD) pathogenesis. The aberrant cleavage of amyloid precursor protein (APP) induces an increased production and a subsequent aggregation of beta amyloid (Aβ) peptide in limbic and association cortices. As a result, altered neuronal homeostasis and oxidative injury provoke tangle formation with consequent neuronal loss. Cannabidiol (CBD), a Cannabis derivative devoid of psychotropic effects, has attracted much attention because it may beneficially interfere with several Aβ-triggered neurodegenerative pathways, even though the mechanism responsible for such actions remains unknown. In the present research, the role of CBD was investigated as a possible modulating compound of APP processing in SHSY5Y(APP+) neurons. In addition, the putative involvement of peroxisome proliferator-activated receptor-γ (PPARγ) was explored as a candidate molecular site responsible for CBD actions. Results indicated the CBD capability to induce the ubiquitination of APP protein which led to a substantial decrease in APP full length protein levels in SHSY5Y(APP+) with the consequent decrease in Aβ production. Moreover, CBD promoted an increased survival of SHSY5Y(APP+) neurons, by reducing their long-term apoptotic rate. Obtained results also showed that all, here observed, CBD effects were dependent on the selective activation of PPARγ.

  11. Blockade of the tumor necrosis factor-related apoptosis inducing ligand death receptor DR5 prevents beta-amyloid neurotoxicity.

    PubMed

    Uberti, Daniela; Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Sarnico, Ilenia; Benarese, Marina; Pizzi, Marina; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; Spano, PierFranco; Facchetti, Fabio; Memo, Maurizio

    2007-04-01

    We originally suggested that inhibition of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) death pathway could be taken into consideration as a potential therapeutic strategy for Alzheimer's disease (AD). However, because the critical role of TRAIL in immune surveillance, the neutralization of TRAIL protein by an antibody to prevent its binding to death receptors is definitely a risky approach. Here, we demonstrated that the blockade of the TRAIL death receptor DR5 with a specific antibody completely prevented amyloid beta peptide (A beta) neurotoxicity in both neuronal cell line and primary cortical neurons. DR5 was demonstrated to be a key factor in TRAIL death pathway. In fact, whereas TRAIL expression was enhanced dose-dependently by concentrations of beta amyloid ranging from 10 nM to 1 microM, only the highest toxic dose of A beta (25 microM) induced the increased expression of DR5 and neuronal cell death. In addition, the increased expression of DR5 receptor after beta amyloid treatment was sustained by p53 transcriptional activity, as demonstrated by the data showing that the p53 inhibitor Pifithrin alpha prevented both beta amyloid-induced DR5 induction and cell death. These data suggest a sequential activation of p53 and DR5 upon beta amyloid exposure. Further insight into the key role of DR5 in AD was suggested by data showing a significant increase of DR5 receptor in cortical slices of AD brain. Thus, these findings may give intracellular TRAIL pathway a role in AD pathophysiology, making DR5 receptor a possible candidate as a pharmacological target.

  12. Peptide concentration alters intermediate species in amyloid β fibrillation kinetics

    SciTech Connect

    Garvey, M.; Morgado, I.

    2013-04-12

    Highlights: ► Aβ(1–40) aggregation in vitro has been monitored at different concentrations. ► Aβ(1–40) fibrillation does not always follow conventional kinetic mechanisms. ► We demonstrate non-linear features in the kinetics of Aβ(1–40) fibril formation. ► At high Aβ(1–40) concentrations secondary processes dictate fibrillation speed. ► Intermediate species may play significant roles on final amyloid fibril development. -- Abstract: The kinetic mechanism of amyloid aggregation remains to be fully understood. Investigations into the species present in the different kinetic phases can assist our comprehension of amyloid diseases and further our understanding of the mechanism behind amyloid β (Aβ) (1–40) peptide aggregation. Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) have been used in combination to monitor Aβ(1–40) aggregation in vitro at both normal and higher than standard concentrations. The observed fibrillation behaviour deviates, in several respects, from standard concepts of the nucleation–polymerisation models and shows such features as concentration-dependent non-linear effects in the assembly mechanism. Aβ(1–40) fibrillation kinetics do not always follow conventional kinetic mechanisms and, specifically at high concentrations, intermediate structures become populated and secondary processes may further modify the fibrillation mechanism.

  13. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics

    PubMed Central

    2014-01-01

    Levels of amyloid-beta monomer and deposited amyloid-beta in the Alzheimer’s disease brain are orders of magnitude greater than soluble amyloid-beta oligomer levels. Monomeric amyloid-beta has no known direct toxicity. Insoluble fibrillar amyloid-beta has been proposed to be an in vivo mechanism for removal of soluble amyloid-beta and exhibits relatively low toxicity. In contrast, soluble amyloid-beta oligomers are widely reported to be the most toxic amyloid-beta form, both causing acute synaptotoxicity and inducing neurodegenerative processes. None of the amyloid-beta immunotherapies currently in clinical development selectively target soluble amyloid-beta oligomers, and their lack of efficacy is not unexpected considering their selectivity for monomeric or fibrillar amyloid-beta (or both) rather than soluble amyloid-beta oligomers. Because they exhibit acute, memory-compromising synaptic toxicity and induce chronic neurodegenerative toxicity and because they exist at very low in vivo levels in the Alzheimer’s disease brain, soluble amyloid-beta oligomers constitute an optimal immunotherapeutic target that should be pursued more aggressively. PMID:25045405

  14. BACE2, a beta -secretase homolog, cleaves at the beta site and within the amyloid-beta region of the amyloid-beta precursor protein.

    PubMed

    Farzan, M; Schnitzler, C E; Vasilieva, N; Leung, D; Choe, H

    2000-08-15

    Production of amyloid-beta protein (Abeta) is initiated by a beta-secretase that cleaves the Abeta precursor protein (APP) at the N terminus of Abeta (the beta site). A recently identified aspartyl protease, BACE, cleaves the beta site and at residue 11 within the Abeta region of APP. Here we show that BACE2, a BACE homolog, cleaves at the beta site and more efficiently at a different site within Abeta. The Flemish missense mutation of APP, implicated in a form of familial Alzheimer's disease, is adjacent to this latter site and markedly increases Abeta production by BACE2 but not by BACE. BACE and BACE2 respond identically to conservative beta-site mutations, and alteration of a common active site Arg inhibits beta-site cleavage but not cleavage within Abeta by both enzymes. These data suggest that BACE2 contributes to Abeta production in individuals bearing the Flemish mutation, and that selective inhibition of these highly similar proteases may be feasible and therapeutically advantageous.

  15. Pin1 promotes production of Alzheimer's amyloid {beta} from {beta}-cleaved amyloid precursor protein

    SciTech Connect

    Akiyama, Hirotada; Shin, Ryong-Woon; Uchida, Chiyoko; Kitamoto, Tetsuyuki; Uchida, Takafumi . E-mail: uchidat@cir.tohoku.ac.jp

    2005-10-21

    Here we show that prolyl isomerase Pin1 is involved in the A{beta} production central to the pathogenesis of Alzheimer's disease. Enzyme immunoassay of brains of the Pin1-deficient mice revealed that production of A{beta}40 and A{beta}42 was lower than that of the wild-type mice, indicating that Pin1 promotes A{beta} production in the brain. GST-Pin1 pull-down and immunoprecipitation assay revealed that Pin1 binds phosphorylated Thr668-Pro of C99. In the Pin1 {sup -/-} MEF transfected with C99, Pin1 co-transfection enhanced the levels of A{beta}40 and A{beta}42 compared to that without Pin1 co-transfection. In COS7 cells transfected with C99, Pin1 co-transfection enhanced the generation of A{beta}40 and A{beta}42, and reduced the expression level of C99, facilitating the C99 turnover. Thus, Pin1 interacts with C99 and promotes its {gamma}-cleavage, generating A{beta}40 and A{beta}42. Further, GSK3 inhibitor lithium blocked Pin1 binding to C99 by decreasing Thr668 phosphorylation and attenuated A{beta} generation, explaining the inhibitory effect of lithium on A{beta} generation.

  16. Beta-hairpin conformation of fibrillogenic peptides: structure and alpha-beta transition mechanism revealed by molecular dynamics simulations.

    PubMed

    Daidone, Isabella; Simona, Fabio; Roccatano, Danilo; Broglia, Ricardo A; Tiana, Guido; Colombo, Giorgio; Di Nola, Alfredo

    2004-10-01

    Understanding the conformational transitions that trigger the aggregation and amyloidogenesis of otherwise soluble peptides at atomic resolution is of fundamental relevance for the design of effective therapeutic agents against amyloid-related disorders. In the present study the transition from ideal alpha-helical to beta-hairpin conformations is revealed by long timescale molecular dynamics simulations in explicit water solvent, for two well-known amyloidogenic peptides: the H1 peptide from prion protein and the Abeta(12-28) fragment from the Abeta(1-42) peptide responsible for Alzheimer's disease. The simulations highlight the unfolding of alpha-helices, followed by the formation of bent conformations and a final convergence to ordered in register beta-hairpin conformations. The beta-hairpins observed, despite different sequences, exhibit a common dynamic behavior and the presence of a peculiar pattern of the hydrophobic side-chains, in particular in the region of the turns. These observations hint at a possible common aggregation mechanism for the onset of different amyloid diseases and a common mechanism in the transition to the beta-hairpin structures. Furthermore the simulations presented herein evidence the stabilization of the alpha-helical conformations induced by the presence of an organic fluorinated cosolvent. The results of MD simulation in 2,2,2-trifluoroethanol (TFE)/water mixture provide further evidence that the peptide coating effect of TFE molecules is responsible for the stabilization of the soluble helical conformation.

  17. Specific binding of DNA to aggregated forms of Alzheimer's disease amyloid peptides.

    PubMed

    Camero, Sergio; Ayuso, Jose M; Barrantes, Alejandro; Benítez, María J; Jiménez, Juan S

    2013-04-01

    Anomalous protein aggregation is closely associated to age-related mental illness. Extraneuronal plaques, mainly composed of aggregated amyloid peptides, are considered as hallmarks of Alzheimer's disease. According to the amyloid cascade hypothesis, this disease starts as a consequence of an abnormal processing of the amyloid precursor protein resulting in an excess of amyloid peptides. Nuclear localization of amyloid peptide aggregates together with amyloid-DNA interaction, have been repeatedly reported. In this paper we have used surface plasmon resonance and electron microscopy to study the structure and behavior of different peptides and proteins, including β-lactoglobulin, bovine serum albumin, myoglobin, histone, casein and the amyloidpeptides related to Alzheimer's disease Aβ25-35 and Aβ1-40. The main purpose of this study is to investigate whether proneness to DNA interaction is a general property displayed by aggregated forms of proteins, or it is an interaction specifically related to the aggregated forms of those particular proteins and peptides related to neurodegenerative diseases. Our results reveal that those aggregates formed by amyloid peptides show a particular proneness to interact with DNA. They are the only aggregated structures capable of binding DNA, and show more affinity for DNA than for other polyanions like heparin and polyglutamic acid, therefore strengthening the hypothesis that amyloid peptides may, by means of interaction with nuclear DNA, contribute to the onset of Alzheimer's disease.

  18. Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice.

    PubMed

    Yamamoto, Masaru; Kiyota, Tomomi; Horiba, Masahide; Buescher, James L; Walsh, Shannon M; Gendelman, Howard E; Ikezu, Tsuneya

    2007-02-01

    Reactive astrocytes and microglia in Alzheimer's disease surround amyloid plaques and secrete proinflammatory cytokines that affect neuronal function. Relationship between cytokine signaling and amyloid-beta peptide (Abeta) accumulation is poorly understood. Thus, we generated a novel Swedish beta-amyloid precursor protein mutant (APP) transgenic mouse in which the interferon (IFN)-gamma receptor type I was knocked out (APP/GRKO). IFN-gamma signaling loss in the APP/GRKO mice reduced gliosis and amyloid plaques at 14 months of age. Aggregated Abeta induced IFN-gamma production from co-culture of astrocytes and microglia, and IFN-gamma elicited tumor necrosis factor (TNF)-alpha secretion in wild type (WT) but not GRKO microglia co-cultured with astrocytes. Both IFN-gamma and TNF-alpha enhanced Abeta production from APP-expressing astrocytes and cortical neurons. TNF-alpha directly stimulated beta-site APP-cleaving enzyme (BACE1) expression and enhanced beta-processing of APP in astrocytes. The numbers of reactive astrocytes expressing BACE1 were increased in APP compared with APP/GRKO mice in both cortex and hippocampus. IFN-gamma and TNF-alpha activation of WT microglia suppressed Abeta degradation, whereas GRKO microglia had no changes. These results support the idea that glial IFN-gamma and TNF-alpha enhance Abeta deposition through BACE1 expression and suppression of Abeta clearance. Taken together, these observations suggest that proinflammatory cytokines are directly linked to Alzheimer's disease pathogenesis.

  19. Conformation and topology of amyloid beta-protein adsorbed on a tethered artificial membrane probed by surface plasmon field-enhanced fluorescence spectroscopy.

    PubMed

    Song, Haipeng; Ritz, Sandra; Knoll, Wolfgang; Sinner, Eva-Kathrin

    2009-10-01

    Progressive depositions of cerebral amyloid are primary neuropathologic features of Alzheimer's disease (AD). The amyloid is composed of a 39-42 amino acid peptide called the amyloid beta-protein (Abeta). Repeated investigation suggests that the conformational transition of Abeta from alpha-helix or random coil to beta-sheet structure plays a key role in the inappropriate accumulation of cerebral amyloid plaques. In this manuscript, we describe a fluorescence-based immunoassay technology to investigate the conformation and topology of Abeta peptides interacting with peptide-tethered planar lipid bilayers. Dual monoclonal antibodies (mAbs) labelled with fluorophores were employed to recognise a linear N- and a beta-sheet C-terminus of Abeta peptides on the model membrane, respectively. Kinetics of antibody-Abeta binding were determined by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). The conformational transition of Abeta by melatonin, a defined beta-sheet breaker, was probed using paired monoclonal antibodies. The Abeta interaction with the membrane was evaluated by carefully analyzing the change in kinetic/affinity parameters in the presence or absence of melatonin. These results show that SPFS can be used to examine conformational transition of Abeta on an artificial membrane, providing a novel and versatile platform for conveniently monitoring protein-membrane interaction and screening for new beta-sheet breakers.

  20. Alzheimer's disease amyloid peptides interact with DNA, as proved by surface plasmon resonance.

    PubMed

    Barrantes, Alejandro; Camero, Sergio; Garcia-Lucas, Angel; Navarro, Pedro J; Benitez, María J; Jiménez, Juan S

    2012-10-01

    According to the amyloid hypothesis, abnormal processing of the β-amyloid precursor protein in Alzheimer's disease patients increases the production of β-amyloid toxic peptides, which, after forming highly aggregated fibrillar structures, lead to extracellular plaques formation, neuronal loss and dementia. However, a great deal of evidence has point to intracellular small oligomers of amyloid peptides, probably transient intermediates in the process of fibrillar structures formation, as the most toxic species. In order to study the amyloid-DNA interaction, we have selected here three different forms of the amyloid peptide: Aβ1-40, Aβ25-35 and a scrambled form of Aβ25-35. Surface Plasmon Resonance was used together with UV-visible spectroscopy, Electrophoresis and Electronic Microscopy to carry out this study. Our results prove that, similarly to the full length Aβ1-42, all conformations of toxic amyloid peptides, Aβ1-40 and Aβ25-35, may bind DNA. In contrast, the scrambled form of Aβ25-35, a non-aggregating and nontoxic form of this peptide, could not bind DNA. We conclude that although the amyloid-DNA interaction is closely related to the amyloid aggregation proneness, this cannot be the only factor which determines the interaction, since small oligomers of amyloid peptides may also bind DNA if their predominant negatively charged amino acid residues are previously neutralized.

  1. Curcumin Binding to Beta Amyloid: A Computational Study.

    PubMed

    Rao, Praveen P N; Mohamed, Tarek; Teckwani, Karan; Tin, Gary

    2015-10-01

    Curcumin, a chemical constituent present in the spice turmeric, is known to prevent the aggregation of amyloid peptide implicated in the pathophysiology of Alzheimer's disease. While curcumin is known to bind directly to various amyloid aggregates, no systematic investigations have been carried out to understand its ability to bind to the amyloid aggregates including oligomers and fibrils. In this study, we constructed computational models of (i) Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper β-sheet assembly and (ii) full-length Aβ fibril β-sheet assembly. Curcumin binding in these models was evaluated by molecular docking and molecular dynamics (MD) simulation studies. In both the models, curcumin was oriented in a linear extended conformation parallel to fiber axis and exhibited better stability in the Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper model (Ebinding  = -10.05 kcal/mol) compared to full-length Aβ fibril model (Ebinding  = -3.47 kcal/mol). Analysis of MD trajectories of curcumin bound to full-length Aβ fibril shows good stability with minimum Cα-atom RMSD shifts. Interestingly, curcumin binding led to marked fluctuations in the (14) HQKLVFFA(21) region that constitute the fibril spine with RMSF values ranging from 1.4 to 3.6 Å. These results show that curcumin binding to Aβ shifts the equilibrium in the aggregation pathway by promoting the formation of non-toxic aggregates.

  2. Amyloid-beta fibrillogenesis: structural insight and therapeutic intervention.

    PubMed

    Dasilva, Kevin A; Shaw, James E; McLaurin, Joanne

    2010-06-01

    Structural insight into the conformational changes associated with aggregation and assembly of fibrils has provided a number of targets for therapeutic intervention. Solid-state NMR, hydrogen/deuterium exchange and mutagenesis strategies have been used to probe the secondary and tertiary structure of amyloid fibrils and key intermediates. Rational design of peptide inhibitors directed against key residues important for aggregation and stabilization of fibrils has demonstrated effectiveness at inhibiting fibrillogenesis. Studies on the interaction between Abeta and cell membranes led to the discovery that inositol, the head group of phosphatidylinositol, inhibits fibrillogenesis. As a result, scyllo-inositol is currently in clinical trials for the treatment of AD. Additional small-molecule inhibitors, including polyphenolic compounds such as curcumin, (-)-epigallocatechin gallate (EGCG), and grape seed extract have been shown to attenuate Abeta aggregation through distinct mechanisms, and have shown effectiveness at reducing amyloid levels when administered to transgenic mouse models of AD. Although the results of ongoing clinical trials remain to be seen, these compounds represent the first generation of amyloid-based therapeutics, with the potential to alter the progression of AD and, when used prophylactically, alleviate the deposition of Abeta.

  3. A peptide study of the relationship between the collagen triple-helix and amyloid.

    PubMed

    Parmar, Avanish S; Nunes, Ana Monica; Baum, Jean; Brodsky, Barbara

    2012-10-01

    Type XXV collagen, or collagen-like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro-Hyp-Gly)₁₀ , an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)(n) domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple-helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple-helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple-helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly-Xaa-Yaa sequence and required the triple-helix conformation. The inhibitory effect of the collagen triple-helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation.

  4. Short peptides self-assemble to produce catalytic amyloids

    NASA Astrophysics Data System (ADS)

    Rufo, Caroline M.; Moroz, Yurii S.; Moroz, Olesia V.; Stöhr, Jan; Smith, Tyler A.; Hu, Xiaozhen; Degrado, William F.; Korendovych, Ivan V.

    2014-04-01

    Enzymes fold into unique three-dimensional structures, which underlie their remarkable catalytic properties. The requirement to adopt a stable, folded conformation is likely to contribute to their relatively large size (>10,000 Da). However, much shorter peptides can achieve well-defined conformations through the formation of amyloid fibrils. To test whether short amyloid-forming peptides might in fact be capable of enzyme-like catalysis, we designed a series of seven-residue peptides that act as Zn2+-dependent esterases. Zn2+ helps stabilize the fibril formation, while also acting as a cofactor to catalyse acyl ester hydrolysis. These results indicate that prion-like fibrils are able to not only catalyse their own formation, but they can also catalyse chemical reactions. Thus, they might have served as intermediates in the evolution of modern-day enzymes. These results also have implications for the design of self-assembling nanostructured catalysts including ones containing a variety of biological and non-biological metal ions.

  5. NOVEL AMYLOID-BETA SPECIFIC scFv and VH ANTIBODY FRAGMENTS FROM HUMAN AND MOUSE PHAGE DISPLAY ANTIBODY LIBRARIES

    PubMed Central

    Medecigo, M.; Manoutcharian, K.; Vasilevko, V.; Govezensky, T.; Munguia, M. E.; Becerril, B.; Luz-Madrigal, A.; Vaca, L.; Cribbs, D. H.; Gevorkian, G.

    2010-01-01

    Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer’s disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Aβ1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single domain (VH) formats. We demonstrated that these antibody fragments recognize in a specific manner amyloid beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Aβ1-42 in neuroblastoma cell cultures in a concentration-dependently manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Aβ, which makes them strong therapeutic candidates due to the fact that most of the Aβ species found in the brains of AD patients display extensive N-terminus truncations/modifications. PMID:20451261

  6. Dimensionality of carbon nanomaterial impacting on the modulation of amyloid peptide assembly

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhu, Z.; Bortolini, C.; Hoffmann, S. V.; Amari, A.; Zhang, H. X.; Liu, L.; Dong, M. D.

    2016-07-01

    A wide variety of inorganic nanomaterials have been exploited so far for their great potential for biological applications. Some of these materials could be valid candidates to modulate the assembly of amyloid peptides, which is relevant to amyloid-related diseases. In this work, we reveal that a carbon nanomaterial can indeed modulate the assembly of amyloid peptides and, additionally, we show that this modulating effect is closely related to the dimensionality of the nanomaterials.

  7. The soluble form of Alzheimer's amyloid beta protein is complexed to high density lipoprotein 3 and very high density lipoprotein in normal human plasma.

    PubMed

    Koudinov, A; Matsubara, E; Frangione, B; Ghiso, J

    1994-12-15

    The amyloid fibrils of Alzheimer's neuritic plaques and cerebral blood vessels are mainly composed of aggregated forms of a 39 to 44 amino acids peptide, named amyloid beta (A beta). A similar although soluble form of A beta (sA beta) has been identified in plasma, cerebrospinal fluid and cell culture supernatants, indicating that it is produced under physiologic conditions. We report here that sA beta in normal human plasma is associated with lipoprotein particles, in particular to the HDL3 and VHDL fractions where it is complexed to ApoJ and, to a lesser extent, to ApoAI. This was assessed by immunoprecipitation experiments of purified plasma lipoproteins and lipoprotein-depleted plasma and confirmed by means of amino acid sequence analysis. Moreover, biotinylated synthetic peptide A beta 1-40 was traced in normal human plasma in in vitro experiments. As in the case of sA beta, biotinylated A beta 1-40 was specifically recovered in the HDL3 and VHDL fractions. This data together with the previous demonstration that A beta 1-40 is taken up into the brain via a specific mechanism and possibly as an A beta 1-40-ApoJ complex indicate a role for HDL3- and VHDL-containing ApoJ in the transport of the peptide in circulation and suggest their involvement in the delivery of sA beta across the blood-brain barrier.

  8. Toxicity of substrate-bound amyloid peptides on vascular smooth muscle cells is enhanced by homocysteine.

    PubMed

    Mok, Su San; Turner, Bradley J; Beyreuther, Konrad; Masters, Colin L; Barrow, Colin J; Small, David H

    2002-06-01

    Tauhe main component of cerebral amyloid angiopathy (CAA) in Alzheimer's disease is the amyloid-beta protein (Abeta), a 4-kDa polypeptide derived from the beta-amyloid protein precursor (APP). The accumulation of Abeta in the basement membrane has been implicated in the degeneration of adjacent vascular smooth muscle cells (VSMC). However, the mechanism of Abeta toxicity is still unclear. In this study, we examined the effect of substrate-bound Abeta on VSMC in culture. The use of substrate-bound proteins in cell culture mimics presentation of the proteins to cells as if bound to the basement membrane. Substrate-bound Abeta peptides were found to be toxic to the cells and to increase the rate of cell death. This toxicity was dependent on the length of time the peptide was allowed to 'age', a process by which Abeta is induced to aggregate over several hours to days. Oxidative stress via hydrogen peroxide (H2O2) release was not involved in the toxic effect, as no decrease in toxicity was observed in the presence of catalase. However, substrate-bound Abeta significantly reduced cell adhesion compared to cells grown on plastic alone, indicating that cell-substrate adhesion may be important in maintaining cell viability. Abeta also caused an increase in the number of apoptotic cells. This increase in apoptosis was accompanied by activation of caspase-3. Homocysteine, a known risk factor for cerebrovascular disease, increased Abeta-induced toxicity and caspase-3 activation in a dose-dependent manner. These studies suggest that Abeta may activate apoptotic pathways to cause loss of VSMC in CAA by inhibiting cell-substrate interactions. Our studies also suggest that homocysteine, a known risk factor for other cardiovascular diseases, could also be a risk factor for hemorrhagic stroke associated with CAA.

  9. Effect of initial stagger selection on the handedness of Amyloid beta helical fibrils

    SciTech Connect

    Ghattyvenkatakrishna, Pavan K; Cheng, Xiaolin; Uberbacher, Edward C

    2013-01-01

    Various structural models for Amyloid $\\beta$ fibrils derived from a variety of experimental techniques are currently available. However, this data cannot differentiate between the relative position of the two arms of the $\\beta$ hairpin called the stagger. Amyloid fibrils of various heirarchical levels form left--handed helices composed of $\\beta$ sheets. However it is unclear if positive, negative and neutral staggers all form the macroscopic left--handed helices. Studying this is important since the success of computational approaches to develop drugs for amyloidic diseases will depend on selecting the physiologically relevant structure of the sheets. To address this issue we have conducted extensive molecular dynamics simulations of Amyloid$\\beta$ sheets of various staggers and show that only negative staggers generate the experimentally observed left--handed helices while positive staggers generate the incorrect right--handed helices. The implications of this result extend in to all amyloidic--aggregation type diseases.

  10. Heat shock treatment reduces beta amyloid toxicity in vivo by diminishing oligomers.

    PubMed

    Wu, Yanjue; Cao, Zhiming; Klein, William L; Luo, Yuan

    2010-06-01

    Heat shock response, mediated by heat shock proteins, is a highly conserved physiological process in multicellular organisms for reestablishment of cellular homeostasis. Expression of heat shock factors and subsequent heat shock protein plays a role in protection against proteotoxicity in invertebrate and vertebrate models. Proteotoxicity due to beta-amyloid peptide (Abeta) oligomerization has been linked to the pathogenesis of Alzheimer's disease. Previously, we demonstrated that progressive paralysis induced by expression of human Abeta(1-42) in transgenic Caenorhabditis elegans was alleviated by Abeta oligomer inhibitors Ginkgo biloba extract and its constituents [Wu, Y., Wu, Z., Butko, P., Christen, Y., Lambert, M.P., Klein, W.L., Link, C.D., Luo, Y., 2006. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J. Neurosci. 26(50): 13102-13113]. In this study, we apply a protective heat shock to the transgenic C. elegans and demonstrate: (1) a delay in paralysis, (2) increased expression of small heat shock protein HSP16.2, and (3) significant reduction of Abeta oligomers in a heat shock time-dependent manner. These results suggest that transient heat shock lessens Abeta toxicity by diminishing Abeta oligomerization, which provides a link between up regulation of endogenous chaperone proteins and protection against Abeta proteotoxicity in vivo.

  11. Self-Assembly of a 9-Residue Amyloid-Forming Peptide Fragment of SARS Corona Virus E-protein: Mechanism of Self Aggregation and Amyloid-Inhibition of hIAPP

    PubMed Central

    Bhat, Jyotsna; Bera, Supriyo; Midya, Anupam; Fierke, Carol A.; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2016-01-01

    Molecular self-assembly, a phenomenon widely observed in nature, has been exploited through organic molecules, proteins, DNA and peptides to study complex biological systems. These self-assembly systems may also be used in understanding the molecular and structural biology which can inspire the design and synthesis of increasingly complex biomaterials. Specifically, use of these building blocks to investigate protein folding and misfolding has been of particular value since it can provide tremendous insights into peptide aggregation related to a variety of protein misfolding diseases, or amyloid diseases (e.g. Alzheimer’s disease, Parkinson’s disease, type-II diabetes). Herein, the self-assembly of TK9, a 9 residue peptide of the extra membrane C-terminal tail of the SARS Corona virus envelope, and its variants were characterized through biophysical, spectroscopic and simulated studies, and it was confirmed that the structure of these peptides influence their aggregation propensity, hence, mimicking amyloid proteins. TK9, which forms a beta-sheet rich fibril, contains a key sequence motif that may be critical for beta-sheet formation, thus making it an interesting system to study amyloid fibrillation. TK9 aggregates were further examined through simulations to evaluate the possible intra- and inter peptide interactions at the molecular level. These self-assembly peptides can also serve as amyloid inhibitors through hydrophobic and electrophilic recognition interactions. Our results show that TK9 inhibits the fibrillation of hIAPP, a 37 amino acid peptide implicated in the pathology of type-II diabetes. Thus, biophysical and NMR experimental results have revealed a molecular level understanding of peptide folding events, as well as the inhibition of amyloid-protein aggregation are reported. PMID:25785896

  12. Identification of Core Segment of Amyloidal Peptide Mediated by Chaperone Molecules by using Scanning Tunneling Microscopy.

    PubMed

    Yu, Yue; Yang, Yanlian; Wang, Chen

    2015-10-05

    We illustrate in this work that pristine assemblies of amyloidal peptides can be obtained by perturbations of reduced scanning bias, and show a broad distribution in peptide length. In contrast, the chaperone-mediated peptide co-assembly presents ordered lamellar structures with a homogeneous distribution in length, which could be attributed to the core segment of the peptide. The efforts are beneficial for gaining insight into the aggregation propensity of peptides and inter-peptide interactions.

  13. Stereotaxic Infusion of Oligomeric Amyloid-beta into the Mouse Hippocampus

    PubMed Central

    Jean, Ying Y.; Baleriola, Jimena; Fà, Mauro; Hengst, Ulrich; Troy, Carol M.

    2015-01-01

    Alzheimer’s disease is a neurodegenerative disease affecting the aging population. A key neuropathological feature of the disease is the over-production of amyloid-beta and the deposition of amyloid-beta plaques in brain regions of the afflicted individuals. Throughout the years scientists have generated numerous Alzheimer’s disease mouse models that attempt to replicate the amyloid-beta pathology. Unfortunately, the mouse models only selectively mimic the disease features. Neuronal death, a prominent effect in the brains of Alzheimer’s disease patients, is noticeably lacking in these mice. Hence, we and others have employed a method of directly infusing soluble oligomeric species of amyloid-beta - forms of amyloid-beta that have been proven to be most toxic to neurons - stereotaxically into the brain. In this report we utilize male C57BL/6J mice to document this surgical technique of increasing amyloid-beta levels in a select brain region. The infusion target is the dentate gyrus of the hippocampus because this brain structure, along with the basal forebrain that is connected by the cholinergic circuit, represents one of the areas of degeneration in the disease. The results of elevating amyloid-beta in the dentate gyrus via stereotaxic infusion reveal increases in neuron loss in the dentate gyrus within 1 week, while there is a concomitant increase in cell death and cholinergic neuron loss in the vertical limb of the diagonal band of Broca of the basal forebrain. These effects are observed up to 2 weeks. Our data suggests that the current amyloid-beta infusion model provides an alternative mouse model to address region specific neuron death in a short-term basis. The advantage of this model is that amyloid-beta can be elevated in a spatial and temporal manner. PMID:26132278

  14. Beta-amyloid protein-containing inclusions in skeletal muscle of apolipoprotein-E-deficient mice.

    PubMed Central

    Robertson, T. A.; Dutton, N. S.; Martins, R. N.; Roses, A. D.; Kakulas, B. A.; Papadimitriou, J. M.

    1997-01-01

    The tibialis anterior muscle and soleus muscle of apolipoprotein-E-deficient mice were examined by light and electron microscopy. By light microscopy, sarcoplasmic inclusions were seen in tibialis anterior muscle and 40% of type 2 myofibers were affected in all animals over 8 months of age. These inclusions reacted for nonspecific esterase, cytochrome oxidase, and myoadenylate deaminase and were also periodic acid Schiff positive and stained basophilic with hematoxylin. Moreover, they reacted immunocytochemically with an antibody specific to fragment 17 to 24 of the published sequence of Alzheimer's cerebrovascular amyloid peptide. Immunoreactivity was lost when the antibody was adsorbed with the appropriate synthetic peptide. Ultrastructurally, the inclusions consisted of tubular arrays and were similar to those observed in human muscle in several pathological conditions. In type 1 myofibers of both tibialis anterior and soleus muscle, however, mitochondrial abnormalities including an increase in their number and size were detected, but tubular aggregates were not seen. These large mitochondria possessed an electron-dense inner chamber with an increased number of tightly packed cristae. The results obtained suggest that in these mice there is a disturbed lipid metabolism in skeletal muscle fibers that manifests itself with an accumulation of phospholipid in the form of sarcoplasmic reticulum tubules in the type 2 fibers and enlarged mitochondria with tightly packed cristae in the type 1 fibers. In addition, beta-amyloid protein was closely associated with the accumulated tubules and vesicles of sarcoplasmic reticulum and may represent dysregulation of amyloid precursor protein metabolism. Images Figure 1 Figure 2 Figure 3 PMID:9033257

  15. Nicotinic receptors, amyloid-beta, and synaptic failure in Alzheimer's disease.

    PubMed

    Jürgensen, Sofia; Ferreira, Sergio T

    2010-01-01

    Dysfunctional cholinergic transmission is thought to underlie, at least in part, memory impairment and cognitive deficits in Alzheimer's disease (AD). However, it is still unclear whether this is a consequence of the loss of cholinergic neurons and elimination of nicotinic acetycholine receptors (nAChRs) in AD brain or of a direct impact of molecular interactions of the amyloid-beta (Abeta) peptide with nAChRs, leading to dysregulation of receptor function. This review examines recent progress in our understanding of the roles of nicotinic receptors in mechanisms of synaptic plasticity, molecular interactions of Abeta with nAChRs, and how Abeta-induced dysregulation of nicotinic receptor function may underlie synaptic failure in AD.

  16. Identification of distinct physiochemical properties of toxic prefibrillar species formed by A{beta} peptide variants

    SciTech Connect

    Goeransson, Anna-Lena; Nilsson, K. Peter R.; Kagedal, Katarina; Brorsson, Ann-Christin

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Identification of toxic prefibrillar A{beta} species. Black-Right-Pointing-Pointer Fluorescence measurements using a combined set of fluorophores. Black-Right-Pointing-Pointer Morphology studies using transmission electron microscopy. -- Abstract: The formation of amyloid-{beta} peptide (A{beta}) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer's disease. The toxic effect is believed to be exerted by prefibrillar species of A{beta}. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of A{beta}-derived peptides possessing different levels of neurotoxic activity, using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various A{beta} aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those A{beta} peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the A{beta} peptide to form nontoxic versus toxic species.

  17. The conformations of the amyloid-beta (21-30) fragment can be described by three families in solution.

    PubMed

    Chen, Wei; Mousseau, Normand; Derreumaux, Philippe

    2006-08-28

    Alzheimer's disease has been linked to the self-assembly of the amyloid-beta protein of 40 and 42 residues. Although monomers are in equilibrium with higher-order species ranging from dimers to heptamers, structural knowledge of the monomeric amyloid-beta (Abeta) peptides is an important issue. Recent experimental data have shown that the fragment (21-30) is protease-resistant within full-length Abeta peptides and displays two structural families in solution. Because the details of the Abeta(21-30) structures found using distinct force fields and protocols differ at various degrees from those of the NMR structures, we revisit the conformational space of this peptide using the activation-relaxation technique (ART nouveau) coupled with a coarse-grained force field (OPEP v.3.0). We find that although Abeta(21-30) does not have a secondary structure, it dominantly populates three structural families, with a loop spanning residues Val24-Lys28. The first two families, which differ in the nature of the electrostatic interactions, satisfy the five interproton rotating frame nuclear Overhauser effect spectroscopy (ROESY) distances and superpose well onto the NMR structures. The third family, which cannot be seen by ROESY NMR experiments, displays a more open structure. This numeric study complements the experimental results by providing a much more detailed description of the dominant structures. Moreover, it provides further evidence of the capability of ART OPEP in providing a reliable conformational picture of peptides in solution.

  18. Unwinding fibril formation of medin, the peptide of the most common form of human amyloid.

    PubMed

    Larsson, Annika; Söderberg, Linda; Westermark, Gunilla T; Sletten, Knut; Engström, Ulla; Tjernberg, Lars O; Näslund, Jan; Westermark, Per

    2007-10-05

    Medin amyloid affects the medial layer of the thoracic aorta of most people above 50 years of age. The consequences of this amyloid are not completely known but the deposits may contribute to diseases such as thoracic aortic aneurysm and dissection or to the general diminished elasticity of blood vessels seen in elderly people. We show that the 50-amino acid residue peptide medin forms amyloid-like fibrils in vitro. With the use of Congo red staining, Thioflavin T fluorescence, electron microscopy, and a solid-phase binding assay on different synthetic peptides, we identified the last 18-19 amino acid residues to constitute the amyloid-promoting region of medin. We also demonstrate that the two C-terminal phenylalanines, previously suggested to be of importance for amyloid formation, are not required for medin amyloid formation.

  19. Unwinding fibril formation of medin, the peptide of the most common form of human amyloid

    SciTech Connect

    Larsson, Annika; Soederberg, Linda; Westermark, Gunilla T.; Sletten, Knut; Engstroem, Ulla; Tjernberg, Lars O.; Naeslund, Jan; Westermark, Per

    2007-10-05

    Medin amyloid affects the medial layer of the thoracic aorta of most people above 50 years of age. The consequences of this amyloid are not completely known but the deposits may contribute to diseases such as thoracic aortic aneurysm and dissection or to the general diminished elasticity of blood vessels seen in elderly people. We show that the 50-amino acid residue peptide medin forms amyloid-like fibrils in vitro. With the use of Congo red staining, Thioflavin T fluorescence, electron microscopy, and a solid-phase binding assay on different synthetic peptides, we identified the last 18-19 amino acid residues to constitute the amyloid-promoting region of medin. We also demonstrate that the two C-terminal phenylalanines, previously suggested to be of importance for amyloid formation, are not required for medin amyloid formation.

  20. apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor.

