Sample records for anabaena sensory rhodopsin

  1. Crystallization, X-ray diffraction analysis and SIRAS/molecular-replacenent phasing of three crystal forms of Anabaena sensory rhodopsin transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogeley, Lutz; Luecke, Hartmut, E-mail: hudel@uci.edu

    2006-04-01

    Crystals of Anabaena sensory rhodopsin transducer, the transducer for the cyanobacterial photosensor Anabaena sensory rhodopsin, obtained in the space groups P4, C2 and P2{sub 1}2{sub 1}2{sub 1} diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for these crystal forms were obtained by SIRAS phasing using an iodide quick-soak derivative (P4) and molecular replacement (C2 and P2{sub 1}2{sub 1}2{sub 1}). Anabaena sensory rhodopsin transducer (ASRT) is a 14.7 kDa soluble signaling protein associated with the membrane-embedded light receptor Anabaena sensory rhodopsin (ASR) from Anabaena sp., a freshwater cyanobacterium. Crystals of ASRT were obtained in three different space groups, P4, C2more » and P2{sub 1}2{sub 1}2{sub 1}, which diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for one of these crystal forms (P4) were obtained by SIRAS phasing using an iodide quick-soak derivative and a partial model was built. Phases for the remaining crystal forms were obtained by molecular replacement using the partial model from the P4 crystal form.« less

  2. Demonstration of a sensory rhodopsin in eubacteria.

    PubMed

    Jung, Kwang-Hwan; Trivedi, Vishwa D; Spudich, John L

    2003-03-01

    We report the first sensory rhodopsin observed in the eubacterial domain, a green light-activated photoreceptor in Anabaena (Nostoc) sp. PCC7120, a freshwater cyanobacterium. The gene encoding the membrane opsin protein of 261 residues (26 kDa) and a smaller gene encoding a soluble protein of 125 residues (14 kDa) are under the same promoter in a single operon. The opsin expressed heterologously in Escherichia coli membranes bound all-trans retinal to form a pink pigment (lambda max 543 nm) with a photochemical reaction cycle of 110 ms half-life (pH 6.8, 18 degrees C). Co-expression with the 14 kDa protein increased the rate of the photocycle, indicating physical interaction with the membrane-embedded rhodopsin, which we confirmed in vitro by affinity enrichment chromatography and Biacore interaction. The pigment lacks the proton donor carboxylate residue in helix C conserved in known retinylidene proton pumps and did not exhibit detectable proton ejection activity. We detected retinal binding to the protein in Anabaena membranes by SDS-PAGE and autofluorography of 3H-labelled all-trans retinal of reduced membranes from the organism. We conclude that Anabaena rhodopsin functions as a photosensory receptor in its natural environment, and suggest that the soluble 14 kDa protein transduces a signal from the receptor. Therefore, unlike the archaeal sensory rhodopsins, which transmit signals by transmembrane helix-helix interactions with membrane-embedded transducers, the Anabaena sensory rhodopsin may signal through a soluble cytoplasmic protein, analogous to higher animal visual pigments.

  3. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin

    NASA Astrophysics Data System (ADS)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  4. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins

    DOE PAGES

    Bondar, Ana-Nicoleta; Smith, Jeremy C.

    2017-07-25

    Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less

  5. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondar, Ana-Nicoleta; Smith, Jeremy C.

    Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less

  6. A transducer for microbial sensory rhodopsin that adopts GTG as a start codon is identified in Haloarcula marismortui.

    PubMed

    Fu, Hsu-Yuan; Lu, Yen-Hsu; Yi, Hsiu-Ping; Yang, Chii-Shen

    2013-04-05

    Microbial sensory rhodopsins are known to mediate phototaxis, and all of the known sensory rhodopsins execute this function with a specific cognate transducer that has two-transmembrane (2-TM) regions. In the genome of Haloarcula marismortui, a total of six rhodopsin genes were annotated, and we previously showed three of them to be the ion type and suggested the other three as sensory type, even though the candidate transducer gene, htr, for HmSRI was missing the 2-TM region that is found in all of the other known transducers. Here we showed this htr gene featured a preceding 2-TM region when the alternative start codon GTG located 291 nucleotides upstream of the original annotated open reading frame (ORF) was introduced and it is named as htrI in this study. Overexpression of HmHtrI exhibited it existed as a membrane protein and several biophysical assays confirmed it functionally interacted with HmSRI. Together with our previous reverse-transcriptase-PCR results and phototaxis measurements, the new ORF of original predicted soluble htr gene product was a membrane protein with a 2-TM region, HmHtrI; and it serves as the cognate transducer for HmSRI. HmHtrI therefore is the first transducer for the sensory rhodopsin adopted start codon other than ATG. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1.

    PubMed

    Luck, Meike; Hegemann, Peter

    2017-10-01

    Histidine kinase rhodopsins (HKRs) belong to a class of unexplored sensory photoreceptors that share a similar modular architecture. The light sensing rhodopsin domain is covalently linked to signal-transducing modules and in some cases to a C-terminal guanylyl-cyclase effector. In spite of their wide distribution in unicellular organisms, very little is known about their physiological role and mechanistic functioning. We investigated the photochemical properties of the recombinant rhodopsin-fragment of Cr-HKR1 originating from Chlamydomonas reinhardtii. Our spectroscopic studies revealed an unusual thermal stability of the photoproducts with the deprotonated retinal Schiff base (RSB). Upon UV-irradiation these Rh-UV states with maximal absorbance in the UVA-region (Rh-UV) photochemically convert to stable blue light absorbing rhodopsin (Rh-Bl) with protonated chromophore. The heterogeneity of the sample is based on two parallel photocycles with the chromophore in C 15 =N-syn- or -anti-configuration. This report represents an attempt to decipher the underlying reaction schemes and interconversions of the two coexisting photocycles. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Cyanobacterial Light-Driven Proton Pump, Gloeobacter Rhodopsin: Complementarity between Rhodopsin-Based Energy Production and Photosynthesis

    PubMed Central

    Choi, Ah Reum; Shi, Lichi; Brown, Leonid S.; Jung, Kwang-Hwan

    2014-01-01

    A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR) gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax  = 544 nm at pH 7). The pKa of proton acceptor (Asp121) for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4). In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids. PMID:25347537

  9. The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking.

    PubMed

    Wang, Jing; Fresquez, Theresa; Kandachar, Vasundhara; Deretic, Dusanka

    2017-12-01

    The small GTPase Arf4 and the Arf GTPase-activating protein (GAP) ASAP1 cooperatively sequester sensory receptor cargo into transport carriers targeted to primary cilia, but the input that drives Arf4 activation in this process remains unknown. Here, we show, by using frog retinas and recombinant human proteins, that during the carrier biogenesis from the photoreceptor Golgi/ trans -Golgi network (TGN) a functional complex is formed between Arf4, the Arf guanine nucleotide exchange factor (GEF) GBF1 and the light-sensing receptor, rhodopsin. Rhodopsin and Arf4 bind the regulatory N-terminal dimerization and cyclophillin-binding (DCB)-homology upstream of Sec7 (HUS) domain of GBF1. The complex is sensitive to Golgicide A (GCA), a selective inhibitor of GBF1 that accordingly blocks rhodopsin delivery to the cilia, without disrupting the photoreceptor Golgi. The emergence of newly synthesized rhodopsin in the endomembrane system is essential for GBF1-Arf4 complex formation in vivo Notably, GBF1 interacts with the Arf GAP ASAP1 in a GCA-resistant manner. Our findings indicate that converging signals on GBF1 from the influx of cargo into the Golgi/TGN and the feedback from Arf4, combined with input from ASAP1, control Arf4 activation during sensory membrane trafficking to primary cilia. © 2017. Published by The Company of Biologists Ltd.

  10. A Schiff base connectivity switch in sensory rhodopsin signaling

    PubMed Central

    Sineshchekov, Oleg A.; Sasaki, Jun; Phillips, Brian J.; Spudich, John L.

    2008-01-01

    Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI–HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI–HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pKa. These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition. PMID:18852467

  11. A Schiff base connectivity switch in sensory rhodopsin signaling.

    PubMed

    Sineshchekov, Oleg A; Sasaki, Jun; Phillips, Brian J; Spudich, John L

    2008-10-21

    Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.

  12. The Activation Pathway of Human Rhodopsin in Comparison to Bovine Rhodopsin*

    PubMed Central

    Kazmin, Roman; Rose, Alexander; Szczepek, Michal; Elgeti, Matthias; Ritter, Eglof; Piechnick, Ronny; Hofmann, Klaus Peter; Scheerer, Patrick; Hildebrand, Peter W.; Bartl, Franz J.

    2015-01-01

    Rhodopsin, the photoreceptor of rod cells, absorbs light to mediate the first step of vision by activating the G protein transducin (Gt). Several human diseases, such as retinitis pigmentosa or congenital night blindness, are linked to rhodopsin malfunctions. Most of the corresponding in vivo studies and structure-function analyses (e.g. based on protein x-ray crystallography or spectroscopy) have been carried out on murine or bovine rhodopsin. Because these rhodopsins differ at several amino acid positions from human rhodopsin, we conducted a comprehensive spectroscopic characterization of human rhodopsin in combination with molecular dynamics simulations. We show by FTIR and UV-visible difference spectroscopy that the light-induced transformations of the early photointermediates are very similar. Significant differences between the pigments appear with formation of the still inactive Meta I state and the transition to active Meta II. However, the conformation of Meta II and its activity toward the G protein are essentially the same, presumably reflecting the evolutionary pressure under which the active state has developed. Altogether, our results show that although the basic activation pathways of human and bovine rhodopsin are similar, structural deviations exist in the inactive conformation and during receptor activation, even between closely related rhodopsins. These differences between the well studied bovine or murine rhodopsins and human rhodopsin have to be taken into account when the influence of point mutations on the activation pathway of human rhodopsin are investigated using the bovine or murine rhodopsin template sequences. PMID:26105054

  13. The rhodopsins: structure and function. Introduction

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1992-01-01

    Nature makes use of the propensity of retinal for light-dependent double-bond isomerization in a number of systems and in a variety of ways. The common theme for light receptors based on this kind of chemistry is that (1) the retinal is bound in most cases to a small membrane protein via a protonated lysine-retinal Schiff base, (2) the absorption maximum in the visible is tuned to a suitable wavelength largely by electrostatic interaction with polar protein residues, and (3) the light-induced bond rotations and strains in the retinal set off reaction chains during which at least part of the excess free energy acquired is transferred to the protein and causes pK shifts of acidic residues and/or backbone conformational changes. The physiological consequence of the process initiated by absorption of light is either the activation of an information transfer chain (sensory and visual rhodopsins) or energy transduction which drives the electrogenic movement of ions across the membrane (ion-motive rhodopsins). Rhodopsins with these functions occur in bacteria and in higher organisms; from an evolutionary standpoint they are not related to one another. Nevertheless, all of these proteins are remarkably similar and form a distinct family.

  14. Azolla-Anabaena Relationship

    PubMed Central

    Ray, Thomas B.; Mayne, Berger C.; Toia, Robert E.; Peters, Gerald A.

    1979-01-01

    Photosynthesis in the Azolla-Anabaena association was characterized with respect to photorespiration, early products of photosynthesis, and action spectra. Photorespiration as evidenced by an O2 inhibition of photosynthesis and an O2-dependent CO2 compensation concentration was found to occur in the association, and endophyte-free fronds, but not in the endophytic Anabaena. Analysis of the early products of photosynthesis indicated that both the fern and cyanobacterium fix CO2 via the Calvin cycle. The isolated endophytic Anabaena did not release significant amounts of amino acids synthesized from recently fixed carbon. The action spectra for photosynthesis in the Azolla-Anabaena association indicated that the maximum quantum yield is between 650 and 670 nanometers, while in the endophyte the maximum is between 580 and 640 nanometers. Although the endophytic cyanobacterium is photosynthetically competent, any contribution it makes to photosynthesis in the intact association was not apparent in the action spectrum. PMID:16661055

  15. Light-promoted rhodopsin expression and starvation survival in the marine dinoflagellate Oxyrrhis marina.

    PubMed

    Guo, Zhiling; Zhang, Huan; Lin, Senjie

    2014-01-01

    The discovery of microbial rhodopsins in marine proteobacteria changed the dogma that photosynthesis is the only pathway to use the solar energy for biological utilization in the marine environment. Although homologs of these rhodopsins have been identified in dinoflagellates, the diversity of the encoding genes and their physiological roles remain unexplored. As an initial step toward addressing the gap, we conducted high-throughput transcriptome sequencing on Oxyrrhis marina to retrieve rhodopsin transcripts, rapid amplification of cDNA ends to isolate full-length cDNAs of dominant representatives, and quantitative reverse-transcription PCR to investigate their expression under varying conditions. Our phylogenetic analyses showed that O. marina contained both the proton-pumping type (PR) and sensory type (SR) rhodopsins, and the transcriptome data showed that the PR type dominated over the SR type. We compared rhodopsin gene expression for cultures kept under light: dark cycle and continuous darkness in a time course of 24 days without feeding. Although both types of rhodopsin were expressed under the two conditions, the expression levels of PR were much higher than SR, consistent with the transcriptomic data. Furthermore, relative to cultures kept in the dark, rhodopsin expression levels and cell survival rate were both higher in cultures grown in the light. This is the first report of light-dependent promotion of starvation survival and concomitant promotion of PR expression in a eukaryote. While direct evidence needs to come from functional test on rhodopsins in vitro or gene knockout/knockdown experiments, our results suggest that the proton-pumping rhodopsin might be responsible for the light-enhanced survival of O. marina, as previously demonstrated in bacteria.

  16. Structural elements of the signal propagation pathway in squid rhodopsin and bovine rhodopsin.

    PubMed

    Sugihara, Minoru; Fujibuchi, Wataru; Suwa, Makiko

    2011-05-19

    Squid and bovine rhodopsins are G-protein coupled receptors (GPCRs) that activate Gq- and Gt-type G-proteins, respectively. To understand the structural elements of the signal propagation pathway, we performed molecular dynamics (MD) simulations of squid and bovine rhodopsins plus a detailed sequence analysis of class A GPCRs. The computations indicate that although the geometry of the retinal is similar in bovine and squid rhodopsins, the important interhelical hydrogen bond networks are different. In squid rhodopsin, an extended hydrogen bond network that spans ∼13 Å to Tyr315 on the cytoplasmic site is present regardless of the protonation state of Asp80. In contrast, the extended hydrogen bond network is interrupted at Tyr306 in bovine rhodopsin. Those differences in the hydrogen bond network may play significant functional roles in the signal propagation from the retinal binding site to the cytoplasmic site, including transmembrane helix (TM) 6 to which the G-protein binds. The MD calculations demonstrate that the elongated conformation of TM6 in squid rhodopsin is stabilized by salt bridges formed with helix (H) 9. Together with the interhelical hydrogen bonds, the salt bridges between TM6 and H9 stabilize the protein conformation of squid rhodopsin and may hinder the occurrence of large conformational changes that are observed upon activation of bovine rhodopsin. © 2011 American Chemical Society

  17. Chimeric Proton-Pumping Rhodopsins Containing the Cytoplasmic Loop of Bovine Rhodopsin

    PubMed Central

    Sasaki, Kengo; Yamashita, Takahiro; Yoshida, Kazuho; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki

    2014-01-01

    G-protein-coupled receptors (GPCRs) transmit stimuli to intracellular signaling systems. Rhodopsin (Rh), which is a prototypical GPCR, possesses an 11-cis retinal. Photoisomerization of 11-cis to all-trans leads to structural changes in the protein of cytoplasmic loops, activating G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. They possess an all-trans retinal, and photoisomerization to 13-cis triggers structural changes in protein. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. In this study, new chimeric proton-pumping rhodopsins, proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) were designed by replacing cytoplasmic loops with bovine Rh loops. Although G-protein was not activated by the PR chimeras, all 12 GR chimeras activated G-protein. The GR chimera containing the second cytoplasmic loop of bovine Rh did not activate G-protein. However, the chimera with a second and third double-loop further enhanced G-protein activation. Introduction of an E132Q mutation slowed the photocycle 30-fold and enhanced activation. The highest catalytic activity of the GR chimera was still 3,200 times lower than bovine Rh but only 64 times lower than amphioxus Go-rhodopsin. This GR chimera showed a strong absorption change of the amide-I band on a light-minus-dark difference FTIR spectrum which could represent a larger helical opening, important for G-protein activation. The light-dependent catalytic activity of this GR chimera makes it a potential optogenetic tool for enzymatic activation by light. PMID:24621599

  18. Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation.

    PubMed

    Blakeley, Lorie R; Chen, Chunhe; Chen, Ching-Kang; Chen, Jeannie; Crouch, Rosalie K; Travis, Gabriel H; Koutalos, Yiannis

    2011-06-01

    The reactive aldehyde all-trans retinal is released in rod photoreceptor outer segments by photoactivated rhodopsin and is eliminated through reduction to all-trans retinol. This study was undertaken to determine whether all-trans retinol formation depends on Abca4, arrestin, rhodopsin kinase, and the palmitylation of rhodopsin, all of which are factors that affect the release and sequestration of all-trans retinal. Experiments were performed in isolated retinas and single living rods derived from 129/sv wild-type mice and Abca4-, arrestin-, and rhodopsin kinase-deficient mice and in genetically modified mice containing unpalmitylated rhodopsin. Formation of all-trans retinol was measured by imaging its fluorescence and by HPLC of retina extracts. The release of all-trans retinal from photoactivated rhodopsin was measured in purified rod outer segment membranes according to the increase in tryptophan fluorescence. All experiments were performed at 37°C. The kinetics of all-trans retinol formation in the different types of genetically modified mice are in reasonable agreement with those in wild-type animals. The kinetics of all-trans retinol formation in 129/sv mice are similar to those in C57BL/6, although the latter are known to regenerate rhodopsin much more slowly. The release of all-trans retinal from rhodopsin in purified membranes is significantly faster than the formation of all-trans retinol in intact cells and is independent of the presence of the palmitate groups. The regeneration of rhodopsin and the recycling of its chromophore are not strongly coupled. Neither the activities of Abca4, rhodopsin kinase, and arrestin, nor the palmitylation of rhodopsin affects the formation of all-trans retinol.

  19. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base–Asp-73 interhelical salt bridge

    PubMed Central

    Spudich, Elena N.; Zhang, Weisheng; Alam, Maqsudul; Spudich, John L.

    1997-01-01

    Sensory rhodopsin II (SRII) is a repellent phototaxis receptor in the archaeon Halobacterium salinarum, similar to visual pigments in its seven-helix structure and linkage of retinal to the protein by a protonated Schiff base in helix G. Asp-73 in helix C is shown by spectroscopic analysis to be a counterion to the protonated Schiff base in the unphotolyzed SRII and to be the proton acceptor from the Schiff base during photoconversion to the receptor signaling state. Coexpression of the genes encoding mutated SRII with Asn substituted for Asp-73 (D73N) and the SRII transducer HtrII in H. salinarum cells results in a 3-fold higher swimming reversal frequency accompanied by demethylation of HtrII in the dark, showing that D73N SRII produces repellent signals in its unphotostimulated state. Analogous constitutive signaling has been shown to be produced by the similar neutral residue substitution of the Schiff base counterion and proton acceptor Glu-113 in human rod rhodopsin. The interpretation for both seven-helix receptors is that light activation of the wild-type protein is caused primarily by photoisomerization-induced transfer of the Schiff base proton on helix G to its primary carboxylate counterion on helix C. Therefore receptor activation by helix C–G salt-bridge disruption in the photoactive site is a general mechanism in retinylidene proteins spanning the vast evolutionary distance between archaea and humans. PMID:9144172

  20. G Protein-Coupled Receptor Rhodopsin: A Prospectus

    PubMed Central

    Filipek, Sławomir; Stenkamp, Ronald E.; Teller, David C.; Palczewski, Krzysztof

    2006-01-01

    Rhodopsin is a retinal photoreceptor protein of bipartite structure consisting of the transmembrane protein opsin and a light-sensitive chromophore 11-cis-retinal, linked to opsin via a protonated Schiff base. Studies on rhodopsin have unveiled many structural and functional features that are common to a large and pharmacologically important group of proteins from the G protein-coupled receptor (GPCR) superfamily, of which rhodopsin is the best-studied member. In this work, we focus on structural features of rhodopsin as revealed by many biochemical and structural investigations. In particular, the high-resolution structure of bovine rhodopsin provides a template for understanding how GPCRs work. We describe the sensitivity and complexity of rhodopsin that lead to its important role in vision. PMID:12471166

  1. The rhodopsin-arrestin-1 interaction in bicelles.

    PubMed

    Chen, Qiuyan; Vishnivetskiy, Sergey A; Zhuang, Tiandi; Cho, Min-Kyu; Thaker, Tarjani M; Sanders, Charles R; Gurevich, Vsevolod V; Iverson, T M

    2015-01-01

    G-protein-coupled receptors (GPCRs) are essential mediators of information transfer in eukaryotic cells. Interactions between GPCRs and their binding partners modulate the signaling process. For example, the interaction between GPCR and cognate G protein initiates the signal, while the interaction with cognate arrestin terminates G-protein-mediated signaling. In visual signal transduction, arrestin-1 selectively binds to the phosphorylated light-activated GPCR rhodopsin to terminate rhodopsin signaling. Under physiological conditions, the rhodopsin-arrestin-1 interaction occurs in highly specialized disk membrane in which rhodopsin resides. This membrane is replaced with mimetics when working with purified proteins. While detergents are commonly used as membrane mimetics, most detergents denature arrestin-1, preventing biochemical studies of this interaction. In contrast, bicelles provide a suitable alternative medium. An advantage of bicelles is that they contain lipids, which have been shown to be necessary for normal rhodopsin-arrestin-1 interaction. Here we describe how to reconstitute rhodopsin into bicelles, and how bicelle properties affect the rhodopsin-arrestin-1 interaction.

  2. The Rhodopsin-Arrestin-1 Interaction in Bicelles

    PubMed Central

    Chen, Qiuyan; Vishnivetskiy, Sergey A.; Zhuang, Tiandi; Cho, Min-Kyu; Thaker, Tarjani M.; Sanders, Charles R.; Gurevich, Vsevolod V.; Iverson, T. M.

    2015-01-01

    G-protein-coupled receptors (GPCRs) are essential mediators of information transfer in eukaryotic cells. Interactions between GPCRs and their binding partners modulate the signaling process. For example, the interaction between GPCR and cognate G protein initiates the signal, while the interaction with cognate arrestin terminates G-protein-mediated signaling. In visual signal transduction, arrestin-1 selectively binds to the phosphorylated light-activated GPCR rhodopsin to terminate rhodopsin signaling. Under physiological conditions, the rhodopsin-arrestin-1 interaction occurs in highly specialized disk membrane in which rhodopsin resides. This membrane is replaced with mimetics when working with purified proteins. While detergents are commonly used as membrane mimetics, most detergents denature arrestin-1, preventing biochemical studies of this interaction. In contrast, bicelles provide a suitable alternative medium. An advantage of bicelles is that they contain lipids, which have been shown to be necessary for normal rhodopsin-arrestin-1 interaction. Here we describe how to reconstitute rhodopsin into bicelles, and how bicelle properties affect the rhodopsin-arrestin-1 interaction. PMID:25697518

  3. Azolla-Anabaena Relationship 1

    PubMed Central

    Meeks, John C.; Steinberg, Nisan A.; Enderlin, Carol S.; Joseph, Cecillia M.; Peters, Gerald A.

    1987-01-01

    The major radioactive products of the fixation of [13N]N2 by Azolla caroliniana Willd.-Anabaena azollae Stras. were ammonium, glutamine, and glutamate, plus a small amount of alanine. Ammonium accounted for 70 and 32% of the total radioactivity recovered after fixation for 1 and 10 minutes, respectively. The presence of a substantial pool of [13N]N2-derived 13NH4+ after longer incubation periods was attributed to the spatial separation between the site of N2-fixation (Anabaena) and a second, major site of assimilation (Azolla). Initially, glutamine was the most highly radioactive organic product formed from [13N]N2, but after 10 minutes of fixation glutamate had 1.5 times more radiolabel than glutamine. These kinetics of radiolabeling, along with the effects of inhibitors of glutamine synthetase and glutamate synthase on assimilation of exogenous and [13N]N2-derived 13NH4+, indicate that ammonium assimilation occurred by the glutamate synthase cycle and that glutamate dehydrogenase played little or no role in the synthesis of glutamate by Azolla-Anabaena. PMID:16665538

  4. Untangling ciliary access and enrichment of two rhodopsin-like receptors using quantitative fluorescence microscopy reveals cell-specific sorting pathways

    PubMed Central

    Geneva, Ivayla I.; Tan, Han Yen; Calvert, Peter D.

    2017-01-01

    Resolution limitations of optical systems are major obstacles for determining whether proteins are enriched within cell compartments. Here we use an approach to determine the degree of membrane protein ciliary enrichment that quantitatively accounts for the differences in sampling of the ciliary and apical membranes inherent to confocal microscopes. Theory shows that cilia will appear more than threefold brighter than the surrounding apical membrane when the densities of fluorescently labeled proteins are the same, thus providing a benchmark for ciliary enrichment. Using this benchmark, we examined the ciliary enrichment signals of two G protein–coupled receptors (GPCRs)—the somatostatin receptor 3 and rhodopsin. Remarkably, we found that the C-terminal VxPx motif, required for efficient enrichment of rhodopsin within rod photoreceptor sensory cilia, inhibited enrichment of the somatostatin receptor in primary cilia. Similarly, VxPx inhibited primary cilium enrichment of a chimera of rhodopsin and somatostatin receptor 3, where the dual Ax(S/A)xQ ciliary targeting motifs within the third intracellular loop of the somatostatin receptor replaced the third intracellular loop of rhodopsin. Rhodopsin was depleted from primary cilia but gained access, without being enriched, with the dual Ax(S/A)xQ motifs. Ciliary enrichment of these GPCRs thus operates via distinct mechanisms in different cells. PMID:27974638

  5. Relevance of rhodopsin studies for GPCR activation.

    PubMed

    Deupi, Xavier

    2014-05-01

    Rhodopsin, the dim-light photoreceptor present in the rod cells of the retina, is both a retinal-binding protein and a G protein-coupled receptor (GPCR). Due to this conjunction, it benefits from an arsenal of spectroscopy techniques that can be used for its characterization, while being a model system for the important family of Class A (also referred to as "rhodopsin-like") GPCRs. For instance, rhodopsin has been a crucial player in the field of GPCR structural biology. Until 2007, it was the only GPCR for which a high-resolution crystal structure was available, so all structure-activity analyses on GPCRs, from structure-based drug discovery to studies of structural changes upon activation, were based on rhodopsin. At present, about a third of currently available GPCR structures are still from rhodopsin. In this review, I show some examples of how these structures can still be used to gain insight into general aspects of GPCR activation. First, the analysis of the third intracellular loop in rhodopsin structures allows us to gain an understanding of the structural and dynamic properties of this region, which is absent (due to protein engineering or poor electron density) in most of the currently available GPCR structures. Second, a detailed analysis of the structure of the transmembrane domains in inactive, intermediate and active rhodopsin structures allows us to detect early conformational changes in the process of ligand-induced GPCR activation. Finally, the analysis of a conserved ligand-activated transmission switch in the transmembrane bundle of GPCRs in the context of the rhodopsin activation cycle, allows us to suggest that the structures of many of the currently available agonist-bound GPCRs may correspond to intermediate active states. While the focus in GPCR structural biology is inevitably moving away from rhodopsin, in other aspects rhodopsin is still at the forefront. For instance, the first studies of the structural basis of disease mutants in

  6. Rhodopsin kinetics in the cat retina.

    PubMed

    Ripps, H; Mehaffey, L; Siegel, I M

    1981-03-01

    The bleaching and regeneration of rhodopsin in the living cat retina was studied by means of fundus reflectometry. Bleaching was effected by continuous light exposures of 1 min or 20 min, and the changes in retinal absorbance were measured at 29 wavelengths. For all of the conditions studied (fractional bleaches of from 65 to 100%), the regeneration of rhodopsin to its prebleach levels required greater than 60 min in darkness. After the 1-min exposures, the difference spectra recorded during the first 10 min of dark adaptation were dominated by photoproduct absorption, and rhodopsin regeneration kinetics were obscured by these intermediate processes. Extending the bleaching duration to 20 min gave the products of photolysis an opportunity to dissipate, and it was possible to follow the regenerative process over its full time-course. It was not possible, however, to fit these data with the simple exponential function predicted by first-order reaction kinetics. Other possible mechanisms were considered and are presented in the text. Nevertheless, the kinetics of regeneration compared favorably with the temporal changes in log sensitivity determined electrophysiologically by other investigators. Based on the bleaching curve for cat rhodopsin, the photosensitivity was determined and found to approximate closely the value obtained for human rhodopsin; i.e., the energy Ec required to bleach 1-e-1 of the available rhodopsin was 7.09 log scotopic troland-seconds (corrected for the optics of the cat eye), as compared with approximately 7.0 in man.

  7. Helix formation in arrestin accompanies recognition of photoactivated rhodopsin.

    PubMed

    Feuerstein, Sophie E; Pulvermüller, Alexander; Hartmann, Rudolf; Granzin, Joachim; Stoldt, Matthias; Henklein, Peter; Ernst, Oliver P; Heck, Martin; Willbold, Dieter; Koenig, Bernd W

    2009-11-17

    Binding of arrestin to photoactivated phosphorylated rhodopsin terminates the amplification of visual signals in photoreceptor cells. Currently, there is no crystal structure of a rhodopsin-arrestin complex available, although structures of unbound rhodopsin and arrestin have been determined. High-affinity receptor binding is dependent on distinct arrestin sites responsible for recognition of rhodopsin activation and phosphorylation. The loop connecting beta-strands V and VI in rod arrestin has been implicated in the recognition of active rhodopsin. We report the structure of receptor-bound arrestin peptide Arr(67-77) mimicking this loop based on solution NMR data. The peptide binds photoactivated rhodopsin in the unphosphorylated and phosphorylated form with similar affinities and stabilizes the metarhodopsin II photointermediate. A largely alpha-helical conformation of the receptor-bound peptide is observed.

  8. Thermal Stability of Rhodopsin and Progression of Retinitis Pigmentosa

    PubMed Central

    Liu, Monica Yun; Liu, Jian; Mehrotra, Devi; Liu, Yuting; Guo, Ying; Baldera-Aguayo, Pedro A.; Mooney, Victoria L.; Nour, Adel M.; Yan, Elsa C. Y.

    2013-01-01

    Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1–2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor's active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin's thermal stability and RP progression in patients. PMID:23625926

  9. In silico study of the human rhodopsin and meta rhodopsin II/S-arrestin complexes: impact of single point mutations related to retina degenerative diseases.

    PubMed

    Mokarzel-Falcón, Leonardo; Padrón-García, Juan Alexander; Carrasco-Velar, Ramón; Berry, Colin; Montero-Cabrera, Luis A

    2008-03-01

    We propose two models of the human S-arrestin/rhodopsin complex in the inactive dark adapted rhodopsin and meta rhodopsin II form, obtained by homology modeling and knowledge based docking. First, a homology model for the human S-arrestin was built and validated by molecular dynamics, showing an average root mean square deviation difference from the pattern behavior of 0.76 A. Then, combining the human S-arrestin model and the modeled structure of the two human rhodopsin forms, we propose two models of interaction for the human S-arrestin/rhodopsin complex. The models involve two S-arrestin regions related to the N domain (residues 68-78; 170-182) and a third constituent of the C domain (248-253), with the rhodopsin C terminus (330-348). Of the 22 single point mutations related to retinitis pigmentosa and congenital night blindness located in the cytoplasmatic portion of rhodopsin or in S-arrestin, our models locate 16 in the interaction region and relate two others to possible dimer formation. Our calculations also predict that the light activated complex is more stable than the dark adapted rhodopsin and, therefore, of higher affinity to S-arrestin. 2008 Wiley-Liss, Inc.

  10. Quantification of arrestin-rhodopsin binding stoichiometry.

    PubMed

    Lally, Ciara C M; Sommer, Martha E

    2015-01-01

    We have developed several methods to quantify arrestin-1 binding to rhodopsin in the native rod disk membrane. These methods can be applied to study arrestin interactions with all functional forms of rhodopsin, including dark-state rhodopsin, light-activated metarhodopsin II (Meta II), and the products of Meta II decay, opsin and all-trans-retinal. When used in parallel, these methods report both the actual amount of arrestin bound to the membrane surface and the functional aspects of arrestin binding, such as which arrestin loops are engaged and whether Meta II is stabilized. Most of these methods can also be applied to recombinant receptor reconstituted into liposomes, bicelles, and nanodisks.

  11. TRP and rhodopsin transport depends on dual XPORT ER chaperones encoded by an operon

    PubMed Central

    Chen, Zijing; Chen, Hsiang-Chin; Montell, Craig

    2015-01-01

    Summary TRP channels and G protein-coupled receptors (GPCR) play critical roles in sensory reception. However, the identities of the chaperones that assist GPCRs in translocating from the endoplasmic reticulum (ER) are limited, and TRP ER chaperones are virtually unknown. The one exception for TRPs is Drosophila XPORT. Here, we show that the xport locus is bicistronic, and encodes unrelated transmembrane proteins, which enable the signaling proteins that initiate and culminate phototransduction, rhodopsin 1 (Rh1) and TRP, to traffic to the plasma membrane. XPORT-A and XPORT-B are ER proteins, and loss of either has a profound impact on TRP and Rh1 targeting to the light-sensing compartment of photoreceptor cells. XPORT-B complexed in vivo with the Drosophila homolog of the mammalian HSP70 protein, GRP78/BiP, which in turn associated with Rh1. Our work highlights a coordinated network of chaperones required for the biosynthesis of the TRP channel and rhodopsin in Drosophila photoreceptor cells. PMID:26456832

  12. Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems.

    PubMed

    Guerrero, Leandro D; Vikram, Surendra; Makhalanyane, Thulani P; Cowan, Don A

    2017-09-01

    Microorganisms able to synthesize rhodopsins have the capacity to translocate ions through their membranes, using solar energy to generate a proton motive force. Rhodopsins are the most abundant phototrophic proteins in oceanic surface waters and are key constituents in marine bacterial ecology. However, it remains unclear how rhodopsins are used in most microorganisms. Despite their abundance in marine and fresh-water systems, the presence of functional rhodopsin systems in edaphic habitats has never been reported. Here, we show the presence of several new putative H + , Na + and Cl + pumping rhodopsins identified by metagenomic analysis of Antarctic desert hypolithic communities. Reconstruction of two Proteobacteria genomes harboring xanthorhodopsin-like proteins and one Bacteroidetes genome with a Na-pumping-like rhodopsin indicated that these bacteria were aerobic heterotrophs possessing the apparent capacity for the functional expression of rhodopsins. The existence of these protein systems in hypolithic bacteria expands the known role of rhodopsins to include terrestrial environments and suggests a possible predominant function as heterotrophic energy supply proteins, a feasible microbial adaptation to the harsh conditions prevalent in Antarctic edaphic systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods

    PubMed Central

    Berry, Justin; Frederiksen, Rikard; Yao, Yun; Nymark, Soile

    2016-01-01

    Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that is activated when its 11-cis-retinal moiety is photoisomerized to all-trans retinal. This step initiates a cascade of reactions by which rods signal changes in light intensity. Like other GPCRs, rhodopsin is deactivated through receptor phosphorylation and arrestin binding. Full recovery of receptor sensitivity is then achieved when rhodopsin is regenerated through a series of steps that return the receptor to its ground state. Here, we show that dephosphorylation of the opsin moiety of rhodopsin is an extremely slow but requisite step in the restoration of the visual pigment to its ground state. We make use of a novel observation: isolated mouse retinae kept in standard media for routine physiologic recordings display blunted dephosphorylation of rhodopsin. Isoelectric focusing followed by Western blot analysis of bleached isolated retinae showed little dephosphorylation of rhodopsin for up to 4 h in darkness, even under conditions when rhodopsin was completely regenerated. Microspectrophotometeric determinations of rhodopsin spectra show that regenerated phospho-rhodopsin has the same molecular photosensitivity as unphosphorylated rhodopsin and that flash responses measured by trans-retinal electroretinogram or single-cell suction electrode recording displayed dark-adapted kinetics. Single quantal responses displayed normal dark-adapted kinetics, but rods were only half as sensitive as those containing exclusively unphosphorylated rhodopsin. We propose a model in which light-exposed retinae contain a mixed population of phosphorylated and unphosphorylated rhodopsin. Moreover, complete dark adaptation can only occur when all rhodopsin has been dephosphorylated, a process that requires >3 h in complete darkness. SIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) constitute the largest superfamily of proteins that compose ∼4% of the mammalian genome whose members share a common membrane

  14. Genetic studies on a nitrogen-fixing cyanobacterium. [Anabaena; Escherichi coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolk, C.P.; Cardemil, L.; Elhai, J.

    1987-04-01

    Mutants of Anabaena PCC7120 capable of aerobic growth with NO/sub 3//sup -/ but not N/sub 2/, and capable of microaerobic reduction of C/sub 2/H/sub 2/, were isolated by penicillin enrichment after UV irradiation. Heterocysts of two mutants lack the principal envelope glycolipid, those of EF116 have a non-cohesive envelope polysaccharide, and those of other strains have other defects. A Nm/sup r/ cosmid library of DNA from wild type Anabaena PCC7120 was established in Escherichia coli bearing the Ap helper plasmid pDS4101. A conjugative plasmid was introduced, and the bacteria replicated to lawns of individual mutant strains of Anabaena. After onemore » day of non-selective growth, selection was applied for Nm/sup r/ and nitrogen fixation. Overlapping cosmids complementing EF116 and one complementing another mutant have been mapped. The complementing genes are thought to act early in differentiation. Inclusion, in an E. coli donor of an appropriate methylase gene enhanced, by a factor of 10/sup 2/ to 10/sup 3/, transfer to Anabaena PCC7120 of a plasmid containing numerous sites for the Anabaena restriction endonuclease, AvaII.« less

  15. Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1

    PubMed Central

    Zhang, Hangjun; Jiang, Xiaojun; Lu, Liping; Xiao, Wenfeng

    2015-01-01

    Polychlorinated biphenyls (PCBs), a class of hazardous pollutants, are difficult to dissipate in the natural environment. In this study, a cyanobacterial strain Anabaena PD-1 showed good resistance against PCB congeners. Compared to a control group, chlorophyll a content decreased 3.7% and 11.7% when Anabaena PD-1 was exposed to 2 and 5 mg/L PCBs for 7 d. This cyanobacterial strain was capable of decomposing PCB congeners which was conclusively proved by determination of chloride ion concentrations in chlorine-free medium. After 7 d, the chloride ion concentrations in PCB-treated groups (1, 2, 5 mg/L) were 3.55, 3.05, and 2.25 mg/L, respectively. The genetic information of strain PD-1 was obtained through 16S rRNA sequencing analysis. The GenBank accession number of 16S rRNA of Anabaena PD-1 was KF201693.1. Phylogenetic tree analysis clearly indicated that Anabaena PD-1 belonged to the genus Anabaena. The degradation half-life of Aroclor 1254 by Anabaena PD-1 was 11.36 d; the total degradation rate for Aroclor 1254 was 84.4% after 25 d. Less chlorinated PCB congeners were more likely to be degraded by Anabaena PD-1 in comparison with highly chlorinated congeners. Meta- and para-chlorines in trichlorodiphenyls and tetrachlorobiphenyls were more susceptible to dechlorination than ortho-chlorines during the PCB-degradation process by Anabaena PD-1. Furthermore, Anabaena PD-1 can decompose dioxin-like PCBs. The percent biodegradation of 12 dioxin-like PCBs by strain PD-1 ranged from 37.4% to 68.4% after 25 days. Results above demonstrate that Anabaena PD-1 is a PCB-degrader with great potential for the in situ bioremediation of PCB-contaminated paddy soils. PMID:26177203

  16. Lateral diffusion of rhodopsin in photoreceptor membrane: a reappraisal.

    PubMed

    Govardovskii, Victor I; Korenyak, Darya A; Shukolyukov, Sergei A; Zueva, Lidia V

    2009-08-28

    In a series of works between 1972 and 1984, it was established that rhodopsin undergoes rotational and lateral Brownian motion in the plane of photoreceptor membrane. The concept of free movement of proteins of phototransduction cascade is an essential principle of the present scheme of vertebrate phototransduction. This has recently been challenged by findings that show that in certain conditions rhodopsin in the membrane may be dimeric and form extended areas of paracrystalline organization. Such organization seems incompatible with earlier data on free rhodopsin diffusion. Thus we decided to reinvestigate lateral diffusion of rhodopsin and products of its photolysis in photoreceptor membrane specifically looking for indications of possible oligomeric organization. Diffusion exchange by rhodopsin and its photoproducts between bleached and unbleached halves of rod outer segment was traced using high-speed dichroic microspectrophotometer. Measurements were conducted on amphibian (frog, toad, and salamander) and gecko rods. We found that the curves that are supposed to reflect the process of diffusion equilibration of rhodopsin in nonuniformly bleached outer segment largely show production of long-lived bleaching intermediate, metarhodopsin III (Meta III). After experimental elimination of Meta III contribution, we observed rhodopsin equilibration time constant was threefold to tenfold longer than estimated previously. However, after proper correction for the geometry of rod discs, it translates into generally accepted value of diffusion constant of approximately 5 x 10(-9) cm(2) s(-1). Yet, we found that there exists an immobile rhodopsin fraction whose size can vary from virtually zero to 100%, depending on poorly defined factors. Controls suggest that the formation of the immobile fraction is not due to fragmentation of rod outer segment discs but supposedly reflects oligomerization of rhodopsin. Implications of the new findings for the present model of

  17. Influence of Arrestin on the Photodecay of Bovine Rhodopsin.

    PubMed

    Chatterjee, Deep; Eckert, Carl Elias; Slavov, Chavdar; Saxena, Krishna; Fürtig, Boris; Sanders, Charles R; Gurevich, Vsevolod V; Wachtveitl, Josef; Schwalbe, Harald

    2015-11-09

    Continued activation of the photocycle of the dim-light receptor rhodopsin leads to the accumulation of all-trans-retinal in the rod outer segments (ROS). This accumulation can damage the photoreceptor cell. For retinal homeostasis, deactivation processes are initiated in which the release of retinal is delayed. One of these processes involves the binding of arrestin to rhodopsin. Here, the interaction of pre-activated truncated bovine visual arrestin (Arr(Tr)) with rhodopsin in 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) micelles is investigated by solution NMR techniques and flash photolysis spectroscopy. Our results show that formation of the rhodopsin-arrestin complex markedly influences partitioning in the decay kinetics of rhodopsin, which involves the simultaneous formation of a meta II and a meta III state from the meta I state. Binding of Arr(Tr) leads to an increase in the population of the meta III state and consequently to an approximately twofold slower release of all-trans-retinal from rhodopsin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Femtosecond laser spectroscopy of the rhodopsin photochromic reaction: a concept for ultrafast optical molecular switch creation (ultrafast reversible photoreaction of rhodopsin).

    PubMed

    Smitienko, Olga; Nadtochenko, Victor; Feldman, Tatiana; Balatskaya, Maria; Shelaev, Ivan; Gostev, Fedor; Sarkisov, Oleg; Ostrovsky, Mikhail

    2014-11-11

    Ultrafast reverse photoreaction of visual pigment rhodopsin in the femtosecond time range at room temperature is demonstrated. Femtosecond two-pump probe experiments with a time resolution of 25 fs have been performed. The first рump pulse at 500 nm initiated cis-trans photoisomerization of rhodopsin chromophore, 11-cis retinal, which resulted in the formation of the primary ground-state photoproduct within a mere 200 fs. The second pump pulse at 620 nm with a varying delay of 200 to 3750 fs relative to the first рump pulse, initiated the reverse phototransition of the primary photoproduct to rhodopsin. The results of this photoconversion have been observed on the differential spectra obtained after the action of two pump pulses at a time delay of 100 ps. It was found that optical density decreased at 560 nm in the spectral region of bathorhodopsin absorption and increased at 480 nm, where rhodopsin absorbs. Rhodopsin photoswitching efficiency shows oscillations as a function of the time delay between two рump pulses. The quantum yield of reverse photoreaction initiated by the second pump pulse falls within the range 15%±1%. The molecular mechanism of the ultrafast reversible photoreaction of visual pigment rhodopsin may be used as a concept for the development of an ultrafast optical molecular switch.

  19. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology

    PubMed Central

    DeLong, Edward F.; Béjà, Oded; González, José M.; Pedrós-Alió, Carlos

    2016-01-01

    SUMMARY The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of “heterotrophic” bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes. PMID:27630250

  20. Rhodopsin TM6 Can Interact with Two Separate and Distinct Sites on Arrestin: Evidence for Structural Plasticity and Multiple Docking Modes in Arrestin–Rhodopsin Binding

    PubMed Central

    2015-01-01

    Various studies have implicated the concave surface of arrestin in the binding of the cytosolic surface of rhodopsin. However, specific sites of contact between the two proteins have not previously been defined in detail. Here, we report that arrestin shares part of the same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to rhodopsin may share some similar underlying mechanisms. We also identify two areas of contact between the proteins near this region. Both sites lie in the arrestin N-domain, one in the so-called “finger” loop (residues 67–79) and the other in the 160 loop (residues 155–165). We mapped these sites using a novel tryptophan-induced quenching method, in which we introduced Trp residues into arrestin and measured their ability to quench the fluorescence of bimane probes attached to cysteine residues on TM6 of rhodopsin (T242C and T243C). The involvement of finger loop binding to rhodopsin was expected, but the evidence of the arrestin 160 loop contacting rhodopsin was not. Remarkably, our data indicate one site on rhodopsin can interact with multiple structurally separate sites on arrestin that are almost 30 Å apart. Although this observation at first seems paradoxical, in fact, it provides strong support for recent hypotheses that structural plasticity and conformational changes are involved in the arrestin–rhodopsin binding interface and that the two proteins may be able to interact through multiple docking modes, with arrestin binding to both monomeric and dimeric rhodopsin. PMID:24724832

  1. Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: evidence for structural plasticity and multiple docking modes in arrestin-rhodopsin binding.

    PubMed

    Sinha, Abhinav; Jones Brunette, Amber M; Fay, Jonathan F; Schafer, Christopher T; Farrens, David L

    2014-05-27

    Various studies have implicated the concave surface of arrestin in the binding of the cytosolic surface of rhodopsin. However, specific sites of contact between the two proteins have not previously been defined in detail. Here, we report that arrestin shares part of the same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to rhodopsin may share some similar underlying mechanisms. We also identify two areas of contact between the proteins near this region. Both sites lie in the arrestin N-domain, one in the so-called "finger" loop (residues 67-79) and the other in the 160 loop (residues 155-165). We mapped these sites using a novel tryptophan-induced quenching method, in which we introduced Trp residues into arrestin and measured their ability to quench the fluorescence of bimane probes attached to cysteine residues on TM6 of rhodopsin (T242C and T243C). The involvement of finger loop binding to rhodopsin was expected, but the evidence of the arrestin 160 loop contacting rhodopsin was not. Remarkably, our data indicate one site on rhodopsin can interact with multiple structurally separate sites on arrestin that are almost 30 Å apart. Although this observation at first seems paradoxical, in fact, it provides strong support for recent hypotheses that structural plasticity and conformational changes are involved in the arrestin-rhodopsin binding interface and that the two proteins may be able to interact through multiple docking modes, with arrestin binding to both monomeric and dimeric rhodopsin.

  2. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    PubMed

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Chimeric microbial rhodopsins for optical activation of Gs-proteins

    PubMed Central

    Yoshida, Kazuho; Yamashita, Takahiro; Sasaki, Kengo; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki

    2017-01-01

    We previously showed that the chimeric proteins of microbial rhodopsins, such as light-driven proton pump bacteriorhodopsin (BR) and Gloeobacter rhodopsin (GR) that contain cytoplasmic loops of bovine rhodopsin, are able to activate Gt protein upon light absorption. These facts suggest similar protein structural changes in both the light-driven proton pump and animal rhodopsin. Here we report two trials to engineer chimeric rhodopsins, one for the inserted loop, and another for the microbial rhodopsin template. For the former, we successfully activated Gs protein by light through the incorporation of the cytoplasmic loop of β2-adrenergic receptor (β2AR). For the latter, we did not observe any G-protein activation for the light-driven sodium pump from Indibacter alkaliphilus (IndiR2) or a light-driven chloride pump halorhodopsin from Natronomonas pharaonis (NpHR), whereas the light-driven proton pump GR showed light-dependent G-protein activation. This fact suggests that a helix opening motion is common to G protein coupled receptor (GPCR) and GR, but not to IndiR2 and NpHR. Light-induced difference FTIR spectroscopy revealed similar structural changes between WT and the third loop chimera for each light-driven pump. A helical structural perturbation, which was largest for GR, was further enhanced in the chimera. We conclude that similar structural dynamics that occur on the cytoplasmic side of GPCR are needed to design chimeric microbial rhodopsins. PMID:29362703

  4. Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants

    PubMed Central

    Ploier, Birgit; Caro, Lydia N.; Morizumi, Takefumi; Pandey, Kalpana; Pearring, Jillian N.; Goren, Michael A.; Finnemann, Silvia C.; Graumann, Johannes; Arshavsky, Vadim Y.; Dittman, Jeremy S.; Ernst, Oliver P.; Menon, Anant K.

    2016-01-01

    Retinitis pigmentosa (RP) is a blinding disease often associated with mutations in rhodopsin, a light-sensing G protein-coupled receptor and phospholipid scramblase. Most RP-associated mutations affect rhodopsin's activity or transport to disc membranes. Intriguingly, some mutations produce apparently normal rhodopsins that nevertheless cause disease. Here we show that three such enigmatic mutations—F45L, V209M and F220C—yield fully functional visual pigments that bind the 11-cis retinal chromophore, activate the G protein transducin, traffic to the light-sensitive photoreceptor compartment and scramble phospholipids. However, tests of scramblase activity show that unlike wild-type rhodopsin that functionally reconstitutes into liposomes as dimers or multimers, F45L, V209M and F220C rhodopsins behave as monomers. This result was confirmed in pull-down experiments. Our data suggest that the photoreceptor pathology associated with expression of these enigmatic RP-associated pigments arises from their unexpected inability to dimerize via transmembrane helices 1 and 5. PMID:27694816

  5. Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants

    NASA Astrophysics Data System (ADS)

    Ploier, Birgit; Caro, Lydia N.; Morizumi, Takefumi; Pandey, Kalpana; Pearring, Jillian N.; Goren, Michael A.; Finnemann, Silvia C.; Graumann, Johannes; Arshavsky, Vadim Y.; Dittman, Jeremy S.; Ernst, Oliver P.; Menon, Anant K.

    2016-10-01

    Retinitis pigmentosa (RP) is a blinding disease often associated with mutations in rhodopsin, a light-sensing G protein-coupled receptor and phospholipid scramblase. Most RP-associated mutations affect rhodopsin's activity or transport to disc membranes. Intriguingly, some mutations produce apparently normal rhodopsins that nevertheless cause disease. Here we show that three such enigmatic mutations--F45L, V209M and F220C--yield fully functional visual pigments that bind the 11-cis retinal chromophore, activate the G protein transducin, traffic to the light-sensitive photoreceptor compartment and scramble phospholipids. However, tests of scramblase activity show that unlike wild-type rhodopsin that functionally reconstitutes into liposomes as dimers or multimers, F45L, V209M and F220C rhodopsins behave as monomers. This result was confirmed in pull-down experiments. Our data suggest that the photoreceptor pathology associated with expression of these enigmatic RP-associated pigments arises from their unexpected inability to dimerize via transmembrane helices 1 and 5.

  6. Untangling ciliary access and enrichment of two rhodopsin-like receptors using quantitative fluorescence microscopy reveals cell-specific sorting pathways.

    PubMed

    Geneva, Ivayla I; Tan, Han Yen; Calvert, Peter D

    2017-02-15

    Resolution limitations of optical systems are major obstacles for determining whether proteins are enriched within cell compartments. Here we use an approach to determine the degree of membrane protein ciliary enrichment that quantitatively accounts for the differences in sampling of the ciliary and apical membranes inherent to confocal microscopes. Theory shows that cilia will appear more than threefold brighter than the surrounding apical membrane when the densities of fluorescently labeled proteins are the same, thus providing a benchmark for ciliary enrichment. Using this benchmark, we examined the ciliary enrichment signals of two G protein-coupled receptors (GPCRs)-the somatostatin receptor 3 and rhodopsin. Remarkably, we found that the C-terminal VxPx motif, required for efficient enrichment of rhodopsin within rod photoreceptor sensory cilia, inhibited enrichment of the somatostatin receptor in primary cilia. Similarly, VxPx inhibited primary cilium enrichment of a chimera of rhodopsin and somatostatin receptor 3, where the dual Ax(S/A)xQ ciliary targeting motifs within the third intracellular loop of the somatostatin receptor replaced the third intracellular loop of rhodopsin. Rhodopsin was depleted from primary cilia but gained access, without being enriched, with the dual Ax(S/A)xQ motifs. Ciliary enrichment of these GPCRs thus operates via distinct mechanisms in different cells. © 2017 Geneva et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Effect of dodecyl maltoside detergent on rhodopsin stability and function.

    PubMed

    Ramon, Eva; Marron, Jordi; del Valle, Luis; Bosch, Laia; Andrés, Anna; Manyosa, Joan; Garriga, Pere

    2003-12-01

    Detergent-solubilized bovine rhodopsin produces mixed detergent/lipid/protein micelles. The effect of dodecyl maltoside detergent on the thermal stability of dark-state rhodopsin, and upon formation of the different intermediates after rhodopsin photobleaching (metarhodopsin II and metarhodopsin III), and upon transducin activation has been studied. No significant effect is observed for the thermal stability of dark-state rhodopsin in the range of detergent concentrations studied, but a decrease in the stability of metarhodopsin II and an increase in metarhodopsin III formation is observed with decreasing detergent concentrations. The transducin activation process is also affected by the presence of detergent indicating that this process is dependent on the lipid micro-environment and membrane fluidity, and this stresses the importance of the native lipid environment in rhodopsin normal function.

  8. Assessing the correlation between mutant rhodopsin stability and the severity of retinitis pigmentosa

    PubMed Central

    McKeone, Richard; Wikstrom, Matthew; Kiel, Christina

    2014-01-01

    Purpose Following a previous study that demonstrated a correlation between rhodopsin stability and the severity of retinitis pigmentosa (RP), we investigated whether predictions of severity can be improved with a regional analysis of this correlation. The association between changes to the stability of the protein and the relative amount of rhodopsin reaching the plasma membrane was assessed. Methods Crystallography-based estimations of mutant rhodopsin stability were compared with descriptions in the scientific literature of the visual function of mutation carriers to determine the extent of associations between rhodopsin stability and clinical phenotype. To test the findings of this analysis, three residues of a green fluorescent protein (GFP) tagged rhodopsin plasmid were targeted with site-directed random mutagenesis to generate mutant variants with a range of stability changes. These plasmids were transfected into HEK-293 cells, and then flow cytometry was used to measure rhodopsin on the cells’ plasma membrane. The GFP signal was used to measure the ratio between this membrane-bound rhodopsin and total cellular rhodopsin. FoldX stability predictions were then compared with the surface staining data and clinical data from the database to characterize the relationship between rhodopsin stability, the severity of RP, and the expression of rhodopsin at the cell surface. Results There was a strong linear correlation between the scale of the destabilization of mutant variants and the severity of retinal disease. A correlation was also seen in vitro between stability and the amount of rhodopsin at the plasma membrane. Rhodopsin is drastically reduced on the surface of cells transfected with variants that differ in their inherent stability from the wild-type by more than 2 kcal/mol. Below this threshold, surface levels are closer to those of the wild-type. Conclusions There is a correlation between the stability of rhodopsin mutations and disease severity and

  9. Monomeric rhodopsin is the minimal functional unit required for arrestin binding.

    PubMed

    Tsukamoto, Hisao; Sinha, Abhinav; DeWitt, Mark; Farrens, David L

    2010-06-11

    We have tested whether arrestin binding requires the G-protein-coupled receptor be a dimer or a multimer. To do this, we encapsulated single-rhodopsin molecules into nanoscale phospholipid particles (so-called nanodiscs) and measured their ability to bind arrestin. Our data clearly show that both visual arrestin and beta-arrestin 1 can bind to monomeric rhodopsin and stabilize the active metarhodopsin II form. Interestingly, we find that the monomeric rhodopsin in nanodiscs has a higher affinity for wild-type arrestin binding than does oligomeric rhodopsin in liposomes or nanodiscs, as assessed by stabilization of metarhodopsin II. Together, these results establish that rhodopsin self-association is not required to enable arrestin binding. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Functional reconstitution of rhodopsin into tubular lipid bilayers supported by nanoporous media.

    PubMed

    Soubias, Olivier; Polozov, Ivan V; Teague, Walter E; Yeliseev, Alexei A; Gawrisch, Klaus

    2006-12-26

    We report on a novel reconstitution method for G-protein-coupled receptors (GPCRs) that yields detergent-free, single, tubular membranes in porous anodic aluminum oxide (AAO) filters at concentrations sufficient for structural studies by solid-state NMR. The tubular membranes line the inner surface of pores that traverse the filters, permitting easy removal of detergents during sample preparation as well as delivery of ligands for functional studies. Reconstitution of bovine rhodopsin into AAO filters did not interfere with rhodopsin function. Photoactivation of rhodopsin in AAO pores, monitored by UV-vis spectrophotometry, was indistinguishable from rhodopsin in unsupported unilamellar liposomes. The rhodopsin in AAO pores is G-protein binding competent as shown by a [35S]GTPgammaS binding assay. The lipid-rhodopsin interaction was investigated by 2H NMR on sn-1- or sn-2-chain perdeuterated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phospholine as a matrix lipid. Rhodopsin incorporation increased mosaic spread of bilayer orientations and contributed to spectral density of motions with correlation times in the range of nano- to microseconds, detected as a significant reduction in spin-spin relaxation times. The change in lipid chain order parameters due to interaction with rhodopsin was insignificant.

  11. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pande, C.; Pande, A.; Yue, K.T.

    1987-08-11

    The authors report here the resonance Raman spectra of octopus rhodopsin and its photoproducts, bathorhodopsin and acid metarhodopsin. These studies were undertaken in order to make comparisons with the well-studied bovine pigments, so as to understand the similarities and the differences in pigment structure and photochemical processes between vertebrates and invertebrates. The flow method was used to obtain the Raman spectrum of rhodopsin at 13 /sup 0/C. The bathorhodopsin spectrum was obtained by computer subtraction of the spectra containing different photostationary mixtures of rhodopsin, isorhodopsin, hypsorhodopsin, and bathorhodopsin, obtained at 12 K using the pump-probe technique and from measurements atmore » 80 K. Like their bovine counterparts, the Schiff base vibrational mode appears at approx. 1660 cm/sup -1/ in octopus rhodopsin and the photoproducts, bathorhodopsin and acid metarhodopsin, suggesting a proteonated Schiff base linkage between the chromophore and the protein. Differences between the Raman spectra of octopus rhodopsin and bathorhodopsin indicate that the formation of bathorhodopsin is associated with chromophore isomerization. This inference is substantiated by the chromophore chemical extraction data which show that, like the bovine system, octopus rhodopsin is an 11-cis pigment, while the photoproducts contain an all-trans pigment, in agreement with the previous work. The octopus rhodopsin and bathorhodopsin spectra show marked differences from their bovine counterparts in other respects, however. The differences are most dramatic in the structure-sensitive fingerprint and the HOOP regions. Thus, it appears that although the two species differ in the specific nature of the chromophore-protein interactions, the general process of visual transduction is the same.« less

  12. Regulation of Anabaena sp. strain PCC 7120 glutamine synthetase activity in a Synechocystis sp. strain PCC 6803 derivative strain bearing the Anabaena glnA gene and a mutated host glnA gene.

    PubMed Central

    Mérida, A; Flores, E; Florencio, F J

    1992-01-01

    The glnA gene from Synechocystis sp. strain PCC 6803 was cloned by hybridization with the glnA gene from Anabaena sp. strain PCC 7120, and a deletion-insertion mutation of the Synechocystis gene was generated in vitro. A strain derived from Synechocystis sp. strain PCC 6803 which contained integrated into the chromosome, in addition to its own glnA gene, the Anabaena glnA gene was constructed. From that strain, a Synechocystis sp. glnA mutant could be obtained by transformation with the inactivated Synechocystis glnA gene; this mutant grew by using Anabaena glutamine synthetase and was not a glutamine auxotroph. A Synechocystis sp. glnA mutant could not be obtained, however, from the wild-type Synechocystis sp. The Anabaena glutamine synthetase enzyme was subject to ammonium-promoted inactivation when expressed in the Synechocystis strain but not in the Anabaena strain itself. Images PMID:1345914

  13. Distribution and Diversity of Rhodopsin-Producing Microbes in the Chesapeake Bay.

    PubMed

    Maresca, Julia A; Miller, Kelsey J; Keffer, Jessica L; Sabanayagam, Chandran R; Campbell, Barbara J

    2018-07-01

    Although sunlight is an abundant source of energy in surface environments, less than 0.5% of the available photons are captured by (bacterio)chlorophyll-dependent photosynthesis in plants and bacteria. Metagenomic data indicate that 30 to 60% of the bacterial genomes in some environments encode rhodopsins, retinal-based photosystems found in heterotrophs, suggesting that sunlight may provide energy for more life than previously suspected. However, quantitative data on the number of cells that produce rhodopsins in environmental systems are limited. Here, we use total internal reflection fluorescence microscopy to show that the number of free-living microbes that produce rhodopsins increases along the salinity gradient in the Chesapeake Bay. We correlate this functional data with environmental data to show that rhodopsin abundance is positively correlated with salinity and with indicators of active heterotrophy during the day. Metagenomic and metatranscriptomic data suggest that the microbial rhodopsins in the low-salinity samples are primarily found in Actinobacteria and Bacteroidetes , while those in the high-salinity samples are associated with SAR-11 type Alphaproteobacteria IMPORTANCE Microbial rhodopsins are common light-activated ion pumps in heterotrophs, and previous work has proposed that heterotrophic microbes use them to conserve energy when organic carbon is limiting. If this hypothesis is correct, rhodopsin-producing cells should be most abundant where nutrients are most limited. Our results indicate that in the Chesapeake Bay, rhodopsin gene abundance is correlated with salinity, and functional rhodopsin production is correlated with nitrate, bacterial production, and chlorophyll a We propose that in this environment, where carbon and nitrogen are likely not limiting, heterotrophs do not need to use rhodopsins to supplement ATP synthesis. Rather, the light-generated proton motive force in nutrient-rich environments could be used to power energy

  14. Time-resolved rhodopsin activation currents in a unicellular expression system.

    PubMed Central

    Sullivan, J M; Shukla, P

    1999-01-01

    The early receptor current (ERC) is the charge redistribution occurring in plasma membrane rhodopsin during light activation of photoreceptors. Both the molecular mechanism of the ERC and its relationship to rhodopsin conformational activation are unknown. To investigate whether the ERC could be a time-resolved assay of rhodopsin structure-function relationships, the distinct sensitivity of modern electrophysiological tools was employed to test for flash-activated ERC signals in cells stably expressing normal human rod opsin after regeneration with 11-cis-retinal. ERCs are similar in waveform and kinetics to those found in photoreceptors. The action spectrum of the major R(2) charge motion is consistent with a rhodopsin photopigment. The R(1) phase is not kinetically resolvable and the R(2) phase, which overlaps metarhodopsin-II formation, has a rapid risetime and complex multiexponential decay. These experiments demonstrate, for the first time, kinetically resolved electrical state transitions during activation of expressed visual pigment in a unicellular environment (single or fused giant cells) containing only 6 x 10(6)-8 x 10(7) molecules of rhodopsin. This method improves measurement sensitivity 7 to 8 orders of magnitude compared to other time-resolved techniques applied to rhodopsin to study the role particular amino acids play in conformational activation and the forces that govern those transitions. PMID:10465746

  15. Suppressor Mutation Analysis of the Sensory Rhodopsin I-Transducer Complex: Insights into the Color-Sensing Mechanism

    PubMed Central

    Jung, Kwang-Hwan; Spudich, John L.

    1998-01-01

    The molecular complex containing the phototaxis receptor sensory rhodopsin I (SRI) and transducer protein HtrI (halobacterial transducer for SRI) mediates color-sensitive phototaxis responses in the archaeon Halobacterium salinarum. One-photon excitation of the complex by orange light elicits attractant responses, while two-photon excitation (orange followed by near-UV light) elicits repellent responses in swimming cells. Several mutations in SRI and HtrI cause an unusual mutant phenotype, called orange-light-inverted signaling, in which the cell produces a repellent response to normally attractant light. We applied a selection procedure for intragenic and extragenic suppressors of orange-light-inverted mutants and identified 15 distinct second-site mutations that restore the attractant response. Two of the 3 suppressor mutations in SRI are positioned at the cytoplasmic ends of helices F and G, and 12 suppressor mutations in HtrI cluster at the cytoplasmic end of the second HtrI transmembrane helix (TM2). Nearly all suppressors invert the normally repellent response to two-photon stimulation to an attractant response when they are expressed with their suppressible mutant alleles or in an otherwise wild-type strain. The results lead to a model for control of flagellar reversal by the SRI-HtrI complex. The model invokes an equilibrium between the A (reversal-inhibiting) and R (reversal-stimulating) conformers of the signaling complex. Attractant light and repellent light shift the equilibrium toward the A and R conformers, respectively, and mutations are proposed to cause intrinsic shifts in the equilibrium in the dark form of the complex. Differences in the strength of the two-photon signal inversion and in the allele specificity of suppression are correlated, and this correlation can be explained in terms of different values of the equilibrium constant (Keq) for the conformational transition in different mutants and mutant-suppressor pairs. PMID:9555883

  16. Different Dark Conformations Function in Color-Sensitive Photosignaling by the Sensory Rhodopsin I-HtrI Complex

    PubMed Central

    Sasaki, Jun; Phillips, Brian J.; Chen, Xinpu; Van Eps, Ned; Tsai, Ah-Lim; Hubbell, Wayne L.; Spudich, John L.

    2007-01-01

    The haloarchaeal phototaxis receptor sensory rhodopsin I (SRI) in complex with its transducer HtrI delivers an attractant signal from excitation with an orange photon and a repellent signal from a second near-UV photon excitation. Using a proteoliposome system with purified SRI in complex with its transducer HtrI, we identified by site-directed fluorescence labeling a site (Ser155) on SRI that is conformationally active in signal relay to HtrI. Using site-directed spin labeling of Ser155Cys with a nitroxide side chain, we detected a change in conformation following one-photon excitation such that the spin probe exhibits a splitting of the outer hyperfine extrema (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}2{\\mathrm{A^{\\prime}_{zz}}}\\end{equation*}\\end{document}) significantly smaller than that of the electron paramagnetic resonance spectrum in the dark state. The dark conformations of five mutant complexes that do not discriminate between orange and near-UV excitation show shifts to lower or higher \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}2{\\mathrm{A^{\\prime}_{zz}}}\\end{equation*}\\end{document} values correlated with the alterations in their motility behavior to one- and two-photon stimuli. These data are interpreted in terms of a model in which the dark complex is populated by two conformers in the wild type, one that inhibits the CheA kinase (A) and the other that activates it (R), shifted in the dark by mutations and shifted in the wild-type SRI-HtrI complex in opposite directions by one-photon and two-photon reactions. PMID

  17. THE ROLE OF SULFHYDRYL GROUPS IN THE BLEACHING AND SYNTHESIS OF RHODOPSIN

    PubMed Central

    Wald, George; Brown, Paul K.

