Science.gov

Sample records for anaerobic betaproteobacterium georgfuchsia

  1. Anaerobic

    MedlinePlus

    ... more prolonged exercise like walking or jogging. Anaerobic reactions are faster. We need them during shorter, more intense activities like sprinting. Anaerobic exercise leads to a buildup of lactic acid in our tissues. We need oxygen to remove ...

  2. Genome Sequence of Pandoraea sp. ISTKB, a Lignin-Degrading Betaproteobacterium, Isolated from Rhizospheric Soil

    PubMed Central

    Kumar, Madan; Gazara, Rajesh Kumar; Verma, Sandhya; Kumar, Manish

    2016-01-01

    We report here the genome sequence of Pandoraea sp. ISTKB, a betaproteobacterium isolated from rhizospheric soil in the backwaters of Alappuzha, Kerala, India. The strain is alkalotolerant and grows on medium containing lignin as a sole carbon source. Genes and pathways related to lignin degradation were complemented by genomic analysis. PMID:27811115

  3. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site

    SciTech Connect

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; McGuinness, Lora R.; Häggblom, Max M.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Morais, Paula V

    2015-04-13

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.

  4. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site

    DOE PAGES

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; ...

    2015-04-13

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminalmore » electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.« less

  5. Spatial Distribution of an Uranium-Respiring Betaproteobacterium at the Rifle, CO Field Research Site

    PubMed Central

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; McGuinness, Lora R.; Häggblom, Max M.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.

    2015-01-01

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site. PMID:25874721

  6. Anaerobic Metabolism of Indoleacetate

    PubMed Central

    Ebenau-Jehle, Christa; Thomas, Markus; Scharf, Gernot; Kockelkorn, Daniel; Knapp, Bettina; Schühle, Karola; Heider, Johann

    2012-01-01

    The anaerobic metabolism of indoleacetate (indole-3-acetic acid [IAA]) in the denitrifying betaproteobacterium Azoarcus evansii was studied. The strain oxidized IAA completely and grew with a generation time of 10 h. Enzyme activities that transformed IAA were present in the soluble cell fraction of IAA-grown cells but were 10-fold downregulated in cells grown on 2-aminobenzoate or benzoate. The transformation of IAA did not require molecular oxygen but required electron acceptors like NAD+ or artificial dyes. The first products identified were the enol and keto forms of 2-oxo-IAA. Later, polar products were observed, which could not yet be identified. The first steps likely consist of the anaerobic hydroxylation of the N-heterocyclic pyrrole ring to the enol form of 2-oxo-IAA, which is catalyzed by a molybdenum cofactor-containing dehydrogenase. This step is probably followed by the hydrolytic ring opening of the keto form, which is catalyzed by a hydantoinase-like enzyme. A comparison of the proteome of IAA- and benzoate-grown cells identified IAA-induced proteins. Owing to the high similarity of A. evansii with strain EbN1, whose genome is known, we identified a cluster of 14 genes that code for IAA-induced proteins involved in the early steps of IAA metabolism. These genes include a molybdenum cofactor-dependent dehydrogenase of the xanthine oxidase/aldehyde dehydrogenase family, a hydantoinase, a coenzyme A (CoA) ligase, a CoA transferase, a coenzyme B12-dependent mutase, an acyl-CoA dehydrogenase, a fusion protein of an enoyl-CoA hydratase and a 3-hydroxyacyl-CoA dehydrogenase, a beta-ketothiolase, and a periplasmic substrate binding protein for ABC transport as well as a transcriptional regulator of the GntR family. Five predicted enzymes form or act on CoA thioesters, indicating that soon after the initial oxidation of IAA and possibly ring opening, CoA thioesters are formed, and the carbon skeleton is rearranged, followed by a CoA-dependent thiolytic

  7. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8.

    PubMed

    Shi, Yan; Chai, Liyuan; Tang, Chongjian; Yang, Zhihui; Zhang, Huan; Chen, Runhua; Chen, Yuehui; Zheng, Yu

    2013-01-08

    Lignin materials are abundant and among the most important potential sources for biofuel production. Development of an efficient lignin degradation process has considerable potential for the production of a variety of chemicals, including bioethanol. However, lignin degradation using current methods is inefficient. Given their immense environmental adaptability and biochemical versatility, bacterial could be used as a valuable tool for the rapid degradation of lignin. Kraft lignin (KL) is a polymer by-product of the pulp and paper industry resulting from alkaline sulfide treatment of lignocellulose, and it has been widely used for lignin-related studies. Beta-proteobacterium Cupriavidus basilensis B-8 isolated from erosive bamboo slips displayed substantial KL degradation capability. With initial concentrations of 0.5-6 g L-1, at least 31.3% KL could be degraded in 7 days. The maximum degradation rate was 44.4% at the initial concentration of 2 g L-1. The optimum pH and temperature for KL degradation were 7.0 and 30°C, respectively. Manganese peroxidase (MnP) and laccase (Lac) demonstrated their greatest level of activity, 1685.3 U L-1 and 815.6 U L-1, at the third and fourth days, respectively. Many small molecule intermediates were formed during the process of KL degradation, as determined using GC-MS analysis. In order to perform metabolic reconstruction of lignin degradation in this bacterium, a draft genome sequence for C. basilensis B-8 was generated. Genomic analysis focused on the catabolic potential of this bacterium against several lignin-derived compounds. These analyses together with sequence comparisons predicted the existence of three major metabolic pathways: β-ketoadipate, phenol degradation, and gentisate pathways. These results confirmed the capability of C. basilensis B-8 to promote KL degradation. Whole genomic sequencing and systematic analysis of the C. basilensis B-8 genome identified degradation steps and intermediates from this bacterial

  8. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8

    PubMed Central

    2013-01-01

    Background Lignin materials are abundant and among the most important potential sources for biofuel production. Development of an efficient lignin degradation process has considerable potential for the production of a variety of chemicals, including bioethanol. However, lignin degradation using current methods is inefficient. Given their immense environmental adaptability and biochemical versatility, bacterial could be used as a valuable tool for the rapid degradation of lignin. Kraft lignin (KL) is a polymer by-product of the pulp and paper industry resulting from alkaline sulfide treatment of lignocellulose, and it has been widely used for lignin-related studies. Results Beta-proteobacterium Cupriavidus basilensis B-8 isolated from erosive bamboo slips displayed substantial KL degradation capability. With initial concentrations of 0.5–6 g L-1, at least 31.3% KL could be degraded in 7 days. The maximum degradation rate was 44.4% at the initial concentration of 2 g L-1. The optimum pH and temperature for KL degradation were 7.0 and 30°C, respectively. Manganese peroxidase (MnP) and laccase (Lac) demonstrated their greatest level of activity, 1685.3 U L-1 and 815.6 U L-1, at the third and fourth days, respectively. Many small molecule intermediates were formed during the process of KL degradation, as determined using GC-MS analysis. In order to perform metabolic reconstruction of lignin degradation in this bacterium, a draft genome sequence for C. basilensis B-8 was generated. Genomic analysis focused on the catabolic potential of this bacterium against several lignin-derived compounds. These analyses together with sequence comparisons predicted the existence of three major metabolic pathways: β-ketoadipate, phenol degradation, and gentisate pathways. Conclusion These results confirmed the capability of C. basilensis B-8 to promote KL degradation. Whole genomic sequencing and systematic analysis of the C. basilensis B-8 genome identified degradation steps and

  9. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  10. Biochemical Mechanisms and Microorganisms Involved in Anaerobic Testosterone Metabolism in Estuarine Sediments

    PubMed Central

    Shih, Chao-Jen; Chen, Yi-Lung; Wang, Chia-Hsiang; Wei, Sean T.-S.; Lin, I-Ting; Ismail, Wael A.; Chiang, Yin-Ru

    2017-01-01

    Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III)] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment samples were spiked with testosterone (1 mM) and individual electron acceptors (10 mM), including nitrate, Fe3+, and sulfate. The analysis of androgen metabolites indicated that testosterone biodegradation under denitrifying conditions proceeds through the 2,3-seco pathway, whereas testosterone biodegradation under iron-reducing conditions may proceed through an unidentified alternative pathway. Metagenomic analysis and PCR-based functional assays suggested that Thauera spp. were the major testosterone degraders in estuarine sediment samples incubated with testosterone and nitrate. Thauera sp. strain GDN1, a testosterone-degrading betaproteobacterium, was isolated from the denitrifying sediment sample. This strain tolerates a broad range of salinity (0–30 ppt). Although testosterone biodegradation did not occur under sulfate-reducing conditions, we observed the anaerobic biotransformation of testosterone to estrogens in some testosterone-spiked sediment samples. This is unprecedented since biotransformation of androgens to estrogens is known to occur only under oxic conditions. Our metagenomic analysis suggested that Clostridium spp. might play a role in this anaerobic biotransformation. These results expand our understanding of microbial metabolism of steroids under strictly anoxic conditions. PMID:28848528

  11. Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP.