    PubMed Central

    Daigle, I; Li, C

    1993-01-01

    The major component of senile plaques found in the brains of Alzheimer disease patients is the beta-amyloid peptide, which is derived from a larger amyloid precursor protein (APP). Recently, a number of APP and APP-related proteins have been identified in different organisms and constitute the family of APP proteins. We have isolated several cDNAs encoding an APP-related protein in the nematode Caenorhabditis elegans and have designated the corresponding gene as apl-1. The apl-1 transcripts undergo two forms of posttranscriptional modification: trans-splicing and alternative polyadenylylation. In vitro translation of an apl-1 cDNA results in a protein of approximately the expected size. Similar to the Drosophila, human, and mouse APP-related proteins, APL-1 does not appear to contain the beta-amyloid peptide. Because APP-related proteins seem to be conserved through evolution, the apl-1 gene from C. elegans should be important for determining the normal function of human APP. Images Fig. 2 Fig. 3 PMID:8265668

  1. AmyloidPeptide: Dr. Jekyll or Mr. Hyde?

    PubMed Central

    Puzzo, Daniela; Arancio, Ottavio

    2013-01-01

    Amyloidpeptide (Aβ) is considered a key protein in the pathogenesis of Alzheimer’s disease (AD) because of its neurotoxicity and capacity to form characteristic insoluble deposits known as senile plaques. Aβ derives from amyloid-β protein precursor (AβPP), whose proteolytic processing generates several fragments including Aβ peptides of various lengths. The normal function of AβPP and its fragments remains poorly understood. While some fragments has been suggested to have a function in normal physiological cellular processes, Aβ has been widely considered as a “garbage” fragment that becomes toxic when it accumulates in the brain, resulting in impaired synaptic function and memory. Aβ is produced and released physiologically in the healthy brain during neuronal activity. In the last 10 years, we have been investigating whether Aβ plays a physiological role in the brain. We first demonstrated that picomolar concentrations of a human Aβ42 preparation enhanced synaptic plasticity and memory in mice. Next, we investigated the role of endogenous Aβ in healthy murine brains and found that treatment with a specific antirodent Aβ antibody and an siRNA against murine AβPP impaired synaptic plasticity and memory. The concurrent addition of human Aβ42 rescued these deficits, suggesting that in the healthy brain, physiological Aβ concentrations are necessary for normal synaptic plasticity and memory to occur. Furthermore, the effect of both exogenous and endogenous Aβ was seen to be mediated by modulation of neurotransmitter release and α7-nicotinic receptors. These findings need to be taken into consideration when designing novel therapeutic strategies for AD. PMID:22735675

  2. Identification of a Novel Parallel β‐Strand Conformation within Molecular Monolayer of Amyloid Peptide

    PubMed Central

    Liu, Lei; Li, Qiang; Zhang, Shuai; Wang, Xiaofeng; Hoffmann, Søren Vrønning; Li, Jingyuan; Liu, Zheng

    2016-01-01

    The differentiation of protein properties and biological functions arises from the variation in the primary and secondary structure. Specifically, in abnormal assemblies of protein, such as amyloid peptide, the secondary structure is closely correlated with the stable ensemble and the cytotoxicity. In this work, the early Aβ33‐42 aggregates forming the molecular monolayer at hydrophobic interface are investigated. The molecular monolayer of amyloid peptide Aβ33‐42 consisting of novel parallel β‐strand‐like structure is further revealed by means of a quantitative nanomechanical spectroscopy technique with force controlled in pico‐Newton range, combining with molecular dynamic simulation. The identified parallel β‐strand‐like structure of molecular monolayer is distinct from the antiparallel β‐strand structure of Aβ33‐42 amyloid fibril. This finding enriches the molecular structures of amyloid peptide aggregation, which could be closely related to the pathogenesis of amyloid disease. PMID:27818898

  3. Common molecular mechanism of amyloid pore formation by Alzheimer's β-amyloid peptide and α-synuclein.

    PubMed

    Di Scala, Coralie; Yahi, Nouara; Boutemeur, Sonia; Flores, Alessandra; Rodriguez, Léa; Chahinian, Henri; Fantini, Jacques

    2016-06-29

    Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer's and Parkinson's diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aβ1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aβ peptide (Alzheimer) did no longer form Ca(2+)-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined "membrane therapy") targeting amyloid pores formed by Aβ1-42 and α-synuclein.

  4. Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein

    PubMed Central

    Di Scala, Coralie; Yahi, Nouara; Boutemeur, Sonia; Flores, Alessandra; Rodriguez, Léa; Chahinian, Henri; Fantini, Jacques

    2016-01-01

    Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer’s and Parkinson’s diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aβ1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aβ peptide (Alzheimer) did no longer form Ca2+-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined “membrane therapy”) targeting amyloid pores formed by Aβ1-42 and α-synuclein. PMID:27352802

  5. Multi-frequency, multi-technique pulsed EPR investigation of the copper binding site of murine amyloid β peptide.

    PubMed

    Kim, Donghun; Bang, Jeong Kyu; Kim, Sun Hee

    2015-01-26

    Copper-amyloid peptides are proposed to be the cause of Alzheimer's disease, presumably by oxidative stress. However, mice do not produce amyloid plaques and thus do not suffer from Alzheimer's disease. Although much effort has been focused on the structural characterization of the copper- human amyloid peptides, little is known regarding the copper-binding mode in murine amyloid peptides. Thus, we investigated the structure of copper-murine amyloid peptides through multi-frequency, multi-technique pulsed EPR spectroscopy in conjunction with specific isotope labeling. Based on our pulsed EPR results, we found that Ala2, Glu3, His6, and His14 are directly coordinated with the copper ion in murine amyloid β peptides at pH 8.5. This is the first detailed structural characterization of the copper-binding mode in murine amyloid β peptides. This work may advance the knowledge required for developing inhibitors of Alzheimer's disease.

  6. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input.

    PubMed

    Flores-Martínez, Ernesto; Peña-Ortega, Fernando

    2017-01-01

    Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.

  7. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    PubMed Central

    Flores-Martínez, Ernesto

    2017-01-01

    Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain. PMID:28127312

  8. Brain Accumulation of Amyloid-beta in Non-Alzheimer Neurodegeneration.

    PubMed

    Primavera, James; Lu, Bing-Xun; Riskind, Peter J.; Iulian, Maria; De La Monte, Suzanne M.

    1999-10-01

    We report an unusual case of amyotrophic lateral sclerosis (ALS) marked by extensive cerebral amyloid-beta deposition in small and medium-size vessels, capillaries, and perivascular plaques in the cerebral cortex, and in most leptomeningeal vessels. Despite considerable cerebral amyloidosis, the patient remained cognitively intact until death. For comparison with other neuro-degenerative diseases and normal aging, we assessed the densities of amyloid-beta-immunoreactive cortical vessels and plaques in matched frontal and temporal lobe sections from archival uncomplicated cases of Alzheimer's disease (N=10), Pick's disease (PkD; N=4), Parkinson's disease (PD; N=6), Diffuse Lewy body disease (DLBD; N=7), progressive supranuclear palsy (PSP; N=5), multiple systems atrophy (MSA; N=4), ALS (N=7), or normal aging (N=10) by semi-quantitative grading (0 to 3+). Moderate (2+) or abundant (3+) cerebrovascular amyloid-beta immunoreactivity was detected in 8/10 AD, 3/7 DLBD, 3/6 PD, 1 each with PSP or PkD, and 2/10 controls. Moderate or abundant densities of amyloid-beta-immunoreactive diffuse plaques were detected in all cases of AD or DLBD, 4/6 with PD, 3/5 with PSP, and 2/10 controls. Moderate or abundant amyloid-beta-immunoreactive mature (dense core) plaques were present in all cases of AD or DLBD, and 3 each with PD or PSP. Importantly, amyloid-beta-immunoreactivity was not observed in the 4 MSA or 7 archival ALS cases. This study demonstrates that prominent amyloid-beta accumulation in cerebral vessels and plaques occurs frequently in AD, DLBD, PSP, and PD, but not in ALS or MSA, indicating that the case described is unique. The lack of cognitive impairment in the case presented argues against the idea that extensive amyloid-beta deposition in the brain causes dementia.

  9. Intraneuronal amyloid beta accumulation and oxidative damage to nucleic acids in Alzheimer disease.

    PubMed

    Nunomura, Akihiko; Tamaoki, Toshio; Tanaka, Koich; Motohashi, Nobutaka; Nakamura, Masao; Hayashi, Takaaki; Yamaguchi, Haruyasu; Shimohama, Shun; Lee, Hyoung-gon; Zhu, Xiongwei; Smith, Mark A; Perry, George

    2010-03-01

    In an analysis of amyloid pathology in Alzheimer disease, we used an in situ approach to identify amyloid-beta (Abeta) accumulation and oxidative damage to nucleic acids in postmortem brain tissue of the hippocampal formation from subjects with Alzheimer disease. When carboxyl-terminal-specific antibodies directed against Abeta40 and Abeta42 were used for immunocytochemical analyses, Abeta42 was especially apparent within the neuronal cytoplasm, at sites not detected by the antibody specific to Abeta-oligomer. In comparison to the Abeta42-positive neurons, neurons bearing oxidative damage to nucleic acids were more widely distributed in the hippocampus. Comparative density measurements of the immunoreactivity revealed that levels of intraneuronal Abeta42 were inversely correlated with levels of intraneuronal 8-hydroxyguanosine, an oxidized nucleoside (r=- 0.61, p<0.02). Together with recent evidence that the Abeta peptide can act as an antioxidant, these results suggest that intraneuronal accumulation of non-oligomeric Abeta may be a compensatory response in neurons to oxidative stress in Alzheimer disease.

  10. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  11. Proteasome-mediated degradation of the C-terminus of the Alzheimer's disease beta-amyloid protein precursor: effect of C-terminal truncation on production of beta-amyloid protein.

    PubMed

    Nunan, Janelle; Williamson, Nicholas A; Hill, Andrew F; Sernee, M Fleur; Masters, Colin L; Small, David H

    2003-11-01

    The beta-amyloid protein (Abeta) is derived by proteolytic processing of the amyloid protein precursor (APP). Cleavage of APP by beta-secretase generates a C-terminal fragment (APP-CTFbeta), which is subsequently cleaved by gamma-secretase to produce Abeta. Our previous studies have shown that the proteasome can cleave the C-terminal cytoplasmic domain of APP. To identify proteasome cleavage sites in APP, two peptides homologous to the C-terminus of APP were incubated with recombinant 20S proteasome. Cleavage of the peptides was monitored by reversed phase high-performance liquid chromatography and mass spectrometry. Proteasome cleaved the APP C-terminal peptides at several sites, including a region around the sequence YENPTY that interacts with several APP-binding proteins. To examine the effect of this cleavage on Abeta production, APP-CTFbeta and mutant forms of APP-CTFbeta terminating on either side of the YENPTY sequence were expressed in CHO cells. Truncation of APP-CTFbeta on the N-terminal side of the YENPTY sequence at residue 677 significantly decreased the amount of Abeta produced, whereas truncation on the C-terminal side of residue 690 had little effect. The results suggest that proteasomal cleavage of the cytosolic domain of APP at the YENPTY sequence decreases gamma-secretase processing, and consequently inhibits Abeta production. Therefore, the proteasome-dependent trafficking pathway of APP may be a valid therapeutic target for altering Abeta production in the Alzheimer's disease brain.

  12. The evolution of A beta peptide burden in the APP23 transgenic mice: implications for A beta deposition in Alzheimer disease.

    PubMed Central

    Kuo, Y. M.; Beach, T. G.; Sue, L. I.; Scott, S.; Layne, K. J.; Kokjohn, T. A.; Kalback, W. M.; Luehrs, D. C.; Vishnivetskaya, T. A.; Abramowski, D.; Sturchler-Pierrat, C.; Staufenbiel, M.; Weller, R. O.; Roher, A. E.

    2001-01-01

    BACKGROUND: High levels of A beta in the cerebral cortex distinguish demented Alzheimer's disease (AD) from nondemented elderly individuals, suggesting that decreased amyloid-beta (A beta) peptide clearance from the brain is a key precipitating factor in AD. MATERIALS AND METHODS: The levels of A beta in brain and plasma as well as apolipoprotein E (ApoE) in brain were investigated by enzyme-linked immunosorbent assay (ELISA) and Western blotting at various times during the life span of the APP23 transgenic (Tg) and control mice. Histochemistry and immunocytochemistry were used to assess the morphologic characteristics of the brain parenchymal and cerebrovascular amyloid deposits and the intracellular amyloid precursor protein (APP) deposits in the APP23 Tg mice. RESULTS: No significant differences were found in the plasma levels of A beta between the APP23 Tg and control mice from 2-20 months of age. In contrast, soluble A beta levels in the brain were continually elevated, increasing 4-fold at 2 months and 33-fold in the APP23 Tg mice at 20 months of age when compared to the control mice. Soluble A beta42 was about 60% higher than A beta40. In the APP23 Tg mice, insoluble A beta40 remained at basal levels in the brain until 9 months and then rose to 680 microg/g cortex by 20 months. Insoluble A beta40 was negligible in non-Tg mice at all ages. Insoluble A beta42 in APP23 Tg mice rose to 60 microg/g cortex at 20 months, representing 24 times the control A beta42 levels. Elevated levels of ApoE in the brain were observed in the APP23 Tg mice at 2 months of age, becoming substantially higher by 20 months. ApoE colocalized with A beta in the plaques. Beta-amyloid precursor protein (betaAPP) deposits were detected within the neuronal cytoplasm from 4 months of age onward. Amyloid angiopathy in the APP23 Tg mice increased markedly with age, being by far more severe than in the Tg2576 mice. CONCLUSIONS: We suggest that the APP23 Tg mouse may develop an earlier blockage

  13. Initial stages of beta-amyloid Aβ1-40 and Aβ1-42 oligomerization observed using fluorescence decay and molecular dynamics analyses of tyrosine

    NASA Astrophysics Data System (ADS)

    Amaro, Mariana; Kubiak-Ossowska, Karina; Birch, David J. S.; Rolinski, Olaf J.

    2013-03-01

    The development of Alzheimer’s disease is associated with the aggregation of the beta-amyloid peptides Aβ1-40 and Aβ1-42. It is believed that the small oligomers formed during the early stages of the aggregation are neurotoxic and involved in the process of neurodegeneration. In this paper we use fluorescence decay measurements of beta-amyloid intrinsic fluorophore tyrosine (Tyr) and molecular dynamics (MD) simulations to study the early stages of oligomer formation for the Aβ1-40 and Aβ1-42 peptides in vitro. We demonstrate that the lifetime distributions of the amyloid fluorescence decay efficiently describe changes in the complex Tyr photophysics during the peptide aggregation and highlight the differences in aggregation performance of the two amyloids. Tyr fluorescence decay is found to be a more sensitive sensor of Aβ1-40 aggregation than Aβ1-42 aggregation. The MD simulation of the peptide aggregation is compared with the experimental data and supports a four-rotamer model of Tyr.

  14. Atomistic MD simulations reveal the protective role of cholesterol in dimeric beta-amyloid induced disruptions in neuronal membrane mimics

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Buie, Creighton; Cheng, Sara; Chou, George; Vaughn, Mark; Cheng, K.

    2011-10-01

    Interactions of oligomeric beta-amyloid peptides with neuronal membranes have been linked to the pathogenesis of Alzheimer's disease (AD). The molecular details of the interactions of different lipid components, particularly cholesterol (CHOL), of the membranes with the peptides are not clear. Using an atomistic MD simulations approach, the water permeability barrier, structural geometry and order parameters of binary phosphatidylcholine (PC) and PC/CHOL lipid bilayers were examined from various 200 ns-simulation replicates. Our results suggest that the longer length dimer (2 x 42 residues) perturbs the membrane more than the shorter one (2 x 40 residues). In addition, we discovered a significant protective role of cholesterol in protein-induced disruptions of the membranes. The use of a new Monte-Carlo method in characterizing the structures of the conformal annular lipids in close proximity with the proteins will be introduced. We propose that the neurotoxicity of beta-amyloid peptide may be associated with the nanodomain or raft-like structures of the neuronal membranes in-vivo in the development of AD.

  15. Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid beta-infused rat by repressing amyloid beta accumulation.

    PubMed

    Lee, Chun-Lin; Kuo, Tzong-Fu; Wang, Jyh-Jye; Pan, Tzu-Ming

    2007-11-01

    Amyloid beta (Abeta) peptide related to the onset of Alzheimer's disease (AD) damaged neurons and further resulted in dementia. Monascus-fermented red mold rice (RMR), a traditional Chinese medicine as well as health food, includes monacolins (with the same function as statins) and multifunctional metabolites. In this study, ethanol extract of RMR (RE) was used to evaluate neuroprotection against Abeta40 neurotoxicity in PC12 cells. Furthermore, the effects of dietary administration of RMR on memory and learning abilities are confirmed in an animal model of AD rats infused with Abeta40 into the cerebral ventricle. During continuous Abeta40 infusion for 28 days, the rats of test groups were administered RMR or lovastatin. Memory and learning abilities were evaluated in the water maze and passive avoidance tasks. After sacrifice, cerebral cortex and hippocampus were collected for the examination of AD risk factors. The in vitro results clearly indicate that RE provides stronger neuroprotection in rescuing cell viability as well as repressing inflammatory response and oxidative stress. RMR administration potently reverses the memory deficit in the memory task. Abeta40 infusion increases acetylcholinesterase activity, reactive oxygen species, and lipid peroxidation and decreases total antioxidant status and superoxide dismutase activity in brain, but these damages were potently reversed by RMR administration, and the protection was more significant than that with lovastatin administration. The protection provided by RMR is able to prevent Abeta fibrils from being formed and deposited in hippocampus and further decrease Abeta40 accumulation, even though Abeta40 solution was infused into brain continuously.

  16. Amyloid-beta: a crucial factor in Alzheimer's disease.

    PubMed

    Sadigh-Eteghad, Saeed; Sabermarouf, Babak; Majdi, Alireza; Talebi, Mahnaz; Farhoudi, Mehdi; Mahmoudi, Javad

    2015-01-01

    Alzheimer's disease (AD) is the most prevalent form of dementia which affects people older than 60 years of age. In AD, the dysregulation of the amyloid-beta (Aβ) level leads to the appearance of senile plaques which contain Aβ depositions. Aβ is a complex biological molecule which interacts with many types of receptors and/or forms insoluble assemblies and, eventually, its nonphysiological depositions alternate with the normal neuronal conditions. In this situation, AD signs appear and the patients experience marked cognitional disabilities. In general, intellect, social skills, personality, and memory are influenced by this disease and, in the long run, it leads to a reduction in quality of life and life expectancy. Due to the pivotal role of Aβ in the pathobiology of AD, a great deal of effort has been made to reveal its exact role in neuronal dysfunctions and to finding efficacious therapeutic strategies against its adverse neuronal outcomes. Hence, the determination of its different molecular assemblies and the mechanisms underlying its pathological effects are of interest. In the present paper, some of the well-established structural forms of Aβ, its interactions with various receptors and possible molecular and cellular mechanisms underlying its neurotoxicity are discussed. In addition, several Aβ-based rodent models of AD are reviewed.

  17. Amyloid Beta-Protein and Neural Network Dysfunction

    PubMed Central

    Peña-Ortega, Fernando

    2013-01-01

    Understanding the neural mechanisms underlying brain dysfunction induced by amyloid beta-protein (Aβ) represents one of the major challenges for Alzheimer's disease (AD) research. The most evident symptom of AD is a severe decline in cognition. Cognitive processes, as any other brain function, arise from the activity of specific cell assemblies of interconnected neurons that generate neural network dynamics based on their intrinsic and synaptic properties. Thus, the origin of Aβ-induced cognitive dysfunction, and possibly AD-related cognitive decline, must be found in specific alterations in properties of these cells and their consequences in neural network dynamics. The well-known relationship between AD and alterations in the activity of several neural networks is reflected in the slowing of the electroencephalographic (EEG) activity. Some features of the EEG slowing observed in AD, such as the diminished generation of different network oscillations, can be induced in vivo and in vitro upon Aβ application or by Aβ overproduction in transgenic models. This experimental approach offers the possibility to study the mechanisms involved in cognitive dysfunction produced by Aβ. This type of research may yield not only basic knowledge of neural network dysfunction associated with AD, but also novel options to treat this modern epidemic. PMID:26316994

  18. Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier

    PubMed Central

    Dai, Bin; Li, Dan; Xi, Wenhui; Luo, Fang; Zhang, Xiang; Zou, Man; Cao, Mi; Hu, Jun; Wang, Wenyuan; Wei, Guanghong; Zhang, Yi; Liu, Cong

    2015-01-01

    Using and engineering amyloid as nanomaterials are blossoming trends in bionanotechnology. Here, we show our discovery of an amyloid structure, termed “amyloid-like nanosheet,” formed by a key amyloid-forming segment of Alzheimer’s Aβ. Combining multiple biophysical and computational approaches, we proposed a structural model for the nanosheet that is formed by stacking the amyloid fibril spines perpendicular to the fibril axis. We further used the nanosheet for laboratorial retroviral transduction enhancement and directly visualized the presence of virus on the nanosheet surface by electron microscopy. Furthermore, based on our structural model, we designed nanosheet-forming peptides with different functionalities, elucidating the potential of rational design for amyloid-based materials with novel architecture and function. PMID:25713359

  19. Reduced oligomeric and vascular amyloid-beta following immunization of TgCRND8 mice with an Alzheimer's DNA vaccine.

    PubMed

    DaSilva, Kevin A; Brown, Mary E; McLaurin, JoAnne

    2009-02-25

    Immunization with amyloid-beta (Abeta) peptide reduces amyloid load in animal studies and in humans; however clinical trials resulted in the development of a pro-inflammatory cellular response to Abeta. Apoptosis has been employed to stimulate humoral and Th2-biased cellular immune responses. Thus, we sought to investigate whether immunization using a DNA vaccine encoding Abeta in conjunction with an attenuated caspase generates therapeutically effective antibodies. Plasmids encoding Abeta and an attenuated caspase were less effective in reducing amyloid pathology than those encoding Abeta alone. Moreover, use of Abeta with an Arctic mutation (E22G) as an immunogen was less effective than wild-type Abeta in terms of improvements in pathology. Low levels of IgG and IgM were generated in response to immunization with a plasmid encoding wild-type Abeta. These antibodies decreased plaque load by as much as 36+/-8% and insoluble Abeta42 levels by 56+/-3%. Clearance of Abeta was most effective when antibodies were directed against N-terminal epitopes of Abeta. Moreover, immunization reduced CAA by as much as 69+/-12% in TgCRND8 mice. Finally, high-molecular-weight oligomers and Abeta trimers were significantly reduced with immunization. Thus, immunization with a plasmid encoding Abeta alone drives an attenuated immune response that is sufficient to clear amyloid pathology in a mouse model of Alzheimer's disease.

  20. {alpha}-Lipoic acid exhibits anti-amyloidogenicity for {beta}-amyloid fibrils in vitro

    SciTech Connect

    Ono, Kenjiro; Hirohata, Mie; Yamada, Masahito . E-mail: m-yamada@med.kanazawa-u.ac.jp

    2006-03-24

    Inhibition of the formation of {beta}-amyloid fibrils (fA{beta}), as well as the destabilization of preformed fA{beta} in the CNS would be attractive therapeutic targets for the treatment of Alzheimer's disease (AD). Using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies, we examined the effects of {alpha}-lipoic acid (LA) and the metabolic product of LA, dihydrolipoic acid (DHLA), on the formation, extension, and destabilization of fA{beta} at pH 7.5 at 37 {sup o}C in vitro. LA and DHLA dose-dependently inhibited fA{beta} formation from amyloid {beta}-protein, as well as their extension. Moreover, they destabilized preformed fA{beta}s. LA and DHLA could be key molecules for the development of therapeutics for AD.

  1. Effects of injected Alzheimer beta-amyloid cores in rat brain.

    PubMed Central

    Frautschy, S A; Baird, A; Cole, G M

    1991-01-01

    Although amyloid deposits have long been known to accumulate in Alzheimer disease (AD) brain, their origin and significance remain speculative. Because of the lack of an in vivo model where amyloid deposits can be induced, the relationship of the extracellular beta-amyloid deposits to other AD pathology has never been directly investigated. Therefore, we injected SDS-isolated amyloid cores into rat cortex and hippocampus. Similarly isolated lipofuscin fractions from control human brains were injected on the contralateral side. Rats were perfused and brains were examined immunohistochemically at 2 days, 7 days, and 1 month after injection. Alz-50, a monoclonal antibody against abnormally phosphorylated tau proteins, stained neurons along the cortical needle track at 2 but not 7 days after injection of either amyloid or lipofuscin. At 1 month, however, ubiquitin, Alz-50 antigen, and silver-positive structures were observed only in response to amyloid. In 7 of 10 animals, there was considerable neuronal loss in the hippocampal layers. In each instance, these effects were in the immediate vicinity of beta-protein immunoreactive material. Marked neuronal loss was never observed at any time after lipofuscin injection. These results indicate a neuronal response to amyloid. When preparations of mature plaque amyloid isolated from the AD brain are injected into the rat brain, they exert neurotoxic effects and induce antigens found in the AD brain. Images PMID:1924295

  2. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer's disease.

    PubMed

    Michael, Ralph; Rosandić, Jurja; Montenegro, Gustavo A; Lobato, Elvira; Tresserra, Francisco; Barraquer, Rafael I; Vrensen, Gijs F J M

    2013-01-01

    Eye lenses from human donors with and without Alzheimer's disease (AD) were studied to evaluate the presence of amyloid in cortical cataract. We obtained 39 lenses from 21 postmortem donors with AD and 15 lenses from age-matched controls provided by the Banco de Ojos para Tratamientos de la Ceguera (Barcelona, Spain). For 17 donors, AD was clinically diagnosed by general physicians and for 4 donors the AD diagnosis was neuropathologically confirmed. Of the 21 donors with AD, 6 had pronounced bilateral cortical lens opacities and 15 only minor or no cortical opacities. As controls, 7 donors with pronounced cortical opacities and 8 donors with almost transparent lenses were selected. All lenses were photographed in a dark field stereomicroscope. Histological sections were analyzed using a standard and a more sensitive Congo red protocol, thioflavin staining and beta-amyloid immunohistochemistry. Brain tissue from two donors, one with cerebral amyloid angiopathy and another with advanced AD-related changes and one cornea with lattice dystrophy were used as positive controls for the staining techniques. Thioflavin, standard and modified Congo red staining were positive in the control brain tissues and in the dystrophic cornea. Beta-amyloid immunohistochemistry was positive in the brain tissues but not in the cornea sample. Lenses from control and AD donors were, without exception, negative after Congo red, thioflavin, and beta-amyloid immunohistochemical staining. The results of the positive control tissues correspond well with known observations in AD, amyloid angiopathy and corneas with lattice dystrophy. The absence of staining in AD and control lenses with the techniques employed lead us to conclude that there is no beta-amyloid in lenses from donors with AD or in control cortical cataracts. The inconsistency with previous studies of Goldstein et al. (2003) and Moncaster et al. (2010), both of which demonstrated positive Congo red, thioflavin, and beta-amyloid

  3. Multifunctional Cholinesterase and Amyloid Beta Fibrillization Modulators. Synthesis and Biological Investigation

    PubMed Central

    2013-01-01

    In order to identify novel Alzheimer’s modifying pharmacological tools, we developed bis-tacrines bearing a peptide moiety for specific interference with surface sites of human acetylcholinesterase (hAChE) binding amyloid-beta (Aβ). Accordingly, compounds 2a–c proved to be inhibitors of hAChE catalytic and noncatalytic functions, binding the catalytic and peripheral sites, interfering with Aβ aggregation and with the Aβ self-oligomerization process (2a). Compounds 2a–c in complex with TcAChE span the gorge with the bis-tacrine system, and the peptide moieties bulge outside the gorge in proximity of the peripheral site. These moieties are likely responsible for the observed reduction of hAChE-induced Aβ aggregation since they physically hamper Aβ binding to the enzyme surface. Moreover, 2a was able to significantly interfere with Aβ self-oligomerization, while 2b,c showed improved inhibition of hAChE-induced Aβ aggregation. PMID:24900626

  4. MD-simulations of Beta-Amyloid Protein Insertion Efficiency and Kinetics into Neuronal Membrane Mimics

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2011-03-01

    Early interaction events of beta-amyloid (A β) peptides with the neuronal membranes play a key role in the pathogenesis of Alzheimer's disease. We have used all-atom MD simulations to study the protein insertion efficiency and kinetics of monomeric A β40 and A β42 into phosphatidylcholine lipid bilayers (PC) with and without 40 mole% cholesterol (CHOL) that mimic the cholesterol-enriched and depleted lipid nanodomains of the neuronal plasma membranes. Independent replicates of 200-ns simulations of each protein pre-inserted in the upper lipid layer were generated. In PC bilayers, only 25% of A β40 and 50% of A β42 in the replicates showed complete insertion into the lower lipid layer, whereas the percentages increased to 50% and 100%, respectively, in PC/CHOL bilayers, providing evidence that cholesterol improves the protein insertion efficiency into the bilayers. The rate of protein insertion was proportional to the hydrophobic, transmembrane helix length of the inserted peptide and depended on the cholesterol content. We propose that the lysine snorkeling and C-terminus anchoring of A β to the PC headgroups at the upper and lower lipid/water interfaces represent the dual-transmembrane stabilization mechanisms of A β in the neuronal membrane domains.

  5. Multifunctional cholinesterase and amyloid Beta fibrillization modulators. Synthesis and biological investigation.

    PubMed

    Butini, Stefania; Brindisi, Margherita; Brogi, Simone; Maramai, Samuele; Guarino, Egeria; Panico, Alessandro; Saxena, Ashima; Chauhan, Ved; Colombo, Raffaella; Verga, Laura; De Lorenzi, Ersilia; Bartolini, Manuela; Andrisano, Vincenza; Novellino, Ettore; Campiani, Giuseppe; Gemma, Sandra

    2013-12-12

    In order to identify novel Alzheimer's modifying pharmacological tools, we developed bis-tacrines bearing a peptide moiety for specific interference with surface sites of human acetylcholinesterase (hAChE) binding amyloid-beta (Aβ). Accordingly, compounds 2a-c proved to be inhibitors of hAChE catalytic and noncatalytic functions, binding the catalytic and peripheral sites, interfering with Aβ aggregation and with the Aβ self-oligomerization process (2a). Compounds 2a-c in complex with TcAChE span the gorge with the bis-tacrine system, and the peptide moieties bulge outside the gorge in proximity of the peripheral site. These moieties are likely responsible for the observed reduction of hAChE-induced Aβ aggregation since they physically hamper Aβ binding to the enzyme surface. Moreover, 2a was able to significantly interfere with Aβ self-oligomerization, while 2b,c showed improved inhibition of hAChE-induced Aβ aggregation.

  6. Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42.

    PubMed

    Liu, Ruitian; Barkhordarian, Hedieh; Emadi, Sharareh; Park, Chan Beum; Sierks, Michael R

    2005-10-01

    A key event in Alzheimer's disease (AD) pathogenesis is the conversion of the peptide beta-amyloid (Abeta) from its soluble monomeric form into various aggregated morphologies in the brain. Preventing aggregation of Abeta is being actively pursued as a primary therapeutic strategy for treating AD. Trehalose, a simple disaccharide, has been shown to be effective in preventing the deactivation of numerous proteins and in protecting cells against stress. Here, we show that trehalose is also effective in inhibiting aggregation of Abeta and reducing its cytotoxicity, although it shows differential effects toward Abeta40 and Abeta42. When co-incubated with Abeta40, trehalose inhibits formation of both fibrillar and oligomeric morphologies as determined by fluorescence staining and atomic force microscopy (AFM). However, when co-incubated with Abeta42, trehalose inhibits formation only of the fibrillar morphology, with significant oligomeric formation still present. When aggregated mixtures were incubated with SH-SY5Y cells, trehalose was shown to reduce the toxicity of Abeta40 mixtures, but not Abeta42. These results provide additional evidence that aggregation of Abeta into soluble oligomeric forms is a pathological step in AD and that Abeta42 in particular is more susceptible to forming these toxic oligomers than Abeta40. These results also suggest that the use of trehalose, a highly soluble, low-priced sugar, as part of a potential therapeutic cocktail to control Abeta peptide aggregation and toxicity warrants further study.

  7. Molten globule precursor states are conformationally correlated to amyloid fibrils of human beta-2-microglobulin.

    PubMed

    Skora, Lukasz; Becker, Stefan; Zweckstetter, Markus

    2010-07-14

    Misfolding intermediates play a key role in defining aberrant protein aggregation and amyloid formation in more than 15 different human diseases. However, their experimental characterization is challenging due to the transient nature and conformational heterogeneity of the involved states. Here, we demonstrate that direct carbon-detected NMR experiments allow observation, assignment, and structural analysis of molten globule amyloid intermediates that are severely broadened by conformational exchange. The method is used to characterize the structure and dynamics of partially unfolded intermediates of the 99-residue protein beta-2-microglobulin, which is the major component of insoluble aggregates occurring in dialysis-related amyloidosis. Comparison of the conformational properties of the molten globule-like intermediates with levels of deuterium incorporation into amyloid fibrils of beta-2-microglobulin revealed a close relationship between the conformational properties of the metastable intermediates and the beta-sheet-rich insoluble aggregates of beta-2-microglobulin.

  8. In situ hybridization of nucleus basalis neurons shows increased. beta. -amyloid mRNA in Alzheimer disease

    SciTech Connect

    Cohen, M.L.; Golde, T.E.; Usiak, M.F.; Younkin, L.H.; Younkin, S.G.

    1988-02-01

    To determine which cells within the brain produce ..beta..-amyloid mRNA and to assess expression of the ..beta..-amyloid gene in Alzheimer disease, the authors analyzed brain tissue from Alzheimer and control patients by in situ hybridization. The results demonstrate that ..beta..-amyloid mRNA is produced by neurons in the nucleus basalis of Meynert and cerebral cortex and that nuclues basalis perikarya from Alzheimer patients consistently hybridize more ..beta..-amyloid probe than those from controls. These observations support the hypothesis that increased expression of the ..beta..-amyloid gene plays an important role in the deposition of amyloid in the brains of patients with Alzheimer disease.

  9. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts.

    PubMed

    Martin, Emily B; Williams, Angela; Heidel, Eric; Macy, Sallie; Kennel, Stephen J; Wall, Jonathan S

    2013-06-21

    In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as therapeutics for the treatment of amyloid diseases.

  10. Solid-state NMR analysis of the {beta}-strand orientation of the protofibrils of amyloid {beta}-protein

    SciTech Connect

    Doi, Takashi; Masuda, Yuichi; Irie, Kazuhiro; Akagi, Ken-ichi; Monobe, Youko; Imazawa, Takayoshi; Takegoshi, K.

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The supramolecular structure of A{beta}42 protofibrils was analyzed by solid-state NMR. Black-Right-Pointing-Pointer The Ala-21 residue in the A{beta}42 protofibrils is included in a slightly disordered {beta}-strand. Black-Right-Pointing-Pointer The A{beta}42 protofibrils do not form intermolecular in-register parallel {beta}-sheets. -- Abstract: Alzheimer's disease (AD) is caused by abnormal deposition (fibrillation) of a 42-residue amyloid {beta}-protein (A{beta}42) in the brain. During the process of fibrillation, the A{beta}42 takes the form of protofibrils with strong neurotoxicity, and is thus believed to play a crucial role in the pathogenesis of AD. To elucidate the supramolecular structure of the A{beta}42 protofibrils, the intermolecular proximity of the Ala-21 residues in the A{beta}42 protofibrils was analyzed by {sup 13}C-{sup 13}C rotational resonance experiments in the solid state. Unlike the A{beta}42 fibrils, an intermolecular {sup 13}C-{sup 13}C correlation was not found in the A{beta}42 protofibrils. This result suggests that the {beta}-strands of the A{beta}42 protofibrils are not in an in-register parallel orientation. A{beta}42 monomers would assemble to form protofibrils with the {beta}-strand conformation, then transform into fibrils by forming intermolecular parallel {beta}-sheets.

  11. Specific interactions between amyloidpeptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  12. The iA{beta}5p {beta}-breaker peptide regulates the A{beta}(25-35) interaction with lipid bilayers through a cholesterol-mediated mechanism

    SciTech Connect

    Vitiello, Giuseppe; Grimaldi, Manuela; D'Ursi, Anna Maria; D'Errico, Gerardino

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer iA{beta}5p shows a significant tendency to deeply penetrates the hydrophobic core of lipid membrane. Black-Right-Pointing-Pointer A{beta}(25-35) locates in the external region of the membrane causing a re-positioning of CHOL. Black-Right-Pointing-Pointer iA{beta}5p withholds cholesterol in the inner hydrophobic core of the lipid membrane. Black-Right-Pointing-Pointer iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane. -- Abstract: Alzheimer's disease is characterized by the deposition of aggregates of the {beta}-amyloid peptide (A{beta}) in the brain. A potential therapeutic strategy for Alzheimer's disease is the use of synthetic {beta}-sheet breaker peptides, which are capable of binding A{beta} but unable to become part of a {beta}-sheet structure, thus inhibiting the peptide aggregation. Many studies suggest that membranes play a key role in the A{beta} aggregation; consequently, it is strategic to investigate the interplay between {beta}-sheet breaker peptides and A{beta} in the presence of lipid bilayers. In this work, we focused on the effect of the {beta}-sheet breaker peptide acetyl-LPFFD-amide, iA{beta}5p, on the interaction of the A{beta}(25-35) fragment with lipid membranes, studied by Electron Spin Resonance spectroscopy, using spin-labeled membrane components (either phospholipids or cholesterol). The ESR results show that iA{beta}5p influences the A{beta}(25-35) interaction with the bilayer through a cholesterol-mediated mechanism: iA{beta}5p withholds cholesterol in the inner hydrophobic core of the bilayer, making the interfacial region more fluid and capable to accommodate A{beta}(25-35). As a consequence, iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane, which is the first step of the {beta}-amyloid aggregation process.

  13. Oligomerization of beta-amyloid of the Alzheimer's and the Dutch-cerebral-haemorrhage types.

    PubMed Central

    Sian, A K; Frears, E R; El-Agnaf, O M; Patel, B P; Manca, M F; Siligardi, G; Hussain, R; Austen, B M

    2000-01-01

    A novel ELISA has been developed which detects oligomerization of beta-amyloid (A beta). Oligomerization, fibrillization and neurotoxicity of native A beta associated with Alzheimer's disease (AD) type has been compared with E22Q A beta (amyloid beta-protein containing residues 1--40 with the native Glu at residue 22 changed to Gln) implicated in Dutch cerebral haemorrhage disease. Solutions of A beta rapidly yield soluble oligomers in a concentration-dependent manner, which are detected by the ELISA, and by size-exclusion gel chromatography. Conformational changes from disordered to beta-sheet occur more slowly than oligomerization, and fibrils are produced after prolonged incubation. The E22Q A beta oligomerizes, changes conformation and fibrillizes more rapidly than the native form and produces shorter stubbier fibrils. Aged fibrillar preparations of E22Q A beta are more potent than aged fibrils of native A beta in inducing apoptotic changes and toxic responses in human neuroblastoma cell lines, whereas low-molecular-mass oligomers in briefly incubated solutions are much less potent. The differences in the rates of oligomerization of the two A beta forms, their conformational behaviour over a range of pH values, and NMR data reported elsewhere, are consistent with a molecular model of oligomerization in which strands of A beta monomers initially overcome charge repulsion to form dimers in parallel beta-sheet arrangement, stabilized by intramolecular hydrophobic interactions, with amino acids of adjacent chains in register. PMID:10861242

  14. Benzalkonium chloride accelerates the formation of the amyloid fibrils of corneal dystrophy-associated peptides.

    PubMed

    Kato, Yusuke; Yagi, Hisashi; Kaji, Yuichi; Oshika, Tetsuro; Goto, Yuji

    2013-08-30

    Corneal dystrophies are genetic disorders resulting in progressive corneal clouding due to the deposition of amyloid fibrils derived from keratoepithelin, also called transforming growth factor β-induced protein (TGFBI). The formation of amyloid fibrils is often accelerated by surfactants such as sodium dodecyl sulfate (SDS). Most eye drops contain benzalkonium chloride (BAC), a cationic surfactant, as a preservative substance. In the present study, we aimed to reveal the role of BAC in the amyloid fibrillation of keratoepithelin-derived peptides in vitro. We used three types of 22-residue synthetic peptides covering Leu110-Glu131 of the keratoepithelin sequence: an R-type peptide with wild-type R124, a C-type peptide with C124 associated with lattice corneal dystrophy type I, and a H-type peptide with H124 associated with granular corneal dystrophy type II. The time courses of spontaneous amyloid fibrillation and seed-dependent fibril elongation were monitored in the presence of various concentrations of BAC or SDS using thioflavin T fluorescence. BAC and SDS accelerated the fibrillation of all synthetic peptides in the absence and presence of seeds. Optimal acceleration occurred near the CMC, which suggests that the unstable and dynamic interactions of keratoepithelin peptides with amphipathic surfactants led to the formation of fibrils. These results suggest that eye drops containing BAC may deteriorate corneal dystrophies and that those without BAC are preferred especially for patients with corneal dystrophies.