    1952-01-01

    The condensation of retinene1 with opsin to form rhodopsin is optimal at pH about 6, a pH which favors the condensation of retinene1 with sulfhydryl rather than with amino groups. The synthesis of rhodopsin, though unaffected by the less powerful sulfhydryl reagents, monoiodoacetic acid and its amide, is inhibited completely by p-chloromercuribenzoate (PCMB). This inhibition is reversed in part by the addition of glutathione. PCMB does not attack rhodopsin itself, nor does it react with retinene1. Its action in this system is confined to the —SH groups of opsin. Under some conditions the synthesis of rhodopsin is aided by the presence of such a sulfhydryl compound as glutathione, which helps to keep the —SH groups of opsin free and reduced. By means of the amperometric silver titration of Kolthoff and Harris, it is shown that sulfhydryl groups are liberated in the bleaching of rhodopsin, two such groups for each retinene1 molecule that appears. This is true equally of rhodopsin from the retinas of cattle, frogs) and squid. The exposure of new sulfhydryl groups adds an important element to the growing evidence that relates the bleaching of rhodopsin to protein denaturation. The place of sulfhydryl groups in the structure of rhodopsin is still uncertain. They may be concerned directly in binding the chromophore to opsin; or alternatively they may furnish hydrogen atoms for some reductive change by which the chromophore is formed from retinene1. In the amperometric silver titration, the bleaching of rhodopsin yields directly an electrical variation. This phenomenon may have some fundamental connection with the role of rhodopsin in visual excitation, and may provide a model of the excitation process in general. PMID:14955620

  18. Photo-induced bleaching of sensory rhodopsin II (phoborhodopsin) from Halobacterium salinarum by hydroxylamine: identification of the responsible intermediates.

    PubMed

    Tamogami, Jun; Kikukawa, Takashi; Ikeda, Yoichi; Demura, Makoto; Nara, Toshifumi; Kamo, Naoki

    2012-01-05

    Sensory rhodopsin II from Halobacterium salinarum (HsSRII) is a retinal protein in which retinal binds to a specific lysine residue through a Schiff base. Here, we investigated the photobleaching of HsSRII in the presence of hydroxylamine. For identification of intermediate(s) attacked by hydroxylamine, we employed the flash-induced bleaching method. In order to change the concentration of intermediates, such as M- and O-intermediates, experiments were performed under varying flashlight intensities and concentrations of azide that accelerated only the M-decay. We found the proportional relationship between the bleaching rate and area under the concentration-time curve of M, indicating a preferential attack of hydroxylamine on M. Since hydroxylamine is a water-soluble reagent, we hypothesize that for M, hydrophilicity or water-accessibility increases specifically in the moiety of Schiff base. Thus, hydroxylamine bleaching rates may be an indication of conformational changes near the Schiff base. We also considered the possibility that azide may induce a small conformational change around the Schiff base. We compared the hydroxylamine susceptibility between HsSRII and NpSRII (SRII from Natronomonas pharaonis) and found that the M of HsSRII is about three times more susceptible than that of the stable NpSRII. In addition, long illumination to HsSRII easily produced M-like photoproduct, P370. We thus infer that the instability of HsSRII under illumination may be related to this increase of hydrophilicity at M and P370. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Epistatic interactions influence terrestrial–marine functional shifts in cetacean rhodopsin

    PubMed Central

    2017-01-01

    Like many aquatic vertebrates, whales have blue-shifting spectral tuning substitutions in the dim-light visual pigment, rhodopsin, that are thought to increase photosensitivity in underwater environments. We have discovered that known spectral tuning substitutions also have surprising epistatic effects on another function of rhodopsin, the kinetic rates associated with light-activated intermediates. By using absorbance spectroscopy and fluorescence-based retinal release assays on heterologously expressed rhodopsin, we assessed both spectral and kinetic differences between cetaceans (killer whale) and terrestrial outgroups (hippo, bovine). Mutation experiments revealed that killer whale rhodopsin is unusually resilient to pleiotropic effects on retinal release from key blue-shifting substitutions (D83N and A292S), largely due to a surprisingly specific epistatic interaction between D83N and the background residue, S299. Ancestral sequence reconstruction indicated that S299 is an ancestral residue that predates the evolution of blue-shifting substitutions at the origins of Cetacea. Based on these results, we hypothesize that intramolecular epistasis helped to conserve rhodopsin's kinetic properties while enabling blue-shifting spectral tuning substitutions as cetaceans adapted to aquatic environments. Trade-offs between different aspects of molecular function are rarely considered in protein evolution, but in cetacean and other vertebrate rhodopsins, may underlie multiple evolutionary scenarios for the selection of specific amino acid substitutions. PMID:28250185

  20. Rhodopsin Kinase Activity in the Mammalian Pineal Gland and Other Tissues

    NASA Astrophysics Data System (ADS)

    Somers, Robert L.; Klein, David C.

    1984-10-01

    Rhodopsin kinase, an enzyme involved in photochemical transduction in the retina, has been found in the mammalian pineal gland in amounts equal to those in the retina; other tissues had 7 percent of this amount, or less. This finding suggests that, in mammals, rhodopsin kinase functions in the pineal gland and other tissues to phosphorylate rhodopsin-like integral membrane receptors and is thereby involved in signal transduction.

  1. [Thermal stability of rhodopsins and opsins in warm- and cold-blooded vertebrates].

    PubMed

    Berman, A L; Suvorov, S A; Parnova, R G; Gracheva, O A; Rychkova, M P

    1981-01-01

    Thermal stability of rhodopsins and opsins has been studied in endothermic (sheep, cattle, pig, rat) and ectothermic (frog) animals under two different conditions -- in the intact photoreceptor membranes (PM) and after substitution of the lipid surrounding of rhodopsins by molecules of a detergent Triton X-100. Lipid composition of PM in these animals was also studied, as well as the effect of proteases (pronase and papaine) upon thermal stability of rhodopsins in PM and in 1% Triton X-100 solutions. The thermal resistance of rhodopsins in PM was found to vary in the animals used to a great extent. The maximal differences in thermal stability of rhodopsins in ecto- and endothermic animals were due to the properties of photoreceptor protein itself, whereas in ectothermic animals they resulted mainly from differences in the lipid composition of PM. PM of endothermic animals differ from those of ectothermic ones by a lower content of polyenoic fatty acids and by a higher amount of phosphatidyl ethanolamine. The thermal stability of rhodopsins is not due to rhodopsin molecule as a whole, and depends mainly on its part which is directly bound to 11-cis retinal, located in hydrophobic region of PM and inaccessible to protease attack.

  2. Flash photolysis of rhodopsin in the cat retina

    PubMed Central

    1981-01-01

    The bleaching of rhodopsin by short-duration flashes of a xenon discharge lamp was studied in vivo in the cat retina with the aid of a rapid, spectral-scan fundus reflectometer. Difference spectra recorded over a broad range of intensities showed that the bleaching efficacy of high-intensity flashes was less than that of longer duration, steady lights delivering the same amount of energy. Both the empirical results and those derived from a theoretical analysis of flash photolysis indicate that, under the conditions of these experiments, the upper limit of the flash bleaching of rhodopsin in cat is approximately 90%. Although the fact that a full bleach could not be attained is attributable to photoreversal, i.e., the photic regeneration of rhodopsin from its light-sensitive intermediates, the 90% limit is considerably higher than the 50% (or lower) value obtained under other experimental circumstances. Thus, it appears that the duration (approximately 1 ms) and spectral composition of the flash, coupled with the kinetic parameters of the thermal and photic reactions in the cat retina, reduce the light-induced regeneration of rhodopsin to approximately 10%. PMID:7252476

  3. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    DOE PAGES

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; ...

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPSmore » detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.« less

  4. Structural and functional impairment of endocytic pathways by retinitis pigmentosa mutant rhodopsin-arrestin complexes

    PubMed Central

    Chuang, Jen-Zen; Vega, Carrie; Jun, Wenjin; Sung, Ching-Hwa

    2004-01-01

    Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous degenerative eye disease. Mutations at Arg135 of rhodopsin are associated with a severe form of autosomal dominant RP. This report presents evidence that Arg135 mutant rhodopsins (e.g., R135L, R135G, and R135W) are hyperphosphorylated and bind with high affinity to visual arrestin. Mutant rhodopsin recruits the cytosolic arrestin to the plasma membrane, and the rhodopsin-arrestin complex is internalized into the endocytic pathway. Furthermore, the rhodopsin-arrestin complexes alter the morphology of endosomal compartments and severely damage receptor-mediated endocytic functions. The biochemical and cellular defects of Arg135 mutant rhodopsins are distinct from those previously described for class I and class II RP mutations, and, hence, we propose that they be named class III. Impaired endocytic activity may underlie the pathogenesis of RP caused by class III rhodopsin mutations. PMID:15232620

  5. Mapping of bovine prolactin and rhodopsin genes in hybrid somatic cells.

    PubMed

    Hallerman, E M; Theilmann, J L; Beckmann, J S; Soller, M; Womack, J E

    1988-01-01

    The genes encoding bovine prolactin and rhodopsin were assigned to syntenic groups on the basis of hybridization of DNA from a panel of bovine-hamster hybrid somatic cell lines with cloned prolactin and rhodopsin gene probes. Prolactin was found to be syntenic with previously mapped glyoxalase, BoLA and 21-hydroxylase genes, establishing a syntenic conservation with human chromosome 6. The presence of bovine rhodopsin sequences among the various hybrid cell lines was not concordant with any gene previously assigned to one of the 23 defined autosomal syntenic groups. Thus, rhodopsin marks a new bovine syntenic group, U24, leaving only five cattle autosomes unmarked by at least one biochemical or molecular marker.

  6. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model.

    PubMed

    Zheng, Min; Mitra, Rajendra N; Filonov, Nazar A; Han, Zongchao

    2016-03-01

    Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications. © FASEB.

  7. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium.

    PubMed

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar

    2017-01-01

    Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD 50 dose), following 3h exposure to 75μM and 200μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Allele-Specific Inhibition of Rhodopsin With an Antisense Oligonucleotide Slows Photoreceptor Cell Degeneration

    PubMed Central

    Murray, Susan F.; Jazayeri, Ali; Matthes, Michael T.; Yasumura, Douglas; Yang, Haidong; Peralta, Raechel; Watt, Andy; Freier, Sue; Hung, Gene; Adamson, Peter S.; Guo, Shuling; Monia, Brett P.; LaVail, Matthew M.; McCaleb, Michael L.

    2015-01-01

    Purpose To preserve photoreceptor cell structure and function in a rodent model of retinitis pigmentosa with P23H rhodopsin by selective inhibition of the mutant rhodopsin allele using a second generation antisense oligonucleotide (ASO). Methods Wild-type mice and rats were treated with ASO by intravitreal (IVT) injection and rhodopsin mRNA and protein expression were measured. Transgenic rats expressing the murine P23H rhodopsin gene (P23H transgenic rat Line 1) were administered either a mouse-specific P23H ASO or a control ASO. The contralateral eye was injected with PBS and used as a comparator control. Electroretinography (ERG) measurements and analyses of the retinal outer nuclear layer were conducted and correlated with rhodopsin mRNA levels. Results Rhodopsin mRNA and protein expression was reduced after a single ASO injection in wild-type mice with a rhodopsin-specific ASO. Transgenic rat eyes that express a murine P23H rhodopsin gene injected with a murine P23H ASO had a 181 ± 39% better maximum amplitude response (scotopic a-wave) as compared with contralateral PBS-injected eyes; the response in control ASO eyes was not significantly different from comparator contralateral eyes. Morphometric analysis of the outer nuclear layer showed a significantly thicker nuclear layer in eyes injected with murine P23H ASO (18%) versus contralateral PBS-injected eyes. Conclusions Allele-specific ASO-mediated knockdown of mutant P23H rhodopsin expression slowed the rate of photoreceptor degeneration and preserved the function of photoreceptor cells in eyes of the P23H rhodopsin transgenic rat. Our data indicate that ASO treatment is a potentially effective therapy for the treatment of retinitis pigmentosa. PMID:26436889

  9. Transient dichroism in photoreceptor membranes indicates that stable oligomers of rhodopsin do not form during excitation.

    PubMed Central

    Downer, N W; Cone, R A

    1985-01-01

    If a photoexcited rhodopsin molecule initiates the formation of rhodopsin oligomers during the process of visual excitation, the rate of rotational diffusion of the rhodopsin molecules involved should change markedly. Using microsecond-flash photometry, we have observed the rotational diffusion of rhodopsin throughout the time period of visual excitation and found that no detectable change occurs in its rotational diffusion rate. Partial chemical cross-linking of the retina yields oligomers of rhodopsin and causes a significant decrease in the rotational diffusion rate of rhodopsin even when as little as 20% of rhodopsin is dimeric. Moreover, the pattern of oligomers formed by cross-linking, taken together with the magnitude of decreases in rotational diffusion rate accompanying the cross-linking reaction, suggests that rhodopsin is a monomer in the dark-adapted state. The experiments reported here show that photoexcited rhodopsin molecules do not irreversibly associate with unbleached neighbors during the time course of the receptor response. Hence, it is not likely that stable oligomers of rhodopsin trigger the excitation of the photoreceptor cell. Images FIGURE 1 PMID:3919778

  10. Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics.

    PubMed

    Gunkel, Monika; Schöneberg, Johannes; Alkhaldi, Weaam; Irsen, Stephan; Noé, Frank; Kaupp, U Benjamin; Al-Amoudi, Ashraf

    2015-04-07

    The visual pigment rhodopsin belongs to the family of G protein-coupled receptors that can form higher oligomers. It is controversial whether rhodopsin forms oligomers and whether oligomers are functionally relevant. Here, we study rhodopsin organization in cryosections of dark-adapted mouse rod photoreceptors by cryoelectron tomography. We identify four hierarchical levels of organization. Rhodopsin forms dimers; at least ten dimers form a row. Rows form pairs (tracks) that are aligned parallel to the disk incisures. Particle-based simulation shows that the combination of tracks with fast precomplex formation, i.e. rapid association and dissociation between inactive rhodopsin and the G protein transducin, leads to kinetic trapping: rhodopsin first activates transducin from its own track, whereas recruitment of transducin from other tracks proceeds more slowly. The trap mechanism could produce uniform single-photon responses independent of rhodopsin lifetime. In general, tracks might provide a platform that coordinates the spatiotemporal interaction of signaling molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Probing how initial retinal configuration controls photochemical dynamics in retinal proteins

    NASA Astrophysics Data System (ADS)

    Wand, A.; Rozin, R.; Eliash, T.; Friedman, N.; Jung, K. H.; Sheves, M.; Ruhman, S.

    2013-03-01

    The effects of the initial retinal configuration and the active isomerization coordinate on the photochemistry of retinal proteins (RPs) are assessed by comparing photochemical dynamics of two stable retinal ground state configurations (all-trans,15-anti vs. 13-cis,15-syn), within two RPs: Bacteriorhodopsin (BR) and Anabaena Sensory Rhodopsin (ASR). Hyperspectral pump-probe spectroscopy shows that photochemistry starting from 13-cis retinal in both proteins is 3-10 times faster than when started in the all-trans state, suggesting that the hastening is ubiquitous to microbial RPs, regardless of their different biological functions and origin. This may also relate to the known disparity of photochemical rates between microbial RPs and visual pigments. Importance and possible underlying mechanisms are discussed as well.

  12. Photoregeneration of bovine rhodopsin from its signaling state.

    PubMed

    Arnis, S; Hofmann, K P

    1995-07-25

    In rhodopsin, 11-cis-retinal is bound by a protonated Schiff base and acts as a strong antagonist, which holds the receptor in its inactive ground state conformation. Light induces cis-/trans-retinal isomerization and a sequence of thermal transitions through intermediates. The active conformation that catalyzes GDP/GTP exchange in the G-protein (Gt) is generated from the metarhodopsin II intermediate (MII) and mediated by Schiff base proton translocation and proton uptake from the aqueous phase. In the stable nucleotide-free MII-Gt complex, any thermal transition of MII into other forms of rhodopsin is blocked. We have now studied how Gt affects flash-induced photochemical conversions of MII. Difference spectra from measured absorption changes show that MII photolyzes through two parallel pathways, with fast (1 ms) and slow (50 ms) kinetics (12 degrees C, pH 6). The slow pathway regenerates rhodopsin (9- or 11-cis) via Schiff base reprotonation and proton release. We infer a cis-isomerized early photoproduct (reverted meta, RM) preceding these thermal transitions. When MII is photolyzed in the MII-Gt complex, the slow absorption change is abolished, indicating that Gt blocks the completion of the regeneration process. This is due to the formation of a stable RM-Gt complex, as shown by successive photolysis of MII, RM, and ground state rhodopsin, and the application of GTP gamma S at different stages. The complex dissociates with GTP gamma S, and rhodopsin relaxes to the ground state. The results indicate that cis-retinal and Gt can bind to the receptor at the same time. We discuss the result that the protonations in the meta II state uncouple retinal geometry from Gt interaction.

  13. A role for direct interactions in the modulation of rhodopsin by -3 polyunsaturated lipids

    NASA Astrophysics Data System (ADS)

    Grossfield, Alan; Feller, Scott E.; Pitman, Michael C.

    2006-03-01

    Rhodopsin, the G protein-coupled receptor primarily responsible for sensing light, is found in an environment rich in polyunsaturated lipid chains and cholesterol. Biophysical experiments have shown that lipid unsaturation and cholesterol both have significant effects on rhodopsin's stability and function; -3 polyunsaturated chains, such as docosahexaenoic acid (DHA), destabilize rhodopsin and enhance the kinetics of the photocycle, whereas cholesterol has the opposite effect. Here, we use molecular dynamics simulations to investigate the possibility that polyunsaturated chains modulate rhodopsin stability and kinetics via specific direct interactions. By analyzing the results of 26 independent 100-ns simulations of dark-adapted rhodopsin, we found that DHA routinely forms tight associations with the protein in a small number of specific locations qualitatively different from the nonspecific interactions made by saturated chains and cholesterol. Furthermore, the presence of tightly packed DHA molecules tends to weaken the interhelical packing. These results are consistent with recent NMR work, which proposes that rhodopsin binds DHA, and they suggest a molecular rationale for DHA's effects on rhodopsin stability and kinetics. cholesterol | molecular dynamics | fatty acid | protein-lipid interactions

  14. Thermal and Spectroscopic Characterization of a Proton Pumping Rhodopsin from an Extreme Thermophile*

    PubMed Central

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-01-01

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding. PMID:23740255

  15. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile.

    PubMed

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-07-26

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding.

  16. Modeling photo-bleaching kinetics to map local variations in rod rhodopsin density

    NASA Astrophysics Data System (ADS)

    Ehler, M.; Dobrosotskaya, J.; King, E. J.; Czaja, W.; Bonner, R. F.

    2011-03-01

    Localized rod photoreceptor and rhodopsin losses have been observed in post mortem histology both in normal aging and in age-related maculopathy. We propose to noninvasively map local rod rhodopsin density through analysis of the brightening of the underlying lipofuscin autofluorescence (LAF) in confocal scanning laser ophthalmoscopy (cSLO) imaging sequences starting in the dark adapted eye. The detected LAF increases as rhodopsin is bleached (time constant ~ 25sec) by the average retinal irradiance of the cSLO 488nm laser beam. We fit parameters of analytical expressions for the kinetics of rhodopsin bleaching that Lamb validated using electroretinogram recordings in human. By performing localized (~ 100μm) kinetic analysis, we create high resolution maps of the rhodopsin density. This new noninvasive imaging and analysis approach appears well-suited for measuring localized changes in the rod photoreceptors and correlating them at high spatial resolution with localized pathological changes of the retinal pigment epithelium (RPE) seen in steady-state LAF images.

  17. Targeting of Drosophila Rhodopsin Requires Helix 8 but Not the Distal C-Terminus

    PubMed Central

    Kock, Ines; Bulgakova, Natalia A.; Knust, Elisabeth; Sinning, Irmgard; Panneels, Valérie

    2009-01-01

    Background The fundamental role of the light receptor rhodopsin in visual function and photoreceptor cell development has been widely studied. Proper trafficking of rhodopsin to the photoreceptor membrane is of great importance. In human, mutations in rhodopsin involving its intracellular mislocalization, are the most frequent cause of autosomal dominant Retinitis Pigmentosa, a degenerative retinal pathology characterized by progressive blindness. Drosophila is widely used as an animal model in visual and retinal degeneration research. So far, little is known about the requirements for proper rhodopsin targeting in Drosophila. Methodology/Principal Findings Different truncated fly-rhodopsin Rh1 variants were expressed in the eyes of Drosophila and their localization was analyzed in vivo or by immunofluorescence. A mutant lacking the last 23 amino acids was found to properly localize in the rhabdomeres, the light-sensing organelle of the photoreceptor cells. This constitutes a major difference to trafficking in vertebrates, which involves a conserved QVxPA motif at the very C-terminus. Further truncations of Rh1 indicated that proper localization requires the last amino acid residues of a region called helix 8 following directly the last transmembrane domain. Interestingly, the very C-terminus of invertebrate visual rhodopsins is extremely variable but helix 8 shows conserved amino acid residues that are not conserved in vertebrate homologs. Conclusions/Significance Despite impressive similarities in the folding and photoactivation of vertebrate and invertebrate visual rhodopsins, a striking difference exists between mammalian and fly rhodopsins in their requirements for proper targeting. Most importantly, the distal part of helix 8 plays a central role in invertebrates. Since the last amino acid residues of helix 8 are dispensable for rhodopsin folding and function, we propose that this domain participates in the recognition of targeting factors involved in

  18. Structural and functional analysis of the finished genome of the recently isolated toxic Anabaena sp. WA102.

    PubMed

    Brown, Nathan M; Mueller, Ryan S; Shepardson, Jonathan W; Landry, Zachary C; Morré, Jeffrey T; Maier, Claudia S; Hardy, F Joan; Dreher, Theo W

    2016-06-13

    Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture. The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90. Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function.

  19. The photochemical reaction cycle and photoinduced proton transfer of sensory rhodopsin II (Phoborhodopsin) from Halobacterium salinarum.

    PubMed

    Tamogami, Jun; Kikukawa, Takashi; Ikeda, Yoichi; Takemura, Ayaka; Demura, Makoto; Kamo, Naoki

    2010-04-07

    Sensory rhodopsin II (HsSRII, also called phoborhodopsin) is a negative phototaxis receptor of Halobacterium salinarum, a bacterium that avoids blue-green light. In this study, we expressed the protein in Escherichia coli cells, and reconstituted the purified protein with phosphatidylcholine. The reconstituted HsSRII was stable. We examined the photocycle by flash-photolysis spectroscopy in the time range of milliseconds to seconds, and measured proton uptake/release using a transparent indium-tin oxide electrode. The pKa of the counterion of the Schiff base, Asp(73), was 3.0. Below pH 3, the depleted band was observed on flash illumination, but the positive band in the difference spectra was not found. Above pH 3, the basic photocycle was HsSRII (490) --> M (350) --> O (520) --> Y (490) --> HsSRII, where the numbers in parentheses are the maximum wavelengths. The decay rate of O-intermediate and Y-intermediate were pH-independent, whereas the M-intermediate decay was pH-dependent. For 3 < pH < 4.5, the M-decay was one phase, and the rate decreased with an increase in pH. For 4.5 < pH < 6.5, the decay was one phase with pH-independent rates, and azide markedly accelerated the M-decay. These findings suggest the existence of a protonated amino acid residue (X-H) that may serve as a proton relay to reprotonate the Schiff base. Above pH 6.5, the M-decay showed two phases. The fast M-decay was pH-independent and originated from the molecule having a protonated X-H, and the slow M-decay originated from the molecule having a deprotonated X, in which the proton came directly from the outside. The analysis yielded a value of 7.5 for the pKa of X-H. The proton uptake and release occurred during M-decay and O-decay, respectively. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Rhodopsin expression in the zebrafish pineal gland from larval to adult stage.

    PubMed

    Magnoli, Domenico; Zichichi, Rosalia; Laurà, Rosaria; Guerrera, Maria Cristina; Campo, Salvatore; de Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-09

    The zebrafish pineal gland plays an important role in different physiological functions including the regulation of the circadian clock. In the fish pineal gland the pinealocytes are made up of different segments: outer segment, inner segment and basal pole. Particularly, in the outer segment the rhodopsin participates in the external environment light reception that represents the first biochemical step in the melatonin production. It is well known that the rhodopsin in the adult zebrafish is well expressed in the pineal gland but both the expression and the cellular localization of this protein during development remain still unclear. In this study using qRT-PCR, sequencing and immunohistochemistry the expression as well as the protein localization of the rhodopsin in the zebrafish from larval (10 dpf) to adult stage (90 dpf) were demonstrated. The rhodopsin mRNA expression presents a peak of expression at 10 dpf, a further reduction to 50 dpf before increasing again in the adult stage. Moreover, the cellular localization of the rhodopsin-like protein was always localized in the pinealocyte at all ages examined. Our results demonstrated the involvement of the rhodopsin in the zebrafish pineal gland physiology particularly in the light capture during the zebrafish lifespan. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Complete genome sequence of Anabaena variabilis ATCC 29413

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiel, Teresa; Pratte, Brenda S.; Zhong, Jinshun

    2013-01-01

    Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Ana-baena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40 C. Here we providemore » some additional characteristics of the strain, and an analysis of the complete genome sequence.« less

  2. UV-Visible and Infrared Methods for Investigating Lipid-Rhodopsin Membrane Interactions

    PubMed Central

    Brown, Michael F.

    2017-01-01

    Summary Experimental UV-visible and Fourier transform infrared (FTIR) spectroscopic methods are described for characterizing lipid-protein interactions for the example of rhodopsin in a membrane bilayer environment. The combined use of FTIR and UV-visible difference spectroscopy monitors the structural and functional changes during rhodopsin activation. Such studies investigate how membrane lipids stabilize the various rhodopsin photoproducts, analogous to mutating the protein. Interpretation of the results entails a non-specific flexible surface model for explaining the role of membrane lipid-protein interactions in biological functions. PMID:22976026

  3. Classification and phylogeny of the cyanobiont Anabaena azollae Strasburger: an answered question?

    PubMed

    Pereira, Ana L; Vasconcelos, Vitor

    2014-06-01

    The symbiosis Azolla-Anabaena azollae, with a worldwide distribution in pantropical and temperate regions, is one of the most studied, because of its potential application as a biofertilizer, especially in rice fields, but also as an animal food and in phytoremediation. The cyanobiont is a filamentous, heterocystic cyanobacterium that inhabits the foliar cavities of the pteridophyte and the indusium on the megasporocarp (female reproductive structure). The classification and phylogeny of the cyanobiont is very controversial: from its morphology, it has been named Nostoc azollae, Anabaena azollae, Anabaena variabilis status azollae and recently Trichormus azollae, but, from its 16S rRNA gene sequence, it has been assigned to Nostoc and/or Anabaena, and from its phycocyanin gene sequence, it has been assigned as non-Nostoc and non-Anabaena. The literature also points to a possible co-evolution between the cyanobiont and the Azolla host, since dendrograms and phylogenetic trees of fatty acids, short tandemly repeated repetitive (STRR) analysis and restriction fragment length polymorphism (RFLP) analysis of nif genes and the 16S rRNA gene give a two-cluster association that matches the two-section ranking of the host (Azolla). Another controversy surrounds the possible existence of more than one genus or more than one species strain. The use of freshly isolated or cultured cyanobionts is an additional problem, since their morphology and protein profiles are different. This review gives an overview of how morphological, chemical and genetic analyses influence the classification and phylogeny of the cyanobiont and future research. © 2014 IUMS.

  4. Rhodopsin Photointermediates in 2D Crystals at Physiological Temperatures

    PubMed Central

    Szundi, Istvan; Ruprecht, Jonathan J.; Epps, Jacqueline; Villa, Claudio; Swartz, Trevor E.; Lewis, James W.; Schertler, Gebhard F.X.; Kliger, David S.

    2008-01-01

    Bovine rhodopsin photointermediates formed in 2D rhodopsin crystal suspensions were studied by measuring the time dependent absorbance changes produced after excitation with 7 nanosecond laser pulses at 15, 25 and 35 °C. The crystalline environment favored the Meta I480 photointermediate, with its formation from Lumi beginning faster than it does in rhodopsin membrane suspensions at 35 °C and its decay to a 380 nm absorbing species being less complete than it is in the native membrane at all temperatures. Measurements performed at pH 5.5 in 2D crystals showed that the 380 nm absorbing product of Meta I480 decay did not display the anomalous pH dependence characteristic of classical Meta II in the native disk membrane. Crystal suspensions bleached at 35 °C and quenched to 19 °C showed that a rapid equilibrium existed on the ∼1 second time scale which suggests that the unprotonated predecessor of Meta II in the native membrane environment (sometimes called MIIa), forms in 2D rhodopsin crystals, but that the non-Schiff base proton uptake completing classical Meta II formation is blocked there. Thus, the 380 nm absorbance arises from an on-pathway intermediate in GPCR activation and does not result from early Schiff base hydrolysis. Kinetic modeling of the time-resolved absorbance data of the 2D crystals was generally consistent with such a mechanism, but details of kinetic spectral changes and the fact that the residuals of exponential fits were not as good as are obtained for rhodopsin in the native membrane suggested the photoexcited samples were heterogeneous. Variable fractional bleach due to the random orientation of linearly dichroic crystals relative to the linearly polarized laser was explored as a cause of heterogeneity but was found unlikely to fully account for it. The fact that the 380 nm product of photoexcitation of rhodopsin 2D crystals is on the physiological pathway of receptor activation suggests that determination of its structure would be of

  5. Calorimetric Studies of Bovine Rod Outer Segment Disk Membranes Support a Monomeric Unit for Both Rhodopsin and Opsin

    PubMed Central

    Edrington, Thomas C.; Bennett, Michael; Albert, Arlene D.

    2008-01-01

    The photoreceptor rhodopsin is a G-protein coupled receptor that has recently been proposed to exist as a dimer or higher order oligomer, in contrast to the previously described monomer, in retinal rod outer segment disk membranes. Rhodopsin exhibits considerably greater thermal stability than opsin (the bleached form of the receptor), which is reflected in an ∼15°C difference in the thermal denaturation temperatures (Tm) of rhodopsin and opsin as measured by differential scanning calorimetry. Here we use differential scanning calorimetry to investigate the effect of partial bleaching of disk membranes on the Tm of rhodopsin and of opsin in native disk membranes, as well as in cross-linked disk membranes in which rhodopsin dimers are known to be present. The Tms of rhodopsin and opsin are expected to be perturbed if mixed oligomers are present. The Tm remained constant for rhodopsin and opsin in native disks regardless of the level of bleaching. In contrast, the Tm of cross-linked rhodopsin in disk membranes was dependent on the extent of bleaching. The energy of activation for denaturation of rhodopsin and cross-linked rhodopsin was calculated. Cross-linking rhodopsin significantly decreased the energy of activation. We conclude that in native disk membranes, rhodopsin behaves predominantly as a monomer. PMID:18586850

  6. Rapid hydrogen ion uptake of rod outer segments and rhodopsin solutions on illumination

    PubMed Central

    Falk, G.; Fatt, P.

    1966-01-01

    1. Flash illumination of a suspension of frog rod outer segments or rhodopsin solution in contact with a platinum electrode produces a rapidly developing negative displacement of potential of the electrode (with respect to a reversible electrode). 2. The amplitude of the potential change varies inversely with the H+ buffering capacity of the medium. It is inferred that the response is due to an uptake of H+ by the rod outer segments or rhodopsin, with the platinum surface acting as a pH electrode. 3. Determination of the action spectrum shows that the response depends on the absorption of light by rhodopsin. 4. In frog rods one acid-binding group with a pK of about 7·9 is produced for each molecule of rhodopsin bleached, consistent with a rhodopsin concentration in frog rods of 1·7 mM. 5. It is suggested that the time course of the response with rhodopsin solutions reflects the kinetics of the conversion of metarhodopsin I to metarhodopsin II. 6. A slower time course of voltage change observed for suspensions of outer segments is attributable to the time required for the diffusion of H+ buffer out of the rods. PMID:5945249

  7. Characterization and chromosomal localization of the gene for human rhodopsin kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khani, S.C.; Yamamoto, S.; Dryja, T.P.

    1996-08-01

    G-protein-dependent receptor kinases (GRKs) play a key role in the adapatation of receptors to persistent stimuli. In rod photoreceptors rhodopsin kinase (RK) mediates rapid densensitization of rod photoreceptors to light by catalyzing phosphorylation of the visual pigment rhodopsin. To study the structure and mechanism of FRKs in human photoreceptors, we have isolated and characterized cDNA and genomic clones derived from the human RK locus using a bovine rhodopsin kinase cDNA fragment as a probe. The RK locus, assigned to chromosome 13 band q34, is composed of seven exons that encode a protein 92% identical in amino acid sequence to bovinemore » rhodopsin kinase. The marked difference between the structure of this gene and that of another recently clone human GRK gene suggests the existence of a wide evolutionary gap between members of the GRK gene family. 39 refs., 3 figs.« less

  8. Regulation of Development and Nitrogen Fixation in Anabaena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Golden

    2008-10-17

    The regulation of development and cellular differentiation is important for all multicellular organisms. The nitrogen-fixing filamentous cyanobacterium Anabaena (also Nostoc) sp. PCC 7120 (hereafter Anabaena) provides a model of multicellular microbial development and pattern formation. Anabaena reduces N2 to ammonia in specialized terminally differentiated cells called heterocysts. A one-dimensional developmental pattern of single heterocysts regularly spaced along filaments of photosynthetic vegetative cells is established to form a multicellular organism composed of these two interdependent cell types. This multicellular growth pattern, the distinct phylogeny of cyanobacteria, and the suspected antiquity of heterocyst development make this an important model system. Our long-termmore » goal is to understand the regulatory network required for heterocyst development and nitrogen fixation. This project is focused on two key aspects of heterocyst regulation: one, the mechanism by which HetR controls the initiation of differentiation, and two, the cis and trans acting factors required for expression of the nitrogen-fixation (nif) genes. HetR is thought to be a central regulator of heterocyst development but the partners and mechanisms involved in this regulation are unknown. Our recent results indicate that PatS and other signals that regulate heterocyst pattern cannot interact, directly or indirectly, with a R223W mutant of HetR. We plan to use biochemical and genetic approaches to identify proteins that interact with the HetR protein, which will help reveal the mechanisms underlying its regulation of development. Our second goal is to determine how the nif genes are expressed. It is important to understand the mechanisms controlling nif genes since they represent the culmination of the differentiation process and the essence of heterocyst function. The Anabaena genome lacks the genes required for expression of nif genes present in other organisms such as rpo

  9. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pande, C.; Deng, H.; Rath, P.

    1987-11-17

    The authors present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10/sup 0/C in both H/sub 2/O and D/sub 2/O. The C=N stretching mode at 1660 cm/sup -1/ in H/sub 2/O shifts to 1631 cm/sup -1/ upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to themore » octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100/sup 0/C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda/sub max/ 345 nm), contain a significant contribution from a small amount of contaminants (cytochrome(s) and/or accessory pigment) in the sample, the C=N stretch at 1664 cm/sup -1/ suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approx. 1660 cm/sup -1/ in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.« less

  10. CIS-TRANS ISOMERS OF VITAMIN A AND RETINENE IN THE RHODOPSIN SYSTEM

    PubMed Central

    Hubbard, Ruth; Wald, George

    1952-01-01

    Vitamin A and retinene, the carotenoid precursors of rhodopsin, occur in a variety of molecular shapes, cis-trans isomers of one another. For the synthesis of rhodopsin a specific cis isomer of vitamin A is needed. Ordinary crystalline vitamin A, as also the commercial synthetic product, both primarily all-trans, are ineffective. The main site of isomer specificity is the coupling of retinene with opsin. It is this reaction that requires a specific cis isomer of retinene. The oxidation of vitamin A to retinene by the alcohol dehydrogenase-cozymase system displays only a low degree of isomer specificity. Five isomers of retinene have been isolated in crystalline condition: all-trans; three apparently mono-cis forms, neoretinenes a and b and isoretinene a; and one apparently di-cis isomer, isoretinene b. Neoretinenes a and b were first isolated in our laboratory, and isoretinenes a and b in the Organic Research Laboratory of Distillation Products Industries. Each of these substances is converted to an equilibrium mixture of stereoisomers on simple exposure to light. For this reaction, light is required which retinene can absorb; i.e., blue, violet, or ultraviolet light. Yellow, orange, or red light has little effect. The single geometrical isomers of retinene must therefore be protected from low wave length radiation if their isomerization is to be avoided. By incubation with opsin in the dark, the capacity of each of the retinene isomers to synthesize rhodopsin was examined. All-trans retinene and neoretinene a are inactive. Neoretinene b yields rhodopsin indistinguishable from that extracted from the dark-adapted retina (λmax· 500 mµ). Isoretinene a yields a similar light-sensitive pigment, isorhodopsin, the absorption spectrum of which is displaced toward shorter wave lengths (λmax· 487 mµ). Isoretinene b appears to be inactive, but isomerizes preferentially to isoretinene a, which in the presence of opsin is removed to form isorhodopsin before the

  11. Comparative evaluation of the stability of seven-transmembrane microbial rhodopsins to various physicochemical stimuli

    NASA Astrophysics Data System (ADS)

    Honda, Naoya; Tsukamoto, Takashi; Sudo, Yuki

    2017-08-01

    Rhodopsins are seven-transmembrane proteins that function as photoreceptors for a variety of biological processes. Their characteristic visible colors make rhodopsins a good model for membrane-embedded proteins. In this study, by utilizing their color changes, we performed comparative studies on the stability of five microbial rhodopsins using the same instruments, procedures and media. As denaturants, we employed four physicochemical stimuli: (i) thermal perturbation, (ii) the water-soluble reagent hydroxylamine, (iii) the detergent sodium dodecyl sulfate, and (iv) the organic solvent ethanol. On the basis of the results, models for stabilization mechanisms in rhodopsins against each stimulus is proposed.

  12. Tauroursodeoxycholic acid binds to the G-protein site on light activated rhodopsin.

    PubMed

    Lobysheva, E; Taylor, C M; Marshall, G R; Kisselev, O G

    2018-05-01

    The heterotrimeric G-protein binding site on G-protein coupled receptors remains relatively unexplored regarding its potential as a new target of therapeutic intervention or as a secondary site of action by the existing drugs. Tauroursodeoxycholic acid bears structural resemblance to several compounds that were previously identified to specifically bind to the light-activated form of the visual receptor rhodopsin and to inhibit its activation of transducin. We show that TUDCA stabilizes the active form of rhodopsin, metarhodopsin II, and does not display the detergent-like effects of common amphiphilic compounds that share the cholesterol scaffold structure, such as deoxycholic acid. Computer docking of TUDCA to the model of light-activated rhodopsin revealed that it interacts using similar mode of binding to the C-terminal domain of transducin alpha subunit. The ring regions of TUDCA made hydrophobic contacts with loop 3 region of rhodopsin, while the tail of TUDCA is exposed to solvent. The results show that TUDCA interacts specifically with rhodopsin, which may contribute to its wide-ranging effects on retina physiology and as a potential therapeutic compound for retina degenerative diseases. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    PubMed

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state.

    PubMed Central

    Davidson, F F; Loewen, P C; Khorana, H G

    1994-01-01

    A disulfide bond that is evidently conserved in the guanine nucleotide-binding protein-coupled receptors is present in rhodopsin between Cys-110 and Cys-187. We have replaced these two cysteine residues by alanine residues and now report on the properties of the resulting rhodopsin mutants. The mutant protein C110A/C187A expressed in COS cells resembles wild-type rhodopsin in the ground state. It folds correctly to bind 11-cis-retinal and form the characteristic rhodopsin chromophore. It is inert to hydroxylamine in the dark, and its stability to dark thermal decay is reduced, relative to that of the wild type, by a delta delta G not equal to of only -2.9 kcal/mol. Further, the affinities of the mutant and wild-type rhodopsins to the antirhodopsin antibody rho4D2 are similar, both in the dark and in light. However, the metarhodopsin II (MII) and MIII photointermediates of the mutant are less stable than those formed by the wild-type rhodopsin. Although the initial rates of transducin activation are the same for both mutant and wild-type MII intermediates at 4 degrees C, at 15 degrees C the MII photointermediate in the mutant decays more than 20 times faster than in wild type. We conclude that the disulfide bond between Cys-110 and Cys-187 is a key component in determining the stability of the MII structure and its coupling to transducin activation. PMID:8171030

  15. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  16. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration

    PubMed Central

    Athanasiou, Dimitra; Aguila, Monica; Opefi, Chikwado A.; South, Kieron; Bellingham, James; Bevilacqua, Dalila; Munro, Peter M.; Kanuga, Naheed; Mackenzie, Francesca E.; Dubis, Adam M.; Georgiadis, Anastasios; Graca, Anna B.; Pearson, Rachael A.; Ali, Robin R.; Sakami, Sanae; Palczewski, Krzysztof; Sherman, Michael Y.; Reeves, Philip J.

    2017-01-01

    Abstract Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic ‘gain of function’, such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases. PMID:28065882

  17. Rhodopsin-lipid interactions studied by NMR.

    PubMed

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. The arrestin-1 finger loop interacts with two distinct conformations of active rhodopsin.

    PubMed

    Elgeti, Matthias; Kazmin, Roman; Rose, Alexander S; Szczepek, Michal; Hildebrand, Peter W; Bartl, Franz J; Scheerer, Patrick; Hofmann, Klaus Peter

    2018-03-23

    Signaling of the prototypical G protein-coupled receptor (GPCR) rhodopsin through its cognate G protein transducin (G t ) is quenched when arrestin binds to the activated receptor. Although the overall architecture of the rhodopsin/arrestin complex is known, many questions regarding its specificity remain unresolved. Here, using FTIR difference spectroscopy and a dual pH/peptide titration assay, we show that rhodopsin maintains certain flexibility upon binding the "finger loop" of visual arrestin (prepared as synthetic peptide ArrFL-1). We found that two distinct complexes can be stabilized depending on the protonation state of E3.49 in the conserved (D)ERY motif. Both complexes exhibit different interaction modes and affinities of ArrFL-1 binding. The plasticity of the receptor within the rhodopsin/ArrFL-1 complex stands in contrast to the complex with the C terminus of the G t α-subunit (GαCT), which stabilizes only one specific substate out of the conformational ensemble. However, G t α-subunit binding and both ArrFL-1-binding modes involve a direct interaction to conserved R3.50, as determined by site-directed mutagenesis. Our findings highlight the importance of receptor conformational flexibility and cytoplasmic proton uptake for modulation of rhodopsin signaling and thereby extend the picture provided by crystal structures of the rhodopsin/arrestin and rhodopsin/ArrFL-1 complexes. Furthermore, the two binding modes of ArrFL-1 identified here involve motifs of conserved amino acids, which indicates that our results may have elucidated a common modulation mechanism of class A GPCR-G protein/-arrestin signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy

    PubMed Central

    Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.

    2017-01-01

    Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522

  20. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    PubMed Central

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Ke, Jiyuan; Eileen Tan, M. H.; Zhang, Chenghai; Moeller, Arne; West, Graham M.; Pascal, Bruce; Van Eps, Ned; Caro, Lydia N.; Vishnivetskiy, Sergey A.; Lee, Regina J.; Suino-Powell, Kelly M.; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A.; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P.; Katritch, Vsevolod; Gurevich, Vsevolod V.; Griffin, Patrick R.; Hubbell, Wayne L.; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2015-01-01

    G protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signaling to numerous G protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly, in which rhodopsin uses distinct structural elements, including TM7 and Helix 8 to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotation between the N- and C- domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signaling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology. PMID:26200343

  1. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    PubMed

    Kang, Yanyong; Zhou, X Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Ke, Jiyuan; Tan, M H Eileen; Zhang, Chenghai; Moeller, Arne; West, Graham M; Pascal, Bruce D; Van Eps, Ned; Caro, Lydia N; Vishnivetskiy, Sergey A; Lee, Regina J; Suino-Powell, Kelly M; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie E; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P; Katritch, Vsevolod; Gurevich, Vsevolod V; Griffin, Patrick R; Hubbell, Wayne L; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2015-07-30

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.

  2. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor

    PubMed Central

    Azevedo, Anthony W; Doan, Thuy; Moaven, Hormoz; Sokal, Iza; Baameur, Faiza; Vishnivetskiy, Sergey A; Homan, Kristoff T; Tesmer, John JG; Gurevich, Vsevolod V; Chen, Jeannie; Rieke, Fred

    2015-01-01

    Rod photoreceptors generate measurable responses to single-photon activation of individual molecules of the G protein-coupled receptor (GPCR), rhodopsin. Timely rhodopsin desensitization depends on phosphorylation and arrestin binding, which quenches G protein activation. Rhodopsin phosphorylation has been measured biochemically at C-terminal serine residues, suggesting that these residues are critical for producing fast, low-noise responses. The role of native threonine residues is unclear. We compared single-photon responses from rhodopsin lacking native serine or threonine phosphorylation sites. Contrary to expectation, serine-only rhodopsin generated prolonged step-like single-photon responses that terminated abruptly and randomly, whereas threonine-only rhodopsin generated responses that were only modestly slower than normal. We show that the step-like responses of serine-only rhodopsin reflect slow and stochastic arrestin binding. Thus, threonine sites play a privileged role in promoting timely arrestin binding and rhodopsin desensitization. Similar coordination of phosphorylation and arrestin binding may more generally permit tight control of the duration of GPCR activity. DOI: http://dx.doi.org/10.7554/eLife.05981.001 PMID:25910054

  3. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution

    PubMed Central

    Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian

    2015-01-01

    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. PMID:26286928

  4. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution.

    PubMed

    Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian

    2015-01-01

    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. © The Author(s) 2015. Published by Oxford University Press.

  5. Evolution of nonspectral rhodopsin function at high altitudes.

    PubMed

    Castiglione, Gianni M; Hauser, Frances E; Liao, Brian S; Lujan, Nathan K; Van Nynatten, Alexander; Morrow, James M; Schott, Ryan K; Bhattacharyya, Nihar; Dungan, Sarah Z; Chang, Belinda S W

    2017-07-11

    High-altitude environments present a range of biochemical and physiological challenges for organisms through decreases in oxygen, pressure, and temperature relative to lowland habitats. Protein-level adaptations to hypoxic high-altitude conditions have been identified in multiple terrestrial endotherms; however, comparable adaptations in aquatic ectotherms, such as fishes, have not been as extensively characterized. In enzyme proteins, cold adaptation is attained through functional trade-offs between stability and activity, often mediated by substitutions outside the active site. Little is known whether signaling proteins [e.g., G protein-coupled receptors (GPCRs)] exhibit natural variation in response to cold temperatures. Rhodopsin (RH1), the temperature-sensitive visual pigment mediating dim-light vision, offers an opportunity to enhance our understanding of thermal adaptation in a model GPCR. Here, we investigate the evolution of rhodopsin function in an Andean mountain catfish system spanning a range of elevations. Using molecular evolutionary analyses and site-directed mutagenesis experiments, we provide evidence for cold adaptation in RH1. We find that unique amino acid substitutions occur at sites under positive selection in high-altitude catfishes, located at opposite ends of the RH1 intramolecular hydrogen-bonding network. Natural high-altitude variants introduced into these sites via mutagenesis have limited effects on spectral tuning, yet decrease the stability of dark-state and light-activated rhodopsin, accelerating the decay of ligand-bound forms. As found in cold-adapted enzymes, this phenotype likely compensates for a cold-induced decrease in kinetic rates-properties of rhodopsin that mediate rod sensitivity and visual performance. Our results support a role for natural variation in enhancing the performance of GPCRs in response to cold temperatures.

  6. Signaling States of Rhodopsin in Rod Disk Membranes Lacking Transducin βγ-Complex

    PubMed Central

    Lomonosova, Elena; Kolesnikov, Alexander V.; Kefalov, Vladimir J.

    2012-01-01

    Purpose. To characterize the possible role of transducin Gtβγ-complex in modulating the signaling properties of photoactivated rhodopsin and its lifetime in rod disc membranes and intact rods. Methods. Rhodopsin photolysis was studied using UV-visible spectroscopy and rapid scanning spectroscopy in the presence of hydroxylamine in highly purified wild-type and Gtγ-deficient mouse rod disc membranes. Complex formation between photoactivated rhodopsin and transducin was measured by extra-metarhodopsin (meta) II assay. Recovery of dark current and flash sensitivity in individual intact wild-type and Gtγ-deficient mouse rods was measured by single-cell suction recordings. Results. Photoconversion of rhodopsin to meta I/meta II equilibrium proceeds normally after elimination of the Gtβγ-complex. The meta I/meta II ratio, the rate of meta II decay, the reactivity of meta II toward hydroxylamine, and the rate of meta III formation in Gtγ-deficient rod disc membranes were identical with those observed in wild-type samples. Under low-intensity illumination, the amount of extra–meta II in Gtγ-deficient discs was significantly reduced. The initial rate of dark current recovery after 12% rhodopsin bleach was three times faster in Gtγ-deficient rods, whereas the rate of the late current recovery was largely unchanged. Mutant rods also exhibited faster postbleach recovery of flash sensitivity. Conclusions. Photoactivation and thermal decay of rhodopsin proceed similarly in wild-type and Gtγ-deficient mouse rods, but the complex formation between photoactivated rhodopsin and transducin is severely compromised in the absence of Gtβγ. The resultant lower transduction activation contributes to faster photoresponse recovery after a moderate pigment bleach in Gtγ-deficient rods. PMID:22266510

  7. pH-dependent interaction of rhodopsin with cyanidin-3-glucoside. 1. Structural aspects.

    PubMed

    Yanamala, Naveena; Tirupula, Kalyan C; Balem, Fernanda; Klein-Seetharaman, Judith

    2009-01-01

    Anthocyanins are a class of natural compounds common in flowers and vegetables. Because of the increasing preference of consumers for food containing natural colorants and the demonstrated beneficial effects of anthocyanins on human health, it is important to decipher the molecular mechanisms of their action. Previous studies indicated that the anthocyanin cyanidin-3-glucoside (C3G) modulates the function of the photoreceptor rhodopsin. In this paper, we show using selective excitation (1)H NMR spectroscopy that C3G binds to rhodopsin. Ligand resonances broaden upon rhodopsin addition and rhodopsin resonances exhibit chemical shift changes as well as broadening effects in specific resonances, in an activation state-dependent manner. Furthermore, dark-adapted and light-activated states of rhodopsin show preferences for different C3G species. Molecular docking studies of the flavylium cation, quinoidal base, carbinol pseudobase and chalcone forms of C3G to models of the dark, light-activated and opsin structures of rhodopsin also support this conclusion. The results provide new insights into anthocyanin-protein interactions and may have relevance for the enhancement of night vision by this class of compounds. This work is also the first report of the study of ligand binding to a full-length membrane receptor in detergent micelles by (1)H NMR spectroscopy. Such studies were previously hampered by the presence of detergent micelle resonances, a problem overcome by the selective excitation approach.

  8. In silico characterization and transcriptomic analysis of nif family genes from Anabaena sp. PCC7120.

    PubMed

    Singh, Shilpi; Shrivastava, Alok Kumar

    2017-10-01

    In silico approaches in conjunction with morphology, nitrogenase activity, and qRT-PCR explore the impact of selected abiotic stressor such as arsenic, salt, cadmium, copper, and butachlor on nitrogen fixing (nif family) genes of diazotrophic cyanobacterium Anabaena sp. PCC7120. A total of 19 nif genes are present within the Anabaena genome that is involved in the process of nitrogen fixation. Docking studies revealed the interaction between these nif gene-encoded proteins and the selected abiotic stressors which were further validated through decreased heterocyst frequency, fragmentation of filaments, and downregulation of nitrogenase activity under these stresses indicating towards their toxic impact on nitrogen fixation potential of filamentous cyanobacterium Anabaena sp. PCC7120. Another appealing finding of this study is even though having similar binding energy and similar interacting residues between arsenic/salt and copper/cadmium to nif-encoded proteins, arsenic and cadmium are more toxic than salt and copper for nitrogenase activity of Anabaena which is crucial for growth and yield of rice paddy and soil reclamation.

  9. The Magnitude of the Light-induced Conformational Change in Different Rhodopsins Correlates with Their Ability to Activate G Proteins*

    PubMed Central

    Tsukamoto, Hisao; Farrens, David L.; Koyanagi, Mitsumasa; Terakita, Akihisa

    2009-01-01

    Light converts rhodopsin, the prototypical G protein-coupled receptor, into a form capable of activating G proteins. Recent work has shown that the light-activated state of different rhodopsins can possess different molecular properties, especially different abilities to activate G protein. For example, bovine rhodopsin is ∼20-fold more effective at activating G protein than parapinopsin, a non-visual rhodopsin, although these rhodopsins share relatively high sequence similarity. Here we have investigated possible structural aspects that might underlie this difference. Using a site-directed fluorescence labeling approach, we attached the fluorescent probe bimane to cysteine residues introduced in the cytoplasmic ends of transmembrane helices V and VI in both rhodopsins. The fluorescence spectra of these probes as well as their accessibility to aqueous quenching agents changed dramatically upon photoactivation in bovine rhodopsin but only moderately so in parapinopsin. We also compared the relative movement of helices V and VI upon photoactivation of both rhodopsins by introducing a bimane label and the bimane-quenching residue tryptophan into helices VI and V, respectively. Both receptors showed movement in this region upon activation, although the movement appears much greater in bovine rhodopsin than in parapinopsin. Together, these data suggest that a larger conformational change in helices V and VI of bovine rhodopsin explains why it has greater G protein activation ability than other rhodopsins. The different amplitude of the helix movement may also be responsible for functional diversity of G protein-coupled receptors. PMID:19497849

  10. Microbial and viral-like rhodopsins present in coastal marine sediments from four polar and subpolar regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, José L.; Golemba, Marcelo; Hernández, Edgardo

    Rhodopsins are broadly distributed. In this work, we analyzed 23 metagenomes corresponding to marine sediment samples from four regions that share cold climate conditions (Norway; Sweden; Argentina and Antarctica). In order to investigate the genes evolution of viral rhodopsins, an initial set of 6224 bacterial rhodopsin sequences according to COG5524 were retrieved from the 23 metagenomes. After selection by the presence of transmembrane domains and alignment, 123 viral (51) and non-viral (72) sequences (>50 amino acids) were finally included in further analysis. Viral rhodopsin genes were homologs of Phaeocystis globosa virus and Organic lake Phycodnavirus. Non-viral microbial rhodopsin genes weremore » ascribed to Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Proteobacteria, Deinococcus-Thermus and Cryptophyta and Fungi. A rescreening using Blastp, using as queries the viral sequences previously described, retrieved 30 sequences (>100 amino acids). Phylogeographic analysis revealed a geographical clustering of the sequences affiliated to the viral group. This clustering was not observed for the microbial non-viral sequences. The phylogenetic reconstruction allowed us to propose the existence of a putative ancestor of viral rhodopsin genes related to Actinobacteria and Chloroflexi. This is the first report about the existence of a phylogeographic association of the viral rhodopsin sequences from marine sediments.« less

  11. Multiple ABC glucoside transporters mediate sugar-stimulated growth in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Nieves-Morión, Mercedes; Flores, Enrique

    2018-02-01

    Cyanobacteria are generally capable of photoautotrophic growth and are widely distributed on Earth. The model filamentous, heterocyst-forming strain Anabaena sp. PCC 7120 has long been considered as a strict photoautotroph but is now known to be able to assimilate fructose. We have previously described two components of ABC glucoside uptake transporters from Anabaena that are involved in uptake of the sucrose analog esculin: GlsC [a nucleotide-binding domain subunit (NBD)] and GlsP [a transmembrane component (TMD)]. Here, we created Anabaena mutants of genes encoding three further ABC transporter components needed for esculin uptake: GlsD (NBD), GlsQ (TMD) and GlsR (periplasmic substrate-binding protein). Phototrophic growth of Anabaena was significantly stimulated by sucrose, fructose and glucose. Whereas the glsC and glsD mutants were drastically hampered in sucrose-stimulated growth, the different gls mutants were generally impaired in sugar-dependent growth. Our results suggest the participation of Gls and other ABC transporters encoded in the Anabaena genome in sugar-stimulated growth. Additionally, Gls transporter components influence the function of septal junctions in the Anabaena filament. We suggest that mixotrophic growth is important in cyanobacterial physiology and may be relevant for the wide success of these organisms in diverse environments. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates.

    PubMed

    Devine, Erin L; Theobald, Douglas L; Oprian, Daniel D

    2016-08-30

    The visual pigment rhodopsin is a G protein-coupled receptor that covalently binds its retinal chromophore via a Schiff base linkage to an active-site Lys residue in the seventh transmembrane helix. Although this residue is strictly conserved among all type II retinylidene proteins, we found previously that the active-site Lys in bovine rhodopsin (Lys296) can be moved to three other locations (G90K, T94K, S186K) while retaining the ability to form a pigment with retinal and to activate transducin in a light-dependent manner [ Devine et al. ( 2013 ) Proc. Natl. Acad. Sci. USA 110 , 13351 - 13355 ]. Because the active-site Lys is not functionally constrained to be in helix seven, it is possible that it could relocate within the protein, most likely via an evolutionary intermediate with two active-site Lys. Therefore, in this study we characterized potential evolutionary intermediates with two Lys in the active site. Four mutant rhodopsins were prepared in which the original Lys296 was left untouched and a second Lys residue was substituted for G90K, T94K, S186K, or F293K. All four constructs covalently bind 11-cis-retinal, form a pigment, and activate transducin in a light-dependent manner. These results demonstrate that rhodopsin can tolerate a second Lys in the retinal binding pocket and suggest that an evolutionary intermediate with two Lys could allow migration of the Schiff base Lys to a position other than the observed, highly conserved location in the seventh TM helix. From sequence-based searches, we identified two groups of natural opsins, insect UV cones and neuropsins, that contain Lys residues at two positions in their active sites and also have intriguing spectral similarities to the mutant rhodopsins studied here.

  13. Influence of halide binding on the hydrogen bonding network in the active site of Salinibacter sensory rhodopsin I.

    PubMed

    Reissig, Louisa; Iwata, Tatsuya; Kikukawa, Takashi; Demura, Makoto; Kamo, Naoki; Kandori, Hideki; Sudo, Yuki

    2012-11-06

    In nature, organisms are subjected to a variety of environmental stimuli to which they respond and adapt. They can show avoidance or attractive behaviors away from or toward such stimuli in order to survive in the various environments in which they live. One such stimuli is light, to which, for example, the receptor sensory rhodopsin I (SRI) has been found to respond by regulating both negative and positive phototaxis in, e.g., the archaeon Halobacterium salinarum. Interestingly, to date, all organisms having SRI-like proteins live in highly halophilic environments, suggesting that salt significantly influences the properties of SRIs. Taking advantage of the discovery of the highly stable SRI homologue from Salinibacter ruber (SrSRI), which maintains its color even in the absence of salt, the importance of the chloride ion for the color tuning and for the slow M-decay, which is thought to be essential for the phototaxis function of SRIs, has been reported previously [Suzuki, D., et al. (2009) J. Mol. Biol.392, 48-62]. Here the effects of the anion binding on the structure and structural changes of SRI during its photocycle are investigated by means of Fourier transform infrared (FTIR) spectroscopy and electrochemical experiments. Our results reveal that, among other things, the structural change and proton movement of a characteristic amino acid residue, Asp102 in SrSRI, is suppressed by the binding of an anion in its vicinity, both in the K- and M-intermediate. The presence of this anion also effects the extent of chromophore distrotion, and tentative results indicate an influence on the number and/or properties of internal water molecules. In addition, a photoinduced proton transfer could only be observed in the absence of the bound anion. Possible proton movement pathways, including the residues Asp102 and the putative Cl binding site His131, are discussed. In conclusion, the results show that the anion binding to SRI is not only important for the color tuning

  14. Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors.

    PubMed

    Becirovic, Elvir; Nguyen, O N Phuong; Paparizos, Christos; Butz, Elisabeth S; Stern-Schneider, Gabi; Wolfrum, Uwe; Hauck, Stefanie M; Ueffing, Marius; Wahl-Schott, Christian; Michalakis, Stylianos; Biel, Martin

    2014-11-15

    Outer segments (OSs) of rod photoreceptors are cellular compartments specialized in the conversion of light into electrical signals. This process relies on the light-triggered change in the intracellular levels of cyclic guanosine monophosphate, which in turn controls the activity of cyclic nucleotide-gated (CNG) channels in the rod OS plasma membrane. The rod CNG channel is a macromolecular complex that in its core harbors the ion-conducting CNGA1 and CNGB1a subunits. To identify additional proteins of the complex that interact with the CNGB1a core subunit, we applied affinity purification of mouse retinal proteins followed by mass spectrometry. In combination with in vitro and in vivo co-immunoprecipitation and fluorescence resonance energy transfer (FRET), we found that the tetraspanin peripherin-2 links CNGB1a to the light-detector rhodopsin. Using immunoelectron microscopy, we found that this peripherin-2/rhodopsin/CNG channel complex localizes to the contact region between the disk rims and the plasma membrane. FRET measurements revealed that the fourth transmembrane domain (TM4) of peripherin-2 is required for the interaction with rhodopsin. Quantitatively, the binding affinity of the peripherin-2/rhodopsin interaction was in a similar range as that observed for rhodopsin dimers. Finally, we demonstrate that the p.G266D retinitis pigmentosa mutation found within TM4 selectively abolishes the binding of peripherin-2 to rhodopsin. This finding suggests that the specific disruption of the rhodopsin/peripherin-2 interaction in the p.G266D mutant might contribute to the pathophysiology in affected persons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Missense mutation (E150K) of rhodopsin in autosomal recessive retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orth, U.; Oehlmann, R.; Gal, A.

    1994-09-01

    Missense or nonsense mutations of the rhodopsin gene have been implied in the pathogenesis of at least 3 different traits; autosomal dominant retinitis pigmentosa (adRP), congenital stationary night blindness (CSNB), and autosomal recessive retinitis pigmentosa (arRP). For the latter, a single patient has been reported with a nonsense mutation at codon 249 on both alleles. Heterozygous carriers of missense mutations of rhodopsin develop either adRP or CSNB depending on the particular amino acid substitution. Four of the 9 siblings from a consanguineous marriage in southern India were reported the have arRP. Mutational screening and sequencing of the rhodopsin gene revealedmore » a G-to-A transition of the first nucleotide at codon 150 in exon II, which alters glutamate to lysine. The E150K mutation was present in the 4 patients in homozygous form, whereas the parents and 2 of the siblings were heterozygotes. Two-point analysis produced a Zmax=3.46 at theta=0.00. Two unaffected siblings who are heterozygotes for the E150K mutation underwent a thorough ophthalmological and psychophysical examination. No clinical abnormalities were found although these individuals were over forty, whereas the onset of RP in their affected siblings was in the second decade. Collectively, both the genetic and clinical findings strongly suggest that the E150K mutation of rhodopsin is recessive in this family. Glu150 forms part of the CD cytoplasmic loop of rhodopsin, which has been implicated in the binding and activation of transducin. We speculate that E150K leads to RP because the mutant protein may be incapable of activating transducin. It is tempting to speculate that, in addition to mutations in the genes for rhodopsin and the {beta}-subunit of PDE, mutations in the genes for transducin may also result in arRP.« less

  16. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    DOE PAGES

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; ...

    2015-07-22

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotationmore » between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.« less

  17. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotationmore » between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.« less

  18. pH-dependent interaction of rhodopsin with cyanidin-3-glucoside. 2. Functional aspects.

    PubMed

    Tirupula, Kalyan C; Balem, Fernanda; Yanamala, Naveena; Klein-Seetharaman, Judith

    2009-01-01

    Anthocyanins are a class of phytochemicals that confer color to flowers, fruits, vegetables and leaves. They are part of our regular diet and serve as dietary supplements because of numerous health benefits, including improved vision. Recent studies have shown that the anthocyanin cyanidin-3-O-glucoside (C3G) increased regeneration of the dim-light photoreceptor rhodopsin (Matsumoto et al. [2003] J. Agric. Food Chem., 51, 3560-3563). In an accompanying study (Yanamala et al. [2009] Photochem. Photobiol.), we show that C3G directly binds to rhodopsin in a pH-dependent manner. In this study, we investigated the functional consequences of C3G binding to rhodopsin. As observed previously in rod outer segments, regeneration of purified rhodopsin in detergent micelles is also accelerated in the presence of C3G. Thermal denaturation and stability studies using circular dichroism, fluorescence and UV/visible absorbance spectroscopy show that C3G exerts a destabilizing effect on rhodopsin structure while it only modestly alters G-protein activation and the rates at which the light-activated Metarhodopsin II state decays to opsin and free retinal. These results indicate that the mechanism of C3G-enhanced regeneration may be based on changes in opsin structure promoting access to the retinal binding pocket.

  19. Interlocked feedforward loops control cell-type-specific Rhodopsin expression in the Drosophila eye.

    PubMed

    Johnston, Robert J; Otake, Yoshiaki; Sood, Pranidhi; Vogt, Nina; Behnia, Rudy; Vasiliauskas, Daniel; McDonald, Elizabeth; Xie, Baotong; Koenig, Sebastian; Wolf, Reinhard; Cook, Tiffany; Gebelein, Brian; Kussell, Edo; Nakagoshi, Hideki; Desplan, Claude

    2011-06-10

    How complex networks of activators and repressors lead to exquisitely specific cell-type determination during development is poorly understood. In the Drosophila eye, expression patterns of Rhodopsins define at least eight functionally distinct though related subtypes of photoreceptors. Here, we describe a role for the transcription factor gene defective proventriculus (dve) as a critical node in the network regulating Rhodopsin expression. dve is a shared component of two opposing, interlocked feedforward loops (FFLs). Orthodenticle and Dve interact in an incoherent FFL to repress Rhodopsin expression throughout the eye. In R7 and R8 photoreceptors, a coherent FFL relieves repression by Dve while activating Rhodopsin expression. Therefore, this network uses repression to restrict and combinatorial activation to induce cell-type-specific expression. Furthermore, Dve levels are finely tuned to yield cell-type- and region-specific repression or activation outcomes. This interlocked FFL motif may be a general mechanism to control terminal cell-fate specification. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Is rhodopsin isomerization correlated to astronauts' phosphene perceptions in space?

    NASA Astrophysics Data System (ADS)

    Narici, L.; Altea-Biophys Team

    Anomalous Phosphene Perception APP phoenomenon may just be a first example of how microgravity and particle radiation may modify the normal behaviour of the Central Nervous System CNS and also is an evidence that space environment may indeed influence the correct functioning of the visual system The ALTEA program is going to provide i an assesment of the CNS functional hazard due to microgravity and particle radiation during long space human permanence ii a definition for the needed shielding optimized for reducing these risks and iii a survey of ISS radiation environment aimed at the validation of spacecrafts computer models As known Rhodopsin is at the start of the photo-transduction cascade and its involvement in the phosphene perception would suggest a possible physiological pathway The bleaching of few molecules in the retina is sufficient to start the process of vision A very preliminary measurements on rhodopsin irradiation has been conducted in April 2003 Irradiation of 17 vials containing a solution of suine rhodopsine has been performed with 12 C ions at 200 MeV n - total dose has been varied from 10 9 to 10 13 ions over each vial New and more complete data from most recent measurements are now available Preparation and purification of bovine rhodopsin and regenerations of bleached molecules was carried out using reproducible procedures The samples was irradiated with controlled 12 C ion beams and with different amount of light radiation in order 1 to understand if the molecules have been

  1. Light-induced exposure of the cytoplasmic end of transmembrane helix seven in rhodopsin

    PubMed Central

    Abdulaev, Najmoutin G.; Ridge, Kevin D.