    PubMed

    Pilloni, Giovanni; von Netzer, Frederick; Engel, Marion; Lueders, Tillmann

    2011-10-01

    Bioavailability of electron acceptors is probably the most limiting factor in the restoration of anoxic, contaminated environments. The oxidation of contaminants such as aromatic hydrocarbons, particularly in aquifers, often depends on the reduction of ferric iron or sulphate. We have previously detected a highly active fringe zone beneath a toluene plume at a tar-oil-contaminated aquifer in Germany, where a specialized community of contaminant degraders codominated by Desulfobulbaceae and Geobacteraceae had established. Although on-site geochemistry links degradation to sulphidogenic processes, dominating catabolic (benzylsuccinate synthase α-subunit, bssA) genes detected in situ appeared to be more related to those of Geobacter spp. Therefore, a stable isotope probing (SIP) incubation of sediment samples with (13)C(7)-toluene and comparative electron acceptor amendment was performed. We introduce pyrosequencing of templates from SIP microcosms as a powerful new strategy in SIP gradient interpretation (Pyro-SIP). Our results reveal the central role of Desulfobulbaceae in sulphidogenic toluene degradation in situ, and affiliate the detected bssA genes to this lineage. This and the absence of (13)C-labelled DNA of Geobacter spp. in SIP gradients preclude their relevance as toluene degraders in situ. In contrast, Betaproteobacteria related to Georgfuchsia spp. became labelled under iron-reducing conditions. Furthermore, secondary toluene degraders belonging to the Peptococcaceae detected in both treatments suggest the possibility of functional redundancy among anaerobic toluene degraders on site.

  12. Anaerobic Infections

    MedlinePlus

    ... doses of antibiotics taken by mouth for months. Bacteroides and Prevotella infections. Bacterial organisms from species called Bacteroides and Prevotella are anaerobic. They are common organisms ...

  13. The anaerobic linalool metabolism in Thauera linaloolentis 47 Lol.

    PubMed

    Marmulla, Robert; Cala, Edinson Puentes; Markert, Stephanie; Schweder, Thomas; Harder, Jens

    2016-04-27

    The betaproteobacterium Thauera linaloolentis 47Lol(T) was isolated on the tertiary monoterpene alcohol (R,S)-linalool as sole carbon and energy source under denitrifying conditions. Growth experiments indicated the formation of geraniol and geranial. Thus, a 3,1-hydroxyl-Δ(1)-Δ(2)-mutase (linalool isomerase) activity may initiate the degradation, followed by enzymes of the acyclic terpene utilization (Atu) and leucine/isovalerate utilization (Liu) pathways that were extensively studied in Pseudomonas spp. growing on citronellol or geraniol. A transposon mutagenesis yielded 39 transconjugants that could not grow anaerobically on linalool and nitrate in liquid medium. The deficiencies were apparently based on gene functions required to overcome the toxicity of linalool, but not due to inactivation of genes in the degradation pathway. Growing cultures formed geraniol and geranial transiently, but also geranic acid. Analysis of expressed proteins detected several enzymes of the Atu and Liu pathways. The draft genome of T. linaloolentis 47Lol(T) had atu and liu genes with homology to those of Pseudomonas spp.. The in comparison to monoterpenes larger toxicity of monoterpene alcohols is defeated by several modifications of the cellular structure and metabolism in Thauera linaloolentis 47Lol(T). The acyclic terpene utilization pathway is used in T. linaloolentis 47Lol(T) during growth on (R,S)-linalool and nitrate under anoxic conditions. This is the first experimental verification of an active Atu pathway outside of the genus Pseudomonas.

  14. The ICEXTD of Azoarcus sp. CIB, an integrative and conjugative element with aerobic and anaerobic catabolic properties.

    PubMed

    Zamarro, María Teresa; Martín-Moldes, Zaira; Díaz, Eduardo

    2016-12-01

    Integrative and conjugative elements (ICE) play a major role in aerobic degradation of aromatic compounds, but they have not yet been shown to be involved in anaerobic degradation. We have characterized here the ICEXTD element which endows to the beta-proteobacterium Azoarcus sp. CIB with the ability to utilize aromatic hydrocarbons. The core region of ICEXTD , which shows a remarkable synteny with that of ICEclc-like elements, allows its own intracellular and intercellular mobility. ICEXTD integrates at the tRNAGly of the host chromosome, but it can also excise to produce a ready to transfer circular form. The adaptation modules of ICEXTD represent a unique combination of gene clusters for aerobic (tod genes) and anaerobic (bss-bbs and mbd genes) degradation of certain aromatic hydrocarbons, e.g., toluene, m-xylene and cumene. Transfer of ICEXTD to other Azoarcus strains, e.g., A. evansii, confers them the ability to degrade aromatic hydrocarbons both aerobically and anaerobically. Interestingly, ICEXTD allows Cupriavidus pinatubonensis, a bacterium unable to degrade anaerobically aromatic compounds, to grow with m-xylene under anoxic conditions. Thus, ICEXTD constitutes the first mobile genetic element able to expand the catabolic abilities of certain bacteria for the removal of aromatic hydrocarbons either in the presence or absence of oxygen. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Anaerobic Digestion.

    PubMed

    Liebetrau, Jan; Sträuber, Heike; Kretzschmar, Jörg; Denysenko, Velina; Nelles, Michael

    2017-04-09

    The term anaerobic digestion usually refers to the microbial conversion of organic material to biogas, which mainly consists of methane and carbon dioxide. The technical application of the naturally-occurring process is used to provide a renewable energy carrier and - as the substrate is often waste material - to reduce the organic matter content of the substrate prior to disposal.Applications can be found in sewage sludge treatment, the treatment of industrial and municipal solid wastes and wastewaters (including landfill gas utilization), and the conversion of agricultural residues and energy crops.For biorefinery concepts, the anaerobic digestion (AD) process is, on the one hand, an option to treat organic residues from other production processes. Concomitant effects are the reduction of organic carbon within the treated substance, the conversion of nitrogen and sulfur components, and the production of an energy-rich gas - the biogas. On the other hand, the multistep conversion of complex organic material offers the possibility of interrupting the conversion chain and locking out intermediates for utilization as basic material within the chemical industry.

  16. Anaerobic thermophiles.

    PubMed

    Canganella, Francesco; Wiegel, Juergen

    2014-02-26

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  17. Anaerobic Thermophiles

    PubMed Central

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has

  18. Livestock Anaerobic Digester Database

    EPA Pesticide Factsheets

    The Anaerobic Digester Database provides basic information about anaerobic digesters on livestock farms in the United States, organized in Excel spreadsheets. It includes projects that are under construction, operating, or shut down.

  19. Quinolone activity against anaerobes.

    PubMed

    Appelbaum, P C

    1999-01-01

    The first generation of fluoroquinolones such as ciprofloxacin and ofloxacin are inactive against most anaerobic bacteria. However, some broad-spectrum quinolones, which have recently become clinically available or are under active development, have significant antianaerobic activity. This review summarises the in vitro activity of currently available, as well as experimental, quinolones against clinically significant anaerobic bacteria. Quinolones with low activity against anaerobes include ciprofloxacin, ofloxacin, levofloxacin, fleroxacin, pefloxacin, enoxacin and lomefloxacin. Compounds with intermediate antianaerobic activity include sparfloxacin and grepafloxacin. Trovafloxacin, gatifloxacin and moxifloxacin yield low MICs against most groups of anaerobes. Quinolones with the greatest in vitro activity against anaerobes include clinafloxacin and sitafloxacin (DU-6859a).

  20. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans.

    SciTech Connect

    Beller, H R; Larimer, Frank W

    2006-02-01

    The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, {beta}-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to oxidize mineral electron donors. Notable genomic features include (i) genes encoding c-type cytochromes totaling 1 to 2 percent of the genome, which is a proportion greater than for almost all bacterial and archaeal species sequenced to date, (ii) genes encoding two [NiFe]hydrogenases, which is particularly significant because no information on hydrogenases has previously been reported for T. denitrificans and hydrogen oxidation appears to be critical for anaerobic U(IV) oxidation by this species, (iii) a diverse complement of more than 50 genes associated with sulfur-compound oxidation (including sox genes, dsr genes, and genes associated with the AMP-dependent oxidation of sulfite to sulfate), some of which occur in multiple (up to eight) copies, (iv) a relatively large number of genes associated with inorganic ion transport and heavy metal resistance, and (v) a paucity of genes encoding organic-compound transporters, commensurate with obligate chemolithoautotrophy. Ultimately, the genome sequence of T. denitrificans will enable elucidation of the mechanisms of aerobic and anaerobic sulfur-compound oxidation by {beta}-proteobacteria and will help reveal the molecular basis of this organism's role in major biogeochemical cycles (i.e., those involving sulfur, nitrogen, and carbon) and groundwater restoration.

  1. Anaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica--a result of promiscuous enzymes and regulators?

    PubMed

    Ding, Bin; Schmeling, Sirko; Fuchs, Georg

    2008-03-01

    The anaerobic metabolism of catechol (1,2-dihydroxybenzene) was studied in the betaproteobacterium Thauera aromatica that was grown with CO2 as a cosubstrate and nitrate as an electron acceptor. Based on different lines of evidence and on our knowledge of enzymes and genes involved in the anaerobic metabolism of other aromatic substrates, the following pathway is proposed. Catechol is converted to catechylphosphate by phenylphosphate synthase, which is followed by carboxylation by phenylphosphate carboxylase at the para position to the phosphorylated phenolic hydroxyl group. The product, protocatechuate (3,4-dihydroxybenzoate), is converted to its coenzyme A (CoA) thioester by 3-hydroxybenzoate-CoA ligase. Protocatechuyl-CoA is reductively dehydroxylated to 3-hydroxybenzoyl-CoA, possibly by 4-hydroxybenzoyl-CoA reductase. 3-Hydroxybenzoyl-CoA is further metabolized by reduction of the aromatic ring catalyzed by an ATP-driven benzoyl-CoA reductase. Hence, the promiscuity of several enzymes and regulatory proteins may be sufficient to create the catechol pathway that is made up of elements of phenol, 3-hydroxybenzoate, 4-hydroxybenzoate, and benzoate metabolism.