  15. Benzalkonium Chloride Accelerates the Formation of the Amyloid Fibrils of Corneal Dystrophy-associated Peptides*

    PubMed Central

    Kato, Yusuke; Yagi, Hisashi; Kaji, Yuichi; Oshika, Tetsuro; Goto, Yuji

    2013-01-01

    Corneal dystrophies are genetic disorders resulting in progressive corneal clouding due to the deposition of amyloid fibrils derived from keratoepithelin, also called transforming growth factor β-induced protein (TGFBI). The formation of amyloid fibrils is often accelerated by surfactants such as sodium dodecyl sulfate (SDS). Most eye drops contain benzalkonium chloride (BAC), a cationic surfactant, as a preservative substance. In the present study, we aimed to reveal the role of BAC in the amyloid fibrillation of keratoepithelin-derived peptides in vitro. We used three types of 22-residue synthetic peptides covering Leu110-Glu131 of the keratoepithelin sequence: an R-type peptide with wild-type R124, a C-type peptide with C124 associated with lattice corneal dystrophy type I, and a H-type peptide with H124 associated with granular corneal dystrophy type II. The time courses of spontaneous amyloid fibrillation and seed-dependent fibril elongation were monitored in the presence of various concentrations of BAC or SDS using thioflavin T fluorescence. BAC and SDS accelerated the fibrillation of all synthetic peptides in the absence and presence of seeds. Optimal acceleration occurred near the CMC, which suggests that the unstable and dynamic interactions of keratoepithelin peptides with amphipathic surfactants led to the formation of fibrils. These results suggest that eye drops containing BAC may deteriorate corneal dystrophies and that those without BAC are preferred especially for patients with corneal dystrophies. PMID:23861389

  16. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abeta-induced neurodegeneration.

    PubMed

    Melchor, Jerry P; Pawlak, Robert; Strickland, Sidney

    2003-10-01

    Accumulation of the amyloid-beta (Abeta) peptide depends on both its generation and clearance. To better define clearance pathways, we have evaluated the role of the tissue plasminogen activator (tPA)-plasmin system in Abeta degradation in vivo. In two different mouse models of Alzheimer's disease, chronically elevated Abeta peptide in the brain correlates with the upregulation of plasminogen activator inhibitor-1 (PAI-1) and inhibition of the tPA-plasmin system. In addition, Abeta injected into the hippocampus of mice lacking either tPA or plasminogen persists, inducing PAI-1 expression and causing activation of microglial cells and neuronal damage. Conversely, Abeta injected into wild-type mice is rapidly cleared and does not cause neuronal degeneration. Thus, the tPA-plasmin proteolytic cascade aids in the clearance of Abeta, and reduced activity of this system may contribute to the progression of Alzheimer's disease.

  17. An intracellular protein that binds amyloidpeptide and mediates neurotoxicity in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Du Yan, Shi; Fu, Jin; Soto, Claudio; Chen, Xi; Zhu, Huaijie; Al-Mohanna, Futwan; Collison, Kate; Zhu, Aiping; Stern, Eric; Saido, Takaomi; Tohyama, Masaya; Ogawa, Satoshi; Roher, Alex; Stern, David

    1997-10-01

    Amyloid-β is a neurotoxic peptide which is implicated in the pathogenesis of Alzheimer's disease. It binds an intracellular polypeptide known as ERAB, thought to be a hydroxysteroid dehydrogenase enzyme, which is expressed in normal tissues, but is overexpressed in neurons affected in Alzheimer's disease. ERAB immunoprecipitates with amyloid-β, and when cell cultures are exposed to amyloid-β, ERAB inside the cell is rapidly redistributed to the plasma membrane. The toxic effect of amyloid-β on these cells is prevented by blocking ERAB and is enhanced by overexpression of ERAB. By interacting with intracellular amyloid-β, ERAB may therefore contribute to the neuronal dysfunction associated with Alzheimer's disease.

  18. Amyloidpeptide aggregation and the influence of carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Wen-Hui, Xi; Guang-Hong, Wei

    2016-01-01

    Soluble peptides or proteins can self-aggregate into insoluble, ordered amyloid fibrils under appropriate conditions. These amyloid aggregates are the hallmarks of several human diseases ranging from neurodegenerative disorders to systemic amyloidoses. In this review, we first introduce the common structural features of amyloid fibrils and the amyloid fibrillation kinetics determined from experimental studies. Then, we discuss the structural models of Alzheimer’s amyloid-β (Aβ) fibrils derived from solid-state nuclear magnetic resonance spectroscopy. On the computational side, molecular dynamics simulations can provide atomic details of structures and the underlying oligomerization mechanisms. We finally summarize recent progress in atomistic simulation studies on the oligomerization of Aβ (including full-length Aβ and its fragments) and the influence of carbon nanoparticles. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274075 and 91227102).

  19. [Development of anti-Alzheimer's disease drug based on beta-amyloid hypothesis].

    PubMed

    Sugimoto, Hachiro

    2010-04-01

    Currently, there are five anti-Alzheimer's disease drugs approved. These are tacrine, donepezil, rivastigmine, galantamine, and memantine. The mechanism of the first four drugs is acetylcholinesterase inhibition, while memantine is an NMDA-receptor antagonist. However, these drugs do not cure Alzheimer's, but are only symptomatic treatments. Therefore, a cure for Alzheimer's disease is truly needed. Alzheimer's disease is a progressive neurodegenerative disease characterized by cognitive deficits. The cause of the disease is not well understood, but research indicates that the aggregation of beta-amyloid is the fundamental cause. This theory suggests that beta-amyloid aggregation causes neurotoxicity. Therefore, development of the next anti-Alzheimer's disease drug is based on the beta-amyloid theory. We are now studying natural products, such as mulberry leaf extracts and curcumin derivatives, as potential cure for Alzheimer's disease. In this report, we describe some data about these natural products and derivatives.

  20. Beta-Amyloid Deposition and Alzheimer's Type Changes Induced by Borrelia Spirochetes

    SciTech Connect

    Miklossy,J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; et al.

    2006-01-01

    The pathological hallmarks of Alzheimer's disease (AD) consist of {beta}-amyloid plaques and neurofibrillary tangles in affected brain areas. The processes, which drive this host reaction are unknown. To determine whether an analogous host reaction to that occurring in AD could be induced by infectious agents, we exposed mammalian glial and neuronal cells in vitro to Borrelia burgdorferi spirochetes and to the inflammatory bacterial lipopolysaccharide (LPS). Morphological changes analogous to the amyloid deposits of AD brain were observed following 2-8 weeks of exposure to the spirochetes. Increased levels of {beta}-amyloid presursor protein (A{beta}PP) and hyperphosphorylated tau were also detected by Western blots of extracts of cultured cells that had been treated with spirochetes or LPS. These observations indicate that, by exposure to bacteria or to their toxic products, host responses similar in nature to those observed in AD may be induced.

  1. Oligomers of the amyloid-beta protein disrupt working memory: confirmation with two behavioral procedures.

    PubMed

    Poling, Alan; Morgan-Paisley, Kineta; Panos, John J; Kim, Eun-Mee; O'Hare, Eugene; Cleary, James P; Lesné, Sylvain; Ashe, Karen H; Porritt, Matthew; Baker, Lisa E

    2008-11-21

    Converging lines of evidence suggest that oligomers of amyloid-beta play a role in the cognitive impairment characteristic of Alzheimer's disease, but only three studies have provided experimental evidence of such impairment. To provide additional information about the effects of these oligomers on memory, the present study examined the memory of groups of rats exposed to ICV injections of the culture media (CM) of Chinese Hamster Ovary cells that were (7PA2) and were not (CHO-) transfected with a human mutation of amyloid precursor protein that appears to cause early-onset Alzheimer's disease. The 7PA2 CM, which contained concentrations of soluble amyloid-beta oligomers physiologically relevant to those found in human brain, significantly disrupted working memory in rats tested in a radial-arm maze. In contrast, CHO- CM, which did not contain such oligomers, had no effect on memory. The disruptive effects of 7PA2-derived amyloid-beta oligomers, evident 2h after exposure, disappeared within a day. These findings are compared to results from 7PA2 CM tested under a complex procedure thought to measure aspects of executive function. The results confirm the disruptive effects of low-n amyloid-beta oligomers and extend them to a well-established rat model of memory.

  2. In silico study of amyloid beta-protein folding relevant to Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Lam Ng, Alfonso Ramon

    Amyloid beta-protein (Abeta) folding is the initial step in the formation of the early toxic Abeta assemblies that are critically linked to Alzheimer's disease (AD). Abeta exists in two main alloforms, Abeta40 and Abeta42, composed of 40 and 42 residues, respectively. Abeta42 aggregates faster, forms more toxic assemblies, and is linked more strongly to AD. Two amino acids of Abeta42, I41 and A42, profoundly affect the behavior of Abeta40 and Abeta42. To examine why this happens, I study Abeta40 and Abeta42 folding using discrete molecular dynamics and a four-bead protein model with backbone hydrogen bonding and residue-specific effective hydropathic and electrostatic interactions. In particular, I explore a range of values of the hydropathic (EHP) and electrostatic (ECH) potential energies. For each peptide, I create a hundred different initial conformations for each set of parameters (EHP,E CH). I investigate the Abeta40 and Abeta42 monomer folding in a wide temperature range and quantify the folded structures by calculating the secondary structure propensities and the intramolecular contact maps. For each set of parameters (EHP,ECH), I calculate an average beta-strand secondary structure propensity in the Abeta40 and Abeta42 monomers as a function of temperature. I compare these simulated results with experimental circular dichroism measurements and estimate the model physiological temperature and the model parameters (E HP,ECH) that best fit the experimental conditions. The results show that in the temperature range [278K,350K], the average beta-strand in Abeta42 is larger than that of Abeta40, which is in agreement with experiments. The model predicts that the average beta-strand propensity should decrease for T>350K. At low temperatures, both Abeta40 and Abeta42 adopt a predominantly collapsed-coil conformation with small amounts of an beta-helical secondary structure (<1%). At high temperatures, beta-strand rich structures are more prominent (19%). Also, the

  3. Beta-amyloid deposition in chronic traumatic encephalopathy.

    PubMed

    Stein, Thor D; Montenigro, Philip H; Alvarez, Victor E; Xia, Weiming; Crary, John F; Tripodis, Yorghos; Daneshvar, Daniel H; Mez, Jesse; Solomon, Todd; Meng, Gaoyuan; Kubilus, Caroline A; Cormier, Kerry A; Meng, Steven; Babcock, Katharine; Kiernan, Patrick; Murphy, Lauren; Nowinski, Christopher J; Martin, Brett; Dixon, Diane; Stern, Robert A; Cantu, Robert C; Kowall, Neil W; McKee, Ann C

    2015-07-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive mild traumatic brain injury. It is defined pathologically by the abnormal accumulation of tau in a unique pattern that is distinct from other tauopathies, including Alzheimer's disease (AD). Although trauma has been suggested to increase amyloid β peptide (Aβ) levels, the extent of Aβ deposition in CTE has not been thoroughly characterized. We studied a heterogeneous cohort of deceased athletes and military veterans with neuropathologically diagnosed CTE (n = 114, mean age at death = 60) to test the hypothesis that Aβ deposition is altered in CTE and associated with more severe pathology and worse clinical outcomes. We found that Aβ deposition, either as diffuse or neuritic plaques, was present in 52 % of CTE subjects. Moreover, Aβ deposition in CTE occurred at an accelerated rate and with altered dynamics in CTE compared to a normal aging population (OR = 3.8, p < 0.001). We also found a clear pathological and clinical dichotomy between those CTE cases with Aβ plaques and those without. Aβ deposition was significantly associated with the presence of the APOE ε4 allele (p = 0.035), older age at symptom onset (p < 0.001), and older age at death (p < 0.001). In addition, when controlling for age, neuritic plaques were significantly associated with increased CTE tauopathy stage (β = 2.43, p = 0.018), co-morbid Lewy body disease (OR = 5.01, p = 0.009), and dementia (OR = 4.45, p = 0.012). A subset of subjects met the diagnostic criteria for both CTE and AD, and in these subjects both Aβ plaques and total levels of Aβ1-40 were increased at the depths of the cortical sulcus compared to the gyral crests. Overall, these findings suggest that Aβ deposition is altered and accelerated in a cohort of CTE subjects compared to normal aging and that Aβ is associated with both pathological and clinical progression of CTE independent of age.

  4. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes

    SciTech Connect

    Miklossy, J.; Miller, L.; Qing, H.; Radenovic, A.; Kis, A.; Vileno, B.; Laszlo, F.; Martins, R.N.; Waeber, G.; Mooser, V.; Bosman, F.; Khalili, K.; Darbinian, N.; McGeer, P.L.

    2008-08-25

    Strong epidemiologic evidence suggests an association between Alzheimer disease (AD) and type 2 diabetes. To determine if amyloid beta (A{beta}) and hyperphosphorylated tau occurs in type 2 diabetes, pancreas tissues from 21 autopsy cases (10 type 2 diabetes and 11 controls) were analyzed. APP and tau mRNAs were identified in human pancreas and in cultured insulinoma beta cells (INS-1) by RT-PCR. Prominent APP and tau bands were detected by Western blotting in pancreatic extracts. Aggregated A{beta}, hyperphosphorylated tau, ubiquitin, apolipoprotein E, apolipoprotein(a), IB1/JIP-1 and JNK1 were detected in Langerhans islets in type 2 diabetic patients. A{beta} was co-localized with amylin in islet amyloid deposits. In situ beta sheet formation of islet amyloid deposits was shown by infrared microspectroscopy (SIRMS). LPS increased APP in non-neuronal cells as well. We conclude that A{beta} deposits and hyperphosphorylated tau are also associated with type 2 diabetes, highlighting common pathogenetic features in neurodegenerative disorders, including AD and type 2 diabetes and suggesting that A{beta} deposits and hyperphosphorylated tau may also occur in other organs than the brain.

  5. Methods for labeling .beta.-amyloid plaques and neurofibrillary tangles

    DOEpatents

    Barrio, Jorge R.; Petric, Andrej; Satyamurthy, Nagichettiar; Small, Gary W.; Cole, Gregory M.; Huang, Sung-Cheng

    2001-01-01

    A method for labeling .beta.-amyloid plaques and neurofibrillary tangles in vivo and in vitro, comprises contacting a compound of formula (I): ##STR1## with mammalian tissue. In formula (I), R.sub.1 is selected from the group consisting of --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C.dbd.C(CN).sub.2 -alkyl, --C.dbd.C(CN).sub.2 -alkylenyl-R.sub.4 , ##STR2## R.sub.4 is a radical selected from the group consisting of alkyl, substituted alkyl, aryl and substituted aryl; R.sub.5, is a radical selected from the group consisting of --NH.sub.2, --OH, --SH, --NH-alkyl, --NHR.sub.4, --NH-alkylenyl-R.sub.4, --O-alkyl, --O-alkylenyl-R.sub.4, --S-alkyl, and --S-alkylenyl-R.sub.4 ; R.sub.6 is a radical selected from the group consisting of --CN, --COOH, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)-halogen, --C(O)NH , --C(O)NH-alkyl, --C(O)NH-alkylenyl-R.sub.4 ; R.sub.7 is a radical selected from the group consisting of O, NH, and S; and R.sub.8 is N, O or S. R.sub.2 and R.sub.3 are each independently selected from the group consisting of alkyl and alkylenyl-R.sub.10, wherein R.sub.10 is selected from the group consisting of --OH, --OTs, halogen, spiperone, spiperone ketal and spiperone-3-yl. Alternatively, R.sub.2 and R.sub.3 together form a heterocyclic ring, optionally substituted with at least one radical selected from the group consisting of alkyl, alkoxy, OH, OTs, halogen, alkylenyl-R.sub.10, carbonyl, spiperone, spiperone ketal and spiperone-3-yl. In the compounds of formula (I), one or more of the hydrogen, halogen or carbon atoms can, optionally, be replaced with a radiolabel.

  6. Methods for labeling .beta.-amyloid plaques and neurofibrillary tangles

    DOEpatents

    Barrio, Jorge R.; Petric, Andrej; Satyamurthy, Nagichettiar; Small, Gary W.; Cole, Gregory M.; Huang, Sung-Cheng

    2003-12-09

    A method for labeling .beta.-amyloid plaques and neurofibrillary tangles in vivo and in vitro, comprises contacting a compound of formula (I): ##STR1## with mammalian tissue. In formula (I), R.sub.1 is selected from the group consisting of --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C.dbd.C(CN).sub.2 -alkyl, --C.dbd.C(CN).sub.2 -alkylenyl-R.sub.4, ##STR2## R.sub.4 is a radical selected from the group consisting of alkyl, substituted alkyl, aryl and substituted aryl; R.sub.5 is a radical selected from the group consisting of --NH.sub.2, --OH, --SH, --NH-alkyl, --NHR.sub.4, --NH-alkylenyl-R.sub.4, --O-alkyl, --O-alkylenyl-R.sub.4, --S-alkyl, and --S-alkylenyl-R.sub.4 ; R.sub.6 is a radical selected from the group consisting of --CN, --COOH, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)-halogen, --C(O)NH, --C(O)NH-alkyl, --C(O)NH-alkylenyl-R.sub.4 ; R.sub.7 is a radical selected from the group consisting of O, NH, and S; and R.sub.8 is N, O or S. R.sub.2 and R.sub.3 are each independently selected from the group consisting of alkyl and alkylenyl-R.sub.10, wherein R.sub.10 is selected from the group consisting of --OH, --OTs, halogen, spiperone, spiperone ketal and spiperone-3-yl. Alternatively, R.sub.2 and R.sub.3 together form a heterocyclic ring, optionally substituted with at least one radical selected from the group consisting of alkyl, alkoxy, OH, OTs, halogen, alkylenyl-R.sub.10, carbonyl, spiperone, spiperone ketal and spiperone-3-yl. In the compounds of formula (I), one or more of the hydrogen, halogen or carbon atoms can, optionally, be replaced with a radiolabel.

  7. Compositions for labeling .beta.-amyloid plaques and neurofibrillary tangles

    DOEpatents

    Barrio, Jorge R.; Petric, Andrej; Satyamurthy, Nagichettiar; Small, Gary W.; Cole, Gregory M.; Huang, Sung-Cheng

    2008-03-11

    Compositions useful for labeling .beta.-amyloid plaques and neurofibrillary tangles are provided. The compositions comprises compounds of formula (I): ##STR00001## wherein R.sub.1 is selected from the group consisting of --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C.dbd.C(CN).sub.2-alkyl, --C.dbd.C(CN).sub.2-alkylenyl-R.sub.4, ##STR00002## wherein R.sub.4 is a radical selected from the group consisting of alkyl, substituted alkyl, aryl and substituted aryl; R.sub.5 is a radical selected from the group consisting of --NH.sub.2, --OH, --SH, --NH-alkyl, --NHR.sub.4, --NH-alkylenyl-R.sub.4, --O-alkyl, --O-alkylenyl-R.sub.4, --S-alkyl, and --S-alkylenyl-R.sub.4; R.sub.6 is a radical selected from the group consisting of --CN, --COOH, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)-halogen, --C(O)NH-alkyl, --C(O)NH-alkylenyl-R.sub.4 and --C(O)NH.sub.2; R.sub.7 is a radical selected from the group consisting of O, NH, and S; and R.sub.8 is N, O or S; and R.sub.2 is selected from the group consisting of alkyl and alkylenyl-R.sub.10 and R.sub.3 is alkylenyl-R.sub.10, wherein R.sub.10 is selected from the group consisting of --OH, --OTs, halogen, spiperone, spiperone ketal, and spiperone-3-yl, or R.sub.2 and R.sub.3 together form a heterocyclic ring, optionally substituted with at least one radical selected from the group consisting of alkyl, alkoxy, OH, OTs, halogen, alkyl-R.sub.10, carbonyl, spiperone, spiperone ketal and spiperone-3-yl, and further wherein one or more of the hydrogen, halogen or carbon atoms are optionally replaced with a radiolabel.

  8. A Drosophila gene encoding a protein resembling the human. beta. -amyloid protein precursor

    SciTech Connect

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K. )

    1989-04-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human {beta}-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human {beta}-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development.

  9. A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor.

    PubMed Central

    Rosen, D R; Martin-Morris, L; Luo, L Q; White, K

    1989-01-01

    We have isolated genomic and cDNA clones for a Drosophila gene resembling the human beta-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human beta-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development. Images PMID:2494667

  10. Effects of stress and stress hormones on amyloid-beta protein and plaque deposition.

    PubMed

    Dong, Hongxin; Csernansky, John G

    2009-01-01

    Growing evidence indicates that physical and psychosocial stressors, in part acting through the hypothalamic-pituitary-adrenal (HPA) axis, may accelerate the process of Alzheimer's disease (AD). In this review, we summarize recent research related to the effects of stress and stress hormones on the various disease process elements associated with AD. Specifically, we focus on the relationships among chronic stressors, HPA axis activity, amyloid-beta protein, and amyloid-beta plaque deposition in mouse models of AD. The potential mechanisms by which stress and stress-related components, especially corticotrophin-releasing factor and its receptors, influence the pathogenesis of AD are discussed.

  11. Phosphate and HEPES buffers potently affect the fibrillation and oligomerization mechanism of Alzheimer's A{beta} peptide

    SciTech Connect

    Garvey, Megan; Tepper, Katharina; Haupt, Caroline; Knuepfer, Uwe; Klement, Karolin; Meinhardt, Jessica; Horn, Uwe; Balbach, Jochen; Faendrich, Marcus

    2011-06-10

    Highlights: {yields} Sodium phosphate buffer accelerated A{beta}(1-40) nucleation relative to HEPES. {yields} A{beta}(1-40) fibrils formed in the two buffers show only minor structural differences. {yields} NMR revealed that A{beta}(1-40) histidine residues mediate buffer dependent changes. -- Abstract: The oligomerization of A{beta} peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of A{beta} and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects on the fibrillation and oligomerization mechanism of A{beta} peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of A{beta} fibrillation. The three histidine residues at positions 6, 13 and 14 of A{beta}(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.

  12. Beneficial effects of lysosome-modulating and other pharmacological and nanocarrier agents on amyloid-beta-treated cells.

    PubMed

    Kanazirska, Marie V; Fuchs, Philipp M; Chen, Liping; Lal, Sumit; Verma, Jyoti; Vassilev, Peter M

    2012-12-01

    The progression of Alzheimer's disease (AD) is accompanied by disturbances of the endosome/lysosome (EL) system and there is accumulation of peptides of the AD-associated amyloid beta (Abeta) type in EL vesicles of affected neurons. EL modulating agents partially ameliorate the Abeta-mediated cell abnormalities. However, no extensive studies on the potential pharmaceutical applications of combinations of such agents and their synergistic effects have been performed. This study shows the beneficial anti-amyloid effects of several combinations of lysosomal modulators and other pharmacological and new nanobiotechnological agents. Some agents potentiated each other's action and some of them facilitated the anti-amyloid actions of memantine, a modifier of Ca2+-permeable channels involved in AD and one of the few drugs used for treatment of AD. Another compound used in nanobiotechnology ameliorated as a nanocarrier the beneficial effects of some of these potential pharmaceutical agents. They may be considered as additional drugs to improve the efficacy of the therapeutic approaches for AD and related neurodegenerative disorders.

  13. The Synthesis of Beta-Peptides Containing Guanidino Groups

    NASA Technical Reports Server (NTRS)

    Wen, Ke; Han, Hyunsoo; Hoffman, Timothy Z.; Janda, Kim D.; Orgel, Leslie E.

    2003-01-01

    The synthesis of the beta-peptide 1 by the postsynthetic modification of the corresponding amino-containing peptide 3 is described. The potential of 1 to act as a template for the ligation of complementary negatively-charged peptides is discussed.

  14. Controlling {beta}-amyloid oligomerization by the use of naphthalene sulfonates: trapping low molecular weight oligomeric species.

    PubMed

    Ferrão-Gonzales, Astria D; Robbs, Bruno K; Moreau, Vitor Hugo; Ferreira, Aricéle; Juliano, Luiz; Valente, Ana Paula; Almeida, Fabio C L; Silva, Jerson L; Foguel, Debora

    2005-10-14

    Aggregation of proteins and peptides has been shown to be responsible for several diseases known as amyloidoses, which include Alzheimer disease (AD), prion diseases, among several others. AD is a neurodegenerative disorder caused primarily by the aggregation of beta-amyloid peptide (Abeta). Here we describe the stabilization of small oligomers of Abeta by the use of sulfonated hydrophobic molecules such as AMNS (1-amino-5-naphthalene sulfonate); 1,8-ANS (1-anilinonaphthalene-8-sulfonate) and bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonate). The experiments were performed with either Abeta-1-42 or with Abeta-13-23, a shorter version of Abeta that is still able to form amyloid fibrils in vitro and contains amino acid residues 16-20, previously shown to be essential to peptide-peptide interaction and fibril formation. All sulfonated molecules tested were able to prevent Abeta aggregation in a concentration dependent fashion in the following order of efficacy: 1,8-ANS < AMNS < bis-ANS. Size exclusion chromatography revealed that in the presence of bis-ANS, Abeta forms a heterogeneous population of low molecular weight species that proved to be toxic to cell cultures. Since the ANS compounds all have apolar rings and negative charges (sulfonate groups), both hydrophobic and electrostatic interactions may contribute to interpeptide contacts that lead to aggregation. We also performed NMR experiments to investigate the structure of Abeta-13-23 in SDS micelles and found features of an alpha-helix from Lys(16) to Phe(20). 1H TOCSY spectra of Abeta-13-23 in the presence of AMNS displayed a chemical-shift dispersion quite similar to that observed in SDS, which suggests that in the presence of AMNS this peptide might adopt a conformation similar to that reported in the presence of SDS. Taken together, our studies provide evidence for the crucial role of small oligomers and their stabilization by sulfonate hydrophobic compounds.

  15. Insulin-degrading enzyme rapidly removes the beta-amyloid precursor protein intracellular domain (AICD).

    PubMed

    Edbauer, Dieter; Willem, Michael; Lammich, Sven; Steiner, Harald; Haass, Christian

    2002-04-19

    The intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein (APP) is dependent on biologically active presenilins (PS). Notch also undergoes a similar PS-dependent gamma-secretase-like cleavage, resulting in the liberation of the Notch intracellular domain (NICD), which is critically required for developmental signal transduction. gamma-Secretase processing of APP results in the production of a similar fragment called AICD (APP intracellular domain), which may function in nuclear signaling as well. AICD, like NICD, is rapidly removed. By using a battery of protease inhibitors we demonstrate that AICD, in contrast to NICD, is degraded by a cytoplasmic metalloprotease. In vitro degradation of AICD can be reconstituted with cytoplasmic fractions obtained from neuronal and non-neuronal cells. Taking into account the inhibition profile and the cytoplasmic localization, we identified three candidate enzymes (neurolysin, thimet oligopeptidase, and insulin-degrading enzyme (IDE), also known as insulysin), which all are involved in the degradation of bioactive peptides in the brain. When insulin, a well characterized substrate of IDE, was added to the in vitro degradation assay, removal of AICD was efficiently blocked. Moreover, overexpression of IDE resulted in enhanced degradation of AICD, whereas overexpression of the inactive IDE E111Q mutant did not affect AICD degradation. Finally, immunodepletion of IDE significantly reduced the AICD degrading activity. Therefore our data demonstrate that IDE, which is one of the proteases implicated in the removal of extracellular Abeta, also removes the cytoplasmic product of gamma-secretase cleaved APP.

  16. Dementia of the eye: the role of amyloid beta in retinal degeneration.

    PubMed

    Ratnayaka, J A; Serpell, L C; Lotery, A J

    2015-08-01

    Age-related macular degeneration (AMD) is one of the most common causes of irreversible blindness affecting nearly 50 million individuals globally. The disease is characterised by progressive loss of central vision, which has significant implications for quality of life concerns in an increasingly ageing population. AMD pathology manifests in the macula, a specialised region of the retina, which is responsible for central vision and perception of fine details. The underlying pathology of this complex degenerative disease is incompletely understood but includes both genetic as well as epigenetic risk factors. The recent discovery that amyloid beta (Aβ), a highly toxic and aggregate-prone family of peptides, is elevated in the ageing retina and is associated with AMD has opened up new perspectives on the aetiology of this debilitating blinding disease. Multiple studies now link Aβ with key stages of AMD progression, which is both exciting and potentially insightful, as this identifies a well-established toxic agent that aggressively targets cells in degenerative brains. Here, we review the most recent findings supporting the hypothesis that Aβ may be a key factor in AMD pathology. We describe how multiple Aβ reservoirs, now reported in the ageing eye, may target the cellular physiology of the retina as well as associated layers, and propose a mechanistic pathway of Aβ-mediated degenerative change leading to AMD.

  17. Dementia of the eye: the role of amyloid beta in retinal degeneration

    PubMed Central

    Ratnayaka, J A; Serpell, L C; Lotery, A J

    2015-01-01

    Age-related macular degeneration (AMD) is one of the most common causes of irreversible blindness affecting nearly 50 million individuals globally. The disease is characterised by progressive loss of central vision, which has significant implications for quality of life concerns in an increasingly ageing population. AMD pathology manifests in the macula, a specialised region of the retina, which is responsible for central vision and perception of fine details. The underlying pathology of this complex degenerative disease is incompletely understood but includes both genetic as well as epigenetic risk factors. The recent discovery that amyloid beta (Aβ), a highly toxic and aggregate-prone family of peptides, is elevated in the ageing retina and is associated with AMD has opened up new perspectives on the aetiology of this debilitating blinding disease. Multiple studies now link Aβ with key stages of AMD progression, which is both exciting and potentially insightful, as this identifies a well-established toxic agent that aggressively targets cells in degenerative brains. Here, we review the most recent findings supporting the hypothesis that Aβ may be a key factor in AMD pathology. We describe how multiple Aβ reservoirs, now reported in the ageing eye, may target the cellular physiology of the retina as well as associated layers, and propose a mechanistic pathway of Aβ-mediated degenerative change leading to AMD. PMID:26088679

  18. Amyloid Beta: Multiple Mechanisms of Toxicity and Only Some Protective Effects?

    PubMed Central

    Colín-Barenque, Laura

    2014-01-01

    Amyloid beta (Aβ) is a peptide of 39–43 amino acids found in large amounts and forming deposits in the brain tissue of patients with Alzheimer's disease (AD). For this reason, it has been implicated in the pathophysiology of damage observed in this type of dementia. However, the role of Aβ in the pathophysiology of AD is not yet precisely understood. Aβ has been experimentally shown to have a wide range of toxic mechanisms in vivo and in vitro, such as excitotoxicity, mitochondrial alterations, synaptic dysfunction, altered calcium homeostasis, oxidative stress, and so forth. In contrast, Aβ has also shown some interesting neuroprotective and physiological properties under certain experimental conditions, suggesting that both physiological and pathological roles of Aβ may depend on several factors. In this paper, we reviewed both toxic and protective mechanisms of Aβ to further explore what their potential roles could be in the pathophysiology of AD. The complete understanding of such apparently opposed effects will also be an important guide for the therapeutic efforts coming in the future. PMID:24683437

  19. Amyloid beta: multiple mechanisms of toxicity and only some protective effects?

    PubMed

    Carrillo-Mora, Paul; Luna, Rogelio; Colín-Barenque, Laura

    2014-01-01

    Amyloid beta (Aβ) is a peptide of 39-43 amino acids found in large amounts and forming deposits in the brain tissue of patients with Alzheimer's disease (AD). For this reason, it has been implicated in the pathophysiology of damage observed in this type of dementia. However, the role of Aβ in the pathophysiology of AD is not yet precisely understood. Aβ has been experimentally shown to have a wide range of toxic mechanisms in vivo and in vitro, such as excitotoxicity, mitochondrial alterations, synaptic dysfunction, altered calcium homeostasis, oxidative stress, and so forth. In contrast, Aβ has also shown some interesting neuroprotective and physiological properties under certain experimental conditions, suggesting that both physiological and pathological roles of Aβ may depend on several factors. In this paper, we reviewed both toxic and protective mechanisms of Aβ to further explore what their potential roles could be in the pathophysiology of AD. The complete understanding of such apparently opposed effects will also be an important guide for the therapeutic efforts coming in the future.

  20. A mathematical model of the kinetics of beta-amyloid fibril growth from the denatured state.

    PubMed Central

    Pallitto, M M; Murphy, R M

    2001-01-01

    Spontaneous conversion of beta-amyloid peptide (Abeta) from soluble monomer to insoluble fibril may underlie the neurodegeneration associated with Alzheimer's disease. A complete description of Abeta self-association kinetics requires identification of the oligomeric species present and the pathway of association, as well as quantitation of rate constants and reaction order. Abeta was rendered monomeric and denatured by dissolution in 8 M urea, pH 10. "Refolding" and fibrillization were initiated by rapid dilution into phosphate-buffered saline, pH 7.4. The kinetics of growth were followed at three different concentrations, using size exclusion chromatography, dynamic light scattering, and static light scattering. A multi-step pathway for fibril formation and growth was postulated. This pathway included 1) rapid commitment to either stable monomer/dimer or unstable intermediate, 2) cooperative association of intermediate into a multimeric "nucleus," 3) elongation of the "nucleus" into filaments via addition of intermediate, 4) lateral aggregation of filaments into fibrils, and 5) fibril elongation via end-to-end association. Differential and algebraic equations describing this kinetic pathway were derived, and model parameters were determined by fitting the data. The utility of the model for identifying toxic Abeta oligomeric specie(s) is demonstrated. The model should prove useful for designing compounds that inhibit Abeta aggregation and/or toxicity. PMID:11509390

  1. Detection of Alzheimer’s disease amyloid-beta plaque deposition by deep brain impedance profiling

    NASA Astrophysics Data System (ADS)

    Béduer, Amélie; Joris, Pierre; Mosser, Sébastien; Fraering, Patrick C.; Renaud, Philippe

    2015-04-01

    Objective. Alzheimer disease (AD) is the most common form of neurodegenerative disease in elderly people. Toxic brain amyloid-beta (Aß) aggregates and ensuing cell death are believed to play a central role in the pathogenesis of the disease. In this study, we investigated if we could monitor the presence of these aggregates by performing in situ electrical impedance spectroscopy measurements in AD model mice brains. Approach. In this study, electrical impedance spectroscopy measurements were performed post-mortem in APPPS1 transgenic mice brains. This transgenic model is commonly used to study amyloidogenesis, a pathological hallmark of AD. We used flexible probes with embedded micrometric electrodes array to demonstrate the feasibility of detecting senile plaques composed of Aß peptides by localized impedance measurements. Main results. We particularly focused on deep brain structures, such as the hippocampus. Ex vivo experiments using brains from young and old APPPS1 mice lead us to show that impedance measurements clearly correlate with the percentage of Aβ plaque load in the brain tissues. We could monitor the effects of aging in the AD APPPS1 mice model. Significance. We demonstrated that a localized electrical impedance measurement constitutes a valuable technique to monitor the presence of Aβ-plaques, which is complementary with existing imaging techniques. This method does not require prior Aβ staining, precluding the risk of variations in tissue uptake of dyes or tracers, and consequently ensuring reproducible data collection.

  2. Nano-biosensors to detect beta-amyloid for Alzheimer's disease management.

    PubMed

    Kaushik, Ajeet; Jayant, Rahul Dev; Tiwari, Sneham; Vashist, Arti; Nair, Madhavan

    2016-06-15

    Beta-amyloid (β-A) peptides are potential biomarkers to monitor Alzheimer's diseases (AD) for diagnostic purposes. Increased β-A level is neurotoxic and induces oxidative stress in brain resulting in neurodegeneration and causes dementia. As of now, no sensitive and inexpensive method is available for β-A detection under physiological and pathological conditions. Although, available methods such as neuroimaging, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) detect β-A, but they are not yet extended at point-of-care (POC) due to sophisticated equipments, need of high expertize, complicated operations, and challenge of low detection limit. Recently, β-A antibody based electrochemical immuno-sensing approach has been explored to detect β-A at pM levels within 30-40 min compared to 6-8h of ELISA test. The introduction of nano-enabling electrochemical sensing technology could enable rapid detection of β-A at POC and may facilitate fast personalized health care delivery. This review explores recent advancements in nano-enabling electrochemical β-A sensing technologies towards POC application to AD management. These analytical tools can serve as an analytical tool for AD management program to obtain bio-informatics needed to optimize therapeutics for neurodegenerative diseases diagnosis management.

  3. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides

    NASA Astrophysics Data System (ADS)

    Yang, Zaixing; Ge, Cuicui; Liu, Jiajia; Chong, Yu; Gu, Zonglin; Jimenez-Cruz, Camilo A.; Chai, Zhifang; Zhou, Ruhong

    2015-11-01

    Current therapies for Alzheimer's disease (AD) can provide a moderate symptomatic reduction or delay progression at various stages of the disease, but such treatments ultimately do not arrest the advancement of AD. As such, novel approaches for AD treatment and prevention are urgently needed. We here provide both experimental and computational evidence that pristine graphene and graphene-oxide nanosheets can inhibit Aβ peptide monomer fibrillation and clear mature amyloid fibrils, thus impacting the central molecular superstructures correlated with AD pathogenesis. Our molecular dynamics simulations for the first time reveal that graphene nanosheets can penetrate and extract a large number of peptides from pre-formed amyloid fibrils; these effects seem to be related to exceptionally strong dispersion interactions between peptides and graphene that are further enhanced by strong π-π stacking between the aromatic residues of extracted Aβ peptides and the graphene surface. Atomic force microscopy images confirm these predictions by demonstrating that mature amyloid fibrils can be cut into pieces and cleared by graphene oxides. Thioflavin fluorescence assays further illustrate the detailed dynamic processes by which graphene induces inhibition of monomer aggregation and clearance of mature amyloid fibrils, respectively. Cell viability and ROS assays indicate that graphene oxide can indeed mitigate cytotoxicity of Aβ peptide amyloids. Our findings provide new insights into the underlying molecular mechanisms that define graphene-amyloid interaction and suggest that further research on nanotherapies for Alzheimer's and other protein aggregation-related diseases is warranted.Current therapies for Alzheimer's disease (AD) can provide a moderate symptomatic reduction or delay progression at various stages of the disease, but such treatments ultimately do not arrest the advancement of AD. As such, novel approaches for AD treatment and prevention are urgently needed. We

  4. Rationally designed mutations convert de novo amyloid-like fibrils into monomeric beta-sheet proteins.

    PubMed

    Wang, Weixun; Hecht, Michael H

    2002-03-05

    Amyloid fibrils are associated with a variety of neurodegenerative maladies including Alzheimer's disease and the prion diseases. The structures of amyloid fibrils are composed of beta-strands oriented orthogonal to the fibril axis ("cross beta" structure). We previously reported the design and characterization of a combinatorial library of de novo beta-sheet proteins that self-assemble into fibrillar structures resembling amyloid. The libraries were designed by using a "binary code" strategy, in which the locations of polar and nonpolar residues are specified explicitly, but the identities of these residues are not specified and are varied combinatorially. The initial libraries were designed to encode proteins containing amphiphilic beta-strands separated by reverse turns. Each beta-strand was designed to be seven residues long, with polar (open circle) and nonpolar (shaded circle) amino acids arranged with an alternating periodicity ([see text]). The initial design specified the identical polar/nonpolar pattern for all of the beta-strands; no strand was explicitly designated to form the edges of the resulting beta-sheets. With all beta-strands preferring to occupy interior (as opposed to edge) locations, intermolecular oligomerization was favored, and the proteins assembled into amyloid-like fibrils. To assess whether explicit design of edge-favoring strands might tip the balance in favor of monomeric beta-sheet proteins, we have now redesigned the first and/or last beta-strands of several sequences from the original library. In the redesigned beta-strands, the binary pattern is changed from [see text] (K denotes lysine). The presence of a lysine on the nonpolar face of a beta-strand should disfavor fibrillar structures because such structures would bury an uncompensated charge. The nonpolar right arrow lysine mutations, therefore, would be expected to favor monomeric structures in which the [see text] sequences form edge strands with the charged lysine side

  5. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40).