    1998-01-01

    A key step in signal transduction in the visual cell is the light-induced conformational change of rhodopsin that triggers the binding and activation of the guanine nucleotide-binding protein. Site-directed mAbs against bovine rhodopsin were produced and used to detect and characterize these conformational changes upon light activation. Among several antibodies that bound exclusively to the light-activated state, an antibody (IgG subclass) with the highest affinity (Ka ≈ 6 × 10−9 M) was further purified and characterized. The epitope of this antibody was mapped to the amino acid sequence 304–311. This epitope extends from the central region to the cytoplasmic end of the seventh transmembrane helix and incorporates a part of a highly conserved NPXXY motif, a critical region for signaling and agonist-induced internalization of several biogenic amine and peptide receptors. In the dark state, no binding of the antibody to rhodopsin was detected. Accessibility of the epitope to the antibody correlated with formation of the metarhodopsin II photointermediate and was reduced significantly at the metarhodopsin III intermediate. Further, incubation of the antigen–antibody complex with 11-cis-retinal failed to regenerate the native rhodopsin chromophore. These results suggest significant and reversible conformational changes in close proximity to the cytoplasmic end of the seventh transmembrane helix of rhodopsin that might be important for folding and signaling. PMID:9789004

  2. Scanning Laser Ophthalmoscope Measurement of Local Fundus Reflectance and Autofluorescence Changes Arising from Rhodopsin Bleaching and Regeneration

    PubMed Central

    Morgan, Jessica I. W.; Pugh, Edward N.

    2013-01-01

    Purpose. We measured the bleaching and regeneration kinetics of rhodopsin in the living human eye with two-wavelength, wide-field scanning laser ophthalmoscopy (SLO), and investigated the effect of rhodopsin bleaching on autofluorescence intensity. Methods. The retina was imaged with an Optos P200C SLO by its reflectance of 532 and 633 nm light, and its autofluorescence excited by 532 nm light, before and after exposure to lights calibrated to bleach rhodopsin substantially. Bleaching was confined to circular retinal regions of 4.8° visual angle located approximately 16° superotemporal and superonasal to fixation. Images were captured as 12-bit tiff files and postprocessed to extract changes in reflectance and autofluorescence. Results. At the locus of bleaching transient increases in reflectance of the 532 nm, but not the 633 nm beam were observed readily and quantified. A transient increase in autofluorescence also occurred. The action spectrum, absolute sensitivity, and recovery of the 532 nm reflectance increase were consistent with previous measurements of human rhodopsin's spectral sensitivity, photosensitivity, and regeneration kinetics. The autofluorescence changes closely tracked the changes in rhodopsin density. Conclusions. The bleaching and regeneration kinetics of rhodopsin can be measured locally in the human retina with a widely available SLO. The increased autofluorescence excited by 532 nm light upon bleaching appears primarily due to transient elimination of rhodopsin's screening of autofluorescent fluorochromes in the RPE. The spatially localized measurement with a widely available SLO of rhodopsin, the most abundant protein in the retina, could be a valuable adjunct to retinal health assessment. PMID:23412087

  3. Scanning laser ophthalmoscope measurement of local fundus reflectance and autofluorescence changes arising from rhodopsin bleaching and regeneration.

    PubMed

    Morgan, Jessica I W; Pugh, Edward N

    2013-03-01

    We measured the bleaching and regeneration kinetics of rhodopsin in the living human eye with two-wavelength, wide-field scanning laser ophthalmoscopy (SLO), and investigated the effect of rhodopsin bleaching on autofluorescence intensity. The retina was imaged with an Optos P200C SLO by its reflectance of 532 and 633 nm light, and its autofluorescence excited by 532 nm light, before and after exposure to lights calibrated to bleach rhodopsin substantially. Bleaching was confined to circular retinal regions of 4.8° visual angle located approximately 16° superotemporal and superonasal to fixation. Images were captured as 12-bit tiff files and postprocessed to extract changes in reflectance and autofluorescence. At the locus of bleaching transient increases in reflectance of the 532 nm, but not the 633 nm beam were observed readily and quantified. A transient increase in autofluorescence also occurred. The action spectrum, absolute sensitivity, and recovery of the 532 nm reflectance increase were consistent with previous measurements of human rhodopsin's spectral sensitivity, photosensitivity, and regeneration kinetics. The autofluorescence changes closely tracked the changes in rhodopsin density. The bleaching and regeneration kinetics of rhodopsin can be measured locally in the human retina with a widely available SLO. The increased autofluorescence excited by 532 nm light upon bleaching appears primarily due to transient elimination of rhodopsin's screening of autofluorescent fluorochromes in the RPE. The spatially localized measurement with a widely available SLO of rhodopsin, the most abundant protein in the retina, could be a valuable adjunct to retinal health assessment.

  4. Chemoheterotrophic Growth of the Cyanobacterium Anabaena sp. Strain PCC 7120 Dependent on a Functional Cytochrome c Oxidase

    PubMed Central

    Stebegg, Ronald; Wurzinger, Bernhard; Mikulic, Markus

    2012-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth. PMID:22730128

  5. A distance measurement between specific sites on the cytoplasmic surface of bovine rhodopsin in rod outer segment disk membranes.

    PubMed

    Albert, A D; Watts, A; Spooner, P; Groebner, G; Young, J; Yeagle, P L

    1997-08-14

    Structural information on mammalian integral membrane proteins is scarce. As part of work on an alternative approach to the structure of bovine rhodopsin, a method was devised to obtain an intramolecular distance between two specific sites on rhodopsin while in the rod outer segment disk membrane. In this report, the distance between the rhodopsin kinase phosphorylation site(s) on the carboxyl terminal and the top of the third transmembrane helix was measured on native rhodopsin. Rhodopsin was labeled with a nuclear spin label (31P) by limited phosphorylation with rhodopsin kinase. Major phosphorylation occurs at serines 343 and 338 on the carboxyl terminal. The phosphorylated rhodopsin was then specifically labeled on cysteine 140 with an electron spin label. Magic angle spinning 31P-nuclear magnetic resonance revealed the resonance arising from the phosphorylated protein. The enhancement of the transverse relaxation of this resonance by the paramagnetic spin label was observed. The strength of this perturbation was used to determine the through-space distance between the phosphorylation site(s) and the spin label position. A distance of 18 +/- 3 A was obtained.

  6. FTIR study of the photoreaction of bovine rhodopsin in the presence of hydroxylamine.

    PubMed

    Katayama, Kota; Furutani, Yuji; Kandori, Hideki

    2010-07-15

    In bovine rhodopsin, 11-cis-retinal forms a Schiff base linkage with Lys296. The Schiff base is not reactive to hydroxylamine in the dark, which is consistent with the well-protected retinal binding site. In contrast, under illumination it easily forms all-trans retinal oxime, resulting in the loss of color. This suggests that activation of rhodopsin creates a specific reaction channel for hydroxylamine or loosens the chromophore binding pocket. In the present study, to extract structural information on the Schiff base vicinity and to understand the changes upon activation of rhodopsin, we compared light-induced FTIR difference spectra of bovine rhodopsin in the presence and absence of hydroxylamine under physiological pH (approximately 7). Although the previous FTIR study did not observe the complex formation between rhodopsin and G-protein transducin in hydrated films, the present study clearly shows that hydrated films can be used for studies of the interaction between rhodopsin and hydroxylamine. Hydroxylamine does not react with the Schiff base of Meta-I intermediate trapped at 240 K, possibly because of decreased conformational motions under the frozen environment, while FTIR spectroscopy showed that hydroxylamine affects the hydrogen bonds of the Schiff base and water molecules in Meta-I. In contrast, formation of the retinal oxime was clearly observed at 280 K, the characteristic temperature of Meta-II accumulation in the absence of hydroxylamine, and time-dependent formation of retinal oxime was observed from Meta-II at 265 K as well. The obtained difference FTIR spectra of retinal oxime and opsin are different from that of Meta-II. It is likely that the antiparallel beta-sheet constituting a part of the retinal binding pocket at the extracellular surface is structurally disrupted in the presence of hydroxylamine, which allows the hydrolysis of the Schiff base into retinal oxime.

  7. Modeling activated states of GPCRs: the rhodopsin template.

    PubMed

    Niv, Masha Y; Skrabanek, Lucy; Filizola, Marta; Weinstein, Harel

    2006-01-01

    Activation of G Protein-Coupled Receptors (GPCRs) is an allosteric mechanism triggered by ligand binding and resulting in conformational changes transduced by the transmembrane domain. Models of the activated forms of GPCRs have become increasingly necessary for the development of a clear understanding of signal propagation into the cell. Experimental evidence points to a multiplicity of conformations related to the activation of the receptor, rendered important physiologically by the suggestion that different conformations may be responsible for coupling to different signaling pathways. In contrast to the inactive state of rhodopsin (RHO) for which several high quality X-ray structures are available, the structure-related information for the active states of rhodopsin and all other GPCRs is indirect. We have collected and stored such information in a repository we maintain for activation-specific structural data available for rhodopsin-like GPCRs, http://www.physiology.med.cornell.edu/GPCRactivation/gpcrindex.html . Using these data as structural constraints, we have applied Simulated Annealing Molecular Dynamics to construct a number of different active state models of RHO starting from the known inactive structure. The common features of the models indicate that TM3 and TM5 play an important role in activation, in addition to the well-established rearrangement of TM6. Some of the structural changes observed in these models occur in regions that were not involved in the constraints, and have not been previously tested experimentally; they emerge as interesting candidates for further experimental exploration of the conformational space of activated GPCRs. We show that none of the normal modes calculated from the inactive structure has a dominant contribution along the path of conformational rearrangement from inactive to the active forms of RHO in the models. This result may differentiate rhodopsin from other GPCRs, and the reasons for this difference are

  8. Phosphorylation-Induced Conformational Changes of Photoactivated Rhodopsin Probed by Fluorescent Labeling at Cys140 and Cys316.

    PubMed

    Rodríguez, Sheerly; Silva, May-Li; Benaím, Gustavo; Bubis, José

    2018-05-03

    In order to monitor conformational changes following photoactivation and phosphorylation of bovine rhodopsin, the two reactive sulfhydryl groups at Cys 140 and Cys 316 were specifically labeled with the monobromobimane (mBBr) fluorophore. Although alterations in conformation after light exposure of rhodopsin were not detected by fluorescence excitation scans (300-450 nm) of the mBBr-labeled protein, the fluorescence signal was reduced ∼ 90% in samples containing photoactivated phosphorhodopsin. Predominant labeling at either Cys 140 or Cys 316 in light-activated and phosphorylated rhodopsin merely generated a decrease of ∼ 38% and 28%, respectively, in the fluorescence excitation intensity. Thus, neither mBBr-modified Cys 140 nor mBBr-modified Cys 316 were involved single-handedly in the remarkable fall seen on the signal following phosphorylation of the protein; rather, the incorporation of phosphate groups on the mBBr-labeled light-activated rhodopsin appeared to affect its fluorescence signal in a cooperative or synergistic manner. These findings demonstrated that the phosphorylation of specific hydroxyl groups at the carboxyl terminal tail of rhodopsin causes definite conformational changes in the three-dimensional fold of the protein. Apparently, amino acid residues that are buried in the interior of the inactive protein become accessible following bleaching and phosphorylation of rhodopsin, quenching in turn the fluorescence excitation signal of mBBr-modified rhodopsin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding

    PubMed Central

    Vishnivetskiy, Sergey. A.; Ostermaier, Martin K.; Singhal, Ankita; Panneels, Valerie; Homan, Kristoff T.; Glukhova, Alisa; Sligar, Stephen G.; Tesmer, John J. G.; Schertler, Gebhard F.X.; Standfuss, Joerg; Gurevich, Vsevolod V.

    2013-01-01

    The effects of activating mutations associated with night blindness on the stoichiometry of rhodopsin interactions with G protein-coupled receptor kinase 1 (GRK1) and arrestin-1 have not been reported. Here we show that the monomeric form of WT rhodopsin and its constitutively active mutants M257Y, G90D, and T94I, reconstituted into HDL particles are effectively phosphorylated by GRK1, as well as two more ubiquitously expressed subtypes, GRK2 and GRK5. All versions of arrestin-1 tested (WT, pre-activated, and constitutively monomeric mutants) bind to monomeric rhodopsin and show the same selectivity for different functional forms of rhodopsin as in native disc membranes. Rhodopsin phosphorylation by GRK1 and GRK2 promotes arrestin-1 binding to a comparable extent, whereas similar phosphorylation by GRK5 is less effective, suggesting that not all phosphorylation sites on rhodopsin are equivalent in promoting arrestin-1 binding. The binding of WT arrestin-1 to phospho-opsin is comparable to the binding to its preferred target, P-Rh*, suggesting that in photoreceptors arrestin-1 only dissociates after opsin regeneration with 11-cis-retinal, which converts phospho-opsin into inactive phospho-rhodopsin that has lower affinity for arrestin-1. Reduced binding of arrestin-1 to the phospho-opsin form of G90D mutant likely contributes to night blindness caused by this mutation in humans. PMID:23872075

  10. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.

    PubMed

    Vishnivetskiy, Sergey A; Ostermaier, Martin K; Singhal, Ankita; Panneels, Valerie; Homan, Kristoff T; Glukhova, Alisa; Sligar, Stephen G; Tesmer, John J G; Schertler, Gebhard F X; Standfuss, Joerg; Gurevich, Vsevolod V

    2013-11-01

    The effects of activating mutations associated with night blindness on the stoichiometry of rhodopsin interactions with G protein-coupled receptor kinase 1 (GRK1) and arrestin-1 have not been reported. Here we show that the monomeric form of WT rhodopsin and its constitutively active mutants M257Y, G90D, and T94I, reconstituted into HDL particles are effectively phosphorylated by GRK1, as well as two more ubiquitously expressed subtypes, GRK2 and GRK5. All versions of arrestin-1 tested (WT, pre-activated, and constitutively monomeric mutants) bind to monomeric rhodopsin and show the same selectivity for different functional forms of rhodopsin as in native disc membranes. Rhodopsin phosphorylation by GRK1 and GRK2 promotes arrestin-1 binding to a comparable extent, whereas similar phosphorylation by GRK5 is less effective, suggesting that not all phosphorylation sites on rhodopsin are equivalent in promoting arrestin-1 binding. The binding of WT arrestin-1 to phospho-opsin is comparable to the binding to its preferred target, P-Rh*, suggesting that in photoreceptors arrestin-1 only dissociates after opsin regeneration with 11-cis-retinal, which converts phospho-opsin into inactive phospho-rhodopsin that has lower affinity for arrestin-1. Reduced binding of arrestin-1 to the phospho-opsin form of G90D mutant likely contributes to night blindness caused by this mutation in humans. © 2013.

  11. A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution.

    PubMed

    Nosrati, Meisam; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-07-20

    The members of the rhodopsin family of proteins are involved in many essential light-dependent processes in biology. Specific photoisomerization of the protein-bound retinylidene PSB at a specified wavelength range of light is at the heart of all of these systems. Nonetheless, it has been difficult to reproduce in an engineered system. We have developed rhodopsin mimics, using intracellular lipid binding protein family members as scaffolds, to study fundamental aspects of protein/chromophore interactions. Herein we describe a system that specifically isomerizes the retinylidene protonated Schiff base both thermally and photochemically. This isomerization has been characterized at atomic resolution by quantitatively interconverting the isomers in the crystal both thermally and photochemically. This event is accompanied by a large pKa change of the imine similar to the pKa changes observed in bacteriorhodopsin and visual opsins during isomerization.

  12. Archaebacterial rhodopsin sequences: Implications for evolution

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1991-01-01

    It was proposed over 10 years ago that the archaebacteria represent a separate kingdom which diverged very early from the eubacteria and eukaryotes. It follows that investigations of archaebacterial characteristics might reveal features of early evolution. So far, two genes, one for bacteriorhodopsin and another for halorhodopsin, both from Halobacterium halobium, have been sequenced. We cloned and sequenced the gene coding for the polypeptide of another one of these rhodopsins, a halorhodopsin in Natronobacterium pharaonis. Peptide sequencing of cyanogen bromide fragments, and immuno-reactions of the protein and synthetic peptides derived from the C-terminal gene sequence, confirmed that the open reading frame was the structural gene for the pharaonis halorhodopsin polypeptide. The flanking DNA sequences of this gene, as well as those of other bacterial rhodopsins, were compared to previously proposed archaebacterial consensus sequences. In pairwise comparisons of the open reading frame with DNA sequences for bacterio-opsin and halo-opsin from Halobacterium halobium, silent divergences were calculated. These indicate very considerable evolutionary distance between each pair of genes, even in the dame organism. In spite of this, three protein sequences show extensive similarities, indicating strong selective pressures.

  13. Purification, characterization and function of dihydrolipoamide dehydrogenase from the cyanobacterium Anabaena sp. strain P.C.C. 7119.

    PubMed Central

    Serrano, A

    1992-01-01

    A dihydrolipoamide dehydrogenase (dihydrolipoamide: NAD+ oxidoreductase, EC 1.8.1.4) (DLD) has been found in the soluble fraction of cells of both unicellular (Synechococcus sp. strain P.C.C. 6301) and filamentous (Calothrix sp. strain P.C.C. 7601 and Anabaena sp. strain P.C.C. 7119) cyanobacteria. DLD from Anabaena sp. was purified 3000-fold to electrophoretic homogeneity. The purified enzyme exhibited a specific activity of 190 units/mg and was characterized as a dimeric FAD-containing protein with a native molecular mass of 104 kDa, a Stokes' radius of 4.28 nm and a very acidic pI value of about 3.7. As is the case with the same enzyme from other sources, cyanobacterial DLD showed specificity for NADH and lipoamide, or lipoic acid, as substrates. Nevertheless, the strong acidic character of the Anabaena DLD is a distinctive feature with respect to the same enzyme from other organisms. The presence of essential thiol groups was suggested by the inactivation produced by thiol-group-reactive reagents and heavy-metal ions, with lipoamide, but not NAD+, behaving as a protective agent. The function and physiological significance of Anabaena DLD are discussed in relation to the fact that 2-oxoacid dehydrogenase complexes have not been detected so far in filamentous cyanobacteria. Glycine decarboxylase activity, which might be involved in photorespiratory metabolism, has been found, however, in cell extracts of Anabaena sp. strain P.C.C. 7119 as the present study demonstrates. Images Fig. 2. PMID:1471997

  14. Retinal Ligand Mobility Explains Internal Hydration and Reconciles Active Rhodopsin Structures

    PubMed Central

    Leioatts, Nicholas; Mertz, Blake; Martínez-Mayorga, Karina; Romo, Tod D.; Pitman, Michael C.; Feller, Scott E.; Grossfield, Alan; Brown, Michael F.

    2014-01-01

    Rhodopsin, the mammalian dim-light receptor, is one of the best-characterized G-protein-coupled receptors, a pharmaceutically important class of membrane proteins that has garnered a great deal of attention because of the recent availability of structural information. Yet the mechanism of rhodopsin activation is not fully understood. Here, we use microsecond-scale all-atom molecular dynamics simulations, validated by solid-state 2H nuclear magnetic resonance spectroscopy, to understand the transition between the dark and metarhodopsin I (Meta I) states. Our analysis of these simulations reveals striking differences in ligand flexibility between the two states. Retinal is much more dynamic in Meta I, adopting an elongated conformation similar to that seen in the recent activelike crystal structures. Surprisingly, this elongation corresponds to both a dramatic influx of bulk water into the hydrophobic core of the protein and a concerted transition in the highly conserved Trp2656.48 residue. In addition, enhanced ligand flexibility upon light activation provides an explanation for the different retinal orientations observed in X-ray crystal structures of active rhodopsin. PMID:24328554

  15. Cloning, overexpression and interaction of recombinant Fur from the cyanobacterium Anabaena PCC 7119 with isiB and its own promoter.

    PubMed

    Bes, M T; Hernández, J A; Peleato, M L; Fillat, M F

    2001-01-15

    A gene coding for a Fur (ferric uptake regulation) protein from the cyanobacterium Anabaena PCC 7119 has been cloned and overexpressed in Escherichia coli. DNA sequence analysis confirmed the presence of a 151-amino-acid open reading frame that showed homology with the Fur proteins reported for the unicellular cyanobacteria Synechococcus 7942 and Synechocystis PCC 6803. Two putative Fur-binding sites were detected in the promoter regions of the fur gene from Anabaena. Partially purified recombinant Fur binds to the flavodoxin promoter as well as its own promoter. This suggests that the Fur gene is autoregulated in Anabaena.

  16. Protein Activity of the Fusarium fujikuroi Rhodopsins CarO and OpsA and Their Relation to Fungus–Plant Interaction

    PubMed Central

    Adam, Alexander; Deimel, Stephan; Pardo-Medina, Javier; García-Martínez, Jorge; Konte, Tilen; Limón, M. Carmen; Avalos, Javier

    2018-01-01

    Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus. PMID:29324661

  17. Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research.

    PubMed

    Grote, Mathias; O'Malley, Maureen A

    2011-11-01

    The history of research on microbial rhodopsins offers a novel perspective on the history of the molecular life sciences. Events in this history play important roles in the development of fields such as general microbiology, membrane research, bioenergetics, metagenomics and, very recently, neurobiology. New concepts, techniques, methods and fields have arisen as a result of microbial rhodopsin investigations. In addition, the history of microbial rhodopsins sheds light on the dynamic connections between basic and applied science, and hypothesis-driven and data-driven approaches. The story begins with the late nineteenth century discovery of microorganisms on salted fish and leads into ecological and taxonomical studies of halobacteria in hypersaline environments. These programmes were built on by the discovery of bacteriorhodopsin in organisms that are part of what is now known as the archaeal genus Halobacterium. The transfer of techniques from bacteriorhodopsin studies to the metagenomic discovery of proteorhodopsin in 2000 further extended the field. Microbial rhodopsins have also been used as model systems to understand membrane protein structure and function, and they have become the target of technological applications such as optogenetics and nanotechnology. Analysing the connections between these historical episodes provides a rich example of how science works over longer time periods, especially with regard to the transfer of materials, methods and concepts between different research fields. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins.

    PubMed

    Kwon, Soon-Kyeong; Kim, Byung Kwon; Song, Ju Yeon; Kwak, Min-Jung; Lee, Choong Hoon; Yoon, Jung-Hoon; Oh, Tae Kwang; Kim, Jihyun F

    2013-01-01

    Rhodopsin-containing marine microbes such as those in the class Flavobacteriia play a pivotal role in the biogeochemical cycle of the euphotic zone (Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol. 6:488-494). Deciphering the genome information of flavobacteria and accessing the diversity and ecological impact of microbial rhodopsins are important in understanding and preserving the global ecosystems. The genome sequence of the orange-pigmented marine flavobacterium Nonlabens dokdonensis (basonym: Donghaeana dokdonensis) DSW-6 was determined. As a marine photoheterotroph, DSW-6 has written in its genome physiological features that allow survival in the oligotrophic environments. The sequence analysis also uncovered a gene encoding an unexpected type of microbial rhodopsin containing a unique motif in addition to a proteorhodopsin gene and a number of photolyase or cryptochrome genes. Homologs of the novel rhodopsin gene were found in other flavobacteria, alphaproteobacteria, a species of Cytophagia, a deinococcus, and even a eukaryote diatom. They all contain the characteristic NQ motif and form a phylogenetically distinct group. Expression analysis of this rhodopsin gene in DSW-6 indicated that it is induced at high NaCl concentrations, as well as in the presence of light and the absence of nutrients. Genomic and metagenomic surveys demonstrate the diversity of the NQ rhodopsins in nature and the prevalent occurrence of the encoding genes among microbial communities inhabiting hypersaline niches, suggesting its involvement in sodium metabolism and the sodium-adapted lifestyle.

  19. Functional Dependence between Septal Protein SepJ from Anabaena sp. Strain PCC 7120 and an Amino Acid ABC-Type Uptake Transporter.

    PubMed

    Escudero, Leticia; Mariscal, Vicente; Flores, Enrique

    2015-08-01

    In the diazotrophic filaments of heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients, including some amino acids. In the model organism Anabaena sp. strain PCC 7120, the SepJ protein, composed of periplasmic and integral membrane (permease) sections, is located at the intercellular septa joining adjacent cells in the filament. The unicellular cyanobacterium Synechococcus elongatus strain PCC 7942 bears a gene, Synpcc7942_1024 (here designated dmeA), encoding a permease homologous to the SepJ permease domain. Synechococcus strains lacking dmeA or lacking dmeA and expressing Anabaena sepJ were constructed. The Synechococcus dmeA mutant showed a significant 22 to 32% decrease in the uptake of aspartate, glutamate, and glutamine, a phenotype that could be partially complemented by Anabaena sepJ. Synechococcus mutants of an ATP-binding-cassette (ABC)-type transporter for polar amino acids showed >98% decreased uptake of glutamate irrespective of the presence of dmeA or Anabaena sepJ in the same strain. Thus, Synechococcus DmeA or Anabaena SepJ is needed to observe full (or close to full) activity of the ABC transporter. An Anabaena sepJ deletion mutant was significantly impaired in glutamate and aspartate uptake, which also in this cyanobacterium requires the activity of an ABC-type transporter for polar amino acids. SepJ appears therefore to generally stimulate the activity of cyanobacterial ABC-type transporters for polar amino acids. Conversely, an Anabaena mutant of three ABC-type transporters for amino acids was impaired in the intercellular transfer of 5-carboxyfluorescein, a SepJ-related property. Our results unravel possible functional interactions in transport elements important for diazotrophic growth. Membrane transporters are essential for many aspects of cellular life, from uptake and export of substances in unicellular organisms to intercellular molecular exchange in

  20. Selection and characterization of Euglena anabaena var. minor as a new candidate Euglena species for industrial application.

    PubMed

    Suzuki, Kengo; Mitra, Sharbanee; Iwata, Osamu; Ishikawa, Takahiro; Kato, Sueo; Yamada, Koji

    2015-01-01

    Euglena gracilis is a microalgae used as a model organism. Recently, mass cultivation of this species has been achieved for industrial applications. The genus Euglena includes more than 200 species that share common useful features, but the potential industrial applications of other Euglena species have not been evaluated. Thus, we conducted a pilot screening study to identify other species that proliferate at a sufficiently rapid rate to be used for mass cultivation; we found that Euglena anabaena var. minor had a rapid growth rate. In addition, its cells accumulated more than 40% weight of carbohydrate, most of which is considered to be a euglenoid specific type of beta-1-3-glucan, paramylon. Carbohydrate is stored in E. anabaena var. minor cells during normal culture, whereas E. gracilis requires nitrogen limitation to facilitate paramylon accumulation. These results suggest the potential industrial application of E. anabaena var. minor.

  1. Dechlorination of lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the nir operon.

    PubMed Central

    Kuritz, T; Bocanera, L V; Rivera, N S

    1997-01-01

    Nitrate is essential for lindane dechlorination by the cyanobacteria Anabaena sp. strain PCC7120 and Nostoc ellipsosporum, as it is for dechlorination of other organic compounds by heterotrophic microorganisms. Based on analyses of mutants and effects of environmental factors, we conclude that lindane dechlorination by Anabaena sp. requires a functional nir operon that encodes the enzymes for nitrate utilization. PMID:9150239

  2. Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: Use of a chemically preactivated reagent

    PubMed Central

    Itoh, Yoshiki; Cai, Kewen; Khorana, H. Gobind

    2001-01-01

    Contact sites in interaction between light-activated rhodopsin and transducin (T) have been investigated by using a chemically preactivated crosslinking reagent, N-succinimidyl 3-(2-pyridyldithio)propionate. The 3 propionyl-N-succinimidyl group in the reagent was attached by a disulfide exchange reaction to rhodopsin mutants containing single reactive cysteine groups in the cytoplasmic loops. Complex formation between the derivatized rhodopsin mutants and T was carried out by illumination at λ > 495 nm. Subsequent increase in pH (from 6 to 7.5 or higher) of the complex resulted in crosslinking of rhodopsin to the Tα subunit. Crosslinking to Tα was demonstrated for the rhodopsin mutants K141C, S240C, and K248C, and the crosslinked sites in Tα were identified for the rhodopsin mutant S240C. The peptides carrying the crosslinking moiety were isolated from the trypsin-digested peptide mixture, and their identification was carried out by matrix-assisted laser desorption ionization–time of flight mass spectrometry. The main site of crosslinking is within the peptide sequence, Leu-19–Arg-28 at the N-terminal region of Tα. The total results show that both the N and the C termini of Tα are in close vicinity to the third cytoplasmic loop of rhodopsin in the complex between rhodopsin and T. PMID:11320238

  3. Photosynthetic production of hydrogen. [Blue-green alga, Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neil, G.; Nicholas, D.J.D.; Bockris, J.O.

    A systematic investigation of photosynthetic hydrogen production using a blue-green alga, Anabaena cylindrica, was carried out. The results indicate that there are two important problems which must be overcome for large-scale hydrogen production using photosynthetic processes. These are (a) the development of a stable system, and (b) attainment of at least a fifty-fold increase in the rate of hydrogen evolution per unit area illuminated.

  4. Transmembrane Helices Tilt, Bend, Slide, Torque, and Unwind between Functional States of Rhodopsin

    PubMed Central

    Ren, Zhong; Ren, Peter X.; Balusu, Rohith; Yang, Xiaojing

    2016-01-01

    The seven-helical bundle of rhodopsin and other G-protein coupled receptors undergoes structural rearrangements as the transmembrane receptor protein is activated. These structural changes are known to involve tilting and bending of various transmembrane helices. However, the cause and effect relationship among structural events leading to a cytoplasmic crevasse for G-protein binding is less well defined. Here we present a mathematical model of the protein helix and a simple procedure to determine multiple parameters that offer precise depiction of a helical conformation. A comprehensive survey of bovine rhodopsin structures shows that the helical rearrangements during the activation of rhodopsin involve a variety of angular and linear motions such as torsion, unwinding, and sliding in addition to the previously reported tilting and bending. These hitherto undefined motion components unify the results obtained from different experimental approaches, and demonstrate conformational similarity between the active opsin structure and the photoactivated structures in crystallo near the retinal anchor despite their marked differences. PMID:27658480

  5. Formation and Decay of the Arrestin·Rhodopsin Complex in Native Disc Membranes*

    PubMed Central

    Beyrière, Florent; Sommer, Martha E.; Szczepek, Michal; Bartl, Franz J.; Hofmann, Klaus Peter; Heck, Martin; Ritter, Eglof

    2015-01-01

    In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of β-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor. PMID:25847250

  6. Cone-like rhodopsin expressed in the all-cone retina of the colubrid pine snake as a potential adaptation to diurnality.

    PubMed

    Bhattacharyya, Nihar; Darren, Benedict; Schott, Ryan K; Tropepe, Vincent; Chang, Belinda S W

    2017-07-01

    Colubridae is the largest and most diverse family of snakes, with visual systems that reflect this diversity, encompassing a variety of retinal photoreceptor organizations. The transmutation theory proposed by Walls postulates that photoreceptors could evolutionarily transition between cell types in squamates, but few studies have tested this theory. Recently, evidence for transmutation and rod-like machinery in an all-cone retina has been identified in a diurnal garter snake ( Thamnophis ), and it appears that the rhodopsin gene at least may be widespread among colubrid snakes. However, functional evidence supporting transmutation beyond the existence of the rhodopsin gene remains rare. We examined the all-cone retina of another colubrid, Pituophis melanoleucus , thought to be more secretive/burrowing than Thamnophis We found that P. melanoleucus expresses two cone opsins (SWS1, LWS) and rhodopsin (RH1) within the eye. Immunohistochemistry localized rhodopsin to the outer segment of photoreceptors in the all-cone retina of the snake and all opsin genes produced functional visual pigments when expressed in vitro Consistent with other studies, we found that P. melanoleucus rhodopsin is extremely blue-shifted. Surprisingly, P. melanoleucus rhodopsin reacted with hydroxylamine, a typical cone opsin characteristic. These results support the idea that the rhodopsin-containing photoreceptors of P. melanoleucus are the products of evolutionary transmutation from rod ancestors, and suggest that this phenomenon may be widespread in colubrid snakes. We hypothesize that transmutation may be an adaptation for diurnal, brighter-light vision, which could result in increased spectral sensitivity and chromatic discrimination with the potential for colour vision. © 2017. Published by The Company of Biologists Ltd.

  7. DNA Probes Show Genetic Variation in Cyanobacterial Symbionts of the Azolla Fern and a Closer Relationship to Free-Living Nostoc Strains than to Free-Living Anabaena Strains

    PubMed Central

    Plazinski, Jacek; Zheng, Qi; Taylor, Rona; Croft, Lynn; Rolfe, Barry G.; Gunning, Brian E. S.

    1990-01-01

    Twenty-two isolates of Anabaena azollae derived from seven Azolla species from various geographic and ecological sources were characterized by DNA-DNA hybridization. Cloned DNA fragments derived from the genomic sequences of three different A. azollae isolates were used to detect restriction fragment length polymorphism among all symbiotic anabaenas. DNA clones were radiolabeled and hybridized against southern blot transfers of genomic DNAs of different isolates of A. azollae digested with restriction endonucleases. Eight DNA probes were selected to identify the Anabaena strains tested. Two were strain specific and hybridized only to A. azollae strains isolated from Azolla microphylla or Azolla caroliniana. One DNA probe was section specific (hybridized only to anabaenas isolated from Azolla ferns representing the section Euazolla), and five other probes gave finer discrimination among anabaenas representing various ecotypes of Azolla species. These cloned genomic DNA probes identified 11 different genotypes of A. azollae isolates. These included three endosymbiotic genotypes within Azolla filiculoides species and two genotypes within both A. caroliniana and Azolla pinnata endosymbionts. Although we were not able to discriminate among anabaenas extracted from different ecotypes of Azolla nilotica, Azolla mexicina, Azolla rubra and Azolla microphylla species, each of the endosymbionts was easily identified as a unique genotype. When total DNA isolated from free-living Anabaena sp. strain PCC7120 was screened, none of the genomic DNA probes gave detectable positive hybridization. Total DNA of Nostoc cycas PCC7422 hybridized with six of eight genomic DNA fragments. These data imply that the dominant symbiotic organism in association with Azolla spp. is more closely related to Nostoc spp. than to free-living Anabaena spp. Images PMID:16348182

  8. Modeling Photo-Bleaching Kinetics to Create High Resolution Maps of Rod Rhodopsin in the Human Retina

    PubMed Central

    Ehler, Martin; Dobrosotskaya, Julia; Cunningham, Denise; Wong, Wai T.; Chew, Emily Y.; Czaja, Wojtek; Bonner, Robert F.

    2015-01-01

    We introduce and describe a novel non-invasive in-vivo method for mapping local rod rhodopsin distribution in the human retina over a 30-degree field. Our approach is based on analyzing the brightening of detected lipofuscin autofluorescence within small pixel clusters in registered imaging sequences taken with a commercial 488nm confocal scanning laser ophthalmoscope (cSLO) over a 1 minute period. We modeled the kinetics of rhodopsin bleaching by applying variational optimization techniques from applied mathematics. The physical model and the numerical analysis with its implementation are outlined in detail. This new technique enables the creation of spatial maps of the retinal rhodopsin and retinal pigment epithelium (RPE) bisretinoid distribution with an ≈ 50μm resolution. PMID:26196397

  9. The cyanobiont in an Azolla fern is neither Anabaena nor Nostoc.

    PubMed

    Baker, Judith A; Entsch, Barrie; McKay, David B

    2003-12-05

    The cyanobacterial symbionts in the fern Azolla have generally been ascribed to either the Anabaena or Nostoc genera. By using comparisons of the sequences of the phycocyanin intergenic spacer and a fragment of the 16S rRNA, we found that the cyanobiont from an Azolla belongs to neither of these genera.

  10. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  11. Screening for mutations in rhodopsin and peripherin/RDS in patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.A.; Gannon, A.M.; Daiger, S.P.

    1994-09-01

    Mutations in rhodopsin account for approximately 30% of all cases of autosomal dominant retinits pigmentosa (adRP) and mutations in peripherin/RDS account for an additional 5% of cases. Also, mutations in rhodopsin can cause autosomal recessive retinitis pigmentosa and mutations in peripherin/RDS can cause dominant macular degeneration. Most disease-causing mutations in rhodopsin and peripherin/RDS are unique to one family or, at most, to a few families within a limited geographic region, though a few mutations are found in multiple, unrelated families. To further determine the spectrum of genetic variation in these genes, we screened DNA samples from 134 unrelated patients withmore » retinitis pigmentosa for mutations in both rhodopsin and peripherin/RDS using SSCP followed by genomic sequencing. Of the 134 patients, 86 were from families with apparent adRP and 48 were either isolated cases or were from families with an equivocal mode of inheritance. Among these patients we found 14 distinct rhodopsin mutations which are likely to cause retinal disease. Eleven of these mutations were found in one individual or one family only, whereas the Pro23His mutation was found in 14 {open_quotes}unrelated{close_quotes}individuals. The splice-site mutation produces dominant disease though with highly variable expression. Among the remaining patients were found 6 distinct peripherin/RDS mutations which are likely to cause retinal disease. These mutations were also found in one patient or family only, except the Gly266Asp mutation which was found in two unrelated patients. These results confirm the expected frequency and broad spectrum of mutations causing adRP.« less

  12. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryja, T.P.; Han, L.B.; Cowley, G.S.

    1991-10-15

    The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150more » patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene.« less

  13. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena.

    PubMed

    Burnat, Mireia; Flores, Enrique

    2014-10-01

    Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [(14) C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The ∆alr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [(14) C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the ∆alr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Effects of lead accumulation on the Azolla caroliniana-Anabaena association.

    PubMed

    Roberts, Anne E; Boylen, Charles W; Nierzwicki-Bauer, Sandra A

    2014-04-01

    The effect of lead accumulation on photopigment production, mineral nutrition, and Anabaena vegetative cell size and heterocyst formation in Azolla caroliniana was investigated. Plants were exposed to 0, 1, 5, 10, and 20 mg L(-1) lead acetate for ten days. Lead accumulation increased when plants were treated with higher lead concentrations. Results revealed a statistically significant decline in total chlorophyll, chlorophyll a, chlorophyll b, and carotenoids in 5, 10, and 20 mg Pb L(-1) treatment groups as compared to plants with 0 or 1 mg Pb L(-1) treatments. No statistically significant change in anthocyanin production was observed. Calcium, magnesium, and zinc concentrations in plants decreased in increasing treatment groups, whereas sodium and potassium concentrations increased. Nitrogen and carbon were also found to decrease in plant tissue. Anabaena vegetative cells decreased in size and heterocyst frequency declined rapidly in a Pb dose-dependent manner. These results indicate that, while A. caroliniana removes lead from aqueous solution, the heavy metal causes physiological and biochemical changes by impairing photosynthesis, changing mineral nutrition, and impeding the growth and formation of heterocysts of the symbiotic cyanobacteria that live within leaf cavities of the fronds. Copyright © 2014. Published by Elsevier Inc.

  15. Formation and decay of the arrestin·rhodopsin complex in native disc membranes.

    PubMed

    Beyrière, Florent; Sommer, Martha E; Szczepek, Michal; Bartl, Franz J; Hofmann, Klaus Peter; Heck, Martin; Ritter, Eglof

    2015-05-15

    In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of β-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Evidence against a second autosomal dominant retinitis pigmentosa locus close to rhodopsin on chromosome 3q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglehearn, C.; Bhattacharya, S.; Farrar, J.

    1993-08-01

    In 1989 McWilliam et al. reported close linkage of the autosomal dominant retinitis pigmentosa (adRP) locus to chromosome 3q marker D3S47 in a large Irish pedigree (McWilliam et al 1989). Subsequent studies confirmed linkage in two other adRP families (Lester et al 1990; Olsson et al. 1990). Shortly afterward, utations in the rhodopsin (RHO) gene, mapping to 3q21-24, were implicated in disease causation, and it is now known that around one-third of adRP results from such mutations (Dryja et al. 1991; Sung et al. 1991; Inglchearn et al. 1992a). At that time, sequencing studies had failed to find rhodopsin mutationsmore » in the three families first linked to 3q. Several adRP families in which rhodopsin mutations had been found gave lod scores that, when pooled, had a peak of 4.47 at a theta of .12 (Inglehearn et al. 1992b). The apparent lack of mutations in families TCDM1, adRP3, and 20 together with the linkage data in these and the proved RHO-RP families, led to speculation that two adRP loci existed on chromosome 3q (Olsson et al. 1990; Inglehearn et al. 1992b). However this situation has been reversed by more recent analysis, since rhodopsin mutations have now been found in all three families. There is therefore no longer any evidence to support the hypothesis that a second adRP locus exists close to rhodopsin on chromosome 3q.« less

  17. A second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found in other ray-finned fishes.

    PubMed

    Morrow, James M; Lazic, Savo; Dixon Fox, Monica; Kuo, Claire; Schott, Ryan K; de A Gutierrez, Eduardo; Santini, Francesco; Tropepe, Vincent; Chang, Belinda S W

    2017-01-15

    Rhodopsin (rh1) is the visual pigment expressed in rod photoreceptors of vertebrates that is responsible for initiating the critical first step of dim-light vision. Rhodopsin is usually a single copy gene; however, we previously discovered a novel rhodopsin-like gene expressed in the zebrafish retina, rh1-2, which we identified as a functional photosensitive pigment that binds 11-cis retinal and activates in response to light. Here, we localized expression of rh1-2 in the zebrafish retina to a subset of peripheral photoreceptor cells, which indicates a partially overlapping expression pattern with rh1 We also expressed, purified and characterized Rh1-2, including investigation of the stability of the biologically active intermediate. Using fluorescence spectroscopy, we found the half-life of the rate of retinal release of Rh1-2 following photoactivation to be more similar to that of the visual pigment rhodopsin than to the non-visual pigment exo-rhodopsin (exorh), which releases retinal around 5 times faster. Phylogenetic and molecular evolutionary analyses show that rh1-2 has ancient origins within teleost fishes, is under similar selective pressure to rh1, and likely experienced a burst of positive selection following its duplication and divergence from rh1 These findings indicate that rh1-2 is another functional visual rhodopsin gene, which contradicts the prevailing notion that visual rhodopsin is primarily found as a single copy gene within ray-finned fishes. The reasons for retention of this duplicate gene, as well as possible functional consequences for the visual system, are discussed. © 2017. Published by The Company of Biologists Ltd.

  18. A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics.

    PubMed

    van Hazel, Ilke; Dungan, Sarah Z; Hauser, Frances E; Morrow, James M; Endler, John A; Chang, Belinda S W

    2016-07-01

    Rhodopsin is the visual pigment responsible for initiating the phototransduction cascade in vertebrate rod photoreceptors. Although well-characterized in a few model systems, comparative studies of rhodopsin function, particularly for nonmammalian vertebrates are comparatively lacking. Bowerbirds are rare among passerines in possessing a key substitution, D83N, at a site that is otherwise highly conserved among G protein-coupled receptors. While this substitution is present in some dim-light adapted vertebrates, often accompanying another unusual substitution, A292S, its functional relevance in birds is uncertain. To investigate functional effects associated with these two substitutions, we use the rhodopsin gene from the great bowerbird (Ptilonorhynchus nuchalis) as a background for site-directed mutagenesis, in vitro expression and functional characterization. We also mutated these sites in two additional rhodopsins that do not naturally possess N83, chicken and bovine, for comparison. Both sites were found to contribute to spectral blue-shifts, but had opposing effects on kinetic rates. Substitutions at site 83 were found to primarily affect the kinetics of light-activated rhodopsin, while substitutions at site 292 had a larger impact on spectral tuning. The contribution of substitutions at site 83 to spectral tuning in particular depended on genetic background, but overall, the effects of substitutions were otherwise surprisingly additive, and the magnitudes of functional shifts were roughly similar across all three genetic backgrounds. By employing a comparative approach with multiple species, our study provides new insight into the joint impact of sites 83 and 292 on rhodopsin structure-function as well as their evolutionary significance for dim-light vision across vertebrates. © 2016 The Protein Society.

  19. Chlorophyll-Derivative Modulation of Rhodopsin Signaling Properties through Evolutionarily Conserved Interaction Pathways

    PubMed Central

    Woods, Kristina N.; Pfeffer, Jürgen; Klein-Seetharaman, Judith

    2017-01-01

    Retinal is the light-absorbing chromophore that is responsible for the activation of visual pigments and light-driven ion pumps. Evolutionary changes in the intermolecular interactions of the retinal with specific amino acids allow for adaptation of the spectral characteristics, referred to as spectral tuning. However, it has been proposed that a specific species of dragon fish has bypassed the adaptive evolutionary process of spectral tuning and replaced it with a single evolutionary event: photosensitization of rhodopsin by chlorophyll derivatives. Here, by using a combination of experimental measurements and computational modeling to probe retinal-receptor interactions in rhodopsin, we show how the binding of the chlorophyll derivative, chlorin-e6 (Ce6) in the intracellular domain (ICD) of the receptor allosterically excites G-protein coupled receptor class A (GPCR-A) conserved long-range correlated fluctuations that connect distant parts of the receptor. These long-range correlated motions are associated with regulating the dynamics and intermolecular interactions of specific amino acids in the retinal ligand-binding pocket that have been associated with shifts in the absorbance peak maximum (λmax) and hence, spectral sensitivity of the visual system. Moreover, the binding of Ce6 affects the overall global properties of the receptor. Specifically, we find that Ce6-induced dynamics alter the thermal stability of rhodopsin by adjusting hydrogen-bonding interactions near the receptor active-site that consequently also influences the intrinsic conformational equilibrium of the receptor. Due to the conservation of the ICD residues amongst different receptors in this class and the fact that all GPCR-A receptors share a common mechanism of activation, it is possible that the allosteric associations excited in rhodopsin with Ce6 binding are a common feature in all class A GPCRs. PMID:29312953

  20. Structures of the transmembrane helices of the G-protein coupled receptor, rhodopsin.

    PubMed

    Katragadda, M; Chopra, A; Bennett, M; Alderfer, J L; Yeagle, P L; Albert, A D

    2001-07-01

    An hypothesis is tested that individual peptides corresponding to the transmembrane helices of the membrane protein, rhodopsin, would form helices in solution similar to those in the native protein. Peptides containing the sequences of helices 1, 4 and 5 of rhodopsin were synthesized. Two peptides, with overlapping sequences at their termini, were synthesized to cover each of the helices. The peptides from helix 1 and helix 4 were helical throughout most of their length. The N- and C-termini of all the peptides were disordered and proline caused opening of the helical structure in both helix 1 and helix 4. The peptides from helix 5 were helical in the middle segment of each peptide, with larger disordered regions in the N- and C-termini than for helices 1 and 4. These observations show that there is a strong helical propensity in the amino acid sequences corresponding to the transmembrane domain of this G-protein coupled receptor. In the case of the peptides from helix 4, it was possible to superimpose the structures of the overlapping sequences to produce a construct covering the whole of the sequence of helix 4 of rhodopsin. As similar superposition for the peptides from helix 1 also produced a construct, but somewhat less successfully because of the disordering in the region of sequence overlap. This latter problem was more severe for helix 5 and therefore a single peptide was synthesized for the entire sequence of this helix, and its structure determined. It proved to be helical throughout. Comparison of all these structures with the recent crystal structure of rhodopsin revealed that the peptide structures mimicked the structures seen in the whole protein. Thus similar studies of peptides may provide useful information on the secondary structure of other transmembrane proteins built around helical bundles.

  1. Characterization and Optimization of Bioflocculant Exopolysaccharide Production by Cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in Culture Conditions.

    PubMed

    Tiwari, Onkar Nath; Khangembam, Romi; Shamjetshabam, Minerva; Sharma, Aribam Subhalaxmi; Oinam, Gunapati; Brand, Jerry J

    2015-08-01

    Bioflocculant exopolysaccharide (EPS) production by 40 cyanobacterial strains during their photoautotrophic growth was investigated. Highest levels of EPS were produced by Nostoc sp. BTA97 and Anabaena sp. BTA990. EPS production was maximum during stationary growth phase, when nitrogenase activity was very low. Maximum EPS production occurred at pH 8.0 in the absence of any combined nitrogen source. The cyanobacterial EPS consisted of soluble protein and polysaccharide that included substantial amounts of neutral sugars and uronic acid. The EPS isolated from Anabaena sp. BTA990 and Nostoc sp. BTA97 demonstrated high flocculation capacity. There was a positive correlation between uronic acid content and flocculation activity. The flocculant bound a cationic dye, Alcian Blue, indicating it to be polyanionic. The 16S rRNA gene sequences for Nostoc sp. BTA97 and Anabaena sp. BTA990 were deposited at NCBI GenBank, and accession numbers were obtained as KJ830951 and KJ830948, respectively. The results of these experiments indicate that strains Anabaena sp. BTA990 and Nostoc sp. BTA97 are good candidates for the commercial production of EPS and might be utilized in industrial applications as an alternative to synthetic and abiotic flocculants.

  2. First cytoplasmic loop of glucagon-like peptide-1 receptor can function at the third cytoplasmic loop position of rhodopsin.

    PubMed

    Yamashita, Takahiro; Tose, Koji; Shichida, Yoshinori

    2008-01-01

    G protein-coupled receptors (GPCRs) are classified into several families based on their amino acid sequences. In family 1, GPCRs such as rhodopsin and adrenergic receptor, the structure-function relationship has been extensively investigated to demonstrate that exposure of the third cytoplasmic loop is essential for selective G protein activation. In contrast, much less is known about other families. Here we prepared chimeric mutants between Gt-coupled rhodopsin and Gi/Go- and Gs-coupled glucagon-like peptide-1 (GLP-1) receptor of family 2 and tried to identify the loop region that functions at the third cytoplasmic loop position of rhodopsin. We succeeded in expressing a mutant having the first cytoplasmic loop of GLP-1 receptor and found that this mutant activated Gi and Go efficiently but did not activate Gt. Moreover, the rhodopsin mutant having the first loop of Gs-coupled secretin receptor of family 2 decreased the Gi and Go activation efficiencies. Therefore, the first loop of GLP-1 receptor would share a similar role to the third loop of rhodopsin in G protein activation. This result strongly suggested that different families of GPCRs have maintained molecular architectures of their ancestral types to generate a common mechanism, namely exposure of the cytoplasmic loop, to activate peripheral G protein.

  3. Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana.

    PubMed

    Vanhoutte, K J A; Eggen, B J L; Janssen, J J M; Stavenga, D G

    2002-11-01

    The cDNAs of an ultraviolet (UV) and long-wavelength (LW) (green) absorbing rhodopsin of the bush brown Bicyclus anynana were partially identified. The UV sequence, encoding 377 amino acids, is 76-79% identical to the UV sequences of the papilionids Papilio glaucus and Papilio xuthus and the moth Manduca sexta. A dendrogram derived from aligning the amino acid sequences reveals an equidistant position of Bicyclus between Papilio and Manduca. The sequence of the green opsin cDNA fragment, which encodes 242 amino acids, represents six of the seven transmembrane regions. At the amino acid level, this fragment is more than 80% identical to the corresponding LW opsin sequences of Dryas, Heliconius, Papilio (rhodopsin 2) and Manduca. Whereas three LW absorbing rhodopsins were identified in the papilionid butterflies, only one green opsin was found in B. anynana.

  4. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    DOE PAGES

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; ...

    2015-06-27

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here in this study, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallizationmore » conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.« less

  5. A comparative study of rhodopsin function in the great bowerbird (P tilonorhynchus nuchalis): Spectral tuning and light‐activated kinetics

    PubMed Central

    van Hazel, Ilke; Dungan, Sarah Z.; Hauser, Frances E.; Morrow, James M.; Endler, John A.

    2016-01-01

    Abstract Rhodopsin is the visual pigment responsible for initiating the phototransduction cascade in vertebrate rod photoreceptors. Although well‐characterized in a few model systems, comparative studies of rhodopsin function, particularly for nonmammalian vertebrates are comparatively lacking. Bowerbirds are rare among passerines in possessing a key substitution, D83N, at a site that is otherwise highly conserved among G protein‐coupled receptors. While this substitution is present in some dim‐light adapted vertebrates, often accompanying another unusual substitution, A292S, its functional relevance in birds is uncertain. To investigate functional effects associated with these two substitutions, we use the rhodopsin gene from the great bowerbird (Ptilonorhynchus nuchalis) as a background for site‐directed mutagenesis, in vitro expression and functional characterization. We also mutated these sites in two additional rhodopsins that do not naturally possess N83, chicken and bovine, for comparison. Both sites were found to contribute to spectral blue‐shifts, but had opposing effects on kinetic rates. Substitutions at site 83 were found to primarily affect the kinetics of light‐activated rhodopsin, while substitutions at site 292 had a larger impact on spectral tuning. The contribution of substitutions at site 83 to spectral tuning in particular depended on genetic background, but overall, the effects of substitutions were otherwise surprisingly additive, and the magnitudes of functional shifts were roughly similar across all three genetic backgrounds. By employing a comparative approach with multiple species, our study provides new insight into the joint impact of sites 83 and 292 on rhodopsin structure‐function as well as their evolutionary significance for dim‐light vision across vertebrates. PMID:26889650

  6. Photophosphorylation capacity of stable spheroplast preparations of anabaena.

    PubMed

    Spiller, H

    1980-09-01

    Spheroplasts from Anabaena 7119 (formerly designated Nostoc muscorum) were prepared in the presence of serum albumin in 0.5 molar sucrose. Electron transport and photophosphorylation were preserved (> 70% of the maximum rate for 1 week). The pH profile of electron transport and photophosphorylation in the reactions H(2)O --> NADP, H(2)O --> methyl viologen, and H(2)O --> ferricyanide shows that uncoupling by ammonia is small throughout and increases slightly with higher pH. ADP + Pi increased NADP reduction from H(2)O by 2.5-fold. The ratios of ATP formed per electron pair transported ranged from 0.9 to 1.5. Effects of catalase and superoxide dismutase on the overall O(2) balance implicate pseudocyclic electron transport and phosphorylation. The quenching of 9-aminoacridine fluorescence indicates the formation of a Delta pH from 2 to 2.6 during illumination. This pH gradient is abolished by uncouplers; however, complete uncoupling is achieved only by 3-chlorocarbonyl cyanide phenylhydrazone or valinomycin + NH(4) (+). In the presence of NH(4) (+) alone, the membrane potential may act as the driving force for photophosphorylation.Increasing amounts of bovine serum albumin protected phosphorylation from uncoupling by silicomolybdic acid. 3-(3,4-Dichlorophenyl)-1, 1-dimethylurea-insensitive water oxidation by silicomolybdic acid provides evidence that the site for 3-(3,4-dichlorophenyl)-1, 1-dimethylurea action is on the acceptor and not donor side of photosystem II in the procaryote Anabaena. It is concluded that stable spheroplasts retain coupled electron transport approaching in vivo rates.

  7. THE RHODOPSIN-TRANSDUCIN COMPLEX HOUSES TWO DISTINCT RHODOPSIN MOLECULES

    PubMed Central

    Jastrzebska, Beata; Ringler, Philipe; Palczewski, Krzysztof; Engel, Andreas

    2013-01-01

    Upon illumination the visual receptor rhodopsin (Rho) transitions to the activated form Rho*, which binds the heterotrimeric G protein, transducin (Gt) causing GDP to GTP exchange and Gt dissociation. Using succinylated concanavalin A (sConA) as a probe, we visualized native Rho dimers solubilized in 1 mM n-dodecyl-β-D-maltoside (DDM) and Rho monomers 5 mM in DDM. By nucleotide depletion and affinity chromatography together with crosslinking and size exclusion chromatography, we trapped and purified nucleotide-free Rho*•Gt and sConA-Rho*•Gt complexes kept in solution by either DDM or lauryl-maltose-neopentyl-glycol (LMNG). The 3-D envelope calculated from projections of negatively stained Rho*•Gt-LMNG complexes accommodated two Rho molecules, one Gt heterotrimer and a detergent belt. Visualization of triple sConA-Rho*•Gt complexes unequivocally demonstrated a pentameric assembly of the Rho*•Gt complex in which the photoactivated Rho* dimer serves as a platform for binding the Gt heterotrimer. Importantly, individual monomers of the Rho* dimer in the heteropentameric complex exhibited different capabilities to be regenerated with either 11-cis or 9-cis-retinal. PMID:23458690

  8. Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential.

    PubMed

    Chaurasia, Akhilesh Kumar; Apte, Shree Kumar

    2011-01-01

    Photosynthetic, nitrogen-fixing Anabaena strains are native to tropical paddy fields and contribute to the carbon and nitrogen economy of such soils. Genetic engineering was employed to improve the nitrogen biofertilizer potential of Anabaena sp. strain PCC7120. Constitutive enhanced expression of an additional integrated copy of the hetR gene from a light-inducible promoter elevated HetR protein expression and enhanced functional heterocyst frequency in the recombinant strain. The recombinant strain displayed consistently higher nitrogenase activity than the wild-type strain and appeared to be in homeostasis with compatible modulation of photosynthesis and respiration. The enhanced combined nitrogen availability from the recombinant strain positively catered to the nitrogen demand of rice seedlings in short-term hydroponic experiments and supported better growth. The engineered strain is stable, eco-friendly, and useful for environmental application as nitrogen biofertilizer in paddy fields.

  9. Improved Eco-Friendly Recombinant Anabaena sp. Strain PCC7120 with Enhanced Nitrogen Biofertilizer Potential▿

    PubMed Central

    Chaurasia, Akhilesh Kumar; Apte, Shree Kumar

    2011-01-01

    Photosynthetic, nitrogen-fixing Anabaena strains are native to tropical paddy fields and contribute to the carbon and nitrogen economy of such soils. Genetic engineering was employed to improve the nitrogen biofertilizer potential of Anabaena sp. strain PCC7120. Constitutive enhanced expression of an additional integrated copy of the hetR gene from a light-inducible promoter elevated HetR protein expression and enhanced functional heterocyst frequency in the recombinant strain. The recombinant strain displayed consistently higher nitrogenase activity than the wild-type strain and appeared to be in homeostasis with compatible modulation of photosynthesis and respiration. The enhanced combined nitrogen availability from the recombinant strain positively catered to the nitrogen demand of rice seedlings in short-term hydroponic experiments and supported better growth. The engineered strain is stable, eco-friendly, and useful for environmental application as nitrogen biofertilizer in paddy fields. PMID:21057013

  10. Binding of transducin and transducin-derived peptides to rhodopsin studies by attenuated total reflection-Fourier transform infrared difference spectroscopy.

    PubMed Central

    Fahmy, K

    1998-01-01

    Fourier transform infrared difference spectroscopy combined with the attenuated total reflection technique allows the monitoring of the association of transducin with bovine photoreceptor membranes in the dark. Illumination causes infrared absorption changes linked to formation of the light-activated rhodopsin-transducin complex. In addition to the spectral changes normally associated with meta II formation, prominent absorption increases occur at 1735 cm-1, 1640 cm-1, 1550 cm-1, and 1517 cm-1. The D2O sensitivity of the broad carbonyl stretching band around 1735 cm-1 indicates that a carboxylic acid group becomes protonated upon formation of the activated complex. Reconstitution of rhodopsin into phosphatidylcholine vesicles has little influence on the spectral properties of the rhodopsin-transducin complex, whereas pH affects the intensity of the carbonyl stretching band. AC-terminal peptide comprising amino acids 340-350 of the transducin alpha-subunit reproduces the frequencies and isotope sensitivities of several of the transducin-induced bands between 1500 and 1800 cm-1, whereas an N-terminal peptide (aa 8-23) does not. Therefore, the transducin-induced absorption changes can be ascribed mainly to an interaction between the transducin-alpha C-terminus and rhodopsin. The 1735 cm-1 vibration is also seen in the complex with C-terminal peptides devoid of free carboxylic acid groups, indicating that the corresponding carbonyl group is located on rhodopsin. PMID:9726932

  11. Feeding and the Rhodopsin Family G-Protein Coupled Receptors in Nematodes and Arthropods

    PubMed Central

    Cardoso, João C.R.; Félix, Rute C.; Fonseca, Vera G.; Power, Deborah M.

    2012-01-01

    In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors. PMID:23264768

  12. Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities.

    PubMed Central

    Loppnow, G R; Mathies, R A

    1988-01-01

    Resonance Raman excitation profiles have been measured for the bovine visual pigment rhodopsin using excitation wavelengths ranging from 457.9 to 647.1 nm. A complete Franck-Condon analysis of the absorption spectrum and resonance Raman excitation profiles has been performed using an excited-state, time-dependent wavepacket propagation technique. This has enabled us to determine the change in geometry upon electronic excitation of rhodopsin's 11-cis-retinal protonated Schiff base chromophore along 25 normal coordinates. Intense low-frequency Raman lines are observed at 98, 135, 249, 336, and 461 cm-1 whose intensities provide quantitative, mode-specific information about the excited-state torsional deformations that lead to isomerization. The dominant contribution to the width of the absorption band in rhodopsin results from Franck-Condon progressions in the 1,549 cm-1 ethylenic normal mode. The lack of vibronic structure in the absorption spectrum is shown to be caused by extensive progressions in low-frequency torsional modes and a large homogeneous linewidth (170 cm-1 half-width) together with thermal population of low-frequency modes and inhomogeneous site distribution effects. The resonance Raman cross-sections of rhodopsin are unusually weak because the excited-state wavepacket moves rapidly (approximately 35 fs) and permanently away from the Franck-Condon geometry along skeletal stretching and torsional coordinates. PMID:3416032

  13. Conformational equilibria of light-activated rhodopsin in nanodiscs

    PubMed Central

    Van Eps, Ned; Caro, Lydia N.; Morizumi, Takefumi; Kusnetzow, Ana Karin; Szczepek, Michal; Hofmann, Klaus Peter; Bayburt, Timothy H.; Sligar, Stephen G.; Ernst, Oliver P.; Hubbell, Wayne L.

    2017-01-01

    Conformational equilibria of G-protein–coupled receptors (GPCRs) are intimately involved in intracellular signaling. Here conformational substates of the GPCR rhodopsin are investigated in micelles of dodecyl maltoside (DDM) and in phospholipid nanodiscs by monitoring the spatial positions of transmembrane helices 6 and 7 at the cytoplasmic surface using site-directed spin labeling and double electron–electron resonance spectroscopy. The photoactivated receptor in DDM is dominated by one conformation with weak pH dependence. In nanodiscs, however, an ensemble of pH-dependent conformational substates is observed, even at pH 6.0 where the MIIbH+ form defined by proton uptake and optical spectroscopic methods is reported to be the sole species present in native disk membranes. In nanodiscs, the ensemble of substates in the photoactivated receptor spontaneously decays to that characteristic of the inactive state with a lifetime of ∼16 min at 20 °C. Importantly, transducin binding to the activated receptor selects a subset of the ensemble in which multiple substates are apparently retained. The results indicate that in a native-like lipid environment rhodopsin activation is not analogous to a simple binary switch between two defined conformations, but the activated receptor is in equilibrium between multiple conformers that in principle could recognize different binding partners. PMID:28373559

  14. Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes.

    PubMed

    Cooper, A; Converse, C A

    1976-07-13

    A sensitive technique for the direct calorimetric determination of the energetics of photochemical reactions under low levels of illumination, and its application to the study of primary processes in visula excitation, are described. Enthlpies are reported for various steps in the bleaching of rhodopsin in intact rod outer segment membranes, together with the heats of appropriate model reactions. Protonation changes are also determined calorimetrically by use of buffers with differing heats of proton ionization. Bleaching of rhodopsin is accompanied by significant uptake of heat energy, vastly in excess of the energy required for simple isomerization of the retinal chromophore. Metarhodopsin I formation involves the uptake of about 17 kcal/mol and no net change in proton ionization of the system. Formation of metarhodopsin II requires an additional energy of about 10 kcal/mol and involves the uptake on one hydrogen ion from solution. The energetics of the overall photolysis reaction, rhodopsin leads to opsin + all-trans-retinal, are pH dependent and involve the exposure of an additional titrating group on opsin. This group has a heat of proton ionization of about 12 kcal/mal, characteristic of a primary amine, but a pKa in the region of neutrality. We suggest that this group is the Schiff base lysine of the chromophore binding site of rhodopsin which becomes exposed on photolysis. The low pKa for this active lysine would result in a more stable retinal-opsin linkage, and might be induced by a nearby positively charged group on the protein (either arginine or a second lysine residue). This leads to a model involving intramolecular protonation of the Schiff base nitrogen in the retinal-opsin linkage of rhodopsin, which is consistent with the thermodynamic and spectroscopic properties of the system. We further propose that the metarhodopsin I leads to metarhodopsin II step in the bleaching sequence involves reversible hydrolysis of the Schiff base linkage in the

  15. Modulation of thermal noise and spectral sensitivity in Lake Baikal cottoid fish rhodopsins.

    PubMed

    Luk, Hoi Ling; Bhattacharyya, Nihar; Montisci, Fabio; Morrow, James M; Melaccio, Federico; Wada, Akimori; Sheves, Mudi; Fanelli, Francesca; Chang, Belinda S W; Olivucci, Massimo

    2016-12-09

    Lake Baikal is the deepest and one of the most ancient lakes in the world. Its unique ecology has resulted in the colonization of a diversity of depth habitats by a unique fauna that includes a group of teleost fish of the sub-order Cottoidei. This relatively recent radiation of cottoid fishes shows a gradual blue-shift in the wavelength of the absorption maximum of their visual pigments with increasing habitat depth. Here we combine homology modeling and quantum chemical calculations with experimental in vitro measurements of rhodopsins to investigate dim-light adaptation. The calculations, which were able to reproduce the trend of observed absorption maxima in both A1 and A2 rhodopsins, reveal a Barlow-type relationship between the absorption maxima and the thermal isomerization rate suggesting a link between the observed blue-shift and a thermal noise decrease. A Nakanishi point-charge analysis of the electrostatic effects of non-conserved and conserved amino acid residues surrounding the rhodopsin chromophore identified both close and distant sites affecting simultaneously spectral tuning and visual sensitivity. We propose that natural variation at these sites modulate both the thermal noise and spectral shifting in Baikal cottoid visual pigments resulting in adaptations that enable vision in deep water light environments.