  2. An indoleacetate-CoA ligase and a phenylsuccinyl-CoA transferase involved in anaerobic metabolism of auxin.

    PubMed

    Schühle, Karola; Nies, Jonas; Heider, Johann

    2016-09-01

    The plant hormone auxin (indoleacetate) is anaerobically degraded by the Betaproteobacterium Aromatoleum aromaticum. We report here on a CoA ligase (IaaB) and a CoA-transferase (IaaL) which are encoded in the apparent substrate-induced iaa operon containing genes for indoleacetate degradation. IaaB is a highly specific indoleacetate-CoA ligase which activates indoleacetate to the CoA-thioester immediately after uptake into the cytoplasm. This enzyme only activates indoleacetate and some closely related compounds such as naphthylacetate, phenylacetate and indolepropionate, and is inhibited by high concentrations of substrates, and by the synthetic auxin compound 2,4-dichlorophenoxyacetate, which does not serve as substrate. IaaL is a CoA-transferase recognizing several C4-dicarboxylic acids, such as succinate, phenylsuccinate or benzylsuccinate and their CoA-thioesters, but only few monocarboxylic acids and no C3-dicarboxylic acids such as benzylmalonate. The enzyme shows no stereospecific discrimation of the benzylsuccinate enantiomers. Moreover, benzylsuccinate is regiospecifically activated to 2-benzylsuccinyl-CoA, whereas phenylsuccinate is converted to an equal mixture of both regioisomers (2- and 3-phenylsuccinyl-CoA). The identification of these two enzymes allows us to set up a modified version of the metabolic pathway of anaerobic indoleacetate degradation and to investigate the sequences databases for the occurrence and distribution of this pathway in other microorgansisms. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Anaerobic thermophilic culture

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

  4. Anaerobic bag culture method.

    PubMed Central

    Rosenblatt, J E; Stewart, P R

    1975-01-01

    In a new method of anaerobic culture, a transparent, gas-impermeable bag is used and the anaerobic environment is established with copper sulfate-saturated steel wool. An Alka-Seltzer tablet generates carbon dioxide. The agar plate surface can be inspected through the bag at any time without interrupting the anaerobic atmosphere or disturbing other specimens. Methylene blue indicator strips are completely reduced by 4 h after the bag is set up and have remained reduced for as long as 3 weeks. Growth of 16 different stock culture anaerobes was generally equivalent by the bag and GasPak jar methods. Yield and growth of anaerobic isolates also were equivalent with 7 of 10 clinical specimens; from the other 3 specimens, 13 isolates were recovered, 5 by both the bag and jar methods and the rest by one method or the other. No consistent differences were found between the anaerobic bag and GasPak jar methods in the yield of anaerobes from clinical specimens. Early growth (24 h of incubation) of anaerobes from one specimen was detected with the bag method. Images PMID:1100671

  5. Anaerobic bag culture method.

    PubMed

    Rosenblatt, J E; Stewart, P R

    1975-06-01

    In a new method of anaerobic culture, a transparent, gas-impermeable bag is used and the anaerobic environment is established with copper sulfate-saturated steel wool. An Alka-Seltzer tablet generates carbon dioxide. The agar plate surface can be inspected through the bag at any time without interrupting the anaerobic atmosphere or disturbing other specimens. Methylene blue indicator strips are completely reduced by 4 h after the bag is set up and have remained reduced for as long as 3 weeks. Growth of 16 different stock culture anaerobes was generally equivalent by the bag and GasPak jar methods. Yield and growth of anaerobic isolates also were equivalent with 7 of 10 clinical specimens; from the other 3 specimens, 13 isolates were recovered, 5 by both the bag and jar methods and the rest by one method or the other. No consistent differences were found between the anaerobic bag and GasPak jar methods in the yield of anaerobes from clinical specimens. Early growth (24 h of incubation) of anaerobes from one specimen was detected with the bag method.

  6. Anaerobic performance at altitude.

    PubMed

    Coudert, J

    1992-10-01

    Anaerobic metabolism is usually evaluated by the determination of the anaerobic capacity and the maximal anaerobic mechanical external power (Wmax). Conflicting results are reported on anaerobic capacity evaluated by maximal oxygen deficit and debt, and maximal blood lactate concentration during acute or chronic hypoxia (acclimatized subjects). Data on muscle biopsies (lactate concentration, changes in ATP, phosphocreatine and glycogen stores, glycolytic enzyme activities) and the few studies on lactate flux give in most cases evidence of a non-alteration of the anaerobic capacity for altitudes up to 5,500 m. No differences are observed in Wmax measured at high altitudes up to 5,200 m during intense short-term exercises: (1) jumps on a force platform which is a good indicator of alactic Wmax, and (2) 7-10 s sprints (i.e. force-velocity test) which solicit alactic metabolism but also lactic pathway. For exercises of duration equal or more than 30 s (i.e. Wingate test), there are conflicting results because a lower participation of aerobic metabolism during this test at high altitude can interfere with anaerobic performance. In conclusion, we can admit that anaerobic performances are not altered by high altitudes up to 5,200 m if the length of exposure does not exceed 5 weeks. After this period, muscle mass begins to decrease.

  7. Anaerobic Digestion and its Applications

    EPA Science Inventory

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  8. Anaerobic Digestion and its Applications

    EPA Science Inventory

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  9. Anaerobic brain abscess

    PubMed Central

    Sudhaharan, Sukanya; Chavali, Padmasri

    2016-01-01

    Background and Objectives: Brain abscess remains a potentially fatal central nervous system (CNS) disease, especially in developing countries. Anaerobic abscess is difficult to diagnose because of cumbersome procedures associated with the isolation of anaerobes. Materials and Methods: This is a hospital-based retrospective microbiological analysis of 430 brain abscess materials (purulent aspirates and/or tissue), for anaerobic organisms, that were received between 1987–2014, by the Microbiology Laboratory in our Institute. Results: Culture showed growth of bacteria 116/430 (27%) of the cases of which anaerobes were isolated in 48/116 (41.1%) of the cases. Peptostreptococcus (51.4 %), was the predominant organism isolated in four cases followed by Bacteroides and Peptococcus species. Conclusion: Early diagnosis and detection of these organisms would help in the appropriate management of these patients. PMID:27307977

  10. Gender comparisons in anaerobic power and anaerobic capacity tests.

    PubMed Central

    Maud, P J; Shultz, B B

    1986-01-01

    The purpose of the study was to compare anaerobic power and anaerobic capacity test scores between young active men and women. Three performance measures of anaerobic power and two of anaerobic capacity were administered to a sample comprising 52 male and 50 female college students (means age = 21.4 yrs). Results indicated significant differences between men and women in body height, weight and per cent fat, in fat free mass (FFM), anaerobic power, and anaerobic capacity when recorded as gross work completed and relative to body weight. However, these differences are reduced when data is adjusted for body weight and further reduced when corrected for FFM. The study found no significant differences between men and women in either anaerobic power or anaerobic capacity when values were given relative to FFM. PMID:3730753

  11. Anaerobic thermophilic culture system

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

  12. The anaerobic digestion process

    SciTech Connect

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  13. Anaerobic digestion process

    SciTech Connect

    Ishida, M.; Haga, R.; Odawara, Y.

    1984-04-10

    First, the organic waste slurry of sewage sludge and/or kitchen garbage is stored in a stable condition after effecting partially thereto a liquefaction treatment in advance by adding liquefying bacteria, and next this slurry is effectively digested anaerobically by way of a liquefaction/gasification-mixed step or a liquefaction/gasification separated step.

  14. Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism.

    PubMed

    Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg; Heider, Johann

    2014-01-01

    Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD(+) and NADP(+) as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.

  15. Simultaneous Involvement of a Tungsten-Containing Aldehyde:Ferredoxin Oxidoreductase and a Phenylacetaldehyde Dehydrogenase in Anaerobic Phenylalanine Metabolism

    PubMed Central

    Debnar-Daumler, Carlotta; Seubert, Andreas; Schmitt, Georg

    2014-01-01

    Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD+ and NADP+ as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH. PMID:24214948

  16. Perspectives for anaerobic digestion.

    PubMed

    Ahring, Birgitte K

    2003-01-01

    The modern society generates large amounts of waste that represent a tremendous threat to the environment and human and animal health. To prevent and control this, a range of different waste treatment and disposal methods are used. The choice of method must always be based on maximum safety, minimum environmental impact and, as far as possible, on valorization of the waste and final recycling of the end products. One of the main trends of today's waste management policies is to reduce the stream of waste going to landfills and to recycle the organic material and the plant nutrients back to the soil. Anaerobic digestion (AD) is one way of achieving this goal and it will furthermore, reduce energy consumption or may even be net energy producing. This chapter aims at provide a basic understanding of the world in which anaerobic digestion is operating today. The newest process developments as well as future perspectives will be discussed.

  17. Anaerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Roopathy, R.

    1995-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used aerobic tempts to degrade nitroaromatics under aerobic microorganisms. In many cases attempts to degrade nitroaromatics under aerobic conditions results in no mineralization and only superficial modifications of the structure. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. Trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitrate from trinitrotoluene is achieved by a series of reductive reactions with the production of ammonia and toluene by Desulfovibrio sp. (B strain). Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. This presentation will review the data supporting the anaerobic transformation of TNT and other nitroaromatics.