    PubMed

    Miguel-Hidalgo, J J; Alvarez, X A; Cacabelos, R; Quack, G

    2002-12-20

    Progressive neuronal loss and cognitive decline in Alzheimer's disease (AD) might be aggravated by beta-amyloid-enhanced excitotoxicity. Memantine is an uncompetitive NMDA receptor antagonist under clinical development for the treatment of AD. Memantine has neuroprotective actions in several in vitro and in vivo models. In the present study, we determined whether memantine protected against beta-amyloid induced neurotoxicity and learning impairment in rats. Twenty Sprague-Dawley rats received vehicle or vehicle plus memantine (steady-state plasma concentrations of 2.34+/-0.23 microM, n=10) s.c. by osmotic pump for 9 days. After 2 days of treatment, 2 microl of water containing beta-amyloid 1-40 [Abeta(1-40)] were injected into the hippocampal fissure. On the ninth day of treatment, animals were sacrificed, and morphological and immunohistochemical techniques were used to determine the extent of neuronal degeneration and astrocytic and microglial activation in the hippocampus. Psychomotor activity and spatial discrimination were tested on the eighth day of treatment. Abeta(1-40), but not water, injections into hippocampus led to neuronal loss in the CA1 subfield, evidence of widespread apoptosis, and astrocytic and microglial activation and hypertrophy. Memantine treated animals had significant reductions in the amount of neuronal degeneration, pyknotic nuclei, and GFAP immunostaining as compared with vehicle treated animals. These data suggest that memantine, at therapeutically relevant concentrations, can protect against neuronal degeneration induced by beta-amyloid.

  6. CSF beta-amyloid levels are altered in narcolepsy: a link with the inflammatory hypothesis?

    PubMed

    Liguori, Claudio; Placidi, Fabio; Albanese, Maria; Nuccetelli, Marzia; Izzi, Francesca; Marciani, Maria Grazia; Mercuri, Nicola Biagio; Bernardini, Sergio; Romigi, Andrea

    2014-08-01

    Narcolepsy is characterized by hypocretin deficiency due to the loss of hypothalamic orexinergic neurons, and is associated with both the human leucocyte antigen DQB1*06:02 and the T cell receptor polymorphism. The above relationship suggests autoimmune/inflammatory processes underlying the loss of orexinergic neurons in narcolepsy. To test the autoimmune/inflammatory hypothesis by means of cerebrospinal fluid (CSF) levels of beta-amyloid1-42 and/or total tau proteins in a sample of narcoleptic patients, we analysed 16 narcoleptic patients and 16 healthy controls. Beta-amyloid1-42 CSF levels were significantly lower in narcoleptic patients compared with healthy controls. We also documented pathologically low levels of CSF beta-amyloid1-42 (<500 pg mL(-1) ) in six of 16 narcoleptic patients (37.5%). We hypothesize that the significant decrease of the CSF beta-amyloid1-42 levels in narcoleptic patients may support both the inflammatory/autoimmune hypothesis as the basis of the pathogenesis of narcolepsy and the prevalence of an 'amyloidogenic' pathway caused by the deficiency of the alpha-secretases enzymes.

  7. Anti-LRP/LR specific antibodies and shRNAs impede amyloid beta shedding in Alzheimer's disease

    PubMed Central

    Jovanovic, Katarina; Gonsalves, Danielle; Da Costa Dias, Bianca; Moodley, Kiashanee; Reusch, Uwe; Knackmuss, Stefan; Penny, Clement; Weinberg, Marc S.; Little, Melvyn; Weiss, Stefan F. T.

    2013-01-01

    Alzheimer's disease (AD) is the most prevalent form of dementia. The amyloid beta (Aβ) peptide is the predominant candidate aetiological agent and is generated through the sequential proteolytic cleavage of the Amyloid Precursor Protein (APP) by beta (β) and gamma (γ) secretases. Since the cellular prion protein (PrPc) has been shown to regulate Aβ shedding, we investigated whether the cellular receptor for PrPc, namely the 37 kDa/67 kDa Laminin Receptor (LRP/LR) played a role in Aβ shedding. Here we show that LRP/LR co-localises with the AD relevant proteins APP, β- and γ-secretase, respectively. Antibody blockage and shRNA knock-down of LRP/LR reduces Aβ shedding, due to impediment of β-secretase activity, rather than alteration of APP, β- and γ-secretase levels. These findings indicate that LRP/LR contributes to Aβ shedding and recommend anti-LRP/LR specific antibodies and shRNAs as novel therapeutic tools for AD treatment. PMID:24048412

  8. HIV Tat protein and amyloidpeptide form multifibrillar structures that cause neurotoxicity.

    PubMed

    Hategan, Alina; Bianchet, Mario A; Steiner, Joseph; Karnaukhova, Elena; Masliah, Eliezer; Fields, Adam; Lee, Myoung-Hwa; Dickens, Alex M; Haughey, Norman; Dimitriadis, Emilios K; Nath, Avindra

    2017-02-20

    Deposition of amyloid-β plaques is increased in the brains of HIV-infected individuals, and the HIV transactivator of transcription (Tat) protein affects amyloidogenesis through several indirect mechanisms. Here, we investigated direct interactions between Tat and amyloidpeptide. Our in vitro studies showed that in the presence of Tat, uniform amyloid fibrils become double twisted fibrils and further form populations of thick unstructured filaments and aggregates. Specifically, Tat binding to the exterior surfaces of the Aβ fibrils increases β-sheet formation and lateral aggregation into thick multifibrillar structures, thus producing fibers with increased rigidity and mechanical resistance. Furthermore, Tat and Aβ aggregates in complex synergistically induced neurotoxicity both in vitro and in animal models. Increased rigidity and mechanical resistance of the amyloid-β-Tat complexes coupled with stronger adhesion due to the presence of Tat in the fibrils may account for increased damage, potentially through pore formation in membranes.

  9. Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology.

    PubMed

    Revett, Timothy J; Baker, Glen B; Jhamandas, Jack; Kar, Satyabrata

    2013-01-01

    Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid ß peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid ß and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid ß production, but also amyloid ß can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness.

  10. Study of amyloidpeptide functional brain networks in AD, MCI and HC.

    PubMed

    Jiang, Jiehui; Duan, Huoqiang; Huang, Zheming; Yu, Zhihua

    2015-01-01

    One medical challenge in studying the amyloid-β (Aβ) peptide mechanism for Alzheimer's disease (AD) is exploring the law of beta toxic oligomers' diffusion in human brains in vivo. One beneficial means of solving this problem is brain network analysis based on graph theory. In this study, the characteristics of Aβ functional brain networks of Healthy Control (HC), Mild Cognitive Impairment (MCI), and AD groups were compared by applying graph theoretical analyses to Carbon 11-labeled Pittsburgh compound B positron emission tomography (11C PiB-PET) data. 120 groups of PiB-PET images from the ADNI database were analyzed. The results showed that the small-world property of MCI and AD were lost as compared to HC. Furthermore, the local clustering of networks was higher in both MCI and AD as compared to HC, whereas the path length was similar among the three groups. The results also showed that there could be four potential Aβ toxic oligomer seeds: Frontal_Sup_Medial_L, Parietal_Inf_L, Frontal_Med_Orb_R, and Parietal_Inf_R. These four seeds are corresponding to Regions of Interests referred by physicians to clinically diagnose AD.

  11. Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer β-amyloid peptide.

    PubMed

    Di Scala, Coralie; Troadec, Jean-Denis; Lelièvre, Clément; Garmy, Nicolas; Fantini, Jacques; Chahinian, Henri

    2014-01-01

    Alzheimer β-amyloid (Aβ) peptides can self-organize into oligomeric ion channels with high neurotoxicity potential. Cholesterol is believed to play a key role in this process, but the molecular mechanisms linking cholesterol and amyloid channel formation have so far remained elusive. Here, we show that the short Aβ22-35 peptide, which encompasses the cholesterol-binding domain of Aβ, induces a specific increase of Ca(2+) levels in neural cells. This effect is neither observed in calcium-free medium nor in cholesterol-depleted cells, and is inhibited by zinc, a blocker of amyloid channel activity. Double mutations V24G/K28G and N27R/K28R in Aβ22-35 modify cholesterol binding and abrogate channel formation. Molecular dynamic simulations suggest that cholesterol induces a tilted α-helical topology of Aβ22-35. This facilitates the establishment of an inter-peptide hydrogen bond network involving Asn-27 and Lys-28, a key step in the octamerization of Aβ22-35 which proceeds gradually until the formation of a perfect annular channel in a phosphatidylcholine membrane. Overall, these data give mechanistic insights into the role of cholesterol in amyloid channel formation, opening up new therapeutic options for Alzheimer's disease. Aβ22-35 peptide, which encompasses the cholesterol binding domain of Aβ, induces a specific increase of Ca(2+) level in neural cells. Double mutations V24G/K28G and N27R/K28R modify cholesterol binding and abrogate channels formation. Molecular dynamic simulations suggest that cholesterol induces a tilted α-helical peptide topology facilitating the formation of annular octameric channels, as schematically shown in the graphic (with a hydrogen bond shown in green for two vicinal peptides). Overall, the data give insights into the role of cholesterol in amyloid channel formation and open up new therapeutic options for Alzheimer's disease.

  12. Early effects of aluminum chloride on beta-secretase mRNA expression in a neuronal model of beta-amyloid toxicity.

    PubMed

    Castorina, Alessandro; Tiralongo, Adriana; Giunta, Salvatore; Carnazza, Maria Luisa; Scapagnini, Giovanni; D'Agata, Velia

    2010-08-01

    Amyloid beta peptide (Abeta), generated by proteolytic cleavage of the amyloid precursor protein (APP), plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). The key step in the generation of Abeta is cleavage of APP by beta-secretases (beta-site APP-cleaving enzyme 1 (BACE1) and BACE2). There has been suggestion of interaction between aluminum and several AD-associated pathways. However, the underlying mechanisms still remain unclear. Here, we report the effects of aluminum chloride (AlCl(3)) in Abeta-induced toxicity using differentiated neuronal SH-SY5Y cells. The metal significantly enhances Abeta-induced cell death at concentrations ranging from 50 to 300 microM after 24 and 48 h. After 72 and 96 h treatment, cell death is increased already at 10 microM. Early coexposure of cells to 10 microM AlCl(3) and 2 microM Abeta differentially affected beta-secretase mRNA levels as compared to single Abeta treatment after 1 and 3 h. BACE1 levels were slightly reduced after 1 h and significantly increased after 3 h exposure, whereas BACE2 levels were increased at both times considered. Both genes' mRNA levels were downregulated at longer times (6, 12, and 24 h). Although these results indicate that aluminum toxicity is correlated to changes in both BACE1 and BACE2 expression levels, the subsequent common downregulation observed suggests that aluminum involvement in the Abeta cascade is subtle, and other underlying mechanisms might be involved.

  13. Amyloidpeptide active site: theoretical Cu K-edge XANES study

    NASA Astrophysics Data System (ADS)

    Chaynikov, A. P.; Soldatov, M. A.; Streltsov, V.; Soldatov, A. V.

    2013-04-01

    This article is dedicated to the local atomic structure analysis of the copper binding site in amyloidpeptide. Here we considered two possible structural models that were previously obtained by means of EXAFS analysis and density functional theory simulations. We present the calculations of Cu K-edge XANES spectra for both models and make comparison of these spectra with experiment.

  14. Interruptions between the triple helix peptides can promote the formation of amyloid-like fibrils

    NASA Astrophysics Data System (ADS)

    Parmar, Avanish; Hwang, Eileen; Brodsky, Barbara

    2010-03-01

    It has been reported that collagen can initiate or accelerate the formation of amyloid fibrils. Non-fibrillar collagen types have sites where the repeating (Gly-Xaa-Yaa)n sequences are interrupted by non- Gly-Xaa-Yaa sequences, and we are investigating the hypothesis that some of these interruptions can promote amyloid formation. Our experimental data show that model peptides containing an 8 or 9 residue interruption sequence between (Gly-Pro-Hyp)n domains have a strong propensity for self association to form fibrous structures. A peptide containing only the 9-residue interruption sequence forms amyloid like fibrils with anti-parallel β sheet. Computational analysis predicts that 33 out of 374 naturally occurring human non-fibrillar collagen sequences within or between triple-helical sequences have significant cross-β aggregation potential, including the 8 and 9 residue sequences studied in peptides. Further studies are in progress to investigate whether a triple-helix peptide promotes amyloidogenesis and whether amyloid interferes with collagen fibrillogenesis.

  15. Synchrotron-based Infrared and X-ray Imaging Shows Focalized Accumulation of Cu and Zn Co-localized With Beta-amyloid Deposits in Alzheimer's Disease

    SciTech Connect

    Miller,L.; Wang, Q.; Telivala, T.; Smith, R.; Lanzirotti, A.; Miklossy, J.

    2006-01-01

    Alzheimer's disease (AD) is characterized by the misfolding and plaque-like accumulation of a naturally occurring peptide in the brain called amyloid beta (Abeta). Recently, this process has been associated with the binding of metal ions such as iron (Fe), copper (Cu), and zinc (Zn). It is thought that metal dyshomeostasis is involved in protein misfolding and may lead to oxidative stress and neuronal damage. However, the exact role of the misfolded proteins and metal ions in the degenerative process of AD is not yet clear. In this study, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to image the in situ secondary structure of the amyloid plaques in brain tissue of AD patients. These results were spatially correlated with metal ion accumulation in the same tissue sample using synchrotron X-ray fluorescence (SXRF) microprobe. For both techniques, a spatial resolution of 5-10 microm was achieved. FTIRM results showed that the amyloid plaques have elevated beta-sheet content, as demonstrated by a strong amide I absorbance at 1625cm(-1). Using SXRF microprobe, we find that AD tissue also contains 'hot spots' of accumulated metal ions, specifically Cu and Zn, with a strong spatial correlation between these two ions. The 'hot spots' of accumulated Zn and Cu were co-localized with beta-amyloid plaques. Thus for the first time, a strong spatial correlation has been observed between elevated beta-sheet content in Abeta plaques and accumulated Cu and Zn ions, emphasizing an association of metal ions with amyloid formation in AD.

  16. Membrane fusogenic activity of the Alzheimer's peptide A beta(1-42) demonstrated by small-angle neutron scattering.

    PubMed

    Dante, Silvia; Hauss, Thomas; Brandt, Astrid; Dencher, Norbert A

    2008-02-15

    Amyloid-beta peptide (A beta) is considered a triggering agent of Alzheimer's disease. In relation to a therapeutic treatment of the disease, the interaction of A beta with the cell membrane has to be elucidated at the molecular level to understand its mechanism of action. In previous works, we had ascertained by neutron diffraction on stacked lipid multilayers that a toxic fragment of A beta is able to penetrate and perturb the lipid bilayer. Here, the influence of A beta(1-42), the most abundant A beta form in senile plaques, on unilamellar lipid vesicles of phospholipids is investigated by small-angle neutron scattering. We have used the recently proposed separated form factor method to fit the data and to obtain information about the vesicle diameter and structure of the lipid bilayer and its change upon peptide administration. The lipid membrane parameters were obtained with different models of the bilayer profile. As a result, we obtained an increase in the vesicle radii, indicating vesicle fusion. This effect was particularly enhanced at pH 7.0 and at a high peptide/lipid ratio. At the same time, a thinning of the lipid bilayer occurred. A fusogenic activity of the peptide may have very important consequences and may contribute to cytotoxicity by destabilizing the cell membrane. The perturbation of the bilayer structure suggests a strong interaction and/or insertion of the peptide into the membrane, although its localization remains beyond the limit of the experimental resolution.

  17. Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer's disease.

    PubMed Central

    Cras, P.; Kawai, M.; Siedlak, S.; Mulvihill, P.; Gambetti, P.; Lowery, D.; Gonzalez-DeWhitt, P.; Greenberg, B.; Perry, G.

    1990-01-01

    This study was undertaken to localize amyloid precursor protein (APP) and to determine how APP might be released and proteolyzed to yield the beta-amyloid protein deposits found in senile plaques in the brains of Alzheimer's disease patients. We found that antibodies to recombinantly expressed APP labeled many normal neurons and neurites. In addition, dystrophic neurites in different types of senile plaques and degenerating neurons in the temporal cortex and hippocampus of Alzheimer's disease patients were immunostained. We also detected small clusters of dystrophic APP immunoreactive neurites that were not associated with beta-amyloid protein deposits. Microglia was involved in different types of senile plaques and often were associated closely with APP immunoreactive neurites and neurons. The greatest concurrence of APP immunoreactivity and reactive microglia was seen in the subiculum and area CA1, regions with a high density of congophilic plaques and subject to intense Alzheimer's pathology. Our findings suggest that neuronally derived APP is the source for senile plaque beta-amyloid protein, while microglia may act as processing cells. Images Figure 1 Figure 2 PMID:2117395

  18. beta. amyloid gene duplication in Alzheimer's disease and karyotypically normal Down syndrome

    SciTech Connect

    Delabar, J.; Goldgaber, D.; Lamour, Y.; Nicole, A.; Huret, J.; De Groucy, J.; Brown, P.; Gajdusek, D.C.; Sinet, P.

    1987-03-13

    With the recently cloned complementary DNA probe, lambdaAm4 for the chromosome 21 gene encoding brain amyloid polypeptide (..beta.. amyloid protein) of Alzheimer's disease, leukocyte DNA from three patients with sporadic Alzheimer's disease and two patients with karyotypically normal Down syndrome was found to contain three copies of this bene. Because a small region of chromosome 21 containing the ets-2 gene is duplicated in patients with Alzheimer's disease, as well as in karyotypically normal Down syndrome, duplication of a subsection of the critical segment of chromosome 21 that is duplicated in Down syndrome may be the genetic defect in Alzeimer's disease.

  19. Molecular simulations of beta-amyloid protein near hydrated lipids (PECASE).

    SciTech Connect

    Thompson, Aidan Patrick; Han, Kunwoo (Texas A&M University, College Station, TX); Ford, David M. (Texas A&M University, College Station, TX)

    2005-12-01

    We performed molecular dynamics simulations of beta-amyloid (A{beta}) protein and A{beta} fragment(31-42) in bulk water and near hydrated lipids to study the mechanism of neurotoxicity associated with the aggregation of the protein. We constructed full atomistic models using Cerius2 and ran simulations using LAMMPS. MD simulations with different conformations and positions of the protein fragment were performed. Thermodynamic properties were compared with previous literature and the results were analyzed. Longer simulations and data analyses based on the free energy profiles along the distance between the protein and the interface are ongoing.

  20. Using optical profilometry to characterize cell membrane roughness influenced by amyloid-beta 42 aggregates and electric fields

    NASA Astrophysics Data System (ADS)

    Pan, Huei-Jyuan; Wang, Ruei-Lin; Xiao, Jian-Long; Chang, Yu-Jen; Cheng, Ji-Yen; Chen, Yun-Ru; Lee, Chau-Hwang

    2014-01-01

    The membrane roughness of Neuro-2a neroblastoma cells is measured by using noninterferometric wide-field optical profilometry. The cells are treated with the fibril and oligomer conformers of amyloid-beta (Aβ) 42, which is a peptide of 42 amino acids related to the development of Alzheimer's disease. We find that both the Aβ42 fibrils and Aβ42 oligomers reduced the cell membrane roughness, but the effect of Aβ42 oligomers was faster and stronger than that of the fibrils. We also apply direct-current electric field (dcEF) stimulations on the cells. A dcEF of 300 mV/mm can increase the membrane roughness under the treatment of Aβ42. These results suggest that Aβ42 can decrease the membrane compliance of live neuroblastoma cells, and dcEFs may counteract this effect.

  1. ETAS, an enzyme-treated asparagus extract, attenuates amyloid beta-induced cellular disorder in PC12 cells.

    PubMed

    Ogasawara, Junetsu; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Sakurai, Takuya; Sato, Shogo; Ishibashi, Yoshinaga; Izawa, Tetsuya; Takahashi, Kazuto; Ishida, Hitoshi; Takabatake, Ichiro; Kizaki, Takako; Ohno, Hideki

    2014-04-01

    One of the pathological characterizations of Alzheimer's disease (AD) is the deposition of amyloid beta peptide (Abeta) in cerebral cortical cells. The deposition of Abeta in neuronal cells leads to an increase in the production of free radicals that are typified by reactive oxygen species (ROS), thereby inducing cell death. A growing body of evidence now suggests that several plant-derived food ingredients are capable of scavenging ROS in mammalian cells. The purpose of the present study was to investigate whether enzyme-treated asparagus extract (ETAS), which is rich in antioxidants, is one of these ingredients. The pre-incubation of differentiated PC 12 cells with ETAS significantly recovered Abeta-induced reduction of cell viability, which was accompanied by reduced levels of ROS. These results suggest that ETAS may be one of the functional food ingredients with anti-oxidative capacity to help prevent AD.

  2. General dynamic properties of Abeta12-36 amyloid peptide involved in Alzheimer's disease from unfolding simulation.

    PubMed

    Suzuki, Shinya; Galzitskaya, Oxana V; Mitomo, Daisuke; Higo, Junichi

    2004-11-01

    To study the folding/unfolding properties of a beta-amyloid peptide Abeta(12-36) of Alzheimer's disease, five molecular dynamics simulations of Abeta(12-36) in explicit water were done at 450 K starting from a structure that is stable in trifluoroethanol/water at room temperature with two alpha-helices. Due to high temperature, the initial helical structure unfolded during the simulation. The observed aspects of the unfolding were as follows. 1) One helix (helix 1) had a longer life than the other (helix 2), which correlates well with the theoretically computed Phi values. 2) Temporal prolongation of helix 1 was found before unfolding. 3) Hydrophobic cores formed frequently with rearrangement of amino-acid residues in the hydrophobic cores. The formation and rearrangement of the hydrophobic cores may be a general aspect of this peptide in the unfolded state, and the structural changes accompanied by the hydrophobic-core rearrangement may lead the peptide to the most stable structure. 4) Concerted motions (collective modes) appeared to unfold helix 1. The collective modes were similar with those observed in another simulation at 300 K. The analysis implies that the conformation moves according to the collective modes when the peptide is in the initial stage of protein unfolding and in the final stage of protein folding.

  3. Effects of grape seed-derived polyphenols on amyloid beta-protein self-assembly and cytotoxicity.

    PubMed

    Ono, Kenjiro; Condron, Margaret M; Ho, Lap; Wang, Jun; Zhao, Wei; Pasinetti, Giulio M; Teplow, David B

    2008-11-21

    Epidemiological evidence suggests that moderate consumption of red wine reduces the incidence of Alzheimer disease (AD). To study the protective effects of red wine, experiments recently were executed in the Tg2576 mouse model of AD. These studies showed that a commercially available grape seed polyphenolic extract, MegaNatural-AZ (MN), significantly attenuated AD-type cognitive deterioration and reduced cerebral amyloid deposition (Wang, J., Ho, L., Zhao, W., Ono, K., Rosensweig, C., Chen, L., Humala, N., Teplow, D. B., and Pasinetti, G. M. (2008) J. Neurosci. 28, 6388-6392). To elucidate the mechanistic bases for these observations, here we used CD spectroscopy, photo-induced cross-linking of unmodified proteins, thioflavin T fluorescence, size exclusion chromatography, and electron microscopy to examine the effects of MN on the assembly of the two predominant disease-related amyloid beta-protein alloforms, Abeta40 and Abeta42. We also examined the effects of MN on Abeta-induced cytotoxicity by assaying 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide metabolism and lactate dehydrogenase activity in Abeta-treated, differentiated pheochromocytoma (PC12) cells. Initial studies revealed that MN blocked Abeta fibril formation. Subsequent evaluation of the assembly stage specificity of the effect showed that MN was able to inhibit protofibril formation, pre-protofibrillar oligomerization, and initial coil --> alpha-helix/beta-sheet secondary structure transitions. Importantly, MN had protective effects in assays of cytotoxicity in which MN was mixed with Abeta prior to peptide assembly or following assembly and just prior to peptide addition to cells. These data suggest that MN is worthy of consideration as a therapeutic agent for AD.

  4. Recent approaches targeting beta-amyloid for therapeutic intervention of Alzheimer's disease.

    PubMed

    Cho, Jung-Eun; Kim, Jin Ryoun

    2011-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuropathological features comprising amyloid deposits and neuronal losses in brain. In AD, aggregation of a β amyloid peptide (Aβ), produced from proteolytic cleavage of amyloid precursor protein, is believed to be implicated in the pathophysiological cascade leading to neuronal death. Most AD drugs currently available can only alleviate symptoms rather than modify the underlying molecular cause of AD. In this review, we describe and discuss the recent patents issued within the past two years focusing on therapeutic interventions targeting at various Aβ-associated pathological mechanisms of AD. The described therapeutic strategies include 1) reduction of synthesis of Aβ, 2) inhibition of Aβ aggregation, 3) immunotherapeutic/enzymatic clearance of Aβ, 4) targeting other amyloidogenic proteins interacting with Aβ and 5) amelioration of Aβ downstream toxic effects. Important issues to be considered for further improvement of therapeutic efficacy of these approaches are also discussed.

  5. A bifunctional curcumin analogue for two-photon imaging and inhibiting crosslinking of amyloid beta in Alzheimer's disease.

    PubMed

    Zhang, Xueli; Tian, Yanli; Yuan, Peng; Li, Yuyan; Yaseen, Mohammad A; Grutzendler, Jaime; Moore, Anna; Ran, Chongzhao

    2014-10-09

    In this report, we designed a highly bright bifunctional curcumin analogue CRANAD-28. In vivo two-photon imaging suggested that CRANAD-28 could penetrate the blood brain barrier (BBB) and label plaques and cerebral amyloid angiopathies (CAAs). We also demonstrated that this imaging probe could inhibit the crosslinking of amyloid beta induced either by copper or by natural conditions.

  6. Structural and Thermodynamic Properties of AmyloidPeptides: Impact of Fragment Size

    NASA Astrophysics Data System (ADS)

    Kitahara, T.; Wise-Scira, O.; Coskuner, O.

    2010-10-01

    Alzheimer's disease is a progressive neurodegenerative disease whose physiological characteristics include the accumulation of amyloid-containing deposits in the brain and consequent synapse and neuron loss. Unfortunately, most widely used drugs for the treatment can palliate the outer symptoms but cannot cure the disease itself. Hence, developing a new drug that can cure it. Most recently, the ``early aggregation and monomer'' hypothesis has become popular and a few drugs have been developed based on this hypothesis. Detailed understanding of the amyloidpeptide structure can better help us to determine more effective treatment strategies; indeed, the structure of Amyloid has been studied extensively employing experimental and theoretical tools. Nevertheless, those studies have employed different fragment sizes of Amyloid and characterized its conformational nature in different media. Thus, the structural properties might be different from each other and provide a reason for the existing debates in the literature. Here, we performed all-atom MD simulations and present the structural and thermodynamic properties of Aβ1-16, Aβ1-28, and Aβ1-42 in the gas phase and in aqueous solution. Our studies show that the overall structures, secondary structures, and the calculated thermodynamic properties change with increasing peptide size. In addition, we find that the structural properties of those peptides are different from each other in the gas phase and in aqueous solution.

  7. Differential regulation of amyloid-. beta. -protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    SciTech Connect

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-02-01

    The authors have mapped the neuroanatomical distribution of amyloid-..beta..-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-..beta..-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-..beta..-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-..beta..-protein gene expression may be altered in Alzheimer disease.

  8. Dynamics of the formation of a hydrogel by a pathogenic amyloid peptide: islet amyloid polypeptide

    PubMed Central

    Jean, Létitia; Lee, Chiu Fan; Hodder, Peter; Hawkins, Nick; Vaux, David J.

    2016-01-01

    Many chronic degenerative diseases result from aggregation of misfolded polypeptides to form amyloids. Many amyloidogenic polypeptides are surfactants and their assembly can be catalysed by hydrophobic-hydrophilic interfaces (an air-water interface in-vitro or membranes in-vivo). We recently demonstrated the specificity of surface-induced amyloidogenesis but the mechanisms of amyloidogenesis and more specifically of adsorption at hydrophobic-hydrophilic interfaces remain poorly understood. Thus, it is critical to determine how amyloidogenic polypeptides behave at interfaces. Here we used surface tensiometry, rheology and electron microscopy to demonstrate the complex dynamics of gelation by full-length human islet amyloid polypeptide (involved in type II diabetes) both in the bulk solution and at hydrophobic-hydrophilic interfaces (air-water interface and phospholipids). We show that the hydrogel consists of a 3D supramolecular network of fibrils. We also assessed the role of solvation and dissected the evolution over time of the assembly processes. Amyloid gelation could have important pathological consequences for membrane integrity and cellular functions. PMID:27535008

  9. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function

    PubMed Central

    Hwang, Jae Yeon; Kim, Ju Hwan; Yun, Na Young; Oh, Sang Yeon; Song, Ju Kyung; Seo, Hyun Ok; Kim, Yun-Bae; Hwang, Dae Yeon; Oh, Ki-Wan; Han, Sang-Bae; Hong, Jin Tae

    2016-01-01

    Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment. PMID:26910914

  10. Apolipoprotein E forms stable complexes with recombinant Alzheimer's disease beta-amyloid precursor protein.

    PubMed Central

    Haas, C; Cazorla, P; Miguel, C D; Valdivieso, F; Vázquez, J

    1997-01-01

    Apolipoprotein E (apoE), a protein genetically linked to the incidence of Alzheimer's disease, forms SDS-stable complexes in vitro with beta-amyloid peptide (Abeta), the primary component of senile plaques. In the present study, we investigated whether apoE was able to bind full-length Abeta precursor protein (APP). Using a maltose-binding-protein-APP fusion protein and human very-low-density lipoprotein (VLDL), we detected an interaction of apoE with APP that was inhibited by Abeta or anti-apoE antibody. Saturation-binding experiments indicated a single binding equilibrium with an apparent 1:1 stoichiometry and a dissociation constant of 15 nM. An interaction was also observed using apoE from cerebrospinal fluid or delipidated VLDL, as well as recombinant apoE. APP.apoE complexes were SDS-stable, and their formation was not inhibited by reducing conditions; however, they were dissociated by SDS under reducing conditions. ApoE.APP complexes formed high-molecular-mass aggregates, and competition experiments suggested that amino acids 14-23 of Abeta are responsible for complex-formation. Finally, no differences were found when studying the interaction of APP with apoE3 or apoE4. Taken together, our results demonstrate that apoE may form stable complexes with the Abeta moiety of APP with characteristics similar to those of complexes formed with isolated Abeta, and suggest the intriguing possibility that apoE-APP interactions may be pathologically relevant in vivo. PMID:9224643

  11. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function.

    PubMed

    Hwang, Chul Ju; Park, Mi Hee; Hwang, Jae Yeon; Kim, Ju Hwan; Yun, Na Young; Oh, Sang Yeon; Song, Ju Kyung; Seo, Hyun Ok; Kim, Yun-Bae; Hwang, Dae Yeon; Oh, Ki-Wan; Han, Sang-Bae; Hong, Jin Tae

    2016-03-15

    Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment.

  12. Oral Administration of Thioflavin T Prevents Beta Amyloid Plaque Formation in Double Transgenic AD Mice.

    PubMed

    Sarkar, Sumit; Raymick, James; Ray, Balmiki; Lahiri, Debomoy K; Paule, Merle G; Schmued, Larry

    2015-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the fourth leading cause of death in the United States and most common cause of adult-onset dementia. The major hallmarks of AD are the formation of senile amyloid plaques made of beta amyloid and neurofibrillary tangles (NFT) which are primarily composed of phosphorylated tau protein. Although numerous agents have been considered as providing protection against AD, identification of potential agents with neuroprotective ability is limited. Thioflavin T has been used in the past to stain amyloid beta plaques in brain. In this study, Thioflavin T (ThT) and vehicle (infant formula) were administered orally by gavage to transgenic (B6C3 APP PS1; AD-Tg) mice beginning at 4 months age and continuing until sacrifice at 9 months of age at 40 mg/kg dose. The number of amyloid plaques was reduced dramatically by ThT treatment in both male and female transgenic mice compared to those in control mice. Additionally, GFAP and Amylo-Glo labeling suggest that astrocytic hypertrophy is minimized in ThT-treated animals. Similarly, CD68 labeling, which detects activated microglia, along with Amylo-Glo labeling, suggests that microglial activation is significantly less in ThT-treated mice. Both Aβ-40 and Aβ-42 concentrations in blood rose significantly in the ThT-treated animals suggesting that ThT may inhibit the deposition, degradation, and/or clearance of Aβ plaques in brain.

  13. Zinc-induced heterodimer formation between metal-binding domains of intact and naturally modified amyloid-beta species: implication to amyloid seeding in Alzheimer's disease?

    PubMed

    Mezentsev, Yuri V; Medvedev, Alexei E; Kechko, Olga I; Makarov, Alexander A; Ivanov, Alexis S; Mantsyzov, Alexey B; Kozin, Sergey A

    2016-11-01

    Zinc ions and modified amyloid-beta peptides (Aβ) play a critical role in the pathological aggregation of endogenous Aβ in Alzheimer's disease (AD). Zinc-induced Aβ oligomerization is mediated by the metal-binding domain (MBD) which includes N-terminal residues 1-16 (Aβ1-16). Earlier, it has been shown that Aβ1-16 as well as some of its naturally occurring variants undergoes zinc-induced homodimerization via the interface in which zinc ion is coordinated by Glu11 and His14 of the interacting subunits. In this study using surface plasmon resonance technique, we have found that in the presence of zinc ions Aβ1-16 forms heterodimers with MBDs of two Aβ species linked to AD: Aβ containing isoAsp7 (isoAβ) and Aβ containing phosphorylated Ser8 (pS8-Aβ). The heterodimers appear to possess the same interface as the homodimers. Simulation of 200 ns molecular dynamic trajectories in two constructed models of dimers ([Aβ1-16/Zn/Aβ1-16] and [isoAβ1-16/Zn/Aβ1-16]), has shown that conformational flexibility of the N-terminal fragments of the dimer subunits is controlled by the structure of corresponding sites 6-8. The data suggest that isoAβ and pS8-Aβ can be involved in the AD pathogenesis by means of their zinc-dependent interactions with endogenous Aβ resulting in the formation of heterodimeric seeds for amyloid aggregation.

  14. Reduced aggregation and cytotoxicity of amyloid peptides by graphene oxide/gold nanocomposites prepared by pulsed laser ablation in water.

    PubMed

    Li, Jingying; Han, Qiusen; Wang, Xinhuan; Yu, Ning; Yang, Lin; Yang, Rong; Wang, Chen

    2014-11-12

    A novel and convenient method to synthesize the nanocomposites combining graphene oxides (GO) with gold nanoparticles (AuNPs) is reported and their applications to modulate amyloid peptide aggregation are demonstrated. The nanocomposites produced by pulsed laser ablation (PLA) in water show good biocompatibility and solubility. The reduced aggregation of amyloid peptides by the nanocomposites is confirmed by Thioflavin T fluorescence and atomic force microscopy. The cell viability experiments reveals that the presence of the nanocomposites can significantly reduce the cytotoxicity of the amyloid peptides. Furthermore, the depolymerization of peptide fibrils and inhibition of their cellular cytotoxicity by GO/AuNPs is also observed. These observations suggest that the nanocomposites combining GO and AuNPs have a great potential for designing new therapeutic agents and are promising for future treatment of amyloid-related diseases.

  15. Naturally occurring polyphenolic inhibitors of amyloid beta aggregation.

    PubMed

    Churches, Quentin I; Caine, Joanne; Cavanagh, Kate; Epa, Vidana Chandana; Waddington, Lynne; Tranberg, C Elisabet; Meyer, Adam G; Varghese, Jose N; Streltsov, Victor; Duggan, Peter J

    2014-07-15

    Alzheimer's disease is the most common neurodegenerative disease and is one of the main causes of death in developed countries. Consumption of foods rich in polyphenolics is strongly correlated with reduced incidence of Alzheimer's disease. Our study has investigated the biological activity of previously untested polyphenolic compounds in preventing amyloid β aggregation. The anti-aggregatory potential of these compounds was assessed using the Thioflavin-T assay, transmission electron microscopy, dynamic light scattering and size exclusion chromatography. Two structurally related compounds, luteolin and transilitin were identified as potent inhibitors of Aβ fibril formation. Computational docking studies with an X-ray derived oligomeric structure offer a rationale for the inhibitory activity observed and may facilitate development of improved inhibitors of Aβ aggregation and toxicity.

  16. Peroxisome proliferator-activated receptor {gamma} is expressed in hippocampal neurons and its activation prevents {beta}-amyloid neurodegeneration: role of Wnt signaling

    SciTech Connect

    Inestrosa, Nibaldo C. . E-mail: ninestr@genes.bio.puc.cl; Godoy, Juan A.; Quintanilla, Rodrigo A.; Koenig, Cecilia S.; Bronfman, Miguel

    2005-03-10

    The molecular pathogenesis of Alzheimer's disease (AD) involves the participation of the amyloid-{beta}-peptide (A{beta}), which plays a critical role in the neurodegeneration that triggers the disease. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, which are members of the nuclear receptor family. We report here that (1) PPAR{gamma} is present in rat hippocampal neurons in culture. (2) Activation of PPAR{gamma} by troglitazone and rosiglitazone protects rat hippocampal neurons against A{beta}-induced neurodegeneration, as shown by the 3-[4,5 -2yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay, immunofluorescence using an anti-heavy neurofilament antibody, and quantitative electron microscopy. (3) Hippocampal neurons treated with several PPAR{gamma} agonists, including troglitazone, rosiglitazone, and ciglitazone, prevent the excitotoxic A{beta}-induced rise in bulk-free Ca{sup 2+}. (4) PPAR{gamma} activation results in the modulation of Wnt signaling components, including the inhibition of glycogen synthase kinase-3{beta} (GSK-3{beta}) and an increase of the cytoplasmic and nuclear {beta}-catenin levels. We conclude that the activation of PPAR{gamma} prevents A{beta}-induced neurodegeneration by a mechanism that may involve a cross talk between neuronal PPAR{gamma} and the Wnt signaling pathway. More important, the fact that the activation of PPAR{gamma} attenuated A{beta}-dependent neurodegeneration opens the possibility to fight AD from a new therapeutic perspective.