  16. Modulation of thermal noise and spectral sensitivity in Lake Baikal cottoid fish rhodopsins

    NASA Astrophysics Data System (ADS)

    Luk, Hoi Ling; Bhattacharyya, Nihar; Montisci, Fabio; Morrow, James M.; Melaccio, Federico; Wada, Akimori; Sheves, Mudi; Fanelli, Francesca; Chang, Belinda S. W.; Olivucci, Massimo

    2016-12-01

    Lake Baikal is the deepest and one of the most ancient lakes in the world. Its unique ecology has resulted in the colonization of a diversity of depth habitats by a unique fauna that includes a group of teleost fish of the sub-order Cottoidei. This relatively recent radiation of cottoid fishes shows a gradual blue-shift in the wavelength of the absorption maximum of their visual pigments with increasing habitat depth. Here we combine homology modeling and quantum chemical calculations with experimental in vitro measurements of rhodopsins to investigate dim-light adaptation. The calculations, which were able to reproduce the trend of observed absorption maxima in both A1 and A2 rhodopsins, reveal a Barlow-type relationship between the absorption maxima and the thermal isomerization rate suggesting a link between the observed blue-shift and a thermal noise decrease. A Nakanishi point-charge analysis of the electrostatic effects of non-conserved and conserved amino acid residues surrounding the rhodopsin chromophore identified both close and distant sites affecting simultaneously spectral tuning and visual sensitivity. We propose that natural variation at these sites modulate both the thermal noise and spectral shifting in Baikal cottoid visual pigments resulting in adaptations that enable vision in deep water light environments.

  17. Structure and function in rhodopsin: Rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state*

    PubMed Central

    Kim, Jong-Myoung; Altenbach, Christian; Thurmond, Robin L.; Khorana, H. Gobind; Hubbell, Wayne L.

    1997-01-01

    The Glu-134–Arg-135 residues in rhodopsin, located near the cytoplasmic end of the C helix, are involved in G protein binding, or activation, or both. Furthermore, the charge-neutralizing mutation Glu-134 to Gln-134 produces hyperactivity in the activated state and produces constitutive activity in opsin. The Glu/Asp-Arg charge pair is highly conserved in equivalent positions in other G protein-coupled receptors. To investigate the structural consequences of charge-neutralizing mutations at Glu-134 and Arg-135 in rhodopsin, single spin-labeled side chains were introduced at sites in the cytoplasmic domains of helices C (140), E (227), F (250), or G (316) to serve as “molecular sensors” of the local helix bundle conformation. In each of the spin-labeled rhodopsins, a Gln substitution was introduced at either Glu-134 or Arg-135, and the electron paramagnetic resonance spectrum of the spin label was used to monitor the structural response of the helix bundle. The results indicate that a Gln substitution at Glu-134 induces a photoactivated conformation around helices C and G even in the dark state, an observation of potential relevance to the hyperactivity and constitutive activity of the mutant. In contrast, little change is induced in helix F, which has been shown to undergo a dominant motion upon photoactivation. This result implies that the multiple helix motions accompanying photoactivation are not strongly coupled and can be induced to take place independently. Gln substitution at Arg-135 produces only minor structural changes in the dark- or light-activated conformation, suggesting that this residue is not a determinant of structure in the regions investigated, although it may be functionally important. PMID:9405602

  18. Modelling vibrational coherence in the primary rhodopsin photoproduct.

    PubMed

    Weingart, O; Garavelli, M

    2012-12-14

    Molecular dynamics simulations of the rhodopsin photoreaction reveal coherent low frequency oscillations in the primary photoproduct (photorhodopsin), with frequencies slightly higher than observed in the experiment. The coherent molecular motions in the batho-precursor can be attributed to the activation of ground state vibrational modes in the hot photo-product, involving out-of-plane deformations of the carbon skeleton. Results are discussed and compared with respect to spectroscopic data and suggested reaction mechanisms.

  19. Impairment of ntcA gene revealed its role in regulating iron homeostasis, ROS production and cellular phenotype under iron deficiency in cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Singh, Anumeha; Mishra, Arun Kumar

    2017-08-01

    Iron deficiency ends up into several unavoidable consequences including damaging oxidative stress in cyanobacteria. NtcA is a global nitrogen regulator controls wide range of metabolisms in addition to regulation of nitrogen metabolism. In present communication, NtcA based regulation of iron homeostasis, ROS production and cellular phenotype under iron deficiency in Anabaena 7120 has been investigated. NtcA regulates the concentration dependent iron uptake by controlling the expression of furA gene. NtcA also regulated pigment synthesis and phenotypic alterations in Anabaena 7120. A significant increase in ROS production and corresponding reduction in the activities of antioxidative enzymes (SOD, CAT, APX and GR) in CSE2 mutant strain in contrast to wild type Anabaena 7120 also suggested the possible involvement of NtcA in protection against oxidative stress in iron deficiency. NtcA has no impact on the expression of furB and furC in spite of presence of consensus NtcA binding site (NBS) and -10 boxes in their promoter. NtcA also regulates the thylakoid arrangement as well as related photosynthetic and respiration rates under iron deficiency in Anabaena 7120. Overall results suggested that NtcA regulates iron acquisition and in turn protect Anabaena cells from the damaging effects of oxidative stress induced under iron deficiency.

  20. New Anabaena and Nostoc cyanophages from sewage settling ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, N.; Thiel, T.; Giddings, T.H., Jr.

    1981-10-15

    We have isolated, from sewage settling ponds, 16 cyanophages for heterocyst forming, filamentous cyanobacteria of the genera Anabaena and Nostoc. These phages fall into three groups based on morphology, host range, one-step growth curves, and restriction digests. On the basis of these criteria they can be distinguished from cyanophages A-1(L), A-4(L), N-1, and AN-10 which we received from other laboratories. Certain of the newly described phages are similar in morphology to the short-tailed LPP cyanophages, and others to the long-tailed AS cyanophages.

  1. Molecular analysis and genetic mapping of the rhodopsin gene in families with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunge, S.; Wedemann, H.; Samanns, C.

    1993-07-01

    Eighty-eight patients/families with autosomal dominant retinitis pigmentosa (RP) were screened for rhodopsin mutations. Direct sequencing revealed 13 different mutations in a total of 14 (i.e., 16%) unrelated patients. Five of these mutations (T4K, Q28H, R135G, F220C, and C222R) have not been reported so far. In addition, multipoint linkage analysis was performed on two large families with autosomal dominant RP due to rhodopsin mutations by using five DNA probes from 3q21-q24. No tight linkage was found between the rhodopsin locus (RHO) and D3S47 ([theta][sub max] = 0.08). By six-point analysis, RHO was localized in the region between D3S21 and D3S47, withmore » a maximum lod score of 13.447 directly at D3S20. 13 refs., 1 fig., 2 tabs.« less

  2. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  3. X-ray Crystallographic Structure of Thermophilic Rhodopsin

    PubMed Central

    Tsukamoto, Takashi; Mizutani, Kenji; Hasegawa, Taisuke; Takahashi, Megumi; Honda, Naoya; Hashimoto, Naoki; Shimono, Kazumi; Yamashita, Keitaro; Yamamoto, Masaki; Miyauchi, Seiji; Takagi, Shin; Hayashi, Shigehiko; Murata, Takeshi; Sudo, Yuki

    2016-01-01

    Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a “thermal sensor.” These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance. PMID:27129243

  4. First Principles Predictions of the Structure and Function of G-Protein-Coupled Receptors: Validation for Bovine Rhodopsin

    PubMed Central

    Trabanino, Rene J.; Hall, Spencer E.; Vaidehi, Nagarajan; Floriano, Wely B.; Kam, Victor W. T.; Goddard, William A.

    2004-01-01

    G-protein-coupled receptors (GPCRs) are involved in cell communication processes and with mediating such senses as vision, smell, taste, and pain. They constitute a prominent superfamily of drug targets, but an atomic-level structure is available for only one GPCR, bovine rhodopsin, making it difficult to use structure-based methods to design receptor-specific drugs. We have developed the MembStruk first principles computational method for predicting the three-dimensional structure of GPCRs. In this article we validate the MembStruk procedure by comparing its predictions with the high-resolution crystal structure of bovine rhodopsin. The crystal structure of bovine rhodopsin has the second extracellular (EC-II) loop closed over the transmembrane regions by making a disulfide linkage between Cys-110 and Cys-187, but we speculate that opening this loop may play a role in the activation process of the receptor through the cysteine linkage with helix 3. Consequently we predicted two structures for bovine rhodopsin from the primary sequence (with no input from the crystal structure)—one with the EC-II loop closed as in the crystal structure, and the other with the EC-II loop open. The MembStruk-predicted structure of bovine rhodopsin with the closed EC-II loop deviates from the crystal by 2.84 Å coordinate root mean-square (CRMS) in the transmembrane region main-chain atoms. The predicted three-dimensional structures for other GPCRs can be validated only by predicting binding sites and energies for various ligands. For such predictions we developed the HierDock first principles computational method. We validate HierDock by predicting the binding site of 11-cis-retinal in the crystal structure of bovine rhodopsin. Scanning the whole protein without using any prior knowledge of the binding site, we find that the best scoring conformation in rhodopsin is 1.1 Å CRMS from the crystal structure for the ligand atoms. This predicted conformation has the carbonyl O only 2

  5. Alkylated hydroxylamine derivatives eliminate peripheral retinylidene Schiff bases but cannot enter the retinal binding pocket of light-activated rhodopsin.

    PubMed

    Piechnick, Ronny; Heck, Martin; Sommer, Martha E

    2011-08-23

    Besides Lys-296 in the binding pocket of opsin, all-trans-retinal forms adducts with peripheral lysine residues and phospholipids, thereby mimicking the spectral and chemical properties of metarhodopsin species. These pseudophotoproducts composed of nonspecific retinylidene Schiff bases have long plagued the investigation of rhodopsin deactivation and identification of decay products. We discovered that, while hydroxylamine can enter the retinal binding pocket of light-activated rhodopsin, the modified hydroxylamine compounds o-methylhydroxylamine (mHA), o-ethylhydroxylamine (eHA), o-tert-butylhydroxylamine (t-bHA), and o-(carboxymethyl)hydroxylamine (cmHA) are excluded. However, the alkylated hydroxylamines react quickly and efficiently with exposed retinylidene Schiff bases to form their respective retinal oximes. We further investigated how t-bHA affects light-activated rhodopsin and its interaction with binding partners. We found that both metarhodopsin II (Meta II) and Meta III are resistant to t-bHA, and neither arrestin nor transducin binding is affected by t-bHA. This discovery suggests that the hypothetical solvent channel that opens in light-activated rhodopsin is extremely stringent with regard to size and/or polarity. We believe that alkylated hydroxylamines will prove to be extremely useful reagents for the investigation of rhodopsin activation and decay mechanisms. Furthermore, the use of alkylated hydroxylamines should not be limited to in vitro studies and could help elucidate visual signal transduction mechanisms in the living cells of the retina. © 2011 American Chemical Society

  6. Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena.

    PubMed

    Mariscal, Vicente; Nürnberg, Dennis J; Herrero, Antonia; Mullineaux, Conrad W; Flores, Enrique

    2016-09-01

    Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation. © 2016 John Wiley & Sons Ltd.

  7. The rhodopsin-transducin complex houses two distinct rhodopsin molecules.

    PubMed

    Jastrzebska, Beata; Ringler, Philippe; Palczewski, Krzysztof; Engel, Andreas

    2013-05-01

    Upon illumination the visual receptor rhodopsin (Rho) transitions to the activated form Rho(∗), which binds the heterotrimeric G protein, transducin (Gt) causing GDP to GTP exchange and Gt dissociation. Using succinylated concanavalin A (sConA) as a probe, we visualized native Rho dimers solubilized in 1mM n-dodecyl-β-d-maltoside (DDM) and Rho monomers in 5mM DDM. By nucleotide depletion and affinity chromatography together with crosslinking and size exclusion chromatography, we trapped and purified nucleotide-free Rho(∗)·Gt and sConA-Rho(∗)·Gt complexes kept in solution by either DDM or lauryl-maltose-neopentyl-glycol (LMNG). The 3 D envelope calculated from projections of negatively stained Rho(∗)·Gt-LMNG complexes accommodated two Rho molecules, one Gt heterotrimer and a detergent belt. Visualization of triple sConA-Rho(∗)·Gt complexes unequivocally demonstrated a pentameric assembly of the Rho(∗)·Gt complex in which the photoactivated Rho(∗) dimer serves as a platform for binding the Gt heterotrimer. Importantly, individual monomers of the Rho(∗) dimer in the heteropentameric complex exhibited different capabilities for regeneration with either 11-cis or 9-cis-retinal. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Frequency-rank correlations of rhodopsin mutations with tuned hydropathic roughness based on self-organized criticality

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2012-11-01

    The behavior of disease-linked mutations of membrane proteins is especially simple in rhodopsin, where they are well-studied, as they are responsible for retinitis pigmentosa, RP (retinal degeneration). Here we show that the frequency of occurrence of single RP mutations is strongly influenced by their transportational survival rates, and that this survival correlates well (82%) with a long-range, non-local hydropathic measure of the roughness of the water interfaces of ex-membrane rhodopsin based on self-organized criticality (SOC). It is speculated that this concept may be generally useful in studying survival rates of many mutated proteins.

  9. Thermal decay of rhodopsin: role of hydrogen bonds in thermal isomerization of 11-cis retinal in the binding site and hydrolysis of protonated Schiff base.

    PubMed

    Liu, Jian; Liu, Monica Yun; Nguyen, Jennifer B; Bhagat, Aditi; Mooney, Victoria; Yan, Elsa C Y

    2009-07-01

    Although thermal stability of the G protein-coupled receptor rhodopsin is directly related to its extremely low dark noise level and has recently generated considerable interest, the chemistry behind the thermal decay process of rhodopsin has remained unclear. Using UV-vis spectroscopy and HPLC analysis, we have demonstrated that the thermal decay of rhodopsin involves both hydrolysis of the protonated Schiff base and thermal isomerization of 11-cis to all-trans retinal. Examining the unfolding of rhodopsin by circular dichroism spectroscopy and measuring the rate of thermal isomerization of 11-cis retinal in solution, we conclude that the observed thermal isomerization of 11-cis to all-trans retinal happens when 11-cis retinal is in the binding pocket of rhodopsin. Furthermore, we demonstrate that solvent deuterium isotope effects are involved in the thermal decay process by decreasing the rates of thermal isomerization and hydrolysis, suggesting that the rate-determining step of these processes involves breaking hydrogen bonds. These results provide insight into understanding the critical role of an extensive hydrogen-bonding network on stabilizing the inactive state of rhodopsin and contribute to our current understanding of the low dark noise level of rhodopsin, which enables this specialized protein to function as an extremely sensitive biological light detector. Because similar hydrogen-bonding networks have also been suggested by structural analysis of two other GPCRs, beta1 and beta2 adrenergic receptors, our results could reveal a general role of hydrogen bonds in facilitating GPCR function.

  10. Measurement of activation of rhodopsine with heavy ions irradiation in the ALTEA program: a possible mechanism responsible for light flash perceptions in space

    NASA Astrophysics Data System (ADS)

    Narici, Livio; Rinaldi, Adele; Sannita, Walter, , Prof; Paci, Maurizio; Brunetti, Valentina; de Martino, Angelo; Picozza, Piergiorgio

    Since late 60s astronauts in space have reported seeing flashes of light, more frequently when dark adapted. Experiments have been performed to characterize these phenomena, and to suggest possible mechanisms. High Z ions have been shown to be the most likely cause of these perceptions: when ionizing radiation hits the eye there is a high probability of a light flash perception. However the mechanisms behind this phenomenon are not fully understood yet. We show that one of these mechanisms is the activation of the rhodopsin (bleaching) by heavy ions. Rhodopsin is at the start of the photo-electronic cascade in the process of vision. It is one of the best molecular transducer to convert a visible photon into an electric signal. In this work we show that rhodopsine can also be activated by irradiation with 12C nuclei. In the frame of ALTEA program, aimed at studying the effects of cosmic radiation on brain functions, an investigation on the interaction between heavy ions and rhodopsin has been performed. Intact Rod Outer Segment (ROS) containing rhodopsin were isolated from bovine retina. Suspended rods were irradiated with 12C (200 MeV/n, well below the Cherenkov threshold) at GSI (Darmstadt FRG) with doses ranging from few mrem to several rem. Spectrophotometric measurements investigated the presence of non activated and activated rhodopsin. The functionality of the purified rods were checked by previous light irradiation and subsequent regeneration by the addition of external 11-cis-retinal, to confirm the reversibility of the process in vitro. We can show effective and reversible bleaching also following irradiation, thus proving that the rhodopsin was not damaged by radiation. Works are in progress to model this interaction. Latest analysis results and considerations about the underlying mechanism will be presented.

  11. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp. PCC7120.

    PubMed

    Sánchez-Riego, Ana M; Mata-Cabana, Alejandro; Galmozzi, Carla V; Florencio, Francisco J

    2016-01-01

    NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of the 2-Cys peroxiredoxin (2-Cys Prx) as well as through other functions related to redox enzyme regulation. In cyanobacteria, the Anabaena NTRC has been characterized in vitro, however, nothing was known about its in vivo function. In order to study that, we have generated the first knockout mutant strain (ΔntrC), apart from the previously described in Arabidopsis. Detailed characterization of this strain reveals a differential sensitivity to oxidative stress treatments with respect to the wild-type Anabaena strain, including a higher level of ROS (reactive oxygen species) in normal growth conditions. In the mutant strain, different oxidative stress treatments such as hydrogen peroxide, methyl-viologen or high light irradiance provoke an increase in the expression of genes related to ROS detoxification, including AnNTRC and peroxiredoxin genes, with a concomitant increase in the amount of AnNTRC and 2-Cys Prx. Moreover, the role of AnNTRC in the antioxidant response is confirmed by the observation of a pronounced overoxidation of the 2-Cys Prx and a time-delay recovery of the reduced form of this protein upon oxidative stress treatments. Our results suggest the participation of this enzyme in the peroxide detoxification in Anabaena. In addition, we describe the role of Anabaena NTRC in thermotolerance, by the appearance of high molecular mass AnNTRC complexes, showing that the mutant strain is more sensitive to high temperature treatments.

  12. Characterization of the response to zinc deficiency in the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Napolitano, Mauro; Rubio, Miguel Ángel; Santamaría-Gómez, Javier; Olmedo-Verd, Elvira; Robinson, Nigel J; Luque, Ignacio

    2012-05-01

    Zur regulators control zinc homeostasis by repressing target genes under zinc-sufficient conditions in a wide variety of bacteria. This paper describes how part of a survey of duplicated genes led to the identification of the open reading frame all2473 as the gene encoding the Zur regulator of the cyanobacterium Anabaena sp. strain PCC 7120. All2473 binds to DNA in a zinc-dependent manner, and its DNA-binding sequence was characterized, which allowed us to determine the relative contribution of particular nucleotides to Zur binding. A zur mutant was found to be impaired in the regulation of zinc homeostasis, showing sensitivity to elevated concentrations of zinc but not other metals. In an effort to characterize the Zur regulon in Anabaena, 23 genes containing upstream putative Zur-binding sequences were identified and found to be regulated by Zur. These genes are organized in six single transcriptional units and six operons, some of them containing multiple Zur-regulated promoters. The identities of genes of the Zur regulon indicate that Anabaena adapts to conditions of zinc deficiency by replacing zinc metalloproteins with paralogues that fulfill the same function but presumably with a lower zinc demand, and with inducing putative metallochaperones and membrane transport systems likely being involved in the scavenging of extracellular zinc, including plasma membrane ABC transport systems and outer membrane TonB-dependent receptors. Among the Zur-regulated genes, the ones showing the highest induction level encode proteins of the outer membrane, suggesting a primary role for components of this cell compartment in the capture of zinc cations from the extracellular medium.

  13. Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway.

    PubMed Central

    Ganter, U M; Longstaff, C; Pajares, M A; Rando, R R; Siebert, F

    1991-01-01

    Fourier transform infrared studies of active-site-methylated rhodopsin (ASMR) show that, as compared to unmodified rhodopsin, the photoreaction is almost unchanged up to the formation of lumirhodopsin. Especially, the deviations are much smaller than those observed for the corresponding intermediates of 13-desmethyl-rhodopsin. In metarhodopsin-I, larger alterations are present with respect to the three internal carboxyl groups. Similar deviations have been observed in meta-I of 13-desmethyl-rhodopsin. This indicates that, in agreement with our previous investigations, these carboxyl groups are located in close proximity to the chromophore. Because this latter pigment is capable, when bleached, of activating transducin, our data provide support for the earlier conclusion that deprotonation of the Schiff base is a prerequisite for transducin activation. The positions of the C = C and C - C stretching modes of the retinal suggest that the redshift observed in ASMR and its photoproducts can be explained by an increased distance of the Schiff base from the counterion(s). It is further shown that the photoreaction does not stop at metarhodopsin-I, but that this intermediate directly decays to a metarhodopsin-III-like species. PMID:2049524

  14. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.

    PubMed

    Robinson, Kelly A; Ou, Wei-Lin; Guan, Xinyu; Sugamori, Kim S; Bandyopadhyay, Abhishek; Ernst, Oliver P; Mitchell, Jane

    2015-12-01

    Invertebrate visual opsins are G protein-coupled receptors coupled to retinoid chromophores that isomerize reversibly between inactive rhodopsin and active metarhodopsin upon absorption of photons of light. The squid visual system has an arrestin protein that binds to metarhodopsin to block signaling to Gq and activation of phospholipase C. Squid rhodopsin kinase (SQRK) can phosphorylate both metarhodopsin and arrestin, a dual role that is unique among the G protein-coupled receptor kinases. The sites and role of arrestin phosphorylation by SQRK were investigated here using recombinant proteins. Arrestin was phosphorylated on serine 392 and serine 397 in the C-terminus. Unphosphorylated arrestin bound to metarhodopsin and phosphorylated metarhodopsin with similar high affinities (Kd 33 and 21 nM respectively), while phosphorylation of arrestin reduced the affinity 3- to 5-fold (Kd 104 nM). Phosphorylation of metarhodopsin slightly increased the dissociation of arrestin observed during a 1 hour incubation. Together these studies suggest a unique role for SQRK in phosphorylating both receptor and arrestin and inhibiting the binding of these two proteins in the squid visual system. Invertebrate visual systems are inactivated by arrestin binding to metarhodopsin that does not require receptor phosphorylation. Here we show that squid rhodopsin kinase phosphorylates arrestin on two serines (S392,S397) in the C-terminus and phosphorylation decreases the affinity of arrestin for squid metarhodopsin. Metarhodopsin phosphorylation has very little effect on arrestin binding but does increase arrestin dissociation. © 2015 International Society for Neurochemistry.

  15. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes.

    PubMed

    Schott, Ryan K; Refvik, Shannon P; Hauser, Frances E; López-Fernández, Hernán; Chang, Belinda S W

    2014-05-01

    Studies of cichlid evolution have highlighted the importance of visual pigment genes in the spectacular radiation of the African rift lake cichlids. Recent work, however, has also provided strong evidence for adaptive diversification of riverine cichlids in the Neotropics, which inhabit environments of markedly different spectral properties from the African rift lakes. These ecological and/or biogeographic differences may have imposed divergent selective pressures on the evolution of the cichlid visual system. To test these hypotheses, we investigated the molecular evolution of the dim-light visual pigment, rhodopsin. We sequenced rhodopsin from Neotropical and African riverine cichlids and combined these data with published sequences from African cichlids. We found significant evidence for positive selection using random sites codon models in all cichlid groups, with the highest levels in African lake cichlids. Tests using branch-site and clade models that partitioned the data along ecological (lake, river) and/or biogeographic (African, Neotropical) boundaries found significant evidence of divergent selective pressures among cichlid groups. However, statistical comparisons among these models suggest that ecological, rather than biogeographic, factors may be responsible for divergent selective pressures that have shaped the evolution of the visual system in cichlids. We found that branch-site models did not perform as well as clade models for our data set, in which there was evidence for positive selection in the background. One of our most intriguing results is that the amino acid sites found to be under positive selection in Neotropical and African lake cichlids were largely nonoverlapping, despite falling into the same three functional categories: spectral tuning, retinal uptake/release, and rhodopsin dimerization. Taken together, these results would imply divergent selection across cichlid clades, but targeting similar functions. This study highlights the

  16. Localization of caveolin-1 and c-src in mature and differentiating photoreceptors: raft proteins co-distribute with rhodopsin during development

    PubMed Central

    Berta, Ágnes I.; Boesze-Battaglia, Kathleen; Magyar, Attila; Szél, Ágoston; Kiss, Anna L.

    2014-01-01

    Numerous biochemical and morphological studies have provided insight into the distribution pattern of caveolin-1 and the presence of membrane rafts in the vertebrate retina. To date however, studies have not addressed the localization profile of raft specific proteins during development. Therefore the purpose of our studies was to follow the localization pattern of caveolin-1, phosphocaveolin-1 and c-src in the developing retina and compare it to that observed in adults. Specific antibodies were used to visualize the distribution of caveolin-1, c-src, a kinase phosphorylating caveolin-1, and phospho-caveolin-1. The labeling pattern of this scaffolded complex was compared to those of rhodopsin and rhodopsin kinase. Samples were analyzed at various time points during postnatal development and compared to adult retinas. The immunocytochemical studies were complemented with immunoblots and immunoprecipitation studies. In the mature retina caveolin-1 and c-src localized mainly to the cell body and IS of photoreceptors, with only very weakly labeled OS. In contrast, phospho-caveolin-1 was only detectable in the OS of photoreceptors. During development we followed the expression and distribution profile of these proteins in a temporal sequence with special attention to the period when OS formation is most robust. Double labeling immunocytochemistry and immunoprecipitation showed rhodopsin to colocalize and co-immunoprecipitate with caveolin-1 and c-src. Individual punctate structures between the outer limiting membrane and the outer plexiform layer were seen at P10 to be labeled by both rhodopsin and caveolin-1 as well as by rhodopsin and c-src, respectively. These studies suggest that membrane raft specific proteins are co-distributed during development, thereby pointing to a role for such complexes in OS formation. In addition, the presence of small punctate structures containing caveolin-1, c-src and rhodopsin raise the possibility that these proteins may transport

  17. Three Substrains of the Cyanobacterium Anabaena sp. Strain PCC 7120 Display Divergence in Genomic Sequences and hetC Function.

    PubMed

    Wang, Yali; Gao, Yuan; Li, Chao; Gao, Hong; Zhang, Cheng-Cai; Xu, Xudong

    2018-07-01

    Anabaena sp. strain PCC 7120 is a model strain for molecular studies of cell differentiation and patterning in heterocyst-forming cyanobacteria. Subtle differences in heterocyst development have been noticed in different laboratories working on the same organism. In this study, 360 mutations, including single nucleotide polymorphisms (SNPs), small insertion/deletions (indels; 1 to 3 bp), fragment deletions, and transpositions, were identified in the genomes of three substrains. Heterogeneous/heterozygous bases were also identified due to the polyploidy nature of the genome and the multicellular morphology but could be completely segregated when plated after filament fragmentation by sonication. hetC is a gene upregulated in developing cells during heterocyst formation in Anabaena sp. strain PCC 7120 and found in approximately half of other heterocyst-forming cyanobacteria. Inactivation of hetC in 3 substrains of Anabaena sp. PCC 7120 led to different phenotypes: the formation of heterocysts, differentiating cells that keep dividing, or the presence of both heterocysts and dividing differentiating cells. The expression of P hetZ - gfp in these hetC mutants also showed different patterns of green fluorescent protein (GFP) fluorescence. Thus, the function of hetC is influenced by the genomic background and epistasis and constitutes an example of evolution under way. IMPORTANCE Our knowledge about the molecular genetics of heterocyst formation, an important cell differentiation process for global N 2 fixation, is mostly based on studies with Anabaena sp. strain PCC 7120. Here, we show that rapid microevolution is under way in this strain, leading to phenotypic variations for certain genes related to heterocyst development, such as hetC This study provides an example for ongoing microevolution, marked by multiple heterogeneous/heterozygous single nucleotide polymorphisms (SNPs), in a multicellular multicopy-genome microorganism. Copyright © 2018 American Society for

  18. Misfolded rhodopsin mutants display variable aggregation properties.

    PubMed

    Gragg, Megan; Park, Paul S-H

    2018-06-08

    The largest class of rhodopsin mutations causing autosomal dominant retinitis pigmentosa (adRP) is mutations that lead to misfolding and aggregation of the receptor. The misfolding mutants have been characterized biochemically, and categorized as either partial or complete misfolding mutants. This classification is incomplete and does not provide sufficient information to fully understand the disease pathogenesis and evaluate therapeutic strategies. A Förster resonance energy transfer (FRET) method was utilized to directly assess the aggregation properties of misfolding rhodopsin mutants within the cell. Partial (P23H and P267L) and complete (G188R, H211P, and P267R) misfolding mutants were characterized to reveal variability in aggregation properties. The complete misfolding mutants all behaved similarly, forming aggregates when expressed alone, minimally interacting with the wild-type receptor when coexpressed, and were unresponsive to treatment with the pharmacological chaperone 9-cis retinal. In contrast, variability was observed between the partial misfolding mutants. In the opsin form, the P23H mutant behaved similarly as the complete misfolding mutants. In contrast, the opsin form of the P267L mutant existed as both aggregates and oligomers when expressed alone and formed mostly oligomers with the wild-type receptor when coexpressed. The partial misfolding mutants both reacted similarly to the pharmacological chaperone 9-cis retinal, displaying improved folding and oligomerization when expressed alone but aggregating with wild-type receptor when coexpressed. The observed differences in aggregation properties and effect of 9-cis retinal predict different outcomes in disease pathophysiology and suggest that retinoid-based chaperones will be ineffective or even detrimental. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Probing the remarkable thermal kinetics of visual rhodopsin with E181Q and S186A mutants

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Hendrickson, Heidi P.; Videla, Pablo E.; Chen, Ya-Na; Ho, Junming; Sekharan, Sivakumar; Batista, Victor S.; Tully, John C.; Yan, Elsa C. Y.

    2017-06-01

    We recently reported a very unusual temperature dependence of the rate of thermal reaction of wild type bovine rhodopsin: the Arrhenius plot exhibits a sharp "elbow" at 47 °C and, in the upper temperature range, an unexpectedly large activation energy (114 ± 8 kcal/mol) and an enormous prefactor (1072±5 s-1). In this report, we present new measurements and a theoretical model that establish convincingly that this behavior results from a collective, entropy-driven breakup of the rigid hydrogen bonding networks (HBNs) that hinder the reaction at lower temperatures. For E181Q and S186A, two rhodopsin mutants that disrupt the HBNs near the binding pocket of the 11-cis retinyl chromophore, we observe significant decreases in the activation energy (˜90 kcal/mol) and prefactor (˜1060 s-1), consistent with the conclusion that the reaction rate is enhanced by breakup of the HBN. The results provide insights into the molecular mechanism of dim-light vision and eye diseases caused by inherited mutations in the rhodopsin gene that perturb the HBNs.

  20. Specific Glucoside Transporters Influence Septal Structure and Function in the Filamentous, Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Nieves-Morión, Mercedes; Lechno-Yossef, Sigal; López-Igual, Rocío; Frías, José E; Mariscal, Vicente; Nürnberg, Dennis J; Mullineaux, Conrad W; Wolk, C Peter; Flores, Enrique

    2017-04-01

    When deprived of combined nitrogen, some filamentous cyanobacteria contain two cell types: vegetative cells that fix CO 2 through oxygenic photosynthesis and heterocysts that are specialized in N 2 fixation. In the diazotrophic filament, the vegetative cells provide the heterocysts with reduced carbon (mainly in the form of sucrose) and heterocysts provide the vegetative cells with combined nitrogen. Septal junctions traverse peptidoglycan through structures known as nanopores and appear to mediate intercellular molecular transfer that can be traced with fluorescent markers, including the sucrose analog esculin (a coumarin glucoside) that is incorporated into the cells. Uptake of esculin by the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was inhibited by the α-glucosides sucrose and maltose. Analysis of Anabaena mutants identified components of three glucoside transporters that move esculin into the cells: GlsC (Alr4781) and GlsP (All0261) are an ATP-binding subunit and a permease subunit of two different ABC transporters, respectively, and HepP (All1711) is a major facilitator superfamily (MFS) protein that was shown previously to be involved in formation of the heterocyst envelope. Transfer of fluorescent markers (especially calcein) between vegetative cells of Anabaena was impaired by mutation of glucoside transporter genes. GlsP and HepP interact in bacterial two-hybrid assays with the septal junction-related protein SepJ, and GlsC was found to be necessary for the formation of a normal number of septal peptidoglycan nanopores and for normal subcellular localization of SepJ. Therefore, beyond their possible role in nutrient uptake in Anabaena , glucoside transporters influence the structure and function of septal junctions. IMPORTANCE Heterocyst-forming cyanobacteria have the ability to perform oxygenic photosynthesis and to assimilate atmospheric CO 2 and N 2 These organisms grow as filaments that fix these gases specifically in

  1. Specific Glucoside Transporters Influence Septal Structure and Function in the Filamentous, Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Nieves-Morión, Mercedes; Lechno-Yossef, Sigal; López-Igual, Rocío; Frías, José E.; Mariscal, Vicente; Nürnberg, Dennis J.; Mullineaux, Conrad W.; Wolk, C. Peter

    2017-01-01

    ABSTRACT When deprived of combined nitrogen, some filamentous cyanobacteria contain two cell types: vegetative cells that fix CO2 through oxygenic photosynthesis and heterocysts that are specialized in N2 fixation. In the diazotrophic filament, the vegetative cells provide the heterocysts with reduced carbon (mainly in the form of sucrose) and heterocysts provide the vegetative cells with combined nitrogen. Septal junctions traverse peptidoglycan through structures known as nanopores and appear to mediate intercellular molecular transfer that can be traced with fluorescent markers, including the sucrose analog esculin (a coumarin glucoside) that is incorporated into the cells. Uptake of esculin by the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was inhibited by the α-glucosides sucrose and maltose. Analysis of Anabaena mutants identified components of three glucoside transporters that move esculin into the cells: GlsC (Alr4781) and GlsP (All0261) are an ATP-binding subunit and a permease subunit of two different ABC transporters, respectively, and HepP (All1711) is a major facilitator superfamily (MFS) protein that was shown previously to be involved in formation of the heterocyst envelope. Transfer of fluorescent markers (especially calcein) between vegetative cells of Anabaena was impaired by mutation of glucoside transporter genes. GlsP and HepP interact in bacterial two-hybrid assays with the septal junction-related protein SepJ, and GlsC was found to be necessary for the formation of a normal number of septal peptidoglycan nanopores and for normal subcellular localization of SepJ. Therefore, beyond their possible role in nutrient uptake in Anabaena, glucoside transporters influence the structure and function of septal junctions. IMPORTANCE Heterocyst-forming cyanobacteria have the ability to perform oxygenic photosynthesis and to assimilate atmospheric CO2 and N2. These organisms grow as filaments that fix these gases specifically in

  2. Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers.

    PubMed

    Michel, Roger; Subramaniam, Varuni; McArthur, Sally L; Bondurant, Bruce; D'Ambruoso, Gemma D; Hall, Henry K; Brown, Michael F; Ross, Eric E; Saavedra, S Scott; Castner, David G

    2008-05-06

    Planar supported lipid bilayers that are stable under ambient atmospheric and ultra-high-vacuum conditions were prepared by cross-linking polymerization of bis-sorbylphosphatidylcholine (bis-SorbPC). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to investigate bilayers that were cross-linked using either redox-initiated radical polymerization or ultraviolet photopolymerization. The redox method yields a more structurally intact bilayer; however, the UV method is more compatible with incorporation of transmembrane proteins. UV polymerization was therefore used to prepare cross-linked bilayers with incorporated bovine rhodopsin, a light-activated, G-protein-coupled receptor (GPCR). A previous study (Subramaniam, V.; Alves, I. D.; Salgado, G. F. J.; Lau, P. W.; Wysocki, R. J.; Salamon, Z.; Tollin, G.; Hruby, V. J.; Brown, M. F.; Saavedra, S. S. J. Am. Chem. Soc. 2005, 127, 5320-5321) showed that rhodopsin retains photoactivity after incorporation into UV-polymerized bis-SorbPC, but did not address how the protein is associated with the bilayer. In this study, we show that rhodopsin is retained in supported bilayers of poly(bis-SorbPC) under ultra-high-vacuum conditions, on the basis of the increase in the XPS nitrogen concentration and the presence of characteristic amino acid peaks in the ToF-SIMS data. Angle-resolved XPS data show that the protein is inserted into the bilayer, rather than adsorbed on the bilayer surface. This is the first study to demonstrate the use of ultra-high-vacuum techniques for structural studies of supported proteolipid bilayers.

  3. Detection of Anatoxin-a and Three Analogs in Anabaena spp. Cultures: New Fluorescence Polarization Assay and Toxin Profile by LC-MS/MS

    PubMed Central

    Sanchez, Jon A.; Otero, Paz; Alfonso, Amparo; Ramos, Vitor; Vasconcelos, Vitor; Aráoz, Romulo; Molgó, Jordi; Vieytes, Mercedes R.; Botana, Luis M.

    2014-01-01

    Anatoxin-a (ATX) is a potent neurotoxin produced by several species of Anabaena spp. Cyanobacteria blooms around the world have been increasing in recent years; therefore, it is urgent to develop sensitive techniques that unequivocally confirm the presence of these toxins in fresh water and cyanobacterial samples. In addition, the identification of different ATX analogues is essential to later determine its toxicity. In this paper we designed a fluorescent polarization (FP) method to detect ATXs in water samples. A nicotinic acetylcholine receptor (nAChR) labeled with a fluorescein derivative was used to develop this assay. Data showed a direct relationship between the amount of toxin in a sample and the changes in the polarization degree of the emitted light by the labeled nAChR, indicating an interaction between the two molecules. This method was used to measure the amount of ATX in three Anabaena spp. cultures. Results indicate that it is a good method to show ATXs presence in algal samples. In order to check the toxin profile of Anabaena cultures a LC-MS/MS method was also developed. Within this new method, ATX-a, retention time (RT) 5 min, and three other molecules with a mass m/z 180.1 eluting at 4.14 min, 5.90 min and 7.14 min with MS/MS spectra characteristic of ATX toxin group not previously identified were detected in the Anabaena spp. cultures. These ATX analogues may have an important role in the toxicity of the sample. PMID:24469431

  4. Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae

    PubMed Central

    Penzkofer, Alfons; Scheib, Ulrike; Stehfest, Katja; Hegemann, Peter

    2017-01-01

    The rhodopsin-guanylyl cyclase from the nematophagous fungus Catenaria anguillulae belongs to a recently discovered class of enzymerhodopsins and may find application as a tool in optogenetics. Here the rhodopsin domain CaRh of the rhodopsin-guanylyl cyclase from Catenaria anguillulae was studied by absorption and emission spectroscopic methods. The absorption cross-section spectrum and excitation wavelength dependent fluorescence quantum distributions of CaRh samples were determined (first absorption band in the green spectral region). The thermal stability of CaRh was studied by long-time attenuation measurements at room temperature (20.5 °C) and refrigerator temperature of 3.5 °C. The apparent melting temperature of CaRh was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 62 ± 2 °C). The photocycle dynamics of CaRh was investigated by sample excitation to the first inhomogeneous absorption band of the CaRhda dark-adapted state around 590 nm (long-wavelength tail), 530 nm (central region) and 470 nm (short-wavelength tail) and following the absorption spectra development during exposure and after exposure (time resolution 0.0125 s). The original protonated retinal Schiff base PRSBall-trans in CaRhda photo-converted reversibly to protonated retinal Schiff base PRSBall-trans,la1 with restructured surroundings (CaRhla1 light-adapted state, slightly blue-shifted and broadened first absorption band, recovery to CaRhda with time constant of 0.8 s) and deprotonated retinal Schiff base RSB13-cis (CaRhla2 light-adapted state, first absorption band in violet to near ultraviolet spectral region, recovery to CaRhda with time constant of 0.35 s). Long-time light exposure of light-adapted CaRhla1 around 590, 530 and 470 nm caused low-efficient irreversible degradation to photoproducts CaRhprod. Schemes of the primary photocycle dynamics of CaRhda and the secondary photocycle dynamics of CaRhla1 are developed. PMID:28981475

  5. Primary processes in photolysis of octopus rhodopsin.

    PubMed

    Ohtani, H; Kobayashi, T; Tsuda, M; Ebrey, T G

    1988-01-01

    The photolysis of octopus rhodopsin was studied by picosecond time-resolved spectroscopy at physiological temperature (8 degrees C) and by steady-state spectroscopy at very low temperature (10 K). Both hypsorhodopsin and bathorhodopsin were formed from a bathorhodopsin-like red-shifted intermediate "primerhodopsin," which was the primary photoproduct with our time resolution (36 ps). Though it was proposed that hypsorhodopsin is formed solely by a multiphoton process, the present results obtained by using blue light pulses (461 nm) of low intensity showed that hypsorhodopsin is formed by a single photon mechanism via thermal decay from primerhodopsin. When the excitation intensity is increased, a channel for the photochemical formation of hypsorhodopsin from primerhodopsin is opened. There are two thermal pathways leading from primerhodopsin. One process is the formation of hypsorhodopsin, which is later thermally converted to bathorhodopsin, and the other is the direct formation of bathorhodopsin from primerhodopsin. The formation efficiencies at room temperature of hypsorhodopsin and bathorhodopsin at very low excitation intensity were estimated to be larger than 0.6 and smaller than 0.4, respectively. The formation of hypsorhodopsin was also found in the early stages of the irradiation of octopus rhodopsin with weak continuous light at 10 K. However bathorhodopsin is formed three times more efficiently than hypsorhodopsin at 10 K.At physiological temperatures the formation of hypsorhodopsin in D(2)O takes place more slowly than in H(2)O. This indicates that the lifetime of primerhodopsin is decreased by H(2)O/D(2)O exchange. The rate constant for the primerhodopsin --> bathorhodopsin conversion is more sensitive than that for the primerhodopsin --> hypsorhodopsin conversion. The transformation of hypsorhodopsin to bathorhodopsin shows no deuterium effect at low temperature.

  6. NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics.

    PubMed

    Govorunova, Elena G; Sineshchekov, Oleg A; Janz, Roger; Liu, Xiaoqin; Spudich, John L

    2015-08-07

    Light-gated rhodopsin cation channels from chlorophyte algae have transformed neuroscience research through their use as membrane-depolarizing optogenetic tools for targeted photoactivation of neuron firing. Photosuppression of neuronal action potentials has been limited by the lack of equally efficient tools for membrane hyperpolarization. We describe anion channel rhodopsins (ACRs), a family of light-gated anion channels from cryptophyte algae that provide highly sensitive and efficient membrane hyperpolarization and neuronal silencing through light-gated chloride conduction. ACRs strictly conducted anions, completely excluding protons and larger cations, and hyperpolarized the membrane of cultured animal cells with much faster kinetics at less than one-thousandth of the light intensity required by the most efficient currently available optogenetic proteins. Natural ACRs provide optogenetic inhibition tools with unprecedented light sensitivity and temporal precision. Copyright © 2015, American Association for the Advancement of Science.

  7. Mutations in PRPF31 Inhibit Pre-mRNA Splicing of Rhodopsin Gene and Cause Apoptosis of Retinal Cells

    PubMed Central

    Yuan, Liya; Kawada, Mariko; Havlioglu, Necat; Tang, Hao; Wu, Jane Y.

    2007-01-01

    Mutations in human PRPF31 gene have been identified in patients with autosomal dominant retinitis pigmentosa (adRP). To begin to understand mechanisms by which defects in this general splicing factor cause retinal degeneration, we examined the relationship between PRPF31 and pre-mRNA splicing of photoreceptor-specific genes. We used a specific anti-PRPF31 antibody to immunoprecipitate splicing complexes from retinal cells and identified the transcript of rhodopsin gene (RHO) among RNA species associated with PRPF31-containing complexes. Mutant PRPF31 proteins significantly inhibited pre-mRNA splicing of intron 3 in RHO gene. In primary retinal cell cultures, expression of the mutant PRPF31 proteins reduced rhodopsin expression and caused apoptosis of rhodopsin-positive retinal cells. This primary retinal culture assay provides an in vitro model to study photoreceptor cell death caused by PRPF31 mutations. Our results demonstrate that mutations in PRPF31 gene affect RHO pre-mRNA splicing and reveal a link between PRPF31 and RHO, two major adRP genes. PMID:15659613

  8. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus.

    PubMed

    Kajimoto, Kousuke; Kikukawa, Takashi; Nakashima, Hiroki; Yamaryo, Haruki; Saito, Yuta; Fujisawa, Tomotsumi; Demura, Makoto; Unno, Masashi

    2017-05-04

    Sodium-ion-pump rhodopsin (NaR) is a microbial rhodopsin that transports Na + during its photocycle. Here we explore the photocycle mechanism of NaR from Indibacter alkaliphilus with transient absorption and transient resonance Raman spectroscopy. The transient absorption data indicate that the photocycle of NaR is K (545 nm) → L (490 nm)/M (420 nm) → O 1 (590 nm) → O 2 (560 nm) → NaR, where the L and M are formed as equilibrium states. The presence of K, L, M, and O intermediates was confirmed by the resonance Raman spectra with 442 and 532 nm excitation. The main component of the transient resonance Raman spectra was due to L which contains a 13-cis retinal protonated Schiff base. The presence of an enhanced hydrogen out-of-plane band as well as its sensitivity to the H/D exchange indicate that the retinal chromophore is distorted near the Schiff base region in L. Moreover, the retinal Schiff base of the L state forms a hydrogen bond that is stronger than that of the dark state. These observations are consistent with a Na + pumping mechanism that involves a proton transfer from the retinal Schiff base to a key aspartate residue (Asp116 in Krokinobacter eikastus rhodopsin 2) in the L/M states.

  9. A Rhodopsin-Like Gene May Be Associated With the Light-Sensitivity of Adult Pacific Oyster Crassostrea gigas

    PubMed Central

    Wu, Changlu; Jiang, Qiuyun; Wei, Lei; Cai, Zhongqiang; Chen, Jun; Yu, Wenchao; He, Cheng; Wang, Jiao; Guo, Wen; Wang, Xiaotong

    2018-01-01

    Light-sensitivity is important for mollusc survival, as it plays a vital role in reproduction and predator avoidance. Light-sensitivity has been demonstrated in the adult Pacific oyster Crassostrea gigas, but the genes associated with light-sensitivity remain unclear. In the present study, we designed experiments to identify the genes associated with light-sensitivity in adult oysters. First, we assessed the Pacific oyster genome and identified 368 genes annotated with the terms associated with light-sensitivity. Second, the function of the four rhodopsin-like superfamily member genes was tested by using RNAi. The results showed that the highest level of mRNA expression of the vision-related genes was in the mantle; however, this finding is not true for all oyster genes. Interestingly, we also found four rhodopsin-like superfamily member genes expressed at an very high level in the mantle tissue. In the RNAi experiment, when one of rhodopsin-like superfamily member genes (CGI_1001253) was inhibited, the light-sensitivity capacity of the injected oysters was significantly reduced, suggesting that CGI_10012534 may be associated with light-sensitivity in the adult Pacific oyster. PMID:29615921

  10. Removal of Anabaena spiroides by potassium permanganate pre-oxidation: effect on photosynthetic capacity and molecular weight distribution.

    PubMed

    Qiao, Junlian; Zhang, Xiaodong; Lv, Liping

    2017-11-01

    Bench scale tests were conducted to investigate the effect of potassium permanganate pre-oxidation on the photosynthetic activity and molecular weight distribution of Anabaena spiroides. Different concentrations of potassium permanganate were added into the suspension of Anabaena spiroides, one of the dominant algae in water bloom, and after pre-oxidation of permanganate for 1 h, the results show that the removal rate significantly increases by 33.99~36.35% compared to direct coagulation. Then, the algal characteristics, including photosynthetic ability, the changes in extracellular organic matter three-dimensional fluorescence, and the distribution of molecular weight were conducted and the results show that along with increasing concentration of potassium permanganate, the photosynthetic ability of algae decreases, more extracellular organic matter is secreted, and large molecular weight matter (humic-like and fulvic-like substances) are generated. Therefore, this study demonstrates that potassium permanganate could be used in addressing the algae-rich water.

  11. Re-evaluation of rhodopsin's relaxation kinetics determined from femtosecond stimulated Raman lineshapes.

    PubMed

    McCamant, David W

    2011-07-28

    This work presents a theoretical treatment of the vibrational line shape generated in a femtosecond stimulated Raman spectroscopy (FSRS) experiment under conditions in which the probed vibration undergoes a significant frequency shift during its free induction decay. This theory is applied to simulate the FSRS lineshapes previously observed in rhodopsin (Kukura et al. Science 2005, 310, 1006). The previously determined relaxation times for formation of the trans-photoproduct of rhodopsin were calculated using an incorrect equation for the time dependence of the observed frequency shifts. Here the data are reanalyzed by calculation of the corrected frequency sweep occurring during the vibrational free induction decay. It is shown that the calculated frequency shifts and general conclusions of the original work are sound but that the coherent vibrational frequency shifts of the C(10), C(11), and C(12) hydrogen-out-of-plane vibrations occur with a 140 fs time constant rather than the previously reported 325 fs time constant. This time constant provides an important constraint for models of the dynamics of the cis to trans isomerization process. © 2011 American Chemical Society

  12. Site-specific recombination in the cyanobacterium Anabaena sp. strain PCC 7120 catalyzed by the integrase of coliphage HK022.

    PubMed

    Melnikov, Olga; Zaritsky, Arieh; Zarka, Aliza; Boussiba, Sammy; Malchin, Natalia; Yagil, Ezra; Kolot, Mikhail

    2009-07-01

    The integrase (Int) of the lambda-like coliphage HK022 catalyzes the site-specific integration and excision of the phage DNA into and from the chromosome of its host, Escherichia coli. Int recognizes two different pairs of recombining sites attP x attB and attL x attR for integration and excision, respectively. This system was adapted to the cyanobacterium Anabaena sp. strain PCC 7120 as a potential tool for site-specific gene manipulations in the cyanobacterium. Two plasmids were consecutively cointroduced by conjugation into Anabaena cells, one plasmid that expresses HK022 Int recombinase and the other plasmid that carries the excision substrate P(glnA)-attL-T1/T2-attR-lacZ, where T1/T2 are the strong transcription terminators of rrnB, to prevent expression of the lacZ reporter under the constitutive promoter P(glnA). The Int-catalyzed site-specific recombination reaction was monitored by the expression of lacZ emanating as a result of T1/T2 excision. Int catalyzed the site-specific excision reaction in Anabaena cells when its substrate was located either on the plasmid or on the chromosome with no need to supply an accessory protein, such as integration host factor and excisionase (Xis), which are indispensable for this reaction in its host, E. coli.

  13. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: Use of a photoactivatable reagent

    PubMed Central

    Cai, Kewen; Itoh, Yoshiki; Khorana, H. Gobind

    2001-01-01

    Interaction of light-activated rhodopsin with transducin (T) is the first event in visual signal transduction. We use covalent crosslinking approaches to map the contact sites in interaction between the two proteins. Here we use a photoactivatable reagent, N-[(2-pyridyldithio)-ethyl], 4-azido salicylamide. The reagent is attached to the SH group of cytoplasmic monocysteine rhodopsin mutants by a disulfide-exchange reaction with the pyridylthio group, and the derivatized rhodopsin then is complexed with T by illumination at λ >495 nm. Subsequent irradiation of the complex at λ310 nm generates covalent crosslinks between the two proteins. Crosslinking was demonstrated between T and a number of single cysteine rhodopsin mutants. However, sites of crosslinks were investigated in detail only between T and the rhodopsin mutant S240C (cytoplasmic loop V-VI). Crosslinking occurred predominantly with Tα. For identification of the sites of crosslinks in Tα, the strategy used involved: (i) derivatization of all of the free cysteines in the crosslinked proteins with N-ethylmaleimide; (ii) reduction of the disulfide bond linking the two proteins and isolation of all of the Tα species carrying the crosslinked moiety with a free SH group; (iii) adduct formation of the latter with the N-maleimide moiety of the reagent, maleimido-butyryl-biocytin, containing a biotinyl group; (iv) trypsin degradation of the resulting Tα derivatives and isolation of Tα peptides carrying maleimido-butyryl-biocytin by avidin-agarose chromatography; and (v) identification of the isolated peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. We found that crosslinking occurred mainly to two C-terminal peptides in Tα containing the amino acid sequences 310–313 and 342–345. PMID:11320237

  14. The Photosensitivity of Rhodopsin Bleaching and Light-Induced Increases of Fundus Reflectance in Mice Measured In Vivo With Scanning Laser Ophthalmoscopy

    PubMed Central

    Zhang, Pengfei; Goswami, Mayank; Zawadzki, Robert J.; Pugh, Edward N.

    2016-01-01

    Purpose To quantify bleaching-induced changes in fundus reflectance in the mouse retina. Methods Light reflected from the fundus of albino (Balb/c) and pigmented (C57Bl/6J) mice was measured with a multichannel scanning laser ophthalmoscopy optical coherence tomography (SLO-OCT) optical system. Serial scanning of small retinal regions was used for bleaching rhodopsin and measuring reflectance changes. Results Serial scanning generated a saturating reflectance increase centered at 501 nm with a photosensitivity of 1.4 × 10−8 per molecule μm2 in both strains, 2-fold higher than expected were irradiance at the rod outer segment base equal to that at the retinal surface. The action spectrum of the reflectance increase corresponds to the absorption spectrum of mouse rhodopsin in situ. Spectra obtained before and after bleaching were fitted with a model of fundus reflectance, quantifying contributions from loss of rhodopsin absorption with bleaching, absorption by oxygenated hemoglobin (HbO2) in the choroid (Balb/c), and absorption by melanin (C57Bl/6J). Both mouse strains exhibited light-induced broadband reflectance changes explained as bleaching-induced reflectivity increases at photoreceptor inner segment/outer segment (IS/OS) junctions and OS tips. Conclusions The elevated photosensitivity of rhodopsin bleaching in vivo is explained by waveguide condensing of light in propagation from rod inner segment (RIS) to rod outer segment (ROS). The similar photosensitivity of rhodopsin in the two strains reveals that little light backscattered from the sclera can enter the ROS. The bleaching-induced increases in reflectance at the IS/OS junctions and OS tips resemble results previously reported in human cones, but are ascribed to rods due to their 30/1 predominance over cones in mice and to the relatively minor amount of cone M-opsin in the regions scanned. PMID:27403994

  15. Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.

    PubMed

    Sakurai, Keisuke; Young, Joyce E; Kefalov, Vladimir J; Khani, Shahrokh C

    2011-08-29

    Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light.

  16. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films.

    PubMed Central

    Salamon, Z; Wang, Y; Soulages, J L; Brown, M F; Tollin, G

    1996-01-01

    Surface plasmon resonance (SPR) spectroscopy can provide useful information regarding average structural properties of membrane films supported on planar solid substrates. Here we have used SPR spectroscopy for the first time to monitor the binding and activation of G-protein (transducin or Gt) by bovine rhodopsin incorporated into an egg phosphatidylcholine bilayer deposited on a silver film. Rhodopsin incorporation into the membrane, performed by dilution of a detergent solution of the protein, proceeds in a saturable manner. Before photolysis, the SPR data show that Gt binds tightly (Keq approximately equal to 60 nM) and with positive cooperativity to rhodopsin in the lipid layer to form a closely packed film. A simple multilayer model yields a calculated average thickness of about 57 A, in good agreement with the structure of Gt. The data also demonstrate that Gt binding saturates at a Gt/rhodopsin ratio of approximately 0.6. Moreover, upon visible light irradiation, characteristic changes occur in the SPR spectrum, which can be modeled by a 6 A increase in the average thickness of the lipid/protein film caused by formation of metarhodopsin II (MII). Upon subsequent addition of GTP, further SPR spectral changes are induced. These are interpreted as resulting from dissociation of the alpha-subunit of Gt, formation of new MII-Gt complexes, and possible conformational changes of Gt as a consequence of complex formation. The above results clearly demonstrate the ability of SPR spectroscopy to monitor interactions among the proteins associated with signal transduction in membrane-bound systems. Images FIGURE 1 PMID:8804611

  17. The heterocyst differentiation transcriptional regulator HetR of the filamentous cyanobacterium Anabaena forms tetramers and can be regulated by phosphorylation.

    PubMed

    Valladares, Ana; Flores, Enrique; Herrero, Antonia

    2016-02-01

    Many filamentous cyanobacteria respond to the external cue of nitrogen scarcity by the differentiation of heterocysts, cells specialized in the fixation of atmospheric nitrogen in oxic environments. Heterocysts follow a spatial pattern along the filament of two heterocysts separated by ca. 10-15 vegetative cells performing oxygenic photosynthesis. HetR is a transcriptional regulator that directs heterocyst differentiation. In the model strain Anabaena sp. PCC 7120, the HetR protein was observed in various oligomeric forms in vivo, including a tetramer that peaked with maximal hetR expression during differentiation. Tetramers were not detected in a hetR point mutant incapable of differentiation, but were conspicuous in an over-differentiating strain lacking the PatS inhibitor. In differentiated filaments the HetR tetramer was restricted to heterocysts, being undetectable in vegetative cells. HetR co-purified with RNA polymerase from Anabaena mainly as a tetramer. In vitro, purified recombinant HetR was distributed between monomers, dimers, trimers and tetramers, and it was phosphorylated when incubated with (γ-(32)P)ATP. Phosphorylation and PatS hampered the accumulation of HetR tetramers and impaired HetR binding to DNA. In summary, tetrameric HetR appears to represent a functionally relevant form of HetR, whose abundance in the Anabaena filament could be negatively regulated by phosphorylation and by PatS. © 2015 John Wiley & Sons Ltd.

  18. Zur (FurB) is a key factor in the control of the oxidative stress response in Anabaena sp. PCC 7120.

    PubMed

    Sein-Echaluce, Violeta C; González, Andrés; Napolitano, Mauro; Luque, Ignacio; Barja, Francisco; Peleato, M Luisa; Fillat, María F

    2015-06-01

    Iron and zinc are necessary nutrients whose homeostasis is tightly controlled by members of the ferric uptake regulator (FUR) superfamily in the cyanobacterium Anabaena sp. PCC7120. Although the link between iron metabolism and oxidative stress management is well documented, little is known about the connection between zinc homeostasis and the oxidative stress response in cyanobacteria. Zinc homeostasis in Anabaena is controlled by Zur, also named FurB. When overexpressed in Escherichia coli, Zur (FurB) improved cell survival during oxidative stress. In order to investigate the possible correlation between Zur and the oxidative stress response in Anabaena, zur deletion and zur-overexpressing strains have been constructed, and the consequences of Zur imbalance evaluated. The lack of Zur increased sensitivity to hydrogen peroxide (H2 O2 ), whereas an excess of Zur enhanced oxidative stress resistance. Both mutants displayed pleiotropic phenotypes, including alterations on the filament surfaces observable by scanning electron microscopy, reduced content of endogenous H2 O2 and altered expression of sodA, catalases and several peroxiredoxins. Transcriptional and biochemical analyses unveiled that the appropriate level of Zur is required for proper control of the oxidative stress response and allowed us to identify major antioxidant enzymes as novel members of the Zur regulon. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Expression of Shewanella oneidensis MR-1 [FeFe]-Hydrogenase Genes in Anabaena sp. Strain PCC 7120

    PubMed Central

    Gärtner, Katrin; Lechno-Yossef, Sigal; Cornish, Adam J.; Wolk, C. Peter

    2012-01-01

    H2 generated from renewable resources holds promise as an environmentally innocuous fuel that releases only energy and water when consumed. In biotechnology, photoautotrophic oxygenic diazotrophs could produce H2 from water and sunlight using the cells' endogenous nitrogenases. However, nitrogenases have low turnover numbers and require large amounts of ATP. [FeFe]-hydrogenases found in other organisms can have 1,000-fold higher turnover numbers and no specific requirement for ATP but are very O2 sensitive. Certain filamentous cyanobacteria protect nitrogenase from O2 by sequestering the enzyme within internally micro-oxic, differentiated cells called heterocysts. We heterologously expressed the [FeFe]-hydrogenase operon from Shewanella oneidensis MR-1 in Anabaena sp. strain PCC 7120 using the heterocyst-specific promoter PhetN. Active [FeFe]-hydrogenase was detected in and could be purified from aerobically grown Anabaena sp. strain PCC 7120, but only when the organism was grown under nitrate-depleted conditions that elicited heterocyst formation. These results suggest that the heterocysts protected the [FeFe]-hydrogenase against inactivation by O2. PMID:23023750

  20. The origin of absorptive features in the two-dimensional electronic spectra of rhodopsin.

    PubMed

    Farag, Marwa H; Jansen, Thomas L C; Knoester, Jasper

    2018-05-09

    In rhodopsin, the absorption of a photon causes the isomerization of the 11-cis isomer of the retinal chromophore to its all-trans isomer. This isomerization is known to occur through a conical intersection (CI) and the internal conversion through the CI is known to be vibrationally coherent. Recently measured two-dimensional electronic spectra (2DES) showed dramatic absorptive spectral features at early waiting times associated with the transition through the CI. The common two-state two-mode model Hamiltonian was unable to elucidate the origin of these features. To rationalize the source of these features, we employ a three-state three-mode model Hamiltonian where the hydrogen out-of plane (HOOP) mode and a higher-lying electronic state are included. The 2DES of the retinal chromophore in rhodopsin are calculated and compared with the experiment. Our analysis shows that the source of the observed features in the measured 2DES is the excited state absorption to a higher-lying electronic state and not the HOOP mode.

  1. Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy.

    PubMed

    Smith, Adam W

    2015-01-01

    Rhodopsin self-associates in the plasma membrane. At low concentrations, the interactions are consistent with a monomer-dimer equilibrium (Comar et al., J Am Chem Soc 136(23):8342-8349, 2014). At high concentrations in native tissue, higher-order clusters have been observed (Fotiadis et al., Nature 421:127-128, 2003). The physiological role of rhodopsin dimerization is still being investigated, but it is clear that a quantitative assessment is essential to determining the function of rhodopsin clusters in vision. To quantify rhodopsin interactions, I will outline the theory and methodology of a specialized time-resolved fluorescence spectroscopy for measuring membrane protein-protein interactions called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). The strength of this technique is its ability to quantify rhodopsin interactions in situ (i.e., a live cell plasma membrane). There are two reasons for restricting the scope to live cell membranes. First, the compositional heterogeneity of the plasma membrane creates a complex milieu with thousands of lipid, protein, and carbohydrate species. This makes it difficult to infer quaternary interactions from detergent solubilized samples or construct a model phospholipid bilayer that recapitulates all of the interactions present in native membranes. Second, organizational structure and dynamics is a key feature of the plasma membrane, and fixation techniques like formaldehyde cross-linking and vitrification will modulate the interactions. PIE-FCCS is based on two-color fluorescence imaging with time-correlated single-photon counting (TCSPC) (Becker et al., Rev Sci Instrum 70:1835-1841, 1999). By time-tagging every detected photon, the data can be analyzed as a fluorescence intensity distribution, fluorescence lifetime histogram, or fluorescence (cross-)correlation spectra (FCS/FCCS) (Becker, Advanced time-correlated single-photon counting techniques, Springer, Berlin, 2005). These

  2. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin

    PubMed Central

    Zhuang, Tiandi; Chen, Qiuyan; Cho, Min-Kyu; Vishnivetskiy, Sergey A.; Iverson, Tina M.; Gurevich, Vsevolod V.; Sanders, Charles R.

    2013-01-01

    Solution NMR spectroscopy of labeled arrestin-1 was used to explore its interactions with dark-state phosphorylated rhodopsin (P-Rh), phosphorylated opsin (P-opsin), unphosphorylated light-activated rhodopsin (Rh*), and phosphorylated light-activated rhodopsin (P-Rh*). Distinct sets of arrestin-1 elements were seen to be engaged by Rh* and inactive P-Rh, which induced conformational changes that differed from those triggered by binding of P-Rh*. Although arrestin-1 affinity for Rh* was seen to be low (KD > 150 μM), its affinity for P-Rh (KD ∼80 μM) was comparable to the concentration of active monomeric arrestin-1 in the outer segment, suggesting that P-Rh generated by high-gain phosphorylation is occupied by arrestin-1 under physiological conditions and will not signal upon photo-activation. Arrestin-1 was seen to bind P-Rh* and P-opsin with fairly high affinity (KD of ∼50 and 800 nM, respectively), implying that arrestin-1 dissociation is triggered only upon P-opsin regeneration with 11-cis-retinal, precluding noise generated by opsin activity. Based on their observed affinity for arrestin-1, P-opsin and inactive P-Rh very likely affect the physiological monomer-dimer-tetramer equilibrium of arrestin-1, and should therefore be taken into account when modeling photoreceptor function. The data also suggested that complex formation with either P-Rh* or P-opsin results in a global transition in the conformation of arrestin-1, possibly to a dynamic molten globule-like structure. We hypothesize that this transition contributes to the mechanism that triggers preferential interactions of several signaling proteins with receptor-activated arrestins. PMID:23277586

  3. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin.

    PubMed

    Zhuang, Tiandi; Chen, Qiuyan; Cho, Min-Kyu; Vishnivetskiy, Sergey A; Iverson, Tina M; Gurevich, Vsevolod V; Sanders, Charles R

    2013-01-15

    Solution NMR spectroscopy of labeled arrestin-1 was used to explore its interactions with dark-state phosphorylated rhodopsin (P-Rh), phosphorylated opsin (P-opsin), unphosphorylated light-activated rhodopsin (Rh*), and phosphorylated light-activated rhodopsin (P-Rh*). Distinct sets of arrestin-1 elements were seen to be engaged by Rh* and inactive P-Rh, which induced conformational changes that differed from those triggered by binding of P-Rh*. Although arrestin-1 affinity for Rh* was seen to be low (K(D) > 150 μM), its affinity for P-Rh (K(D) ~80 μM) was comparable to the concentration of active monomeric arrestin-1 in the outer segment, suggesting that P-Rh generated by high-gain phosphorylation is occupied by arrestin-1 under physiological conditions and will not signal upon photo-activation. Arrestin-1 was seen to bind P-Rh* and P-opsin with fairly high affinity (K(D) of~50 and 800 nM, respectively), implying that arrestin-1 dissociation is triggered only upon P-opsin regeneration with 11-cis-retinal, precluding noise generated by opsin activity. Based on their observed affinity for arrestin-1, P-opsin and inactive P-Rh very likely affect the physiological monomer-dimer-tetramer equilibrium of arrestin-1, and should therefore be taken into account when modeling photoreceptor function. The data also suggested that complex formation with either P-Rh* or P-opsin results in a global transition in the conformation of arrestin-1, possibly to a dynamic molten globule-like structure. We hypothesize that this transition contributes to the mechanism that triggers preferential interactions of several signaling proteins with receptor-activated arrestins.

  4. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE IN A CONTINUOUS-FLOW ANABAENA SP. SYSTEM. (R825513C013)

    EPA Science Inventory

    Reductive transformation of 2,4,6-trinitrotoluene (TNT) was observed in a continuous-flow system of Anabaena sp. operated for 33 d with a 5.7 d hydraulic retention time and a range of influent TNT concentrations of 1–58 mg/l. The TNT removal effici...

  5. Variation in Rhodopsin Kinase Expression Alters the Dim Flash Response Shut Off and the Light Adaptation in Rod Photoreceptors

    PubMed Central

    Sakurai, Keisuke; Young, Joyce E.; Kefalov, Vladimir J.; Khani, Shahrokh C.

    2011-01-01

    Purpose. Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Methods. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Results. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. Conclusions. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light. PMID:21474765

  6. Mutational Analysis of the Rhodopsin Gene in Sector Retinitis Pigmentosa.

    PubMed

    Napier, Maria L; Durga, Dash; Wolsley, Clive J; Chamney, Sarah; Alexander, Sharon; Brennan, Rosie; Simpson, David A; Silvestri, Giuliana; Willoughby, Colin E

    2015-01-01

    To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland. A case series of sector RP in a tertiary ocular genetics clinic. Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent. The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced. Rhodopsin mutational status. A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO. The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.