  18. Anaerobic digestion process

    SciTech Connect

    Ishida, M.; Haga, R.; Odawara, Y.

    1982-10-19

    An algae culture grown on the water from the digested slurry of a biogasification plant serves as a means of removing CO/sub 2/ from the methane stream while purifying the wastewater and providing more biomass for the anaerobic digestion plant. Tested on a sewage-sludge digestion system, the proposed process improved the methane yield by 32% and methane concentration by 53-98 vol % while lowering the concentration of nitrogen and phosphorus in the final water.

  19. Early anaerobic metabolisms

    PubMed Central

    Canfield, Don E; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8 Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle. PMID:17008221

  20. Simple Method for Culturing Anaerobes

    PubMed Central

    Davis, C. E.; Hunter, W. J.; Ryan, J. L.; Braude, A. I.

    1973-01-01

    A simple, effective method is needed for growing obligate anaerobes in the clinical laboratory. This report describes a pre-reduced anaerobic bottle that can be taken to the bedside for direct inoculation, provides a flat agar surface for evaluation of number and morphology of colonies, and can be incubated in conventional bacteriological incubators. Each anaerobic culture set consisted of two bottles containing brain heart infusion agar and CO2. Gentamicin sulfate (50 μg/ml) was added to one of these to inhibit facultative enteric bacilli. Comparison of the anaerobic bottles with an identical aerobic bottle which was also routinely inoculated permitted early identification of anaerobic colonies. Representative species of most anaerobic genera of proven pathogenicity for man have been isolated from this system during 10 months of routine use. Images PMID:4571657

  1. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    NASA Astrophysics Data System (ADS)

    Hassan, Siti Roshayu; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  2. Economic viability of anaerobic digestion

    SciTech Connect

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  3. Physiology of deletion mutants in the anaerobic β-myrcene degradation pathway in Castellaniella defragrans

    PubMed Central

    2012-01-01

    Background Monoterpenes present a large and versatile group of unsaturated hydrocarbons of plant origin with widespread use in the fragrance as well as food industry. The anaerobic β-myrcene degradation pathway in Castellaniella defragrans strain 65Phen differs from well known aerobic, monooxygenase-containing pathways. The initial enzyme linalool dehydratase-isomerase ldi/LDI catalyzes the hydration of β-myrcene to (S)-(+)-linalool and its isomerization to geraniol. A high-affinity geraniol dehydrogenase geoA/GeDH and a geranial dehydrogenase geoB/GaDH contribute to the formation of geranic acid. A genetic system was for the first time applied for the betaproteobacterium to prove in vivo the relevance of the linalool dehydratase-isomerase and the geraniol dehydrogenase. In-frame deletion cassettes were introduced by conjugation and two homologous recombination events. Results Polar effects were absent in the in-frame deletion mutants C. defragrans Δldi and C. defragrans ΔgeoA. The physiological characterization of the strains demonstrated a requirement of the linalool dehydratase-isomerase for growth on acyclic monoterpenes, but not on cyclic monoterpenes. The deletion of geoA resulted in a phenotype with hampered growth rate on monoterpenes as sole carbon and energy source as well as reduced biomass yields. Enzyme assays revealed the presence of a second geraniol dehydrogenase. The deletion mutants were in trans complemented with the broad-host range expression vector pBBR1MCS-4ldi and pBBR1MCS-2geoA, restoring in both cases the wild type phenotype. Conclusions In-frame deletion mutants of genes in the anaerobic β-myrcene degradation revealed novel insights in the in vivo function. The deletion of a high-affinity geraniol dehydrogenase hampered, but did not preclude growth on monoterpenes. A second geraniol dehydrogenase activity was present that contributes to the β-myrcene degradation pathway. Growth on cyclic monoterpenes independent of the initial

  4. Diversity of anaerobic halophilic microorganisms

    NASA Astrophysics Data System (ADS)

    Oren, Aharon; Oremland, Roland S.

    2000-12-01

    Life in the presence of high salt concentrations is compatible with life in the absence of oxygen. Halophilic and halotolerant anaerobic prokaryotes are found both in the archaeal and in the bacterial domain, and they display a great metabolic diversity. Many of the representatives of the Halobacteriales (Archaea), which are generally considered aerobes, have the potential of anaerobic growth. Some can use alternative electron acceptors such as nitrate, fumarate, dimethylsulfoxide or trimethylamine-N-oxide Halobacterium salinarum can also grow fermentatively on L-arginine, and bacteriorhodopsin-containing cells may even grow anaerobically, energized by light. Obligatory anaerobic halophilic methanogenic Archaea also exist. The bacterial domain contains many anaerobic halophiles, including sulfate reducers. There is also a group of specialized obligatory anaerobic Bacteria, phylogenetically clustering in the low G + C branch of the Firmicutes. Most representatives of this group (order Haloanaerobiales, families Haloanaerobiaceae and Halobacteroidaceae) are fermentative, using a variety of carbohydrates and amino acids. One species combines the potential for anaerobic growth at high salt concentrations with a preference for high temperatures. Others are homoacetogens; Acetohalobium arabaticum can grow anaerobically as a chemolithotroph, producing acetate from hydrogen and CO2. The Haloanaerobiales accumulate high concentrations of K+ and Cl- in their cytoplasm, thereby showing a strategy of salt adaptation similar to that used by the Halobacteriales. Recently a new representative of the Haloanaerobiales was isolated from bottom sediments of the Dead Sea (strain DSSe1), which grows anaerobically by oxidation of glycerol to acetate and CO2 while reducing selenate to selenite and elementary selenium. Other electron acceptors supporting anaerobic growth of this strain are nitrate and trimethylamine-N-oxide. The versatility of life at high salt concentrations with respect

  5. Arsenic, Anaerobes, and Autotrophy.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.

    2008-12-01

    That microbes have resistance to the toxic arsenic oxyanions arsenite [As(III)] and arsenate [As(V)] has been recognized for some time. More recently it was shown that certain prokaryotes can demonstrate As- dependent growth by conserving the energy gained from the aerobic oxidation of As(III) to As(V), or from the reduction of As(V) to As(III) under anaerobic conditions. During the course of our field studies of two alkaline, hypersaline soda lakes (Mono Lake and Searles Lake, CA) we have discovered several new anaerobic chemo- and photo-autotrophic bacteria that can center their energy gain around the redox reactions between As(III) and As(V). Alkalilimnicola ehrlichii, isolated from the water column of Mono Lake is a nitrate-respiring, As(III)-oxidizing chemoautotroph of the gamma-proteobacteria that has a highly flexible metabolism. It can function either as a facultative anaerobe or as a chemo-autotroph, or as a heterotroph (Hoeft et al., 2007). In contrast, strain MLMS-1 of the delta-proteobacteria was also isolated from Mono Lake, but to date is the first example of an obligate As(V)-respirer that is also an obligate chemo-autotroph, gaining its energy via the oxidation of sulfide to sulfate (Hoeft et al., 2004). Strain SLAS-1, isolated from salt-saturated Searles Lake is a member of the Halananerobiales, and can either grow as a heterotroph (lactate e-donor) or chemo- autotroph (sulfide e-donor) while respiring As(V). The fact that it can achieve this feat at salt-saturation (~ 340 g/L) makes it a true extremophile (Oremland et. al., 2005). Finally, strain PHS-1 isolated from a hot spring on Paoha island in Mono Lake is the first example of a photosynthetic bacterium of the gamma- proteobacteria able to link its growth to As(III)-dependent anoxygenic photosynthesis (Kulp et al., 2008). These novel microbes give us new insights into the evolution of arsenic-based metabolism and their role in the biogeochemical cycling of this toxic element. Hoeft, S.E., et

  6. Anaerobic Origin of Ergothioneine.

    PubMed

    Burn, Reto; Misson, Laëtitia; Meury, Marcel; Seebeck, Florian P

    2017-10-02

    Ergothioneine is a sulfur metabolite that occurs in microorganisms, fungi, plants, and animals. The physiological function of ergothioneine is not clear. In recent years broad scientific consensus has formed around the idea that cellular ergothioneine primarily protects against reactive oxygen species. Herein we provide evidence that this focus on oxygen chemistry may be too narrow. We describe two enzymes from the strictly anaerobic green sulfur bacterium Chlorobium limicola that mediate oxygen-independent biosynthesis of ergothioneine. This anoxic origin suggests that ergothioneine is also important for oxygen-independent life. Furthermore, one of the discovered ergothioneine biosynthetic enzymes provides the first example of a rhodanese-like enzyme that transfers sulfur to non-activated carbon. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. PCB breakdown by anaerobic microorganisms

    SciTech Connect

    Not Available

    1989-03-01

    Recently, altered PCB cogener distribution patterns observed in anaerobic sediment samples from the upper Hudson River are being attributed to biologically mediated reductive dechlorination. The authors report their successful demonstration of biologically mediated reductive dechlorination of an Aroclor mixture. In their investigation, they assessed the ability of microorganisms from PCB-contaminated Hudson River sediments (60-562 ppm PCBs) to dechlorinate Aroclor 1242 under anaerobic conditions by eluting microorganisms from the PCB- contaminated sediments and transferring them to a slurry of reduced anaerobic mineral medium and PCB-free sediments in tightly stoppered bottles. They observed dechlorination to be the most rapid at the highest PCB concentration tried by them.

  8. Towards habitat-oriented systems biology of "Aromatoleum aromaticum" EbN1: chemical sensing, catabolic network modulation and growth control in anaerobic aromatic compound degradation.

