Secretory structure and histochemistry test of some Zingiberaceae plants
NASA Astrophysics Data System (ADS)
Indriyani, Serafinah
2017-11-01
A secretory structure is a structure that produces a plant's metabolite substances. Secretory structures are grouped into an internal and external. Zingiberaceae plants are known as traditional medicine plants and as spice plants due to secretory structures in their tissues. The objective of the research were to describe the secretory structure of Zingiberaceae plants and to discover the qualitatively primary metabolite substances in plant's tissues via histochemistry test. The research was conducted by observation descriptive design, quantitative data including the density of secretory cells per mm². The quantitative data were analyzed by ANOVA and continued by Duncan at α = 5 %. The results showed that the secretory structures in leaves, rhizome, and the root of 14 species of Zingiberaceae plants are found in the mesophyll of leaves and cortex, and also pith in rhizome and roots. The type of secretory structure is internal. Within the root of Zingiber cassumunar Roxb.(bengle), Curcuma domestica Val. (kunyit), Curcuma zedoaria (Berg.) Roscoe (kunyit putih), Zingiber zerumbet (L.) J.E. Smith (lempuyang), Alpiniapurpurata K. Schum (lengkuas merah), and Curcuma aeruginosa Val. (temu ireng) were found amylum grains, while in Kaemferia galanga L. (kencur), Boesen bergiapandurata L. (temu kunci), and Curcuma xanthorrhiza Roxb. (temulawak) there were no amylum grains in the root as well as in the leaves. The roots of bengle had the greatest density of amylum grain, it had 248.1 ± 9.8 secretory cells of amylum grains per mm². Lipids (oil droplets) were found in the root of bengle, Zingiber officinale Roxb. Var. emprit (jahe emprit), Zingiber officinale Roxb. Var. Gajah (jahe gajah), Zingiber officinale Roxb. Var. Rubrum (jahe merah), Keampferia angustifolia L. (kunci pepet), kunyit, kunyit putih, lempuyang, lengkua smerah, Curcuma aeruginosa Val. (temu ireng), and Curcuma mangga Val. and van Zijp (temu mangga); the root of lempuyang had the greatest density of oil droplets, it had 10.4 ± 2.1 secretory cells of oil droplets per mm2. All of Zingiberaceae's root and leaves did not have secretory cells of protein. Zingiberaceae's rhizomes had amylum grain, protein granules, and oil droplets. Jahe merah's rhizomes had the greatest density of amylum grain, it had 198.3 ± 21.1 cells of amylum grain per mm2. Jahe emprit's rhizomes had the greatest density of protein granules, it had254.0 ± 90.0 cells of protein granules per mm². Kunyit putih's rhizomes had the greatest density of oil droplets, it had 254.0 ± 90.0 cells of oil droplets per mm².
Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue
2018-04-26
This study investigated the performance of co-biodrying sewage sludge and organic fraction of municipal solid waste (OFMSW) at different proportions. Cornstalk was added at 15% (of total wet weight) as the bulking agent. Results show that increasing OFMSW percentage promoted the biodegradation of organic matter, thus enhancing the temperature integration value and water removal to above 75% during sludge and OFMSW co-biodrying. In particular, adding more OFMSW accelerated the biodegradation of soluble carbohydrates, lignins, lipids, and amylums, resulting in more organic loss and thus lower biodrying index (3.3-3.7 for 55-85% OFMSW). Water balance calculation indicated that evaporation was the main mechanism for water removal. Heat used for water evaporation was 37.7-48.6% of total heat consumption during co-biodrying. Our results suggest that sludge and OFMSW should be mixed equally for their efficient co-biodrying. Copyright © 2018 Elsevier Ltd. All rights reserved.
Surface Modification Technique of Cathode Materials for
NASA Astrophysics Data System (ADS)
Jia, Yongzhong; Han, Jinduo; Jing, Yan; Jin, Shan; Qi, Taiyuan
Cathode materials for Li-ion battery LiMn2O4 and LiCo0.1Mn1.9O4 were prepared by soft chemical method. Carbon, which was made by decomposing organic compounds, was used as modifying agent. Cathode material matrix was mixed with water solution that had contained organic compound such as cane sugar, soluble amylum, levulose et al. These mixture were reacted at 150 200 °C for 0.5 4 h in a Teflon-lined autoclave to get a series of homogeneously C-coated cathode materials. The new products were analyzed by X-ray diffraction (XRD) and infrared (IR). Morphology of cathode materials was characterized by scanning electron microscope (SEM) and transition electron microscope (TEM). The new homogeneously C-coated products that were used as cathode materials of lithium-ion battery had good electrochemical stability and cycle performance. This technique has free-pollution, low cost, simpleness and easiness to realize the industrialization of the cathode materials for Li-ion battery.
[Tablets and tablet production - with special reference to Icelandic conditions].
Skaftason, Jóhannes F; Jóhannesson, Thorkell
2013-04-01
Modern tablet compression was instituted in England in 1844 by William Brockedon (1787-1854). The first tablets made according to Brockedon´s procedures contained watersoluble salts and were most likely compressed without expedients. In USA a watershed occurred around 1887 when starch (amylum maydis) was introduced to disperse tablets in aqueous milieu in order to corroborate bioavailability of drugs in the almentary canal. About the same time great advances in tablet production were introduced by the British firm Burroughs Wellcome and Co. In Denmark on the other hand tablet production remained on low scale until after 1920. As Icelandic pharmacies and drug firms modelled themselves mostly upon Danish firms tablet production was first instituted in Iceland around 1930. The first tablet machines in Iceland were hand-driven. More efficent machines came after 1945. Around 1960 three sizeable tablet producers were in Iceland; now there is only one. Numbers of individual tablet species (generic and proprietary) on the market rose from less than 10 in 1913 to 500 in 1965, with wide variations in numbers in between. Tablets have not wiped out other medicinal forms for peroral use but most new peroral drugs have been marketed in the form of tablets during the last decades.
[Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].
Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru
2014-01-01
Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.