  7. A Major Facilitator Superfamily Protein, HepP, Is Involved in Formation of the Heterocyst Envelope Polysaccharide in the Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    López-Igual, Rocío; Lechno-Yossef, Sigal; Fan, Qing; Herrero, Antonia; Wolk, C. Peter

    2012-01-01

    Some filamentous cyanobacteria such as Anabaena sp. strain PCC 7120 produce cells, termed heterocysts, specialized in nitrogen fixation. Heterocysts bear a thick envelope containing an inner layer of glycolipids and an outer layer of polysaccharide that restrict the diffusion of air (including O2) into the heterocyst. Anabaena sp. mutants impaired in production of either of those layers show a Fox− phenotype (requiring fixed nitrogen for growth under oxic conditions). We have characterized a set of transposon-induced Fox− mutants in which transposon Tn5-1063 was inserted into the Anabaena sp. chromosome open reading frame all1711 which encodes a predicted membrane protein that belongs to the major facilitator superfamily (MFS). These mutants showed higher nitrogenase activities under anoxic than under oxic conditions and altered sucrose uptake. Electron microscopy and alcian blue staining showed a lack of the heterocyst envelope polysaccharide (Hep) layer. Northern blot and primer extension analyses showed that, in a manner dependent on the nitrogen-control transcription factor NtcA, all1711 was strongly induced after nitrogen step-down. Confocal microscopy of an Anabaena sp. strain producing an All1711-green fluorescent protein (All1711-GFP) fusion protein showed induction in all cells of the filament but at higher levels in differentiating heterocysts. All1711-GFP was located in the periphery of the cells, consistent with All1711 being a cytoplasmic membrane protein. Expression of all1711 from the PglnA promoter in a multicopy plasmid led to production of a presumptive exopolysaccharide by vegetative cells. These results suggest that All1711, which we denote HepP, is involved in transport of glycoside(s), with a specific physiological role in production of Hep. PMID:22753066

  8. Bacterial Anabaena variabilis phenylalanine ammonia lyase: a biocatalyst with broad substrate specificity.

    PubMed

    Lovelock, Sarah L; Turner, Nicholas J

    2014-10-15

    Phenylalanine ammonia lyases (PALs) catalyse the regio- and stereoselective hydroamination of cinnamic acid analogues to yield optically enriched α-amino acids. Herein, we demonstrate that a bacterial PAL from Anabaena variabilis (AvPAL) displays significantly higher activity towards a series of non-natural substrates than previously described eukaryotic PALs. Biotransformations performed on a preparative scale led to the synthesis of the 2-chloro- and 4-trifluoromethyl-phenylalanine derivatives in excellent ee, highlighting the enormous potential of bacterial PALs as biocatalysts for the synthesis of high value, non-natural amino acids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2016-02-01

    This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

  10. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    PubMed Central

    Jones, Gareth; Teeling, Emma C.; Rossiter, Stephen J.

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a “birth-and death” evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID

  11. Different Functions of the Paralogs to the N-Terminal Domain of the Orange Carotenoid Protein in the Cyanobacterium Anabaena sp. PCC 71201[OPEN

    PubMed Central

    López-Igual, Rocío; Wilson, Adjélé; Bourcier de Carbon, Céline; Sutter, Markus; Turmo, Aiko

    2016-01-01

    The photoactive Orange Carotenoid Protein (OCP) is involved in cyanobacterial photoprotection. Its N-terminal domain (NTD) is responsible for interaction with the antenna and induction of excitation energy quenching, while the C-terminal domain is the regulatory domain that senses light and induces photoactivation. In most nitrogen-fixing cyanobacterial strains, there are one to four paralogous genes coding for homologs to the NTD of the OCP. The functions of these proteins are unknown. Here, we study the expression, localization, and function of these genes in Anabaena sp. PCC 7120. We show that the four genes present in the genome are expressed in both vegetative cells and heterocysts but do not seem to have an essential role in heterocyst formation. This study establishes that all four Anabaena NTD-like proteins can bind a carotenoid and the different paralogs have distinct functions. Surprisingly, only one paralog (All4941) was able to interact with the antenna and to induce permanent thermal energy dissipation. Two of the other Anabaena paralogs (All3221 and Alr4783) were shown to be very good singlet oxygen quenchers. The fourth paralog (All1123) does not seem to be involved in photoprotection. Structural homology modeling allowed us to propose specific features responsible for the different functions of these soluble carotenoid-binding proteins. PMID:27208286

  12. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors

    PubMed Central

    Woods, Kristina N.; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith

    2016-01-01

    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals. PMID:27849063

  13. Regulation of membrane proteins by dietary lipids: effects of cholesterol and docosahexaenoic acid acyl chain-containing phospholipids on rhodopsin stability and function.

    PubMed

    Bennett, Michael P; Mitchell, Drake C

    2008-08-01

    Purified bovine rhodopsin was reconstituted into vesicles consisting of 1-stearoyl-2-oleoyl phosphatidylcholine or 1-stearoyl-2-docosahexaenoyl phosphatidylcholine with and without 30 mol % cholesterol. Rhodopsin stability was examined using differential scanning calorimetry (DSC). The thermal unfolding transition temperature (T(m)) of rhodopsin was scan rate-dependent, demonstrating the presence of a rate-limited component of denaturation. The activation energy of this kinetically controlled process (E(a)) was determined from DSC thermograms by four separate methods. Both T(m) and E(a) varied with bilayer composition. Cholesterol increased the T(m) both the presence and absence of docosahexaenoic acid acyl chains (DHA). In contrast, cholesterol lowered E(a) in the absence of DHA, but raised E(a) in the presence of 20 mol % DHA-containing phospholipid. The relative acyl chain packing order was determined from measurements of diphenylhexatriene fluorescence anisotropy decay. The T(m) for thermal unfolding was inversely related to acyl chain packing order. Rhodopsin kinetic stability (E(a)) was reduced in highly ordered or disordered membranes. Maximal kinetic stability was found within the range of acyl chain order found in native bovine rod outer segment disk membranes. The results demonstrate that membrane composition has distinct effects on the thermal versus kinetic stabilities of membrane proteins, and suggests that a balance between membrane constituents with opposite effects on acyl chain packing, such as DHA and cholesterol, may be required for maximum protein stability.

  14. Analysis of expression of the argC and argD genes in the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed Central

    Floriano, B; Herrero, A; Flores, E

    1994-01-01

    A cloned DNA fragment from Anabaena sp. strain PCC 7120 that complements an arginine auxotrophic mutant from the same organism was found to include an open reading frame encoding a 427-residue polypeptide that is homologous to N-acetylornithine aminotransferase from Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. The gene encoding N-acetylornithine aminotransferase in bacteria has been named argD. The expression of Anabaena sp. strain PCC 7120 argD, as well as of argC, was analyzed at the mRNA level. Both genes were transcribed as monocistronic mRNAs, and their expression was not affected by exogenously added arginine. Primer extension analysis identified transcription start points for both genes which were preceded by sequences similar to that of the E. coli RNA polymerase sigma 70 consensus promoter. A second transcription start point for the argD gene that is not preceded by a sigma 70 consensus promoter was detected in dinitrogen-grown cultures. Images PMID:7929012

  15. Outdoor biophotolytic system using the cyanobacterium anabaena cylindrica B629

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.D.; Lambert, G.R.

    The cyanobacterium Anabaena cylindrica B629 was suspended in small glass beads and incubated in a gas-tight glass vessel outdoors under a gas atmosphere comprising carbon monoxide (0.2%), acetylene (5%), oxygen (6.5%), and nitrogen. The solution phase initially contained sodium bicarbonate (10mM) at pH 7. Under these conditions the organism continuously produced hydrogen gas for over three weeks. The temperature of the culture was maintained below 30 /degree/C and the minimum night temperatures were recorded. The vessel was covered by a shadecloth, which reduced the natural illumination by approximately 70%. The system is an alternative to those requiring the strict absencemore » of oxygen and little nitrogen, and requires virtually no attention during the incubation period. 18 refs.« less

  16. Biochemical evidence for pathogenicity of rhodopsin kinase mutations correlated with the Oguchi form of congenital stationary night blindness

    PubMed Central

    Khani, Shahrokh C.; Nielsen, Lori; Vogt, Todd M.

    1998-01-01

    Rhodopsin kinase (RK), a rod photoreceptor cytosolic enzyme, plays a key role in the normal deactivation and recovery of the photoreceptor after exposure to light. To date, three different mutations in the RK locus have been associated with Oguchi disease, an autosomal recessive form of stationary night blindness in man characterized in part by delayed photoreceptor recovery [Yamamoto, S., Sippel, K. C., Berson, E. L. & Dryja, T. P. (1997) Nat. Genet. 15, 175–178]. Two of the mutations involve exon 5, and the remaining mutation occurs in exon 7. Known exon 5 mutations include the deletion of the entire exon sequence [HRK(X5 del)] and a missense change leading to a Val380Asp substitution in the encoded product (HRKV380D). The mutation in exon 7 is a 4-bp deletion in codon 536 leading to premature termination of the encoded polypeptide [HRKS536(4-bp del)]. To provide biochemical evidence for pathogenicity of these mutations, wild-type human rhodopsin kinase (HRK) and mutant forms HRKV380D and HRKS536(4-bp del) were expressed in COS7 cells and their activities were compared. Wild-type HRK catalyzed light-dependent phosphorylation of rhodopsin efficiently. In contrast, both mutant proteins were markedly deficient in catalytic activity with HRKV380D showing virtually no detectible activity and HRKS536(4-bp del) only minimal light-dependent activity. These results provide biochemical evidence to support the pathogenicity of the RK mutations in man. PMID:9501174

  17. Mycosporine-like amino acids (MAAs) profile of a rice-field cyanobacterium Anabaena doliolum as influenced by PAR and UVR.

    PubMed

    Singh, Shailendra P; Sinha, Rajeshwar P; Klisch, Manfred; Häder, Donat-P

    2008-12-01

    The mycosporine-like amino acid (MAA) profile of a rice-field cyanobacterium, Anabaena doliolum, was studied under PAR and PAR + UVR conditions. The high-performance liquid chromatographic analysis of water-soluble compounds reveals the biosynthesis of three MAAs, mycosporine-glycine (lambda (max) = 310 nm), porphyra-334 (lambda (max) = 334 nm) and shinorine (lambda (max) = 334 nm), with retention times of 4.1, 3.5 and 2.3 min, respectively. This is the first report for the occurrence of mycosporine-glycine and porphyra-334 in addition to shinorine in Anabaena strains studied so far. The results indicate that mycosporine-glycine (monosubstituted) acts as a precursor for the biosynthesis of the bisubstituted MAAs shinorine and porphyra-334. Mycosporine-glycine was under constitutive control while porphyra-334 and shinorine were induced by UV-B radiation, indicating the involvement of UV-regulated enzymes in the biotransformation of MAAs. It seems that A. doliolum is able to protect its cell machinery from UVR by synthesizing a complex set of MAAs and thus is able to survive successfully during the summer in its natural brightly lit habitats.

  18. Potential of proton-pumping rhodopsins: engineering photosystems into microorganisms.

    PubMed

    Claassens, Nico J; Volpers, Michael; dos Santos, Vitor A P Martins; van der Oost, John; de Vos, Willem M

    2013-11-01

    A wide range of proton-pumping rhodopsins (PPRs) have been discovered in recent years. Using a synthetic biology approach, PPR photosystems with different features can be easily introduced in nonphotosynthetic microbial hosts. PPRs can provide hosts with the ability to harvest light and drive the sustainable production of biochemicals or biofuels. PPRs use light energy to generate an outward proton flux, and the resulting proton motive force can subsequently power cellular processes. Recently, the introduction of PPRs in microbial production hosts has successfully led to light-driven biotechnological conversions. In this review, we discuss relevant features of natural PPRs, evaluate reported biotechnological applications of microbial production hosts equipped with PPRs, and provide an outlook on future developments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena.

    PubMed

    Ramos-León, Félix; Mariscal, Vicente; Frías, José E; Flores, Enrique; Herrero, Antonia

    2015-05-01

    Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity. © 2015 John Wiley & Sons Ltd.

  20. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man

    PubMed Central

    Cideciyan, Artur V.; Zhao, Xinyu; Nielsen, Lori; Khani, Shahrokh C.; Jacobson, Samuel G.; Palczewski, Krzysztof

    1998-01-01

    Rhodopsin kinase (RK), a specialized G-protein-coupled receptor kinase expressed in retina, is involved in quenching of light-induced signal transduction in photoreceptors. The role of RK in recovery after photoactivation has been explored in vitro and in vivo experimentally but has not been specifically defined in humans. We investigated the effects on human vision of a mutation in the RK gene causing Oguchi disease, a recessively inherited retinopathy. In vitro experiments demonstrated that the mutation, a deletion of exon 5, abolishes the enzymatic activity of RK and is likely a null. Both a homozygote and heterozygote with this RK mutation had recovery phase abnormalities of rod-isolated photoresponses by electroretinography (ERG); photoactivation was normal. Kinetics of rod bleaching adaptation by psychophysics were dramatically slowed in the homozygote but normal final thresholds were attained. Light adaptation was normal at low backgrounds but became abnormal at higher backgrounds. A slight slowing of cone deactivation kinetics in the homozygote was detected by ERG. Cone bleaching adaptation and background adaptation were normal. In this human in vivo condition without a functional RK and probable lack of phosphorylation and arrestin binding to activated rhodopsin, reduction of photolyzed chromophore and regeneration processes with 11-cis-retinal probably constitute the sole pathway for recovery of rod sensitivity. The role of RK in rods would thus be to accelerate inactivation of activated rhodopsin molecules that in concert with regeneration leads to the normal rate of recovery of sensitivity. Cones may rely mainly on regeneration for the inactivation of photolyzed visual pigment, but RK also contributes to cone recovery. PMID:9419375

  1. Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors.

    PubMed

    Sommer, Martha E; Hofmann, Klaus Peter; Heck, Martin

    2011-03-04

    In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.

  2. A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin.

    PubMed

    Arnis, S; Fahmy, K; Hofmann, K P; Sakmar, T P

    1994-09-30

    A carboxylic acid residue is conserved at the cytoplasmic border of the third transmembrane segment among nearly all G protein-coupled receptors. In the visual receptor rhodopsin, replacement of the conserved Glu134 by a neutral glutamine results in enhanced transducin activation. Here we show that a key event in forming the active state of rhodopsin is proton uptake by Glu134 in the metarhodopsin II (MII) photoproduct. Site-directed mutants E134D and E134Q were studied by flash photolysis, where formation rates of their photoproducts and rates of pH change could be monitored simultaneously. Both mutants showed normal MII formation rates. However, E134D displayed a slowed rate of proton uptake and E134Q displayed a loss of light-induced uptake of two protons from the aqueous phase. Thus, Glu134 mediates light-dependent proton uptake by MII. We propose that receptor activation requires a light-induced conformational change that allows protonation of Glu134 and subsequent protonation of a second group. The strong conservation of Glu134 in G protein-coupled receptors implies a general requirement for a proton acceptor group at this position to allow light- or ligand-dependent receptor activation.

  3. MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Hu, Bin; Yang, Guohua; Zhao, Weixing; Zhang, Yingjiao; Zhao, Jindong

    2007-03-01

    MreB is a bacterial actin that plays important roles in determination of cell shape and chromosome partitioning in Escherichia coli and Caulobacter crescentus. In this study, the mreB from the filamentous cyanobacterium Anabaena sp. PCC 7120 was inactivated. Although the mreB null mutant showed a drastic change in cell shape, its growth rate, cell division and the filament length were unaltered. Thus, MreB in Anabaena maintains cell shape but is not required for chromosome partitioning. The wild type and the mutant had eight and 10 copies of chromosomes per cell respectively. We demonstrated that DNA content in two daughter cells after cell division in both strains was not always identical. The ratios of DNA content in two daughter cells had a Gaussian distribution with a standard deviation much larger than a value expected if the DNA content in two daughter cells were identical, suggesting that chromosome partitioning is a random process. The multiple copies of chromosomes in cyanobacteria are likely required for chromosome random partitioning in cell division.

  4. Use of HPLC for the detection of iron chelators in cultures of bacteria, fungi, and algae. [E. coli; Bacillus megaterium; Ustilago sphaerogena; Anabaena flos-aqua

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, G.L.; Speirs, R.J.; Morse, P.D.

    1990-06-01

    Iron is essential for the growth of living cells. To meet biochemical needs, microorganisms, including algae, produce high affinity chelators termed siderophores. These compounds solubilize Fe and increase its bioavailability. We have developed a new method to study siderophore formation in cultured and natural environments. Based on the fact siderophores tightly bind 55-Fe, the radioactive complexes can be separated by HPLC using an inert PRP-1 column and detected by scintillation counting. This method cleanly resolves several known siderophores, including ferrichrome A, ferrichrome, desferal, and rhodotorulic acid. The optimization of the method and its use for analysis of siderophore formation inmore » bacteria (E. coli, and Bacillus megaterium), fungi (Ustilago sphaerogena), and cyanobacteria (Anabaena flos-aqua UTEX 1444 and Anabaena sp. ATCC 27898) will be presented.« less

  5. Unusual Versatility of the Filamentous, Diazotrophic Cyanobacterium Anabaena torulosa Revealed for Its Survival during Prolonged Uranium Exposure

    PubMed Central

    Chandwadkar, Pallavi; Nayak, Chandrani

    2017-01-01

    ABSTRACT Reports on interactions between cyanobacteria and uranyl carbonate are rare. Here, we present an interesting succession of the metabolic responses employed by a marine, filamentous, diazotrophic cyanobacterium, Anabaena torulosa for its survival following prolonged exposure to uranyl carbonate extending up to 384 h at pH 7.8 under phosphate-limited conditions. The cells sequestered uranium (U) within polyphosphates on initial exposure to 100 μM uranyl carbonate for 24 to 28 h. Further incubation until 120 h resulted in (i) significant degradation of cellular polyphosphates causing extensive chlorosis and cell lysis, (ii) akinete differentiation followed by (iii) extracellular uranyl precipitation. X-ray diffraction (XRD) analysis, fluorescence spectroscopy, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy established the identity of the bioprecipitated uranium as a U(VI) autunite-type mineral, which settled at the bottom of the vessel. Surprisingly, A. torulosa cells resurfaced as small green flakes typical of actively growing colonies on top of the test solutions within 192 to 240 h of U exposure. A consolidated investigation using kinetics, microscopy, and physiological and biochemical analyses suggested a role of inducible alkaline phosphatase activity of cell aggregates/akinetes in facilitating the germination of akinetes leading to substantial regeneration of A. torulosa by 384 h of uranyl incubation. The biomineralized uranium appeared to be stable following cell regeneration. Altogether, our results reveal novel insights into the survival mechanism adopted by A. torulosa to resist sustained uranium toxicity under phosphate-limited oxic conditions. IMPORTANCE Long-term effects of uranyl exposure in cyanobacteria under oxic phosphate-limited conditions have been inadequately explored. We conducted a comprehensive examination of the metabolic responses displayed by a marine cyanobacterium

  6. Unusual Versatility of the Filamentous, Diazotrophic Cyanobacterium Anabaena torulosa Revealed for Its Survival during Prolonged Uranium Exposure.

    PubMed

    Acharya, Celin; Chandwadkar, Pallavi; Nayak, Chandrani

    2017-05-01

    Reports on interactions between cyanobacteria and uranyl carbonate are rare. Here, we present an interesting succession of the metabolic responses employed by a marine, filamentous, diazotrophic cyanobacterium, Anabaena torulosa for its survival following prolonged exposure to uranyl carbonate extending up to 384 h at pH 7.8 under phosphate-limited conditions. The cells sequestered uranium (U) within polyphosphates on initial exposure to 100 μM uranyl carbonate for 24 to 28 h. Further incubation until 120 h resulted in (i) significant degradation of cellular polyphosphates causing extensive chlorosis and cell lysis, (ii) akinete differentiation followed by (iii) extracellular uranyl precipitation. X-ray diffraction (XRD) analysis, fluorescence spectroscopy, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy established the identity of the bioprecipitated uranium as a U(VI) autunite-type mineral, which settled at the bottom of the vessel. Surprisingly, A. torulosa cells resurfaced as small green flakes typical of actively growing colonies on top of the test solutions within 192 to 240 h of U exposure. A consolidated investigation using kinetics, microscopy, and physiological and biochemical analyses suggested a role of inducible alkaline phosphatase activity of cell aggregates/akinetes in facilitating the germination of akinetes leading to substantial regeneration of A. torulosa by 384 h of uranyl incubation. The biomineralized uranium appeared to be stable following cell regeneration. Altogether, our results reveal novel insights into the survival mechanism adopted by A. torulosa to resist sustained uranium toxicity under phosphate-limited oxic conditions. IMPORTANCE Long-term effects of uranyl exposure in cyanobacteria under oxic phosphate-limited conditions have been inadequately explored. We conducted a comprehensive examination of the metabolic responses displayed by a marine cyanobacterium, Anabaena

  7. Overexpression of FurA in Anabaena sp. PCC 7120 reveals new targets for this regulator involved in photosynthesis, iron uptake and cellular morphology.

    PubMed

    González, Andrés; Bes, M Teresa; Barja, François; Peleato, M Luisa; Fillat, María F

    2010-11-01

    Previous genomic analyses of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 have identified three ferric uptake regulator (Fur) homologs with low sequence identities and probably different functions in the cell. FurA is a constitutive protein that shares the highest homology with Fur from heterotrophic bacteria and appears to be essential for in vitro growth. In this study, we have analysed the effects of FurA overexpression on the Anabaena sp. phenotype and investigated which of the observed alterations were directly operated by FurA. Overexpression of the regulator led to changes in cellular morphology, resulting in shorter filaments with rounded cells of different sizes. The furA-overexpressing strain showed a slower photoautotrophic growth and a marked decrease in the oxygen evolution rate. Overexpression of the regulator also decreased both catalase and superoxide dismutase activities, but did not lead to an increase in the levels of intracellular reactive oxygen species. By combining phenotypic studies, reverse transcription-PCR analyses and electrophoretic mobility shift assays, we identified three novel direct targets of FurA, including genes encoding a siderophore outer membrane transporter (schT), bacterial actins (mreBCD) and the PSII reaction center protein D1 (psbA). The affinity of FurA for these novel targets was markedly affected by the absence of divalent metal ions, confirming previous evidence of a critical role for the metal co-repressor in the function of the regulator in vivo. The results unravel new cellular processes modulated by FurA, supporting its role as a global transcriptional regulator in Anabaena sp. PCC 7120.

  8. Identification of facultatively heterotrophic, N/sub 2/-fixing cyanobacteria able to receive plasmid vectors from Escherichia coli by conjugation. [Anabaena spp; Nostoc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, E.; Wolk, C.P.

    1985-06-01

    Plasmid vectors transferable by conjugation from Escherichia coli to obligately photoautotrophic strains of Anabaena spp. are also transferred to and maintained in heterotrophic, filamentous cyanobacteria of the genus Nostoc. These organisms can be used for the genetic analysis of oxygenic photosynthesis, chromatic adaptation, nitrogen fixation, and heterocyst development.

  9. Geographical Segregation of the Neurotoxin-Producing Cyanobacterium Anabaena circinalis

    PubMed Central

    Beltran, E. Carolina; Neilan, Brett A.

    2000-01-01

    Blooms of the cyanobacterium Anabaena circinalis are a major worldwide problem due to their production of a range of toxins, in particular the neurotoxins anatoxin-a and paralytic shellfish poisons (PSPs). Although there is a worldwide distribution of A. circinalis, there is a geographical segregation of neurotoxin production. American and European isolates of A. circinalis produce only anatoxin-a, while Australian isolates exclusively produce PSPs. The reason for this geographical segregation of neurotoxin production by A. circinalis is unknown. The phylogenetic structure of A. circinalis was determined by analyzing 16S rRNA gene sequences. A. circinalis was found to form a monophyletic group of international distribution. However, the PSP- and non-PSP-producing A. circinalis formed two distinct 16S rRNA gene clusters. A molecular probe was designed, allowing the identification of A. circinalis from cultured and uncultured environmental samples. In addition, probes targeting the predominantly PSP-producing or non-PSP-producing clusters were designed for the characterization of A. circinalis isolates as potential PSP producers. PMID:11010900

  10. Polysaccharides from the envelopes of heterocysts and spores of the blue-green algae Anabaena variabilis and Cylindrospermum licheniforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardemil, L.; Wolk, C.P.

    The polysaccharides from the envelopes of heterocysts of Cylindrospermum licheniforme Kutz., and of heterocysts and spores of Anabaena variabilis Kutz., like those from the differentiated cells of Anabaena cylindrica Lemm., have a 1,3-linked backbone consisting of glucosyl and mannosyl residues in a molar ratio of approximately 3:1. As is the case with A. cylindrica the polysaccharides from A. variabilis and from the heterocysts of C. licheniforme have terminal xylosyl and galactosyl residues as side branches. In addition, the polysaccharide from C. licheniforme resembles that from A. cylindrica in having terminal mannosyl residues as side branches (absent from A. variabilis). Themore » polysaccharides from A. variabilis resemble that from A. cylindrica in having glucose-containing side branches (absent from the heterocyst polysaccharide from C. licheniforme), but in contrast to the polysaccharides from the other two species they also have terminal arabinosyl residues as side branches. All of the polysaccharides mentioned appear to be structurally related; we present tentative structures for those not previously investigated. In contrast, the envelope of spores of C. licheniforme contains only a largely 4-linked galactan. The bulk of this envelope is not polysaccharide in nature, and contains aromatic groups.« less

  11. Evolution of eye morphology and rhodopsin expression in the Drosophila melanogaster species subgroup.

    PubMed

    Posnien, Nico; Hopfen, Corinna; Hilbrant, Maarten; Ramos-Womack, Margarita; Murat, Sophie; Schönauer, Anna; Herbert, Samantha L; Nunes, Maria D S; Arif, Saad; Breuker, Casper J; Schlötterer, Christian; Mitteroecker, Philipp; McGregor, Alistair P

    2012-01-01

    A striking diversity of compound eye size and shape has evolved among insects. The number of ommatidia and their size are major determinants of the visual sensitivity and acuity of the compound eye. Each ommatidium is composed of eight photoreceptor cells that facilitate the discrimination of different colours via the expression of various light sensitive Rhodopsin proteins. It follows that variation in eye size, shape, and opsin composition is likely to directly influence vision. We analyzed variation in these three traits in D. melanogaster, D. simulans and D. mauritiana. We show that D. mauritiana generally has larger eyes than its sibling species, which is due to a combination of larger ommatidia and more ommatidia. In addition, intra- and inter-specific differences in eye size among D. simulans and D. melanogaster strains are mainly caused by variation in ommatidia number. By applying a geometric morphometrics approach to assess whether the formation of larger eyes influences other parts of the head capsule, we found that an increase in eye size is associated with a reduction in the adjacent face cuticle. Our shape analysis also demonstrates that D. mauritiana eyes are specifically enlarged in the dorsal region. Intriguingly, this dorsal enlargement is associated with enhanced expression of rhodopsin 3 in D. mauritiana. In summary, our data suggests that the morphology and functional properties of the compound eyes vary considerably within and among these closely related Drosophila species and may be part of coordinated morphological changes affecting the head capsule.

  12. Declines in arrestin and rhodopsin in the macula with progression of age-related macular degeneration.

    PubMed

    Ethen, Cheryl M; Feng, Xiao; Olsen, Timothy W; Ferrington, Deborah A

    2005-03-01

    Biochemical analysis of age-related macular degeneration (AMD) at distinct stages of the disease will help further understanding of the molecular events associated with disease progression. This study was conducted to determine the ability of a new grading system for eye bank eyes, the Minnesota Grading System (MGS), to discern distinct stages of AMD so that retinal region-specific changes in rod photoreceptor protein expression from donors could be determined. Donor eyes were assigned to a specific level of AMD by using the MGS. Expression of the rod photoreceptor proteins rhodopsin and arrestin was evaluated by Western immunoblot analysis in the macular and peripheral regions of the neurosensory retina from donors at different stages of AMD. A significant linear decline in both arrestin and rhodopsin content correlated with progressive MGS levels in the macula. In contrast, the peripheral region showed no significant correlation between MGS level and the content of either protein. The statistically significant relationship between decreasing macular rod photoreceptor proteins and progressive MGS levels of AMD demonstrates the utility of the clinically based MGS to correspond with specific protein changes found at known, progressive stages of degeneration. Future biochemical analysis of clinically characterized donor eyes will further understanding of the pathobiochemistry of AMD.

  13. A Comprehensively Curated Genome-Scale Two-Cell Model for the Heterocystous Cyanobacterium Anabaena sp. PCC 71201[CC-BY

    PubMed Central

    Steuer, Ralf

    2017-01-01

    Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocysts, is postulated to depend on metabolic exchange of electrons, carbon, and fixed nitrogen. In this study, we compile and evaluate a comprehensive curated stoichiometric model of this two-cell system, with the objective function based on the growth of the filament under diazotrophic conditions. The predicted growth rate under nitrogen-replete and -deplete conditions, as well as the effect of external carbon and nitrogen sources, was thereafter verified. Furthermore, the model was utilized to comprehensively evaluate the optimality of putative metabolic exchange reactions between heterocysts and vegetative cells. The model suggested that optimal growth requires at least four exchange metabolites. Several combinations of exchange metabolites resulted in predicted growth rates that are higher than growth rates achieved by only considering exchange of metabolites previously suggested in the literature. The curated model of the metabolic network of Anabaena sp. PCC 7120 enhances our ability to understand the metabolic organization of multicellular cyanobacteria and provides a platform for further study and engineering of their metabolism. PMID:27899536

  14. Time-dependent growth of crystalline Au(0)-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica.

    PubMed

    Rösken, Liz M; Cappel, Felix; Körsten, Susanne; Fischer, Christian B; Schönleber, Andreas; van Smaalen, Sander; Geimer, Stefan; Beresko, Christian; Ankerhold, Georg; Wehner, Stefan

    2016-01-01

    Microbial biosynthesis of metal nanoparticles as needed in catalysis has shown its theoretical ability as an extremely environmentally friendly production method in the last few years, even though the separation of the nanoparticles is challenging. Biosynthesis, summing up biosorption and bioreduction of diluted metal ions to zero valent metals, is especially ecofriendly, when the bioreactor itself is harmless and needs no further harmful reagents. The cyanobacterium Anabaena cylindrica (SAG 1403.2) is able to form crystalline Au(0)-nanoparticles from Au(3+) ions and does not release toxic anatoxin-a. X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and laser-induced breakdown spectroscopy (LIBS) are applied to monitor the time-dependent development of gold nanoparticles for up to 40 hours. Some vegetative cells (VC) are filled with nanoparticles within minutes, while the extracellular polymeric substances (EPS) of vegetative cells and the heterocyst polysaccharide layer (HEP) are the regions, where the first nanoparticles are detected on most other cells. The uptake of gold starts immediately after incubation and within four hours the average size remains constant around 10 nm. Analyzing the TEM images with an image processing program reveals a wide distribution for the diameter of the nanoparticles at all times and in all regions of the cyanobacteria. Finally, the nanoparticle concentration in vegetative cells of Anabaena cylindrica is about 50% higher than in heterocysts (HC). These nanoparticles are found to be located along the thylakoid membranes.

  15. Purification and some properties of Fe protein of nitrogenase from. Anabaena cylindrica

    NASA Astrophysics Data System (ADS)

    Du, Daixian; Lin, Huimin; He, Zhenrong; Dai, Lingfen; Xin, Wusheng; Li, Shanghao

    1990-12-01

    The Fe protein of Anabaena cylindrica was first separated and purified by chromatography through DEAE-cellulose columns then by gel electrophoresis. The specific activity was up to 142.46 nmol C2H4/mg protein · min. It was homogeneous as shown by 1) a single band in the gel electrophorogram; 2) absence of Mo and tryptophan; 3) content of about 3.4 atoms of Fe per mole protein. The molecular weight of the Fe protein of A. cylindrica was about 61,000 daltons as estimated by SDS-gel electrophoresis and calculated from the amino acid composition. The residues of aspartate and glutamate were about 2.6 times that of arginine and lysine in the Fe protein. Crossing Fe protein of A. cylindrica with Mo-Fe protein of Azotobacter vinelandii gave positive result. The reciprocal crossing also showed activity.

  16. Impaired Photosynthesis in Phosphatidylglycerol-Deficient Mutant of Cyanobacterium Anabaena sp. PCC7120 with a Disrupted Gene Encoding a Putative Phosphatidylglycerophosphatase1

    PubMed Central

    Wu, Feng; Yang, Zhenle; Kuang, Tingyun

    2006-01-01

    Phosphatidylglycerol (PG) is a ubiquitous phospholipid in thylakoid membranes of cyanobacteria and chloroplasts and plays an important role in the structure and function of photosynthetic membranes. The last step of the PG biosynthesis is dephosphorylation of phosphatidylglycerophosphate (PGP) catalyzed by PGP phosphatase. However, the gene-encoding PGP phosphatase has not been identified and cloned from cyanobacteria or higher plants. In this study, we constructed a PG-deficient mutant from cyanobacterium Anabaena sp. PCC7120 with a disrupted gene (alr1715, a gene for Alr1715 protein, GenBank accession no. BAB78081) encoding a putative PGP phosphatase. The obtained mutant showed an approximately 30% reduction in the cellular content of PG. Following the reduction in the PG content, the photoautotrophical growth of the mutant was restrained, and the cellular content of chlorophyll was decreased. The decreases in net photosynthetic and photosystem II (PSII) activities on a cell basis also occurred in this mutant. Simultaneously, the photochemical efficiency of PSII was considerably declined, and less excitation energy was transferred toward PSII. These findings demonstrate that the alr1715 gene of Anabaena sp. PCC7120 is involved in the biosynthesis of PG and essential for photosynthesis. PMID:16815953

  17. Ultrasonic Characteristics and Cellular Properties of Anabaena Gas Vesicles.

    PubMed

    Yang, Yaoheng; Qiu, Zhihai; Hou, Xuandi; Sun, Lei

    2017-12-01

    Ultrasound imaging is a common modality in clinical examination and biomedical research, but has not played a significant role in molecular imaging for lack of an appropriate contrast agent. Recently, biogenic gas vesicles (GVs), naturally formed by cyanobacteria and haloarchaea, have exhibited great potential as an ultrasound molecular imaging probe with a much smaller size (∼100 nm) and improved imaging contrast. However, the basic acoustic and biological properties of GVs remain unclear, which hinders future application. Here, we studied the fundamental acoustic properties of a rod-shaped gas vesicle from Anabaena, a kind of cyanobacterium, including attenuation, oscillation resonance, and scattering, as well as biological behaviors (cellular internalization and cytotoxicity). We found that GVs have two resonance peaks (85 and 120 MHz). We also observed a significant non-linear effect and its pressure dependence as well. Ultrasound B-mode imaging reveals sufficient echogenicity of GVs for ultrasound imaging enhancement at high frequencies. Biological characterization also reveals endocytosis and non-toxicity. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  18. Retinal Photoisomerization in Rhodopsin: Electrostatic and Steric Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasello, Gaia; Altoe, Piero; Stenta, Marco

    2007-12-26

    Excited state QM(CASPT2//CASSCF)/MM(GAFF) calculations, by our recently developed code COBRAMM (Computations at Bologna Relating Ab-initio and Molecular Mechanic Methods), were carried out in rhodopsin to investigate on the steric and electrostatic effects in retinal photoisomerization catalysis due to the {beta}-ionone ring and glutammate 181 (GLU 181), respectively. The excited state photoisomerization channel has been mapped and a new christallographyc structure (2.2 Aa resolution) has been used for this purpose. Two different set-ups have been used to evaluate the electrostatic effects of GLU 181 (which is very close to the central double bond of the chromophore): the first with a neutralmore » GLU 181 (as commonly accepted), the second with a negatively charged (i.e. deprotonated) GLU 181 (as very recent experimental findings seem to suggest). On the other hand, {beta}-ionone ring steric effects were evaluated by calculating the photoisomerization path of a modified chromophore, where the ring double bond has been saturated. Spectroscopic properties were calculated and compared with the available experimental data.« less

  19. Retinal Laminar Architecture in Human Retinitis Pigmentosa Caused by Rhodopsin Gene Mutations

    PubMed Central

    Aleman, Tomas S.; Cideciyan, Artur V.; Sumaroka, Alexander; Windsor, Elizabeth A. M.; Herrera, Waldo; White, D. Alan; Kaushal, Shalesh; Naidu, Anjani; Roman, Alejandro J.; Schwartz, Sharon B.; Stone, Edwin M.; Jacobson, Samuel G.

    2008-01-01

    Purpose. To determine the underlying retinal micropathology in subclasses of autosomal dominant retinitis pigmentosa (ADRP) caused by rhodopsin (RHO) mutations. Methods. Patients with RHO-ADRP (n = 17, ages 6–73 years), representing class A (R135W and P347L) and class B (P23H, T58R, and G106R) functional phenotypes, were studied with optical coherence tomography (OCT), and colocalized visual thresholds were determined by dark- and light-adapted chromatic perimetry. Autofluorescence imaging was performed with near-infrared light. Retinal histology in hT17M-rhodopsin mice was compared with the human results. Results. Class A patients had only cone-mediated vision. The outer nuclear layer (ONL) thinned with eccentricity and was not detectable within 3 to 4 mm of the fovea. Scotomatous extracentral retina showed loss of ONL, thickening of the inner retina, and demelanization of RPE. Class B patients had superior–inferior asymmetry in function and structure. The superior retina could have normal rod and cone vision, normal lamination (including ONL) and autofluorescence of the RPE melanin; laminopathy was found in the scotomas. With Fourier-domain-OCT, there was apparent inner nuclear layer (INL) thickening in regions with ONL thinning. Retinal regions without ONL had a thick hyporeflective layer that was continuous with the INL from neighboring regions with normal lamination. Transgenic mice had many of the laminar abnormalities found in patients. Conclusions. Retinal laminar abnormalities were present in both classes of RHO-ADRP and were related to the severity of colocalized vision loss. The results in human class B and the transgenic mice support the following disease sequence: ONL diminution with INL thickening; amalgamation of residual ONL with the thickened INL; and progressive retinal remodeling with eventual thinning. PMID:18385078

  20. Building a model of the blue cone pigment based on the wild type rhodopsin structure with QM/MM methods.

    PubMed

    Frähmcke, Jan S; Wanko, Marius; Elstner, Marcus

    2012-03-15

    Understanding the mechanism of color tuning of the retinal chromophore by its host protein became one of the key issues in the research on rhodopsins. While early mutation studies addressed its genetic origin, recent studies advanced to investigate its structural origin, based on X-ray crystallographic structures. For the human cone pigments, no crystal structures have been produced, and homology models were employed to elucidate the origin of its blue-shifted absorption. In this theoretical study, we take a different route to establish a structural model for human blue. Starting from the well-resolved structure of bovine rhodopsin, we derive multiple mutant models by stepwise mutation and equilibration using molecular dynamics simulations in a hybrid quantum mechanics/molecular mechanics framework. Our 30fold mutant reproduces the experimental UV-vis absorption shift of 0.45 eV and provides new insights about both structural and genetic factors that affect the excitation energy. Electrostatic effects of individual amino acids and collaborative structural effects are analyzed using semiempirical (OM2/MRCI) and ab initio (SORCI) multireference approaches. © 2012 American Chemical Society

  1. Growth and cellular ion content of a salt-sensitive symbiotic system Azolla pinnata-Anabaena azollae under NaCl stress.

    PubMed

    Rai, Vandna; Sharma, Naveen Kumar; Rai, Ashwani K

    2006-09-01

    Salinity, at a concentration of 10 mM NaCl affected the growth of Azolla pinnata-Anabaena azollae association and became lethal at 40 mM. Plants exposed up to 30 mM NaCl exhibited longer roots than the control, especially during the beginning of incubation. Average root number in plants exposed to 10 and 20 mM NaCl remained almost the same as in control. A further rise in NaCl concentration to 30 mM reduced the root number, and roots shed off at 40 mM NaCl. Presence of NaCl in the nutrient solution increased the cellular Na+ of the intact association exhibiting differential accumulation by individual partners, while it reduced the cellular Ca2+ level. However, cellular K+ content did not show significant change. Cellular Na+ based on fresh weight of respective individual partners (host tissues and cyanobiont) remained higher in the host tissues than the cyanobiont, while reverse was true for K+ and Ca2+ contents. The contribution of A. azollae in the total cellular ion content of the association was a little because of meagre contribution of the cyanobiont mass (19-21%). High salt sensitivity of Azolla-Anabaena complex is due to an inability of the association to maintain low Na+ and high Ca2+ cellular level.

  2. The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena.

    PubMed

    Picossi, Silvia; Flores, Enrique; Herrero, Antonia

    2015-09-01

    Cyanobacteria perform water-splitting photosynthesis and are important primary producers impacting the carbon and nitrogen cycles at global scale. They fix CO2 through ribulose-bisphosphate carboxylase/oxygenase (RuBisCo) and have evolved a distinct CO2 concentrating mechanism (CCM) that builds high CO2 concentrations in the vicinity of RuBisCo favouring its carboxylase activity. Filamentous cyanobacteria such as Anabaena fix CO2 in photosynthetic vegetative cells, which donate photosynthate to heterocysts that rely on a heterotrophic metabolism to fix N2 . CCM elements are induced in response to inorganic carbon limitation, a cue that exposes the photosynthetic apparatus to photodamage by over-reduction. An Anabaena mutant lacking the LysR-type transcription factor All3953 grew poorly and dies under high light. The rbcL operon encoding RuBisCo was induced upon carbon limitation in the wild type but not in the mutant. ChIP-Seq analysis was used to globally identify All3953 targets under carbon limitation. Targets include, besides rbcL, genes encoding CCM elements, photorespiratory pathway- photosystem- and electron transport-related components, and factors, including flavodiiron proteins, with a demonstrated or putative function in photoprotection. Quantitative reverse transcription polymerase chain reaction analysis of selected All3953 targets showed regulation in the wild type but not in the mutant. All3953 (PacR) is a global regulator of carbon assimilation in an oxygenic photoautotroph. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Synergistic Effects of Nano-Sized Titanium Dioxide and Zinc on the Photosynthetic Capacity and Survival of Anabaena sp.

    PubMed Central

    Tang, Yulin; Li, Shuyan; Qiao, Junlian; Wang, Hongtao; Li, Lei

    2013-01-01

    Anabaena sp. was used to examine the toxicity of exposure to a nano-TiO2 suspension, Zn2+ solution, and mixtures of nano-TiO2 and Zn2+ suspensions. Typical chlorophyll fluorescence parameters, including effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse-amplitude modulated fluorometer. Nano-TiO2 particles exhibited no significant toxicity at concentrations lower than 10.0 mg/L. The 96 h concentration for the 50% maximal effect (EC50) of Zn2+ alone to Anabaena sp. was 0.38 ± 0.004 mg/L. The presence of nano-TiO2 at low concentrations (<1.0 mg/L) significantly enhanced the toxicity of Zn2+ and consequently reduced the EC50 value to 0.29 ± 0.003 mg/L. However, the toxicity of the Zn2+/TiO2 system decreased with increasing nano-TiO2 concentration because of the substantial adsorption of Zn2+ by nano-TiO2. The toxicity curve of the Zn2+/TiO2 system as a function of incremental nano-TiO2 concentrations was parabolic. The toxicity significantly increased at the initial stage, reached its maximum, and then decreased with increasing nano-TiO2 concentration. Hydrodynamic sizes, concentration of nano-TiO2 and Zn2+ loaded nano-TiO2 were the main parameters for synergistic toxicity. PMID:23852017

  4. Bioselective synthesis of gold nanoparticles from diluted mixed Au, Ir, and Rh ion solution by Anabaena cylindrica

    NASA Astrophysics Data System (ADS)

    Rochert, Anna S.; Rösken, Liz M.; Fischer, Christian B.; Schönleber, Andreas; Ecker, Dennis; van Smaalen, Sander; Geimer, Stefan; Wehner, Stefan

    2017-11-01

    Over the last years, an environmentally friendly and economically efficient way of nanoparticle production has been found in the biosynthesis of metal nanoparticles by bacteria and cyanobacteria. In this study, Anabaena cylindrica, a non-toxic cyanobacterium, is deployed in a diluted ionic aqueous mixture of equal concentrations of gold, iridium, and rhodium, of 0.1 mM each, for the selective biosynthesis of metal nanoparticles (NPs). To analyze the cyanobacterial metal uptake, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometry (ICP-MS) were applied. Only gold can be found in crystalline and nanoparticle form inside the cells of A. cylindrica, and it is the only metal for which ICP-MS analyses show a rapid decrease of the concentration in the culture medium. A slight decrease of rhodium and none of iridium was observed in the evaluated timeline of 51 h. The average diameter size of the emerging gold nanoparticles increased over the first few days, but is found to be below 10 nm even after more than 2 days. A new evaluation method was used to determine the spatially resolved distribution of the nanoparticles inside the cyanobacterial cells. This new method was also used to analyze TEM images from earlier studies of A. cylindrica and Anabaena sp., both incubated with an overall concentration of 0.8 mM Au3+ to compare the metal uptake. A. cylindrica was found to be highly selective towards the formation of gold nanoparticles in the presence of rhodium and iridium.

  5. Specific role of the cyanobacterial PipX factor in the heterocysts of Anabaena sp. strain PCC 7120.

    PubMed

    Valladares, Ana; Rodríguez, Virginia; Camargo, Sergio; Martínez-Noël, Giselle M A; Herrero, Antonia; Luque, Ignacio

    2011-03-01

    The PipX factor is a regulatory protein that seems to occur only in cyanobacteria. In the filamentous, heterocyst-forming Anabaena sp. strain PCC 7120, open reading frame (ORF) asr0485, identified as the pipX gene, is expressed mainly under conditions of combined-nitrogen deprivation dependent on the global N regulator NtcA and the heterocyst-specific regulator HetR. Primer extension and 5' rapid amplification of cDNA ends (RACE) analyses detected three transcription start points corresponding to a canonical NtcA-activated promoter (to which direct binding of NtcA was observed), an NtcA- and HetR-dependent promoter, and a consensus-type promoter, the last with putative -35 and -10 determinants. Activation of pipX took place in cells differentiating into heterocysts at intermediate to late stages of the process. Accordingly, disruption of pipX led to impaired diazotrophic growth, reduced nitrogenase activity, and impaired activation of the nitrogenase structural genes. The nitrogenase activity of the mutant was low under oxic conditions, likely resulting from inefficient protection against oxygen. In line with this, the activation of the coxB2A2C2 and coxB3A3C3 operons, encoding heterocyst-specific terminal respiratory oxidases responsible for internal oxygen removal, was deficient in the pipX mutant. Therefore, the Anabaena PipX factor shows a spatiotemporal specificity contributing to normal heterocyst function, including full activation of the nitrogenase structural genes and genes of the nitrogenase-protective features of the heterocyst.

  6. Effect of nitrogen starvation on the level of adenosine 3',5'-monophosphate in Anabaena variabilis.

    PubMed

    Hood, E E; Armour, S; Ownby, J D; Handa, A K; Bressan, R A

    1979-12-03

    Low levels of adenosine 3',5'-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0--2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3--4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.

  7. Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weissman, J.C.; Benemann, J.R.

    Nitrogen-starved cultures of the alga Anabaena cylindrica 629 produced hydrogen and oxygen continuously for 7 to 19 days. Hydrogen production attained a maximum level after 1 to 2 days of starvation and was followed by a slow decline. The maximum rates were 30 ml of H/sub 2/ evolved per liter of culture per h or 32 ..mu..l of H/sub 2/ per mg of dry weight per h. In 5 to 7 days the rate of H/sub 2/ evolution by the more productive cultures fell to one-half its maximum value. The addition of 10/sup -4/ to 5 x 10/sup -4/ Mmore » ammonium increased the rate of oxygen evolution and the total hydrogen production of the cultures. H/sub 2/-O/sub 2/ ratios were 4:1 under conditions of complete nitrogen starvation and about 1.7:1 after the addition of ammonium. Thus, oxygen evolution was affected by the extent of the nitrogen starvation. Thermodynamic efficiencies of converting incident light energy to free energy of hydrogen via algal photosynthesis were 0.4 percent. Possible factors limiting hydrogen production were decline of reductant supply and filament breakage. Hydrogen production by filamentous, heterocystous blue-green algae could be used for development of a biophotolysis system.« less

  8. X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION.

    PubMed

    Tsukamoto, Takashi; Mizutani, Kenji; Hasegawa, Taisuke; Takahashi, Megumi; Honda, Naoya; Hashimoto, Naoki; Shimono, Kazumi; Yamashita, Keitaro; Yamamoto, Masaki; Miyauchi, Seiji; Takagi, Shin; Hayashi, Shigehiko; Murata, Takeshi; Sudo, Yuki

    2016-06-03

    Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Characterization and mapping of the human rhodopsin kinase gene and screening of the gene for mutations in patients with retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khani, S.C.; Lin, D.; Magovcevic, I.

    1994-09-01

    Rhodopsin kinase (RK) is a cytosolic enzyme in rod photoreceptors that initiates the deactivation of the phototransductions cascade by phosphorylating photoactivated rhodopsin. Although the cDNA sequence of bovine RK has been determined previously, no human cDNA or genomic sequence has thus far been available for genetic studies. In order to investigate the possible role of this candidate gene in retinitis pigmentosa (RP) and allied diseases, we have isolated and characterized human cDNA and genomic clones derived from the RK locus. The coding sequence of the human gene is 1692 nucleotides in length and is split into seven exons. The humanmore » and the bovine sequence show 84% identity at the nucleotide level and 92% identity at the amino acid level. Thus far, the intronic sequences flanking each exon except for one have been determined. We have also mapped the human RK gene to chromosome 13q34 using fluorescence in situ hybridization. To our knowledge, no RP gene has as yet been linked to this region. However, since the substrate for RK (rhodopsin) and other members of the phototransduction cascade have been implicated in the pathogenesis of RP, it is conceivable that defects in RK can also cause some forms of this disease. We are evaluating this possibility by screening DNA from 173 patients with autosomal recessive RP and 190 patients with autosomal dominant RP. So far, we have found 11 patients with variant bands. In one patient with autosomal dominant RP we discovered the missense change Ser536Leu. Cosegregation studies and further sequencing of the variant bands are currently underway.« less

  10. Investigation of evolution-related aspects of bacterial rhodopsins

    NASA Technical Reports Server (NTRS)

    1994-01-01

    We have investigated evolution-related aspects of bacterial rhodopsins, the unique retinal-based energy transducing systems of halophilic archae. The approach was to describe both structural and functional aspects: the structure by sequencing genes to explore which regions are conserved, and the function by comparing proton and chloride transport in the closely related systems, bacteriorhodopsin and halorhodopsin, respectively. In the latter, we have made a good start toward the ultimate goal of separating the attributes of the general principles of retinal-based ionic pumps from those of the specific ion specificities, by determining the thermodynamics of the internal steps of the protein-mediated active transport process, as well as some of the intraprotein ion-transfer steps. Our present emphasis is on continuing to acquire the tools for studying what distinguishes proton transport from chloride transport. We consider it important, therefore, that we have been able to provide firm mathematical grounds for the kinetics analyses which underlies these studies. Our molecular biological studies have received a great boost from the expression vector for the bop gene based on a halobacterial plasmid, that we recently developed.

  11. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Nicolaisen, Kerstin; Hahn, Alexander; Valdebenito, Marianne; Moslavac, Suncana; Samborski, Anastazia; Maldener, Iris; Wilken, Corinna; Valladares, Ana; Flores, Enrique; Hantke, Klaus; Schleiff, Enrico

    2010-11-01

    Iron uptake is essential for Gram-negative bacteria including cyanobacteria. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as a cofactor in photosynthesis and nitrogen fixation, but our understanding of iron uptake by cyanobacteria stands behind the knowledge in proteobacteria. Here, two genes involved in this process in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were identified. ORF all4025 encodes SchE, a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. Inactivation of schE resulted in an enhanced sensitivity to high metal concentrations and decreased secretion of hydroxamate-type siderophores. ORF all4026 encodes a predicted outer membrane-localized TonB-dependent iron transporter, IacT. Inactivation of iacT resulted in decreased sensitivity to elevated iron and copper levels. Expression of iacT from the artificial trc promoter (P(trc)) resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because a decreased supply of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in the strain carrying P(trc)-iacT. Our results unravel a link between iron and copper homeostasis in Anabaena sp. PCC 7120. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaithinathan, R.; Berson, E.L.; Dryja, T.P.

    Here the authors report 8 novel mutations and 8 previously reported mutations found from further analysis of the rhodopsin gene in a large set of additional patients with autosomal dominant retinitis pigmentosa. Leukocyte DNA was purified from 122 unrelated patients with autosomal dominant retinitis pigmentosa who were not included in previous analyses. The coding region and splice donor and acceptor sites of the rhodopsin gene were screened for mutations using single-strand conformation polymorphism analysis and direct genomic sequencing. They found 29 patients with varient bands that were due to mutations. Sequence analysis showed that 20 cases each had 1 ofmore » 9 previously published mutations: Pro23His, Thr58Arg, Gly89Asp, Pro171Leu, Glu181Lys, Pro347Leu, Phe45Leu, Arg135Trp, and Lys296Glu. In 9 other cases, they found 8 novel mutations. One was a 3-bp deletion (Cys264-del), and the rest were point mutations resulting in an altered amino acid: Gly51Arg (GGC [yields] CGC), Cys110Tyr (TCG [yields] TAC), Gly114Asp (GGC [yields] GAC), Ala164Glu (GCG [yields] GAG), Pro171Ser (CCA [yields] TCA), Val345Leu (GTG [yields] CTG), and Pro347Gln (CCG [yields] CAG). Each of these novel mutations was found in only one family except for Gly51Arg, which was found in two. In every family tested, the mutation cosegregated with the disease. However, in pedigree D865 only one affected member was available for analysis. About two-thirds of the mutations affect amino acids in transmembrane domains, yet only one-half of opsin's residues are in these regions. One-third of the mutations alter residues in the extracellular/intradiscal space, which includes only 25% of the protein.« less

  13. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species.

    PubMed

    Li, Xiaochuang; Dreher, Theo W; Li, Renhui

    2016-04-01

    The new genus name Dolichospermum, for most of the planktonic former members of the genus Anabaena, is one of the most ubiquitous bloom-forming cyanobacterial genera. Its dominance and persistence have increased in recent years, due to eutrophication from anthropogenic activities and global climate change. Blooms of Dolichospermum species, with their production of secondary metabolites that commonly include toxins, present a worldwide threat to environmental and public health. In this review, recent advances of the genus Dolichospermum are summarized, including taxonomy, genetics, bloom occurrence, and production of toxin and taste-and-odor compounds. The recent and continuing acquisition of genome sequences is ushering in new methods for monitoring and understanding the factors regulating bloom dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration.

    PubMed

    Viringipurampeer, Ishaq A; Gregory-Evans, Cheryl Y; Metcalfe, Andrew L; Bashar, Emran; Moritz, Orson L; Gregory-Evans, Kevin

    2018-06-18

    Retinitis pigmentosa (RP) is a group of inherited neurological disorders characterized by rod photoreceptor cell death, followed by secondary cone cell death leading to progressive blindness. Currently, there are no viable treatment options for RP. Due to incomplete knowledge of the molecular signaling pathways associated with RP pathogenesis, designing therapeutic strategies remains a challenge. In particular, preventing secondary cone photoreceptor cell loss is a key goal in designing potential therapies. In this study, we identified the main drivers of rod cell death and secondary cone loss in the transgenic S334ter rhodopsin rat model, tested the efficacy of specific cell death inhibitors on retinal function, and compared the effect of combining drugs to target multiple pathways in the S334ter and P23H rhodopsin rat models. The primary driver of early rod cell death in the S334ter model was a caspase-dependent process, whereas cone cell death occurred though RIP3-dependent necroptosis. In comparison, rod cell death in the P23H model was via necroptotic signaling, whereas cone cell loss occurred through inflammasome activation. Combination therapy of four drugs worked better than the individual drugs in the P23H model but not in the S334ter model. These differences imply that treatment modalities need to be tailored for each genotype. Taken together, our data demonstrate that rationally designed genotype-specific drug combinations will be an important requisite to effectively target primary rod cell loss and more importantly secondary cone survival.

  15. Photoreverse Reaction Dynamics of Octopus Rhodopsin

    PubMed Central

    Inoue, Keiichi; Tsuda, Motoyuki; Terazima, Masahide

    2007-01-01

    Photoreverse reactions of octopus rhodopsin (Rh) from acid-metarhodopsin (Acid-Meta), which is the final product of the photoreaction of Rh, to Rh were studied by the time-resolved transient absorption and transient grating methods. The time course of the absorption signal showed a rapid change within 500 ns followed by one phase with a time constant of ∼470 μs, whereas the transient grating signal indicates three phases with time constants of <500 ns, ∼490 μs, and 2.6 ms. The faster two phases indicate the conformational change in the vicinity of the chromophore, and the slowest one represents conformational change far from the chromophore. The absorption spectrum of the first intermediate created just after the laser excitation (<500 ns) is already very similar to the final product, Rh. This behavior is quite different from that of the forward reaction from Rh to Acid-Meta, in which several intermediates with different absorption spectra are involved within 50 ns–500 μs. This result indicates that the conformation around the chromophore is easily adjusted from all-trans to 11-cis forms compared with that from 11-cis to all-trans forms. Furthermore, it was found that the protein energy is quickly relaxed after the excitation. One of the significantly different properties between Rh and Acid-Meta is the diffusion coefficient (D). D is reduced by about half the transformation from Rh to Acid-Meta. This large reduction was interpreted in terms of the helix opening of the Rh structure. PMID:17325000

  16. Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase

    PubMed Central

    Scherzinger, Daniel; Ruch, Sandra; Kloer, Daniel P.; Wilde, Annegret; Al-Babili, Salim

    2006-01-01

    The sensory rhodopsin from Anabaena (Nostoc) sp. PCC7120 is the first cyanobacterial retinylidene protein identified. Here, we report on NosACO (Nostoc apo-carotenoid oxygenase), encoded by the ORF (open reading frame) all4284, as the candidate responsible for the formation of the required chromophore, retinal. In contrast with the enzymes from animals, NosACO converts β-apo-carotenals instead of β-carotene into retinal in vitro. The identity of the enzymatic products was proven by HPLC and gas chromatography–MS. NosACO exhibits a wide substrate specificity with respect to chain lengths and functional end-groups, converting β-apo-carotenals, (3R)-3-hydroxy-β-apo-carotenals and the corresponding alcohols into retinal and (3R)-3-hydroxyretinal respectively. However, kinetic analyses revealed very divergent Km and Vmax values. On the basis of the crystal structure of SynACO (Synechocystis sp. PCC6803 apo-carotenoid oxygenase), a related enzyme showing similar enzymatic activity, we designed a homology model of the native NosACO. The deduced structure explains the absence of β-carotene-cleavage activity and indicates that NosACO is a monotopic membrane protein. Accordingly, NosACO could be readily reconstituted into liposomes. To localize SynACO in vivo, a Synechocystis knock-out strain was generated expressing SynACO as the sole carotenoid oxygenase. Western-blot analyses showed that the main portion of SynACO occurred in a membrane-bound form. PMID:16759173

  17. The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance.

    PubMed

    Hahn, Alexander; Stevanovic, Mara; Mirus, Oliver; Schleiff, Enrico

    2012-11-30

    The role of TolC has largely been explored in proteobacteria, where it functions as a metabolite and protein exporter. In contrast, little research has been carried out on the function of cyanobacterial homologues, and as a consequence, not much is known about the mechanism of cyanobacterial antibiotic uptake and metabolite secretion in general. It has been suggested that the TolC-like homologue of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, termed heterocyst glycolipid deposition protein D (HgdD), is involved in both protein and lipid secretion. To describe its function in secondary metabolite secretion, we established a system to measure the uptake of antibiotics based on the fluorescent molecule ethidium bromide. We analyzed the rate of porin-dependent metabolite uptake and confirmed the functional relation between detoxification and the action of HgdD. Moreover, we identified two major facilitator superfamily proteins that are involved in this process. It appears that anaOmp85 (Alr2269) is not required for insertion or assembly of HgdD, because an alr2269 mutant does not exhibit a phenotype similar to the hgdD mutant. Thus, we could assign components of the metabolite efflux system and describe parameters of detoxification by Anabaena sp. PCC 7120.

  18. Transcription activation by NtcA and 2-oxoglutarate of three genes involved in heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Valladares, Ana; Flores, Enrique; Herrero, Antonia

    2008-09-01

    In Anabaena sp. strain PCC 7120, differentiation of heterocysts takes place in response to the external cue of combined nitrogen deprivation, allowing the organism to fix atmospheric nitrogen in oxic environments. NtcA, a global transcriptional regulator of cyanobacteria, is required for activation of the expression of multiple genes involved in heterocyst differentiation, including key regulators that are specific to the process. We have set up a fully defined in vitro system, which includes the purified Anabaena RNA polymerase, and have studied the effects of NtcA and its signaling effector 2-oxoglutarate on RNA polymerase binding, open complex formation, and transcript production from promoters of the hetC, nrrA, and devB genes that are activated by NtcA at different stages of heterocyst differentiation. Both RNA polymerase and NtcA could specifically bind to the target DNA in the absence of any effector. 2-Oxoglutarate had a moderate positive effect on NtcA binding, and NtcA had a limited positive effect on RNA polymerase recruitment at the promoters. However, a stringent requirement of both NtcA and 2-oxoglutarate was observed for the detection of open complexes and transcript production at the three investigated promoters. These results support a key role for 2-oxoglutarate in transcription activation in the developing heterocyst.

  19. Generation of three-dimensional retinal organoids expressing rhodopsin and S- and M-cone opsins from mouse stem cells.

    PubMed

    Ueda, Kaori; Onishi, Akishi; Ito, Shin-Ichiro; Nakamura, Makoto; Takahashi, Masayo

    2018-01-22

    Three-dimensional retinal organoids can be differentiated from embryonic stem cells/induced pluripotent stem cells (ES/iPS cells) under defined medium conditions. We modified the serum-free floating culture of embryoid body-like aggregates with quick reaggregation (SFEBq) culture procedure to obtain retinal organoids expressing more rod photoreceptors and S- and M-cone opsins. Retinal organoids differentiated from mouse Nrl-eGFP iPS cells were cultured in various mediums during photoreceptor development. To promote rod photoreceptor development, organoids were maintained in media containing 9-cis retinoic acids (9cRA). To obtain retinal organoids with M-opsin expression, we cultured in medium with 1% fetal bovine serum (FBS) supplemented with T3, BMP4, and DAPT. Section immunohistochemistry was performed to visualize the expression of photoreceptor markers. In three-dimensional (3D) retinas exposed to 9cRA, rhodopsin was expressed earlier and S-cone opsins were suppressed. We could maintain 3D retinas up to DD 35 in culture media with 1% FBS. The 3D retinas expressed rhodopsin, S- and M-opsins, but most cone photoreceptors expressed either S- or M-opsins. By modifying culture conditions in the SFEBq protocol, we obtained rod-dominated 3D retinas and S- and M-opsin expressing 3D retinas. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. All0809/8/7 is a DevBCA-like ABC-type efflux pump required for diazotrophic growth in Anabaena sp. PCC 7120.

    PubMed

    Staron, Peter; Maldener, Iris

    2012-10-01

    Efflux pumps export a wide variety of proteinaceous and non-proteinaceous substrates across the Gram-negative cell wall. For the filamentous cyanobacterium Anabaena sp. strain PCC 7120, the ATP-driven glycolipid efflux pump DevBCA-TolC has been shown to be crucial for the differentiation of N(2)-fixing heterocysts from photosynthetically active vegetative cells. In this study, a homologous system was described. All0809/8/7-TolC form a typical ATP-driven efflux pump as shown by surface plasmon resonance. This putative exporter is also involved in diazotrophic growth of Anabaena sp. PCC 7120. A mutant in all0809 encoding the periplasmic membrane fusion protein of the pump was not able to grow without combined nitrogen. Although heterocysts of this mutant were not distinguishable from those of the wild-type in light and electron micrographs, they were impaired in providing the microoxic environment necessary for N(2) fixation. RT-PCR of all0809 transcripts and localization studies on All0807-GFP revealed that All0809/8/7 was initially downregulated during heterocyst maturation and upregulated at later stages of heterocyst formation in all cells of the filament. A substrate of the efflux pump could not be identified in ATP hydrolysis assays. We discuss a role for All0809/8/7-TolC in maintaining the continuous periplasm and how this would be of special importance for heterocyst differentiation.

  1. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors.

    PubMed

    Khan, Muhammad Zahid; He, Ling

    2017-04-01

    In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.

  2. A Chimera Na+-Pump Rhodopsin as an Effective Optogenetic Silencer

    PubMed Central

    Hoque, Mohammad Razuanul; Ishizuka, Toru; Inoue, Keiichi; Abe-Yoshizumi, Rei; Igarashi, Hiroyuki; Mishima, Takaaki; Kandori, Hideki

    2016-01-01

    With the progress of optogenetics, the activities of genetically identified neurons can be optically silenced to determine whether the neurons in question are necessary for the network performance of the behavioral expression. This logical induction is expected to be improved by the application of the Na+ pump rhodopsins (NaRs), which hyperpolarize the membrane potential with negligible influence on the ionic/pH balance. Here, we made several chimeric NaRs between two NaRs, KR2 and IaNaR from Krokinobacter eikastus and Indibacter alkaliphilus, respectively. We found that one of these chimeras, named I1K6NaR, exhibited some improvements in the membrane targeting and photocurrent properties over native NaRs. The I1K6NaR-expressing cortical neurons were stably silenced by green light irradiation for a certain long duration. With its rapid kinetics and voltage dependency, the photoactivation of I1K6NaR would specifically counteract the generation of action potentials with less hyperpolarization of the neuronal membrane potential than KR2. PMID:27861619

  3. Quantification of Concentration of Microalgae Anabaena Cylindrica, Coal-bed Methane Water Isolates Nannochloropsis Gaditana and PW-95 in Aquatic Solutions through Hyperspectral Reflectance Measurement and Analytical Model Establishment

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Zhou, X.; Apple, M. E.; Spangler, L.

    2017-12-01

    Three species of microalgae, Anabaena cylindrica (UTEX # 1611), coal-bed methane water isolates Nannochloropsis gaditana and PW-95 were cultured for the measurements of their hyperspectral profiles in different concentrations. The hyperspectral data were measured by an Analytical Spectral Devices (ASD) spectroradiomter with the spectral resolution of 1 nanometer over the wavelength ranges from 350nm to 1050 nm for samples of microalgae of different concentration. Concentration of microalgae was measured using a Hemocytometer under microscope. The objective of this study is to establish the relation between spectral reflectance and micro-algal concentration so that microalgae concentration can be measured remotely by space- or airborne hyperspectral or multispectral sensors. Two types of analytical models, linear reflectance-concentration model and Lamber-Beer reflectance-concentration model, were established for each species. For linear modeling, the wavelength with the maximum correlation coefficient between the reflectance and concentrations of algae was located and then selected for each species of algae. The results of the linear models for each species are shown in Fig.1(a), in which Refl_1, Refl_2, and Refl_3 represent the reflectance of Anabaena, N. Gaditana, and PW-95 respectively. C1, C2, and C3 represent the Concentrations of Anabaena, N. Gaditana, and PW-95 respectively. The Lamber-Beer models were based on the Lambert-Beer Law, which states that the intensity of light propagating in a substance dissolved in a fully transmitting solvent is directly proportional to the concentration of the substance and the path length of the light through the solution. Thus, for the Lamber-Beer modeling, a wavelength with large absorption in red band was selected for each species. The results of Lambert-Beer models for each species are shown in Fig.1(b). Based on the Lamber-Beer models, the absorption coefficient for the three different species will be quantified.