    PubMed

    Rabus, Ralf; Trautwein, Kathleen; Wöhlbrand, Lars

    2014-04-01

    The denitrifying betaproteobacterium "Aromatoleum aromaticum" EbN1 is a well-studied model organism for anaerobic degradation of aromatic compounds. Following publication of its genome in 2005, comprehensive physiological-proteomic studies were conducted to deduce functional understanding from the genomic blueprint. A catabolic network (85 predicted, 65 identified proteins) for anaerobic degradation of 24 aromatic growth substrates (including 11 newly recognized) was established. Newly elucidated pathways include those for 4-ethylphenol and plant-derived 3-phenylpropanoids, involving functional assignment of several paralogous genes. The substrate-specific regulation of individual peripheral degradation pathways is probably initiated by highly specific chemical sensing via dedicated sensory/regulatory proteins, e.g. three different σ⁵⁴-dependent one-component sensory/regulatory proteins are predicted to discriminate between three phenolic substrates (phenol, p-cresol and 4-ethylphenol) and two different two-component systems are assumed to differentiate between two alkylbenzenes (toluene, ethylbenzene). Investigations under in situ relevant growth conditions revealed (a) preferred utilization of benzoate from a mixture with succinate results from repressed synthesis of a C₄-dicarboxylate TRAP transporter; (b) response to alkylbenzene-induced solvent stress comprises metabolic re-routing of acetyl-CoA and reducing equivalents to poly(3-hydroxybutyrate) synthesis, alteration of cellular membrane composition and formation of putative solvent efflux systems; and (c) multifaceted adaptation to slow growth includes adjustment of energy demand for maintenance and preparedness for future nutritional opportunities, i.e. provision of uptake systems and catabolic enzymes for multiple aromatic substrates despite their absence. This broad knowledge base taken together with the recent development of a genetic system will facilitate future functional, biotechnological

  9. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  10. Implementing Livestock Anaerobic Digestion Projects

    EPA Pesticide Factsheets

    Page provides information to help make an informed decision about installing an anaerobic digester. Is it a good match for a farm’s organic waste, project financing, development guidelines and permit requirements?

  11. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  12. Biology of gut anaerobic fungi.

    PubMed

    Bauchop, T

    1989-01-01

    The obligately anaerobic nature of the gut indigenous fungi distinguishes them from other fungi. They are distributed widely in large herbivores, both in the foregut of ruminant-like animals and in the hindgut of hindgut fermenters. Comparative studies indicate that a capacious organ of fermentative digestion is required for their development. These fungi have been assigned to the Neocallimasticaceae, within the chytridiomycete order Spizellomycetales. The anaerobic fungi of domestic ruminants have been studied most extensively. Plant material entering the rumen is rapidly colonized by zoospores that attach and develop into thalli. The anaerobic rumen fungi have been shown to produce active cellulases and xylanases and specifically colonise and grow on plant vascular tissues. Large populations of anaerobic fungi colonise plant fragment in the rumens of cattle and sheep on high-fibre diets. The fungi actively ferment cellulose which results in formation of a mixture of products including acetate, lactate, ethanol, formate, succinate, CO2 and H2. The properties of the anaerobic fungi together with the extent of their populations on plant fragments in animals on high-fibre diets indicates a significant role for the fungi in fibre digestion.

  13. Anaerobic benzene degradation by bacteria

    PubMed Central

    Vogt, Carsten; Kleinsteuber, Sabine; Richnow, Hans‐Hermann

    2011-01-01

    Summary Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen‐dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene‐degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the ‘key players’ of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation. PMID:21450012

  14. Carbonic anhydrases of anaerobic microbes.

    PubMed

    Ferry, James G

    2013-03-15

    Carbonic anhydrases (CAs) catalyze the reversible hydration of carbon dioxide to bicarbonate and are abundantly distributed in prokaryotes and eukaryotes. There are five classes (α,β,γ,δ,ζ) with no significant sequence or structural identity among them, a remarkable example of convergent evolution. The β and γ classes predominate in anaerobic microbes, living without O2, that comprise a substantial portion of the living protoplasm on Earth. Anaerobes reside in the lower intestinal tract of humans, one of many O2-free environments on Earth, where they convert complex biomass to methane and CO2 contributing an essential link in the global carbon cycle. Carbon dioxide is a universal metabolite of anaerobes necessitating CA for a diversity of proposed functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  16. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  17. Arsenic, Anaerobes, and Astrobiology

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  18. Anaerobic bioprocessing of organic wastes.

    PubMed

    Verstraete, W; de Beer, D; Pena, M; Lettinga, G; Lens, P

    1996-05-01

    Anaerobic digestion of dissolved, suspended and solid organics has rapidly evolved in the last decades but nevertheless still faces several scientific unknowns. In this review, some fundamentals of bacterial conversions and adhesion are addressed initially. It is argued in the light of ΔG-values of reactions, and in view of the minimum energy quantum per mol, that anaerobic syntrophs must have special survival strategies in order to support their existence: redistributing the available energy between the partners, reduced end-product fermentation reactions and special cell-to-cell physiological interactions. In terms of kinetics, it appears that both reaction rates and residual substrate thresholds are strongly related to minimum ΔG-values. These new fundamental insights open perspectives for efficient design and operation of anaerobic bioprocesses. Subsequently, an overview is given of the current anaerobic biotechnology. For treating wastewaters, a novel and high performance new system has been introduced during the last decade; the upflow anaerobic sludge blanket system (UASB). This reactor concept requires anaerobic consortia to grow in a dense and eco-physiologically well-organized way. The microbial principles of such granular sludge growth are presented. Using a thermodynamic approach, the formation of different types of aggregates is explained. The application of this bioprocess in worldwide wastewater treatment is indicated. Due to the long retention times of the active biomass, the UASB is also suitable for the development of bacterial consortia capable of degrading xenobiotics. Operating granular sludge reactors at high upflow velocities (5-6 m/h) in expanded granular sludge bed (EGSB) systems enlarges the application field to very low strength wastewaters (chemical oxygen demand < 1 g/l) and psychrophilic temperatures (10°C). For the treatment of organic suspensions, there is currently a tendency to evolve from the conventional mesophilic

  19. Anaerobic treatment of food wastes

    SciTech Connect

    Criner, G. )

    1991-04-01

    This article describes a research project at the University of Maine in which food wastes from the University cafeteria salad bar are processed in the anaerobic facility which normally treats only animal wastes. The project has benefited the University in several ways: avoidance of waste disposal fees; increased electricity co-generated from the biogas process; and use of the residual as fertilizer. An economic analysis indicated that the estimated cost of anaerobic treatment of the salad bar wastes was $4520/yr and benefits were $4793/yr. Since the digester was already in use, this cost was not factored into the analysis. Further studies are being planned.

  20. How anaerobic is the Wingate Anaerobic Test for humans?

    PubMed

    Beneke, R; Pollmann, C; Bleif, I; Leithäuser, R M; Hütler, M

    2002-08-01

    The Wingate Anaerobic Test (WAnT) is generally used to evaluate anaerobic cycling performance, but knowledge of the metabolic profile of WAnT is limited. Therefore the energetics of WAnT was analysed with respect to working efficiency and performance. A group of 11 male subjects [mean (SD), age 21.6 (3.8) years, height 178.6 (6.6) cm, body mass 82.2 (12.1) kg] performed a maximal incremental exercise test and a WAnT. Lactic and alactic anaerobic energy outputs were calculated from net lactate production and the fast component of the kinetics of post-exercise oxygen uptake. Aerobic metabolism was determined from oxygen uptake during exercise. The WAnT mean power of 683 (96.0) W resulted from a total energy output above the value at rest of 128.1 (23.2) kJ x 30 s(-1) [mean metabolic power=4.3 (0.8) kW] corresponding to a working efficiency of 16.2 (1.6)%. The WAnT working efficiency was lower (P < 0.01) than the corresponding value of 24.1 (1.7)% at 362 (41) W at the end of an incremental exercise test. During WAnT the fractions of the energy from aerobic, anaerobic alactic and lactic acid metabolism were 18.6 (2.5)%, 31.1 (4.6)%, and 50.3 (5.1)%, respectively. Energy from metabolism of anaerobic lactic acid explained 83% and 81% of the variance of WAnT peak and mean power, respectively. The results indicate firstly that WAnT requires the use of more anaerobically derived energy than previously estimated, secondly that anaerobic metabolism is dominated by glycolysis, thirdly that WAnT mechanical efficiency is lower than that found in aerobic exercise tests, and fourthly that the latter finding partly explains discrepancies between previously published and the present data about the metabolic profile of WAnT.

  1. Processing anaerobic sludge for extended storage as anaerobic digester inoculum.

    PubMed

    Li, Jiajia; Zicari, Steven M; Cui, Zongjun; Zhang, Ruihong

    2014-08-01

    Thermophilic anaerobic sludge was processed to reduce the volume and moisture content in order to reduce costs for storing and transporting the sludge as microbial inoculum for anaerobic digester startup. The moisture content of the sludge was reduced from 98.7% to 82.0% via centrifugation and further to 71.5% via vacuum evaporation. The processed sludge was stored for 2 and 4 months and compared with the fresh sludge for the biogas and methane production using food waste and non-fat dry milk as substrates. It was found that fresh unprocessed sludge had the highest methane yield and the yields of both unprocessed and processed sludges decreased during storage by 1-34%, however processed sludges seemed to regain some activity after 4 months of storage as compared to samples stored for only 2 months. Maximum methane production rates obtained from modified Gompertz model application also increased between the 2-month and 4-month processed samples.