  17. Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons

    PubMed Central

    Ungureanu, Andreea-Alexandra; Benilova, Iryna; Krylychkina, Olga; Braeken, Dries; De Strooper, Bart; Van Haesendonck, Chris; Dotti, Carlos G.; Bartic, Carmen

    2016-01-01

    Small soluble species of amyloid-beta (Aβ) formed during early peptide aggregation stages are responsible for several neurotoxic mechanisms relevant to the pathology of Alzheimer’s disease (AD), although their interaction with the neuronal membrane is not completely understood. This study quantifies the changes in the neuronal membrane elasticity induced by treatment with the two most common Aβ isoforms found in AD brains: Aβ40 and Aβ42. Using quantitative atomic force microscopy (AFM), we measured for the first time the static elastic modulus of living primary hippocampal neurons treated with pre-aggregated Aβ40 and Aβ42 soluble species. Our AFM results demonstrate changes in the elasticity of young, mature and aged neurons treated for a short time with the two Aβ species pre-aggregated for 2 hours. Neurons aging under stress conditions, showing aging hallmarks, are the most susceptible to amyloid binding and show the largest decrease in membrane stiffness upon Aβ treatment. Membrane stiffness defines the way in which cells respond to mechanical forces in their environment and has been shown to be important for processes such as gene expression, ion-channel gating and neurotransmitter vesicle transport. Thus, one can expect that changes in neuronal membrane elasticity might directly induce functional changes related to neurodegeneration. PMID:27173984

  18. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells

    PubMed Central

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David

    2016-01-01

    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  19. Inhibitors beta-amyloid-induced toxicity by modulating the Akt signaling pathway.

    PubMed

    Nakagami, Yasuhiro

    2004-12-01

    The Akt signaling pathway plays a crucial role in neuronal survival, leading to inhibition of apoptosis. Many stimulants including neurotrophins are reported to activate this pathway in preclinical studies; however, there are no drugs for neurodegenerative diseases adopting such a concept on the market so far. Among neurodegenerative diseases, Alzheimer's disease is the most common and characterized by senile plaques and neurofibrillary tangles, which consist of beta-amyloid and hyperphosphorylated tau, respectively. Recent studies suggest that activation of Akt inhibits toxicity of beta-amyloid and formation of neurofibrillary tangles, leading to protection of neurons against apoptosis. This review discusses the possibility of treatment of Alzheimer's disease by activating the Akt signaling pathway.

  20. Design of beta-domain swapping, alpha/beta-protein, environmentally sensitive coiled coil and peptide functionalized titania materials

    NASA Astrophysics Data System (ADS)

    Nagarkar, Radhika P.

    2009-12-01

    The objective of this dissertation is to apply rational peptide design to fabricate nanomaterials via self-assembly. This has been demonstrated in structurally diverse systems with an aim of deciphering the underlying principles governing how sequence affects the peptide's ability to adopt a specific secondary structure and ultimate material properties that are realized from the association of these secondary structural elements. Several amyloidogenic proteins have been shown to self-assemble into fibrils using a mechanism known as domain swapping. Here, discreet units of secondary structure are exchanged among discreet proteins during self-assembly to form extended networks with precise three dimensional organization. The possibility of using these mechanisms to design peptides capable of controlled assembly and fibril formation leading to materials with targeted properties is explored. By altering the placement of a beta-turn sequence that varies the size and location of the exchanged strand, twisting, non-twisting and laminated fibrillar nanostructures are obtained. Hydrogels prepared from these strand swapping beta-hairpins have varied rheological properties due to differences in their fibrillar nanostructures. In a second distinct design, alpha/beta-proteins are used to prepare environmentally sensitive hydrogels. Here, multiple distinct motifs for structural integrity and dynamic response within a single self-assembling peptide allow the amyloid-like fibrils formed to controllably alter their nano-topography in response to an external stimulus such as temperature. The development of these self-assembling alpha/beta-protein motifs also necessitated the design of pH sensitive antiparallel coiled coils. Exploring the basic principles responsible for pH dependent conformational changes in coiled coils can lead to new insights in the control of protein structure and function. Lastly, this dissertation discusses the interface between biomolecules and inorganic

  1. Nuclear translocation uncovers the amyloid peptide Aβ42 as a regulator of gene transcription.

    PubMed

    Barucker, Christian; Harmeier, Anja; Weiske, Joerg; Fauler, Beatrix; Albring, Kai Frederik; Prokop, Stefan; Hildebrand, Peter; Lurz, Rudi; Heppner, Frank L; Huber, Otmar; Multhaup, Gerhard

    2014-07-18

    Although soluble species of the amyloidpeptide Aβ42 correlate with disease symptoms in Alzheimer disease, little is known about the biological activities of amyloid-β (Aβ). Here, we show that Aβ peptides varying in lengths from 38 to 43 amino acids are internalized by cultured neuroblastoma cells and can be found in the nucleus. By three independent methods, we demonstrate direct detection of nuclear Aβ42 as follows: (i) biochemical analysis of nuclear fractions; (ii) detection of biotin-labeled Aβ in living cells by confocal laser scanning microscopy; and (iii) transmission electron microscopy of Aβ in cultured cells, as well as brain tissue of wild-type and transgenic APPPS1 mice (overexpression of amyloid precursor protein and presenilin 1 with Swedish and L166P mutations, respectively). Also, this study details a novel role for Aβ42 in nuclear signaling, distinct from the amyloid precursor protein intracellular domain. Chromatin immunoprecipitation showed that Aβ42 specifically interacts as a repressor of gene transcription with LRP1 and KAI1 promoters. By quantitative RT-PCR, we confirmed that mRNA levels of the examined candidate genes were exclusively decreased by the potentially neurotoxic Aβ42 wild-type peptide. Shorter peptides (Aβ38 or Aβ40) and other longer peptides (nontoxic Aβ42 G33A substitution or Aβ43) did not affect mRNA levels. Overall, our data indicate that the nuclear translocation of Aβ42 impacts gene regulation, and deleterious effects of Aβ42 in Alzheimer disease pathogenesis may be influenced by altering the expression profiles of disease-modifying genes.

  2. High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide

    PubMed Central

    Rauth, Sabine; Hinz, Dominik; Börger, Michael; Uhrig, Markus; Mayhaus, Manuel; Riemenschneider, Matthias; Skerra, Arne

    2016-01-01

    Amyloid beta (Aβ) peptides, in particular Aβ42 and Aβ40, exert neurotoxic effects and their overproduction leads to amyloid deposits in the brain, thus constituting an important biomolecular target for treatments of Alzheimer's disease (AD). We describe the engineering of cognate Anticalins as a novel type of neutralizing protein reagent based on the human lipocalin scaffold. Phage display selection from a genetic random library comprising variants of the human lipocalin 2 (Lcn2) with mutations targeted at 20 exposed amino acid positions in the four loops that form the natural binding site was performed using both recombinant and synthetic target peptides and resulted in three different Anticalins. Biochemical characterization of the purified proteins produced by periplasmic secretion in Escherichia coli revealed high folding stability in a monomeric state, with Tm values ranging from 53.4°C to 74.5°C, as well as high affinities for Aβ40, between 95 pM and 563 pM, as measured by real-time surface plasmon resonance analysis. The central linear VFFAED epitope within the Aβ sequence was mapped using a synthetic peptide array on membranes and was shared by all three Anticalins, despite up to 13 mutual amino acid differences in their binding sites. All Anticalins had the ability–with varying extent–to inhibit Aβ aggregation in vitro according to the thioflavin-T fluorescence assay and, furthermore, they abolished Aβ42-mediated toxicity in neuronal cell culture. Thus, these Anticalins provide not only useful protein reagents to study the molecular pathology of AD but they also show potential as alternative drug candidates compared with antibodies. PMID:27029347

  3. Amyloid-beta binds catalase with high affinity and inhibits hydrogen peroxide breakdown.

    PubMed Central

    Milton, N G

    1999-01-01

    Amyloid-beta (Abeta) specifically bound purified catalase with high affinity and inhibited catalase breakdown of H(2)O(2). The Abeta-induced catalase inhibition involved formation of the inactive catalase Compound II and was reversible. Catalase<-->Abeta interactions provide rapid functional assays for the cytotoxic domain of Abeta and suggest a mechanism for some of the observed actions of Abeta plus catalase in vitro. PMID:10567208

  4. Preferential Transport Theory for Beta-Amyloid Clearance from the Brain

    NASA Astrophysics Data System (ADS)

    Coloma, Mikhail; Schaffer, David; Chiarot, Paul; Huang, Peter

    2015-11-01

    The failure to clear beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. However, the transport mechanism for beta-amyloid clearance is not well understood. In this study, we propose a preferential transport theory for flow within the vascular walls in the cerebral arterial basement membrane. The flow conduit within the arterial basement membrane is modeled as an annulus between deformable concentric cylinders filled with an incompressible, single-phase Newtonian fluid. The transport is driven by arterial lumen deformation induced by heart pulsations superimposed with reflected boundary waves. Our theory predicts that while the overall arterial wave propagation is in the same direction as the blood flow toward the capillaries, a reverse flow in the basement membrane can be preferentially induced toward larger arteries. This has been suggested as a potential clearance pathway for beta-amyloid. We estimate the magnitude of the reverse transport through a control volume analysis which is corroborated by numerical solutions of the Navier-Stokes equations. Bench-top experiments to validate our computational models are presented.

  5. Superhydrophobic Surfaces Boost Fibril Self-Assembly of Amyloid β Peptides.

    PubMed

    Accardo, Angelo; Shalabaeva, Victoria; Di Cola, Emanuela; Burghammer, Manfred; Krahne, Roman; Riekel, Christian; Dante, Silvia

    2015-09-23

    Amyloid β (Aβ) peptides are the main constituents of Alzheimer's amyloid plaques in the brain. Here we report how the unique microfluidic flows exerted by droplets sitting on superhydrophobic surfaces can influence the aggregation mechanisms of several Aβ fragments by boosting their fibril self-assembly. Aβ(25-35), Aβ(1-40), and Aβ(12-28) were dried both on flat hydrophilic surfaces (contact angle (CA) = 37.3°) and on nanostructured superhydrophobic ones (CA = 175.8°). By embedding nanoroughened surfaces on top of highly X-ray transparent Si3N4 membranes, it was possible to probe the solid residues by raster-scan synchrotron radiation X-ray microdiffraction (μXRD). As compared to residues obtained on flat Si3N4 membranes, a general enhancement of fibrillar material was detected for all Aβ fragments dried on superhydrophobic surfaces, with a particular emphasis on the shorter ones. Indeed, both Aβ(25-35) and Aβ(12-28) showed a marked crystalline cross-β phase with varying fiber textures. The homogeneous evaporation rate provided by these nanostructured supports, and the possibility to use transparent membranes, can open a wide range of in situ X-ray and spectroscopic characterizations of amyloidal peptides involved in neurodegenerative diseases and for the fabrication of amyloid-based nanodevices.

  6. Direct electrochemical and AFM detection of amyloidpeptide aggregation on basal plane HOPG

    NASA Astrophysics Data System (ADS)

    Lopes, Paula; Xu, Meng; Zhang, Min; Zhou, Ting; Yang, Yanlian; Wang, Chen; Ferapontova, Elena E.

    2014-06-01

    Amyloidogenesis is associated with more than 30 human diseases, including Alzheimer's which is related to aggregation of β-amyloid peptide (Aβ). Here, consecutive stages of Aβ42 aggregation and amyloid fibril formation were followed electrochemically via oxidation of tyrosines in Aβ42 adsorbed on the basal plane graphite electrode and directly correlated with Aβ42 morphological changes observed by atomic force microscopy of the same substrate. The results offer new tools for analysis of mechanisms of Aβ aggregation.Amyloidogenesis is associated with more than 30 human diseases, including Alzheimer's which is related to aggregation of β-amyloid peptide (Aβ). Here, consecutive stages of Aβ42 aggregation and amyloid fibril formation were followed electrochemically via oxidation of tyrosines in Aβ42 adsorbed on the basal plane graphite electrode and directly correlated with Aβ42 morphological changes observed by atomic force microscopy of the same substrate. The results offer new tools for analysis of mechanisms of Aβ aggregation. Electronic supplementary information (ESI) available: Experimental details: procedures for Aβ42 aggregation and electrode modification, DPV/AFM measurements and analysis. See DOI: 10.1039/c4nr02413c

  7. Exploring the early steps of aggregation of amyloid-forming peptide KFFE

    NASA Astrophysics Data System (ADS)

    Wei, Guanghong; Mousseau, Normand; Derreumaux, Philippe

    2004-11-01

    It has been shown recently that even a tetrapeptide can form amyloid fibrils sharing all the characteristics of amyloid fibrils built from large proteins. Recent experimental studies also suggest that the toxicity observed in several neurodegenerative diseases, such as Alzheimer's disease and Creutzfeldt-Jakob disease, is not only related to the mature fibrils themselves, but also to the soluble oligomers formed early in the process of fibrillogenesis. This raises the interest in studying the early steps of the aggregation process. Although fibril formation follows the nucleation-condensation process, characterized by the presence of lag phase, the exact pathways remain to be determined. In this study, we used the activation-relaxation technique and a generic energy model to explore the process of self-assembly and the structures of the resulting aggregates of eight KFFE peptides. Our simulations show, starting from different states with a preformed antiparallel dimer, that eight chains can self-assemble to adopt, with various orientations, four possible distant oligomeric well-aligned structures of similar energy. Two of these structures show a double-layer β-sheet organization, in agreement with the structure of amyloid fibrils as observed by x-ray diffraction; another two are mixtures of dimers and trimers. Our results also suggest that octamers are likely to be below the critical size for nucleation of amyloid fibrils for small peptides.

  8. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    PubMed

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases.

  9. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Advertisement Proceeds from website advertising help sustain Lab Tests ... for trustworthy health information. Verify Compliance . Produced by Advertisement

  10. New peptide inhibitors modulate the self-assembly of islet amyloid polypeptide residues 11-20 in vitro.

    PubMed

    Mao, Yexuan; Yu, Lanlan; Yang, Ran; Ma, Chuanguo; Qu, Lingbo; Harrington, Peter de B

    2017-03-11

    The structural transition and misfolding of human islet amyloid polypeptide may cause a common metabolic disease Type 2 diabetes mellitus. Seventeen peptides have been synthesized, possessing different lengths, compositions, and peptide conformation. In this study, the mechanism of these peptides on inhibiting the formation of hIAPP11-20 amyloid fibrils was investigated using a conventional ThT fluorescence assay and microscale thermophoresis. The results showed that short peptides AT, SA, RF, KS, KT and KN, and cyclic peptides cyclic-KS, cyclic-KT and cyclic-KN displayed considerable inhibitory effect on hIAPP11-20 fibril formation and a strong affinity for hIAPP11-20. The detailed investigation indicated that the phenylalanine residue and some special peptide composition significantly inhibit amyloid formation. The peptide conformation of the designed peptide inhibitors may also play an important role. Microscale thermophoresis quantified the binding affinities between hIAPP11-20 and the peptides; and revealed that high affinity binding more likely leads to inhibiting fibril formation of hIAPP11-20 and vice versa, which is in accordance with the results from the ThT assays. These findings suggest a feasible model of peptide inhibitor design for inhibiting amyloid formation. In addition, microscale thermophoresis was proven as a promising rapid method for preliminarily screening inhibitors of hIAPP11-20.

  11. Cerebrovascular disease, beta-amyloid and cognition in aging

    PubMed Central

    Marchant, Natalie L.; Reed, Bruce R.; DeCarli, Charles S.; Madison, Cindee M.; Weiner, Michael W.; Chui, Helena C.; Jagust, William J.

    2011-01-01

    The present study evaluated cerebrovascular disease (CVD), β-amyloid (Aβ), and cognition in clinically normal elderly adults. Fifty-four participants underwent MRI, PIB-PET imaging, and neuropsychological evaluation. High white matter hyperintensity burden and/or presence of infarct defined CVD status (CVD−: N = 27; CVD+: N = 27). PIB-PET ratios of Aβ deposition were extracted using Logan plotting (cerebellar reference). Presence of high levels of Aβ in prespecified regions determined PIB status (PIB−: N = 33; PIB+: N = 21). Executive functioning and episodic memory were measured using composite scales. CVD and Aβ, defined as dichotomous or continuous variables, were unrelated to one another. CVD+ participants showed lower executive functioning (P = 0.001) when compared to CVD− individuals. Neither PIB status nor amount of Aβ affected cognition (Ps ≥ .45), and there was no statistical interaction between CVD and PIB on either cognitive measure. Within this spectrum of normal aging CVD and Aβ aggregation appear to be independent processes with CVD primarily affecting cognition. PMID:22048124

  12. All-atom molecular dynamics studies of the full-length β-amyloid peptides

    NASA Astrophysics Data System (ADS)

    Luttmann, Edgar; Fels, Gregor

    2006-03-01

    β-Amyloid peptides are believed to play an essential role in Alzheimer's disease (AD), due to their sedimentation in the form of β-amyloid aggregates in the brain of AD-patients, and the in vitro neurotoxicity of oligomeric aggregates. The monomeric peptides come in different lengths of 39-43 residues, of which the 42 alloform seems to be most strongly associated with AD-symptoms. Structural information on these peptides to date comes from NMR studies in acidic solutions, organic solvents, or on shorter fragments of the peptide. In addition X-ray and solid-state NMR investigations of amyloid fibrils yield insight into the structure of the final aggregate and therefore define the endpoint of any conformational change of an Aβ-monomer along the aggregation process. The conformational changes necessary to connect the experimentally known conformations are not yet understood and this process is an active field of research. In this paper, we report results from all-atom molecular dynamics simulations based on experimental data from four different peptides of 40 amino acids and two peptides consisting of 42 amino acids. The simulations allow for the analysis of intramolecular interactions and the role of structural features. In particular, they show the appearance of β-turn in the region between amino acid 21 and 33, forming a hook-like shape as it is known to exist in the fibrillar Aβ-structures. This folding does not depend on the formation of a salt bridge between Asp-23 and Lys-28 but requires the Aβ(1-42) as such structure was not observed in the shorter system Aβ(1-40).

  13. Self-assembly of the beta2-microglobulin NHVTLSQ peptide using a coarse-grained protein model reveals a beta-barrel species.

    PubMed

    Song, Wei; Wei, Guanghong; Mousseau, Normand; Derreumaux, Philippe

    2008-04-10

    Although a wide variety of proteins can assemble into amyloid fibrils, the structure of the early oligomeric species on the aggregation pathways remains unknown at an atomic level of detail. In this paper we report, using molecular dynamics simulations with the OPEP coarse-grained force field, the free energy landscape of a tetramer and a heptamer of the beta2-microglobulin NHVTLSQ peptide. On the basis of a total of more than 17 ns trajectories started from various states, we find that both species are in equilibrium between amorphous and well-ordered aggregates with cross-beta-structure, a perpendicular bilayer beta-sheet, and, for the heptamer, six- or seven-stranded closed and open beta-barrels. Moreover, analysis of the heptamer trajectories shows that the perpendicular bilayer beta-sheet is one possible precursor of the beta-barrel, but that this barrel can also be formed from a twisted monolayer beta-sheet with successive addition of chains. Comparison with previous aggregation simulations and the fact that nature constructs transmembrane beta-sheet proteins with pores open the possibility that beta-barrels with small inner diameters may represent a common intermediate during the early steps of aggregation.

  14. Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease.

    PubMed

    Zhang, Jing; Mattison, Hayley A; Liu, Changqin; Ginghina, Carmen; Auinger, Peggy; McDermott, Michael P; Stewart, Tessandra; Kang, Un Jung; Cain, Kevin C; Shi, Min

    2013-11-01

    Tau gene has been consistently associated with the risk of Parkinson disease in recent genome wide association studies. In addition, alterations of the levels of total tau, phosphorylated tau [181P], and amyloid beta 1-42 in cerebrospinal fluid have been reported in patients with sporadic Parkinson disease and asymptomatic carriers of leucine-rich repeat kinase 2 mutations, in patterns that clearly differ from those typically described for patients with Alzheimer disease. To further determine the potential roles of these molecules in Parkinson disease pathogenesis and/or in tracking the disease progression, especially at early stages, the current study assessed all three proteins in 403 Parkinson disease patients enrolled in the DATATOP (Deprenyl and tocopherol antioxidative therapy of parkinsonism) placebo-controlled clinical trial, the largest cohort to date with cerebrospinal fluid samples collected longitudinally. These initially drug-naive patients at early disease stages were clinically evaluated, and cerebrospinal fluid was collected at baseline and then at endpoint, defined as the time at which symptomatic anti-Parkinson disease medications were determined to be required. General linear models were used to test for associations between baseline cerebrospinal fluid biomarker levels or their rates of change and changes in the Unified Parkinson Disease Rating Scale (total or part III motor score) over time. Robust associations among candidate markers are readily noted. Baseline levels of amyloid beta were weakly but negatively correlated with baseline Unified Parkinson Disease Rating Scale total scores. Baseline phosphorylated tau/total tau and phosphorylated tau/amyloid beta were significantly and negatively correlated with the rates of the Unified Parkinson Disease Rating Scale change. While medications (deprenyl and/or tocopherol) did not appear to alter biomarkers appreciably, a weak but significant positive correlation between the rate of change in total

  15. Amyloid Aggregation and Membrane Disruption by Amyloid Proteins

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2013-03-01

    Amyloidogenesis has been the focus of intense basic and clinical research, as an increasing number of amyloidogenic proteins have been linked to common and incurable degenerative diseases including Alzheimer's, type II diabetes, and Parkinson's. Recent studies suggest that the cell toxicity is mainly due to intermediates generated during the assembly process of amyloid fibers, which have been proposed to attack cells in a variety of ways. Disruption of cell membranes is believed to be one of the key components of amyloid toxicity. However, the mechanism by which this occurs is not fully understood. Our research in this area is focused on the investigation of the early events in the aggregation and membrane disruption of amyloid proteins, Islet amyloid polypeptide protein (IAPP, also known as amylin) and amyloid-beta peptide, on the molecular level. Structural insights into the mechanisms of membrane disruption by these amyloid proteins and the role of membrane components on the membrane disruption will be presented.

  16. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity

    PubMed Central

    Spitzer, Philipp; Condic, Mateja; Herrmann, Martin; Oberstein, Timo Jan; Scharin-Mehlmann, Marina; Gilbert, Daniel F.; Friedrich, Oliver; Grömer, Teja; Kornhuber, Johannes; Lang, Roland; Maler, Juan Manuel

    2016-01-01

    Amyloid-β (Aβ) peptides are the main components of the plaques found in the brains of patients with Alzheimer’s disease. However, Aβ peptides are also detectable in secretory compartments and peripheral blood contains a complex mixture of more than 40 different modified and/or N- and C-terminally truncated Aβ peptides. Recently, anti-infective properties of Aβ peptides have been reported. Here, we investigated the interaction of Aβ peptides of different lengths with various bacterial strains and the yeast Candida albicans. The amyloidogenic peptides Aβ1-42, Aβ2-42, and Aβ3p-42 but not the non-amyloidogenic peptides Aβ1-40 and Aβ2-40 bound to microbial surfaces. As observed by immunocytochemistry, scanning electron microscopy and Gram staining, treatment of several bacterial strains and Candida albicans with Aβ peptide variants ending at position 42 (Aβx-42) caused the formation of large agglutinates. These aggregates were not detected after incubation with Aβx-40. Furthermore, Aβx-42 exerted an antimicrobial activity on all tested pathogens, killing up to 80% of microorganisms within 6 h. Aβ1-40 only had a moderate antimicrobial activity against C. albicans. Agglutination of Aβ1-42 was accelerated in the presence of microorganisms. These data demonstrate that the amyloidogenic Aβx-42 variants have antimicrobial activity and may therefore act as antimicrobial peptides in the immune system. PMID:27624303

  17. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies

    NASA Astrophysics Data System (ADS)

    Seo, Jongcheol; Hoffmann, Waldemar; Warnke, Stephan; Huang, Xing; Gewinner, Sandy; Schöllkopf, Wieland; Bowers, Michael T.; von Helden, Gert; Pagel, Kevin

    2017-01-01

    Amyloidogenic peptides and proteins play a crucial role in a variety of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These proteins undergo a spontaneous transition from a soluble, often partially folded form, into insoluble amyloid fibrils that are rich in β-sheets. Increasing evidence suggests that highly dynamic, polydisperse folding intermediates, which occur during fibril formation, are the toxic species in the amyloid-related diseases. Traditional condensed-phase methods are of limited use for characterizing these states because they typically only provide ensemble averages rather than information about individual oligomers. Here we report the first direct secondary-structure analysis of individual amyloid intermediates using a combination of ion mobility spectrometry-mass spectrometry and gas-phase infrared spectroscopy. Our data reveal that oligomers of the fibril-forming peptide segments VEALYL and YVEALL, which consist of 4-9 peptide strands, can contain a significant amount of β-sheet. In addition, our data show that the more-extended variants of each oligomer generally exhibit increased β-sheet content.

  18. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    SciTech Connect

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Fan, Guo-Huang; Richmond, Ann

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP-2 or

  19. Origin of life. Primordial genetics: Information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers.

    PubMed

    Maury, Carl Peter J

    2015-10-07

    The question of the origin of life on Earth can largely be reduced to the question of what was the first molecular replicator system that was able to replicate and evolve under the presumably very harsh conditions on the early Earth. It is unlikely that a functional RNA could have existed under such conditions and it is generally assumed that some other kind of information system preceded the RNA world. Here, I present an informational molecular system that is stable, self-replicative, environmentally responsive, and evolvable under conditions characterized by high temperatures, ultraviolet and cosmic radiation. This postulated pregenetic system is based on the amyloid fold, a functionally unique polypeptide fold characterized by a cross beta-sheet structure in which the beta strands are arranged perpendicular to the fiber axis. Beside an extraordinary structural robustness, the amyloid fold possesses a unique ability to transmit information by a three-dimensional templating mechanism. In amyloidogenesis short peptide monomers are added one by one to the growing end of the fiber. From the same monomeric subunits several structural variants of amyloid may be formed. Then, in a self-replicative mode, a specific amyloid conformer can act as a template and confer its spatially encoded information to daughter molecular entities in a repetitive way. In this process, the specific conformational information, the spatially changed organization, is transmitted; the coding element is the steric zipper structure, and recognition occurs by amino acid side chain complementarity. The amyloid information system fulfills several basic requirements of a primordial evolvable replicator system: (i) it is stable under the presumed primitive Earth conditions, (ii) the monomeric building blocks of the informational polymer can be formed from available prebiotic compounds, (iii) the system is self-assembling and self-replicative and (iv) it is adaptive to changes in the environment and

  20. Reduced pathology and improved behavioral performance in Alzheimer’s disease mice vaccinated with HSV amplicons expressing amyloid-beta and interleukin-4

    PubMed Central

    Frazer, Maria E.; Hughes, Jennifer E.; Mastrangelo, Michael A.; Tibbens, Jennifer L.; Federoff, Howard J.; Bowers, William J.

    2008-01-01

    Immunotherapeutics designed to dissolve existing amyloid plaques or to interrupt amyloid-beta (Aβ) accumulation may be feasible for treatment and/or prevention of Alzheimer’s disease (AD). “Shaping” immune responses elicited against Aβ is requisite to generate an efficacious and safe outcome by minimizing the possibility of deleterious inflammatory reactions in the brain as observed in clinical testing of Aβ peptide/adjuvant-based modalities. Herpes Simplex Virus (HSV)-based amplicons can co-express multiple antigens and/or immunomodulatory genes due to their large genetic size capacity, thereby facilitating antigen-specific immune response shaping. We have constructed an amplicon (HSVIEAβCMVIL-4) that co-delivers Aβ1-42 with interleukin-4, a cytokine that promotes the generation of Th2-like T cell responses, which are favored in the setting of AD immunotherapy. Triple-transgenic AD (3xTg-AD) mice, which progressively develop both amyloid and neurofibrillary tangle pathology, were vaccinated thrice with HSVIEAβCMVIL-4, or a set of control amplicon vectors. Increased Th2-related, Aβ-specific antibodies, improved learning and memory functioning, and prevention of AD-related amyloid and tau pathological progression were observed in HSVIEAβCMVIL-4 vaccinated mice as compared to the other experimental groups. Our study underscores the potential of Aβ immunotherapy for AD and highlights the potency of amplicons to facilitate immune response modulation to a disease-relevant antigen. PMID:18388924

  1. Effect of D-amino acids at Asp{sup 23} and Ser{sup 26} residues on the conformational preference of A{beta}{sub 20-29} peptides

    SciTech Connect

    Shanmugam, Ganesh; Polavarapu, Prasad L. . E-mail: Prasad.L.Polavarapu@Vanderbilt.edu; Hallgas, Balazs; Majer, Zsuzsa

    2005-09-30

    The effects of D-amino acids at Asp{sup 23} and Ser{sup 26} residues on the conformational preference of {beta}-amyloid (A{beta}) peptide fragment (A{beta}{sub 20-29}) have been studied using different spectroscopic techniques, namely vibrational circular dichroism (VCD), vibrational absorption, and electronic circular dichroism. To study the structure of the A{beta}{sub 20-29}, [D-Asp{sup 23}]A{beta}{sub 20-29}, and [D-Ser{sup 26}]A{beta}{sub 20-29} peptides under different conditions, the spectra were measured in 10 mM acetate buffer (pH 3) and in 2,2,2-trifluoroethanol (TFE). The spectroscopic results indicated that at pH 3, A{beta}{sub 20-29} peptide takes random coil with {beta}-turn structure, while [D-Ser{sup 26}]A{beta}{sub 20-29} peptide adopts significant amount of polyproline II (PPII) type structure along with {beta}-turn contribution and D-Asp-substituted peptide ([D-Asp{sup 23}]A{beta}{sub 20-29}) adopts predominantly PPII type structure. The increased propensity for PPII conformation upon D-amino acid substitution, in acidic medium, has important biological implications. In TFE, A{beta}{sub 20-29}, [D-Asp{sup 23}]A{beta}{sub 20-29}, and [D-Ser{sup 26}]A{beta}{sub 20-29} peptides adopt 3{sub 10}-helix, {alpha}-helix, and random coil with some {beta}-turn structures, respectively. The VCD data obtained for the A{beta} peptide films suggested that the secondary structures for the peptide films are not the same as those for corresponding solution and are also different among the A{beta} peptides studied here. This observation suggests that dehydration can have a significant influence on the structural preferences of these peptides.

  2. Analysis of amino-terminal variants of amyloidpeptides by capillary isoelectric focusing immunoassay.

    PubMed

    Haußmann, Ute; Jahn, Olaf; Linning, Philipp; Janßen, Christin; Liepold, Thomas; Portelius, Erik; Zetterberg, Henrik; Bauer, Chris; Schuchhardt, Johannes; Knölker, Hans-Joachim; Klafki, Hans; Wiltfang, Jens

    2013-09-03

    Here we present a novel assay for the separation and detection of amino-terminal amyloid-β (Aβ) peptide variants by capillary isoelectric focusing (CIEF) immunoassay. Specific amino-terminally truncated Aβ peptides appear to be generated by β-secretase (BACE1)-independent mechanisms and have previously been observed in cerebrospinal fluid (CSF) after BACE1 inhibitor treatment in an animal model. CIEF immunoassay sensitivity is sufficient to detect total Aβ in CSF without preconcentration. To analyze low-abundance amino-terminally truncated Aβ peptides from cell culture supernatants, we developed a CIEF-compatible immunoprecipitation protocol, allowing for selective elution of Aβ peptides with very low background. CIEF immunoassay and immunoprecipitation mass spectrometry analysis identified peptides starting at residue Arg(5) as the main amino-terminal Aβ variants produced in the presence of tripartite BACE1 inhibitor in our cell culture model. The CIEF immunoassay allows for robust relative quantification of Aβ peptide patterns in biological samples. To assess the future possibility of absolute quantification, we have prepared the Aβ peptides Aβ(x-10), Aβ(x-16), and Aβ(5-38(D23S)) by using solid phase peptide synthesis as internal standards for the CIEF immunoassay.

  3. Amyloid-beta immunotherapy: the hope for Alzheimer disease?

    PubMed Central

    2016-01-01

    Abstract Alzheimer disease (AD) is the most prevalent form of dementia of adult-onset, characterized by progressive impairment in cognition and memory. There is no cure for the disease and the current treatments are only symptomatic. Drug discovery is an expensive and time-consuming process; in the last decade no new drugs have been found for AD despite the efforts of the scientific community and pharmaceutical companies. The Aβ immunotherapy is one of the most promising approaches to modify the course of AD. This therapeutic strategy uses synthetic peptides or monoclonal antibodies (mAb) to decrease the Aβ load in the brain and slow the progression of the disease. Therefore, this article will discuss the main aspects of AD neuropathogenesis, the classical pharmacologic treatment, as well as the active and passive immunization describing drug prototypes evaluated in different clinical trials. PMID:28293044

  4. Amyloid-beta immunotherapy: the hope for Alzheimer disease?

    PubMed

    Barrera-Ocampo, Alvaro; Lopera, Francisco

    2016-12-30

    Alzheimer disease (AD) is the most prevalent form of dementia of adult-onset, characterized by progressive impairment in cognition and memory. There is no cure for the disease and the current treatments are only symptomatic. Drug discovery is an expensive and time-consuming process; in the last decade no new drugs have been found for AD despite the efforts of the scientific community and pharmaceutical companies. The Aβ immunotherapy is one of the most promising approaches to modify the course of AD. This therapeutic strategy uses synthetic peptides or monoclonal antibodies (mAb) to decrease the Aβ load in the brain and slow the progression of the disease. Therefore, this article will discuss the main aspects of AD neuropathogenesis, the classical pharmacologic treatment, as well as the active and passive immunization describing drug prototypes evaluated in different clinical trials.

  5. Inhibition of the Electrostatic Interaction between β -amyloid Peptide and Membranes Prevents β -amyloid-induced Toxicity

    NASA Astrophysics Data System (ADS)

    Hertel, C.; Terzi, E.; Hauser, N.; Jakob-Rotne, R.; Seelig, J.; Kemp, J. A.

    1997-08-01

    The accumulation of β -amyloid peptides (Aβ ) into senile plaques is one of the hallmarks of Alzheimer disease. Aggregated Aβ is toxic to cells in culture and this has been considered to be the cause of neurodegeneration that occurs in the Alzheimer disease brain. The discovery of compounds that prevent Aβ toxicity may lead to a better understanding of the processes involved and ultimately to possible therapeutic drugs. Low nanomolar concentrations of Aβ 1-42 and the toxic fragment Aβ 25-35 have been demonstrated to render cells more sensitive to subsequent insults as manifested by an increased sensitivity to formazan crystals following MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) reduction. Formation of the toxic β -sheet conformation by Aβ peptides is increased by negatively charged membranes. Here we demonstrate that phloretin and exifone, dipolar compounds that decrease the effective negative charge of membranes, prevent association of Aβ 1-40 and Aβ 25-35 to negatively charged lipid vesicles and Aβ induced cell toxicity. These results suggest that Aβ toxicity is mediated through a nonspecific physicochemical interaction with cell membranes.

  6. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  7. "Clicked" sugar-curcumin conjugate: modulator of amyloid-β and tau peptide aggregation at ultralow concentrations.

    PubMed

    Dolai, Sukanta; Shi, Wei; Corbo, Christopher; Sun, Chong; Averick, Saadyah; Obeysekera, Dinali; Farid, Mina; Alonso, Alejandra; Banerjee, Probal; Raja, Krishnaswami

    2011-12-21

    The synthesis of a water/plasma soluble, noncytotoxic, "clicked" sugar-derivative of curcumin with amplified bioefficacy in modulating amyloid-β and tau peptide aggregation is presented. Curcumin inhibits amyloid-β and tau peptide aggregation at micromolar concentrations; the sugar-curcumin conjugate inhibits Aβ and tau peptide aggregation at concentrations as low as 8 nM and 0.1 nM, respectively. In comparison to curcumin, this conveniently synthesized Alzheimer's drug candidate is a more powerful antioxidant.

  8. Amyloid fibril formation of peptides derived from the C-terminus of CETP modulated by lipids

    SciTech Connect

    García-González, Victor; Mas-Oliva, Jaime

    2013-04-26

    Highlights: •The secondary structure of a C-terminal peptide derived from CETP was studied. •Lipids modulate secondary structure changes of a C-terminal peptide derived from CETP. •Lysophosphatidic acid maintains a functional α-helix and prevents fibril formation. •Transfer of lipids by CETP is related to the presence of an α-helix at its C-end. -- Abstract: Cholesteryl-ester transfer protein (CETP) is a plasmatic protein involved in neutral lipid transfer between lipoproteins. Focusing on the last 12 C-terminus residues we have previously shown that mutation D{sub 470}N promotes a conformational change towards a β-secondary structure. In turn, this modification leads to the formation of oligomers and fibrillar structures, which cause cytotoxic effects similar to the ones provoked by amyloid peptides. In this study, we evaluated the role of specific lipid arrangements on the structure of peptide helix-Z (D{sub 470}N) through the use of thioflavin T fluorescence, peptide bond absorbance, circular dichroism and electron microscopy. The results indicate that the use of micelles formed with lysophosphatidylcholine and lysophosphatidic acid (LPA) under neutral pH induce a conformational transition of peptide helix-Z containing a β-sheet conformation to a native α-helix structure, therefore avoiding the formation of amyloid fibrils. In contrast, incubation with phosphatidic acid does not change the profile for the β-sheet conformation. When the electrostatic charge at the surface of micelles or vesicles is regulated through the use of lipids such as phospholipid and LPA, minimal changes and the presence of β-structures were recorded. Mixtures with a positive net charge diminished the percentage of β-structure and the amount of amyloid fibrils. Our results suggest that the degree of solvation determined by the presence of a free hydroxyl group on lipids such as LPA is a key condition that can modulate the secondary structure and the consequent formation of

  9. Soluble amyloid beta levels are elevated in the white matter of Alzheimer's patients, independent of cortical plaque severity.

    PubMed

    Collins-Praino, Lyndsey E; Francis, Yitshak I; Griffith, Erica Y; Wiegman, Anne F; Urbach, Jonathan; Lawton, Arlene; Honig, Lawrence S; Cortes, Etty; Vonsattel, Jean Paul G; Canoll, Peter D; Goldman, James E; Brickman, Adam M

    2014-08-17

    Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia. In addition to grey matter pathology, white matter changes are now recognized as an important pathological feature in the emergence of the disease. Despite growing recognition of the importance of white matter abnormalities in the pathogenesis of AD, the causes of white matter degeneration are still unknown. While multiple studies propose Wallerian-like degeneration as the source of white matter change, others suggest that primary white matter pathology may be due, at least in part, to other mechanisms, including local effects of toxic Aβ peptides. In the current study, we investigated levels of soluble amyloid-beta (Aβ) in white matter of AD patients (n=12) compared with controls (n=10). Fresh frozen white matter samples were obtained from anterior (Brodmann area 9) and posterior (Brodmann area 1, 2 and 3) areas of post-mortem AD and control brains. ELISA was used to examine levels of soluble Aβ -42 and Aβ -40. Total cortical neuritic plaque severity rating was derived from individual ratings in the following areas of cortex: mid-frontal, superior temporal, pre-central, inferior parietal, hippocampus (CA1), subiculum, entorhinal cortex, transentorhinal cortex, inferior temporal, amygdala and basal forebrain. Compared with controls, AD samples had higher white matter levels of both soluble Aβ -42 and Aβ -40. While no regional white matter differences were found in Aβ -40, Aβ -42 levels were higher in anterior regions than in posterior regions across both groups. After statistically controlling for total cortical neuritic plaque severity, differences in both soluble Aβ -42 and Aβ -40 between the groups remained, suggesting that white matter Aβ peptides accumulate independent of overall grey matter fibrillar amyloid pathology and are not simply a reflection of overall amyloid burden. These results shed light on one potential mechanism through which

  10. Amyloid beta binds trimers as well as monomers of the 75-kDa neurotrophin receptor and activates receptor signaling.

    PubMed

    Yaar, Mina; Zhai, Sen; Fine, Richard E; Eisenhauer, Patricia B; Arble, Bennett L; Stewart, Kenneth B; Gilchrest, Barbara A

    2002-03-08

    p75(NTR), a nerve growth factor co-receptor that has been implicated in apoptosis of neurons, is structurally related to Fas and the receptors for tumor necrosis factor-alpha that display ligand independent assembly into trimers. Using embryonic day 17 fetal rat cortical neurons and p75(NTR)-expressing NIH-3T3 cells, we now show that p75(NTR) exists as a trimer as well as a monomer. Furthermore, we have reported and others have confirmed that amyloid beta binds p75(NTR), and that this binding leads to apoptotic cell death. We now report that amyloid beta binds to trimers of p75(NTR) as well as to p75(NTR) monomers but not to the p140(trkA), the nerve growth factor co-receptor that mediates neuronal survival. Furthermore, amyloid beta activates p75(NTR), strongly inducing the transcription of c-Jun mRNA and stimulating the stress-activated c-Jun NH(2)-terminal kinase, as measured by phosphorylation of its substrate (glutathione S-transferase-c-Jun-(1-79)). Our data suggest that p75(NTR) may be present as a preformed trimer that binds amyloid beta to induce receptor activation, and support the hypothesis that p75(NTR) activation by amyloid beta is causally related to Alzheimer's disease.