  4. Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120.

    PubMed

    Shi, Yunming; Zhao, Weixing; Zhang, Wei; Ye, Zi; Zhao, Jindong

    2006-07-25

    Calcium ions are important to some prokaryotic cellular processes, such as heterocyst differentiation of cyanobacteria. Intracellular free Ca(2+)concentration, [Ca(2+)](i), increases several fold in heterocysts and is regulated by CcbP, a Ca(2+)-binding protein found in heterocyst-forming cyanobacteria. We demonstrate here that CcbP is degraded by HetR, a serine-type protease that controls heterocyst differentiation. The degradation depends on Ca(2+) and appears to be specific because HetR did not digest other tested proteins. CcbP was found to bind two Ca(2+) per molecule with K(D) values of 200 nM and 12.8 microM. Degradation of CcbP releases bound Ca(2+) that contributes significantly to the increase of [Ca(2+)](i) during the process of heterocyst differentiation in Anabaena sp. strain PCC 7120. We suggest that degradation of CcbP is a mechanism of positive autoregulation of HetR. The down-regulation of ccbP in differentiating cells and mature heterocysts, which also is critical to the regulation of [Ca(2+)](i), depends on NtcA. Coexpression of ntcA and a ccbP promoter-controlled gfp in Escherichia coli diminished production of GFP, and the decrease is enhanced by alpha-ketoglutarate. It was also found that NtcA could bind a fragment of the ccbP promoter containing an NtcA-binding sequence in a alpha-ketoglutarate-dependent fashion. Therefore, [Ca(2+)](i) is regulated by a collaboration of HetR and NtcA in heterocyst differentiation in Anabaena sp. strain PCC 7120.

  5. Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120

    PubMed Central

    Shi, Yunming; Zhao, Weixing; Zhang, Wei; Ye, Zi; Zhao, Jindong

    2006-01-01

    Calcium ions are important to some prokaryotic cellular processes, such as heterocyst differentiation of cyanobacteria. Intracellular free Ca2+concentration, [Ca2+]i, increases several fold in heterocysts and is regulated by CcbP, a Ca2+-binding protein found in heterocyst-forming cyanobacteria. We demonstrate here that CcbP is degraded by HetR, a serine-type protease that controls heterocyst differentiation. The degradation depends on Ca2+ and appears to be specific because HetR did not digest other tested proteins. CcbP was found to bind two Ca2+ per molecule with KD values of 200 nM and 12.8 μM. Degradation of CcbP releases bound Ca2+ that contributes significantly to the increase of [Ca2+]i during the process of heterocyst differentiation in Anabaena sp. strain PCC 7120. We suggest that degradation of CcbP is a mechanism of positive autoregulation of HetR. The down-regulation of ccbP in differentiating cells and mature heterocysts, which also is critical to the regulation of [Ca2+]i, depends on NtcA. Coexpression of ntcA and a ccbP promoter-controlled gfp in Escherichia coli diminished production of GFP, and the decrease is enhanced by α-ketoglutarate. It was also found that NtcA could bind a fragment of the ccbP promoter containing an NtcA-binding sequence in a α-ketoglutarate-dependent fashion. Therefore, [Ca2+]i is regulated by a collaboration of HetR and NtcA in heterocyst differentiation in Anabaena sp. strain PCC 7120. PMID:16849429

  6. Binary Cell Fate Decisions and Fate Transformation in the Drosophila Larval Eye

    PubMed Central

    Rister, Jens; Ng, June; Celik, Arzu; Sprecher, Simon G.

    2013-01-01

    The functionality of sensory neurons is defined by the expression of specific sensory receptor genes. During the development of the Drosophila larval eye, photoreceptor neurons (PRs) make a binary choice to express either the blue-sensitive Rhodopsin 5 (Rh5) or the green-sensitive Rhodopsin 6 (Rh6). Later during metamorphosis, ecdysone signaling induces a cell fate and sensory receptor switch: Rh5-PRs are re-programmed to express Rh6 and become the eyelet, a small group of extraretinal PRs involved in circadian entrainment. However, the genetic and molecular mechanisms of how the binary cell fate decisions are made and switched remain poorly understood. We show that interplay of two transcription factors Senseless (Sens) and Hazy control cell fate decisions, terminal differentiation of the larval eye and its transformation into eyelet. During initial differentiation, a pulse of Sens expression in primary precursors regulates their differentiation into Rh5-PRs and repression of an alternative Rh6-cell fate. Later, during the transformation of the larval eye into the adult eyelet, Sens serves as an anti-apoptotic factor in Rh5-PRs, which helps in promoting survival of Rh5-PRs during metamorphosis and is subsequently required for Rh6 expression. Comparably, during PR differentiation Hazy functions in initiation and maintenance of rhodopsin expression. Hazy represses Sens specifically in the Rh6-PRs, allowing them to die during metamorphosis. Our findings show that the same transcription factors regulate diverse aspects of larval and adult PR development at different stages and in a context-dependent manner. PMID:24385925

  7. Binary cell fate decisions and fate transformation in the Drosophila larval eye.

    PubMed

    Mishra, Abhishek Kumar; Tsachaki, Maria; Rister, Jens; Ng, June; Celik, Arzu; Sprecher, Simon G

    2013-01-01

    The functionality of sensory neurons is defined by the expression of specific sensory receptor genes. During the development of the Drosophila larval eye, photoreceptor neurons (PRs) make a binary choice to express either the blue-sensitive Rhodopsin 5 (Rh5) or the green-sensitive Rhodopsin 6 (Rh6). Later during metamorphosis, ecdysone signaling induces a cell fate and sensory receptor switch: Rh5-PRs are re-programmed to express Rh6 and become the eyelet, a small group of extraretinal PRs involved in circadian entrainment. However, the genetic and molecular mechanisms of how the binary cell fate decisions are made and switched remain poorly understood. We show that interplay of two transcription factors Senseless (Sens) and Hazy control cell fate decisions, terminal differentiation of the larval eye and its transformation into eyelet. During initial differentiation, a pulse of Sens expression in primary precursors regulates their differentiation into Rh5-PRs and repression of an alternative Rh6-cell fate. Later, during the transformation of the larval eye into the adult eyelet, Sens serves as an anti-apoptotic factor in Rh5-PRs, which helps in promoting survival of Rh5-PRs during metamorphosis and is subsequently required for Rh6 expression. Comparably, during PR differentiation Hazy functions in initiation and maintenance of rhodopsin expression. Hazy represses Sens specifically in the Rh6-PRs, allowing them to die during metamorphosis. Our findings show that the same transcription factors regulate diverse aspects of larval and adult PR development at different stages and in a context-dependent manner.

  8. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    NASA Astrophysics Data System (ADS)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-04-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  9. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex.

    PubMed

    Zhou, X Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Suino-Powell, Kelly M; Boutet, Sébastien; Williams, Garth J; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2016-04-12

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  10. Characterization of Ribozymes Targeting a Congenital Night Blindness Mutation in Rhodopsin Mutation.

    PubMed

    Conley, Shannon M; Whalen, Patrick; Lewin, Alfred S; Naash, Muna I

    2016-01-01

    The G90D mutation in the rhodopsin gene leads to autosomal dominant congenital stationary night blindness (CSNB) in patients. This occurs because the G90D mutant protein cannot efficiently bind chromophore and is constitutively active. To combat this mutation, we designed and characterized two different hammerhead ribozymes to cleave G90D transcript. In vitro testing showed that the G90D1 ribozyme efficiently and specifically cleaved the mutant transcript while G90D2 cleaved both WT and mutant transcript. AAV-mediated delivery of G90D1 under the control of the mouse opsin promoter (MOP500) to G90D transgenic eyes showed that the ribozyme partially retarded the functional degeneration (as measured by electroretinography [ERG]) associated with this mutation. These results suggest that with additional optimization, ribozymes may be a useful part of the gene therapy knockdown strategy for dominant retinal disease.

  11. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    PubMed Central

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C.H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-01-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes. PMID:27070998

  12. Dynamic, mechanistic, molecular-level modelling of cyanobacteria: Anabaena and nitrogen interaction.

    PubMed

    Hellweger, Ferdi L; Fredrick, Neil D; McCarthy, Mark J; Gardner, Wayne S; Wilhelm, Steven W; Paerl, Hans W

    2016-09-01

    Phytoplankton (eutrophication, biogeochemical) models are important tools for ecosystem research and management, but they generally have not been updated to include modern biology. Here, we present a dynamic, mechanistic, molecular-level (i.e. gene, transcript, protein, metabolite) model of Anabaena - nitrogen interaction. The model was developed using the pattern-oriented approach to model definition and parameterization of complex agent-based models. It simulates individual filaments, each with individual cells, each with genes that are expressed to yield transcripts and proteins. Cells metabolize various forms of N, grow and divide, and differentiate heterocysts when fixed N is depleted. The model is informed by observations from 269 laboratory experiments from 55 papers published from 1942 to 2014. Within this database, we identified 331 emerging patterns, and, excluding inconsistencies in observations, the model reproduces 94% of them. To explore a practical application, we used the model to simulate nutrient reduction scenarios for a hypothetical lake. For a 50% N only loading reduction, the model predicts that N fixation increases, but this fixed N does not compensate for the loading reduction, and the chlorophyll a concentration decreases substantially (by 33%). When N is reduced along with P, the model predicts an additional 8% reduction (compared to P only). © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process.

    PubMed

    Kirchberg, Kristina; Kim, Tai-Yang; Möller, Martina; Skegro, Darko; Dasara Raju, Gayathri; Granzin, Joachim; Büldt, Georg; Schlesinger, Ramona; Alexiev, Ulrike

    2011-11-15

    Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the "phosphate-sensor" of arrestin for the recognition of receptor-attached phosphates is identified, the molecular mechanism of arrestin binding and the involvement of receptor conformations in this process are still largely hypothetic. Here we used fluorescence pump-probe and time-resolved fluorescence depolarization measurements to investigate the kinetics of arrestin conformational changes and the corresponding nanosecond dynamical changes at the receptor surface. We show that at least two sequential conformational changes of arrestin occur upon interaction with P-Rh*, thus providing a kinetic proof for the suggested multistep nature of arrestin binding. At the cytoplasmic surface of P-Rh*, the structural dynamics of the amphipathic helix 8 (H8), connecting transmembrane helix 7 and the phosphorylated C-terminal tail, depends on the arrestin interaction state. We find that a high mobility of H8 is required in the low-affinity (prebinding) but not in the high-affinity binding state. High-affinity arrestin binding is inhibited when a bulky, inflexible group is bound to H8, indicating close interaction. We further show that this close steric interaction of H8 with arrestin is mandatory for the transition from prebinding to high-affinity binding; i.e., for arrestin activation. This finding implies a regulatory role for H8 in activation of visual arrestin, which shows high selectivity to P-Rh* in contrast to the broad receptor specificity displayed by the two nonvisual arrestins.

  14. Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process

    PubMed Central

    Kirchberg, Kristina; Kim, Tai-Yang; Möller, Martina; Skegro, Darko; Dasara Raju, Gayathri; Granzin, Joachim; Büldt, Georg; Schlesinger, Ramona; Alexiev, Ulrike

    2011-01-01

    Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the “phosphate-sensor” of arrestin for the recognition of receptor-attached phosphates is identified, the molecular mechanism of arrestin binding and the involvement of receptor conformations in this process are still largely hypothetic. Here we used fluorescence pump-probe and time-resolved fluorescence depolarization measurements to investigate the kinetics of arrestin conformational changes and the corresponding nanosecond dynamical changes at the receptor surface. We show that at least two sequential conformational changes of arrestin occur upon interaction with P-Rh*, thus providing a kinetic proof for the suggested multistep nature of arrestin binding. At the cytoplasmic surface of P-Rh*, the structural dynamics of the amphipathic helix 8 (H8), connecting transmembrane helix 7 and the phosphorylated C-terminal tail, depends on the arrestin interaction state. We find that a high mobility of H8 is required in the low-affinity (prebinding) but not in the high-affinity binding state. High-affinity arrestin binding is inhibited when a bulky, inflexible group is bound to H8, indicating close interaction. We further show that this close steric interaction of H8 with arrestin is mandatory for the transition from prebinding to high-affinity binding; i.e., for arrestin activation. This finding implies a regulatory role for H8 in activation of visual arrestin, which shows high selectivity to P-Rh* in contrast to the broad receptor specificity displayed by the two nonvisual arrestins. PMID:22039220

  15. Aluminum effects on uptake and metabolism of phosphorus by the Cyanobacterium Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettersson, A.; Haellbom, L. Bergman, B.

    Aluminum severely affects the growth of the cyanobacterium Anabaena cylindrica and induces symptoms indicating phosphorus starvation. Pre- or post-treating the cells with high (90 micromolar) phosphorus reduces the toxicity of aluminum compared to cells receiving a lower orthophosphate concentration. In this study aluminum (ranging from 9 to 36 micromolar) and phosphorus concentrations were chosen so that the precipitation of insoluble AlPO/sub 4/ never exceeded 10% of the total phosphate concentration. The uptake of /sup 32/P-phosphorus is not disturbed by aluminium either at high (100 micromolar) or low (10 micromolar) concentrations of phosphate. Also, the rapid accumulation of polyphosphate granules inmore » cells exposed to aluminum indicates that the incorporation of phosphate is not disturbed. However, a significant decrease in the mobilization of the polyphosphates is observed, as is a lowered activity of the enzyme acid phosphatase, in aluminum treated cells. We conclude that aluminum acts on the intracellular metabolism of phosphate, which eventually leads to phosphorus starvation rather than on its uptake in the cyanobacterium A. cylindrica.« less

  16. Trehalose-producing enzymes MTSase and MTHase in Anabaena 7120 under NaCl stress.

    PubMed

    Asthana, Ravi K; Nigam, Subhasha; Maurya, Archana; Kayastha, Arvind M; Singh, Sureshwar P

    2008-05-01

    Salt tolerance, a multigenic trait, necessitates knowledge about biosynthesis and function of candidate gene(s) at the cellular level. Among the osmolytes, trehalose biosynthesis in cyanobacteria facing NaCl stress is little understood. Anabaena 7120 filaments exposed to 150 mM: NaCl fragmented and recovered on transfer to -NaCl medium with the increased heterocysts frequency (7%) over the control (4%). Cells failed to retain Na+ beyond a threshold [2.19 mM/cm3 (PCV)]. Whereas NaCl-stressed cells exhibited a marginal rise in K+ (1.1-fold) only at 30 h, for Na+ it was 130-fold at 48 h over cells in control. A time-course study (0-54 h) revealed reduction in intracellular Na+ beyond 48 h [0.80 mM/cm3 (PCV)] suggestive of ion efflux. The NaCl-stressed cells showed differential expression of maltooligosyltrehalose synthase (MTSase; EC 5.4.99.15) and maltooligosyltrehalose trehalohydrolase (MTHase; EC 3.2.1.141) depending on the time and the extent of intracellular Na+ buildup.

  17. Measurement in Sensory Modulation: The Sensory Processing Scale Assessment

    PubMed Central

    Miller, Lucy J.; Sullivan, Jillian C.

    2014-01-01

    OBJECTIVE. Sensory modulation issues have a significant impact on participation in daily life. Moreover, understanding phenotypic variation in sensory modulation dysfunction is crucial for research related to defining homogeneous groups and for clinical work in guiding treatment planning. We thus evaluated the new Sensory Processing Scale (SPS) Assessment. METHOD. Research included item development, behavioral scoring system development, test administration, and item analyses to evaluate reliability and validity across sensory domains. RESULTS. Items with adequate reliability (internal reliability >.4) and discriminant validity (p < .01) were retained. Feedback from the expert panel also contributed to decisions about retaining items in the scale. CONCLUSION. The SPS Assessment appears to be a reliable and valid measure of sensory modulation (scale reliability >.90; discrimination between group effect sizes >1.00). This scale has the potential to aid in differential diagnosis of sensory modulation issues. PMID:25184464

  18. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  19. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE PAGES

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; ...

    2016-04-12

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  20. Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities

    PubMed Central

    Di Pierdomenico, Johnny; García-Ayuso, Diego; Pinilla, Isabel; Cuenca, Nicolás; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Villegas-Pérez, María P.

    2017-01-01

    To study the course of photoreceptor cell death and macro and microglial reactivity in two rat models of retinal degeneration with different etiologies. Retinas from P23H-1 (rhodopsin mutation) and Royal College of Surgeon (RCS, pigment epithelium malfunction) rats and age-matched control animals (Sprague-Dawley and Pievald Viro Glaxo, respectively) were cross-sectioned at different postnatal ages (from P10 to P60) and rhodopsin, L/M- and S-opsin, ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acid protein (GFAP), and proliferating cell nuclear antigen (PCNA) proteins were immunodetected. Photoreceptor nuclei rows and microglial cells in the different retinal layers were quantified. Photoreceptor degeneration starts earlier and progresses quicker in P23H-1 than in RCS rats. In both models, microglial cell activation occurs simultaneously with the initiation of photoreceptor death while GFAP over-expression starts later. As degeneration progresses, the numbers of microglial cells increase in the retina, but decreasing in the inner retina and increasing in the outer retina, more markedly in RCS rats. Interestingly, and in contrast with healthy animals, microglial cells reach the outer nuclei and outer segment layers. The higher number of microglial cells in dystrophic retinas cannot be fully accounted by intraretinal migration and PCNA immunodetection revealed microglial proliferation in both models but more importantly in RCS rats. The etiology of retinal degeneration determines the initiation and pattern of photoreceptor cell death and simultaneously there is microglial activation and migration, while the macroglial response is delayed. The actions of microglial cells in the degeneration cannot be explained only in the basis of photoreceptor death because they participate more actively in the RCS model. Thus, the retinal degeneration caused by pigment epithelium malfunction is more inflammatory and would probably respond better to interventions

  1. Na(+) regulation by combined nitrogen in Azolla pinnata-Anabaena azollae symbiotic association during salt toxicity.

    PubMed

    Singh, Satya S; Singh, Santosh K; Mishra, Arun K

    2008-01-01

    To study the regulation of Na(+) ion by combined-N sources in Azolla pinnata-Anabaena azollae, Na(+) influx, intracellular Na(+) and Na(+) efflux were investigated in the presence of different N-sources (N(2), NH(4)(+), NO(3)(-) and urea) and various NaCl concentrations. Sodium influx by Azolla pinnata fronds was minimum in the presence of NO(3)(-). Almost identical levels of intracellular sodium, although less than N(2) and NH(4)(+) incubated fronds were observed in the presence of NO(3)(-) and urea. Efflux of sodium was minimum in urea and NO(3)(-) grown fronds. A low residual sodium was observed in the fronds incubated in NO(3)(-) and urea supplemented media. Results suggest that nitrate and urea curtailed the entry of sodium, reduced salt toxicity maximally by maintaining the minimum level of sodium and also conserved energy due to slow influx and efflux of Na(+) within the fronds during salt shock and the process of adaptation.

  2. An ecophysiological study of the Azolla filiculoides- Anabaena azollae association

    NASA Astrophysics Data System (ADS)

    van Kempen, Monique; Smolders, Fons; Speelman, Eveline; Reichart, Gert Jan; Barke, Judith; Brinkhuis, Henk; Lotter, Andy; Roelofs, Jan

    2010-05-01

    The long term effects of salinity stress on the growth, nutrient content and amino acid composition of the Azolla filiculoides - Anabaena azollae association was studied in a laboratory experiment. It was demonstrated that the symbiosis could tolerate salt stress up to 90 mM NaCl, even after a 100 day period of preconditioning at salt concentrations that were 30 mM NaCl lower. In the 120 mM NaCl treatment the Azolla filiculoides survived, but hardly any new biomass was produced. It was shown that during the experiment, A. filiculoides became increasingly efficient in excluding salt ions from the plant tissue and was thus able to increase its salt tolerance. The amino acid analysis revealed that the naturally occurring high glutamine concentration in the plants was strongly reduced at salt concentrations of 120 mM NaCl and higher. This was the result of the reduced nitrogenase activity at these salt concentrations, as was demonstrated in an acetylene reduction assay. We suggest that the high glutamine concentration in the plants might play a role in the osmoregulatory response against salt stress, enabling growth of the A. filiculoides -Anabaena azollae association up to 90 mM NaCl. In a mesocosm experiment it furthermore was demonstrated that Azolla might manipulate its own microenvironment when grown at elevated salt concentration (up to ~50 mmol•L-1) by promoting salinity stratification, especially when it has formed a dense cover at the water surface. Beside salt stress, we also studied the growth of Azolla filiculoides in response to elevated atmospheric carbon dioxide concentration, in combination with different light intensities and different pH of the nutrient solution. The results demonstrated that as compared to the control (ambient pCO2 concentrations), Azolla filiculoides was able to produce twice as much biomass at carbon dioxide concentrations that were five times as high as the ambient pCO2 concentration. However, it was also shown that this

  3. Characterization of photoreceptor degeneration in the rhodopsin P23H transgenic rat line 2 using optical coherence tomography.

    PubMed

    Monai, Natsuki; Yamauchi, Kodai; Tanabu, Reiko; Gonome, Takayuki; Ishiguro, Sei-Ichi; Nakazawa, Mitsuru

    2018-01-01

    To characterize the optical coherence tomography (OCT) appearances of photoreceptor degeneration in the rhodopsin P23H transgenic rat (line 2) in relation to the histological, ultrastructural, and electroretinography (ERG) findings. Homozygous rhodopsin P23H transgenic albino rats (line 2, very-slow degeneration model) were employed. Using OCT (Micron IV®; Phoenix Research Labs, Pleasanton, CA, USA), the natural course of photoreceptor degeneration was recorded from postnatal day (P) 15 to P 287. The OCT images were qualitatively observed by comparing them to histological and ultrastructural findings at P 62 and P 169. In addition, each retinal layer was quantitatively analyzed longitudinally during degeneration, compared it to that observed in wild type Sprague-Dawley (SD) rats. The relationships between the ERG (full-field combined rod-cone response, 3.0 cds/m2 stimulation) findings and OCT images were also analyzed. In the qualitative study, the two layers presumably corresponding to the photoreceptor inner segment ellipsoid zone (EZ) and interdigitation zone (IZ) were identified in the P23H rat until PN day 32. However, the photoreceptor inner and outer segment (IS/OS) layer became diffusely hyperreflective on OCT after P 46, and the EZ and IZ zones could no longer be identified on OCT. In contrast, in the SD rats, the EZ and IZ were clearly distinguished until at least P 247. The ultrastructural study showed partial disarrangements of the photoreceptor outer segment discs in the P23H rats at P 62, although a light-microscopic histological study detected almost no abnormality in the outer segment. In the quantitative study, the outer retinal layer including the outer plexiform layer (OPL) and the outer nuclear layer (ONL) became significantly thinner in the P23H rats than in the SD rats after P 71. The thickness of the IS/OS layer was maintained in the P23H rats until P 130, and it became statistically thinner than in the SD rats at P 237. The longitudinal

  4. High-Affinity Vanadate Transport System in the Cyanobacterium Anabaena variabilis ATCC 29413

    PubMed Central

    Pratte, Brenda S.; Thiel, Teresa

    2006-01-01

    High-affinity vanadate transport systems have not heretofore been identified in any organism. Anabaena variabilis, which can fix nitrogen by using an alternative V-dependent nitrogenase, transported vanadate well. The concentration of vanadate giving half-maximum V-nitrogenase activity when added to V-starved cells was about 3 × 10−9 M. The genes for an ABC-type vanadate transport system, vupABC, were found in A. variabilis about 5 kb from the major cluster of genes encoding the V-nitrogenase, and like those genes, the vupABC genes were repressed by molybdate; however, unlike the V-nitrogenase genes the vanadate transport genes were expressed in vegetative cells. A vupB mutant failed to grow by using V-nitrogenase unless high levels of vanadate were provided, suggesting that there was also a low-affinity vanadate transport system that functioned in the vupB mutant. The vupABC genes belong to a family of putative metal transport genes that include only one other characterized transport system, the tungstate transport genes of Eubacterium acidaminophilum. Similar genes are not present in the complete genomes of other bacterial strains that have a V-nitrogenase, including Azotobacter vinelandii, Rhodopseudomonas palustris, and Methanosarcina barkeri. PMID:16385036

  5. Amino acid residues in Anabaena ferredoxin crucial to interaction with ferredoxin-NADP+ reductase: site-directed mutagenesis and laser flash photolysis.

    PubMed

    Hurley, J K; Salamon, Z; Meyer, T E; Fitch, J C; Cusanovich, M A; Markley, J L; Cheng, H; Xia, B; Chae, Y K; Medina, M

    1993-09-14

    Ferredoxin (Fd) functions in photosynthesis to transfer electrons from photosystem I to ferredoxin-NADP+ reductase (FNR). We have made several site-directed mutants of Anabaena 7120 Fd and have used laser flash photolysis to investigate the effects of these mutations on the kinetics of reduction of oxidized Fd by deazariboflavin semiquinone (dRfH.) and the reduction of oxidized Anabaena FNR by reduced Fd. None of the mutations influenced the second-order rate constant for dRfH. reduction by more than a factor of 2, suggesting that the ability of the [2Fe-2S] cluster to participate in electron transfer was not seriously affected. In contrast, a surface charge reversal mutation, E94K, resulted in a 20,000-fold decrease in the second-order rate constant for electron transfer from Fd to FNR, whereas a similar mutation at an adjacent site, E95K, produced little or no change in reaction rate constant compared to wild-type Fd. Such a dramatic difference between contiguous surface mutations suggests a very precise surface complementarity at the protein-protein interface. Mutations introduced at F65 (F65I and F65A) also decreased the rate constant for the Fd/FNR electron transfer reaction by more than 3 orders of magnitude. Spectroscopic and thermodynamic measurements with both the E94 and F65 mutants indicated that the kinetic differences cannot be ascribed to changes in gross conformation, redox potential, or FNR binding constant but rather reflect the protein-protein interactions that control electron transfer. Several mutations at other sites in the vicinity of E94 and F65 (R42, T48, D68, and D69) resulted in little or no perturbation of the Fd/FNR interaction.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Bornikoel, Jan; Carrión, Alejandro; Fan, Qing; Flores, Enrique; Forchhammer, Karl; Mariscal, Vicente; Mullineaux, Conrad W.; Perez, Rebeca; Silber, Nadine; Wolk, C. Peter; Maldener, Iris

    2017-01-01

    Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N2-fixing heterocysts and CO2-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N-acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell–cell communication in Nostoc punctiforme. This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2, were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme, because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell–cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD. PMID:28929086

  7. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Bornikoel, Jan; Carrión, Alejandro; Fan, Qing; Flores, Enrique; Forchhammer, Karl; Mariscal, Vicente; Mullineaux, Conrad W; Perez, Rebeca; Silber, Nadine; Wolk, C Peter; Maldener, Iris

    2017-01-01

    Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N 2 -fixing heterocysts and CO 2 -fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N -acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell-cell communication in Nostoc punctiforme . This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2 , were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme , because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell-cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD.

  8. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5.

    PubMed

    Mihali, Troco K; Kellmann, Ralf; Neilan, Brett A

    2009-03-30

    Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs) are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved in the biosynthesis, may also afford the identification of

  9. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study

    PubMed Central

    Brownstone, Robert M.

    2015-01-01

    Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740

  10. Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V

    PubMed Central

    Shevchenko, Anna

    2011-01-01

    The evolutionarily conserved Crumbs (Crb) complex is crucial for photoreceptor morphogenesis and homeostasis. Loss of Crb results in light-dependent retinal degeneration, which is prevented by feeding mutant flies carotenoid-deficient medium. This suggests a defect in rhodopsin 1 (Rh1) processing, transport, and/or signaling, causing degeneration; however, the molecular mechanism of this remained elusive. In this paper, we show that myosin V (MyoV) coimmunoprecipitated with the Crb complex and that loss of crb led to severe reduction in MyoV levels, which could be rescued by proteasomal inhibition. Loss of MyoV in crb mutant photoreceptors was accompanied by defective transport of the MyoV cargo Rh1 to the light-sensing organelle, the rhabdomere. This resulted in an age-dependent accumulation of Rh1 in the photoreceptor cell (PRC) body, a well-documented trigger of degeneration. We conclude that Crb protects against degeneration by interacting with and stabilizing MyoV, thereby ensuring correct Rh1 trafficking. Our data provide, for the first time, a molecular mechanism for the light-dependent degeneration of PRCs observed in crb mutant retinas. PMID:22105348

  11. Cambrian origin of the CYP27C1-mediated vitamin A1-to-A2 switch, a key mechanism of vertebrate sensory plasticity

    USGS Publications Warehouse

    Morshedian, Ala; Toomery, Matthew B.; Pollock, Gabriel E.; Frederiksen, Rikard; Enright, Jennifer; McCormick, Stephen; Cornwall, M. Carter; Fain, Gordon L.; Corbo, Joseph C.

    2017-01-01

    The spectral composition of ambient light varies across both space and time. Many species of jawed vertebrates adapt to this variation by tuning the sensitivity of their photoreceptors via the expression of CYP27C1, an enzyme that converts vitamin A1 into vitamin A2, thereby shifting the ratio of vitamin A1-based rhodopsin to red-shifted vitamin A2-based porphyropsin in the eye. Here, we show that the sea lamprey (Petromyzon marinus), a jawless vertebrate that diverged from jawed vertebrates during the Cambrian period (approx. 500 Ma), dynamically shifts its photoreceptor spectral sensitivity via vitamin A1-to-A2 chromophore exchange as it transitions between photically divergent aquatic habitats. We further show that this shift correlates with high-level expression of the lamprey orthologue of CYP27C1, specifically in the retinal pigment epithelium as in jawed vertebrates. Our results suggest that the CYP27C1-mediated vitamin A1-to-A2 switch is an evolutionarily ancient mechanism of sensory plasticity that appeared not long after the origin of vertebrates.

  12. Specific Sensory Techniques and Sensory Environmental Modifications for Children and Youth With Sensory Integration Difficulties: A Systematic Review.

    PubMed

    Bodison, Stefanie C; Parham, L Diane

    This systematic review examined the effectiveness of specific sensory techniques and sensory environmental modifications to improve participation of children with sensory integration (SI) difficulties. Abstracts of 11,436 articles published between January 2007 and May 2015 were examined. Studies were included if designs reflected high levels of evidence, participants demonstrated SI difficulties, and outcome measures addressed function or participation. Eight studies met inclusion criteria. Seven studies evaluated effects of specific sensory techniques for children with autism spectrum disorder (ASD) or attention deficit hyperactivity disorder: Qigong massage, weighted vests, slow swinging, and incorporation of multisensory activities into preschool routines. One study of sensory environmental modifications examined adaptations to a dental clinic for children with ASD. Strong evidence supported Qigong massage, moderate evidence supported sensory modifications to the dental care environment, and limited evidence supported weighted vests. The evidence is insufficient to draw conclusions regarding slow linear swinging and incorporation of multisensory activities into preschool settings. Copyright © 2018 by the American Occupational Therapy Association, Inc.

  13. Mechanism of colour discrimination by a bacterial sensory rhodopsin

    NASA Technical Reports Server (NTRS)

    Spudich, J. L.; Bogomolni, R. A.

    1984-01-01

    A photosensitive protein resembling the visual pigments of invertebrates enables phototactic archaebacteria to distinguish color. This protein exists in two spectrally-distinct forms, one of which is a transient photoproduct of the other and each of which undergoes photochemical reactions controlling the cell's swimming behaviour. Activation of a single pigment molecule in the cell is sufficient to signal the flagellar motor. This signal-transduction mechanism makes evident a color-sensing capability inherent in the retinal/protein chromophore.

  14. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  15. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.

  16. Sensory Dysfunction

    MedlinePlus

    ... article was contributed by: familydoctor.org editorial staff Categories: Men, Seniors, WomenTags: ageusia, anosmia, chemosensory disorders, decreased appetite, dysgeusia, flavor, olfactory dysfunction, overseasoning food, senses, sensory dysfunction, sensory impairment, smell, taste September ...

  17. Congenital sensory neuropathy

    PubMed Central

    Barry, J. E.; Hopkins, I. J.; Neal, B. W.

    1974-01-01

    Two infants with sporadic congenital sensory neuropathy are described. The criteria of generalized lack of superficial sensory appreciation, hypotonia, areflexia, together with histological evidence of abnormalities of sensory neural structures in skin and peripheral nerves have been met. No abnormality of motor or autonomic nerves was shown. ImagesFIG. PMID:4131674

  18. Sensory reactivity, empathizing and systemizing in autism spectrum conditions and sensory processing disorder.

    PubMed

    Tavassoli, Teresa; Miller, Lucy Jane; Schoen, Sarah A; Jo Brout, Jennifer; Sullivan, Jillian; Baron-Cohen, Simon

    2018-01-01

    Although the DSM-5 added sensory symptoms as a criterion for ASC, there is a group of children who display sensory symptoms but do not have ASC; children with sensory processing disorder (SPD). To be able to differentiate these two disorders, our aim was to evaluate whether children with ASC show more sensory symptomatology and/or different cognitive styles in empathy and systemizing compared to children with SPD and typically developing (TD) children. The study included 210 participants: 68 children with ASC, 79 with SPD and 63 TD children. The Sensory Processing Scale Inventory was used to measure sensory symptoms, the Autism Spectrum Quotient (AQ) to measure autistic traits, and the Empathy Quotient (EQ) and Systemizing Quotient (SQ) to measure cognitive styles. Across groups, a greater sensory symptomatology was associated with lower empathy. Further, both the ASC and SPD groups showed more sensory symptoms than TD children. Children with ASC and SPD only differed on sensory under-reactivity. The ASD group did, however, show lower empathy and higher systemizing scores than the SPD group. Together, this suggest that sensory symptoms alone may not be adequate to differentiate children with ASC and SPD but that cognitive style measures could be used for differential diagnosis. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Walter, Julia; Lynch, Fiona; Battchikova, Natalia; Aro, Eva-Mari

    2016-01-01

    Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca2+ in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca2+ has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca2+ induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca2+ adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca2+ plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca2+ for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions. PMID:27012282

  20. Azolla-Anabaena's behaviour in urban wastewater and artificial media--influence of combined nitrogen.

    PubMed

    Costa, M L; Santos, M C R; Carrapiço, F; Pereira, A L

    2009-08-01

    The results of using the nitrogen fixing symbiotic system Azolla-Anabaena to improve the quality of treated urban wastewater, particularly on what concerns phosphorus removal efficiencies (40-65%), obtained in continuous assays performed during the past few years and presented earlier, were very promising. Nevertheless, the presence of combined nitrogen in some wastewaters can compromise the treatment efficiency. The main goal of this work was to compare plants behaviour in wastewater and in mineral media with and without added nitrogen. Azolla filiculoides's specific growth rates in wastewater and in mineral media without added nitrogen or with low nitrate concentration were very similar (0.122 d(-1)-0.126 d(-1)), but decreased in the presence of ammonium (0.100 d(-1)). The orthophosphate removal rate coefficients were similar in all the growth media (0.210 d(-1)-0.232 d(-1)), but ammonium removal rate coefficient in wastewater was higher (0.117 d(-1)) than in mineral medium using that source of nitrogen (0.077 d(-1)). The ammonium present in wastewater, despite its high concentration (34 mg NL(-1)), didn't seem to inhibit growth and nitrogen fixation, however, in mineral media, ammonium (40 mg NL(-1)) was found to induce, respectively, 18% and 46% of inhibition.

  1. Polysaccharides from heterocyst and spore envelopes of a blue-green alga. [Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardemil, L.; Wolk, C.P.

    The polysaccharides from the envelopes of heterocysts and spores of Anabaena cylindrica consist of repeating units containing 1 mannosyl and 3 glucosyl residues, all linked by ..beta..(1 ..-->.. 3) glucosidic bonds, with glucose, xylose, galactose, and mannose present in side branches. Degradation of the polysaccharides with specific glycosidases has permitted identification of the linkages to almost all of the branches. When the polysaccharides, from which all but two types of side branches had been cleaved, were digested with a ..beta..(1 ..-->.. 3) endoglucanase, glucose, a tri-, and a pentasaccharide were produced. The oligosaccharide products were identified. The backbones of themore » polysaccharides were sequenced from the reducing terminus by a modified Smith degradation. Analysis with NaB/sup 3/H/sub 4/ at each stage of the degradation showed that the backbones terminate in the sequence Man-Glc-Glc-Glc and are therefore presumed to have the structure (Man-Glc-Glc-Glc)/sub n/, and that they contain an average of from 128 to 150 sugar residues. From the information obtained, the repeating sequences of the original polysaccharides from the two types of differentiated cells of A. cylindrica could be largely deduced and appeared to be identical.« less

  2. Sensory description of marine oils through development of a sensory wheel and vocabulary.

    PubMed

    Larssen, W E; Monteleone, E; Hersleth, M

    2018-04-01

    The Omega-3 industry lacks a defined methodology and a vocabulary for evaluating the sensory quality of marine oils. This study was conducted to identify the sensory descriptors of marine oils and organize them in a sensory wheel for use as a tool in quality assessment. Samples of marine oils were collected from six of the largest producers of omega-3 products in Norway. The oils were selected to cover as much variation in sensory characteristics as possible, i.e. oils with different fatty acid content originating from different species. Oils were evaluated by six industry expert panels and one trained sensory panel to build up a vocabulary through a series of language sessions. A total of 184 aroma (odor by nose), flavor, taste and mouthfeel descriptors were generated. A sensory wheel based on 60 selected descriptors grouped together in 21 defined categories was created to form a graphical presentation of the sensory vocabulary. A selection of the oil samples was also evaluated by a trained sensory panel using descriptive analysis. Chemical analysis showed a positive correlation between primary and secondary oxidation products and sensory properties such as rancidity, chemical flavor and process flavor and a negative correlation between primary oxidation products and acidic. This research is a first step towards the broader objective of standardizing the sensory terminology related to marine oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.

    PubMed

    Shull, Peter B; Damian, Dana D

    2015-07-20

    Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.

  4. Effect of mineral phosphates on growth and nitrogen fixation of diazotrophic cyanobacteria Anabaena variabilis and Westiellopsis prolifica.

    PubMed

    Yandigeri, Mahesh S; Yadav, Arvind K; Meena, Kamlesh Kumar; Pabbi, Sunil

    2010-03-01

    The nitrogen fixing cyanobacterial strains namely Anabaena variabilis (Nostocales, Nostocaceae) and Westiellopsis prolifica (Nostocales, Hapalosiphonaceae) were evaluated for their nitrogen fixation and growth potential in response to different concentrations (10, 20 and 30 mg P) of the alternate insoluble P-sources Mussorie Rock Phosphate and Tricalcium Phosphate. Distinct and significant intergeneric differences were observed with respect to nitrogen fixation measured as Acetylene Reduction Activity (ARA) and growth potential as soluble proteins, total carbohydrate content, dry weight and total chlorophyll content in response to different concentrations of Mussorie Rock Phosphate and Tricalcium Phosphate. Both the strains showed higher soluble protein content at 20 mg P (Mussorie Rock Phosphate) that increased with time of incubation in A. variabilis. Both cyanobacteria recorded maximum Acetylene Reduction Activity at 20 mg P (Tricalcium Phosphate) followed by activity in presence of soluble phosphate (K2HPO4). The mean activity at all concentrations of insoluble phosphate (Mussorie Rock Phosphate and Tricalcium Phosphate) was more than in the presence of soluble phosphate.

  5. Mutation of the murC and murB Genes Impairs Heterocyst Differentiation in Anabaena sp. Strain PCC 7120

    PubMed Central

    Videau, Patrick; Rivers, Orion S.; Ushijima, Blake; Oshiro, Reid T.; Kim, Min Joo; Philmus, Benjamin

    2016-01-01

    ABSTRACT To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern. While heterocyst development has been shown to require proper peptidoglycan remodeling, the role of peptidoglycan synthesis has remained unclear. Here we report the identification of two peptidoglycan synthesis genes, murC (alr5065) and murB (alr5066), as required for heterocyst development. The murC and murB genes are predicted to encode a UDP-N-acetylmuramate:l-alanine ligase and a UDP-N-acetylenolpyruvoylglucosamine reductase, respectively, and we confirm enzymatic function through complementation of Escherichia coli strains deficient for these enzymes. Cells depleted of either murC or murB expression failed to differentiate heterocysts under normally inducing conditions and displayed decreased filament integrity. To identify the stage(s) of development affected by murC or murB depletion, the spatial distribution of expression of the patterning marker gene, patS, was examined. Whereas murB depletion did not affect the pattern of patS expression, murC depletion led to aberrant expression of patS in all cells of the filament. Finally, expression of gfp controlled by the region of DNA immediately upstream of murC was enriched in differentiating cells and was repressed by the transcription factor NtcA. Collectively, the data in this work provide evidence for a direct link between peptidoglycan synthesis and the maintenance of a biological pattern in a multicellular organism. IMPORTANCE Multicellular organisms that differentiate specialized cells must regulate morphological changes such that both cellular integrity and the dissemination of developmental signals are preserved. Here we show that

  6. Mutation of the murC and murB Genes Impairs Heterocyst Differentiation in Anabaena sp. Strain PCC 7120.

    PubMed

    Videau, Patrick; Rivers, Orion S; Ushijima, Blake; Oshiro, Reid T; Kim, Min Joo; Philmus, Benjamin; Cozy, Loralyn M

    2016-04-01

    To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern. While heterocyst development has been shown to require proper peptidoglycan remodeling, the role of peptidoglycan synthesis has remained unclear. Here we report the identification of two peptidoglycan synthesis genes, murC (alr5065) and murB (alr5066), as required for heterocyst development. The murC and murB genes are predicted to encode a UDP-N-acetylmuramate:L-alanine ligase and a UDP-N-acetylenolpyruvoylglucosamine reductase, respectively, and we confirm enzymatic function through complementation of Escherichia coli strains deficient for these enzymes. Cells depleted of either murC or murB expression failed to differentiate heterocysts under normally inducing conditions and displayed decreased filament integrity. To identify the stage(s) of development affected by murC or murB depletion, the spatial distribution of expression of the patterning marker gene, patS, was examined. Whereas murB depletion did not affect the pattern of patS expression, murC depletion led to aberrant expression of patS in all cells of the filament. Finally, expression of gfp controlled by the region of DNA immediately upstream of murC was enriched in differentiating cells and was repressed by the transcription factor NtcA. Collectively, the data in this work provide evidence for a direct link between peptidoglycan synthesis and the maintenance of a biological pattern in a multicellular organism. Multicellular organisms that differentiate specialized cells must regulate morphological changes such that both cellular integrity and the dissemination of developmental signals are preserved. Here we show that the multicellular

  7. Sucrose biosynthesis in a prokaryotic organism: Presence of two sucrose-phosphate synthases in Anabaena with remarkable differences compared with the plant enzymes

    PubMed Central

    Porchia, Andrea C.; Salerno, Graciela L.

    1996-01-01

    Biosynthesis of sucrose-6-P catalyzed by sucrose-phosphate synthase (SPS), and the presence of sucrose-phosphate phosphatase (SPP) leading to the formation of sucrose, have both been ascertained in a prokaryotic organism: Anabaena 7119, a filamentous heterocystic cyanobacterium. Two SPS activities (SPS-I and SPS-II) were isolated by ion-exchange chromatography and partially purified. Four remarkable differences between SPSs from Anabaena and those from higher plants were shown: substrate specificity, effect of divalent cations, native molecular mass, and oligomeric composition. Both SPS-I and SPS-II accept Fru-6-P (Km for SPS-I = 0.8 ± 0.1 mM; Km for SPS-II = 0.7 ± 0.1 mM) and UDP-Glc as substrates (Km for SPS-I = 1.3 ± 0.4 mM; Km for SPS-II = 4.6 ± 0.4 mM), but unlike higher plant enzymes, they are not specific for UDP-Glc. GDP-Glc and TDP-Glc are also SPS-I substrates (Km for GDP-Glc = 1.2 ± 0.2 mM and Km for TDP-Glc = 4.0 ± 0.4 mM), and ADP-Glc is used by SPS-II (Km for ADP-Glc = 5.7 ± 0.7 mM). SPS-I has an absolute dependence toward divalent metal ions (Mg2+ or Mn2+) for catalytic activity, not found in plants. A strikingly smaller native molecular mass (between 45 and 47 kDa) was determined by gel filtration for both SPSs, which, when submitted to SDS/PAGE, showed a monomeric composition. Cyanobacteria are, as far as the authors know, the most primitive organisms that are able to biosynthesize sucrose as higher plants do. PMID:8942980

  8. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5

    PubMed Central

    Mihali, Troco K; Kellmann, Ralf; Neilan, Brett A

    2009-01-01

    Background Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs) are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. Results We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. Conclusion The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved in the biosynthesis, may

  9. Variable sensory perception in autism.

    PubMed

    Haigh, Sarah M

    2018-03-01

    Autism is associated with sensory and cognitive abnormalities. Individuals with autism generally show normal or superior early sensory processing abilities compared to healthy controls, but deficits in complex sensory processing. In the current opinion paper, it will be argued that sensory abnormalities impact cognition by limiting the amount of signal that can be used to interpret and interact with environment. There is a growing body of literature showing that individuals with autism exhibit greater trial-to-trial variability in behavioural and cortical sensory responses. If multiple sensory signals that are highly variable are added together to process more complex sensory stimuli, then this might destabilise later perception and impair cognition. Methods to improve sensory processing have shown improvements in more general cognition. Studies that specifically investigate differences in sensory trial-to-trial variability in autism, and the potential changes in variability before and after treatment, could ascertain if trial-to-trial variability is a good mechanism to target for treatment in autism. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Sensory perception: lessons from synesthesia: using synesthesia to inform the understanding of sensory perception.

    PubMed

    Harvey, Joshua Paul

    2013-06-01

    Synesthesia, the conscious, idiosyncratic, repeatable, and involuntary sensation of one sensory modality in response to another, is a condition that has puzzled both researchers and philosophers for centuries. Much time has been spent proving the condition's existence as well as investigating its etiology, but what can be learned from synesthesia remains a poorly discussed topic. Here, synaesthesia is presented as a possible answer rather than a question to the current gaps in our understanding of sensory perception. By first appreciating the similarities between normal sensory perception and synesthesia, one can use what is known about synaesthesia, from behavioral and imaging studies, to inform our understanding of "normal" sensory perception. In particular, in considering synesthesia, one can better understand how and where the different sensory modalities interact in the brain, how different sensory modalities can interact without confusion - the binding problem - as well as how sensory perception develops.

  11. Neuromorphic sensory systems.

    PubMed

    Liu, Shih-Chii; Delbruck, Tobi

    2010-06-01

    Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.

  12. Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Walter, Julia; Lynch, Fiona; Battchikova, Natalia; Aro, Eva-Mari; Gollan, Peter J

    2016-06-01

    Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca(2+) in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca(2+) has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca(2+) induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca(2+) adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca(2+) plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca(2+) for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. PBN (Phenyl-N-Tert-Butylnitrone)-Derivatives Are Effective in Slowing the Visual Cycle and Rhodopsin Regeneration and in Protecting the Retina from Light-Induced Damage

    PubMed Central

    Stiles, Megan; Moiseyev, Gennadiy P.; Budda, Madeline L.; Linens, Annette; Brush, Richard S.; Qi, Hui; White, Gary L.; Wolf, Roman F.; Ma, Jian-xing; Floyd, Robert; Anderson, Robert E.; Mandal, Nawajes A.

    2015-01-01

    A2E and related toxic molecules are part of lipofuscin found in the retinal pigment epithelial (RPE) cells in eyes affected by Stargardt’s disease, age-related macular degeneration (AMD), and other retinal degenerations. A novel therapeutic approach for treating such degenerations involves slowing down the visual cycle, which could reduce the amount of A2E in the RPE. This can be accomplished by inhibiting RPE65, which produces 11-cis-retinol from all-trans-retinyl esters. We recently showed that phenyl-N-tert-butylnitrone (PBN) inhibits RPE65 enzyme activity in RPE cells. In this study we show that like PBN, certain PBN-derivatives (PBNDs) such as 4-F-PBN, 4-CF3-PBN, 3,4-di-F-PBN, and 4-CH3-PBN can inhibit RPE65 and synthesis of 11-cis-retinol in in vitro assays using bovine RPE microsomes. We further demonstrate that systemic (intraperitoneal, IP) administration of these PBNDs protect the rat retina from light damage. Electroretinography (ERG) and histological analysis showed that rats treated with PBNDs retained ~90% of their photoreceptor cells compared to a complete loss of function and 90% loss of photoreceptors in the central retina in rats treated with vehicle/control injections. Topically applied PBN and PBNDs also significantly slowed the rate of the visual cycle in mouse and baboon eyes. One hour dark adaptation resulted in 75–80% recovery of bleachable rhodopsin in control/vehicle treated mice. Eye drops of 5% 4-CH3-PBN were most effective, inhibiting the regeneration of bleachable rhodopsin significantly (60% compared to vehicle control). In addition, a 10% concentration of PBN and 5% concentration of 4-CH3-PBN in baboon eyes inhibited the visual cycle by 60% and by 30%, respectively. We have identified a group of PBN related nitrones that can reach the target tissue (RPE) by systemic and topical application and slow the rate of rhodopsin regeneration and therefore the visual cycle in mouse and baboon eyes. PBNDs can also protect the rat retina

  14. PBN (Phenyl-N-Tert-Butylnitrone)-Derivatives Are Effective in Slowing the Visual Cycle and Rhodopsin Regeneration and in Protecting the Retina from Light-Induced Damage.

    PubMed

    Stiles, Megan; Moiseyev, Gennadiy P; Budda, Madeline L; Linens, Annette; Brush, Richard S; Qi, Hui; White, Gary L; Wolf, Roman F; Ma, Jian-Xing; Floyd, Robert; Anderson, Robert E; Mandal, Nawajes A

    2015-01-01

    A2E and related toxic molecules are part of lipofuscin found in the retinal pigment epithelial (RPE) cells in eyes affected by Stargardt's disease, age-related macular degeneration (AMD), and other retinal degenerations. A novel therapeutic approach for treating such degenerations involves slowing down the visual cycle, which could reduce the amount of A2E in the RPE. This can be accomplished by inhibiting RPE65, which produces 11-cis-retinol from all-trans-retinyl esters. We recently showed that phenyl-N-tert-butylnitrone (PBN) inhibits RPE65 enzyme activity in RPE cells. In this study we show that like PBN, certain PBN-derivatives (PBNDs) such as 4-F-PBN, 4-CF3-PBN, 3,4-di-F-PBN, and 4-CH3-PBN can inhibit RPE65 and synthesis of 11-cis-retinol in in vitro assays using bovine RPE microsomes. We further demonstrate that systemic (intraperitoneal, IP) administration of these PBNDs protect the rat retina from light damage. Electroretinography (ERG) and histological analysis showed that rats treated with PBNDs retained ~90% of their photoreceptor cells compared to a complete loss of function and 90% loss of photoreceptors in the central retina in rats treated with vehicle/control injections. Topically applied PBN and PBNDs also significantly slowed the rate of the visual cycle in mouse and baboon eyes. One hour dark adaptation resulted in 75-80% recovery of bleachable rhodopsin in control/vehicle treated mice. Eye drops of 5% 4-CH3-PBN were most effective, inhibiting the regeneration of bleachable rhodopsin significantly (60% compared to vehicle control). In addition, a 10% concentration of PBN and 5% concentration of 4-CH3-PBN in baboon eyes inhibited the visual cycle by 60% and by 30%, respectively. We have identified a group of PBN related nitrones that can reach the target tissue (RPE) by systemic and topical application and slow the rate of rhodopsin regeneration and therefore the visual cycle in mouse and baboon eyes. PBNDs can also protect the rat retina from

  15. Motor-sensory confluence in tactile perception.

    PubMed

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  16. Factors affecting the photoproduction of ammonia from dinitrogen and water by the cyanobacterium Anabaena sp. strain ATCC 33047.

    PubMed

    Ramos, J L; Guerrero, M G; Losada, M

    1987-04-01

    Synthesis of ammonia from dinitrogen and water by suspensions of Anabaena sp. Strain ATCC 33047 treated with the glutamine synthetase inhibitor L-methionine-D,L-sulfoximine is strictly dependent on light. Under otherwise optimal conditions, the yield of ammonia production is influenced by irradiance, as well as by the density, depth, and turbulence of the cell suspension. The interaction among these factors seems to determine the actual amount of light available to each single cell or filament in the suspension for the photoproduction process. Under convenient illumination, the limiting factor in the synthesis of ammonia seems to be the cellular nitrogenase activity level, but under limiting light conditions the limiting factor could, however, be the assimilatory power required for nitrogen fixation. Photosynthetic ammonia production from atmospheric nitrogen and water can operate with an efficiency of ca. 10% of its theoretical maximum, representing a remarkable process for the conversion of light energy into chemical energy.

  17. Examining Sensory Quadrants in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Garver, Carolyn R.; Carmody, Thomas; Andrews, Alonzo A.; Trivedi, Madhukar H.; Mehta, Jyutika A.

    2007-01-01

    The purpose of this study was to examine sensory quadrants in autism based on Dunn's Theory of Sensory Processing. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to 103 age- and gender-matched community…

  18. Sensory nerve action potentials and sensory perception in women with arthritis of the hand.

    PubMed

    Calder, Kristina M; Martin, Alison; Lydiate, Jessica; MacDermid, Joy C; Galea, Victoria; MacIntyre, Norma J

    2012-05-10

    Arthritis of the hand can limit a person's ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p < 0.05). No group differences were found for SNAP conduction velocities, SM, VPT, and CPT. We propose, based on these findings, that women with hand OA or RA may have axonal loss of sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception.

  19. Sensory nerve action potentials and sensory perception in women with arthritis of the hand

    PubMed Central

    2012-01-01

    Background Arthritis of the hand can limit a person’s ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Methods Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. Results All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p < 0.05). No group differences were found for SNAP conduction velocities, SM, VPT, and CPT. Discussion We propose, based on these findings, that women with hand OA or RA may have axonal loss of sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception. PMID:22575001

  20. Drosophila Fatty Acid Transport Protein Regulates Rhodopsin-1 Metabolism and Is Required for Photoreceptor Neuron Survival

    PubMed Central

    Dourlen, Pierre; Bertin, Benjamin; Chatelain, Gilles; Robin, Marion; Napoletano, Francesco; Roux, Michel J.; Mollereau, Bertrand

    2012-01-01

    Tight regulation of the visual response is essential for photoreceptor function and survival. Visual response dysregulation often leads to photoreceptor cell degeneration, but the causes of such cell death are not well understood. In this study, we investigated a fatty acid transport protein (fatp) null mutation that caused adult-onset and progressive photoreceptor cell death. Consistent with fatp having a role in the retina, we showed that fatp is expressed in adult photoreceptors and accessory cells and that its re-expression in photoreceptors rescued photoreceptor viability in fatp mutants. The visual response in young fatp-mutant flies was abnormal with elevated electroretinogram amplitudes associated with high levels of Rhodopsin-1 (Rh1). Reducing Rh1 levels in rh1 mutants or depriving flies of vitamin A rescued photoreceptor cell death in fatp mutant flies. Our results indicate that fatp promotes photoreceptor survival by regulating Rh1 abundance. PMID:22844251

  1. Specific visible radiation facilitates lipolysis in mature 3T3-L1 adipocytes via rhodopsin-dependent β3-adrenergic signaling.

    PubMed

    Park, Phil June; Cho, Jae Youl; Cho, Eun-Gyung

    2017-06-01

    The regulation of fat metabolism is important for maintaining functional and structural tissue homeostasis in biological systems. Reducing excessive lipids has been an important concern due to the concomitant health risks caused by metabolic disorders such as obesity, adiposity and dyslipidemia. A recent study revealed that unlike conventional care regimens (e.g., diet or medicine), low-energy visible radiation (VR) regulates lipid levels via autophagy-dependent hormone-sensitive lipase (HSL) phosphorylation in differentiated human adipose-derived stem cells. To clarify the underlying cellular and molecular mechanisms, we first verified the photoreceptor and photoreceptor-dependent signal cascade in nonvisual 3T3-L1 adipocytes. For a better understanding of the concomitant phenomena that result from VR exposure, mature 3T3-L1 adipocytes were exposed to four different wavelengths of VR (410, 505, 590 and 660nm) in this study. The results confirmed that specific VR wavelengths, especially 505nm than 590nm, increase intracellular cyclic adenosine monophosphate (cAMP) levels and decrease lipid droplets. Interestingly, the mRNA and protein levels of the Opn2 (rhodopsin) photoreceptor increased after VR exposure in mature 3T3-L1 adipocytes. Subsequent treatment of mature 3T3-L1 adipocytes at a specific VR wavelength induced rhodopsin- and β3-adrenergic receptor (AR)-dependent lipolytic responses that consequently led to increases in intracellular cAMP and phosphorylated HSL protein levels. Our study indicates that photoreceptors are expressed and exert individual functions in nonvisual cells, such as adipocytes. We suggest that the VR-induced photoreceptor system could be a potential therapeutic target for the regulation of lipid homeostasis in a non-invasive manner. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Measuring Sensory Reactivity in Autism Spectrum Disorder: Application and Simplification of a Clinician-Administered Sensory Observation Scale

    ERIC Educational Resources Information Center

    Tavassoli, Teresa; Bellesheim, Katherine; Siper, Paige M.; Wang, A. Ting; Halpern, Danielle; Gorenstein, Michelle; Grodberg, David; Kolevzon, Alexander; Buxbaum, Joseph D.

    2016-01-01

    Sensory reactivity is a new DSM-5 criterion for autism spectrum disorder (ASD). The current study aims to validate a clinician-administered sensory observation in ASD, the Sensory Processing Scale Assessment (SPS). The SPS and the Short Sensory Profile (SSP) parent-report were used to measure sensory reactivity in children with ASD (n = 35) and…

  3. Bilateral Sensory Abnormalities in Patients with Unilateral Neuropathic Pain; A Quantitative Sensory Testing (QST) Study

    PubMed Central

    Konopka, Karl-Heinz; Harbers, Marten; Houghton, Andrea; Kortekaas, Rudie; van Vliet, Andre; Timmerman, Wia; den Boer, Johan A.; Struys, Michel M.R.F.; van Wijhe, Marten

    2012-01-01

    In patients who experience unilateral chronic pain, abnormal sensory perception at the non-painful side has been reported. Contralateral sensory changes in these patients have been given little attention, possibly because they are regarded as clinically irrelevant. Still, bilateral sensory changes in these patients could become clinically relevant if they challenge the correct identification of their sensory dysfunction in terms of hyperalgesia and allodynia. Therefore, we have used the standardized quantitative sensory testing (QST) protocol of the German Research Network on Neuropathic Pain (DFNS) to investigate somatosensory function at the painful side and the corresponding non-painful side in unilateral neuropathic pain patients using gender- and age-matched healthy volunteers as a reference cohort. Sensory abnormalities were observed across all QST parameters at the painful side, but also, to a lesser extent, at the contralateral, non-painful side. Similar relative distributions regarding sensory loss/gain for non-nociceptive and nociceptive stimuli were found for both sides. Once a sensory abnormality for a QST parameter at the affected side was observed, the prevalence of an abnormality for the same parameter at the non-affected side was as high as 57% (for Pressure Pain Threshold). Our results show that bilateral sensory dysfunction in patients with unilateral neuropathic pain is more rule than exception. Therefore, this phenomenon should be taken into account for appropriate diagnostic evaluation in clinical practice. This is particularly true for mechanical stimuli where the 95% Confidence Interval for the prevalence of sensory abnormalities at the non-painful side ranges between 33% and 50%. PMID:22629414

  4. Sensory adaptation for timing perception.

    PubMed

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-04-22

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception.

  5. Sensory Sensitivities and Performance on Sensory Perceptual Tasks in High-Functioning Individuals with Autism

    ERIC Educational Resources Information Center

    Minshew, Nancy J.; Hobson, Jessica A.

    2008-01-01

    Most reports of sensory symptoms in autism are second hand or observational, and there is little evidence of a neurological basis. Sixty individuals with high-functioning autism and 61 matched typical participants were administered a sensory questionnaire and neuropsychological tests of elementary and higher cortical sensory perception. Thirty-two…

  6. Hydrogen production by Anabaena cylindrica: effects of varying ammonium and ferric ions, pH, and light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffries, T.W.; Timourian, H.; Ward, R.L.

    Anabaena cylindrica sparged with argon gas produced H/sub 2/ continuously for 30 days under limited light conditions (6.0 W/m/sup 2/) and for 18 days under elevated light conditions (32 W/m/sup 2/) in the absence of exogenous nitrogen. The efficiency of converting visible light energy (32 W/m/sup 2/) into chemical energy that is trapped as H/sub 2/ ranged between 0.35 and 0.85% (approximately 13 ..mu..l of H/sub 2/ per mg (dry wt) per h). Ammonium additions (0.2 mM NH/sup +//sub 4/) at various times destabilized the system and eventually suppressed H/sub 2/ production completely, as compared with the control. Cultures grownmore » with 5.0 mg of Fe/sup 3 +/ per liter produced H/sub 2/ at a rate about twice that of cultures with 0.5 mg of Fe/sup 3 +/ per liter. Cultures grown at pH 7.4 produced H/sub 2/ at the same initial rates as cultures that were grown at pH 9.4; however, the latter cultures continued to produce H/sub 2/ after CO/sub 2/ deprivation.« less

  7. NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'

    EPA Science Inventory

    Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...

  8. Sensory perception in autism.

    PubMed

    Robertson, Caroline E; Baron-Cohen, Simon

    2017-11-01

    Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.

  9. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Omairi-Nasser, Amin; Mariscal, Vicente; Austin, Jotham R; Haselkorn, Robert

    2015-08-11

    The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N- media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein.

  10. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass.

    PubMed

    Abdel-Aty, Azza M; Ammar, Nabila S; Abdel Ghafar, Hany H; Ali, Rizka K

    2013-07-01

    The present work represents the biosorption of Cd(II) and Pb(II) from aqueous solution onto the biomass of the blue green alga Anabaena sphaerica as a function of pH, biosorbent dosage, contact time, and initial metal ion concentrations. Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of both metals by A. sphaerica biomass. The biosorption isotherms studies indicated that the biosorption of Cd(II) and Pb(II) follows the Langmuir and Freundlish models. The maximum biosorption capacities (qmax ) were 111.1 and 121.95 mg/g, respectively, at the optimum conditions for each metal. From the D-R isotherm model, the mean free energy was calculated to be 11.7 and 14.3 kJ/mol indicating that the biosorption mechanism of Cd(II) and Pb(II) by A. sphaerica was chemisorption. The FTIR analysis for surface function group of algal biomass revealed the existence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for the biosorption of Cd(II) and Pb(II). The results suggested that the biomass of A. sphaerica is an extremely efficient biosorbent for the removal of Cd(II) and Pb(II) from aqueous solutions.

  11. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass

    PubMed Central

    Abdel -Aty, Azza M.; Ammar, Nabila S.; Abdel Ghafar, Hany H.; Ali, Rizka K.

    2012-01-01

    The present work represents the biosorption of Cd(II) and Pb(II) from aqueous solution onto the biomass of the blue green alga Anabaena sphaerica as a function of pH, biosorbent dosage, contact time, and initial metal ion concentrations. Freundlich, Langmuir, and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherm of both metals by A. sphaerica biomass. The biosorption isotherms studies indicated that the biosorption of Cd(II) and Pb(II) follows the Langmuir and Freundlish models. The maximum biosorption capacities (qmax) were 111.1 and 121.95 mg/g, respectively, at the optimum conditions for each metal. From the D–R isotherm model, the mean free energy was calculated to be 11.7 and 14.3 kJ/mol indicating that the biosorption mechanism of Cd(II) and Pb(II) by A. sphaerica was chemisorption. The FTIR analysis for surface function group of algal biomass revealed the existence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for the biosorption of Cd(II) and Pb(II). The results suggested that the biomass of A. sphaerica is an extremely efficient biosorbent for the removal of Cd(II) and Pb(II) from aqueous solutions. PMID:25685442

  12. Chronic sensory stroke with and without central pain is associated with bilaterally distributed sensory abnormalities as detected by quantitative sensory testing.

    PubMed

    Krause, Thomas; Asseyer, Susanna; Geisler, Frederik; Fiebach, Jochen B; Oeltjenbruns, Jochen; Kopf, Andreas; Villringer, Kersten; Villringer, Arno; Jungehulsing, Gerhard J

    2016-01-01

    Approximately 20% of patients suffering from stroke with pure or predominant sensory symptoms (referred to as sensory stroke patients) develop central poststroke pain (CPSP). It is largely unknown what distinguishes these patients from those who remain pain free. Using quantitative sensory testing (QST), we analyzed the somatosensory profiles of 50 patients with chronic sensory stroke, of which 25 suffered from CPSP. As compared with reference data from healthy controls, patients with CPSP showed alterations of thermal and mechanical thresholds on the body area contralateral to their stroke (P < 0.01). Patients with sensory stroke but without CPSP (non-pain sensory stroke [NPSS] patients) exhibited similar albeit less pronounced contralesional changes. Paradoxical heat sensation (PHS) and dynamic mechanical allodynia (DMA) showed higher values in CPSP, and an elevated cold detection threshold (CDT) was seen more often in CPSP than in patients with NPSS (P < 0.05). In patients with CPSP, changes in CDT, PHS, dynamic mechanical allodynia, and temporal pain summation (wind-up ratio) each correlated with the presence of pain (P < 0.05). On the homologous ipsilesional body area, both patient groups showed additional significant abnormalities as compared with the reference data, which strongly resembled the contralesional changes. In summary, our analysis reveals that CPSP is associated with impaired temperature perception and positive sensory signs, but differences between patients with CPSP and NPSS are subtle. Both patients with CPSP and NPSS show considerable QST changes on the ipsilesional body side. These results are in part paralleled by recent findings of bilaterally spread cortical atrophy in CPSP and might reflect chronic maladaptive cortical plasticity, particularly in patients with CPSP.

  13. Multi-Sensory Intervention Observational Research

    ERIC Educational Resources Information Center

    Thompson, Carla J.

    2011-01-01

    An observational research study based on sensory integration theory was conducted to examine the observed impact of student selected multi-sensory experiences within a multi-sensory intervention center relative to the sustained focus levels of students with special needs. A stratified random sample of 50 students with severe developmental…

  14. Evaluating Sensory Processing in Fragile X Syndrome: Psychometric Analysis of the Brain Body Center Sensory Scales (BBCSS).