  2. Endocarditis caused by anaerobic bacteria.

    PubMed

    Kestler, M; Muñoz, P; Marín, M; Goenaga, M A; Idígoras Viedma, P; de Alarcón, A; Lepe, J A; Sousa Regueiro, D; Bravo-Ferrer, J M; Pajarón, M; Costas, C; García-López, M V; Hidalgo-Tenorio, C; Moreno, M; Bouza, E

    2017-04-05

    Infective endocarditis (IE) caused by anaerobic bacteria is a rare and poorly characterized disease. Most data reported in the literature are from case reports [1-3]. Therefore, we assessed the situation of anaerobic IE (AIE) in Spain using the database of the Spanish Collaboration on Endocarditis (GAMES). We performed a prospective study from 2008 to 2016 in 26 Spanish centers. We included 2491 consecutive cases of definite IE (Duke criteria). Anaerobic bacteria caused 22 cases (0.9%) of definite IE. Median age was 66 years (IQR, 56-73), and 19 (86.4%) patients were men. Most patients (14 [63.6%]) had prosthetic valve IE and all episodes were left-sided: aortic valves, 12 (54.5%); and mitral valves, 8 (36.4%). The most common pathogens were Propionibacterium acnes (14 [63.6%]), Lactobacillus spp (3 [13.63%]), and Clostridium spp. (2 [9.0%]), and the infection was mainly odontogenic. Fifteen of the 22 patients (68.2%) underwent cardiac surgery. Mortality was 18.2% during admission and 5.5% after 1 year of follow-up. When patients with AIE were compared with the rest of the cohort, we found that although those with AIE had a similar age and Charlson comorbidity index, they were more likely to have community-acquired IE (86.4% vs. 60.9%, p = 0.01), have undergone cardiac surgery (68.2% vs 48.7% p = 0.06), and have had lower mortality rates during admission (18.2% vs. 27.3%). IE due to anaerobic bacteria is an uncommon disease that affects mainly prosthetic valves and frequently requires surgery. Otherwise, there are no major differences between AIE and IE caused by other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry.

  4. Physiologically anaerobic microorganisms of the deep subsurface

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  5. Infected Pneumatocele Following Anaerobic Pneumonia in Adult

    PubMed Central

    Chung, Yeon Tae; Lee, Kyung Duk; Seon, Kyoung Youn; Lee, Jong Hyun; Lee, Sung Ho; Choi, Se Ho

    2005-01-01

    We report a case of an infected pneumatocele in the course of anaerobic pneumonia in an adult. To the best of our knowledge, anaerobic pneumonia complicated by a pneumatocele in an adult has not previously been described. The pneumatocele occurred on the fifth day of hospitalization, and rapidly increased in size, with the development of a subsequent mixed anaerobe infection. A pig-tail catheter was inserted and the pus drained. The bacterial culture from the pus was positive for three anaerobes: Bacteroid species, Peptostreptococcus asaccharolyticus and Fusobacterium species. Intravenous antibiotics and percutaneous catheter drainage resulted in a successful treatment. PMID:16491835

  6. Anaerobic bacteria from hypersaline environments.

    PubMed Central

    Ollivier, B; Caumette, P; Garcia, J L; Mah, R A

    1994-01-01

    Strictly anaerobic halophiles, namely fermentative, sulfate-reducing, homoacetogenic, phototrophic, and methanogenic bacteria are involved in the oxidation of organic carbon in hypersaline environments. To date, six anaerobic fermentative genera, containing nine species, have been described. Two of them are homoacetogens. Six species belong to the family Haloanaerobiaceae, as indicated by their unique 16S rRNA oligonucleotide sequences. Desulfohalobium retbaense and Desulfovibrio halophilus represent the only two moderately halophilic sulfate reducers so far reported. Among anoxygenic phototrophic anaerobes, a few purple bacteria with optimal growth at salinities between 6 and 11% NaCl have been isolated from hypersaline habitats. They belong to the genera Rhodospirillum, Chromatium, Thiocapsa, and Ectothiorhodospira. The commonest organisms isolated so far are Chromatium salexigens, Thiocapsa halophila, and Rhodospirillum salinarum. Extremely halophilic purple bacteria have most commonly been isolated from alkaline brines and require about 20 to 25% NaCl for optimal growth. They belong to the family Ectothiorodhospiraceae. Their osmoregulation involves synthesis or uptake of compatible solutes such as glycine-betaine that accumulate in their cytoplasm. The existence of methanogens in hypersaline environments is related to the presence of noncompetitive substrates such as methylamines, which originate mainly from the breakdown of osmoregulatory amines. Methanogenesis probably does not contribute to the mineralization of carbohydrates at NaCl concentrations higher than 15%. Above this concentration, sulfate reduction is probably the main way to oxidize H2 (although at rates too low to use up all the H2 formed) and occupies a terminal function kn the degradation of carbohydrates. Three genera and five species of halophilic methylotrophic methanogens have been reported. A bloom of phototrophic bacteria in the marine salterns of Salins-de-Giraud, located on the

  7. Anaerobic bacteria from hypersaline environments.

    PubMed

    Ollivier, B; Caumette, P; Garcia, J L; Mah, R A

    1994-03-01

    Strictly anaerobic halophiles, namely fermentative, sulfate-reducing, homoacetogenic, phototrophic, and methanogenic bacteria are involved in the oxidation of organic carbon in hypersaline environments. To date, six anaerobic fermentative genera, containing nine species, have been described. Two of them are homoacetogens. Six species belong to the family Haloanaerobiaceae, as indicated by their unique 16S rRNA oligonucleotide sequences. Desulfohalobium retbaense and Desulfovibrio halophilus represent the only two moderately halophilic sulfate reducers so far reported. Among anoxygenic phototrophic anaerobes, a few purple bacteria with optimal growth at salinities between 6 and 11% NaCl have been isolated from hypersaline habitats. They belong to the genera Rhodospirillum, Chromatium, Thiocapsa, and Ectothiorhodospira. The commonest organisms isolated so far are Chromatium salexigens, Thiocapsa halophila, and Rhodospirillum salinarum. Extremely halophilic purple bacteria have most commonly been isolated from alkaline brines and require about 20 to 25% NaCl for optimal growth. They belong to the family Ectothiorodhospiraceae. Their osmoregulation involves synthesis or uptake of compatible solutes such as glycine-betaine that accumulate in their cytoplasm. The existence of methanogens in hypersaline environments is related to the presence of noncompetitive substrates such as methylamines, which originate mainly from the breakdown of osmoregulatory amines. Methanogenesis probably does not contribute to the mineralization of carbohydrates at NaCl concentrations higher than 15%. Above this concentration, sulfate reduction is probably the main way to oxidize H2 (although at rates too low to use up all the H2 formed) and occupies a terminal function kn the degradation of carbohydrates. Three genera and five species of halophilic methylotrophic methanogens have been reported. A bloom of phototrophic bacteria in the marine salterns of Salins-de-Giraud, located on the

  8. Anaerobic Toxicity of Cationic Silver Nanoparticles

    EPA Pesticide Factsheets

    Toxicity data for the impact of nano-silver on anaerobic degradation.This dataset is associated with the following publication:Gitipour, A., S. Thiel, K. Scheckel, and T. Tolaymat. Anaerobic Toxicity of Cationic Silver Nanoparticles. D. Barcelo Culleres, and J. Gan SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 557: 363-368, (2016).

  9. Factor Analysis of Various Anaerobic Power Tests.

    ERIC Educational Resources Information Center

    Manning, James M.; And Others

    A study investigated the relationship between selected anthropometric variables and of numerous anaerobic power tests with measures obtained on an isokinetic dynamometer. Thirty-one male college students performed several anaerobic power tests, including: the vertical jump using the Lewis formula; the Margaria-Kalamen stair climb test; the Wingate…

  10. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a...

  11. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a...

  12. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a...

  13. Factor Analysis of Various Anaerobic Power Tests.

    ERIC Educational Resources Information Center

    Manning, James M.; And Others

    A study investigated the relationship between selected anthropometric variables and of numerous anaerobic power tests with measures obtained on an isokinetic dynamometer. Thirty-one male college students performed several anaerobic power tests, including: the vertical jump using the Lewis formula; the Margaria-Kalamen stair climb test; the Wingate…

  14. Anaerobic Infections in Children with Neurological Impairments.

    ERIC Educational Resources Information Center

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  15. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a...

  16. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a...

  17. Anaerobic Infections in Children with Neurological Impairments.

    ERIC Educational Resources Information Center

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  18. Anaerobic digestion for household organics

    SciTech Connect

    Sinclair, R.; Kelleher, M.

    1995-04-01

    Considerable success in using anaerobic technology for processing household organics is being reported by several recently constructed facilities in Europe. Organic residuals collected separately in a Belgian town are processed to produce biogas and a compost-like material in less than one month. The dry anaerobic conversion process (DRANCO) was developed by Organic Waste Systems (OWS) in the 1980s, with the collaboration of Professor Willy Verstraete at the University of Ghent`s Laboratory of Applied Microbial Ecology. The patented process converts solid and semisolid organic residuals into biogas (for energy recovery) and a stable humus like product. The plant has competing odor sources such as the active landfill and the surrounding farmland - in fact, the smell of livestock manure is quite prevalent in this heavily agricultural area. Addition of the nonrecyclable paper fraction to the feedstock improves the carbon/nitrogen ratio, soaks up moisture, and absorbs odor. The entire Brecht facility does not occupy much space and total material retention time at the site is one month, compared to a number of months for aerobic systems. It also has a low staffing requirement, provides energy self-sufficiency, and the final soil enhancement product meets established quality standards.