  11. Nanoscale structural and mechanical effects of beta-amyloid (1-42) on polymer cushioned membranes: a combined study by neutron reflectometry and AFM Force Spectroscopy.

    PubMed

    Dante, Silvia; Hauss, Thomas; Steitz, Roland; Canale, Claudio; Dencher, Norbert A

    2011-11-01

    The interaction of beta-amyloid peptides with lipid membranes is widely studied as trigger agents in Alzheimer's disease. Their mechanism of action at the molecular level is unknown and their interaction with the neural membrane is crucial to elucidate the onset of the disease. In this study we have investigated the interaction of water soluble forms of beta-amyloid Aβ(1-42) with lipid bilayers supported by polymer cushion. A reproducible protocol for the preparation of a supported phospholipid membrane with composition mimicking the neural membrane and in physiological condition (PBS buffer, pH=7.4) was refined by neutron reflectivity. The change in structure and local mechanical properties of the membrane in the presence of Aβ(1-42) was investigated by neutron reflectivity and Atomic Force Microscopy (AFM) Force Spectroscopy. Neutron reflectivity evidenced that Aβ(1-42) interacts strongly with the supported membrane, causing a change in the scattering length density profile of the lipid bilayer, and penetrates into the membrane. Concomitantly, the local mechanical properties of the bilayer are deeply modified by the interaction with the peptide as seen by AFM Force Spectroscopy. These results may be of great importance for the onset of the Alzheimer's disease, since a simultaneous change in the structural and mechanical properties of the lipid matrix could influence all membrane based signal cascades.

  12. NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production.

    PubMed

    Lesné, Sylvain; Ali, Carine; Gabriel, Cecília; Croci, Nicole; MacKenzie, Eric T; Glabe, Charles G; Plotkine, Michel; Marchand-Verrecchia, Catherine; Vivien, Denis; Buisson, Alain

    2005-10-12

    Acute brain injuries have been identified as a risk factor for developing Alzheimer's disease (AD). Because glutamate plays a pivotal role in these pathologies, we studied the influence of glutamate receptor activation on amyloid-beta (Abeta) production in primary cultures of cortical neurons. We found that sublethal NMDA receptor activation increased the production and secretion of Abeta. This effect was preceded by an increased expression of neuronal Kunitz protease inhibitory domain (KPI) containing amyloid-beta precursor protein (KPI-APP) followed by a shift from alpha-secretase to beta-secretase-mediated APP processing. This shift is a result of the inhibition of the alpha-secretase candidate tumor necrosis factor-alpha converting enzyme (TACE) when associated with neuronal KPI-APPs. This KPI-APP/TACE interaction was also present in AD brains. Thus, our findings reveal a cellular mechanism linking NMDA receptor activation to neuronal Abeta secretion. These results suggest that even mild deregulation of the glutamatergic neurotransmission may increase Abeta production and represent a causal risk factor for developing AD.

  13. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease

    PubMed Central

    Sun, Xiaojuan; Chen, Wei-Dong; Wang, Yan-Dong

    2015-01-01

    The amyloid β peptide (Aβ) is a critical initiator that triggers the progression of Alzheimer’s Disease (AD) via accumulation and aggregation, of which the process may be caused by Aβ overproduction or perturbation clearance. Aβ is generated from amyloid precursor protein through sequential cleavage of β- and γ-secretases while Aβ removal is dependent on the proteolysis and lysosome degradation system. Here, we overviewed the biogenesis and toxicity of Aβ as well as the regulation of Aβ production and clearance. Moreover, we also summarized the animal models correlated with Aβ that are essential in AD research. In addition, we discussed current immunotherapeutic approaches targeting Aβ to give some clues for exploring the more potentially efficient drugs for treatment of AD. PMID:26483691

  14. A potential function for neuronal exosomes: sequestering intracerebral amyloidpeptide.

    PubMed

    Yuyama, Kohei; Sun, Hui; Usuki, Seigo; Sakai, Shota; Hanamatsu, Hisatoshi; Mioka, Tetsuo; Kimura, Nobuyuki; Okada, Megumi; Tahara, Hidetoshi; Furukawa, Jun-ichi; Fujitani, Naoki; Shinohara, Yasuro; Igarashi, Yasuyuki

    2015-01-02

    Elevated amyloidpeptide (Aβ) in brain contributes to Alzheimer's disease (AD) pathogenesis. We demonstrated the presence of exosome-associated Aβ in the cerebrospinal fluid (CSF) of cynomolgus monkeys and APP transgenic mice. The levels of exosome-associated Aβ notably decreased in the CSF of aging animals. We also determined that neuronal exosomes, but not glial exosomes, had abundant glycosphingolipids and could capture Aβ. Infusion of neuronal exosomes into brains of APP transgenic mice decreased Aβ and amyloid depositions, similarly to what reported previously on neuroblastoma-derived exosomes. These findings highlight the role of neuronal exosomes in Aβ clearance, and suggest that their downregulation might relate to Aβ accumulation and, ultimately, the development of AD pathology.

  15. The Structure-Activity Relationship of Glycosaminoglycans and Their Analogues with β-Amyloid Peptide.

    PubMed

    Zhou, Xiang; Jin, Lan

    2016-01-01

    Alzheimer's disease (AD) is a serious neurodegenerative disorder. β-amyloid peptide (Aβ) aggregation is believed to be the major cause of the disease. The process of Aβ aggregation can be enhanced by sulfated glycosaminoglycans. However, cell experiments have shown that sulfated glycosaminoglycan oligosaccharides or analogues may have significant neuroprotective properties and could inhibit the aggregation by competitive inhibition. The length and species of oligosaccharides or analogues can inhibit the toxicity of Aβ by inducing conformational changes of proteins in different manners. This review presents the conformational changes of Aβ in the presence of glycosaminoglycan, glycosaminoglycan oligosaccharides and analogues. The review might be helpful to comprehend the mechanism of β-amyloid fibrillations and the aggregation process.

  16. Separation of presenilin function in amyloid β-peptide generation and endoproteolysis of Notch

    PubMed Central

    Kulic, Luka; Walter, Jochen; Multhaup, Gerd; Teplow, David B.; Baumeister, Ralf; Romig, Helmut; Capell, Anja; Steiner, Harald; Haass, Christian

    2000-01-01

    Most of the genetically inherited Alzheimer's disease cases are caused by mutations in the presenilin genes, PS1 and PS2. PS mutations result in the enhanced production of the highly amyloidogenic 42/43 amino acid variant of amyloid β-peptide (Aβ). We have introduced arbitrary mutations at position 286 of PS1, where a naturally occurring PS1 mutation has been described (L286V). Introduction of charged amino acids (L286E or L286R) resulted in an increase of Aβ42/43 production, which reached almost twice the level of the naturally occurring PS1 mutation. Although pathological Aβ production was increased, endoproteolysis of Notch and nuclear transport of its cytoplasmic domain was significantly inhibited. These results demonstrate that the biological function of PS proteins in the endoproteolysis of β-amyloid precursor protein and Notch can be separated. PMID:10811883

  17. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  18. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation.

    PubMed

    Chiricotto, Mara; Melchionna, Simone; Derreumaux, Philippe; Sterpone, Fabio

    2016-07-21

    Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aβ16-22 peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned the essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aβ16-22 peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aβ16-22 peptide system, the simulation of ∼300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aβ16-22 peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.

  19. Hydrodynamic effects on β-amyloid (16-22) peptide aggregation

    NASA Astrophysics Data System (ADS)

    Chiricotto, Mara; Melchionna, Simone; Derreumaux, Philippe; Sterpone, Fabio

    2016-07-01

    Computer simulations based on simplified representations are routinely used to explore the early steps of amyloid aggregation. However, when protein models with implicit solvent are employed, these simulations miss the effect of solvent induced correlations on the aggregation kinetics and lifetimes of metastable states. In this work, we apply the multi-scale Lattice Boltzmann Molecular Dynamics technique (LBMD) to investigate the initial aggregation phases of the amyloid Aβ16-22 peptide. LBMD includes naturally hydrodynamic interactions (HIs) via a kinetic on-lattice representation of the fluid kinetics. The peptides are represented by the flexible OPEP coarse-grained force field. First, we have tuned the essential parameters that control the coupling between the molecular and fluid evolutions in order to reproduce the experimental diffusivity of elementary species. The method is then deployed to investigate the effect of HIs on the aggregation of 100 and 1000 Aβ16-22 peptides. We show that HIs clearly impact the aggregation process and the fluctuations of the oligomer sizes by favouring the fusion and exchange dynamics of oligomers between aggregates. HIs also guide the growth of the leading largest cluster. For the 100 Aβ16-22 peptide system, the simulation of ˜300 ns allowed us to observe the transition from ellipsoidal assemblies to an elongated and slightly twisted aggregate involving almost the totality of the peptides. For the 1000 Aβ16-22 peptides, a system of unprecedented size at quasi-atomistic resolution, we were able to explore a branched disordered fibril-like structure that has never been described by other computer simulations, but has been observed experimentally.

  20. Cu(2+) affects amyloid-β (1-42) aggregation by increasing peptide-peptide binding forces.

    PubMed

    Hane, Francis; Tran, Gary; Attwood, Simon J; Leonenko, Zoya

    2013-01-01

    The link between metals, Alzheimer's disease (AD) and its implicated protein, amyloid-β (Aβ), is complex and highly studied. AD is believed to occur as a result of the misfolding and aggregation of Aβ. The dyshomeostasis of metal ions and their propensity to interact with Aβ has also been implicated in AD. In this work, we use single molecule atomic force spectroscopy to measure the rupture force required to dissociate two Aβ (1-42) peptides in the presence of copper ions, Cu(2+). In addition, we use atomic force microscopy to resolve the aggregation of Aβ formed. Previous research has shown that metal ions decrease the lag time associated with Aβ aggregation. We show that with the addition of copper ions the unbinding force increases notably. This suggests that the reduction of lag time associated with Aβ aggregation occurs on a single molecule level as a result of an increase in binding forces during the very initial interactions between two Aβ peptides. We attribute these results to copper ions acting as a bridge between the two peptide molecules, increasing the stability of the peptide-peptide complex.

  1. [Zinc-induced interactions of the metal-binding domain of beta-amyloid with nucleic acids and glycosaminoglycans].

    PubMed

    Khmeleva, S A; Kozin, S A; Kiseleva, Y Y; Mitkevich, V A; Makarov, A A; Radko, S P

    2016-01-01

    Zinc ions form complexes with β-amyloid peptides and play an important role in Alzheimer's disease pathogenesis. It has been demonstrated by turbidimetry and correlation spectroscopy that synthetic peptide Aβ16 representing the metal-binding domain of β-amyloid is able to interact with nucleic acids, chondroitin polysulfate, and dextran sulfates in the presence of zinc ions. The amino acid D7H substitution enhanced the peptide binding to polyanions, whereas the H6R and H6A-H13A substitutions abolished this interaction. It is suggested that the metal-binding domain may serve as a zinc-dependent site of β-amyloid interaction with biological polyanions including DNA, RNA, and glycosaminoglycans.

  2. Proteolytic degradation of the amyloid beta-protein: the forgotten side of Alzheimer's disease.

    PubMed

    Leissring, Malcolm A

    2006-12-01

    Proteases have long played a central role in the molecular pathogenesis of Alzheimer's disease (AD), yet proteases that degrade the amyloid beta-protein (Abeta) itself were largely ignored until only quite recently. Today, we know that Abeta-degrading proteases are critical regulators of brain Abeta levels in vivo, with evidence accumulating that their dysfunction may play a role in the etiology of AD. This review explores the historical factors that obscured this important aspect of amyloidogenesis, and discusses the many fresh insights it offers into the causes of and potential treatments for AD.

  3. Elevated expression of beta-site amyloid precursor protein cleaving enzyme 2 in brains of patients with Down syndrome.

    PubMed

    Motonaga, Kozo; Itoh, Masayuki; Becker, Laurence E; Goto, Yu-ichi; Takashima, Sachio

    2002-06-21

    The gene encoding the beta-site amyloid precursor protein cleaving enzyme 2 (BACE2) has been determined to be located on the long arm of chromosome 21 at 21q22.3. BACE2 cleaves the amyloid precursor protein at the beta-secretase site and is thought to contribute to amyloid beta protein production. In the present study, changes in the expression of BACE2 were investigated immunohistochemically in the frontal cortex of patients with Down syndrome (DS). The immunoreactivity for BACE2 was detected in neurofibrillary tangle-bearing neurons from the elderly DS brains with Alzheimer-type neuropathology, but were not detected in those of DS brains without Alzheimer-type neuropathology or of control brains of any age. This suggests the possibility that the elevated expression of BACE2 is involved in the Alzheimer-type neuropathology of DS.

  4. Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns

    SciTech Connect

    Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; Hattne, Johan; Echols, Nathaniel; McFarlane, Heather T.; Cascio, Duilio; Adams, Paul D.; Eisenberg, David S.; Sauter, Nicholas K.

    2015-02-01

    Special methods are required to interpret sparse diffraction patterns collected from peptide crystals at X-ray free-electron lasers. Bragg spots can be indexed from composite-image powder rings, with crystal orientations then deduced from a very limited number of spot positions. Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.

  5. In vitro fibrillization of Alzheimer’s amyloidpeptide (1-42)

    SciTech Connect

    Tiiman, Ann; Krishtal, Jekaterina; Palumaa, Peep; Tõugu, Vello

    2015-09-15

    The amyloid deposition in the form of extracellular fibrillar aggregates of amyloid-β (Aβ) peptide is a critical pathological event in Alzheimer’s disease. Here, we report a systematic investigation of the effects of environmental factors on the kinetics of Aβ fibrillization in vitro. The effects of Aβ42 peptide concentration, temperature, pH, added solvents and the ratio of Aβ40 and Aβ42 on the peptide fibrillization under agitated conditions was studied. The analysis show that the rate of fibril growth by monomer addition is not limited by diffusion but by rearrangement in the monomer structure, which is enhanced by low concentrations of fluorinated alcohols and characterized by the activation energy of 12 kcal/mol. Fibrillization rate decreases at pH values below 7.0 where simultaneous protonation of His 13 and 14 inhibits fibril formation. The lag period for Aβ42 was only twofold shorter and the fibril growth rate twofold faster than those of Aβ40. Lag period was shortened and the fibrillization rate was increased only at 90% content of Aβ42.

  6. Amyloidpeptides are generated in mitochondria-associated endoplasmic reticulum membranes.

    PubMed

    Schreiner, Bernadette; Hedskog, Louise; Wiehager, Birgitta; Ankarcrona, Maria

    2015-01-01

    Extracellular aggregates of amyloidpeptides (Aβ) are a hallmark in Alzheimer's disease (AD) brains. Recent findings suggest that Aβ is generated intracellularly and potential production sites include endosomes and trans-Golgi network. We determined the production of Aβ in subcellular fractions isolated from mouse brain. We found that a considerable amount of Aβ is produced at mitochondria-endoplasmic reticulum (ER) contact sites including outer mitochondrial membrane and mitochondria-associated ER membranes. Enhanced Aβ production at this site may disturb ER, mitochondrial and mitochondria-ER contact site function. This may be one key step in the cascade of events eventually leading to neurodegeneration in AD.

  7. Tau and Beta-Amyloid Deposition, Microhemorrhage and Brain Function after Traumatic Brain Injury in War Veterans

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0418 TITLE: Tau and Beta-Amyloid Deposition, Microhemorrhage and Brain Function after Traumatic Brain Injury in War...COVERED 25 Sep 2014 - 24 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Tau and Beta-Amyloid Deposition, Microhemorrhage and Brain Function after...Traumatic Brain Injury in War Veterans 5b. GRANT NUMBER W81XWH-14-1-0418 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Christopher Rowe 5d. PROJECT

  8. Generation of soluble oligomeric beta-amyloid species via copper catalyzed oxidation with implications for Alzheimer's disease: a DFT study.

    PubMed

    Haeffner, Fredrik; Barnham, Kevin J; Bush, Ashley I; Brinck, Tore

    2010-06-01

    A mechanism for the oxidation of a dimeric beta-amyloid copper ion complex is proposed based on DFT calculations. It involves the Met35 residue, which is believed to be important in the neurotoxicity causing Alzheimer's disease. Oxidation of Met35 is found to proceed readily with dioxygen when two Met35 residues are close to each other and the copper ion. This indicates that oxidants, such as hydrogen peroxide, are not necessary for oxidation of beta-amyloid copper ion complexes. Understanding these processes could be pivotal in gaining more knowledge of this complex disease and for the development of therapeutic treatments.

  9. Isobaric Quantification of Cerebrospinal Fluid AmyloidPeptides in Alzheimer's Disease: C-Terminal Truncation Relates to Early Measures of Neurodegeneration.

    PubMed

    Rogeberg, Magnus; Almdahl, Ina Selseth; Wettergreen, Marianne; Nilsson, Lars N G; Fladby, Tormod

    2015-11-06

    The amyloid beta (Aβ) peptide is the main constituent of the plaques characteristic of Alzheimer's disease (AD). Measurement of Aβ1-42 in cerebrospinal fluid (CSF) is a valuable marker in AD research, where low levels indicate AD. Although the use of immunoassays measuring Aβ1-38 and Aβ1-40 in addition to Aβ1-42 has increased, quantitative assays of other Aβ peptides remain rarely explored. We recently discovered novel Aβ peptides in CSF using antibodies recognizing the Aβ mid-domain region. Here we have developed a method using both Aβ N-terminal and mid-domain antibodies for immunoprecipitation in combination with isobaric labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for relative quantification of endogenous Aβ peptides in CSF. The developed method was used in a pilot study to produce Aβ peptide profiles from 38 CSF samples. Statistical comparison between CSF samples from 19 AD patients and 19 cognitively healthy controls revealed no significant differences at group level. A significant correlation was found between several larger C-terminally truncated Aβ peptides and protein biomarkers for neuronal damage, particularly prominent in the control group. Comparison of the isobaric quantification with immunoassays measuring Aβ1-38 or Aβ1-40 showed good correlation (r(2) = 0.84 and 0.85, respectively) between the two analysis methods. The developed method could be used to assess disease-modifying therapies directed at Aβ production or degradation.

  10. Low molecular weight oligomers of amyloid peptides display β-barrel conformations: A replica exchange molecular dynamics study in explicit solvent

    NASA Astrophysics Data System (ADS)

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-01

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 μs show that low molecular weight oligomers in explicit solvent consist of β-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient β-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  11. A peptide mimetic of human interferon (IFN)-beta.

    PubMed Central

    Sato, Atsushi; Sone, Saburo

    2003-01-01

    Type I interferons (IFNs) are cytokines that are used clinically as antiviral and antitumour agents. The interaction of IFNs with their heterodimeric type I IFN receptor comprised of IFNAR1 and IFNAR2 is a first step to inducing biological actions. Here, we describe the successful mimicry of IFN-beta by a peptide isolated by phage-display screening using a neutralizing anti-IFN-beta monoclonal antibody. The 15-mer peptide, designated SYR6, was shown to compete with IFN-beta for binding to type I IFN receptor in a concentration-dependent manner, and was shown to elicit antiviral activity on cultured cells. This antiviral activity was not eliminated in the presence of neutralizing monoclonal antibodies to IFN-alpha, -beta and -gamma, and a low concentration of soluble type I IFN receptor, suggesting that it was not due to IFN contamination or the induction of endogenous IFNs by SYR6. This peptide might be a potent agonist to provide a mechanism of activating heterodimeric cytokine receptors. PMID:12542398

  12. Reference measurement procedure for CSF amyloid beta (Aβ)1-42 and the CSF Aβ1-42 /Aβ1-40 ratio - a cross-validation study against amyloid PET.

    PubMed

    Pannee, Josef; Portelius, Erik; Minthon, Lennart; Gobom, Johan; Andreasson, Ulf; Zetterberg, Henrik; Hansson, Oskar; Blennow, Kaj

    2016-11-01

    A clinical diagnosis of Alzheimer's disease is currently made on the basis of results from cognitive tests in combination with medical history and general clinical evaluation, but the peptide amyloid-beta (Aβ) in cerebrospinal fluid (CSF) is increasingly used as a biomarker for amyloid pathology in clinical trials and in recently proposed revised clinical criteria for Alzheimer's disease. Recent analytical developments have resulted in mass spectrometry (MS) reference measurement procedures for absolute quantification of Aβ1-42 in CSF. The CSF Aβ1-42 /Aβ1-40 ratio has been suggested to improve the detection of cerebral amyloid deposition, by compensating for inter-individual variations in total Aβ production. Our aim was to cross-validate the reference measurement procedure as well as the Aβ1-42 /Aβ1-40 and Aβ1-42 /Aβ1-38 ratios in CSF, measured by high-resolution MS, with the cortical level of Aβ fibrils as measured by amyloid ((18) F-flutemetamol) positron emission tomography (PET). We included 100 non-demented patients with cognitive symptoms from the Swedish BioFINDER study, all of whom had undergone both lumbar puncture and (18) F-flutemetamol PET. Comparing CSF Aβ1-42 concentrations with (18) F-flutemetamol PET showed high concordance with an area under the receiver operating characteristic curve of 0.85 and a sensitivity and specificity of 82% and 81%, respectively. The ratio of Aβ1-42 /Aβ1-40 or Aβ1-42 /Aβ1-38 significantly improved concordance with an area under the receiver operating characteristic curve of 0.95 and a sensitivity and specificity of 96% and 91%, respectively. These results show that the CSF Aβ1-42 /Aβ1-40 and Aβ1-42 /Aβ1-38 ratios using the described MS method are strongly associated with cortical Aβ fibrils measured by (18) F-flutemetamol PET.

  13. Novel strategies for Alzheimer's disease treatment: An overview of anti-amyloid beta monoclonal antibodies

    PubMed Central

    Rygiel, Katarzyna

    2016-01-01

    Alzheimer's disease (AD) is a multifactorial, progressive neurodegenerative disorder with a poor prognosis, and thus, novel therapies for AD are certainly needed in a growing population of elderly patients or asymptomatic individuals, who are at risk for AD, worldwide. It has been established that some AD biomarkers such as amyloid-beta load in the brain, precede the onset of the disease, by approximately 20 years. Therefore, the therapy to prevent or effectively treat AD has to be initiated before the emergence of symptoms. A goal of this review is to present the results of recent clinical trials on monoclonal antibodies against amyloid beta, used for the treatment of AD and also to address some of the current challenges and emerging strategies to prevent AD. In recent trials, a monoclonal antibody, i.e. solanezumab has shown some beneficial cognitive effects among mild AD patients. Ongoing studies with gantenerumab and crenezumab will examine when exactly the AD treatment, aimed at modifying the disease course has to be started. This review was based on Medline database search for trials on passive anti-AD immunotherapy, for which the main timeframe was set from 2012 to 2015. PMID:28066098

  14. Multiscale Molecular Dynamics Simulations of Beta-Amyloid Interactions with Neurons

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2012-10-01

    Early events of human beta-amyloid protein interactions with cholesterol-containing membranes are critical to understanding the pathogenesis of Alzheimer's disease (AD) and to exploring new therapeutic interventions of AD. Atomistic molecular dynamics (AMD) simulations have been extensively used to study the protein-lipid interaction at high atomic resolutions. However, traditional MD simulations are not efficient in sampling the phase space of complex lipid/protein systems with rugged free energy landscapes. Meanwhile, coarse-grained MD (CGD) simulations are efficient in the phase space sampling but suffered from low spatial resolutions and from the fact that the energy landscapes are not identical to those of the AMD. Here, a multiscale approach was employed to simulate the protein-lipid interactions of beta-amyloid upon its release from proteolysis residing in the neuronal membranes. We utilized a forward (AMD to CGD) and reverse (CGD-AMD) strategy to explore new transmembrane and surface protein configuration and evaluate the stabilization mechanisms by measuring the residue-specific protein-lipid or protein conformations. The detailed molecular interactions revealed in this multiscale MD approach will provide new insights into understanding the early molecular events leading to the pathogenesis of AD.

  15. Beta-amyloid auto-antibodies are reduced in Alzheimer's disease.

    PubMed

    Qu, Bao-Xi; Gong, Yunhua; Moore, Carol; Fu, Min; German, Dwight C; Chang, Ling-Yu; Rosenberg, Roger; Diaz-Arrastia, Ramon

    2014-09-15

    Accumulation and cytotoxicity of amyloid beta (Aβ) are understood as the major cause of Alzheimer's disease (AD). There is evidence that naturally occurring antibodies against amyloid beta (Aβ) protein play a role in Aβ-clearance, and such a mechanism appears to be impaired in AD. In the present study, the anti-Aβ antibodies in the serum from individuals with and without late onset AD were measured using ELISA and dot-blot methods. Aβ auto-antibodies in serum were mainly targeted to Aβ1-15 epitope and its titer was significantly lower in AD patients than elderly non-AD controls (NC). The dot-blot analysis further demonstrated that auto-antibodies against fibrillar Aβ42, Aβ1-15 and Aβ16-30 epitopes were all in a lower level in AD than in NC. The isotypes of the auto-antibodies were mainly non-inflammatory IgG2 type. We also analyzed the relationship of auto-Aβ antibody levels with the genotypes of apolipoprotein E (ApoE) and ANKK1/DRD2 gene.

  16. Characterization of amyloid formation by glucagon-like peptides: role of basic residues in heparin-mediated aggregation.

    PubMed

    Jha, Narendra Nath; Anoop, A; Ranganathan, Srivastav; Mohite, Ganesh M; Padinhateeri, Ranjith; Maji, Samir K

    2013-12-10

    Glycosaminoglycans (GAGs) have been reported to play a significant role in amyloid formation of a wide range of proteins/peptides either associated with diseases or native biological functions. The exact mechanism by which GAGs influence amyloid formation is not clearly understood. Here, we studied two closely related peptides, glucagon-like peptide 1 (GLP1) and glucagon-like peptide 2 (GLP2), for their amyloid formation in the presence and absence of the representative GAG heparin using various biophysical and computational approaches. We show that the aggregation and amyloid formation by these peptides follow distinct mechanisms: GLP1 follows nucleation-dependent aggregation, whereas GLP2 forms amyloids without any significant lag time. Investigating the role of heparin, we also found that heparin interacts with GLP1, accelerates its aggregation, and gets incorporated within its amyloid fibrils. In contrast, heparin neither affects the aggregation kinetics of GLP2 nor gets embedded within its fibrils. Furthermore, we found that heparin preferentially influences the stability of the GLP1 fibrils over GLP2 fibrils. To understand the specific nature of the interaction of heparin with GLP1 and GLP2, we performed all-atom MD simulations. Our in silico results show that the basic-nonbasic-basic (B-X-B) motif of GLP1 (K28-G29-R30) facilitates the interaction between heparin and peptide monomers. However, the absence of such a motif in GLP2 could be the reason for a significantly lower strength of interaction between GLP2 and heparin. Our study not only helps to understand the role of heparin in inducing protein aggregation but also provides insight into the nature of heparin-protein interaction.

  17. Benzothiazole aniline tetra(ethylene glycol) and 3-amino-1,2,4-triazole inhibit neuroprotection against amyloid peptides by catalase overexpression in vitro.

    PubMed

    Chilumuri, Amrutha; Odell, Mark; Milton, Nathaniel G N

    2013-11-20

    Alzheimer's disease, Familial British dementia, Familial Danish dementia, Type 2 diabetes mellitus, plus Creutzfeldt-Jakob disease are associated with amyloid fibril deposition and oxidative stress. The antioxidant enzyme catalase is a neuroprotective amyloid binding protein. Herein the effects of catalase overexpression in SH-SY5Y neuronal cells on the toxicity of amyloid-β (Aβ), amyloid-Bri (ABri), amyloid-Dan (ADan), amylin (IAPP), and prion protein (PrP) peptides were determined. Results showed catalase overexpression was neuroprotective against Aβ, ABri, ADan, IAPP, and PrP peptides. The catalase inhibitor 3-amino-1,2,4-triazole (3-AT) and catalase-amyloid interaction inhibitor benzothiazole aniline tetra(ethylene glycol) (BTA-EG4) significantly enhanced neurotoxicity of amyloid peptides in catalase overexpressing neuronal cells. This suggests catalase neuroprotection involves breakdown of hydrogen peroxide (H2O2) plus a direct binding interaction between catalase and the Aβ, ABri, ADan, IAPP, and PrP peptides. Kisspeptin 45-50 had additive neuroprotective actions against the Aβ peptide in catalase overexpressing cells. The effects of 3-AT had an intracellular site of action, while catalase-amyloid interactions had an extracellular component. These results suggest that the 3-AT and BTA-EG4 compounds may be able to inhibit endogenous catalase mediated neuroprotection. Use of BTA-EG4, or compounds that inhibit catalase binding to amyloid peptides, as potential therapeutics for Neurodegenerative diseases may therefore result in unwanted effects.

  18. Amyloid-β(25-35) peptides aggregate into cross-β sheets in unsaturated anionic lipid membranes at high peptide concentrations.

    PubMed

    Tang, Jennifer; Alsop, Richard J; Backholm, Matilda; Dies, Hannah; Shi, An-Chang; Rheinstädter, Maikel C

    2016-04-07

    One of the hallmarks of Alzheimer's disease is the formation of protein plaques in the brain, which mainly consist of amyloidpeptides of different lengths. While the role of these plaques in the pathology of the disease is not clear, the mechanism behind peptide aggregation is a topic of intense research and discussion. Because of their simplicity, synthetic membranes are promising model systems to identify the elementary processes involved. We prepared unsaturated zwitterionic/anionic lipid membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS) at concentrations of POPC/3 mol% DMPS containing 0 mol%, 3 mol%, 10 mol%, and 20 mol% amyloid-β25-35 peptides. Membrane-embedded peptide clusters were observed at peptide concentrations of 10 and 20 mol% with a typical cluster size of ∼11 μm. Cluster density increased with peptide concentration from 59 (±3) clusters per mm(2) to 920 (±64) clusters per mm(2), respectively. While monomeric peptides take an α-helical state when embedded in lipid bilayers at low peptide concentrations, the peptides in peptide clusters were found to form cross-β sheets and showed the characteristic pattern in X-ray experiments. The presence of the peptides was accompanied by an elastic distortion of the bilayers, which can induce a long range interaction between the peptides. The experimentally observed cluster patterns agree well with Monte Carlo simulations of long-range interacting peptides. This interaction may be the fundamental process behind cross-β sheet formation in membranes and these sheets may serve as seeds for further growth into amyloid fibrils.

  19. Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of Amyloid-β (Aβ)42 peptides.

    PubMed

    Tapia-Rojas, Cheril; Burgos, Patricia V; Inestrosa, Nibaldo C

    2016-12-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder and the most frequent cause of dementia in the aged population. According to the amyloid hypothesis, the amyloid-β (Aβ) peptide plays a key role in the pathogenesis of AD. Aβ is generated from the amyloidogenic processing of amyloid precursor protein and can aggregate to form oligomers, which have been described as a major synaptotoxic agent in neurons. Dysfunction of Wnt signaling has been linked to increased Aβ formation; however, several other studies have argued against this possibility. Herein, we use multiple experimental approaches to confirm that the inhibition of Wnt signaling promoted the amyloidogenic proteolytic processing of amyloid precursor protein. We also demonstrate that inhibiting Wnt signaling increases the production of the Aβ42 peptide, the Aβ42 /Aβ40 ratio, and the levels of Aβ oligomers such as trimers and tetramers. Moreover, we show that activating Wnt signaling reduces the levels of Aβ42 and its aggregates, increases Aβ40 levels, and reduces the Aβ42 /Aβ40 ratio. Finally, we show that the protective effects observed in response to activation of the Wnt pathway rely on β-catenin-dependent transcription, which is demonstrated experimentally via the expression of various 'mutant forms of β-catenin'. Together, our findings indicate that loss of the Wnt signaling pathway may contribute to the pathogenesis of AD.

  20. Aminoguanidine treatment ameliorates inflammatory responses and memory impairment induced by amyloid-beta 25-35 injection in rats.

    PubMed

    Díaz, Alfonso; Rojas, Karla; Espinosa, Blanca; Chávez, Raúl; Zenteno, Edgar; Limón, Daniel; Guevara, Jorge

    2014-06-01

    Alzheimer disease (AD) is a neurodegenerative disorder caused by accumulation of the amyloid-beta peptide (Aβ) in neuritic plaques. Its neurotoxic mechanisms are associated with inflammatory responses and nitrosative stress generation that promote expression of inducible nitric oxide synthase (iNOS) and increased nitric oxide causing neuronal death and memory impairment. Studies suggest that treatment with anti-inflammatory and anti-oxidant agents decreases the risk of developing AD. Aminoguanidine (AG) is an iNOS inhibitor with anti-inflammatory and anti-oxidant effects. In this study, we evaluated the effects of systemic administration of AG (100 mg/kg/day for 4 days) on spatial memory and inflammatory responses induced by an injection of Aβ(25-35) [100 μM] into the temporal cortex (TCx) of rats. A significant improvement of spatial memory was evident in the Aβ(25-35)-treated group at day 30 post-injection subjected to AG treatment; this effect was correlated with decreases in reactive gliosis, IL-1β, TNF-α, and nitrite levels, as well as a reduction in neurodegeneration in the TCx and hippocampus (Hp). These results suggest that AG treatment inhibited glia activation and cytokine release, which may help to counteract neurodegenerative events induced by the toxicity of Aβ.

  1. Feasibility of β-Sheet Breaker Peptide-H102 Treatment for Alzheimer's Disease Based on β-Amyloid Hypothesis

    PubMed Central

    Tan, Yuan-zhen; Sun, Feng-xian; Song, Ming; Zhao, Juan; Ma, Zhi-hong; Li, Mei; Zheng, Kai-jun; Xu, Shu-mei

    2014-01-01

    β-amyloid hypothesis is the predominant hypothesis in the study of pathogenesis of Alzheimer's disease. This hypothesis claims that aggregation and neurotoxic effects of amyloid β (Aβ) is the common pathway in a variety of etiological factors for Alzheimer's disease. Aβ peptide derives from amyloid precursor protein (APP). β-sheet breaker peptides can directly prevent and reverse protein misfolding and aggregation in conformational disorders. Based on the stereochemical structure of Aβ1-42 and aggregation character, we had designed a series of β-sheet breaker peptides in our previous work and screened out a 10-residue peptide β-sheet breaker peptide, H102. We evaluated the effects of H102 on expression of P-tau, several associated proteins, inflammatory factors and apoptosis factors, and examined the cognitive ability of APP transgenic mice by behavioral test. This study aims to validate the β-amyloid hypothesis and provide an experimental evidence for the feasibility of H102 treatment for Alzheimer's disease. PMID:25372040

  2. Self-assembly of amyloid-forming peptides by molecular dynamics simulations.

    PubMed

    Wei, Guanghong; Song, Wei; Derreumaux, Philippe; Mousseau, Normand

    2008-05-01

    Protein aggregation is associated with many neurodegenerative diseases. Understanding the aggregation mechanisms is a fundamental step in order to design rational drugs interfering with the toxic intermediates. This self-assembly process is however difficult to observe experimentally, which gives simulations an important role in resolving this problem. This study shows how we can proceed to gain knowledge about the first steps of aggregation. We first start by characterizing the free energy surface of the Abeta (16-22) dimer, a well-studied system numerically, using molecular dynamics simulations with OPEP coarse-grained force field. We then turn to the study of the NHVTLSQ peptide in 4-mers and 16-mers, extracting information on the onset of aggregation. In particular, the simulations indicate that the peptides are mostly random coil at room temperature, but can visit diverse amyloid-competent topologies, albeit with a low probability. The fact that the 16-mers constantly move from one structure to another is consistent with the long lag phase measured experimentally, but the rare critical steps leading to the rapid formation of amyloid fibrils still remain to be determined.

  3. Effect of osmolytes on the conformation and aggregation of some amyloid peptides: CD spectroscopic data.

    PubMed

    Inayathullah, Mohammed; Rajadas, Jayakumar

    2016-06-01

    Protein misfolding and aggregation are responsible for a large number of diseases called protein conformational diseases or disorders that include Alzheimer׳s disease, Huntington׳s diseases, Prion related encephalopathies and type-II diabetes (http://dx.doi.org/10.1038/35041139) (Kopito and Ron, 2000) [1]. A variety of studies have shown that some small organic molecules, known as osmolytes have the ability to stabilize native conformation of proteins and prevent misfolding and aggregation (http://www.la-press.com/article.php?article_id=447) (Zhao et al., 2008) [2]. It has been shown that certain short segment or fragment of respective proteins can also form amyloids, and the segments also promote the aggregation in the full-length protein (http://dx.doi.org/10.2174/0929867023369187) (Gazit, 2002) [3]. This article presents circular dichroism spectroscopic data on conformational analysis and effect of osmolytes on Aβ peptide fragments, different lengths of polyglutamine peptide and the amyloidogenic segment of islet amyloid polypeptide.

  4. Antidepressants modulate intracellular amyloid peptide species in N2a neuroblastoma cells.

    PubMed

    Aboukhatwa, Marwa; Luo, Yuan

    2011-01-01

    It is estimated that 30%-50% of Alzheimer's disease (AD) patients are diagnosed with major or minor depression. Research that addresses the relationship between these two diseases will benefit patients who suffer from depression comorbid with AD and allow further understanding of the neuroanatomy of depression. A clinical study showed that the use of the antidepressant fluoxetin concomitantly with the FDA-approved AD drug rivastigmine provided an improvement in the daily activities and the overall functioning in the patients with cognitive impairment. In an attempt to understand the underlying mechanism for the antidepressant's beneficial effect in AD patients, we evaluated the effects of different classes of antidepressants on the amyloidpeptide (Aβ) species in N2a neuroblastoma cells overexpressing amyloid-β protein precursor. The effect of increasing antidepressant concentrations on the intracellular and secreted Aβ species is investigated by Western blotting. The tested antidepressants include fluoxetine, paroxetine, maprotiline, and imipramine. Fluoxetine and paroxetine at 10 μM significantly decreased the intracellular level of Aβ oligomers and increased the level of Aβ monomers. However, imipramine and maprotiline increased the intracellular amount of Aβ monomers without affecting Aβ oligomers. Based on these results, it is possible that fluoxetine and paroxetine could be beneficial to AD patients via reducing the level of the cytotoxic oligomers and keeping the Aβ peptide in the monomeric form. These data could explain some of the beneficial effects of antidepressants in AD patients observed in clinical studies.