    PubMed

    Kolacz, Jacek; Raspa, Melissa; Heilman, Keri J; Porges, Stephen W

    2018-06-01

    Individuals with fragile X syndrome (FXS), especially those co-diagnosed with autism spectrum disorder (ASD), face many sensory processing challenges. However, sensory processing measures informed by neurophysiology are lacking. This paper describes the development and psychometric properties of a parent/caregiver report, the Brain-Body Center Sensory Scales (BBCSS), based on Polyvagal Theory. Parents/guardians reported on 333 individuals with FXS, 41% with ASD features. Factor structure using a split-sample exploratory-confirmatory design conformed to neurophysiological predictions. Internal consistency, test-retest, and inter-rater reliability were good to excellent. BBCSS subscales converged with the Sensory Profile and Sensory Experiences Questionnaire. However, data also suggest that BBCSS subscales reflect unique features related to sensory processing. Individuals with FXS and ASD features displayed more sensory challenges on most subscales.

  15. Sensory impacts of food-packaging interactions.

    PubMed

    Duncan, Susan E; Webster, Janet B

    2009-01-01

    Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials.

  16. Understanding Sensory Integration. ERIC Digest.

    ERIC Educational Resources Information Center

    DiMatties, Marie E.; Sammons, Jennifer H.

    This brief paper summarizes what is known about sensory integration and sensory integration dysfunction (DSI). It outlines evaluation of DSI, treatment approaches, and implications for parents and teachers, including compensatory strategies for minimizing the impact of DSI on a child's life. Review of origins of sensory integration theory in the…

  17. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Frías, José E; Flores, Enrique

    2015-07-01

    Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria

  18. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    PubMed

    Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung

    2016-01-01

    Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which

  19. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    PubMed Central

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants. PMID:28231290

  20. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study.

    PubMed

    Amyotte, Beatrice; Bowen, Amy J; Banks, Travis; Rajcan, Istvan; Somers, Daryl J

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants.

  1. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    PubMed

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  2. Sensory aspects of movement disorders

    PubMed Central

    Patel, Neepa; Jankovic, Joseph; Hallett, Mark

    2016-01-01

    Movement disorders, which include disorders such as Parkinson’s disease, dystonia, Tourette’s syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed. PMID:24331796

  3. Diagnostic value of the near-nerve needle sensory nerve conduction in sensory inflammatory demyelinating polyneuropathy.

    PubMed

    Odabasi, Zeki; Oh, Shin J

    2018-03-01

    In this study we report the diagnostic value of the near-nerve needle sensory nerve conduction study (NNN-SNCS) in sensory inflammatory demyelinating polyneuropathy (IDP) in which the routine nerve conduction study was normal or non-diagnostic. The NNN-SNCS was performed to identify demyelination in the plantar nerves in 14 patients and in the median or ulnar nerve in 2 patients with sensory IDP. In 16 patients with sensory IDP, routine NCSs were either normal or non-diagnostic for demyelination. Demyelination was identified by NNN-SNCS by dispersion and/or slow nerve conduction velocity (NCV) below the demyelination marker. Immunotherapy was initiated in 11 patients, 10 of whom improved or remained stable. NNN-SNCS played an essential role in identifying demyelinaton in 16 patients with sensory IDP, leading to proper treatment. Muscle Nerve 57: 414-418, 2018. © 2017 Wiley Periodicals, Inc.

  4. Sensory and non-sensory factors and the concept of externality in obese subjects.

    PubMed

    Gardner, R M; Brake, S J; Reyes, B; Maestas, D

    1983-08-01

    9 obese and 9 normal subjects performed a psychophysical task in which food- or non-food-related stimuli were briefly flashed tachistoscopically at a speed and intensity near the visual threshold. A signal was presented on one-half the trials and noise only on the other one-half of the trials. Using signal detection theory methodology, separate measures of sensory sensitivity (d') and response bias (beta) were calculated. No differences were noted between obese and normal subjects on measures of sensory sensitivity but significant differences on response bias. Obese subjects had consistently lower response criteria than normal ones. Analysis for subjects categorized by whether they were restrained or unrestrained eaters gave findings identical to those for obese and normal. The importance of using a methodology that separates sensory and non-sensory factors in research on obesity is discussed.

  5. P50 Sensory Gating and Attentional Performance

    PubMed Central

    Wan, Li; Friedman, Bruce H.; Boutros, Nash N.; Crawford, Helen J.

    2008-01-01

    Sensory gating refers to the preattentional filtering of irrelevant sensory stimuli. This process may be impaired in schizotypy, which is a trait also associated with cigarette smoking. This association may in part stem from the positive effects of smoking on sensory gating and attention. The relationship among sensory gating, smoking, schizotypy and attention was examined in 39 undergraduates. Sensory gating was indexed by the P50 suppression paradigm, and attention was measured by the Attention Network Test (ANT) and a Stroop task. Results showed sensory gating to be positively correlated with performances on ANT and Stroop reflected in better alerting, less conflict between stimuli, faster reaction time, and greater accuracy. Smokers showed a pattern of a greater number of significant correlations between sensory gating and attention in comparison to non-smokers, although the relationship between sensory gating and attention was not affected by schizotypy. The majority of significant correlations were found in the region surrounding Cz. These findings are discussed relative to the potential modifying influence of smoking and schizotypy on sensory gating and attention. PMID:18036692

  6. Sensory Substitution and Multimodal Mental Imagery.

    PubMed

    Nanay, Bence

    2017-09-01

    Many philosophers use findings about sensory substitution devices in the grand debate about how we should individuate the senses. The big question is this: Is "vision" assisted by (tactile) sensory substitution really vision? Or is it tactile perception? Or some sui generis novel form of perception? My claim is that sensory substitution assisted "vision" is neither vision nor tactile perception, because it is not perception at all. It is mental imagery: visual mental imagery triggered by tactile sensory stimulation. But it is a special form of mental imagery that is triggered by corresponding sensory stimulation in a different sense modality, which I call "multimodal mental imagery."

  7. Determination of Cu Environments in the Cyanobacterium Anabaena flos-aquae by X-Ray Absorption Spectroscopy

    PubMed Central

    Kretschmer, X. C.; Meitzner, G.; Gardea-Torresdey, J. L.; Webb, R.

    2004-01-01

    Whole cells and peptidoglycan isolated from cell walls of the cyanobacterium Anabaena flos-aquae were lyophilized and used at pH 2 and pH 5 in Cu(II) binding studies. X-ray absorption spectra measured at the Cu K-edge were used to determine the oxidation states and chemical environments of Cu species in the whole-cell and peptidoglycan samples. In the whole-cell samples, most of the Cu retained at both pH values was coordinated by phosphate ligands. The whole-cell fractions contained significant concentrations of Cu(I) as well as Cu(II). An X-ray absorption near-edge spectrum analysis suggested that Cu(I) was coordinated by amine and thiol ligands. An analysis of the peptidoglycan fractions found that more Cu was adsorbed by the peptidoglycan fraction prepared at pH 5, due to increased chelation by amine and carboxyl ligands. The peptidoglycan fractions, also referred to as the cell wall fractions, contained little or no Cu(I). The Cu loading level was 30 times higher in the cell wall sample prepared at pH 5 than in the sample prepared at pH 2. Amine and bidentate carboxyl ligands had similar relative levels of importance in cell wall peptidoglycan samples prepared at both pH values, but phosphate coordination was insignificant. PMID:14766554

  8. Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface*

    PubMed Central

    Jastrzebska, Beata; Chen, Yuanyuan; Orban, Tivadar; Jin, Hui; Hofmann, Lukas; Palczewski, Krzysztof

    2015-01-01

    Although homo- and heterodimerizations of G protein-coupled receptors (GPCRs) are well documented, GPCR monomers are able to assemble in different ways, thus causing variations in the interactive interface between receptor monomers among different GPCRs. Moreover, the functional consequences of this phenomenon, which remain to be clarified, could be specific for different GPCRs. Synthetic peptides derived from transmembrane (TM) domains can interact with a full-length GPCR, blocking dimer formation and affecting its function. Here we used peptides corresponding to TM helices of bovine rhodopsin (Rho) to investigate the Rho dimer interface and functional consequences of its disruption. Incubation of Rho with TM1, TM2, TM4, and TM5 peptides in rod outer segment (ROS) membranes shifted the resulting detergent-solubilized protein migration through a gel filtration column toward smaller molecular masses with a reduced propensity for dimer formation in a cross-linking reaction. Binding of these TM peptides to Rho was characterized by both mass spectrometry and a label-free assay from which dissociation constants were calculated. A BRET (bioluminescence resonance energy transfer) assay revealed that the physical interaction between Rho molecules expressed in membranes of living cells was blocked by the same four TM peptides identified in our in vitro experiments. Although disruption of the Rho dimer/oligomer had no effect on the rates of G protein activation, binding of Gt to the activated receptor stabilized the dimer. However, TM peptide-induced disruption of dimer/oligomer decreased receptor stability, suggesting that Rho supramolecular organization could be essential for ROS stabilization and receptor trafficking. PMID:26330551

  9. Sensory analysis of pet foods.

    PubMed

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities. © 2014 Society of Chemical Industry.

  10. Sensory Transduction in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  11. 38 CFR 17.149 - Sensori-neural aids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact lenses...

  12. 38 CFR 17.149 - Sensori-neural aids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact lenses...

  13. 38 CFR 17.149 - Sensori-neural aids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact lenses...

  14. 38 CFR 17.149 - Sensori-neural aids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact lenses...

  15. Cortical oscillations and sensory predictions.

    PubMed

    Arnal, Luc H; Giraud, Anne-Lise

    2012-07-01

    Many theories of perception are anchored in the central notion that the brain continuously updates an internal model of the world to infer the probable causes of sensory events. In this framework, the brain needs not only to predict the causes of sensory input, but also when they are most likely to happen. In this article, we review the neurophysiological bases of sensory predictions of "what' (predictive coding) and 'when' (predictive timing), with an emphasis on low-level oscillatory mechanisms. We argue that neural rhythms offer distinct and adapted computational solutions to predicting 'what' is going to happen in the sensory environment and 'when'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    PubMed

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  17. The Sensory Perception Quotient (SPQ): development and validation of a new sensory questionnaire for adults with and without autism.

    PubMed

    Tavassoli, Teresa; Hoekstra, Rosa A; Baron-Cohen, Simon

    2014-01-01

    Questionnaire-based studies suggest atypical sensory perception in over 90% of individuals with autism spectrum conditions (ASC). Sensory questionnaire-based studies in ASC mainly record parental reports of their child's sensory experience; less is known about sensory reactivity in adults with ASC. Given the DSM-5 criteria for ASC now include sensory reactivity, there is a need for an adult questionnaire investigating basic sensory functioning. We aimed to develop and validate the Sensory Perception Quotient (SPQ), which assesses basic sensory hyper- and hyposensitivity across all five modalities. A total of 359 adults with (n = 196) and without (n = 163) ASC were asked to fill in the SPQ, the Sensory Over-Responsivity Inventory (SensOR) and the Autism-Spectrum Quotient (AQ) online. Adults with ASC reported more sensory hypersensitivity on the SPQ compared to controls (P < .001). SPQ scores were correlated with AQ scores both across groups (r = .-38) and within the ASC (r = -.18) and control groups (r = -.15). Principal component analyses conducted separately in both groups indicated that one factor comprising 35 items consistently assesses sensory hypersensitivity. The SPQ showed high internal consistency for both the total SPQ (Cronbach's alpha = .92) and the reduced 35-item version (alpha = .93). The SPQ was significantly correlated with the SensOR across groups (r = -.46) and within the ASC (r = -.49) and control group (r = -.21). The SPQ shows good internal consistency and concurrent validity and differentiates between adults with and without ASC. Adults with ASC report more sensitivity to sensory stimuli on the SPQ. Finally, greater sensory sensitivity is associated with more autistic traits. The SPQ provides a new tool to measure individual differences on this dimension.

  18. The Sensory Perception Quotient (SPQ): development and validation of a new sensory questionnaire for adults with and without autism

    PubMed Central

    2014-01-01

    Background Questionnaire-based studies suggest atypical sensory perception in over 90% of individuals with autism spectrum conditions (ASC). Sensory questionnaire-based studies in ASC mainly record parental reports of their child’s sensory experience; less is known about sensory reactivity in adults with ASC. Given the DSM-5 criteria for ASC now include sensory reactivity, there is a need for an adult questionnaire investigating basic sensory functioning. We aimed to develop and validate the Sensory Perception Quotient (SPQ), which assesses basic sensory hyper- and hyposensitivity across all five modalities. Methods A total of 359 adults with (n = 196) and without (n = 163) ASC were asked to fill in the SPQ, the Sensory Over-Responsivity Inventory (SensOR) and the Autism-Spectrum Quotient (AQ) online. Results Adults with ASC reported more sensory hypersensitivity on the SPQ compared to controls (P < .001). SPQ scores were correlated with AQ scores both across groups (r = .-38) and within the ASC (r = -.18) and control groups (r = -.15). Principal component analyses conducted separately in both groups indicated that one factor comprising 35 items consistently assesses sensory hypersensitivity. The SPQ showed high internal consistency for both the total SPQ (Cronbach’s alpha = .92) and the reduced 35-item version (alpha = .93). The SPQ was significantly correlated with the SensOR across groups (r = -.46) and within the ASC (r = -.49) and control group (r = -.21). Conclusions The SPQ shows good internal consistency and concurrent validity and differentiates between adults with and without ASC. Adults with ASC report more sensitivity to sensory stimuli on the SPQ. Finally, greater sensory sensitivity is associated with more autistic traits. The SPQ provides a new tool to measure individual differences on this dimension. PMID:24791196

  19. Acetylcholine and lobster sensory neurones

    PubMed Central

    Barker, David L.; Herbert, Edward; Hildebrand, John G.; Kravitz, Edward A.

    1972-01-01

    Experiments are presented in support of the hypothesis that acetylcholine functions as a sensory transmitter in the lobster nervous system. 1. Several different peripheral sensory structures incorporate radioactive choline into acetylcholine. The preparation most enriched in sensory as opposed to other nervous elements (the antennular sense organs of the distal outer flagellum) does not incorporate significant amounts of glutamate, tyrosine or tryptophan into any of the other major transmitter candidates. 2. There is a parallel between the distribution of the enzyme choline acetyltransferase and the proportion of sensory fibres in nervous tissue from many parts of the lobster nervous system. 3. Isolated sensory axons contain at least 500 times as much choline acetyltransferase per cm of axon as do efferent excitatory and inhibitory fibres. 4. Abdominal ganglia and root stumps show a decline in the rate of incorporation of choline into acetylcholine 2 to 8 weeks after severing the first and second roots bilaterally (leaving the connectives and third roots intact). Extracts of the root stumps exhibit a significantly lower level of choline acetyltransferase 2 weeks after this operation. 5. Curare and atropine partially block an identified sensory synapse in the lobster abdominal ganglion. ImagesText-fig. 4Text-fig. 5Plate 1 PMID:4343316

  20. Spectrum of rhodopsin mutations in Korean patients with retinitis pigmentosa

    PubMed Central

    Kim, Kwang Joong; Kim, Cinoo; Bok, Jeong; Kim, Kyung-Seon; Lee, Eun-Ju; Park, Sung Pyo; Chung, Hum; Han, Bok-Ghee; Kim, Hyung-Lae; Kimm, Kuchan; Yu, Hyeong Gon

    2011-01-01

    Purpose To determine the spectrum and frequency of rhodopsin gene (RHO) mutations in Korean patients with retinitis pigmentosa (RP) and to characterize genotype–phenotype correlations in patients with mutations. Methods The RHO mutations were screened by direct sequencing, and mutation prevalence was measured in patients and controls. The impact of missense mutations to RP was predicted by segregation analysis, peptide sequence alignment, and in silico analysis. The severity of disease in patients with the missense mutations was compared by visual acuity, electroretinography, optical coherence tomography, and kinetic visual field testing. Results Five heterozygous mutations were identified in six of 302 probands with RP, including a novel mutation (c.893C>A, p.A298D) and four known mutations (c.50C>T, p.T17M; c.533A>G, p.Y178C; c.888G>T, p.K296N; and c.1040C>T, p.P347L). The allele frequency of missense mutations was measured in 114 ethnically matched controls. p.A298D, newly identified in a sporadic patient, had never been found in controls and was predicted to be pathogenic. Among the patients with the missense mutations, we observed the most severe phenotype in patients with p.P347L, less severe phenotypes in patients with p.Y178C or p.A298D, and a relatively moderate phenotype in a patient with p.T17M. Conclusions The results reveal the spectrum of RHO mutations in Korean RP patients and clinical features that vary according to mutations. Our findings will be useful for understanding these genetic spectra and the genotype–phenotype correlations and will therefore help with predicting disease prognosis and facilitating the development of gene therapy. PMID:21677794

  1. Sensory Disruption in Modern Living and the Emergence of Sensory Inequities

    PubMed Central

    Hoover, Kara C.

    2018-01-01

    Modern lifestyles are disrupting the human senses—primarily sight, sound, and smell. Noise-induced hearing loss has been noted for centuries and increasing over time following the industrial era. From the mid-20th century, the numbers of individuals with myopia (the leading visual impairment) have been increasing globally. Historical evidence for olfactory dysfunction is not known but its etiological links to pollution suggest it increased following industrialization. Clinical interventions for sight and sound loss include preventative and corrective measures but none exist for olfactory dysfunction. Further, olfactory loss is linked to multiple negative health outcomes across physical, mental, and social domains. Due to the global rates of exposure to pollution, olfaction is a global health concern. The environmental injustice inherent in human society (locally and globally) results in inequitable risk for sensory loss by the most vulnerable populations and creates an even deeper gradient in health disparity. Situated within the environmental justice and health disparity literature, this paper introduces the term sensory inequity to describe variation in sensory environments based on socio-economic status (which is often entwined with race and education). A key challenge to risk management is awareness of sensory inequity experienced by vulnerable populations and incorporating that awareness into basic research and policy. PMID:29599658

  2. Sensory Intolerance: Latent Structure and Psychopathologic Correlates

    PubMed Central

    Taylor, Steven; Conelea, Christine A.; McKay, Dean; Crowe, Katherine B.; Abramowitz, Jonathan S.

    2014-01-01

    Background Sensory intolerance refers to high levels of distress evoked by everyday sounds (e.g., sounds of people chewing) or commonplace tactile sensations (e.g., sticky or greasy substances). Sensory intolerance may be associated with obsessive-compulsive (OC) symptoms, OC-related phenomena, and other forms of psychopathology. Sensory intolerance is not included as a syndrome in current diagnostic systems, although preliminary research suggests that it might be a distinct syndrome. Objectives First, to investigate the latent structure of sensory intolerance in adults; that is, to investigate whether it is syndrome-like in nature, in which auditory and tactile sensory intolerance co-occur and are associated with impaired functioning. Second, to investigate the psychopathologic correlates of sensory intolerance. In particular, to investigate whether sensory intolerance is associated with OC-related phenomena, as suggested by previous research. Method A sample of 534 community-based participants were recruited via Amazon.com’s Mechanical Turk program. Participants completed measures of sensory intolerance, OC-related phenomena, and general psychopathology. Results Latent class analysis revealed two classes of individuals: Those who were intolerant of both auditory and tactile stimuli (n = 150), and those who were relatively undisturbed by auditory or tactile stimuli (n = 384). Sensory intolerant individuals, compared to those who were comparatively sensory tolerant, had greater scores on indices of general psychopathology, more severe OC symptoms, a higher likelihood of meeting caseness criteria for OC disorder, elevated scores on measures of OC-related dysfunctional beliefs, a greater tendency to report OC-related phenomena (e.g., a greater frequency of tics), and more impairment on indices of social and occupational functioning. Sensory intolerant individuals had significantly higher scores on OC symptoms even after controlling for general psychopathology

  3. Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse.

    PubMed

    Gargini, Claudia; Novelli, Elena; Piano, Ilaria; Biagioni, Martina; Strettoi, Enrica

    2017-07-18

    Hallmarks of Retinitis Pigmentosa (RP), a family of genetic diseases, are a typical rod-cone-degeneration with initial night blindness and loss of peripheral vision, followed by decreased daylight sight and progressive visual acuity loss up to legal blindness. Great heterogeneity in nature and function of mutated genes, variety of mutations for each of them, variability in phenotypic appearance and transmission modality contribute to make RP a still incurable disease. Translational research relies on appropriate animal models mimicking the genetic and phenotypic diversity of the human pathology. Here, we provide a systematic, morphological and functional analysis of Rho Tvrm4 /Rho + rhodopsin mutant mice, originally described in 2010 and portraying several features of common forms of autosomal dominant RP caused by gain-of-function mutations. These mice undergo photoreceptor degeneration only when exposed briefly to strong, white light and allow controlled timing of induction of rod and cone death, which therefore can be elicited in adult animals, as observed in human RP. The option to control severity and retinal extent of the phenotype by regulating intensity and duration of the inducing light opens possibilities to exploit this model for multiple experimental purposes. Altogether, the unique features of this mutant make it an excellent resource for retinal degeneration research.

  4. Sensory Correlations in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Trivedi, Madhukar H.; Grannemann, Bruce D.; Garver, Carolyn R.; Johnson, Danny G.; Andrews, Alonzo A.; Savla, Jayshree S.; Mehta, Jyutika A.; Schroeder, Jennifer L.

    2007-01-01

    This study examined the relationship between auditory, visual, touch, and oral sensory dysfunction in autism and their relationship to multisensory dysfunction and severity of autism. The Sensory Profile was completed on 104 persons with a diagnosis of autism, 3 to 56 years of age. Analysis showed a significant correlation between the different…

  5. Sensory rehabilitation in the plastic brain.

    PubMed

    Collignon, Olivier; Champoux, François; Voss, Patrice; Lepore, Franco

    2011-01-01

    The purpose of this review is to consider new sensory rehabilitation avenues in the context of the brain's remarkable ability to reorganize itself following sensory deprivation. Here, deafness and blindness are taken as two illustrative models. Mainly, two promising rehabilitative strategies based on opposing theoretical principles will be considered: sensory substitution and neuroprostheses. Sensory substitution makes use of the remaining intact senses to provide blind or deaf individuals with coded information of the lost sensory system. This technique thus benefits from added neural resources in the processing of the remaining senses resulting from crossmodal plasticity, which is thought to be coupled with behavioral enhancements in the intact senses. On the other hand, neuroprostheses represent an invasive approach aimed at stimulating the deprived sensory system directly in order to restore, at least partially, its functioning. This technique therefore relies on the neuronal integrity of the brain areas normally dedicated to the deprived sense and is rather hindered by the compensatory reorganization observed in the deprived cortex. Here, we stress that our understanding of the neuroplastic changes that occur in sensory-deprived individuals may help guide the design and the implementation of such rehabilitative methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Protein and Signaling Networks in Vertebrate Photoreceptor Cells

    PubMed Central

    Koch, Karl-Wilhelm; Dell’Orco, Daniele

    2015-01-01

    Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cyclic guanosine monophosphate (cGMP) and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase (GRK1) under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases (GCs) and is regulated by specific neuronal Ca2+-sensor proteins called guanylate cyclase-activating proteins (GCAPs). At least one GC (ROS-GC1) was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated (CNG) channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments. PMID:26635520

  7. Early compensatory sensory re-education.

    PubMed

    Daniele, Hugo R; Aguado, Leda

    2003-02-01

    After a neurorrhaphy, there will be a distal disconnection between the cortex and skin receptors, along with interruption of sensibility information. This report demonstrates the efficacy of a new sensory re-education program for achieving optimal sensation in a relatively short time. Between 1999 and 2001, in the authors' Hand Rehabilitation Department, 11 patients with previous neurorrhaphy were subjected to a program of early "compensatory sensory re-education." Lesions were caused by clean cut. There were 13 primary digital nerve procedures, 12 at the distal palmar MP level, and one at the radial dorsal branch of the index (just after emerging from the common digital nerve). The technique of compensatory sensory re-education was based on a previous, but modified, sensory re-education method. In order to evaluate the results in the compensatory sensory re-education series described, additional tests for evaluation of achieved functional sensibility were used. The authors' best results were achieved in a maximum of 8 weeks (4-8 weeks), much less time than with the original method (1-2 years). Using the British classification, it was possible to compare the achieved levels of sensibility and the time required for optimal results. The different methods of sensibility re-education may be similar, but with the authors' compensatory sensory re-education method, substantial time is saved.

  8. Susceptibility of Primary Sensory Cortex to Spreading Depolarizations.

    PubMed

    Bogdanov, Volodymyr B; Middleton, Natalie A; Theriot, Jeremy J; Parker, Patrick D; Abdullah, Osama M; Ju, Y Sungtaek; Hartings, Jed A; Brennan, K C

    2016-04-27

    Spreading depolarizations (SDs) are recognized as actors in neurological disorders as diverse as migraine and traumatic brain injury (TBI). Migraine aura involves sensory percepts, suggesting that sensory cortices might be intrinsically susceptible to SDs. We used optical imaging, MRI, and field potential and potassium electrode recordings in mice and electrocorticographic recordings in humans to determine the susceptibility of different brain regions to SDs. Optical imaging experiments in mice under isoflurane anesthesia showed that both cortical spreading depression and terminal anoxic depolarization arose preferentially in the whisker barrel region of parietal sensory cortex. MRI recordings under isoflurane, ketamine/xylazine, ketamine/isoflurane, and urethane anesthesia demonstrated that the depolarizations did not propagate from a subcortical source. Potassium concentrations showed larger increases in sensory cortex, suggesting a mechanism of susceptibility. Sensory stimulation biased the timing but not the location of depolarization onset. In humans with TBI, there was a trend toward increased incidence of SDs in parietal/temporal sensory cortex compared with other regions. In conclusion, SDs are inducible preferentially in primary sensory cortex in mice and most likely in humans. This tropism can explain the predominant sensory phenomenology of migraine aura. It also demonstrates that sensory cortices are vulnerable in brain injury. Spreading depolarizations (SDs) are involved in neurologic disorders as diverse as migraine and traumatic brain injury. In migraine, the nature of aura symptoms suggests that sensory cortex may be preferentially susceptible. In brain injury, SDs occur at a vulnerable time, during which the issue of sensory stimulation is much debated. We show, in mouse and human, that sensory cortex is more susceptible to SDs. We find that sensory stimulation biases the timing but not the location of the depolarizations. Finally, we show a

  9. Susceptibility of Primary Sensory Cortex to Spreading Depolarizations

    PubMed Central

    Bogdanov, Volodymyr B.; Middleton, Natalie A.; Theriot, Jeremy J.; Parker, Patrick D.; Abdullah, Osama M.; Ju, Y. Sungtaek; Hartings, Jed A.

    2016-01-01

    Spreading depolarizations (SDs) are recognized as actors in neurological disorders as diverse as migraine and traumatic brain injury (TBI). Migraine aura involves sensory percepts, suggesting that sensory cortices might be intrinsically susceptible to SDs. We used optical imaging, MRI, and field potential and potassium electrode recordings in mice and electrocorticographic recordings in humans to determine the susceptibility of different brain regions to SDs. Optical imaging experiments in mice under isoflurane anesthesia showed that both cortical spreading depression and terminal anoxic depolarization arose preferentially in the whisker barrel region of parietal sensory cortex. MRI recordings under isoflurane, ketamine/xylazine, ketamine/isoflurane, and urethane anesthesia demonstrated that the depolarizations did not propagate from a subcortical source. Potassium concentrations showed larger increases in sensory cortex, suggesting a mechanism of susceptibility. Sensory stimulation biased the timing but not the location of depolarization onset. In humans with TBI, there was a trend toward increased incidence of SDs in parietal/temporal sensory cortex compared with other regions. In conclusion, SDs are inducible preferentially in primary sensory cortex in mice and most likely in humans. This tropism can explain the predominant sensory phenomenology of migraine aura. It also demonstrates that sensory cortices are vulnerable in brain injury. SIGNIFICANCE STATEMENT Spreading depolarizations (SDs) are involved in neurologic disorders as diverse as migraine and traumatic brain injury. In migraine, the nature of aura symptoms suggests that sensory cortex may be preferentially susceptible. In brain injury, SDs occur at a vulnerable time, during which the issue of sensory stimulation is much debated. We show, in mouse and human, that sensory cortex is more susceptible to SDs. We find that sensory stimulation biases the timing but not the location of the depolarizations

  10. Validity of Sensory Systems as Distinct Constructs

    PubMed Central

    Su, Chia-Ting

    2014-01-01

    This study investigated the validity of sensory systems as distinct measurable constructs as part of a larger project examining Ayres’s theory of sensory integration. Confirmatory factor analysis (CFA) was conducted to test whether sensory questionnaire items represent distinct sensory system constructs. Data were obtained from clinical records of two age groups, 2- to 5-yr-olds (n = 231) and 6- to 10-yr-olds (n = 223). With each group, we tested several CFA models for goodness of fit with the data. The accepted model was identical for each group and indicated that tactile, vestibular–proprioceptive, visual, and auditory systems form distinct, valid factors that are not age dependent. In contrast, alternative models that grouped items according to sensory processing problems (e.g., over- or underresponsiveness within or across sensory systems) did not yield valid factors. Results indicate that distinct sensory system constructs can be measured validly using questionnaire data. PMID:25184467

  11. Spinal sensory circuits in motion.

    PubMed

    Böhm, Urs Lucas; Wyart, Claire

    2016-12-01

    The role of sensory feedback in shaping locomotion has been long debated. Recent advances in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the vertebrate spinal cord were long thought to originate from the periphery. Recent studies challenge this view: GABAergic sensory neurons located within the spinal cord have been shown to relay mechanical and chemical information from the cerebrospinal fluid to motor circuits. Innovative approaches combining genetics, quantitative analysis of behavior and optogenetics now allow probing the contribution of these sensory feedback pathways to locomotion and recovery following spinal cord injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp.

    NASA Astrophysics Data System (ADS)

    Rösken, Liz M.; Körsten, Susanne; Fischer, Christian B.; Schönleber, Andreas; van Smaalen, Sander; Geimer, Stefan; Wehner, Stefan

    2014-04-01

    Customized metal nanoparticles are highly relevant in industrial processes, where they are used as catalysts and therefore needed on a large scale. An extremely economically and environmentally friendly way to produce metal nanoparticles is microbial biosynthesis, meaning the biosorption and bioreduction of diluted metal ions to zero valent (metal) nanoparticles. To maintain the key advantage of biosynthesis, including eco friendliness, a bioreactor (e.g., bacteria) has to be harmless by itself. Here, the ability of the cyanobacteria Anabaena sp. (SAG 12.82) is shown to fulfill both needs: bioreduction of Au3+ ions to Au0 and the subsequent formation of crystalline Au0-nanoparticles as well as absence of the release of toxic substances (e.g., anatoxin-a). The time-dependent growth of the nanoparticles is recorded by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) over a range of several days. Formation of nanoparticles starts within the first minutes at the heterocyst polysaccharide layer (HEP). After 4 h, the dominating amount of nanoparticles is found in the vegetative cells. The bioproduced nanoparticles are found in both cell types, mainly located along the thylakoid membranes of the vegetative cells and have a final average size of 9 nm within the examined timescale of a few days.

  13. Food intake is influenced by sensory sensitivity.

    PubMed

    Naish, Katherine R; Harris, Gillian

    2012-01-01

    Wide availability of highly palatable foods is often blamed for the rising incidence of obesity. As palatability is largely determined by the sensory properties of food, this study investigated how sensitivity to these properties affects how much we eat. Forty females were classified as either high or low in sensory sensitivity based on their scores on a self-report measure of sensory processing (the Adult Sensory Profile), and their intake of chocolate during the experiment was measured. Food intake was significantly higher for high-sensitivity compared to low-sensitivity individuals. Furthermore, individual scores of sensory sensitivity were positively correlated with self-reported emotional eating. These data could indicate that individuals who are more sensitive to the sensory properties of food have a heightened perception of palatability, which, in turn, leads to a greater food intake.

  14. Protection against salt toxicity in Azolla pinnata-Anabaena azollae symbiotic association by using combined-N sources.

    PubMed

    Mishra, A K; Singh, Satya S

    2006-09-01

    Protection from salt stress was observed in the terms of yield (fresh and dry weight, chlorophyll and protein) and nitrogenase activity. Azollapinnata appeared highly sensitive to 40 mM external NaCl stress. Fronds of Azolla unable to grow beyond a concentration of 30 mM NaCl and accordingly death was recorded at 40 mM NaCl on the 6th day of incubation. Yield was inhibited by various levels of NaCl (0, 10, 20 and 30 mM). Addition of combined-N to the growth medium protected the association partially from salt toxicity. Among the N-sources (NO3-, NH4+ and urea) tried, urea mitigated the salt-induced toxicity most efficiently. Reduction in nitrogenase activity was observed when intact Azolla was grown in nutrient medium either supplemented with different levels of NaCl or combined nitrogen. Only NO3- (5 mM) protected the enzymatic activity from salt toxicity while other concentrations of ammonium, nitrate and urea slowed down the salt-induced inhibition of enzyme activity in Azolla-Anabaena association. These results suggested that an optimum protection from salt stress could be obtained by using a combination of combined nitrogen sources. The reason for this protection might be due to the availability of combined nitrogen to the association, nitrogen is only available through the biological nitrogen fixation which is the most sensitive to salt stress.

  15. The sensory side of post-stroke motor rehabilitation.

    PubMed

    Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J

    2016-04-11

    Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation.

  16. The sensory side of post-stroke motor rehabilitation

    PubMed Central

    Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J.

    2017-01-01

    Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation. PMID:27080070

  17. [Sensory illusions in hang-gliding].

    PubMed

    Bousquet, F; Bizeau, A; Resche-Rigon, P; Taillemite, J P; De Rotalier

    1997-01-01

    Sensory illusions in hang-gliding and para-gliding. Hang-gliding and para-gliding are at the moment booming sports. Sensory illusions are physiological phenomena sharing the wrong perception of the pilote's real position in space. These phenomena are very familiar to aeroplane pilotes, they can also be noticed on certain conditions with hang-gliding pilotes. There are many and various sensory illusions, but only illusions of vestibular origin will be dealt with in this article. Vestibular physiology is reminded with the working principle of a semicircular canal. Physiology and laws of physics explain several sensory illusions, especially when the pilote loses his visual landmarks: flying through a cloud, coriolis effect. Also some specific stages of hang-gliding foster those phenomena: spiraling downwards, self-rotation, following an asymetric closing of the parachute, spin on oneself. Therefore a previous briefing for the pilotes seems necessary.

  18. Sensory matched filters.

    PubMed

    Warrant, Eric J

    2016-10-24

    As animals move through their environments they are subjected to an endless barrage of sensory signals. Of these, some will be of utmost importance, such as the tell-tale aroma of a potential mate, the distinctive appearance of a vital food source or the unmistakable sound of an approaching predator. Others will be less important. Indeed some will not be important at all. There are, for instance, wide realms of the sensory world that remain entirely undetected, simply because an animal lacks the physiological capacity to detect and analyse the signals that characterise this realm. Take ourselves for example: we are completely insensitive to the Earth's magnetic field, a sensory cue of vital importance as a compass for steering the long distance migration of animals as varied as birds, lobsters and sea turtles. We are also totally oblivious to the rich palette of ultraviolet colours that exist all around us, colours seen by insects, crustaceans, birds, fish and lizards (in fact perhaps by most animals). Nor can we hear the ultrasonic sonar pulses emitted by bats in hot pursuit of flying insect prey. The simple reason for these apparent deficiencies is that we either lack the sensory capacity entirely (as in the case of magnetoreception) or that our existing senses are incapable of detecting specific ranges of the stimulus (such as the ultraviolet wavelength range of light). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait.

    PubMed

    Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas

    2014-12-01

    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.

  20. Can Sensory Gallery Guides for Children with Sensory Processing Challenges Improve Their Museum Experience?

    ERIC Educational Resources Information Center

    Fletcher, Tina S.; Blake, Amanda B.; Shelffo, Kathleen E.

    2018-01-01

    Children routinely visit art museums as part of their educational experience and family time, many of them having special needs. The number of children diagnosed with autism and sensory processing disorders is increasing. These conditions may include heightened sensory "avoiding" or "seeking" behaviors that can interfere with a…

  1. Sensory determinants of the autonomous sensory meridian response (ASMR): understanding the triggers.

    PubMed

    Barratt, Emma L; Spence, Charles; Davis, Nick J

    2017-01-01

    The autonomous sensory meridian response (ASMR) is an atypical sensory phenomenon involving electrostatic-like tingling sensations in response to certain sensory, primarily audio-visual, stimuli. The current study used an online questionnaire, completed by 130 people who self-reported experiencing ASMR. We aimed to extend preliminary investigations into the experience, and establish key multisensory factors contributing to the successful induction of ASMR through online media. Aspects such as timing and trigger load, atmosphere, and characteristics of ASMR content, ideal spatial distance from various types of stimuli, visual characteristics, context and use of ASMR triggers, and audio preferences are explored. Lower-pitched, complex sounds were found to be especially effective triggers, as were slow-paced, detail-focused videos. Conversely, background music inhibited the sensation for many respondents. These results will help in designing media for ASMR induction.

  2. Sensory determinants of the autonomous sensory meridian response (ASMR): understanding the triggers

    PubMed Central

    Barratt, Emma L.; Spence, Charles

    2017-01-01

    The autonomous sensory meridian response (ASMR) is an atypical sensory phenomenon involving electrostatic-like tingling sensations in response to certain sensory, primarily audio-visual, stimuli. The current study used an online questionnaire, completed by 130 people who self-reported experiencing ASMR. We aimed to extend preliminary investigations into the experience, and establish key multisensory factors contributing to the successful induction of ASMR through online media. Aspects such as timing and trigger load, atmosphere, and characteristics of ASMR content, ideal spatial distance from various types of stimuli, visual characteristics, context and use of ASMR triggers, and audio preferences are explored. Lower-pitched, complex sounds were found to be especially effective triggers, as were slow-paced, detail-focused videos. Conversely, background music inhibited the sensation for many respondents. These results will help in designing media for ASMR induction. PMID:29018601

  3. A Community-Based Sensory Training Program Leads to Improved Experience at a Local Zoo for Children with Sensory Challenges.

    PubMed

    Kong, Michele; Pritchard, Mallory; Dean, Lara; Talley, Michele; Torbert, Roger; Maha, Julian

    2017-01-01

    Sensory processing difficulties are common among many special needs children, especially those with autism spectrum disorder (ASD). The sensory sensitivities often result in interference of daily functioning and can lead to social isolation for both the individual and family unit. A quality improvement (QI) project was undertaken within a local zoo to systematically implement a sensory training program targeted at helping special needs individuals with sensory challenges, including those with ASD, Down's syndrome, attention-deficit/hyperactivity disorder, and speech delay. We piloted the program over a 2-year period. The program consisted of staff training, provision of sensory bags and specific social stories, as well as creation of quiet zones. Two hundred family units were surveyed before and after implementation of the sensory training program. In this pilot QI study, families reported increased visitation to the zoo, improved interactions with staff members, and the overall quality of their experience. In conclusion, we are able to demonstrate that a sensory training program within the community zoo is feasible, impactful, and has the potential to decrease social isolation for special needs individuals and their families.

  4. Sensory Topography of Oral Structures.

    PubMed

    Bearelly, Shethal; Cheung, Steven W

    2017-01-01

    Sensory function in the oral cavity and oropharynx is integral to effective deglutition and speech production. The main hurdle to evaluation of tactile consequences of upper aerodigestive tract diseases and treatments is access to a reliable clinical tool. We propose a rapid and reliable procedure to determine tactile thresholds using buckling monofilaments to advance care. To develop novel sensory testing monofilaments and map tactile thresholds of oral cavity and oropharyngeal structures. A prospective cross-sectional study of 37 healthy adults (12 men, 25 women), specifically without a medical history of head and neck surgery, radiation, or chemotherapy, was carried out in an academic tertiary medical center to capture normative data on tactile sensory function in oral structures. Cheung-Bearelly monofilaments were constructed by securing nylon monofilament sutures (2-0 through 9-0) in the lumen of 5-French ureteral catheters, exposing 20 mm for tapping action. Buckling force consistency was evaluated for 3 lots of each suture size. Sensory thresholds of 4 oral cavity and 2 oropharyngeal subsites in healthy participants (n = 37) were determined by classical signal detection methodology (d-prime ≥1). In 21 participants, test-retest reliability of sensory thresholds was evaluated. Separately in 16 participants, sensory thresholds determined by a modified staircase method were cross-validated with those obtained by classical signal detection. Buckling forces of successive suture sizes were distinct (P < .001), consistent (Cronbach α, 0.99), and logarithmically related (r = 0.99, P < .001). Test-retest reliability of sensory threshold determination was high (Cronbach α, >0.7). The lower lip, anterior tongue, and buccal mucosa were more sensitive than the soft palate, posterior tongue, and posterior pharyngeal wall (P < .001). Threshold determination by classical signal detection and modified staircase methods were highly correlated (r = 0

  5. Learning about Sensory Integration Dysfunction: Strategies to Meet Young Children's Sensory Needs at Home

    ERIC Educational Resources Information Center

    Thompson, Stacy D.; Rains, Kari W.

    2009-01-01

    Practitioners and parents are seeking ways to help children who are not able to integrate sensory information; this has generated recent media attention. A child's inability to integrate sensory information can have implications for the whole family and their everyday routines. Research conducted by occupational therapists has provided a rich…

  6. Caregiver Burden Varies by Sensory Subtypes and Sensory Dimension Scores of Children with Autism

    ERIC Educational Resources Information Center

    Hand, Brittany N.; Lane, Alison E.; De Boeck, Paul; Basso, D. Michele; Nichols-Larsen, Deborah S.; Darragh, Amy R.

    2018-01-01

    Understanding characteristics associated with burden in caregivers of children with autism spectrum disorder (ASD) is critical due to negative health consequences. We explored the association between child sensory subtype, sensory dimension scores, and caregiver burden. A national survey of caregivers of children with ASD aged 5-13 years was…

  7. Sensory signals during active versus passive movement.

    PubMed

    Cullen, Kathleen E

    2004-12-01

    Our sensory systems are simultaneously activated as the result of our own actions and changes in the external world. The ability to distinguish self-generated sensory events from those that arise externally is thus essential for perceptual stability and accurate motor control. Recently, progress has been made towards understanding how this distinction is made. It has been proposed that an internal prediction of the consequences of our actions is compared to the actual sensory input to cancel the resultant self-generated activation. Evidence in support of this hypothesis has been obtained for early stages of sensory processing in the vestibular, visual and somatosensory systems. These findings have implications for the sensory-motor transformations that are needed to guide behavior.

  8. Sensory-Cognitive Interactions in Older Adults.

    PubMed

    Humes, Larry E; Young, Levi A

    2016-01-01

    The objective of this study was regarding sensory and cognitive interactions in older adults published since 2009, the approximate date of the most recent reviews on this topic. After an electronic database search of articles published in English since 2009 on measures of hearing and cognition or vision and cognition in older adults, a total of 437 articles were identified. Screening by title and abstract for appropriateness of topic and for articles presenting original research in peer-reviewed journals reduced the final number of articles reviewed to 34. These articles were qualitatively evaluated and synthesized with the existing knowledge base. Additional evidence has been obtained since 2009 associating declines in vision, hearing, or both with declines in cognition among older adults. The observed sensory-cognitive associations are generally stronger when more than one sensory domain is measured and when the sensory measures involve more than simple threshold sensitivity. Evidence continues to accumulate supporting a link between decline in sensory function and cognitive decline in older adults.

  9. Sensory overload: A concept analysis.

    PubMed

    Scheydt, Stefan; Müller Staub, Maria; Frauenfelder, Fritz; Nielsen, Gunnar H; Behrens, Johann; Needham, Ian

    2017-04-01

    In the context of mental disorders sensory overload is a widely described phenomenon used in conjunction with psychiatric interventions such as removal from stimuli. However, the theoretical foundation of sensory overload as addressed in the literature can be described as insufficient and fragmentary. To date, the concept of sensory overload has not yet been sufficiently specified or analyzed. The aim of the study was to analyze the concept of sensory overload in mental health care. A literature search was undertaken using specific electronic databases, specific journals and websites, hand searches, specific library catalogues, and electronic publishing databases. Walker and Avant's method of concept analysis was used to analyze the sources included in the analysis. All aspects of the method of Walker and Avant were covered in this concept analysis. The conceptual understanding has become more focused, the defining attributes, influencing factors and consequences are described and empirical referents identified. The concept analysis is a first step in the development of a middle-range descriptive theory of sensory overload based on social scientific and stress-theoretical approaches. This specification may serve as a fundament for further research, for the development of a nursing diagnosis or for guidelines. © 2017 Australian College of Mental Health Nurses Inc.

  10. National Survey of Sensory Features in Children with ASD: Factor Structure of the Sensory Experience Questionnaire (3.0)

    ERIC Educational Resources Information Center

    Ausderau, Karla; Sideris, John; Furlong, Melissa; Little, Lauren M.; Bulluck, John; Baranek, Grace T.

    2014-01-01

    This national online survey study characterized sensory features in 1,307 children with autism spectrum disorder (ASD) ages 2-12 years using the Sensory Experiences Questionnaire Version 3.0 (SEQ-3.0). Using the SEQ-3.0, a confirmatory factor analytic model with four substantive factors of hypothesized sensory response patterns (i.e.,…

  11. Sensory over-responsivity in adults with autism spectrum conditions.

    PubMed

    Tavassoli, Teresa; Miller, Lucy J; Schoen, Sarah A; Nielsen, Darci M; Baron-Cohen, Simon

    2014-05-01

    Anecdotal reports and empirical evidence suggest that sensory processing issues are a key feature of autism spectrum conditions. This study set out to investigate whether adults with autism spectrum conditions report more sensory over-responsivity than adults without autism spectrum conditions. Another goal of the study was to identify whether autistic traits in adults with and without autism spectrum conditions were associated with sensory over-responsivity. Adults with (n = 221) and without (n = 181) autism spectrum conditions participated in an online survey. The Autism Spectrum Quotient, the Raven Matrices and the Sensory Processing Scale were used to characterize the sample. Adults with autism spectrum conditions reported more sensory over-responsivity than control participants across various sensory domains (visual, auditory, tactile, olfactory, gustatory and proprioceptive). Sensory over-responsivity correlated positively with autistic traits (Autism Spectrum Quotient) at a significant level across groups and within groups. Adults with autism spectrum conditions experience sensory over-responsivity to daily sensory stimuli to a high degree. A positive relationship exists between sensory over-responsivity and autistic traits. Understanding sensory over-responsivity and ways of measuring it in adults with autism spectrum conditions has implications for research and clinical settings.

  12. Cognitive mechanisms associated with auditory sensory gating

    PubMed Central

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  13. Bioinspired sensory systems for local flow characterization

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  14. A Community-Based Sensory Training Program Leads to Improved Experience at a Local Zoo for Children with Sensory Challenges

    PubMed Central

    Kong, Michele; Pritchard, Mallory; Dean, Lara; Talley, Michele; Torbert, Roger; Maha, Julian

    2017-01-01

    Sensory processing difficulties are common among many special needs children, especially those with autism spectrum disorder (ASD). The sensory sensitivities often result in interference of daily functioning and can lead to social isolation for both the individual and family unit. A quality improvement (QI) project was undertaken within a local zoo to systematically implement a sensory training program targeted at helping special needs individuals with sensory challenges, including those with ASD, Down’s syndrome, attention-deficit/hyperactivity disorder, and speech delay. We piloted the program over a 2-year period. The program consisted of staff training, provision of sensory bags and specific social stories, as well as creation of quiet zones. Two hundred family units were surveyed before and after implementation of the sensory training program. In this pilot QI study, families reported increased visitation to the zoo, improved interactions with staff members, and the overall quality of their experience. In conclusion, we are able to demonstrate that a sensory training program within the community zoo is feasible, impactful, and has the potential to decrease social isolation for special needs individuals and their families. PMID:28966920

  15. Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin.

    PubMed

    Sommer, Martha E; Elgeti, Matthias; Hildebrand, Peter W; Szczepek, Michal; Hofmann, Klaus Peter; Scheerer, Patrick

    2015-01-01

    In this chapter, we describe a set of complementary techniques that we use to study the activation of rhodopsin, a G protein-coupled receptor (GPCR), and its functional interactions with G protein and arrestin. The protein reagents used for these studies come from native disc membranes or heterologous expression, and G protein and arrestin are often replaced with less complex synthetic peptides derived from key interaction sites of these binding partners (BPs). We first report on our approach to protein X-ray crystallography and describe how protein crystals from native membranes are obtained. The crystal structures provide invaluable resolution, but other techniques are required to assess the dynamic equilibria characteristic for active GPCRs. The simplest approach is "Extra Meta II," which uses UV/Vis absorption spectroscopy to monitor the equilibrium of photoactivated states. Site-specific information about the BPs (e.g., arrestin) is added by fluorescence techniques employing mutants labeled with reporter groups. All functional changes in both the receptor and interacting proteins or peptides are seen with highest precision using Fourier transform infrared (FTIR) difference spectroscopy. In our approach, the lack of site-specific information in FTIR is overcome by parallel molecular dynamics simulations, which are employed to interpret the results and to extend the timescale down to the range of conformational substates. © 2015 Elsevier Inc. All rights reserved.

  16. Modelling Time-Resolved Two-Dimensional Electronic Spectroscopy of the Primary Photoisomerization Event in Rhodopsin

    PubMed Central

    2015-01-01

    Time-resolved two-dimensional (2D) electronic spectra (ES) tracking the evolution of the excited state manifolds of the retinal chromophore have been simulated along the photoisomerization pathway in bovine rhodopsin, using a state-of-the-art hybrid QM/MM approach based on multiconfigurational methods. Simulations of broadband 2D spectra provide a useful picture of the overall detectable 2D signals from the near-infrared (NIR) to the near-ultraviolet (UV). Evolution of the stimulated emission (SE) and excited state absorption (ESA) 2D signals indicates that the S1 → SN (with N ≥ 2) ESAs feature a substantial blue-shift only after bond inversion and partial rotation along the cis → trans isomerization angle, while the SE rapidly red-shifts during the photoinduced skeletal relaxation of the polyene chain. Different combinations of pulse frequencies are proposed in order to follow the evolution of specific ESA signals. These include a two-color 2DVis/NIR setup especially suited for tracking the evolution of the S1 → S2 transitions that can be used to discriminate between different photochemical mechanisms of retinal photoisomerization as a function of the environment. The reported results are consistent with the available time-resolved pump–probe experimental data, and may be used for the design of more elaborate transient 2D electronic spectroscopy techniques. PMID:24794143

  17. Thalamic control of sensory selection in divided attention.

    PubMed

    Wimmer, Ralf D; Schmitt, L Ian; Davidson, Thomas J; Nakajima, Miho; Deisseroth, Karl; Halassa, Michael M

    2015-10-29

    How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.

  18. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state.

    PubMed

    Arnis, S; Hofmann, K P

    1993-08-15

    Rhodopsin is a retinal protein and a G-protein-coupled receptor; it shares with both of these families the seven helix structure. To generate the G-interacting helix-loop conformation, generally identified with the 380-nm absorbing metarhodopsin II (MII) photoproduct, the retinal Schiff base bond to the apoprotein must be deprotonated. This occurs as a key event also in the related retinal proteins, sensory rhodopsins, and the proton pump bacteriorhodopsin. In MII, proton uptake from the aqueous phase must be involved as well, since its formation increases the pH of the aqueous medium and is accelerated under acidic conditions. In the native membrane, the pH effect matches MII formation kinetically, suggesting that intramolecular and aqueous protonation changes contribute in concert to the protein transformation. We show here, however, that proton uptake, as indicated by bromocresol purple, and Schiff base deprotonation (380-nm absorption change) show different kinetics when the protein is solubilized in suitable detergents. Our data are consistent with a two-step reaction:

  19. ASIC3 channels in multimodal sensory perception.

    PubMed

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  20. Activity Regulates the Incidence of Heteronymous Sensory-Motor Connections

    PubMed Central

    Mendelsohn, Alana I.; Simon, Christian M.; Abbott, L. F.; Mentis, George Z.; Jessell, Thomas M.

    2015-01-01

    Summary The construction of spinal sensory-motor circuits involves the selection of appropriate synaptic partners and the allocation of precise synaptic input densities. Many aspects of spinal sensory-motor selectivity appear to be preserved when peripheral sensory activation is blocked, which has led to a view that sensory-motor circuits are assembled in an activity-independent manner. Yet it remains unclear whether activity-dependent refinement has a role in the establishment of connections between sensory afferents and those motor pools that have synergistic biomechanical functions. We show here that genetically abolishing central sensory-motor neurotransmission leads to a selective enhancement in the number and density of such “heteronymous” connections, whereas other aspects of sensory-motor connectivity are preserved. Spike-timing dependent synaptic refinement represents one possible mechanism for the changes in connectivity observed after activity blockade. Our findings therefore reveal that sensory activity does have a limited and selective role in the establishment of patterned monosynaptic sensory-motor connections. PMID:26094608

  1. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses.

    PubMed

    Vaughan, Cheryl H; Bartness, Timothy J

    2012-05-01

    Brown adipose tissue (BAT) thermogenic activity and growth are controlled by its sympathetic nervous system (SNS) innervation, but nerve fibers containing sensory-associated neuropeptides [substance P, calcitonin gene-related peptide (CGRP)] also suggest sensory innervation. The central nervous system (CNS) projections of BAT afferents are unknown. Therefore, we used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer used to delineate sensory nerve circuits, to define these projections. HSV-1 was injected into interscapular BAT (IBAT) of Siberian hamsters and HSV-1 immunoreactivity (ir) was assessed 24, 48, 72, 96, and 114 h postinjection. The 96- and 114-h groups had the most HSV-1-ir neurons with marked infections in the hypothalamic paraventricular nucleus, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas. These sites also are involved in sympathetic outflow to BAT suggesting possible BAT sensory-SNS thermogenesis feedback circuits. We tested the functional contribution of IBAT sensory innervation on thermogenic responses to an acute (24 h) cold exposure test by injecting the specific sensory nerve toxin capsaicin directly into IBAT pads and then measuring core (T(c)) and IBAT (T(IBAT)) temperature responses. CGRP content was significantly decreased in capsaicin-treated IBAT demonstrating successful sensory nerve destruction. T(IBAT) and T(c) were significantly decreased in capsaicin-treated hamsters compared with the saline controls at 2 h of cold exposure. Thus the central sensory circuits from IBAT have been delineated for the first time, and impairment of sensory feedback from BAT appears necessary for the appropriate, initial thermogenic response to acute cold exposure.

  2. [Sensory integration: benefits and effectiveness of therapeutic management in sensory processing disorders].

    PubMed

    Tudela-Torras, M; Abad-Mas, L; Tudela-Torras, E

    2017-02-24

    Today, the fact that sensory integration difficulties with a neurological basis exist and that they seriously condition the development of those individuals who suffer from them is widely accepted and acknowledged as being obvious by the vast majority of professionals working in the field of community healthcare. However, less is known and there is more controversy about effective treatments that can be applied to them. This is because many professionals criticise the fact that there is not enough scientific evidence to prove, both quantitatively and empirically, the outcomes of the interventions implemented as alternatives to pharmacological therapy. Consequently, when the symptoms and repercussions on the quality of life deriving from a distorted sensory integration are really disabling for the person, pharmacological treatment is used as the only possible approach, with the side effects that this entails. The reason for this is largely the fact that little is known about other effective therapeutic approaches, such as occupational therapy based on sensory integration.

  3. Sensory-Cognitive Interactions in Older Adults

    PubMed Central

    Humes, Larry E.; Young, Levi A.

    2016-01-01

    Objectives To review evidence regarding sensory and cognitive interactions in older adults published since 2009, the approximate date of the most recent reviews on this topic. Design Following an electronic database search of articles published in English since 2009 on measures of hearing and cognition or vision and cognition in older adults, a total of 437 articles were identified. Screening by title and abstract for appropriateness of topic and for articles presenting original research in peer-reviewed journals reduced the final number of articles reviewed to 34. These articles were qualitatively evaluated and synthesized with the existing knowledge base. Results Additional evidence has been obtained since 2009 associating declines in vision, hearing, or both with declines in cognition among older adults. The observed sensory-cognitive associations are generally stronger when more than one sensory domain is measured and when the sensory measures involve more than simple threshold sensitivity. Conclusions Evidence continues to accumulate supporting a link between decline in sensory function and cognitive decline in older adults. PMID:27355770

  4. Sensory subtypes in children with autism spectrum disorder: latent profile transition analysis using a national survey of sensory features.

    PubMed

    Ausderau, Karla K; Furlong, Melissa; Sideris, John; Bulluck, John; Little, Lauren M; Watson, Linda R; Boyd, Brian A; Belger, Aysenil; Dickie, Virginia A; Baranek, Grace T

    2014-08-01

    Sensory features are highly prevalent and heterogeneous among children with ASD. There is a need to identify homogenous groups of children with ASD based on sensory features (i.e., sensory subtypes) to inform research and treatment. Sensory subtypes and their stability over 1 year were identified through latent profile transition analysis (LPTA) among a national sample of children with ASD. Data were collected from caregivers of children with ASD ages 2-12 years at two time points (Time 1 N = 1294; Time 2 N = 884). Four sensory subtypes (Mild; Sensitive-Distressed; Attenuated-Preoccupied; Extreme-Mixed) were identified, which were supported by fit indices from the LPTA as well as current theoretical models that inform clinical practice. The Mild and Extreme-Mixed subtypes reflected quantitatively different sensory profiles, while the Sensitive-Distressed and Attenuated-Preoccupied subtypes reflected qualitatively different profiles. Further, subtypes reflected differential child (i.e., gender, developmental age, chronological age, autism severity) and family (i.e., income, mother's education) characteristics. Ninety-one percent of participants remained stable in their subtypes over 1 year. Characterizing the nature of homogenous sensory subtypes may facilitate assessment and intervention, as well as potentially inform biological mechanisms. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.

  5. A procedure for scaling sensory attributes based on multidimensional measurements: application to sensory sharpness of kitchen knives

    NASA Astrophysics Data System (ADS)

    Takatsuji, Toshiyuki; Tanaka, Ken-ichi

    1996-06-01

    A procedure is derived by which sensory attributes can be scaled as a function of various physical and/or chemical properties of the object to be tested. This procedure consists of four successive steps: (i) design and experiment, (ii) fabrication of specimens according to the design parameters, (iii) assessment of a sensory attribute using sensory evaluation and (iv) derivation of the relationship between the parameters and the sensory attribute. In these steps an experimental design using orthogonal arrays, analysis of variance and regression analyses are used strategically. When a specimen with the design parameters cannot be physically fabricated, an alternative specimen having parameters closest to the design is selected from a group of specimens which can be physically made. The influence of the deviation of actual parameters from the desired ones is also discussed. A method of confirming the validity of the regression equation is also investigated. The procedure is applied to scale the sensory sharpness of kitchen knives as a function of the edge angle and the roughness of the cutting edge.

  6. Dermatomal Sensory Manifestations in Opalski Syndrome.

    PubMed

    Kon, Tomoya; Funamizu, Yukihisa; Ueno, Tatsuya; Haga, Rie; Nishijima, Haruo; Arai, Akira; Suzuki, Chieko; Nunomura, Jinichi; Baba, Masayuki; Tomiyama, Masahiko

    2017-01-01

    A 31-year-old Japanese woman presented with sudden-onset unstable gait followed by nuchal pain. A neurological examination revealed right-sided limb weakness and decreased pain and thermal sensation on the left side below the level of the L1 dermatome. A lower lateral medullary infarction with ipsilateral hemiplegia, known as Opalski syndrome, caused by spontaneous vertebral artery dissection was diagnosed by magnetic resonance imaging. The spinothalamic tract in the medulla oblongata has a topographic arrangement of sensory fibers, and the dermatomal sensory deficit in this case can be explained in relation to that. This is the first reported case of Opalski syndrome with dermatomal sensory manifestations. Opalski syndrome could be a differential diagnosis for dermatomal sensory manifestations. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. Sensory analysis of lipstick.

    PubMed

    Yap, K C S; Aminah, A

    2011-06-01

    Sensory analysis of lipstick product by trained panellists started with recruiting female panels who are lipstick users, in good health condition and willing to be a part of sensory members. This group of people was further scrutinized with duo-trio method using commercial lipstick samples that are commonly used among them. About 40% of the 15 panels recruited were unable to differentiate the lipstick samples they usually use better than chance. The balance of nine panels that were corrected at least with 65% across all trials in panels screening process was formed a working group to develop sensory languages as a means of describing product similarities and differences and a scoring system. Five sessions with each session took about 90 min were carried out using 10 types of lipsticks with different waxes mixture ratio in the formulation together with six commercial lipsticks that are the most common to the panels. First session was focus on listing out the panels' perception towards the characteristic of the lipstick samples after normal application on their lips. Second session was focus on the refining and categorizing the responses gathered from the first session and translated into sensory attributes with its definition. Third session was focus on the scoring system. Fourth and fifth sessions were repetition of the third session to ensure consistency. In a collective effort of the panels, sensory attributes developed for lipstick were Spreadability, Off flavour, Hardness, Smoothness, Moist, Not messy, Glossy and Greasy. Analysis of variance was able to provide ample evidence on gauging the panel performance. A proper panels selecting and training was able to produce a reliable and sensitive trained panel for evaluating the product based on the procedures being trained. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. The Applicability of the Short Sensory Profile for Screening Sensory Processing Disorders among Israeli Children

    ERIC Educational Resources Information Center

    Engel-Yeger, Batya

    2010-01-01

    The objective of this study was to examine the applicability of the short sensory profile (SSP) for screening sensory processing disorders (SPDs) among typical children in Israel, and to evaluate the relationship between SPDs and socio-demographic parameters. Participants were 395 Israeli children, aged 3 years to 10 years 11 months, with typical…

  9. Electromagnetic Characterization Of Metallic Sensory Alloy

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  10. Electromagnetic characterization of metallic sensory alloy

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Simpson, John; Wallace, Terryl; Newman, Andy; Leser, Paul; Lahue, Rob

    2013-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  11. Do early sensory cortices integrate cross-modal information?

    PubMed

    Kayser, Christoph; Logothetis, Nikos K

    2007-09-01

    Our different senses provide complementary evidence about the environment and their interaction often aids behavioral performance or alters the quality of the sensory percept. A traditional view defers the merging of sensory information to higher association cortices, and posits that a large part of the brain can be reduced into a collection of unisensory systems that can be studied in isolation. Recent studies, however, challenge this view and suggest that cross-modal interactions can already occur in areas hitherto regarded as unisensory. We review results from functional imaging and electrophysiology exemplifying cross-modal interactions that occur early during the evoked response, and at the earliest stages of sensory cortical processing. Although anatomical studies revealed several potential origins of these cross-modal influences, there is yet no clear relation between particular functional observations and specific anatomical connections. In addition, our view on sensory integration at the neuronal level is coined by many studies on subcortical model systems of sensory integration; yet, the patterns of cross-modal interaction in cortex deviate from these model systems in several ways. Consequently, future studies on cortical sensory integration need to leave the descriptive level and need to incorporate cross-modal influences into models of the organization of sensory processing. Only then will we be able to determine whether early cross-modal interactions truly merit the label sensory integration, and how they increase a sensory system's ability to scrutinize its environment and finally aid behavior.

  12. A dual-trace model for visual sensory memory.

    PubMed

    Cappiello, Marcus; Zhang, Weiwei

    2016-11-01

    Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus

    PubMed Central

    Zhao, Jing-Bo; Frøkjær, Jens Brøndum; Drewes, Asbjørn Mohr; Ejskjaer, Niels

    2006-01-01

    Gastrointestinal (GI) sensory-motor abnormalities are common in patients with diabetes mellitus and may involve any part of the GI tract. Abnormalities are frequently sub-clinical, and fortunately only rarely do severe and life-threatening problems occur. The pathogenesis of abnormal upper GI sensory-motor function in diabetes is incompletely understood and is most likely multi-factorial of origin. Diabetic autonomic neuropathy as well as acute suboptimal control of diabetes has been shown to impair GI motor and sensory function. Morphological and biomechanical remodeling of the GI wall develops during the duration of diabetes, and may contribute to motor and sensory dysfunction. In this review sensory and motility disorders of the upper GI tract in diabetes is discussed; and the morphological changes and biomechanical remodeling related to the sensory-motor dysfunction is also addressed. PMID:16718808

  14. Collective behaviour in vertebrates: a sensory perspective

    PubMed Central

    Collignon, Bertrand; Fernández-Juricic, Esteban

    2016-01-01

    Collective behaviour models can predict behaviours of schools, flocks, and herds. However, in many cases, these models make biologically unrealistic assumptions in terms of the sensory capabilities of the organism, which are applied across different species. We explored how sensitive collective behaviour models are to these sensory assumptions. Specifically, we used parameters reflecting the visual coverage and visual acuity that determine the spatial range over which an individual can detect and interact with conspecifics. Using metric and topological collective behaviour models, we compared the classic sensory parameters, typically used to model birds and fish, with a set of realistic sensory parameters obtained through physiological measurements. Compared with the classic sensory assumptions, the realistic assumptions increased perceptual ranges, which led to fewer groups and larger group sizes in all species, and higher polarity values and slightly shorter neighbour distances in the fish species. Overall, classic visual sensory assumptions are not representative of many species showing collective behaviour and constrain unrealistically their perceptual ranges. More importantly, caution must be exercised when empirically testing the predictions of these models in terms of choosing the model species, making realistic predictions, and interpreting the results. PMID:28018616

  15. Predicting Psychotic-Like Experiences during Sensory Deprivation

    PubMed Central

    Daniel, Christina; Mason, Oliver J.

    2015-01-01

    Aims. This study aimed to establish the contribution of hallucination proneness, anxiety, suggestibility, and fantasy proneness to psychotic-like experiences (PLEs) reported during brief sensory deprivation. Method. Twenty-four high and 22 low hallucination-prone participants reported on PLEs occurring during brief sensory deprivation and at baseline. State/trait anxiety, suggestibility, and fantasy proneness were also measured. Results. Both groups experienced a significant increase in PLEs in sensory deprivation. The high hallucination prone group reported more PLEs both at baseline and in sensory deprivation. They also scored significantly higher on measures of state/trait anxiety, suggestibility, and fantasy proneness, though these did not explain the effects of group or condition. Regression analysis found hallucination proneness to be the best predictor of the increase in PLEs, with state anxiety also being a significant predictor. Fantasy proneness and suggestibility were not significant predictors. Conclusion. This study suggests the increase in PLEs reported during sensory deprivation reflects a genuine aberration in perceptual experience, as opposed to increased tendency to make false reports due to suggestibility of fantasy proneness. The study provides further support for the use of sensory deprivation as a safe and effective nonpharmacological model of psychosis. PMID:25811027

  16. Sensory empathy and enactment.

    PubMed

    Zanocco, Giorgio; De Marchi, Alessandra; Pozzi, Francesco

    2006-02-01

    The authors propose the concept of sensory empathy which emerges through contact between analyst and patient as they get in touch with an area concerning the primary bond. This area is not so much based on thoughts and fantasies as it is on physical sensations. Sensory empathy has to do with that instrument described by Freud as pertaining to the unconscious of any human, which enables one person to interpret unconscious communications of another person. The authors link this concept to that of enactment precisely because the latter concerns unconscious, early elements that fi nd in the act a fi rst meaningful expression. It involves both analyst and patient. In other words, the authors wish to emphasize the importance of the analytical process maintaining contact with that immense field of human interaction that can be defined as primary sensory area and which becomes intertwined with the evolution of affects. Clinical examples are provided to clarify these hypotheses.

  17. The sensory substrate of multimodal communication in brown-headed cowbirds: are females sensory 'specialists' or 'generalists'?