  19. Anaerobic acidogenesis of dairy manure

    SciTech Connect

    Krones, M.J.

    1989-01-01

    The objective of this research was to determine if high rate acidogenic fermentation of dairy manure was possible, Whole dairy manure was ground and diluted to 4% total solids and fed to a 10 L anaerobic chemostat operating at 35C and with hydraulic retention times varying between 6 and 50 hours. Several physical and organic parameters of the influent and effluent were measured and compared. The results indicated that the manure was too refractory for high rate liquefaction and hydrolysis. A second experiment was conducted using the same techniques and substrate but varying the substrate pH between 5 and 7. The objectives were to further investigate the pH sensitivity of the acidogenic process and to determine if, by introducing a substrate with a low pH, acidogenesis might proceed more efficiently. The primary result of decreasing the pH was a smaller proportion of methane and an increased proportion of hydrogen in the gas. Liquefaction and hydrolysis continued to be rate limiting and appeared to be a major impediment to two phase anaerobic treatment of dairy manure.

  20. Anaerobic digestion in rural China

    SciTech Connect

    Henderson, J.P.

    1997-01-01

    The People`s Republic of China has been promoting underground, individual, anaerobic digesters to process rural organic materials. This strategy has resulted in approximately five million household anaerobic digesters installed in China today. Simple reactors provide energy and fertilizer for Chinese farms and villages. Another benefit includes improved household sanitation. Reactor design has evolved over time. In the standard modern design, effluent is removed from the reactor at the top of the water column, meaning that supernatant is collected rather than sludge. Additionally, no mixing of the system occurs when effluent is removed. In some systems, a vertical cylindrical pull-rod port is added to the base of the effluent port. Effluent is removed by moving the pull-rod - simply a wooden shaft with a metal disk on the bottom - up and down in the port. A bucket can be placed directly under the pull-rod port, simplifying effluent removal, while the movement of the wooden shaft provides some mixing in the reactor. The gas primarily is used for cooking and lighting. A digester can provide approximately 60 percent of a family`s energy needs. Effluent from the reactors is an odorless, dark colored slurry, primarily used as an agricultural fertilizer. 3 figs.

  1. Toxicants inhibiting anaerobic digestion: a review.

    PubMed

    Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C

    2014-12-01

    Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion.

  2. Anaerobic biorefinery: Current status, challenges, and opportunities.

    PubMed

    Sawatdeenarunat, Chayanon; Nguyen, Duc; Surendra, K C; Shrestha, Shilva; Rajendran, Karthik; Oechsner, Hans; Xie, Li; Khanal, Samir Kumar

    2016-09-01

    Anaerobic digestion (AD) has been in use for many decades. To date, it has been primarily aimed at treating organic wastes, mainly manures and wastewater sludge, and industrial wastewaters. However, with the current advancements, a more open mind is required to look beyond these somewhat restricted original applications of AD. Biorefineries are such concepts, where multiple products including chemicals, fuels, polymers etc. are produced from organic feedstocks. The anaerobic biorefinery concept is now gaining increased attention, utilizing AD as the final disposal step. This review aims at evaluating the potential significance of anaerobic biorefineries, including types of feedstocks, uses for the produced energy, as well as sustainable applications of the generated residual digestate. A comprehensive analysis of various types of anaerobic biorefineries has been developed, including both large-scale and household level applications. Finally, future directives are highlighted showing how anaerobic biorefinery concept could impact the bioeconomy in the near future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.

  4. Anaerobic exercise in pediatric cystic fibrosis.

    PubMed

    Klijn, Peter H; Terheggen-Lagro, Suzanne W; Van Der Ent, Cornelis K; Van Der Net, Janjaap; Kimpen, Jan L; Helders, Paul J

    2003-09-01

    Anaerobic fitness is important for daily functioning of children with cystic fibrosis (CF). The aim of this study was to assess the determinants of anaerobic performance in CF. Anaerobic performance was measured in 39 children with CF (mean age, 13.2 +/- 1.8 (SD) years, forced expired volume in 1 sec (FEV(1)) 81.6 +/- 22.1% predicted), using a Wingate anaerobic test. Significant associations were found for peak power (PP) and mean power (MP) with fat-free mass (FFM) body weight, body mass index, maximal isometric muscle force, and aerobic capacity. Pulmonary function was correlated with anaerobic indices when controlled for FFM. Multiple regression analysis indicated that FFM and FEV(1) accounted for 82% and 86% of the variability in PP and MP, respectively. Patients with moderate CF (FEV(1) < 80%), as compared to mild CF (FEV(1) >/= 80%), had higher PP (difference = 85 W, 95% CI = 27-144 W) and MP (difference = 53 W, 95% CI = 42-63 W) at equivalent FFM. Our results indicate that FFM and pulmonary function are important determinants of anaerobic exercise performance in children with CF. With progression of pulmonary disease, anaerobic performance may be enhanced. Copyright 2003 Wiley-Liss, Inc.

  5. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    PubMed Central

    2013-01-01

    For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-based Anaerobic Sprint Test (RAST) under 3 conditions on separate days: while listening to “slow rhythm music”, “fast rhythm music” or “no music”. 48 hours after the subjects completed RAST under 3 conditions, Wingate Anaerobic Power (WAN) tests were performed under 3 music conditions. The order of the 3 conditions (slow music, fast music and no music) was selected randomly to prevent an order effect. Results showed no significant differences between 3 conditions in anaerobic power assessments, heart rate or blood lactate (p > 0.05). On the basis of these results it can be said that music cannot improve anaerobic performance. The type of music had no impact on power outputs during RAST and WAN exercise. As a conclusion, listening to music and its rhythm cannot enhance anaerobic performance and cannot change the physiological response to supramaximal exercise. PMID:24744463

  6. Molecular ecology of anaerobic reactor systems.

    PubMed

    Hofman-Bang, J; Zheng, D; Westermann, P; Ahring, B K; Raskin, L

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these processes. Only a few percent of Bacteria and Archaea have so far been isolated, and almost nothing is known about the dynamics and interactions between these and other microorganisms. This lack of knowledge is most clearly exemplified by the sometimes unpredictable and unexplainable failures and malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine why and what they are doing. As genetic manipulations of anaerobes have been shown in only a few species permitting in-situ gene expression studies, the only way to elucidate the function of different microbes is to correlate the metabolic capabilities of isolated microbes in pure culture to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various specific nucleic acid probes are discussed and exemplified by studies of anaerobic granular sludge, biofilm and digester systems.

  7. Anaerobic filter for biogas production

    NASA Astrophysics Data System (ADS)

    Chavadej, S.

    1980-01-01

    A laboratory study evaluated the performance of an anaerobic filter in producing biogas from pig waste with 30,000 mg/l of COD. The filter packing was bamboo rings of 1 and 1/2 in. diameter, 1 in. long; the bamboo-bed filter operated satisfactorily in a wide COD loading range of 3.74-15.65 kg/cu m/d which corresponds to the hydraulic retention of 8.47 to 1.68 days. At the optimum loading of 7.299 kg COD/cu m/d, the largest gas rate of 0.212 cu m/kg of COD was produced. The required volume of the digester for 1.2 cu m/d of gas production would be only 1.5 cu m; in practical applications, consideration should be given to the gas collecting system and clogging problems.

  8. Anaerobic digestion of alcohol stillage

    SciTech Connect

    Binder, L.K.

    1981-01-01

    In the production of ethanol from grain, the distillation step produces a residue of distillers grains or stillage that contains greater than 90% water and is currently dried and used as a cattle feed supplement. Experimental work was carried out on the anaerobic digestion of the stillage to determine the feasibility of using the CH/sub 4/ produced to supply the energy required in the ethanol distillation step. The fermentation characteristics of the stillage were studied, and the amount of CH/sub 4/ produced was determined. Based on an economic analysis, the value of the pressed solids fraction of the stillage as feed is much greater than the potential return from producing CH/sub 4/.

  9. Gram-Positive Anaerobic Cocci

    PubMed Central

    Murdoch, D. A.