  5. Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns

    PubMed Central

    Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; Hattne, Johan; Echols, Nathaniel; McFarlane, Heather T.; Cascio, Duilio; Adams, Paul D.; Eisenberg, David S.; Sauter, Nicholas K.

    2015-01-01

    Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented. PMID:25664747

  6. Indexing amyloid peptide diffraction from serial femtosecond crystallography: New algorithms for sparse patterns

    SciTech Connect

    Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; Hattne, Johan; Echols, Nathaniel; McFarlane, Heather T.; Cascio, Duilio; Adams, Paul D.; Eisenberg, David S.; Sauter, Nicholas K.

    2015-01-23

    Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of theComputational Crystallography Toolbox(cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.

  7. Indexing amyloid peptide diffraction from serial femtosecond crystallography: New algorithms for sparse patterns

    DOE PAGES

    Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; ...

    2015-01-23

    Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of theComputational Crystallography Toolbox(cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patternsmore » with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.« less

  8. Patterning nanofibrils through the templated growth of multiple modified amyloid peptides

    PubMed Central

    Sakai, Hiroki; Watanabe, Ken; Kudoh, Fuki; Kamada, Rui; Chuman, Yoshiro; Sakaguchi, Kazuyasu

    2016-01-01

    There has been considerable interest in the patterning of functionalized nanowires because of the potential applications of these materials to the construction of nanodevices. A variety of biomolecular building blocks containing amyloid peptides have been used to functionalize nanowires. However, the patterning of self-assembled nanowires can be challenging because of the difficulties associated with controlling the self-assembly of these functionalized building blocks. Herein, we present a versatile approach for the patterning of nanowires based on the combination of templated fibril growth with a versatile functionalization method using our structure-controllable amyloid peptides (SCAPs). Using this approach, we have succeeded in the formation of multi-type nanowires with tandem domain structures in high yields. Given that the mixing-SCAP method can lead to the formation of tandem fibrils, it is noteworthy that our method allowed us to control the initiation of fibril formation from the gold nanoparticles, which were attached to a short fibril as initiation points. This approach could be used to prepare a wide variety of fibril patterns, and therefore holds great potential for the development of novel self-assembled nanodevices. PMID:27559011

  9. Vincamine Alleviates Amyloid-β 25–35 Peptides-induced Cytotoxicity in PC12 Cells

    PubMed Central

    Han, Jianfeng; Qu, Qiumin; Qiao, Jin; Zhang, Jie

    2017-01-01

    Objective: Vincamine is a plant alkaloid used clinically as a peripheral vasodilator that increases cerebral blood flow and oxygen and glucose utilization by neural tissue to combat the effect of aging. The main purpose of the present study is to investigate the influence of vincamine on amyloid-β 25–35 (Aβ25–35) induced cytotoxicity, to gain a better understanding of the neuroprotective effects of this clinically used anti-Alzheimer's disease drug. Materials and Methods: Oxidative stress was assessed by measuring malondialdehyde, glutathione, and superoxide dismutase (SOD) levels. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis detection was performed using an Annexin-V-FITC Apoptosis Detection Kit. The production of reactive oxygen species (ROS) was determined using an ROS Assay Kit. Western blot detection was carried out to detect the protein expression. Results: Our studies showed that pretreatment with vincamine could reduce Aβ25–35 induced oxidative stress. Vincamine markedly inhibited cell apoptosis dose-dependently. More importantly, vincamine increased the phosphatidylinositol-3 kinase (PI3K)/Akt and Bcl-2 family protein ratios on preincubation with cells for 2 h. Conclusion: Above observation led us to assume that one possible mechanism of vincamine protects Aβ25-35-induced cell death could be through upregulation of SOD and activation of the PI3K/Akt pathway. SUMMARY Vincamine ameliorates amyloid-β 25–35 (Aβ25–35) peptides induced cytotoxicity in PC12 cellsVincamine reduces Aβ 25–35 peptides induced apoptosis of PC12 cellsVincamine activates the phosphatidylinositol-3 kinase/Akt pathwayVincamine up-regulates the superoxide dismutase. Abbreviation used: Aβ25-35: Amyloid-β 25-35; AD: Alzheimer's disease; BCA: Bicinchoninic acid; GSH: glutathione; PBS: Phosphate buffered solution; SDS: Sodium dodecylsulphate; SOD: Superoxide dismutase PMID:28216895

  10. Neuroprotective Effects of Pomegranate Peel Extract after Chronic Infusion with AmyloidPeptide in Mice

    PubMed Central

    Morzelle, Maressa Caldeira; Salgado, Jocelem Mastrodi; Telles, Milena; Mourelle, Danilo; Bachiega, Patricia; Buck, Hudson Sousa

    2016-01-01

    Alzheimer’s disease is a chronic and degenerative condition that had no treatment until recently. The current therapeutic strategies reduce progression of the disease but are expensive and commonly cause side effects that are uncomfortable for treated patients. Functional foods to prevent and/or treat many conditions, including neurodegenerative diseases, represent a promising field of study currently gaining attention. To this end, here we demonstrate the effects of pomegranate (Punica granatum) peel extract (PPE) regarding spatial memory, biomarkers of neuroplasticity, oxidative stress and inflammation in a mouse model of neurodegeneration. Male C57Bl/6 mice were chronically infused for 35 days with amyloidpeptide 1–42 (Aβ) or vehicle (control) using mini-osmotic pumps. Another group, also infused with Aβ, was treated with PPE (p.o.– βA+PPE, 800 mg/kg/day). Spatial memory was evaluated in the Barnes maze. Animals treated with PPE and in the control group exhibited a reduction in failure to find the escape box, a finding that was not observed in the Aβ group. The consumption of PPE reduced amyloid plaque density, increased the expression of neurotrophin BDNF and reduced the activity of acetylcholinesterase enzyme. A reduction in lipid peroxidation and in the concentration of the pro-inflammatory cytokine TNF-α was also observed in the PPE group. No hepatic lesions were observed in animals treated with PPE. In conclusion, administration of pomegranate peel extract has neuroprotective effects involving multiple mechanisms to prevent establishment and progression of the neurodegenerative process induced by infusion with amyloidpeptide in mice. PMID:27829013

  11. Triptolide Inhibited Cytotoxicity of Differentiated PC12 Cells Induced by Amyloid-Beta25–35 via the Autophagy Pathway

    PubMed Central

    Xu, Pengjuan; Li, Zhigui; Wang, Hui; Zhang, Xiaochen; Yang, Zhuo

    2015-01-01

    Evidence shows that an abnormal deposition of amyloid beta-peptide25–35 (Aβ25–35) was the primary cause of the pathogenesis of Alzheimer’s disease (AD). And the elimination of Aβ25–35 is considered an important target for the treatment of AD. Triptolide (TP), isolated from Tripterygium wilfordii Hook.f. (TWHF), has been shown to possess a broad spectrum of biological profiles, including neurotrophic and neuroprotective effects. In our study investigating the effect and potential mechanism of triptolide on cytotoxicity of differentiated rat pheochromocytoma cell line (the PC12 cell line is often used as a neuronal developmental model) induced by Amyloid-Beta25–35 (Aβ25–35), we used 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) assay, flow cytometry, Western blot, and acridine orange staining to detect whether triptolide could inhibit Aβ25–35–induced cell apoptosis. We focused on the potential role of the autophagy pathway in Aβ25–35-treated differentiated PC12 cells. Our experiments show that cell viability is significantly decreased, and the apoptosis increased in Aβ25–35-treated differentiated PC12 cells. Meanwhile, Aβ25–35 treatment increased the expression of microtubule-associated protein light chain 3 II (LC3 II), which indicates an activation of autophagy. However, triptolide could protect differentiated PC12 cells against Aβ25–35-induced cytotoxicity and attenuate Aβ25–35-induced differentiated PC12 cell apoptosis. Triptolide could also suppress the level of autophagy. In order to assess the effect of autophagy on the protective effects of triptolide in differentiated PC12 cells treated with Aβ25–35, we used 3-Methyladenine (3-MA, an autophagy inhibitor) and rapamycin (an autophagy activator). MTT assay showed that 3-MA elevated cell viability compared with the Aβ25–35-treated group and rapamycin inhibits the protection of triptolide. These results suggest that triptolide will repair the

  12. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease.

    PubMed

    Liu, Gang; Men, Ping; Kudo, Wataru; Perry, George; Smith, Mark A

    2009-05-22

    Oxidative stress and amyloid-beta are considered major etiological and pathological factors in the initiation and promotion of neurodegeneration in Alzheimer disease (AD). Insomuch as causes of such oxidative stress, transition metals, such as iron and copper, which are found in high concentrations in the brains of AD patients and accumulate specifically in the pathological lesions, are viewed as key contributors to the altered redox state. Likewise, the aggregation and toxicity of amyloid-beta is dependent upon transition metals. As such, chelating agents that selectively bind to and remove and/or "redox silence" transition metals have long been considered as attractive therapies for AD. However, the blood-brain barrier and neurotoxicity of many traditional metal chelators has limited their utility in AD or other neurodegenerative disorders. To circumvent this, we previously suggested that nanoparticles conjugated to iron chelators may have the potential to deliver chelators into the brain and overcome such issues as chelator bioavailability and toxic side-effects. In this study, we synthesized a prototype nanoparticle-chelator conjugate (Nano-N2PY) and demonstrated its ability to protect human cortical neurons from amyloid-beta-associated oxidative toxicity. Furthermore, Nano-N2PY nanoparticle-chelator conjugates effectively inhibited amyloid-beta aggregate formation. Overall, this study indicates that Nano-N2PY, or other nanoparticles conjugated to metal chelators, may provide a novel therapeutic strategy for AD and other neurodegenerative diseases associated with excess transition metals.

  13. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer's β-amyloid peptide fragment

    NASA Astrophysics Data System (ADS)

    Xie, Luogang; Luo, Yin; Lin, Dongdong; Xi, Wenhui; Yang, Xinju; Wei, Guanghong

    2014-07-01

    Amyloid deposits are implicated in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease (AD). The inhibition of β-sheet formation has been considered as the primary therapeutic strategy for AD. Increasing data show that nanoparticles can retard or promote the fibrillation of amyloid-β (Aβ) peptides depending on the physicochemical properties of nanoparticles, however, the underlying molecular mechanism remains elusive. In this study, our replica exchange molecular dynamics (REMD) simulations show that fullerene nanoparticle - C60 (with a fullerene : peptide molar ratio greater than 1 : 8) can dramatically prevent β-sheet formation of Aβ(16-22) peptides. Atomic force microscopy (AFM) experiments further confirm the inhibitory effect of C60 on Aβ(16-22) fibrillation, in support of our REMD simulations. An important finding from our REMD simulations is that fullerene C180, albeit with the same number of carbon atoms as three C60 molecules (3C60) and smaller surface area than 3C60, displays an unexpected stronger inhibitory effect on the β-sheet formation of Aβ(16-22) peptides. A detailed analysis of the fullerene-peptide interaction reveals that the stronger inhibition of β-sheet formation by C180 results from the strong hydrophobic and aromatic-stacking interactions of the fullerene hexagonal rings with the Phe rings relative to the pentagonal rings. The strong interactions between the fullerene nanoparticles and Aβ(16-22) peptides significantly weaken the peptide-peptide interaction that is important for β-sheet formation, thus retarding Aβ(16-22) fibrillation. Overall, our studies reveal the significant role of fullerene hexagonal rings in the inhibition of Aβ(16-22) fibrillation and provide novel insight into the development of drug candidates against Alzheimer's disease.Amyloid deposits are implicated in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease (AD). The inhibition of

  14. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling

    PubMed Central

    Li, Shangfu; Yang, Bu; Teguh, Dian; Zhou, Lin; Xu, Jiake; Rong, Limin

    2016-01-01

    Osteoporosis and Alzheimer’s disease (AD) are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ), one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75). However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK) phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL) plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs), Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis. PMID:27735865

  15. The FDA-approved natural product dihydroergocristine reduces the production of the Alzheimer’s disease amyloidpeptides

    PubMed Central

    Lei, Xiling; Yu, Jing; Niu, Qi; Liu, Jianhua; Fraering, Patrick C.; Wu, Fang

    2015-01-01

    Known γ-secretase inhibitors or modulators display an undesirable pharmacokinetic profile and toxicity and have therefore not been successful in clinical trials for Alzheimer’s disease (AD). So far, no compounds from natural products have been identified as direct inhibitors of γ-secretase. To search for bioactive molecules that can reduce the amount of amyloid-beta peptides (Aβ) and that have better pharmacokinetics and an improved safety profile, we completed a screen of ~400 natural products by using cell-based and cell-free γ-secretase activity assays. We identified dihydroergocristine (DHEC), a component of an FDA- (Food and Drug Administration)-approved drug, to be a direct inhibitor of γ-secretase. Micromolar concentrations of DHEC substantially reduced Aβ levels in different cell types, including a cell line derived from an AD patient. Structure-activity relationship studies implied that the key moiety for inhibiting γ-secretase is the cyclized tripeptide moiety of DHEC. A Surface Plasmon Resonance assay showed that DHEC binds directly to γ-secretase and Nicastrin, with equilibrium dissociation constants (Kd) of 25.7 nM and 9.8 μM, respectively. This study offers DHEC not only as a new chemical moiety for selectively modulating the activity of γ-secretase but also a candidate for drug repositioning in Alzheimer’s disease. PMID:26567970

  16. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    NASA Astrophysics Data System (ADS)

    Mirsadeghi, Somayeh; Dinarvand, Rassoul; Ghahremani, Mohammad Hossein; Hormozi-Nezhad, Mohammad Reza; Mahmoudi, Zohreh; Hajipour, Mohammad Javad; Atyabi, Fatemeh; Ghavami, Mahdi; Mahmoudi, Morteza

    2015-03-01

    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called ``protein corona'') upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal proteins) ``see'' the protein corona coated NPs rather than the pristine coated particles, one should monitor the fibrillation process of amyloidal proteins in the presence of corona coated NPs (and not pristine coated ones). Therefore, the previously obtained data on NPs effects on the fibrillation process should be modified to achieve a more reliable and predictable in vivo results. Herein, we probed the effects of various gold NPs (with different sizes and shapes) on the fibrillation process of Aβ in the presence and absence of protein sources (i.e., serum and plasma). We found that the protein corona formed a shell at the surface of gold NPs, regardless of their size and shape, reducing the access of Aβ to the gold inhibitory surface and, therefore, affecting the rate of Aβ fibril formation. More specifically, the anti-fibrillation potencies of various corona coated gold NPs were strongly dependent on the protein source and their concentrations (10% serum/plasma (simulation of an in vitro milieu) and 100% serum/plasma (simulation of an in vivo milieu)).Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades

  17. Aromatic small molecules remodel toxic soluble oligomers of amyloid beta through three independent pathways.

    PubMed

    Ladiwala, Ali Reza A; Dordick, Jonathan S; Tessier, Peter M

    2011-02-04

    In protein conformational disorders ranging from Alzheimer to Parkinson disease, proteins of unrelated sequence misfold into a similar array of aggregated conformers ranging from small oligomers to large amyloid fibrils. Substantial evidence suggests that small, prefibrillar oligomers are the most toxic species, yet to what extent they can be selectively targeted and remodeled into non-toxic conformers using small molecules is poorly understood. We have evaluated the conformational specificity and remodeling pathways of a diverse panel of aromatic small molecules against mature soluble oligomers of the Aβ42 peptide associated with Alzheimer disease. We find that small molecule antagonists can be grouped into three classes, which we herein define as Class I, II, and III molecules, based on the distinct pathways they utilize to remodel soluble oligomers into multiple conformers with reduced toxicity. Class I molecules remodel soluble oligomers into large, off-pathway aggregates that are non-toxic. Moreover, Class IA molecules also remodel amyloid fibrils into the same off-pathway structures, whereas Class IB molecules fail to remodel fibrils but accelerate aggregation of freshly disaggregated Aβ. In contrast, a Class II molecule converts soluble Aβ oligomers into fibrils, but is inactive against disaggregated and fibrillar Aβ. Class III molecules disassemble soluble oligomers (as well as fibrils) into low molecular weight species that are non-toxic. Strikingly, Aβ non-toxic oligomers (which are morphologically indistinguishable from toxic soluble oligomers) are significantly more resistant to being remodeled than Aβ soluble oligomers or amyloid fibrils. Our findings reveal that relatively subtle differences in small molecule structure encipher surprisingly large differences in the pathways they employ to remodel Aβ soluble oligomers and related aggregated conformers.

  18. Dynamic behavior of small heat shock protein inhibition on amyloid fibrillization of a small peptide (SSTSAA) from RNase A

    SciTech Connect

    Xi, Dong; Dong, Xiao; Deng, Wei; Lai, Luhua

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Mechanism of small heat shock protein inhibition on fibril formation was studied. Black-Right-Pointing-Pointer Peptide SSTSAA with modified ends was used for amyloid fibril formation. Black-Right-Pointing-Pointer FRET signal was followed during the fibril formation. Black-Right-Pointing-Pointer Mj HSP16.5 inhibits fibril formation when introduced in the lag phase. Black-Right-Pointing-Pointer Mj HSP16.5 slows down fibril formation when introduced after the lag phase. -- Abstract: Small heat shock proteins, a class of molecular chaperones, are reported to inhibit amyloid fibril formation in vitro, while the mechanism of inhibition remains unknown. In the present study, we investigated the mechanism by which Mj HSP16.5 inhibits amyloid fibril formation of a small peptide (SSTSAA) from RNase A. A model peptide (dansyl-SSTSAA-W) was designed by introducing a pair of fluorescence resonance energy transfer (FRET) probes into the peptide, allowing for the monitoring of fibril formation by this experimental model. Mj HSP16.5 completely inhibited fibril formation of the model peptide at a molar ratio of 1:120. The dynamic process of fibril formation, revealed by FRET, circular dichroism, and electron microscopy, showed a lag phase of about 2 h followed by a fast growth period. The effect of Mj HSP16.5 on amyloid fibril formation was investigated by adding it into the incubation solution during different growth phases. Adding Mj HSP16.5 to the incubating peptide before or during the lag phase completely inhibited fibril formation. However, introducing Mj HSP16.5 after the lag phase only slowed down the fibril formation process by adhering to the already formed fibrils. These findings provide insight into the inhibitory roles of small heat shock proteins on amyloid fibril formation at the molecular level.

  19. REDUCTION OF AMYLOID-BETA LEVELS IN MOUSE EYE TISSUES BY INTRA-VITREALLY DELIVERED NEPRILYSIN

    PubMed Central

    Parthasarathy, Rajni; Chow, K. Martin; Derafshi, Zahra; Fautsch, Michael P.; Hetling, John R.; Rodgers, David W.; Hersh, Louis B.; Pepperberg, David R.

    2015-01-01

    Amyloid-beta (Aβ) is a group of aggregation-prone, 38- to 43-amino acid peptides generated in the eye and other organs. Numerous studies suggest that the excessive build-up of low-molecular-weight soluble oligomers of Aβ plays a role in the progression of Alzheimer’s disease and other brain degenerative diseases. Recent studies raise the hypothesis that excessive Aβ levels may contribute also to certain retinal degenerative diseases. These findings, together with evidence that a major portion of Aβ is released as monomer into the extracellular space, raise the possibility that a technology enabling the enzymatic break-down of monomeric Aβ in the living eye under physiological conditions could prove useful for research on ocular Aβ physiology and, perhaps ultimately, for therapeutic applications. Neprilysin (NEP), an endopeptidase known to cleave Aβ monomer into inactive products, is a membrane-associated protein. However, sNEP, a recombinant form of the NEP catalytic domain, is soluble in aqueous medium. With the aim of determining the Aβ-cleaving activity of exogenous sNEP in the microenvironment of the intact eye, we analyzed the effect of intra-vitreally delivered sNEP on ocular Aβ levels in mice that exhibit readily measurable, aqueous buffer-extractable Aβ40 and Aβ42, two principal forms of Aβ. Anesthetized 10-month wild-type (C57BL/6J) and 2–3-month 5XFAD transgenic mice received intra-vitreal injections of sNEP (0.004 – 10 μg) in one eye and were sacrificed at defined post-treatment times (30 min – 12 weeks). Eye tissues (combined lens, vitreous, retina, RPE and choroid) were homogenized in phosphate-buffered saline, and analyzed for Aβ40 and Aβ42 (ELISA) and for total protein (Bradford assay). The fellow, untreated eye of each mouse served as control, and concentrations of Aβ (pmol/g protein) in the treated eye were normalized to that of the untreated control eye. In C57BL/6J mice, as measured at 2 hr after sNEP treatment, increasing

  20. Amyloid β peptide conformational changes in the presence of a lipid membrane system.

    PubMed

    Accardo, Angelo; Shalabaeva, Victoria; Cotte, Marine; Burghammer, Manfred; Krahne, Roman; Riekel, Christian; Dante, Silvia

    2014-03-25

    Here we are presenting a comparative analysis of conformational changes of two amyloid β peptides, Aβ(25-35) and Aβ(1-42), in the presence and absence of a phospholipid system, namely, POPC/POPS (1-palmitoyl-2-oleoylphospatidylcholine/palmitoyl-2-oleoylphospatidylserine), through Raman spectroscopy, synchrotron radiation micro Fourier-transform infrared spectroscopy, and micro X-ray diffraction. Ringlike samples were obtained from the evaporation of pure and mixed solutions of the proteins together with the POPC/POPS system on highly hydrophilic substrates. The results confirm the presence of a α-helical to β-sheet transition from the internal rim of the ringlike samples to the external one in the pure Aβ(25-35) residual, probably due to the convective flow inside the droplets sitting on highly hydrophilic substrates enhancing the local concentration of the peptide at the external edge of the dried drop. In contrast, the presence of POPC/POPS lipids in the peptide does not result in α-helical structures and introduces the presence of antiparallel β-sheet material together with parallel β-sheet structures and possible β-turns. As a control, Aβ(1-42) peptide was also tested and shows β-sheet conformations independently from the presence of the lipid system. The μXRD analysis further confirmed these conclusions, showing how the absence of the phospholipid system induces in the Aβ(25-35) a probable composite α/β material while its coexistence with the peptide leads to a not oriented β-sheet conformation. These results open interesting scenarios on the study of conformational changes of Aβ peptides and could help, with further investigations, to better clarify the role of enzymes and alternative lipid systems involved in the amyloidosis process of Aβ fragments.

  1. Direct observation of internalization and ROS generation of amyloid β-peptide in neuronal cells at subcellular resolution.

    PubMed

    Jiao, Yong; Zhang, Yi; Wei, Yibin; Liu, Zhiwei; An, Wenting; Guo, Maolin

    2012-11-05

    Seeing in many colors: Confocal images acquired using fluorescently labeled amyloid β-peptide revealed its efficient internalization by endocytosis into endosomes/lysosomes of human neuronal cells with a small portion reaching mitochondria, inducing marked cellular and mitochondrial reactive oxygen species production.

  2. Polarization properties of amyloid-beta plaques in Alzheimer's disease (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Baumann, Bernhard; Wöhrer, Adelheid; Ricken, Gerda; Pircher, Michael; Kovacs, Gabor G.; Hitzenberger, Christoph K.

    2016-03-01

    In histopathological practice, birefringence is used for the identification of amyloidosis in numerous tissues. Amyloid birefringence is caused by the parallel arrangement of fibrous protein aggregates. Since neurodegenerative processes in Alzheimer's disease (AD) are also linked to the formation of amyloid-beta (Aβ) plaques, optical methods sensitive to birefringence may act as non-invasive tools for Aβ identification. At last year's Photonics West, we demonstrated polarization-sensitive optical coherence tomography (PS-OCT) imaging of ex vivo cerebral tissue of advanced stage AD patients. PS-OCT provides volumetric, structural imaging based on both backscatter contrast and tissue polarization properties. In this presentation, we report on polarization-sensitive neuroimaging along with numerical simulations of three-dimensional Aβ plaques. High speed PS-OCT imaging was performed using a spectral domain approach based on polarization maintaining fiber optics. The sample beam was interfaced to a confocal scanning microscope arrangement. Formalin-fixed tissue samples as well as thin histological sections were imaged. For comparison to the PS-OCT results, ray propagation through plaques was modeled using Jones analysis and various illumination geometries and plaque sizes. Characteristic polarization patterns were found. The results of this study may not only help to understand PS-OCT imaging of neuritic Aβ plaques but may also have implications for polarization-sensitive imaging of other fibrillary structures.

  3. Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo.

    PubMed

    Bateman, Randall J; Munsell, Ling Y; Morris, John C; Swarm, Robert; Yarasheski, Kevin E; Holtzman, David M

    2006-07-01

    Certain disease states are characterized by disturbances in production, accumulation or clearance of protein. In Alzheimer disease, accumulation of amyloid-beta (Abeta) in the brain and disease-causing mutations in amyloid precursor protein or in enzymes that produce Abeta indicate dysregulation of production or clearance of Abeta. Whether dysregulation of Abeta synthesis or clearance causes the most common form of Alzheimer disease (sporadic, >99% of cases), however, is not known. Here, we describe a method to determine the production and clearance rates of proteins within the human central nervous system (CNS). We report the first measurements of the fractional production and clearance rates of Abeta in vivo in the human CNS to be 7.6% per hour and 8.3% per hour, respectively. This method may be used to search for novel biomarkers of disease, to assess underlying differences in protein metabolism that contribute to disease and to evaluate treatments in terms of their pharmacodynamic effects on proposed disease-causing pathways.

  4. The role of presenilin and its interacting proteins in the biogenesis of Alzheimer's beta amyloid.

    PubMed

    Verdile, Giuseppe; Gandy, Samuel E; Martins, Ralph N

    2007-01-01

    The biogenesis and accumulation of the beta amyloid protein (Abeta) is a key event in the cascade of oxidative and inflammatory processes that characterises Alzheimer's disease. The presenilins and its interacting proteins play a pivotal role in the generation of Abeta from the amyloid precursor protein (APP). In particular, three proteins (nicastrin, aph-1 and pen-2) interact with presenilins to form a large multi-subunit enzymatic complex (gamma-secretase) that cleaves APP to generate Abeta. Reconstitution studies in yeast and insect cells have provided strong evidence that these four proteins are the major components of the gamma-secretase enzyme. Current research is directed at elucidating the roles that each of these protein play in the function of this enzyme. In addition, a number of presenilin interacting proteins that are not components of gamma-secretase play important roles in modulating Abeta production. This review will discuss the components of the gamma-secretase complex and the role of presenilin interacting proteins on gamma-secretase activity.

  5. Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations.

    PubMed

    Cataldo, A M; Peterhoff, C M; Troncoso, J C; Gomez-Isla, T; Hyman, B T; Nixon, R A

    2000-07-01

    Endocytosis is critical to the function and fate of molecules important to Alzheimer's disease (AD) etiology, including the beta protein precursor (betaPP), amyloid beta (Abeta) peptide, and apolipoprotein E (ApoE). Early endosomes, a major site of Abeta peptide generation, are markedly enlarged within neurons in the Alzheimer brain, suggesting altered endocytic pathway (EP) activity. Here, we show that neuronal EP activation is a specific and very early response in AD. To evaluate endocytic activation, we used markers of internalization (rab5, rabaptin 5) and recycling (rab4), and found that enlargement of rab5-positive early endosomes in the AD brain was associated with elevated levels of rab4 immunoreactive protein and translocation of rabaptin 5 to endosomes, implying that both endocytic uptake and recycling are activated. These abnormalities were evident in pyramidal neurons of the neocortex at preclinical stages of disease when Alzheimer-like neuropathology, such as Abeta deposition, was restricted to the entorhinal region. In Down syndrome, early endosomes were significantly enlarged in some pyramidal neurons as early as 28 weeks of gestation, decades before classical AD neuropathology develops. Markers of EP activity were only minimally influenced by normal aging and other neurodegenerative diseases studied. Inheritance of the epsilon4 allele of APOE, however, accentuated early endosome enlargement at preclinical stages of AD. By contrast, endosomes were normal in size at advanced stages of familial AD caused by mutations of presenilin 1 or 2, indicating that altered endocytosis is not a consequence of Abeta deposition. These results identify EP activation as the earliest known intraneuronal change to occur in sporadic AD, the most common form of AD. Given the important role of the EP in Abeta peptide generation and ApoE function, early endosomal abnormalities provide a mechanistic link between EP alterations, genetic susceptibility factors, and Abeta

  6. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide.

    PubMed

    Tamagnini, Francesco; Scullion, Sarah; Brown, Jon T; Randall, Andrew D

    2015-07-01

    Accumulation of beta-amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ-overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2-5 h treatment with an oligomeric preparation of synthetic human Aβ 1-42 peptide. Whole cell current clamp recordings were compared between Aβ-(500 nM) and vehicle-(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub-threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated "sag". Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra-threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after-hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients.

  7. Spectroscopic investigation of Ginkgo biloba terpene trilactones and their interaction with amyloid peptide Aβ(25-35)

    NASA Astrophysics Data System (ADS)

    He, Jiangtao; Petrovic, Ana G.; Dzyuba, Sergei V.; Berova, Nina; Nakanishi, Koji; Polavarapu, Prasad L.

    2008-04-01

    The beneficial effects of Ginkgo biloba extract in the "treatment" of dementia are attributed to its terpene trilactone (TTL) constituents. The interactions between TTLs and amyloid peptide are believed to be responsible in preventing the aggregation of peptide. These interactions have been investigated using infrared vibrational absorption (VA) and circular dichroism (VCD) spectra. Four TTLs, namely ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and bilobalide (BB) and amyloid Aβ(25-35) peptide, as a model for the full length peptide, are used in this study. GA-monoether and GA-diether have also been synthesized and investigated to help understand the role of individual carbonyl groups in these interactions. The precipitation and solubility issues encountered with the mixture of ginkgolide + Aβ peptide for VA and VCD studies were overcome using binary ethanol-D 2O solvent mixture. The experimental VA and VCD spectra of GA, GB, GC and BB, GA-monoether and GA-diether have been analyzed using the corresponding spectra predicted with density functional theory. The time-dependent experimental VA and VCD spectra of Aβ(25-35) peptide and the corresponding experimental spectra in the presence of TTLs indicated that the effect of the TTLs in modulating the aggregation of Aβ(25-35) peptide is relatively small. Such small effects might indicate the absence of a specific interaction between the TTLs and Aβ(25-35) peptide as a major force leading to the reduced aggregation of amyloid peptides. It is possible that the therapeutic effect of G. biloba extract does not originate from direct interactions between TTLs and the Aβ(25-35) peptide and is more complex.

  8. Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain beta-amyloid production.

    PubMed

    Arendash, G W; Schleif, W; Rezai-Zadeh, K; Jackson, E K; Zacharia, L C; Cracchiolo, J R; Shippy, D; Tan, J

    2006-11-03

    A recent epidemiological study suggested that higher caffeine intake over decades reduces the risk of Alzheimer's disease (AD). The present study sought to determine any long-term protective effects of dietary caffeine intake in a controlled longitudinal study involving AD transgenic mice. Caffeine (an adenosine receptor antagonist) was added to the drinking water of amyloid precursor protein, Swedish mutation (APPsw) transgenic (Tg) mice between 4 and 9 months of age, with behavioral testing done during the final 6 weeks of treatment. The average daily intake of caffeine per mouse (1.5 mg) was the human equivalent of 500 mg caffeine, the amount typically found in five cups of coffee per day. Across multiple cognitive tasks of spatial learning/reference memory, working memory, and recognition/identification, Tg mice given caffeine performed significantly better than Tg control mice and similar to non-transgenic controls. In both behaviorally-tested and aged Tg mice, long-term caffeine administration resulted in lower hippocampal beta-amyloid (Abeta) levels. Expression of both Presenilin 1 (PS1) and beta-secretase (BACE) was reduced in caffeine-treated Tg mice, indicating decreased Abeta production as a likely mechanism of caffeine's cognitive protection. The ability of caffeine to reduce Abeta production was confirmed in SweAPP N2a neuronal cultures, wherein concentration-dependent decreases in both Abeta1-40 and Abeta1-42 were observed. Although adenosine A(1) or A(2A) receptor densities in cortex or hippocampus were not affected by caffeine treatment, brain adenosine levels in Tg mice were restored back to normal by dietary caffeine and could be involved in the cognitive protection provided by caffeine. Our data demonstrate that moderate daily intake of caffeine may delay or reduce the risk of AD.

  9. The HMG-CoA reductase inhibitor, atorvastatin, attenuates the effects of acute administration of amyloid-beta1-42 in the rat hippocampus in vivo.

    PubMed

    Clarke, Rachael M; O'Connell, Florence; Lyons, Anthony; Lynch, Marina A

    2007-01-01

    One response of the brain to stressors is to increase microglial activation with the consequent production of proinflammatory cytokines like interleukin-1beta (IL-1beta), which has been shown to exert an inhibitory effect on long-term potentiation (LTP) in the hippocampus. It has been consistently shown, particularly in vitro, that amyloid-beta (Abeta) peptides increase activation of microglia, while its inhibitory effect on LTP is well documented, and associated with the Abeta-induced increase in IL-1beta. Here we set out to establish whether the Abeta-induced inhibition of LTP in perforant path-granule cell synapses, was coupled with evidence of microglial activation and to assess whether atorvastatin, which is used primarily in the treatment of hyperlipidaemia but which possesses anti-inflammatory properties, might modulate the effect of Abeta on LTP. We report that intracerebroventricular injection of Abeta increased expression of several markers of microglial activation, and in parallel, inhibited LTP in dentate gyrus. The data show that atorvastatin abrogated the Abeta-induced microglial activation and the associated deficit in LTP. On the basis of the evidence presented, we propose that the action of atorvastatin is mediated by its ability to increase production of the anti-inflammatory cytokine, interleukin-4, which we report mimics several of the actions of atorvastatin in the rat hippocampus.

  10. Biophysical analyses of synthetic amyloid-beta(1-42) aggregates before and after covalent cross-linking. Implications for deducing the structure of endogenous amyloid-beta oligomers.

    PubMed

    Moore, Brenda D; Rangachari, Vijayaraghavan; Tay, William M; Milkovic, Nicole M; Rosenberry, Terrone L

    2009-12-15

    A neuropathological hallmark of Alzheimer's disease (AD) is the presence of large numbers of senile plaques in the brain. These deposits are rich in fibrils that are composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that soluble Abeta aggregates as well as fibrils are important in the etiology of AD. Low levels of endogenous soluble Abeta aggregates make them difficult to characterize, but several species in extracts of AD brains have been detected by gel electrophoresis in sodium dodecyl sulfate (SDS) and immunoblotting. Individual Abeta oligomers ranging in size from dimers through dodecamers of 4 kDa monomeric Abeta have been resolved in other laboratories as discrete species by size exclusion chromatography (SEC). In an effort to reconstitute soluble Abeta aggregates in vitro that resemble the endogenous soluble Abeta aggregates, we previously found that monomeric Abeta(1-42) rapidly forms soluble oligomers in the presence of dilute SDS micelles. Here we extend this work in two directions. First, we contrast the size and secondary structure of these oligomers with those of synthetic Abeta(1-42) fibrils. SEC and multiangle light scattering were used to obtain a molecular mass of 150 kDa for the isolated oligomers. The oligomers partially dissociated to monomers through nonamers when incubated with SDS, but in contrast to endogenous oligomers, we saw no evidence of these discrete species prior to SDS treatment. One hypothesis to explain this difference is that endogenous oligomers are stabilized by covalent cross-linking induced by unknown cellular agents. To explore this hypothesis, optimal mass spectrometry (MS) analysis procedures need to be developed for Abeta cross-linked in vitro. In our second series of studies, we began this process by treating monomeric and aggregated Abeta(1-42) with three cross-linking agents: transglutaminase, glutaraldehyde, and Cu(II) with peroxide. We compared the efficiency of

  11. The interaction with gold suppresses fiber-like conformations of the amyloid β (16-22) peptide

    NASA Astrophysics Data System (ADS)

    Bellucci, Luca; Ardèvol, Albert; Parrinello, Michele; Lutz, Helmut; Lu, Hao; Weidner, Tobias; Corni, Stefano

    2016-04-01

    Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution.Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution. Electronic supplementary information (ESI

  12. CSF amyloidpeptides in neuropathologically diagnosed dementia with Lewy bodies and Alzheimer's disease.

    PubMed

    Mollenhauer, Brit; Esselmann, Herrmann; Trenkwalder, Claudia; Schulz-Schaeffer, Walter; Kretzschmar, Hans; Otto, Markus; Wiltfang, Jens; Bibl, Mirko

    2011-01-01

    Appropriate treatment of dementia requires biomarkers that provide an exact and differential diagnosis. We recently presented differentially expressed amyloid-β (Aβ) peptide patterns in cerebrospinal fluid (CSF) as biomarker candidates for neurochemical diagnosis of Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). The objective of the present study was to investigate CSF Aβ peptide patterns in both neuropathologically and clinically defined diagnostic groups of AD and DLB. Using the quantitative Aβ-SDS-PAGE/immunoblot, we analyzed CSF samples of neuropathologically defined patients with AD (definite AD, dAD; n = 11) and DLB (definite, dDLB; n = 12). We compared absolute and relative quantities of CSF Aβ-peptides with a larger cohort of clinically diagnosed patients with probable AD (pAD; n = 71), probable DLB (pDLB; n = 32), and non-demented controls (NDC; n = 71). Each neuropathologically and clinically defined diagnostic group showed a similar relative distribution of CSF Aβ-peptides (Aβ(1-X%)). Aβ(1-42%) was lowered in dAD compared to NDC (p = 1.6 × 10⁻⁷, but did not differ between dAD and pAD. Aβ(1-40ox%) was elevated in dDLB as compared to NDC (p = 1.8 × 10⁻⁵, but did not differ between dDLB and pDLB. Thus, we were able to confirm previous results on Aβ peptide patterns in neuropathologically characterized patients with AD and DLB. Our results underline the usefulness of the CSF Aβ(1-42%) and Aβ(1-40ox%) as diagnostic biomarkers for AD and DLB, respectively.

  13. A strategy for designing a peptide probe for detection of β-amyloid oligomers.

    PubMed

    Hu, Yang; Su, Baihao; Kim, Chung-Sei; Hernandez, Michael; Rostagno, Agueda; Ghiso, Jorge; Kim, Jin Ryoun

    2010-11-22

    Aggregation of β-amyloid (Aβ) is implicated in the pathology of Alzheimer's disease. Development of a robust strategy to detect Aβ oligomeric intermediates, which have been identified as significant toxic agents, would be highly beneficial in the screening of drug candidates as well as enhancing our understanding of Aβ oligomerization. Rapid, specific and quantitative detection, currently unavailable, would be highly preferred for accurate and reliable probing of transient Aβ oligomers. Here, we report the development of a novel peptide probe, PG46, based on the nature of Aβ self-assembly and the conformation-sensitive fluorescence of the biarsenical dye, FlAsH. PG46 was found to bind to Aβ oligomers and displayed an increase in FlAsH fluorescence upon binding. No such event was observed when PG46 was co-incubated with Aβ low-molecular-weight species or Aβ fibrils. Aβ oligomer detection was fast, and occurred within one hour without any additional sample incubation or preparation. We anticipate that the development of a strategy for detection of amyloid oligomers described in this study will be directly relevant to a host of other amyloidogenic proteins.