    PubMed

    Ronald, Kelly L; Sesterhenn, Timothy M; Fernandez-Juricic, Esteban; Lucas, Jeffrey R

    2017-11-01

    Many animals communicate with multimodal signals. While we have an understanding of multimodal signal production, we know relatively less about receiver filtering of multimodal signals and whether filtering capacity in one modality influences filtering in a second modality. Most multimodal signals contain a temporal element, such as change in frequency over time or a dynamic visual display. We examined the relationship in temporal resolution across two modalities to test whether females are (1) sensory 'specialists', where a trade-off exists between the sensory modalities, (2) sensory 'generalists', where a positive relationship exists between the modalities, or (3) whether no relationship exists between modalities. We used female brown-headed cowbirds (Molothrus ater) to investigate this question as males court females with an audiovisual display. We found a significant positive relationship between female visual and auditory temporal resolution, suggesting that females are sensory 'generalists'. Females appear to resolve information well across multiple modalities, which may select for males that signal their quality similarly across modalities.

  18. Creativity and sensory gating indexed by the P50: selective versus leaky sensory gating in divergent thinkers and creative achievers.

    PubMed

    Zabelina, Darya L; O'Leary, Daniel; Pornpattananangkul, Narun; Nusslock, Robin; Beeman, Mark

    2015-03-01

    Creativity has previously been linked with atypical attention, but it is not clear what aspects of attention, or what types of creativity are associated. Here we investigated specific neural markers of a very early form of attention, namely sensory gating, indexed by the P50 ERP, and how it relates to two measures of creativity: divergent thinking and real-world creative achievement. Data from 84 participants revealed that divergent thinking (assessed with the Torrance Test of Creative Thinking) was associated with selective sensory gating, whereas real-world creative achievement was associated with "leaky" sensory gating, both in zero-order correlations and when controlling for academic test scores in a regression. Thus both creativity measures related to sensory gating, but in opposite directions. Additionally, divergent thinking and real-world creative achievement did not interact in predicting P50 sensory gating, suggesting that these two creativity measures orthogonally relate to P50 sensory gating. Finally, the ERP effect was specific to the P50 - neither divergent thinking nor creative achievement were related to later components, such as the N100 and P200. Overall results suggest that leaky sensory gating may help people integrate ideas that are outside of focus of attention, leading to creativity in the real world; whereas divergent thinking, measured by divergent thinking tests which emphasize numerous responses within a limited time, may require selective sensory processing more than previously thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Clinical and ERG data in a family with autosomal dominant RP and Pro-347-Arg mutation in the rhodopsin gene.

    PubMed

    Niemeyer, G; Trüb, P; Schinzel, A; Gal, A

    1992-01-01

    In a family with autosomal dominant retinitis pigmentosa, documented over six generations, a previously undescribed point mutation in the rhodopsin gene could be identified. The mutation found in the six affected members examined but in none of the controls, including healthy members of the family, was a point mutation in codon 347 predicting a substitution of the amino acid arginine for proline, designated Pro-347-Arg. Six affected members from two generations were examined clinically and with ganzfeld rod and cone electroretinography. The cone and, more dramatically, the rod electroretinograms were reduced to residual b-wave amplitudes or were non-detectable as early as ages 18 to 22 years. The Pro-347-Arg mutation resulted in a subjectively and clinically homogeneous phenotype: early onset of night blindness before age 11, relatively preserved usable visual fields until about age 30, blindness at ages 40 to 60, and change from an initial apparently sine pigmento to a hyperpigmented and atrophic fundus picture between 30 and 50 years of age.

  20. Common computational properties found in natural sensory systems

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey

    2009-05-01

    Throughout the animal kingdom there are many existing sensory systems with capabilities desired by the human designers of new sensory and computational systems. There are a few basic design principles constantly observed among these natural mechano-, chemo-, and photo-sensory systems, principles that have been proven by the test of time. Such principles include non-uniform sampling and processing, topological computing, contrast enhancement by localized signal inhibition, graded localized signal processing, spiked signal transmission, and coarse coding, which is the computational transformation of raw data using broadly overlapping filters. These principles are outlined here with references to natural biological sensory systems as well as successful biomimetic sensory systems exploiting these natural design concepts.

  1. Is Attentional Resource Allocation Across Sensory Modalities Task-Dependent?

    PubMed

    Wahn, Basil; König, Peter

    2017-01-01

    Human information processing is limited by attentional resources. That is, via attentional mechanisms, humans select a limited amount of sensory input to process while other sensory input is neglected. In multisensory research, a matter of ongoing debate is whether there are distinct pools of attentional resources for each sensory modality or whether attentional resources are shared across sensory modalities. Recent studies have suggested that attentional resource allocation across sensory modalities is in part task-dependent. That is, the recruitment of attentional resources across the sensory modalities depends on whether processing involves object-based attention (e.g., the discrimination of stimulus attributes) or spatial attention (e.g., the localization of stimuli). In the present paper, we review findings in multisensory research related to this view. For the visual and auditory sensory modalities, findings suggest that distinct resources are recruited when humans perform object-based attention tasks, whereas for the visual and tactile sensory modalities, partially shared resources are recruited. If object-based attention tasks are time-critical, shared resources are recruited across the sensory modalities. When humans perform an object-based attention task in combination with a spatial attention task, partly shared resources are recruited across the sensory modalities as well. Conversely, for spatial attention tasks, attentional processing does consistently involve shared attentional resources for the sensory modalities. Generally, findings suggest that the attentional system flexibly allocates attentional resources depending on task demands. We propose that such flexibility reflects a large-scale optimization strategy that minimizes the brain's costly resource expenditures and simultaneously maximizes capability to process currently relevant information.

  2. Sensory aspects in myasthenia gravis: A translational approach.

    PubMed

    Leon-Sarmiento, Fidias E; Leon-Ariza, Juan S; Prada, Diddier; Leon-Ariza, Daniel S; Rizzo-Sierra, Carlos V

    2016-09-15

    Myasthenia gravis is a paradigmatic muscle disorder characterized by abnormal fatigue and muscle weakness that worsens with activities and improves with rest. Clinical and research studies done on nicotinic acetylcholine receptors have advanced our knowledge of the muscle involvement in myasthenia. Current views still state that sensory deficits are not "features of myasthenia gravis". This article discusses the gap that exists on sensory neural transmission in myasthenia that has remained after >300years of research in this neurological disorder. We outline the neurobiological characteristics of sensory and motor synapses, reinterpret the nanocholinergic commonalities that exist in both sensory and motor pathways, discuss the clinical findings on altered sensory pathways in myasthenia, and propose a novel way to score anomalies resulting from multineuronal inability associated sensory troubles due to eugenic nanocholinergic instability and autoimmunity. This medicine-based evidence could serve as a template to further identify novel targets for studying new medications that may offer a better therapeutic benefit in both sensory and motor dysfunction for patients. Importantly, this review may help to re-orient current practices in myasthenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The synaptic pharmacology underlying sensory processing in the superior colliculus.

    PubMed

    Binns, K E

    1999-10-01

    The superior colliculus (SC) is one of the most ancient regions of the vertebrate central sensory system. In this hub afferents from several sensory pathways converge, and an extensive range of neural circuits enable primary sensory processing, multi-sensory integration and the generation of motor commands for orientation behaviours. The SC has a laminar structure and is usually considered in two parts; the superficial visual layers and the deep multi-modal/motor layers. Neurones in the superficial layers integrate visual information from the retina, cortex and other sources, while the deep layers draw together data from many cortical and sub-cortical sensory areas, including the superficial layers, to generate motor commands. Functional studies in anaesthetized subjects and in slice preparations have used pharmacological tools to probe some of the SC's interacting circuits. The studies reviewed here reveal important roles for ionotropic glutamate receptors in the mediation of sensory inputs to the SC and in transmission between the superficial and deep layers. N-methyl-D-aspartate receptors appear to have special responsibility for the temporal matching of retinal and cortical activity in the superficial layers and for the integration of multiple sensory data-streams in the deep layers. Sensory responses are shaped by intrinsic inhibitory mechanisms mediated by GABA(A) and GABA(B) receptors and influenced by nicotinic acetylcholine receptors. These sensory and motor-command activities of SC neurones are modulated by levels of arousal through extrinsic connections containing GABA, serotonin and other transmitters. It is possible to naturally stimulate many of the SC's sensory and non-sensory inputs either independently or simultaneously and this brain area is an ideal location in which to study: (a) interactions between inputs from the same sensory system; (b) the integration of inputs from several sensory systems; and (c) the influence of non-sensory systems on

  4. Transformation of Context-dependent Sensory Dynamics into Motor Behavior

    PubMed Central

    Latorre, Roberto; Levi, Rafael; Varona, Pablo

    2013-01-01

    The intrinsic dynamics of sensory networks play an important role in the sensory-motor transformation. In this paper we use conductance based models and electrophysiological recordings to address the study of the dual role of a sensory network to organize two behavioral context-dependent motor programs in the mollusk Clione limacina. We show that: (i) a winner take-all dynamics in the gravimetric sensory network model drives the typical repetitive rhythm in the wing central pattern generator (CPG) during routine swimming; (ii) the winnerless competition dynamics of the same sensory network organizes the irregular pattern observed in the wing CPG during hunting behavior. Our model also shows that although the timing of the activity is irregular, the sequence of the switching among the sensory cells is preserved whenever the same set of neurons are activated in a given time window. These activation phase locks in the sensory signals are transformed into specific events in the motor activity. The activation phase locks can play an important role in motor coordination driven by the intrinsic dynamics of a multifunctional sensory organ. PMID:23459114

  5. Sensory Alterations in Patients with Isolated Idiopathic Dystonia: An Exploratory Quantitative Sensory Testing Analysis.

    PubMed

    Paracka, Lejla; Wegner, Florian; Blahak, Christian; Abdallat, Mahmoud; Saryyeva, Assel; Dressler, Dirk; Karst, Matthias; Krauss, Joachim K

    2017-01-01

    Abnormalities in the somatosensory system are increasingly being recognized in patients with dystonia. The aim of this study was to investigate whether sensory abnormalities are confined to the dystonic body segments or whether there is a wider involvement in patients with idiopathic dystonia. For this purpose, we recruited 20 patients, 8 had generalized, 5 had segmental dystonia with upper extremity involvement, and 7 had cervical dystonia. In total, there were 13 patients with upper extremity involvement. We used Quantitative Sensory Testing (QST) at the back of the hand in all patients and at the shoulder in patients with cervical dystonia. The main finding on the hand QST was impaired cold detection threshold (CDT), dynamic mechanical allodynia (DMA), and thermal sensory limen (TSL). The alterations were present on both hands, but more pronounced on the side more affected with dystonia. Patients with cervical dystonia showed a reduced CDT and hot detection threshold (HDT), enhanced TSL and DMA at the back of the hand, whereas the shoulder QST only revealed increased cold pain threshold and DMA. In summary, QST clearly shows distinct sensory abnormalities in patients with idiopathic dystonia, which may also manifest in body regions without evident dystonia. Further studies with larger groups of dystonia patients are needed to prove the consistency of these findings.

  6. Sensory exploitation and sexual conflict

    PubMed Central

    Arnqvist, Göran

    2006-01-01

    Much of the literature on male–female coevolution concerns the processes by which male traits and female preferences for these can coevolve and be maintained by selection. There has been less explicit focus on the origin of male traits and female preferences. Here, I argue that it is important to distinguish origin from subsequent coevolution and that insights into the origin can help us appreciate the relative roles of various coevolutionary processes for the evolution of diversity in sexual dimorphism. I delineate four distinct scenarios for the origin of male traits and female preferences that build on past contributions, two of which are based on pre-existing variation in quality indicators among males and two on exploitation of pre-existing sensory biases among females. Recent empirical research, and theoretical models, suggest that origin by sensory exploitation has been widespread. I argue that this points to a key, but perhaps transient, role for sexually antagonistic coevolution (SAC) in the subsequent evolutionary elaboration of sexual traits, because (i) sensory exploitation is often likely to be initially costly for individuals of the exploited sex and (ii) the subsequent evolution of resistance to sensory exploitation should often be associated with costs due to selective constraints. A review of a few case studies is used to illustrate these points. Empirical data directly relevant to the costs of being sensory exploited and the costs of evolving resistance is largely lacking, and I stress that such data would help determining the general importance of sexual conflict and SAC for the evolution of sexual dimorphism. PMID:16612895

  7. Characterization of Sensory Differences in Mixing and Premium Rums Through the Use of Descriptive Sensory Analysis.

    PubMed

    Ickes, Chelsea M; Cadwallader, Keith R

    2017-11-01

    This study identified and quantitated perceived sensory differences between 7 premium rums and 2 mixing rums using a hybrid of the Quantitative Descriptive Analysis and Spectrum methods. In addition, the results of this study validated the previously developed rum flavor wheel created from web-based materials. Results showed that the use of the rum flavor wheel aided in sensory term generation, as 17 additional terms were generated after the wheel was provided to panelists. Thirty-eight sensory terms encompassing aroma, aroma-by-mouth, mouthfeel, taste and aftertaste modalities, were generated and evaluated by the panel. Of the finalized terms, only 5 did not exist previously on the rum flavor wheel. Twenty attributes were found to be significantly different among rums. The majority of rums showed similar aroma profiles with the exception of 2 rums, which were characterized by higher perceived intensities of brown sugar, caramel, vanilla, and chocolate aroma, caramel, maple, and vanilla aroma-by-mouth and caramel aftertaste. These results demonstrate the previously developed rum flavor wheel can be used to adequately describe the flavor profile of rum. Additionally, results of this study document the sensory differences among premium rums and may be used to correlate with analytical data to better understand how changes in chemical composition of the product affect sensory perception. © 2017 Institute of Food Technologists®.

  8. [Treatment of sensory information in neurodevelopmental disorders].

    PubMed

    Zoenen, D; Delvenne, V

    2018-01-01

    The processing of information coming from the elementary sensory systems conditions the development and fulfilment of a child's abilities. A dysfunction in the sensory stimuli processing may generate behavioural patterns that might affect a child's learning capacities as well as his relational sphere. The DSM-5 recognizes the sensory abnormalities as part of the symptomatology of Autism Spectrum Disorders. However, similar features are observed in other neurodevelopmental disorders. Over the years, these conditions have been the subject of numerous controversies. Nowadays, they are all grouped together under the term of Neurodevelopmental Disorders in DSM-5. The semiology of these disorders is rich and complex due to the frequent presence of comorbidities and their impact on cognitive, behavioural, and sensorimotor organization but also on a child's personality, as well as his family, his school, or his social relationships. We carried out a review of the literature on the alterations in the treatment of sensory information in ASD but also on the different neurodevelopmental clinical panels in order to show their impact on child development. Atypical sensory profiles have been demonstrated in several neurodevelopmental clinical populations such as Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorders, Dysphasia and Intellectual Disability. Abnomalies in the processing of sensory information should be systematically evaluated in child developmental disorders.

  9. Sensory physiology assessed by evoked potentials in survivors of poliomyelitis.

    PubMed

    Prokhorenko, Olga A; Vasconcelos, Olavo M; Lupu, Vitalie D; Campbell, William W; Jabbari, Bahman

    2008-10-01

    Evidence suggests that sensory loss may occur in a proportion of patients affected by poliomyelitis. We hypothesize that sensory problems may be a lasting sequela in some polio survivors. Sensory pathways in polio survivors were evaluated clinically and electrophysiologically using sensory evoked potentials (SEPs). Patients with sensory deficits or abnormal SEPs were further evaluated by magnetic resonance imaging (MRI). Twenty-two patients were studied. The mean age was 64.7 years (age range: 56-81 years). Clinically, sensory impairments were found in 4 patients. Upper limb SEPs were normal. Lower limb SEPs were abnormal in 10 patients. In 1 patient, clinical and electrographic findings correlated with a patch of atrophy in the spinal cord, as shown by MRI. Sensory derangements may be found in a proportion of aging polio survivors. SEP studies may add sensitivity when evaluating sensory function in this cohort. It remains unclear whether these sensory abnormalities are related to remote poliomyelitis. Further studies are necessary.

  10. Age differences in suprathreshold sensory function.

    PubMed

    Heft, Marc W; Robinson, Michael E

    2014-02-01

    While there is general agreement that vision and audition decline with aging, observations for the somatosensory senses and taste are less clear. The purpose of this study was to assess age differences in multimodal sensory perception in healthy, community-dwelling participants. Participants (100 females and 78 males aged 20-89 years) judged the magnitudes of sensations associated with graded levels of thermal, tactile, and taste stimuli in separate testing sessions using a cross-modality matching (CMM) procedure. During each testing session, participants also rated words that describe magnitudes of percepts associated with differing-level sensory stimuli. The words provided contextual anchors for the sensory ratings, and the word-rating task served as a control for the CMM. The mean sensory ratings were used as dependent variables in a MANOVA for each sensory domain, with age and sex as between-subject variables. These analyses were repeated with the grand means for the word ratings as a covariate to control for the rating task. The results of this study suggest that there are modest age differences for somatosensory and taste domains. While the magnitudes of these differences are mediated somewhat by age differences in the rating task, differences in warm temperature, tactile, and salty taste persist.

  11. Sensory Impairment and Health-Related Quality of Life

    PubMed Central

    KWON, Hye-Jin; KIM, Ji-su; KIM, Yoon-jung; KWON, Su-jin; YU, Jin-Na

    2015-01-01

    Background: Sensory impairment is a common condition that exerts negative effects on health-related quality of life (HRQoL) in the elderly. This study aimed to determine the relationship between sensory impairment and HRQoL and identify sensory-specific differences in the HRQoL of elderly. Methods: This study used data from the Korean National Health and Nutrition Examination Survey V (2010–2012), analyzing 5,260 subjects over 60 years of age who completed ophthalmic and otologic examinations. Vision and hearing impairment were measured and classified. HRQoL was determined according to the European QoL five dimension test (EQ-5D). Multivariate logistic regression analysis and analysis of covariance were performed to identify relationships between sensory impairment and HRQoL dimensions as well as differences in HRQoL scores. Results: In the final adjusted multivariate model, there was a statistically higher proportion of those with dual sensory impairment who reported problems with mobility (adjusted odds ratio [aOR] 2.30, 95% confidence interval [CI] 1.45–5.03), usual activities (aOR 2.32, 95% CI 1.16–4.64), and pain/discomfort among EQ-5D subcategories (aOR 1.79, 95% CI 1.07–2.97). In the EQ-5D dimensions, the means and standard deviations of vision impairment (0.86 [0.01]) and dual sensory impairment (0.84 [0.02]) appeared meaningfully lower than those for no sensory impairment (0.88 [0.00]) or hearing impairment (0.88 [0.01]); P = .02). Conclusion: Sensory impairment reduces HRQoL in the elderly. Improvement of HRQoL in the elderly thus requires regular screening and appropriate management of sensory impairment. PMID:26258089

  12. Sensory Processing in Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Crane, Laura; Goddard, Lorna; Pring, Linda

    2009-01-01

    Unusual sensory processing has been widely reported in autism spectrum disorders (ASDs); however, the majority of research in this area has focused on children. The present study assessed sensory processing in adults with ASD using the Adult/Adolescent Sensory Profile (AASP), a 60-item self-report questionnaire assessing levels of sensory…

  13. Cortical network reorganization guided by sensory input features.

    PubMed

    Kilgard, Michael P; Pandya, Pritesh K; Engineer, Navzer D; Moucha, Raluca

    2002-12-01

    Sensory experience alters the functional organization of cortical networks. Previous studies using behavioral training motivated by aversive or rewarding stimuli have demonstrated that cortical plasticity is specific to salient inputs in the sensory environment. Sensory experience associated with electrical activation of the basal forebrain (BasF) generates similar input specific plasticity. By directly engaging plasticity mechanisms and avoiding extensive behavioral training, BasF stimulation makes it possible to efficiently explore how specific sensory features contribute to cortical plasticity. This review summarizes our observations that cortical networks employ a variety of strategies to improve the representation of the sensory environment. Different combinations of receptive-field, temporal, and spectrotemporal plasticity were generated in primary auditory cortex neurons depending on the pitch, modulation rate, and order of sounds paired with BasF stimulation. Simple tones led to map expansion, while modulated tones altered the maximum cortical following rate. Exposure to complex acoustic sequences led to the development of combination-sensitive responses. This remodeling of cortical response characteristics may reflect changes in intrinsic cellular mechanisms, synaptic efficacy, and local neuronal connectivity. The intricate relationship between the pattern of sensory activation and cortical plasticity suggests that network-level rules alter the functional organization of the cortex to generate the most behaviorally useful representation of the sensory environment.

  14. Aging and response interference across sensory modalities.

    PubMed

    Guerreiro, Maria J S; Adam, Jos J; Van Gerven, Pascal W M

    2014-06-01

    Advancing age is associated with decrements in selective attention. It was recently hypothesized that age-related differences in selective attention depend on sensory modality. The goal of the present study was to investigate the role of sensory modality in age-related vulnerability to distraction, using a response interference task. To this end, 16 younger (mean age = 23.1 years) and 24 older (mean age = 65.3 years) adults performed four response interference tasks, involving all combinations of visual and auditory targets and distractors. The results showed that response interference effects differ across sensory modalities, but not across age groups. These results indicate that sensory modality plays an important role in vulnerability to distraction, but not in age-related distractibility by irrelevant spatial information.

  15. Electrotactile and vibrotactile displays for sensory substitution systems

    NASA Technical Reports Server (NTRS)

    Kaczmarek, Kurt A.; Webster, John G.; Bach-Y-rita, Paul; Tompkins, Willis J.

    1991-01-01

    Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used or with the information processed in some useful way. The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). The relevant sensory physiology of the skin, including the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile, or electrocutaneous, stimulation), is reviewed. The information-processing ability of the tactile sense and its relevance to sensory substitution is briefly summarized. The limitations of current tactile display technologies are discussed.

  16. Identification of an Na(+)-dependent transporter associated with saxitoxin-producing strains of the cyanobacterium Anabaena circinalis.

    PubMed

    Pomati, Francesco; Burns, Brendan P; Neilan, Brett A

    2004-08-01

    Blooms of the freshwater cyanobacterium Anabaena circinalis are recognized as an important health risk worldwide due to the production of a range of toxins such as saxitoxin (STX) and its derivatives. In this study we used HIP1 octameric-palindrome repeated-sequence PCR to compare the genomic structure of phylogenetically similar Australian isolates of A. circinalis. STX-producing and nontoxic cyanobacterial strains showed different HIP1 (highly iterated octameric palindrome 1) DNA patterns, and characteristic interrepeat amplicons for each group were identified. Suppression subtractive hybridization (SSH) was performed using HIP1 PCR-generated libraries to further identify toxic-strain-specific genes. An STX-producing strain and a nontoxic strain of A. circinalis were chosen as testers in two distinct experiments. The two categories of SSH putative tester-specific sequences were characterized by different families of encoded proteins that may be representative of the differences in metabolism between STX-producing and nontoxic A. circinalis strains. DNA-microarray hybridization and genomic screening revealed a toxic-strain-specific HIP1 fragment coding for a putative Na(+)-dependent transporter. Analysis of this gene demonstrated analogy to the mrpF gene of Bacillus subtilis, whose encoded protein is involved in Na(+)-specific pH homeostasis. The application of this gene as a molecular probe in laboratory and environmental screening for STX-producing A. circinalis strains was demonstrated. The possible role of this putative Na(+)-dependent transporter in the toxic cyanobacterial phenotype is also discussed, in light of recent physiological studies of STX-producing cyanobacteria.

  17. Sensory synergy as environmental input integration

    PubMed Central

    Alnajjar, Fady; Itkonen, Matti; Berenz, Vincent; Tournier, Maxime; Nagai, Chikara; Shimoda, Shingo

    2015-01-01

    The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with nine healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis' sensory system to make the controller simpler. PMID:25628523

  18. Temperament and Sensory Features of Children with Autism

    PubMed Central

    Brock, Matthew E.; Freuler, Ashley; Baranek, Grace T.; Watson, Linda R.; Poe, Michele D.; Sabatino, Antoinette

    2012-01-01

    Purpose This study sought to characterize temperament traits in a sample of children with autism spectrum disorder (ASD), ages 3–7 years old, and to determine the potential association between temperament and sensory features in ASD. Individual differences in sensory processing may form the basis for aspects of temperament and personality, and aberrations in sensory processing may inform why some temperamental traits are characteristic of specific clinical populations. Methods Nine dimensions of temperament from the Behavioral Style Questionnaire (McDevitt & Carey, 1996) were compared among groups of children with ASD (n = 54), developmentally delayed (DD; n = 33), and the original normative sample of typically developing children (Carey & McDevitt, 1978; n = 350) using an ANOVA to determine the extent to which groups differed in their temperament profiles. The hypothesized overlap between three dimensional constructs of sensory features (hyperresponsiveness, hyporesponsivness, and seeking) and the nine dimensions of temperament was analyzed in children with ASD using regression analyses. Results The ASD group displayed temperament scores distinct from norms for typically developing children on most dimensions of temperament (activity, rhythmicity, adaptability, approach, distractibility, intensity, persistence, and threshold) but differed from the DD group on only two dimensions (approach and distractibility). Analyses of associations between sensory constructs and temperament dimensions found that sensory hyporesponsiveness was associated with slowness to adapt, low reactivity, and low distractibility; a combination of increased sensory features (across all three patterns) was associated with increased withdrawal and more negative mood. Conclusions Although most dimensions of temperament distinguished children with ASD as a group, not all dimensions appear equally associated with sensory response patterns. Shared mechanisms underlying sensory responsiveness

  19. Superior short-term learning effect of visual and sensory organisation ability when sensory information is unreliable in adolescent rhythmic gymnasts.

    PubMed

    Chen, Hui-Ya; Chang, Hsiao-Yun; Ju, Yan-Ying; Tsao, Hung-Ting

    2017-06-01

    Rhythmic gymnasts specialise in dynamic balance under sensory conditions of numerous somatosensory, visual, and vestibular stimulations. This study investigated whether adolescent rhythmic gymnasts are superior to peers in Sensory Organisation test (SOT) performance, which quantifies the ability to maintain standing balance in six sensory conditions, and explored whether they plateaued faster during familiarisation with the SOT. Three and six sessions of SOTs were administered to 15 female rhythmic gymnasts (15.0 ± 1.8 years) and matched peers (15.1 ± 2.1 years), respectively. The gymnasts were superior to their peers in terms of fitness measures, and their performance was better in the SOT equilibrium score when visual information was unreliable. The SOT learning effects were shown in more challenging sensory conditions between Sessions 1 and 2 and were equivalent in both groups; however, over time, the gymnasts gained marginally significant better visual ability and relied less on visual sense when unreliable. In conclusion, adolescent rhythmic gymnasts have generally the same sensory organisation ability and learning rates as their peers. However, when visual information is unreliable, they have superior sensory organisation ability and learn faster to rely less on visual sense.

  20. Emerging Role of Sensory Perception in Aging and Metabolism.

    PubMed

    Riera, Celine E; Dillin, Andrew

    2016-05-01

    Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues. Here we review how these findings are redefining metabolic signaling and establish a prominent role of sensory neuroendocrine processes in controlling health span and lifespan, with a goal of translating this knowledge towards managing age-associated diseases. Copyright © 2016. Published by Elsevier Ltd.

  1. Sensory noise predicts divisive reshaping of receptive fields.

    PubMed

    Chalk, Matthew; Masset, Paul; Deneve, Sophie; Gutkin, Boris

    2017-06-01

    In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics.

  2. Sensory conduction of the sural nerve in polyneuropathy.

    PubMed

    Burke, D; Skuse, N F; Lethlean, A K

    1974-06-01

    Using surface electrodes, sensory nerve action potentials (SAP) have been recorded in the proximal segment (mid-calf to lateral malleolus) and the distal segment (lateral malleolus to toe 5) of the sural nerve and in the median nerve in 79 control subjects. The values obtained for the distal segment of the sural nerve varied widely and in seven apparently normal subjects no SAP could be distinguished. In the proximal segment conduction velocities were over 40 m/s and there was no significant change with age, unlike the median nerve in which a highly significant slowing occurred with age. Comparison of the results of sural and median sensory conduction studies in 300 consecutive patients screened for sensory polyneuropathy confirms the value of sural nerve sensory studies as a routine screening test, and confirms the belief that the changes in polyneuropathy are usually more prominent in lower limb nerves. It is therefore suggested that studies of sural sensory conduction form the single most useful test in the diagnosis of sensory polyneuropathy.

  3. The coxBAC Operon Encodes a Cytochrome c Oxidase Required for Heterotrophic Growth in the Cyanobacterium Anabaena variabilis Strain ATCC 29413

    PubMed Central

    Schmetterer, Georg; Valladares, Ana; Pils, Dietmar; Steinbach, Susanne; Pacher, Margit; Muro-Pastor, Alicia M.; Flores, Enrique; Herrero, Antonia

    2001-01-01

    Three genes, coxB, coxA, and coxC, found in a clone from a gene library of the cyanobacterium Anabaena variabilis strain ATCC 29413, were identified by hybridization with an oligonucleotide specific for aa3-type cytochrome c oxidases. Deletion of these genes from the genome of A. variabilis strain ATCC 29413 FD yielded strain CSW1, which displayed no chemoheterotrophic growth and an impaired cytochrome c oxidase activity. Photoautotrophic growth of CSW1, however, was unchanged, even with dinitrogen as the nitrogen source. A higher cytochrome c oxidase activity was detected in membrane preparations from dinitrogen-grown CSW1 than from nitrate-grown CSW1, but comparable activities of respiratory oxygen uptake were found in the wild type and in CSW1. Our data indicate that the identified cox gene cluster is essential for fructose-dependent growth in the dark, but not for growth on dinitrogen, and that other terminal respiratory oxidases are expressed in this cyanobacterium. Transcription analysis showed that coxBAC constitutes an operon which is expressed from two transcriptional start points. The use of one of them was stimulated by fructose. PMID:11591688

  4. Removal of Anabaena flos-aquae in water treatment process using Moringa oleifera and assessment of fatty acid profile of generated sludge.

    PubMed

    Moreti, Livia O R; Coldebella, Priscila Ferri; Camacho, Franciele P; Carvalho Bongiovani, Milene; Pereira de Souza, Aloisio Henrique; Kirie Gohara, Aline; Matsushita, Makoto; Fernandes Silva, Marcela; Nishi, Letícia; Bergamasco, Rosângela

    2016-01-01

    This study aimed to evaluate the efficiency of the coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the coagulant Moringa oleifera (MO) seed powder, and to analyse the profile of fatty acids present in the generated sludge after treatment. For the tests, deionized water artificially contaminated with cell cultures of Anabaena flos-aquae was used, with a cell density in the order of 10(4) cells mL(-1). C/F/DAF tests were conducted using 'Flotest' equipment. For fatty acid profile analyses, a gas chromatograph equipped with a flame ionization detector was used. It was seen that the optimal dosage (100 mg L(-1)) of MO used in the C/F/DAF process was efficient at removing nearly all A. flos-aquae cells (96.4%). The sludge obtained after treatment contained oleic acid (61.7%) and palmitic acid (10.8%). Thus, a water treatment process using C/F/DAF linked to integral MO powder seed was found to be efficient in removing cells of cyanobacteria, and produced a sludge rich in oleic acid that is a precursor favourable for obtaining quality biodiesel, thus becoming an alternative application for the recycling of such biomass.

  5. Sensory approaches in mental health: A scoping review.

    PubMed

    Scanlan, Justin Newton; Novak, Theresa

    2015-10-01

    Sensory approaches in mental health are designed to assist consumers to regulate physiological and emotional arousal. They have been highlighted as non-invasive, self-directed and empowering interventions that may support recovery-oriented and trauma-informed mental health practice and may assist in efforts to reduce the use of seclusion and restraint. Over recent years, there has been a substantial increase in research in this area. However, there has not yet been any attempt to map and summarise this literature. A five-stage scoping review was conducted. Four databases were searched for literature evaluating sensory interventions implemented in mental health settings. A total of 17 studies were included in the final review. A range of sensory approaches was evaluated and a range of outcomes measured. In general, consumers reported reductions in distress associated with engaging in sensory interventions. Results in terms of reduction of seclusion and restraint were mixed, with some studies reporting a decrease, others reporting no change and one reporting an increase. Methodological limitations in the studies reviewed mean that results should be interpreted with caution. Although there is emerging evidence for the usefulness of sensory approaches in supporting consumers' self-management of distress, there is less evidence for sensory approaches supporting reductions in seclusion and restraint when used in isolation. More research is necessary, but sensory approaches do appear safe and effective. Services wishing to reduce seclusion and restraint should implement sensory approaches in conjunction with other strategies to achieve this important outcome. © 2015 Occupational Therapy Australia.

  6. A rapid analysis of water for anatoxin a, the unstable toxic alkaloid from Anabaena flos-aquae, the stable non-toxic alkaloids left after bioreduction and a related amine which may be nature's precursor to anatoxin a.

    PubMed

    Smith, R A; Lewis, D

    1987-04-01

    Poisoning of animals by Anabaena Flos-Aquae alkaloid is a common, but sporadic event (1). Anatoxin A is the toxic principle responsible for acute fatalities (2), and tends to disappear along with the toxicity within a few days of the event, thus complicating diagnosis. This report reveals our simplified analytical methodology for Anatoxin A (2-acetyl-9-azabicyclo[4.2.1] non-2,3-ene), for the non-toxic compounds into which it bioreduces, the chair and boat forms of 2-acetyl-9-azabicyclo[4.2.1] nonane, and for an as yet uncharacterized amine C10H15N.

  7. Development of sensory systems in zebrafish (Danio rerio)

    NASA Technical Reports Server (NTRS)

    Moorman, S. J.

    2001-01-01

    Zebrafish possess all of the classic sensory modalities: taste, tactile, smell, balance, vision, and hearing. For each sensory system, this article provides a brief overview of the system in the adult zebrafish followed by a more detailed overview of the development of the system. By far the majority of studies performed in each of the sensory systems of the zebrafish have involved some aspect of molecular biology or genetics. Although molecular biology and genetics are not major foci of the paper, brief discussions of some of the mutant strains of zebrafish that have developmental defects in each specific sensory system are included. The development of the sensory systems is only a small sampling of the work being done using zebrafish and provides a mere glimpse of the potential of this model for the study of vertebrate development, physiology, and human disease.

  8. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  9. Mode pumping experiments on biomolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, R.H.; Erramilli, S.; Xie, A.

    1995-12-31

    We will explore several aspects of protein dynamics and energy transfer that can be explored by using the intense, picosecond, tunable mid-IR output of the FEL. In order of appearance they are: (1) Saturation recovery and inter-level coupling of the low temperature amide-I band in acetanilide. This is a continuation of earlier experiments to test soliton models in crystalline hydrogen bonded solids. In this experiment we utilize the sub-picosecond time resolution and low repetition rate of the Stanford SCLA FEL to do both T{sub 1} and T{sub 2} relaxation measurements at 1650 cm{sup -1}. (2) Probing the influence of collectivemore » dynamics in sensory rhodopsin. In this experiment we use the FIR output of the Stanford FIREFLY FEL to determine the lifetime of collective modes in the photo-active protein sensory rhodopsin, and begin experiments on the influence of collective modes on retinal reaction dynamics. (3) Probing the transition states of enzymes. This experiment, in the initial stages, attempts to use the intense IR output of the FEL to probe and influence the reaction path of a transition state analog for the protein nucleoside hydrolase. The transition state of the inosine substrate is believed to have critical modes softened by the protein so that bond-breaking paths show absorption at approximately 800 cm{sup -1}. A form of action spectrum using FEL excitation will be used to probe this state.« less

  10. Reward maximization justifies the transition from sensory selection at childhood to sensory integration at adulthood.

    PubMed

    Daee, Pedram; Mirian, Maryam S; Ahmadabadi, Majid Nili

    2014-01-01

    In a multisensory task, human adults integrate information from different sensory modalities--behaviorally in an optimal Bayesian fashion--while children mostly rely on a single sensor modality for decision making. The reason behind this change of behavior over age and the process behind learning the required statistics for optimal integration are still unclear and have not been justified by the conventional Bayesian modeling. We propose an interactive multisensory learning framework without making any prior assumptions about the sensory models. In this framework, learning in every modality and in their joint space is done in parallel using a single-step reinforcement learning method. A simple statistical test on confidence intervals on the mean of reward distributions is used to select the most informative source of information among the individual modalities and the joint space. Analyses of the method and the simulation results on a multimodal localization task show that the learning system autonomously starts with sensory selection and gradually switches to sensory integration. This is because, relying more on modalities--i.e. selection--at early learning steps (childhood) is more rewarding than favoring decisions learned in the joint space since, smaller state-space in modalities results in faster learning in every individual modality. In contrast, after gaining sufficient experiences (adulthood), the quality of learning in the joint space matures while learning in modalities suffers from insufficient accuracy due to perceptual aliasing. It results in tighter confidence interval for the joint space and consequently causes a smooth shift from selection to integration. It suggests that sensory selection and integration are emergent behavior and both are outputs of a single reward maximization process; i.e. the transition is not a preprogrammed phenomenon.

  11. Development of the Sensory Hypersensitivity Scale (SHS): a self-report tool for assessing sensitivity to sensory stimuli

    PubMed Central

    Dixon, Eric A.; Benham, Grant; Sturgeon, John A.; Mackey, Sean; Johnson, Kevin A.; Younger, Jarred

    2016-01-01

    Sensory hypersensitivity is one manifestation of the central sensitization that may underlie conditions such as fibromyalgia and chronic fatigue syndrome. We conducted five studies designed to develop and validate the Sensory Hypersensitive Scale (SHS); a 25-item self-report measure of sensory hypersensitivity. The SHS assesses both general sensitivity and modality-specific sensitivity (e.g. touch, taste, and hearing). 1202 participants (157 individuals with chronic pain) completed the SHS, which demonstrated an adequate overall internal reliability (Cronbach’s alpha) of 0.81, suggesting the tool can be used as a cross-modality assessment of sensitivity. SHS scores demonstrated only modest correlations (Pearson’s r) with depressive symptoms (0.19) and anxiety (0.28), suggesting a low level of overlap with psychiatric complaints. Overall SHS scores showed significant but relatively modest correlations (Pearson’s r) with three measures of sensory testing: cold pain tolerance (−0.34); heat pain tolerance (−0.285); heat pain threshold (−0.271). Women reported significantly higher scores on the SHS than did men, although gender-based differences were small. In a chronic pain sample, individuals with fibromyalgia syndrome demonstrated significantly higher SHS scores than did individuals with osteoarthritis or back pain. The SHS appears suitable as a screening measure for sensory hypersensitivity, though additional research is warranted to determine its suitability as a proxy for central sensitization. PMID:26873609

  12. Helping Children with Sensory Processing Disorders: The Role of Occupational Therapy

    ERIC Educational Resources Information Center

    Sweet, Margarita

    2010-01-01

    Normally functioning sensory systems develop through sensory experiences. Children are stimulated through their senses in many different ways. Even though a person's sensory system is intact, he or she may have a sensory processing disorder (SPD), also known as sensory integration dysfunction. This means the person's brain does not correctly…

  13. Sensory modulation in preterm children: Theoretical perspective and systematic review

    PubMed Central

    Oostrom, Kim J.; Lafeber, Harrie N.; Jansma, Elise P.; Oosterlaan, Jaap

    2017-01-01

    Background Neurodevelopmental sequelae in preterm born children are generally considered to result from cerebral white matter damage and noxious effects of environmental factors in the neonatal intensive care unit (NICU). Cerebral white matter damage is associated with sensory processing problems in terms of registration, integration and modulation. However, research into sensory processing problems and, in particular, sensory modulation problems, is scarce in preterm children. Aim This review aims to integrate available evidence on sensory modulation problems in preterm infants and children (<37 weeks of gestation) and their association with neurocognitive and behavioral problems. Method Relevant studies were extracted from PubMed, EMBASE.com and PsycINFO following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Selection criteria included assessment of sensory modulation in preterm born children (<37 weeks of gestation) or with prematurity as a risk factor. Results Eighteen studies were included. Results of this review support the presence of sensory modulation problems in preterm children. Although prematurity may distort various aspects of sensory modulation, the nature and severity of sensory modulation problems differ widely between studies. Conclusions Sensory modulation problems may play a key role in understanding neurocognitive and behavioral sequelae in preterm children. Some support is found for a dose-response relationship between both white matter brain injury and length of NICU stay and sensory modulation problems. PMID:28182680

  14. Sensor Selection and Chemo-Sensory Optimization: Toward an Adaptable Chemo-Sensory System

    PubMed Central

    Vergara, Alexander; Llobet, Eduard

    2011-01-01

    Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to “adapt” in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve. PMID

  15. Sensor selection and chemo-sensory optimization: toward an adaptable chemo-sensory system.

    PubMed

    Vergara, Alexander; Llobet, Eduard

    2011-01-01

    Over the past two decades, despite the tremendous research on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors), environment monitoring (widely distributed sensor networks), and security/threat detection (chemo/bio warfare agents), simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro- and nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change. The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to "adapt" in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the field may evolve.

  16. Sensory noise predicts divisive reshaping of receptive fields

    PubMed Central

    Deneve, Sophie; Gutkin, Boris

    2017-01-01

    In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics. PMID:28622330

  17. TUTORIAL: Beyond sensory substitution—learning the sixth sense

    NASA Astrophysics Data System (ADS)

    Nagel, Saskia K.; Carl, Christine; Kringe, Tobias; Märtin, Robert; König, Peter

    2005-12-01

    Rapid advances in neuroscience have sparked numerous efforts to study the neural correlate of consciousness. Prominent subjects include higher sensory area, distributed assemblies bound by synchronization of neuronal activity and neurons in specific cortical laminae. In contrast, it has been suggested that the quality of sensory awareness is determined by systematic change of afferent signals resulting from behaviour and knowledge thereof. Support for such skill-based theories of perception is provided by experiments on sensory substitution. Here, we pursue this line of thought and create new sensorimotor contingencies and, hence, a new quality of perception. Adult subjects received orientation information, obtained by a magnetic compass, via vibrotactile stimulation around the waist. After six weeks of training we evaluated integration of the new input by a battery of tests. The results indicate that the sensory information provided by the belt (1) is processed and boosts performance, (2) if inconsistent with other sensory signals leads to variable performance, (3) does interact with the vestibular nystagmus and (4) in half of the experimental subjects leads to qualitative changes of sensory experience. These data support the hypothesis that new sensorimotor contingencies can be learned and integrated into behaviour and affect perceptual experience.

  18. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices.

    PubMed

    Zheng, Jing-Jing; Li, Shu-Jing; Zhang, Xiao-Di; Miao, Wan-Ying; Zhang, Dinghong; Yao, Haishan; Yu, Xiang

    2014-03-01

    Sensory experience is critical to development and plasticity of neural circuits. Here we report a new form of plasticity in neonatal mice, where early sensory experience cross-modally regulates development of all sensory cortices via oxytocin signaling. Unimodal sensory deprivation from birth through whisker deprivation or dark rearing reduced excitatory synaptic transmission in the correspondent sensory cortex and cross-modally in other sensory cortices. Sensory experience regulated synthesis and secretion of the neuropeptide oxytocin as well as its level in the cortex. Both in vivo oxytocin injection and increased sensory experience elevated excitatory synaptic transmission in multiple sensory cortices and significantly rescued the effects of sensory deprivation. Together, these results identify a new function for oxytocin in promoting cross-modal, experience-dependent cortical development. This link between sensory experience and oxytocin is particularly relevant to autism, where hypersensitivity or hyposensitivity to sensory inputs is prevalent and oxytocin is a hotly debated potential therapy.

  19. Multifocal sensory demyelinating neuropathy: Report of a case.

    PubMed

    Oh, Shin J

    2017-10-01

    Multifocal sensory demyelinating neuropathy has not been adequately reported in the literature. A 42-year-old man with numbness of the left hand for 3 years and of the right hand for 6 months had a pure multifocal sensory neuropathy involving both hands, most prominently affecting 2-point discrimination, number writing, and object recognition of the left hand. Near-nerve needle sensory and mixed nerve conduction studies were performed on the left ulnar nerve. Studies of the left ulnar nerve documented a demyelinating neuropathy characterized by temporal dispersion and marked decrease in the amplitudes of the sensory and mixed compound nerve potentials in the above-elbow-axilla segment. With intravenous immunoglobulin treatment, there was improvement in his neuropathic condition. In this study I describe a case of multifocal sensory demyelinating neuropathy as a counterpart of multifocal motor neuropathy. Muscle Nerve 56: 825-828, 2017. © 2016 Wiley Periodicals, Inc.

  20. Development of the Classroom Sensory Environment Assessment (CSEA).

    PubMed

    Kuhaneck, Heather Miller; Kelleher, Jaqueline

    2015-01-01

    The Classroom Sensory Environment Assessment (CSEA) is a tool that provides a means of understanding the impact of a classroom's sensory environment on student behavior. The purpose of the CSEA is to promote collaboration between occupational therapists and elementary education teachers. In particular, students with autism spectrum disorder included in general education classrooms may benefit from a suitable match created through this collaborative process between the sensory environment and their unique sensory preferences. The development of the CSEA has occurred in multiple stages over 2 yr. This article reports on descriptive results for 152 classrooms and initial reliability results. Descriptive information suggests that classrooms are environments with an enormous variety of sensory experiences that can be quantified. Visual experiences are most frequent. The tool has adequate internal consistency but requires further investigation of interrater reliability and validity. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  1. Neuropathic sensory symptoms: association with pain and psychological factors

    PubMed Central

    Shaygan, Maryam; Böger, Andreas; Kröner-Herwig, Birgit

    2014-01-01

    Background A large number of population-based studies of chronic pain have considered neuropathic sensory symptoms to be associated with a high level of pain intensity and negative affectivity. The present study examines the question of whether this association previously found in non-selected samples of chronic pain patients can also be found in chronic pain patients with underlying pathology of neuropathic sensory symptoms. Methods Neuropathic sensory symptoms in 306 patients with chronic pain diagnosed as typical neuropathic pain, radiculopathy, fibromyalgia, or nociceptive back pain were assessed using the Pain DETECT Questionnaire. Two separate cluster analyses were performed to identify subgroups of patients with different levels of self-reported neuropathic sensory symptoms and, furthermore, to identify subgroups of patients with distinct patterns of neuropathic sensory symptoms (adjusted for individual response bias regarding specific symptoms). Results ANOVA (analysis of variance) results in typical neuropathic pain, radiculopathy, and fibromyalgia showed no significant differences between the three levels of neuropathic sensory symptoms regarding pain intensity, pain chronicity, pain catastrophizing, pain acceptance, and depressive symptoms. However, in nociceptive back pain patients, significant differences were found for all variables except pain chronicity. When controlling for the response bias of patients in ratings of symptoms, none of the patterns of neuropathic sensory symptoms were associated with pain and psychological factors. Conclusion Neuropathic sensory symptoms are not closely associated with higher levels of pain intensity and cognitive-emotional evaluations in chronic pain patients with underlying pathology of neuropathic sensory symptoms. The findings are discussed in term of differential response bias in patients with versus without verified neuropathic sensory symptoms by clinical examination, medical tests, or underlying pathology of

  2. Neuropathic pain: is quantitative sensory testing helpful?

    PubMed

    Krumova, Elena K; Geber, Christian; Westermann, Andrea; Maier, Christoph

    2012-08-01

    Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system and is characterised by a combination of positive and negative sensory symptoms. Quantitative sensory testing (QST) examines the sensory perception after application of different mechanical and thermal stimuli of controlled intensity and the function of both large (A-beta) and small (A-delta and C) nerve fibres, including the corresponding central pathways. QST can be used to determine detection, pain thresholds and stimulus-response curves and can thus detect both negative and positive sensory signs, the second ones not being assessed by other methods. Similarly to all other psychophysical tests QST requires standardised examination, instructions and data evaluation to receive valid and reliable results. Since normative data are available, QST can contribute also to the individual diagnosis of neuropathy, especially in the case of isolated small-fibre neuropathy, in contrast to the conventional electrophysiology which assesses only large myelinated fibres. For example, detection of early stages of subclinical neuropathy in symptomatic or asymptomatic patients with diabetes mellitus can be helpful to optimise treatment and identify diabetic foot at risk of ulceration. QST assessed the individual's sensory profile and thus can be valuable to evaluate the underlying pain mechanisms which occur in different frequencies even in the same neuropathic pain syndromes. Furthermore, assessing the exact sensory phenotype by QST might be useful in the future to identify responders to certain treatments in accordance to the underlying pain mechanisms.

  3. A pilot study of sensory feedback by transcutaneous electrical nerve stimulation to improve manipulation deficit caused by severe sensory loss after stroke

    PubMed Central

    2013-01-01

    Background Sensory disturbance is common following stroke and can exacerbate functional deficits, even in patients with relatively good motor function. In particular, loss of appropriate sensory feedback in severe sensory loss impairs manipulation capability. We hypothesized that task-oriented training with sensory feedback assistance would improve manipulation capability even without sensory pathway recovery. Methods We developed a system that provides sensory feedback by transcutaneous electrical nerve stimulation (SENS) for patients with sensory loss, and investigated the feasibility of the system in a stroke patient with severe sensory impairment and mild motor deficit. The electrical current was modulated by the force exerted by the fingertips so as to allow the patient to identify the intensity. The patient had severe sensory loss due to a right thalamic hemorrhage suffered 27 months prior to participation in the study. The patient first practiced a cylindrical grasp task with SENS for 1 hour daily over 29 days. Pressure information from the affected thumb was fed back to the unaffected shoulder. The same patient practiced a tip pinch task with SENS for 1 hour daily over 4 days. Pressure information from the affected thumb and index finger was fed back to the unaffected and affected shoulders, respectively. We assessed the feasibility of SENS and examined the improvement of manipulation capability after training with SENS. Results The fluctuation in fingertip force during the cylindrical grasp task gradually decreased as the training progressed. The patient was able to maintain a stable grip force after training, even without SENS. Pressure exerted by the tip pinch of the affected hand was unstable before intervention with SENS compared with that of the unaffected hand. However, they were similar to each other immediately after SENS was initiated, suggesting that the somatosensory information improved tip pinch performance. The patient’s manipulation

  4. A pilot study of sensory feedback by transcutaneous electrical nerve stimulation to improve manipulation deficit caused by severe sensory loss after stroke.

    PubMed

    Kita, Kahori; Otaka, Yohei; Takeda, Kotaro; Sakata, Sachiko; Ushiba, Junichi; Kondo, Kunitsugu; Liu, Meigen; Osu, Rieko

    2013-06-13

    Sensory disturbance is common following stroke and can exacerbate functional deficits, even in patients with relatively good motor function. In particular, loss of appropriate sensory feedback in severe sensory loss impairs manipulation capability. We hypothesized that task-oriented training with sensory feedback assistance would improve manipulation capability even without sensory pathway recovery. We developed a system that provides sensory feedback by transcutaneous electrical nerve stimulation (SENS) for patients with sensory loss, and investigated the feasibility of the system in a stroke patient with severe sensory impairment and mild motor deficit. The electrical current was modulated by the force exerted by the fingertips so as to allow the patient to identify the intensity. The patient had severe sensory loss due to a right thalamic hemorrhage suffered 27 months prior to participation in the study. The patient first practiced a cylindrical grasp task with SENS for 1 hour daily over 29 days. Pressure information from the affected thumb was fed back to the unaffected shoulder. The same patient practiced a tip pinch task with SENS for 1 hour daily over 4 days. Pressure information from the affected thumb and index finger was fed back to the unaffected and affected shoulders, respectively. We assessed the feasibility of SENS and examined the improvement of manipulation capability after training with SENS. The fluctuation in fingertip force during the cylindrical grasp task gradually decreased as the training progressed. The patient was able to maintain a stable grip force after training, even without SENS. Pressure exerted by the tip pinch of the affected hand was unstable before intervention with SENS compared with that of the unaffected hand. However, they were similar to each other immediately after SENS was initiated, suggesting that the somatosensory information improved tip pinch performance. The patient's manipulation capability assessed by the Box

  5. Dynamic combination of sensory and reward information under time pressure

    PubMed Central

    Farashahi, Shiva; Kao, Chang-Hao

    2018-01-01

    When making choices, collecting more information is beneficial but comes at the cost of sacrificing time that could be allocated to making other potentially rewarding decisions. To investigate how the brain balances these costs and benefits, we conducted a series of novel experiments in humans and simulated various computational models. Under six levels of time pressure, subjects made decisions either by integrating sensory information over time or by dynamically combining sensory and reward information over time. We found that during sensory integration, time pressure reduced performance as the deadline approached, and choice was more strongly influenced by the most recent sensory evidence. By fitting performance and reaction time with various models we found that our experimental results are more compatible with leaky integration of sensory information with an urgency signal or a decision process based on stochastic transitions between discrete states modulated by an urgency signal. When combining sensory and reward information, subjects spent less time on integration than optimally prescribed when reward decreased slowly over time, and the most recent evidence did not have the maximal influence on choice. The suboptimal pattern of reaction time was partially mitigated in an equivalent control experiment in which sensory integration over time was not required, indicating that the suboptimal response time was influenced by the perception of imperfect sensory integration. Meanwhile, during combination of sensory and reward information, performance did not drop as the deadline approached, and response time was not different between correct and incorrect trials. These results indicate a decision process different from what is involved in the integration of sensory information over time. Together, our results not only reveal limitations in sensory integration over time but also illustrate how these limitations influence dynamic combination of sensory and reward

  6. Sensory Responsiveness in Siblings of Children with Autism Spectrum Disorders.

    PubMed

    Hilton, Claudia L; Babb-Keeble, Alison; Westover, Erin Eitzmann; Zhang, Yi; Adams, Claire; Collins, Diane M; Karmarkar, Amol; Reistetter, Timothy A; Constantino, John N

    2016-12-01

    This study examined sensory responsiveness in unaffected siblings of children with autism spectrum disorder (ASD) and associations between sensory responsiveness and social severity. Sensory Profile Caregiver Questionnaires and Social Responsiveness Scales were completed by parents of 185 children between age 4 and 10.95 years. Significant differences were found between participants with ASD and controls, and between participants with ASD and unaffected siblings for all sensory quadrants and domains, but not between controls and unaffected siblings. Social responsiveness scores were significantly correlated with scores from most sensory profile categories. Sensory responsiveness as an endophenotype of ASD is not indicated from these findings; however, studies with larger numbers of unaffected siblings and controls are needed to confirm the null hypothesis.

  7. Perceptual load interacts with stimulus processing across sensory modalities.

    PubMed

    Klemen, J; Büchel, C; Rose, M

    2009-06-01

    According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.

  8. Classifying sensory profiles of children in the general population.

    PubMed

    Little, L M; Dean, E; Tomchek, S D; Dunn, W

    2017-01-01

    The aim of this study was to subtype groups of children in a community sample with and without developmental conditions, based on sensory processing patterns. We used latent profile analysis to determine the number of sensory subtypes in a sample of n = 1132 children aged 3-14 years with typical development and developmental conditions, including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder and learning disabilities. A five-subtype solution was found to best characterize the sample, which differed on overall degree and differential presentation of sensory processing patterns. Children with and without developmental conditions presented across subtypes, and one subtype was significantly younger in age than others (P < 0.05). Our results show that sensory subtypes include both children with typical development and those with developmental conditions. Sensory subtypes have previously been investigated in ASD only, and our results suggest that similar sensory subtypes are present in a sample reflective of the general population of children including those largely with typical development. Elevated scores on sensory processing patterns are not unique to ASD but rather are reflections of children's abilities to respond to environmental demands. © 2016 John Wiley & Sons Ltd.

  9. Sensory and chemical changes in tomato sauces during storage.

    PubMed

    Landy, Pascale; Boucon, Claire; Kooyman, Gonnie M; Musters, Pieter A D; Rosing, Ed A E; De Joode, Teun; Laan, Jan; Haring, Peter G M

    2002-05-22

    The present work aimed to identify the key odorants of tomato sauces responsible for the flavor change during storage. Products made from paste or canned tomatoes were stored at 25 and 40 degrees C. Sensory properties and quantification of the key odorants were measured and correlated. Significant sensory changes appeared after 1 and 3 months at 25 degrees C in the respective dice and paste sauces (p < 0.01). The dice sauce was characterized by a steep loss of the sensory quality during the early storage and then by identical changes within the same time span at 25 and 40 degrees C. In the paste sauce the sensory deterioration was slower than for the dice sauce and occurred more extensively at 40 degrees C than at 25 degrees C. Correlation between sensory and instrumental data revealed that the source of sensory changes should be (E,E)-deca-2,4-dienal in the dice sauce. The sensory change in the paste sauce could be due to acetaldehyde, methylpropanal, 3-methylbutanal, oct-1-en-3-one, 3-methylbutanoic acid, deca-2,4-dienal, 2-methoxyphenol, and beta-damascenone.

  10. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state.

    PubMed Central

    Arnis, S; Hofmann, K P

    1993-01-01

    Rhodopsin is a retinal protein and a G-protein-coupled receptor; it shares with both of these families the seven helix structure. To generate the G-interacting helix-loop conformation, generally identified with the 380-nm absorbing metarhodopsin II (MII) photoproduct, the retinal Schiff base bond to the apoprotein must be deprotonated. This occurs as a key event also in the related retinal proteins, sensory rhodopsins, and the proton pump bacteriorhodopsin. In MII, proton uptake from the aqueous phase must be involved as well, since its formation increases the pH of the aqueous medium and is accelerated under acidic conditions. In the native membrane, the pH effect matches MII formation kinetically, suggesting that intramolecular and aqueous protonation changes contribute in concert to the protein transformation. We show here, however, that proton uptake, as indicated by bromocresol purple, and Schiff base deprotonation (380-nm absorption change) show different kinetics when the protein is solubilized in suitable detergents. Our data are consistent with a two-step reaction: Images Fig. 6 PMID:8356093

  11. Age effects on sensory-processing abilities and their impact on handwriting.

    PubMed

    Engel-Yeger, Batya; Hus, Sari; Rosenblum, Sara

    2012-12-01

    Sensory-processing abilities are known to deteriorate in the elderly. As a result, daily activities such as handwriting may be impaired. Yet, knowledge about sensory-processing involvement in handwriting characteristics among older persons is limited. To examine how age influences sensory-processing abilities and the impact on handwriting as a daily performance. The study participants were 118 healthy, independently functioning adults divided into four age groups: 31-45, 46-60, 61-75 and 76+ years. All participants completed the Adolescent/ Adult Sensory Profile (AASP). Handwriting process was documented using the Computerized Handwriting Penmanship Evaluation Tool (ComPET). Age significantly affects sensory processing and handwriting pressure as well as temporal and spatial measures. Both handwriting time and spatial organization of the written product were predicted by sensory seeking. When examining age contribution to the prediction of handwriting by sensory processing, sensory seeking showed a tendency for predicting handwriting pressure (p = .06), while sensory sensitivity significantly predicted handwriting velocity. Age appears to influence sensory-processing abilities and affect daily performance tasks, such as handwriting, for which sensitivity and seeking for sensations are essential. Awareness of clinicians to sensory-processing deficits among older adults and examining their impact on broader daily activities are essential to improve daily performance and quality of life.

  12. Sensory Processing Subtypes in Autism: Association with Adaptive Behavior

    ERIC Educational Resources Information Center

    Lane, Alison E.; Young, Robyn L.; Baker, Amy E. Z.; Angley, Manya T.

    2010-01-01

    Children with autism are frequently observed to experience difficulties in sensory processing. This study examined specific patterns of sensory processing in 54 children with autistic disorder and their association with adaptive behavior. Model-based cluster analysis revealed three distinct sensory processing subtypes in autism. These subtypes…

  13. Quantitative Sensory Testing in Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Fründt, Odette; Grashorn, Wiebke; Schöttle, Daniel; Peiker, Ina; David, Nicole; Engel, Andreas K.; Forkmann, Katarina; Wrobel, Nathalie; Münchau, Alexander; Bingel, Ulrike

    2017-01-01

    Altered sensory perception has been found in patients with autism spectrum disorders (ASD) and might be related to aberrant sensory perception thresholds. We used the well-established, standardized Quantitative sensory testing (QST) protocol of the German Research Network on Neuropathic Pain to investigate 13 somatosensory parameters including…

  14. Sensory Processing in Preterm Preschoolers and Its Association with Executive Function

    PubMed Central

    Adams, Jenna N.; Feldman, Heidi M.; Huffman, Lynne C.; Loe, Irene M.

    2015-01-01

    Background Symptoms of abnormal sensory processing have been related to preterm birth, but have not yet been studied specifically in preterm preschoolers. The degree of association between sensory processing and other domains is important for understanding the role of sensory processing symptoms in the development of preterm children. Aims To test two related hypotheses: (1) preterm preschoolers have more sensory processing symptoms than full term preschoolers and (2) sensory processing is associated with both executive function and adaptive function in preterm preschoolers. Study Design Cross-sectional study Subjects Preterm children (≤34 weeks of gestation; n = 54) and full term controls (≥37 weeks of gestation; n = 73) ages 3-5 years. Outcome Measures Sensory processing was assessed with the Short Sensory Profile. Executive function was assessed with (1) parent ratings on the Behavior Rating Inventory of Executive Function- Preschool version and (2) a performance-based battery of tasks. Adaptive function was assessed with the Vineland Adaptive Behavior Scales-II. Results Preterm preschoolers showed significantly more sensory symptoms than full term controls. A higher percentage of preterm than full term preschoolers had elevated numbers of sensory symptoms (37% vs. 12%). Sensory symptoms in preterm preschoolers were associated with scores on executive function measures, but were not significantly associated with adaptive function. Conclusions Preterm preschoolers exhibited more sensory symptoms than full term controls. Preterm preschoolers with elevated numbers of sensory symptoms also showed executive function impairment. Future research should further examine whether sensory processing and executive function should be considered independent or overlapping constructs. PMID:25706317

  15. Adaptation to sensory input tunes visual cortex to criticality

    NASA Astrophysics Data System (ADS)

    Shew, Woodrow L.; Clawson, Wesley P.; Pobst, Jeff; Karimipanah, Yahya; Wright, Nathaniel C.; Wessel, Ralf

    2015-08-01

    A long-standing hypothesis at the interface of physics and neuroscience is that neural networks self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory information processing. This idea is partially supported by strong evidence for critical dynamics observed in the cerebral cortex, but the impact of sensory input on these dynamics is largely unknown. Thus, the foundations of this hypothesis--the self-organization process and how it manifests during strong sensory input--remain unstudied experimentally. Here we show in visual cortex and in a computational model that strong sensory input initially elicits cortical network dynamics that are not critical, but adaptive changes in the network rapidly tune the system to criticality. This conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality. Our findings establish sensory adaptation as a self-organizing mechanism that maintains criticality in visual cortex during sensory information processing.

  16. Sensory chronic inflammatory demyelinating polyneuropathy: an under-recognized entity?

    PubMed

    Ayrignac, Xavier; Viala, Karine; Koutlidis, Régine Morizot; Taïeb, Guillaume; Stojkovic, Tanya; Musset, Lucille; Léger, Jean-Marc; Fournier, Emmanuel; Maisonobe, Thierry; Bouche, Pierre

    2013-11-01

    Sensory chronic inflammatory demyelinating polyneuropathy (CIDP) can be difficult to diagnose. We report 22 patients with chronic sensory polyneuropathy with ≥1 clinical sign atypical for chronic idiopathic axonal polyneuropathy (CIAP) but no electrodiagnostic criteria for CIDP. Clinical signs atypical for CIAP were: sensory ataxia (59%), generalized areflexia (36%), cranial nerve involvement (32%), rapid upper limb involvement (40%), and age at onset ≤55 years (50%). Additional features were: normal sensory nerve action potentials (36%), abnormal radial/normal sural pattern (23%), abnormal somatosensory evoked potentials (SSEPs) (100%), elevated cerebrospinal fluid (CSF) protein (73%), and demyelinating features in 5/7 nerve biopsies. Over 90% of patients responded to immunotherapy. We conclude that all patients had sensory CIDP. Sensory CIDP patients can be misdiagnosed as having CIAP. If atypical clinical/electrophysiologic features are present, we recommend performing SSEPs and CSF examination. Nerve biopsy should be restricted to disabled patients if other examinations are inconclusive. Copyright © 2013 Wiley Periodicals, Inc.

  17. A 100-Year Review: Sensory analysis of milk.

    PubMed

    Schiano, A N; Harwood, W S; Drake, M A

    2017-12-01

    Evaluation of the sensory characteristics of food products has been, and will continue to be, the ultimate method for evaluating product quality. Sensory quality is a parameter that can be evaluated only by humans and consists of a series of tests or tools that can be applied objectively or subjectively within the constructs of carefully selected testing procedures and parameters. Depending on the chosen test, evaluators are able to probe areas of interest that are intrinsic product attributes (e.g., flavor profiles and off-flavors) as well as extrinsic measures (e.g., market penetration and consumer perception). This review outlines the literature pertaining to relevant testing procedures and studies of the history of sensory analysis of fluid milk. In addition, evaluation methods outside of traditional sensory techniques and future outlooks on the subject of sensory analysis of fluid milk are explored and presented. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Sensory Integration Dysfunction: Implications for Counselors Working with Children

    ERIC Educational Resources Information Center

    Withrow, Rebecca L.

    2007-01-01

    Sensory Integration Dysfunction (SID), a sensory processing problem that afflicts about 15% of children, sets many children on a developmental trajectory of emotional and social problems. Children with SID often unintentionally alienate parents, peers, and teachers in their efforts to modify the amounts of sensory stimulation they receive. They…

  19. Brief Report: Further Evidence of Sensory Subtypes in Autism

    ERIC Educational Resources Information Center

    Lane, Alison E.; Dennis, Simon J.; Geraghty, Maureen E.

    2011-01-01

    Distinct sensory processing (SP) subtypes in autism have been reported previously. This study sought to replicate the previous findings in an independent sample of thirty children diagnosed with an Autism Spectrum Disorder. Model-based cluster analysis of parent-reported sensory functioning (measured using the Short Sensory Profile) confirmed the…

  20. Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase*

    PubMed Central

    Xie, Jin; Cai, Kun; Hu, Hai-Xi; Jiang, Yong-Liang; Yang, Feng; Hu, Peng-Fei; Cao, Dong-Dong; Li, Wei-Fang; Chen, Yuxing; Zhou, Cong-Zhao

    2016-01-01

    Invertases catalyze the hydrolysis of sucrose to glucose and fructose, thereby playing a key role in primary metabolism and plant development. According to the optimum pH, invertases are classified into acid invertases (Ac-Invs) and alkaline/neutral invertases (A/N-Invs), which share no sequence homology. Compared with Ac-Invs that have been extensively studied, the structure and catalytic mechanism of A/N-Invs remain unknown. Here we report the crystal structures of Anabaena alkaline invertase InvA, which was proposed to be the ancestor of modern plant A/N-Invs. These structures are the first in the GH100 family. InvA exists as a hexamer in both crystal and solution. Each subunit consists of an (α/α)6 barrel core structure in addition to an insertion of three helices. A couple of structures in complex with the substrate or products enabled us to assign the subsites −1 and +1 specifically binding glucose and fructose, respectively. Structural comparison combined with enzymatic assays indicated that Asp-188 and Glu-414 are putative catalytic residues. Further analysis of the substrate binding pocket demonstrated that InvA possesses a stringent substrate specificity toward the α1,2-glycosidic bond of sucrose. Together, we suggest that InvA and homologs represent a novel family of glucosidases. PMID:27777307