  14. AMP-activated Protein Kinase Signaling Activation by Resveratrol Modulates AmyloidPeptide Metabolism*

    PubMed Central

    Vingtdeux, Valérie; Giliberto, Luca; Zhao, Haitian; Chandakkar, Pallavi; Wu, Qingli; Simon, James E.; Janle, Elsa M.; Lobo, Jessica; Ferruzzi, Mario G.; Davies, Peter; Marambaud, Philippe

    2010-01-01

    Alzheimer disease is an age-related neurodegenerative disorder characterized by amyloid-β (Aβ) peptide deposition into cerebral amyloid plaques. The natural polyphenol resveratrol promotes anti-aging pathways via the activation of several metabolic sensors, including the AMP-activated protein kinase (AMPK). Resveratrol also lowers Aβ levels in cell lines; however, the underlying mechanism responsible for this effect is largely unknown. Moreover, the bioavailability of resveratrol in the brain remains uncertain. Here we show that AMPK signaling controls Aβ metabolism and mediates the anti-amyloidogenic effect of resveratrol in non-neuronal and neuronal cells, including in mouse primary neurons. Resveratrol increased cytosolic calcium levels and promoted AMPK activation by the calcium/calmodulin-dependent protein kinase kinase-β. Direct pharmacological and genetic activation of AMPK lowered extracellular Aβ accumulation, whereas AMPK inhibition reduced the effect of resveratrol on Aβ levels. Furthermore, resveratrol inhibited the AMPK target mTOR (mammalian target of rapamycin) to trigger autophagy and lysosomal degradation of Aβ. Finally, orally administered resveratrol in mice was detected in the brain where it activated AMPK and reduced cerebral Aβ levels and deposition in the cortex. These data suggest that resveratrol and pharmacological activation of AMPK have therapeutic potential against Alzheimer disease. PMID:20080969

  15. Presenilin and nicastrin regulate each other and determine amyloid β-peptide production via complex formation

    PubMed Central

    Edbauer, Dieter; Winkler, Edith; Haass, Christian; Steiner, Harald

    2002-01-01

    Amyloid β-peptide (Aβ) is generated by the consecutive cuts of two membrane-bound proteases. β-Secretase cuts at the N terminus of the Aβ domain, whereas γ-secretase mediates the C-terminal cut. Recent evidence suggests that the presenilin (PS) proteins, PS1 and PS2, may be γ-secretases. Because PSs principally exist as high molecular weight protein complexes, biologically active γ-secretases likely require other cofactors such as nicastrin (Nct) for their activities. Here we show that preferentially mature Nct forms a stable complex with PSs. Furthermore, we have down-regulated Nct levels by using a highly specific and efficient RNA interference approach. Very similar to a loss of PS function, down-regulation of Nct levels leads to a massive accumulation of the C-terminal fragments of the β-amyloid precursor protein. In addition, Aβ production was markedly reduced. Strikingly, down-regulation of Nct destabilized PS and strongly lowered levels of the high molecular weight PS1 complex. Interestingly, absence of the PS1 complex in PS1−/− cells was associated with a strong down-regulation of the levels of mature Nct, suggesting that binding to PS is required for trafficking of Nct through the secretory pathway. Based on these findings we conclude that Nct and PS regulate each other and determine γ-secretase function via complex formation. PMID:12048259

  16. An integrated microfluidic chip for immunocapture, preconcentration and separation of β-amyloid peptides

    PubMed Central

    Mohamadi, Reza M.; Svobodova, Zuzana; Bilkova, Zuzana; Otto, Markus; Taverna, Myriam; Descroix, Stephanie; Viovy, Jean-Louis

    2015-01-01

    We present an integrated microfluidic chip for detection of β-amyloid (Aβ) peptides. Aβ peptides are major biomarkers for the diagnosis of Alzheimer's disease (AD) in its early stages. This microfluidic device consists of three main parts: (1) An immunocapture microcolumn based on self-assembled magnetic beads coated with antibodies specific to Aβ peptides, (2) a nano-porous membrane made of photopolymerized hydrogel for preconcentration, and (3) a microchip electrophoresis (MCE) channel with fluorescent detection. Sub-milliliter sample volume is either mixed off-chip with antibody coated magnetic beads and injected into the device or is injected into an already self-assembled column of magnetic beads in the microchannel. The captured peptides on the beads are then electrokinetically eluted and re-concentrated onto the nano-membrane in a few nano-liters. By integrating the nano-membrane, total assay time was reduced and also off-chip re-concentration or buffer exchange steps were not needed. Finally, the concentrated peptides in the chip are separated by electrophoresis in a polymer-based matrix. The device was applied to the capture and MCE analysis of differently truncated peptides Aβ (1–37, 1–39, 1–40, and 1–42) and was able to detect as low as 25 ng of synthetic Aβ peptides spiked in undiluted cerebrospinal fluid (CSF). The device was also tested with CSF samples from healthy donors. CSF samples were fluorescently labelled and pre-mixed with the magnetic beads and injected into the device. The results indicated that Aβ1-40, an important biomarker for distinguishing patients with frontotemporal lobe dementia from controls and AD patients, was detectable. Although the sensitivity of this device is not yet enough to detect all Aβ subtypes in CSF, this is the first report on an integrated or semi-integrated device for capturing and analyzing of differently truncated Aβ peptides. The method is less demanding and faster than the conventional

  17. Common benzothiazole and benzoxazole fluorescent DNA intercalators for studying Alzheimer Aβ1-42 and prion amyloid peptides.

    PubMed

    Stefansson, Steingrimur; Adams, Daniel L; Tang, Cha-Mei

    2012-05-01

    Amyloids are fibrillar protein aggregates associated with a number of neurodegenerative pathologies including Alzheimer and Creutzfeldt-Jakob disease. The study of amyloids is usually based on fluorescence with the dye thioflavin-T. Although a number of amyloid binding compounds have been synthesized, many are nonfluorescent or not readily available for research use. Here we report on a class of commercial benzothiazole/benzoxazole containing fluorescent DNA intercalators from Invitrogen that possess the ability to bind amyloid Aβ1-42 peptide and hamster prion. These dyes fluoresce from 500-750 nm and are available as dimers or monomers. We demonstrate that these dyes can be used as acceptors for thioflavin-T fluorescence resonance energy transfer as well as reporter groups for binding studies with Congo red and chrysamine G. As more potential therapeutic compounds for these diseases are generated, there is a need for simple and inexpensive methods to monitor their interactions with amyloids. The fluorescent dyes reported here are readily available and can be used as tools for biochemical studies of amyloid structures and in vitro screening of potential therapeutics.

  18. Amyloid properties of the leader peptide of variant B cystatin C: implications for Alzheimer and macular degeneration.

    PubMed

    Sant'Anna, Ricardo; Navarro, Susanna; Ventura, Salvador; Paraoan, Luminita; Foguel, Debora

    2016-03-01

    Variant B (VB) of cystatin C has a mutation in its signal peptide (A25T), which interferes with its processing leading to reduced secretion and partial retention in the vicinity of the mitochondria. There are genetic evidences of the association of VB with Alzheimer's disease (AD) and age-related macular degeneration (AMD). Here, we investigated aggregation and amyloid propensities of unprocessed VB combining computational and in vitro studies. Aggregation predictors revealed the presence of four aggregation-prone regions, with a strong one at the level of the signal peptide, which indeed formed toxic aggregates and mature amyloid fibrils in solution. In light of these results, we propose for the first time the role of the signal peptide in pathogenesis of AD and AMD.

  19. Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice.

    PubMed

    Ribé, Elena M; Pérez, Mar; Puig, Berta; Gich, Ignasi; Lim, Filip; Cuadrado, Mar; Sesma, Teresa; Catena, Silvia; Sánchez, Belén; Nieto, María; Gómez-Ramos, Pilar; Morán, M Asunción; Cabodevilla, Felipe; Samaranch, Lluis; Ortiz, Lourdes; Pérez, Alberto; Ferrer, Isidro; Avila, Jesús; Gómez-Isla, Teresa

    2005-12-01

    Even though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein processing and tau alterations in this type of dementia remains controversial. We further investigated the role of beta-amyloid production/deposition in tau pathology and neuronal cell death in the mouse brain by crossing Tg2576 and VLW lines expressing human mutant amyloid precursor protein and human mutant tau, respectively. The resulting double transgenic mice showed enhanced amyloid deposition accompanied by neurofibrillary degeneration and overt neuronal loss in selectively vulnerable brain limbic areas. These findings challenge the idea that tau pathology in Alzheimer's disease is merely a downstream effect of amyloid production/deposition and suggest that reciprocal interactions between beta-amyloid and tau alterations may take place in vivo.

  20. Beta2-amino acids-syntheses, occurrence in natural products, and components of beta-peptides1,2.

    PubMed

    Lelais, Gérald; Seebach, Dieter

    2004-01-01

    Although they are less abundant than their alpha-analogues, beta-amino acids occur in nature both in free form and bound to peptides. Oligomers composed exclusively of beta-amino acids (so-called beta-peptides) might be the most thoroughly investigated peptidomimetics. Beside the facts that they are stable to metabolism, exhibit slow microbial degradation, and are inherently stable to proteases and peptidases, they fold into well-ordered secondary structures consisting of helices, turns, and sheets. In this respect, the most intriguing effects have been observed when beta2-amino acids are present in the beta-peptide backbone. This review gives an overview of the occurrence and importance of beta2-amino acids in nature, placing emphasis on the metabolic pathways of beta-aminoisobutyric acid (beta-Aib) and the appearance of beta2-amino acids as secondary metabolites or as components of more complex natural products, such as peptides, depsipeptides, lactones, and alkaloids. In addition, a compilation of the syntheses of both achiral and chiral beta2-amino acids is presented. While there are numerous routes to achiral beta2-amino acids, their EPC synthesis is currently the subject of many investigations. These include the diastereoselective alkylation and Mannich-type reactions of cyclic- or acyclic beta-homoglycine derivatives containing chiral auxiliaries, the Curtius degradation, the employment of transition-metal catalyzed reactions such as enantioselective hydrogenations, reductions, C-H insertions, and Michael-type additions, and the resolution of rac. beta2-amino acids, as well as several miscellaneous methods. In the last part of the review, the importance of beta2-amino acids in the formation of beta-peptide secondary structures is discussed.

  1. Synthetic glycosylation of peptides using unprotected saccharide beta-glycosylamines.

    PubMed

    Wong, S Y; Guile, G R; Rademacher, T W; Dwek, R A

    1993-06-01

    Glycopeptides can be valuable tools in determining the influence of carbohydrate moieties on the intrinsic properties of glycoproteins. However, glycopeptides of sufficient quantity and purity are as yet not readily available from biological sources. The chemical coupling of a beta-glycosylamino group of an unprotected carbohydrate with an activated aspartic acid residue of an unprotected peptide is a simple method for synthesizing asparagine-linked glycopeptides. In this report we demonstrate that the use of this method is not restricted to beta-glycosylamines of simple monosaccharides or short aspartic acid-containing pentapeptides. This is illustrated by the syntheses of several glycopentapeptides containing N,N'-diacetylchitobiose, a glutamine-linked glycopentapeptide containing a biantennary complex oligosaccharide, and glycosylated variants of two analogs of a polypeptide hormone, atriopeptin, containing N,N'-diacetylchitobiose.

  2. X-Ray Structural Study of Amyloid-Like Fibrils of Tau Peptides Bound to Small-Molecule Ligands.

    PubMed

    Tayeb-Fligelman, Einav; Landau, Meytal

    2017-01-01

    Atomic structures of Tau involved in Alzheimer's disease complexed with small molecule binders are the first step to define the Tau pharmacophore, leading the way to a structure-based design of improved diagnostics and therapeutics. Yet the partially disordered and polymorphic nature of Tau hinders structural analyses. Fortunately, short segments from amyloid proteins, which exhibit similar biophysical properties to the full-length proteins, also form fibrils and oligomers, and their atomic structures can be determined using X-ray microcrystallography. Such structures were successfully used to design amyloid inhibitors. This chapter describes experimental procedures used to determine crystal structures of Tau peptide segments in complex with small-molecule binders.

  3. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides.

    PubMed

    Tran, Thanh Thuy; Nguyen, Phuong H; Derreumaux, Philippe

    2016-05-28

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ16-22 and Aβ37-42 of the full length Aβ1-42 Alzheimer's peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ16-22 dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ16-22 and the dimer and trimer of Aβ37-42. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ16-22 decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ37-42 decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  4. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides

    NASA Astrophysics Data System (ADS)

    Tran, Thanh Thuy; Nguyen, Phuong H.; Derreumaux, Philippe

    2016-05-01

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ16-22 and Aβ37-42 of the full length Aβ1-42 Alzheimer's peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ16-22 dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ16-22 and the dimer and trimer of Aβ37-42. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ16-22 decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ37-42 decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  5. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice.

    PubMed

    Arendash, Gary W; Mori, Takashi; Cao, Chuanhai; Mamcarz, Malgorzata; Runfeldt, Melissa; Dickson, Alexander; Rezai-Zadeh, Kavon; Tane, Jun; Citron, Bruce A; Lin, Xiaoyang; Echeverria, Valentina; Potter, Huntington

    2009-01-01

    We have recently shown that Alzheimer's disease (AD) transgenic mice given a moderate level of caffeine intake (the human equivalent of 5 cups of coffee per day) are protected from development of otherwise certain cognitive impairment and have decreased hippocampal amyloid-beta (Abeta) levels due to suppression of both beta-secretase (BACE1) and presenilin 1 (PS1)/gamma-secretase expression. To determine if caffeine intake can have beneficial effects in "aged" APPsw mice already demonstrating cognitive impairment, we administered caffeine in the drinking water of 18-19 month old APPsw mice that were impaired in working memory. At 4-5 weeks into caffeine treatment, those impaired transgenic mice given caffeine (Tg/Caff) exhibited vastly superior working memory compared to the continuing impairment of control transgenic mice. In addition, Tg/Caff mice had substantially reduced Abeta deposition in hippocampus (decrease 40%) and entorhinal cortex (decrease 46%), as well as correlated decreases in brain soluble Abeta levels. Mechanistically, evidence is provided that caffeine suppression of BACE1 involves the cRaf-1/NFkappaB pathway. We also determined that caffeine concentrations within human physiological range effectively reduce active and total glycogen synthase kinase 3 levels in SweAPP N2a cells. Even with pre-existing and substantial Abeta burden, aged APPsw mice exhibited memory restoration and reversal of AD pathology, suggesting a treatment potential of caffeine in cases of established AD.

  6. A role for 12/15 lipoxygenase in the amyloid beta precursor protein metabolism.

    PubMed

    Succol, Francesca; Praticò, Domenico

    2007-10-01

    12/15 Lipoxygenase (12/15LO) protein levels and activity are increased in pathologically affected regions of Alzheimer's disease (AD) brains, compared with controls. Its metabolic products are elevated in cerebrospinal fluid of patients with AD and individuals with mild cognitive impairment, suggesting that this enzyme may be involved early in AD pathogenesis. Herein, we investigate the effect of pharmacologic inhibition of 12/15LO on the amyloid beta precursor protein (APP) metabolism. To this end, we used CHO and N2A cells stably expressing human APP with the Swedish mutant, and two structurally distinct and selective 12/15LO inhibitors, PD146176 and CDC. Our results demonstrated that both drugs dose-dependently reduced Abeta formation without affecting total APP levels. Interestingly, in the same cells we observed a significant reduction in secreted (s)APPbeta and beta-secretase (BACE), but not sAPPalpha and ADAM10 protein levels. Together, these data show for the first time that this enzymatic pathway influences Abeta formation whereby modulating the BACE proteolytic cascade. We conclude that specific pharmacologic inhibition of 12/15LO could represent a novel therapeutic target for treating or preventing AD pathology in humans.

  7. Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Skaat, Hadas; Shafir, Gilead; Margel, Shlomo

    2011-08-01

    The formation of amyloid aggregates by association of peptides into ordered structures is hallmark of certain neurodegenerative disorders. Exploring the effect of specific nanoparticles on the formation of amyloid fibrils may contribute toward a mechanistic understanding of the aggregation processes, leading to design nanoparticles that modulate the formation of toxic amyloid plaques. Uniform maghemite (γ-Fe2O3) magnetic nanoparticles, containing fluorescein covalently encapsulated within (F-γ-Fe2O3), were prepared. These F-γ-Fe2O3 nanoparticles of 14.0 ± 4.0 nm were then coated with human serum albumin (HSA) via a precipitation process. Covalent conjugation of the spacer arm succinimidyl polyethylene glycol succinimidyl ester (NHS-PEG-NHS) to the F-γ-Fe2O3 HSA nanoparticles was then accomplished by interacting the primary amine groups of the HSA coating with excess NHS-PEG-NHS molecules. Covalent conjugation of the peptides amyloid-β 40 (Aβ40) or Leu-Pro-Phe-Phe-Asp (LPFFD) onto the surface of the former fluorescent nanoparticles was then performed, by interacting the terminal activated NHS groups of the PEG derivatized F-γ-Fe2O3 HSA nanoparticles with primary amino groups of the peptides. Kinetics of the Aβ40 fibrillation process in the absence and presence of varying concentrations of the Aβ40 or LPFFD conjugated nanoparticles were also elucidated. The non-peptide conjugated fluorescent nanoparticles do not affect the Aβ40 fibrillation process significantly. However, the Aβ40-conjugated nanoparticles (F-γ-Fe2O3 HSA-PEG-Aβ40) accelerate the fibrillation process while the LPFFD-conjugated nanoparticles (F-γ-Fe2O3 HSA-PEG-LPFFD) inhibit it. By applying MRI and fluorescence imaging techniques simultaneously these bioactive fluorescent magnetic iron oxide nanoparticles can be used as an efficient tool to study and control the Aβ40 amyloid fibril formation process.

  8. Mapping of the gene encoding the. beta. -amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21

    SciTech Connect

    Patterson, D.; Gardiner, K.; Kao, F.T.; Tanzi, R.; Watkins, P.; Gusella, J.F. )

    1988-11-01

    The gene encoding the {beta}-amyloid precursor protein has been assigned to human chromosome 21, as has a gene responsible for at least some cases of familial Alzheimer disease. Linkage studies strongly suggest that the {beta}-amyloid precursor protein and the product corresponding to familial Alzheimer disease are from two genes, or at least that several million base pairs of DNA separate the markers. The precise location of the {beta}-amyloid precursor protein gene on chromosome 21 has not yet been determined. Here the authors show, by using a somatic-cell/hybrid-cell mapping panel, in situ hybridization, and transverse-alternating-field electrophoresis, that the {beta}-amyloid precursor protein gene is located on chromosome 21 very near the 21q21/21q/22 border and probably within the region of chromosome 21 that, when trisomic, results in Down syndrome.

  9. Evidence of Molecular Interactions of Aβ1-42 with N-Terminal Truncated Beta Amyloids by NMR.

    PubMed

    Tomaselli, Simona; Pagano, Katiuscia; D'Arrigo, Cristina; Molinari, Henriette; Ragona, Laura

    2017-02-06

    peptides, the main protein components of Alzheimer's disease (AD) plaques, derive from a proteolytic cleavage of the amyloid precursor protein. Due to heterogeneous cleavage sites, a series of Aβ peptides, including the major and widely studied species Aβ1-40 (Aβ40) and Aβ1-42 (Aβ42), are produced. In addition to the C-terminal heterogeneity of Aβ peptides, significant amounts of N-terminal truncated (Aβ3-42) and pyroglutamate-modified amyloidpeptides (AβpE3-42) have been identified in AD affected brains and shown to be more cytotoxic than unmodified Aβ peptides. Little is known about the properties of their mixtures with Aβ42. Nuclear Magnetic Resonance spectroscopy is here employed to investigate the interaction of N-truncated peptides with Aβ42 at different molar ratios. We highlight the critical concentration of N-truncated forms influencing the aggregation kinetics of Aβ42. We provide evidence, at residue level, that the C-terminal region of Aβ42 is the locus of transient specific interactions with highly aggregation prone N-truncated alloforms.

  10. Exploring the Contribution of Estrogen to Amyloid-Beta Regulation: A Novel Multifactorial Computational Modeling Approach

    PubMed Central

    Anastasio, Thomas J.

    2013-01-01

    According to the amyloid hypothesis, Alzheimer Disease results from the accumulation beyond normative levels of the peptide amyloid-β (Aβ). Perhaps because of its pathological potential, Aβ and the enzymes that produce it are heavily regulated by the molecular interactions occurring within cells, including neurons. This regulation involves a highly complex system of intertwined normative and pathological processes, and the sex hormone estrogen contributes to it by influencing the Aβ-regulation system at many different points. Owing to its high complexity, Aβ regulation and the contribution of estrogen are very difficult to reason about. This report describes a computational model of the contribution of estrogen to Aβ regulation that provides new insights and generates experimentally testable and therapeutically relevant predictions. The computational model is written in the declarative programming language known as Maude, which allows not only simulation but also analysis of the system using temporal-logic. The model illustrates how the various effects of estrogen could work together to reduce Aβ levels, or prevent them from rising, in the presence of pathological triggers. The model predicts that estrogen itself should be more effective in reducing Aβ than agonists of estrogen receptor α (ERα), and that agonists of ERβ should be ineffective. The model shows how estrogen itself could dramatically reduce Aβ, and predicts that non-steroidal anti-inflammatory drugs should provide a small additional benefit. It also predicts that certain compounds, but not others, could augment the reduction in Aβ due to estrogen. The model is intended as a starting point for a computational/experimental interaction in which model predictions are tested experimentally, the results are used to confirm, correct, and expand the model, new predictions are generated, and the process continues, producing a model of ever increasing explanatory power and predictive value. PMID

  11. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    PubMed

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  12. The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling

    PubMed Central

    Wang, Gang; Chen, Ling; Pan, Xiaoyu; Chen, Jiechun; Wang, Liqun; Wang, Weijie; Cheng, Ruochuan; Wu, Fan; Feng, Xiaoqing; Yu, Yingcong; Zhang, Han-Ting; O'Donnell, James M.; Xu, Ying

    2016-01-01

    Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling. PMID:26980711

  13. Melissa officinalis Acidic Fraction Protects Cultured Cerebellar Granule Neurons Against Beta Amyloid-Induced Apoptosis and Oxidative Stress

    PubMed Central

    Soodi, Maliheh; Dashti, Abolfazl; Hajimehdipoor, Homa; Akbari, Shole; Ataei, Nasim

    2017-01-01

    Objective Extracellular deposition of the beta-amyloid (Aβ) peptide, which is the main finding in the pathophysiology of Alzheimer’s disease (AD), leads to oxidative damage and apoptosis in neurons. Melissa officinalis (M. officinalis) is a medicinal plant from the Lamiaceae family that has neuroprotective activity. In the present study we have investigated the protective effect of the acidic fraction of M. officinalis on Aβ-induced oxidative stress and apoptosis in cultured cerebellar granule neurons (CGN). Additionally, we investigated a possible role of the nicotinic receptor. Materials and Methods This study was an in vitro experimental study performed on mice cultured CGNs. CGNs were pre-incubated with different concentrations of the acidic fraction of M. officinalis for 24 hours, followed by incubation with Aβ for an additional 48 hours. CGNs were also pre-incubated with the acidic fraction of M. officinalis and mecamylamin, followed by incubation with Aβ. We used the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay to measure cell viability. Acetylcholinesterase (AChE) activity, reactive oxygen species (ROS) production, lipidperoxidation, and caspase-3 activity were measured after incubation. Hochst/annexin Vfluorescein isothiocyanate (FITC)/propidium iodide (PI) staining was performed to detect apoptotic cells. Results The acidic fraction could protect CGNs from Aβ-induced cytotoxicity. Mecamylamine did not abolish the protective effect of the acidic fraction. AChE activity, ROS production, lipid peroxidation, and caspase-3 activity increased after Aβ incubation. Preincubation with the acidic fraction of M. officinalis ameliorated these factors and decreased the number of apoptotic cells. Conclusion Our results indicated that the protective effect of the acidic fraction of M. officinalis was not mediated through nicotinic receptors. This fraction could protect CGNs through antioxidant and anti-apoptotic activities. PMID

  14. Effect of melatonin and melatonylvalpromide on beta-amyloid and neurofilaments in N2a cells.

    PubMed

    Wang, Xiao-Chuan; Zhang, Yin-Chun; Chatterjie, Nithiananda; Grundke-Iqbal, Inge; Iqbal, Khalid; Wang, Jian-Zhi

    2008-06-01

    In the present study, we have studied the effect of melatonin (Mt) and melatonin derivative, i.e., melatonylvalpromide (Mtv), on cell viability, beta-amyloid (Abeta) production, cell morphology, and expression and phosphorylation of neurofilament proteins in wild-type murine neuroblastoma N2a (N2a/wt) and N2a stably transfected with amyloid precursor protein (N2a/APP) cell lines. The study used MTT assay, Sandwich ELISA, immunocytochemistry and Western blots techniques. The results showed that both Mt and Mtv could increase cell viability, but Mtv did so more effectively. The N2a/APP showed shorter and less amount of cell processes than N2a/wt, and Mtv but not Mt slightly improved the morphological changes in N2A/APP. Both Mt and Mtv suppressed the Abeta level in cell lysates, but the effect of Mtv was stronger than Mt. The immunoreaction to the non-phosphorylated neurofilament proteins probed by SMI32 and SMI33 were remarkably weaker in N2a/APP than N2a/wt, while the immunoreaction to the phosphorylated neurofilament proteins at SMI34 epitopes was slightly stronger in N2a/APP than N2a/wt, suggesting higher phosphorylation level of neurofilament proteins in N2a/APP. Treatment of the cells with Mt and Mtv increased the immunoreaction at SMI32 and SMI33 epitopes, while only Mtv but not Mt decreased the staining at SMI34 epitope, suggesting both Mt and Mtv promote dephosphorylation of neurofilament at SMI32 and SMI33 epitopes, while Mtv stimulates dephosphorylation of neurofilament at SMI34 epitope. These results suggest that Mtv may be a better candidate in arresting the intracellular accumulation of Abeta and protecting the cells from Abeta-related toxicity.

  15. Adiponectin is Protective against Oxidative Stress Induced Cytotoxicity in Amyloid-Beta Neurotoxicity

    PubMed Central

    Chan, Koon-Ho; Lam, Karen Siu-Ling; Cheng, On-Yin; Kwan, Jason Shing-Cheong; Ho, Philip Wing-Lok; Cheng, Kenneth King-Yip; Chung, Sookja Kim; Ho, Jessica Wing-Man; Guo, Vivian Yawei; Xu, Almin

    2012-01-01

    Beta-amyloid (Aβ ) neurotoxicity is important in Alzheimer’s disease (AD) pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T2DM) which is characterized by insulin resistance. Interestingly, T2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance). We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties) against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y) transfected with the Swedish amyloid precursor protein (Sw-APP) mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH) released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK) activation and enhanced nuclear factor-kappa B (NF-κB) activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1) AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif) and possibly 2) suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists. PMID:23300647

  16. Shogaols from Zingiber officinale protect IMR32 human neuroblastoma and normal human umbilical vein endothelial cells from beta-amyloid(25-35) insult.

    PubMed

    Kim, Darrick S H L; Kim, Dong-Seon; Oppel, Marissa N

    2002-04-01

    From the rhizome of Zingiber officinale L. (Zingiberaceae), four shogaols that protect IMR32 human neuroblastoma and normal human umbilical vein endothelial cells from beta-amyloid(25 - 35) insult at EC50 = 4.5 - 81 microM were isolated. The efficacy of cell protection from beta-amyloid(25 - 35) insult by these shogaols was shown to improve as the length of the side chain increases.

  17. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    SciTech Connect

    András, Ibolya E. Toborek, Michal

    2014-04-15

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.

  18. Blood Beta-Amyloid and Tau in Down Syndrome: A Comparison with Alzheimer’s Disease

    PubMed Central

    Lee, Ni-Chung; Yang, Shieh-Yueh; Chieh, Jen-Jie; Huang, Po-Tsang; Chang, Lih-Maan; Chiu, Yen-Nan; Huang, Ai-Chiu; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Chiu, Ming-Jang

    2017-01-01

    Background: Changes in β-amyloids (Aβ) and tau proteins have been noted in patients with Alzheimer’s disease (AD) and patients with both Down syndrome (DS) and AD. However, reports of changes in the early stage of regression, such as behavioral and psychological symptoms of dementia (BPSD), in DS are sparse. Methods: Seventy-eight controls, 62 patients with AD, 35 with DS and 16 with DS with degeneration (DS_D), including 9 with BPSD and 7 with dementia, were enrolled. The levels of β-amyloids 40 and 42 (Aβ-40, Aβ-42) and tau protein in the blood were analyzed using immunomagnetic reduction (IMR). The Adaptive Behavior Dementia Questionnaire (ABDQ) was used to evaluate the clinical status of the degeneration. Results: The Aβ-40 and tau levels were higher and the Aβ-42 level and Aβ-42/Aβ-40 ratio were lower in DS than in the controls (all p < 0.001). Decreased Aβ-40 and increased Aβ-42 levels and Aβ-42/40 ratios were observed in DS_D compared with DS without degeneration (all p < 0.001). The ABDQ score was negatively correlated with the Aβ-40 level (ρ = −0.556) and the tau protein level (ρ = −0.410) and positively associated with the Aβ-42 level (ρ = 0.621) and the Aβ-42/40 ratio (ρ = 0.544; all p < 0.05). Conclusions: The Aβ-40 and Aβ-42 levels and the Aβ-42/Aβ-40 ratio are considered possible biomarkers for the early detection of degeneration in DS. The elevated Aβ-40 and tau levels in DS may indicate early neurodegeneration. The increased Aβ-42 in DS_D may reflect the neurotoxicity of Aβ-42. The paradox of the tau decreases in DS_D could be explained by a burnout phenomenon during long-term neurodegeneration. The different patterns of the plasma beta amyloids and tau protein may imply a different pathogenesis between DS with degeneration and AD in the general population, in spite of their common key pathological features. PMID:28144219

  19. Preventive immunization of aged and juvenile non-human primates to beta-amyloid

    PubMed Central

    2012-01-01

    Background Immunization against beta-amyloid (Aβ) is a promising approach for the treatment of Alzheimer’s disease, but the optimal timing for the vaccination remains to be determined. Preventive immunization approaches may be more efficacious and associated with fewer side-effects; however, there is only limited information available from primate models about the effects of preclinical vaccination on brain amyloid composition and the neuroinflammatory milieu. Methods Ten non-human primates (NHP) of advanced age (18–26 years) and eight 2-year-old juvenile NHPs were immunized at 0, 2, 6, 10 and 14 weeks with aggregated Aβ42 admixed with monophosphoryl lipid A as adjuvant, and monitored for up to 6 months. Anti-Aβ antibody levels and immune activation markers were assessed in plasma and cerebrospinal fluid samples before and at several time-points after immunization. Microglial activity was determined by [11C]PK11195 PET scans acquired before and after immunization, and by post-mortem immunohistochemical and real-time PCR evaluation. Aβ oligomer composition was assessed by immunoblot analysis in the frontal cortex of aged immunized and non-immunized control animals. Results All juvenile animals developed a strong and sustained serum anti-Aβ IgG antibody response, whereas only 80 % of aged animals developed detectable antibodies. The immune response in aged monkeys was more delayed and significantly weaker, and was also more variable between animals. Pre- and post-immunization [11C]PK11195 PET scans showed no evidence of vaccine-related microglial activation. Post-mortem brain tissue analysis indicated a low overall amyloid burden, but revealed a significant shift in oligomer size with an increase in the dimer:pentamer ratio in aged immunized animals compared with non-immunized controls (P < 0.01). No differences were seen in microglial density or expression of classical and alternative microglial activation markers between immunized and control

  20. N-Acetyl-L-Cystein downregulates beta-amyloid precursor protein gene transcription in human neuroblastoma cells.

    PubMed

    Studer, R; Baysang, G; Brack, C

    2001-01-01

    The causes for the sporadic form of Alzheimer's disease (AD) are still poorly understood, except from the fact that age is an important risk factor. The main component of the characteristic amyloid plaques in brains of AD patients are Abeta peptides, derivatives of the amyloid precursor protein APP. Oxidative stress may contribute to the aetiology of AD by dysregulation of APP metabolism. Overexpression of the APP gene could result in an increased secretion of neurotoxic Abeta peptides, while preventing the overexpression might be protective. We here report that the antioxidant N-Acetyl-L-Cystein (NAC) downregulates APP gene transcription in human neuroblastoma cells. The effect is reversible when cells are returned to NAC free medium. These results open up new possibilities for the development of therapeutic agents that intervene at the transcriptional level.

  1. Cryptotanshinone, a compound from Salvia miltiorrhiza modulates amyloid precursor protein metabolism and attenuates beta-amyloid deposition through upregulating alpha-secretase in vivo and in vitro.

    PubMed

    Mei, Zhengrong; Zhang, Fangyan; Tao, Liang; Zheng, Wenhua; Cao, Yingnan; Wang, Zhaohe; Tang, Shu; Le, Kang; Chen, Shaorui; Pi, Rongbiao; Liu, Peiqing

    2009-03-13

    The amyloid precursor protein (APP) is cleaved enzymatically by non-amyloidogenic and amyloidogenic pathways. alpha-Secretase cleaves APP within beta-amyloid protein (Abeta) sequence, resulting in the release of a secreted fragment of APP (sAPPalpha) and precluding Abeta generation. Cryptotanshinone (CTS), an active component of the medicinal herb Salvia miltiorrhiza, has been shown to improve learning and memory in several pharmacological models of Alzheimer's disease (AD). However, the effects of CTS on the Abeta plaque pathology and the APP processing in AD are unclear. Here we reported that CTS strongly attenuated amyloid plaque deposition in the brain of APP/PS1 transgenic mice. In addition, CTS significantly improved spatial learning and memory in APP/PS1 mice assessed by the Morris water maze testing. To define the exact molecular mechanisms involved in the beneficial effects of CTS, we investigated the effects of the CTS on APP processing in rat cortical neuronal cells overexpressing Swedish mutant human APP695. CTS was found to decrease Abeta generation in concentration-dependent (0-10muM) manner. Interestingly, the N-terminal APP cleavage product, sAPPalpha was markedly increased by CTS. Further study showed that alpha-secretase activity was increased by CTS. Taken together, our results suggested CTS improved the cognitive ability in AD transgenic mice and promoted APP metabolism toward the non-amyloidogenic products pathway in rat cortical neuronal cells. CTS shows a promising novel way for the therapy of AD.

  2. β-Amyloid peptides display protective activity against the human Alzheimer's disease-associated herpes simplex virus-1.

    PubMed

    Bourgade, Karine; Garneau, Hugo; Giroux, Geneviève; Le Page, Aurélie Y; Bocti, Christian; Dupuis, Gilles; Frost, Eric H; Fülöp, Tamàs

    2015-02-01

    Amyloid plaques, the hallmark of Alzheimer's disease (AD), contain fibrillar β-amyloid (Aβ) 1-40 and 1-42 peptides. Herpes simplex virus 1 (HSV-1) has been implicated as a risk factor for AD and found to co-localize within amyloid plaques. Aβ 1-40 and Aβ 1-42 display anti-bacterial, anti-yeast and anti-viral activities. Here, fibroblast, epithelial and neuronal cell lines were exposed to Aβ 1-40 or Aβ 1-42 and challenged with HSV-1. Quantitative analysis revealed that Aβ 1-40 and Aβ 1-42 inhibited HSV-1 replication when added 2 h prior to or concomitantly with virus challenge, but not when added 2 or 6 h after virus addition. In contrast, Aβ 1-40 and Aβ 1-42 did not prevent replication of the non-enveloped human adenovirus. In comparison, antimicrobial peptide LL-37 prevented HSV-1 infection independently of its sequence of addition. Our findings showed also that Aβ 1-40 and Aβ 1-42 acted directly on HSV-1 in a cell-free system and prevented viral entry into cells. The sequence homology between Aβ and a proximal transmembrane region of HSV-1 glycoprotein B suggested that Aβ interference with HSV-1 replication could involve its insertion into the HSV-1 envelope. Our data suggest that Aβ peptides represent a novel class of antimicrobial peptides that protect against neurotropic enveloped virus infections such as HSV-1. Overproduction of Aβ peptide to protect against latent herpes viruses and eventually against other infections, may contribute to amyloid plaque formation, and partially explain why brain infections play a pathogenic role in the progression of the sporadic form of AD.

  3. Chronic intracerebroventricular exposure to beta-amyloid(1-40) impairs object recognition but does not affect spontaneous locomotor activity or sensorimotor gating in the rat.

    PubMed

    Nag, S; Tang, F; Yee, B K

    2001-01-01

    This study examined the cognitive effects of chronic in vivo exposure to beta-amyloid(1-40) via the intracerebroventricular route on two distinct paradigms. The first test evaluated a form of early attentional control referred to as sensorimotor gating in which an antecedent weak prepulse stimulus modulates the reactivity to a subsequent startle-eliciting stimulus. The second test utilized the spontaneous preference for a novel object over that of a familiar one in rats as a measure of object recognition memory. We found that beta-amyloid exposure leads to a severe deficit in the object memory test but spares sensorimotor gating. Moreover, unlike the water maze deficit induced by beta-amyloid (Nag et al., in preparation), the deficit on object recognition was resistant to amelioration by systemic physostigmine treatment at a dose of 0.06 mg/kg per day intraperitoneally. The present results add to previous reports that beta-amyloid exposure can lead to deficits on hippocampal lesion sensitive tasks, suggesting that dysfunction of the rhinal cortices in addition to that of the septohippocampal system is implicated in beta-amyloid-induced behavioral impairments. It therefore lends support to the hypothesis that beta-amyloid exposure can lead to severe impairment across multiple memory systems.

  4. Contrasting effects of nanoparticle-protein attraction on amyloid aggregation.

    PubMed

    Radic, Slaven; Davis, Thomas P; Ke, Pu Chun; Ding, Feng

    2015-01-01

    Nanoparticles (NPs) have been experimentally found to either promote or inhibit amyloid aggregation of proteins, but the molecular mechanisms for such complex behaviors remain unknown. Using coarse-grained molecular dynamics simulations, we investigated the effects of varying the strength of nonspecific NP-protein attraction on amyloid aggregation of a model protein, the amyloid-beta peptide implicated in Alzheimer's disease. Specifically, with increasing NP-peptide attraction, amyloid aggregation on the NP surface was initially promoted due to increased local protein concentration on the surface and destabilization of the folded state. However, further increase of NP-peptide attraction decreased the stability of amyloid fibrils and reduced their lateral diffusion on the NP surface necessary for peptide conformational changes and self-association, thus prohibiting amyloid aggregation. Moreover, we found that the relative concentration between protein and NPs also played an important role in amyloid aggregation. With a high NP/protein ratio, NPs that intrinsically promote protein aggregation may display an inhibitive effect by depleting the proteins in solution while having a low concentration of the proteins on each NP's surface. Our coarse-grained molecular dynamics simulation study offers a molecular mechanism for delineating the contrasting and seemingly conflicting effects of NP-protein attraction on amyloid aggregation and highlights the potential of tailoring anti-aggregation nanomedicine against amyloid diseases.

  5. Overexpression of estrogen receptor beta alleviates the toxic effects of beta-amyloid protein on PC12 cells via non-hormonal ligands☆

    PubMed Central

    Wang, Hui; Si, Lihui; Li, Xiaoxi; Deng, Weiguo; Yang, Haimiao; Yang, Yuyan; Fu, Yan

    2012-01-01

    After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor α and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor. PMID:25722700

  6. The Conformational Stability of Nonfibrillar AmyloidPeptide Oligomers Critically Depends on the C-Terminal Peptide Length