    1998-01-01

    Gram-positive anaerobic cocci (GPAC) are a heterogeneous group of organisms defined by their morphological appearance and their inability to grow in the presence of oxygen; most clinical isolates are identified to species in the genus Peptostreptococcus. GPAC are part of the normal flora of all mucocutaneous surfaces and are often isolated from infections such as deep organ abscesses, obstetric and gynecological sepsis, and intraoral infections. They have been little studied for several reasons, which include an inadequate classification, difficulties with laboratory identification, and the mixed nature of the infections from which they are usually isolated. Nucleic acid studies indicate that the classification is in need of radical revision at the genus level. Several species of Peptostreptococcus have recently been described, but others still await formal recognition. Identification has been based on carbohydrate fermentation tests, but most GPAC are asaccharolytic and use the products of protein degradation for their metabolism; the introduction of commercially available preformed enzyme kits affords a physiologically more appropriate method of identification, which is simple and relatively rapid and can be used in routine diagnostic laboratories. Recent reports have documented the isolation in pure culture of several species, notably Peptostreptococcus magnus, from serious infections. Studies of P. magnus have elucidated several virulence factors which correlate with the site of infection, and reveal some similarities to Staphylococcus aureus. P. micros is a strongly proteolytic species; it is increasingly recognized as an important pathogen in intraoral infections, particularly periodontitis, and mixed anaerobic deep-organ abscesses. Comparison of antibiotic susceptibility patterns reveals major differences between species. Penicillins are the antibiotics of choice, although some strains of P. anaerobius show broad-spectrum β-lactam resistance. PMID:9457430

  10. Sleep deprivation induced anxiety and anaerobic performance.

    PubMed

    Vardar, Selma Arzu; Oztürk, Levent; Kurt, Cem; Bulut, Erdogan; Sut, Necdet; Vardar, Erdal

    2007-01-01

    The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1) following a full-night of habitual sleep (baseline measurements), (2) following 30 hours of sleep deprivation, and (3) following partial-night sleep deprivation. Baseline measurements were performed the day before total sleep deprivation. Measurements following partial sleep deprivation were made 2 weeks later than total sleep deprivation measurements. State anxiety was measured prior to each Wingate test. The mean state anxiety following total sleep deprivation was higher than the baseline measurement (44.9 ± 12.9 vs. 27.6 ± 4.2, respectively, p = 0.02) whereas anaerobic performance parameters remained unchanged. Neither anaerobic parameters nor state anxiety levels were affected by one night partial sleep deprivation. Our results suggest that 30 hours continuous wakefulness may increase anxiety level without impairing anaerobic performance, whereas one night of partial sleep deprivation was ineffective on both state anxiety and anaerobic performance. Key pointsShort time total sleep deprivation (30 hours) increases state anxiety without any competition stress.Anaerobic performance parameters such as peak power, mean power and minimum power may not show a distinctive difference from anaerobic performance in a normal sleep day despite the high anxiety level induced by short time sleep deprivation.Partial sleep deprivation does not affect anxiety level and anaerobic performance of the next day.

  11. Energy from anaerobic methane production. [Sweden

    SciTech Connect

    Not Available

    1982-02-01

    Since 1970 Swedish researchers have been testing the ANAMET (anaerobic-aerobic-methane) process, which involves converting industrial wastewaters via an initial anaerobic microbiological step followed by an aerobic one. Recycling the biomass material in each step allows shorter hydraulic retention times without decreasing stability or solids reduction. Since the first ANAMET plants began operating at a Swedish sugar factory in 1972, 17 more plants have started up or are under construction. Moreover, the ANAMET process has engendered to offshoot BIOMET (biomass-methane) process, a thermophilic anaerobic scheme that can handle sugar-beet pulp as well as grass and other soft, fast-growing biomasses.

  12. Fate of Trace Metals in Anaerobic Digestion.

    PubMed

    Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L

    2015-01-01

    A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.

  13. Cellulose biosynthesis by the beta-proteobacterium, Chromobacterium violaceum.

    PubMed

    Recouvreux, Derce O S; Carminatti, Claudimir A; Pitlovanciv, Ana K; Rambo, Carlos R; Porto, Luismar M; Antônio, Regina V

    2008-11-01

    The Chromobacterium violaceum ATCC 12472 genome was sequenced by The Brazilian National Genome Project Consortium. Previous annotation reported the presence of cellulose biosynthesis genes in that genome. Analysis of these genes showed that, as observed in other bacteria, they are organized in two operons. In the present work, experimental evidences of the presence of cellulose in the extracellular matrix of the biofilm produced by C. violaceum in static cultures are shown. Biofilm samples were enzymatically digested by cellulase, releasing glucose units, suggesting the presence of cellulose as an extracellular matrix component. Fluorescence microscopy observations showed that C. violaceum produces a cellulase-sensitive extracellular matrix composed of fibers able to bind calcofluor. C. violaceum grows on medium containing Congo red, forming brown-red colonies. Together, these results suggest that cellulase-susceptible matrix material is cellulose. Scanning electronic microscopy analysis showed that the extracellular matrix exhibited a network of microfibrils, typical of bacterial cellulose. Although cellulose production is widely distributed between several bacterial species, including at least the groups of Gram-negative proteobacteria alpha and gamma, we give for the first time experimental evidence for cellulose production in beta-proteobacteria.

  14. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase

    SciTech Connect

    Hallenbeck, P.C. ); Clark, M.A.; Barrett, E.L. )

    1989-06-01

    Mutants of Salmonella typhimurium that lack the biosynthetic sulfite reductase (cysI and cysJ mutants) retain the ability to reduce sulfite for growth under anaerobic conditions. Here we report studies of sulfite reduction by a cysI mutant of S. typhimurium and purification of the associated anaerobic sulfite reductase. Sulfite reduction for anaerobic growth did not require a reducing atmosphere but was prevented by an argon atmosphere contaminated with air (<0.33%). It was also prevented by the presence of 0.1 mM nitrate. Anaerobic growth in liquid minimal medium, but not on agar, was found to require additions of trace amounts (10{sup {minus}7} M) of cysteine. Spontaneous mutants that grew under the argon contaminated with air also lost the requirement for 10{sup {minus}7}M cysteine for anaerobic growth in liquid. A role for sulfite reduction in anaerobic energy generation was contraindicated by the findings that sulfite reduction did not improve cell yields, and anaerobic sulfite reductase activity was greatest during the stationary phase of growth. Sulfite reductase was purified from the cytoplasmic fraction of the anaerobically grown cysI mutant and was purified 190-fold. The most effective donor in crude extracts was NADH. NADHP and methyl viologen were, respectively, 40 and 30% as effective as NADH. Oxygen reversibly inhibited the enzyme. The anaerobic sulfite reductase showed some resemblance to the biosynthetic sulfite reductase, but apparently it has a unique, as yet unidentified function.

  15. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions.

    PubMed

    Jensen, T R; Lastra Milone, T; Petersen, G; Andersen, H R

    2017-04-01

    Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h experiment with intermittent aeration (3 h:3 h) in a period of 24 h followed by a subsequent anaerobic period of 24 h in a cycle of 48 h which was repeated five times during the experiment. The anaerobic reactors were kept under strict anaerobic conditions in the same period (240 h). Two methods for calculating hydrolysis rates based on soluble chemical oxygen demand were compared. Two-way analysis of variance with the Bonferroni post-test was performed in order to register any significant difference between reactors with intermittent aeration and strictly anaerobic conditions respectively. The experiment demonstrated a statistically significant difference in favor of the reactors with intermittent aeration showing a tendency towards accelerated anaerobic hydrolysis rates due to application of intermittent aeration. The conclusion of the work is thus that intermittent aeration applied in the activated return sludge process can improve the treatment capacity further in full scale applications.

  16. Anaerobes in Industrial- and Environmental Biotechnology.

    PubMed

    Hatti-Kaul, Rajni; Mattiasson, Bo

    Anaerobic microorganisms present in diverse ecological niches employ alternative strategies for energy conservation in the absence of oxygen which enables them to play a key role in maintaining the global cycles of carbon, nitrogen, and sulfur, and the breakdown of persistent compounds. Thereby they become useful tools in industrial and environmental biotechnology. Although anaerobes have been relatively neglected in comparison to their aerobic counterparts, with increasing knowledge about their diversity and metabolic potential and the development of genetic tools and process technologies to utilize them, we now see a rapid expansion of their applications in the society. This chapter summarizes some of the developments in the use of anaerobes as tools for biomass valorization, in production of energy carriers and chemicals, wastewater treatment, and the strong potential in soil remediation. The ability of several autotrophic anaerobes to reduce carbon dioxide is attracting growing attention as a means for developing a platform for conversion of waste gases to chemicals, materials, and biofuels.

  17. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  18. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  19. HIV-associated anaerobes ferment TB risk.

    PubMed

    Philips, Jennifer A

    2017-05-10

    Short-chain fatty acids produced by anaerobic bacteria increase the risk of TB in HIV-infected, antiretroviral drug-treated people. Copyright © 2017, American Association for the Advancement of Science.

  20. Anaerobic bioprocessing of low rank coals

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1991-01-01

    significant achievements were: (1) Coal decarboxylation was achieved by batch bioreactor systems using adapted anaerobic microbial consortium. (2) Two new isolates with coal decarboxylation potential were obtained from adapted microbial consortia. (3) CHN and TG anaysis of anaerobically biotreated coals have shown an increase in the H/C ratio and evolution rate of volatile carbon which could be a better feedstock for the liquefaction process.

  1. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  2. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.

    PubMed

    Nealson, K H; Moser, D P; Saffarini, D A

    1995-04-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  3. Measurement of anaerobic work capacities in humans.

    PubMed

    Green, S

    1995-01-01

    The development of simple, noninvasive tests of work capacities, underpinned primarily by anaerobic metabolism, proliferated in the early 1970s. A 30-second maximal cycle test developed at the Wingate Institute initiated efforts to develop work tests of anaerobic capacities. Such tests can be developed using any ergometer which simulates competitive conditions and enables an accurate determination of mechanical work output. A 10-second all-out test is commonly used to measure maximal work output generated primarily via the hydrolysis of high-energy phosphagens (i.e. the alactic work capacity). In contrast, a variety of constant-load and all-out tests of anaerobic (alactic plus lactic) work capacity have been proposed. It has been suggested that all-out tests provide more information about physiological capabilities and are easier to apply than constant-load tests. The optimal duration for an all-out test of anaerobic work capacity is proposed at 30 seconds, a duration which may also provide the basis for the development of accurate field tests of anaerobic capacity. There is evidence that the y-intercept of the maximal work-derivation regression is a valid work estimate of anaerobic capacity in athletes, although its utility is undermined by the number of tests required for its derivation.

  4. Infected neonatal cephalohematomas caused by anaerobic bacteria.

    PubMed

    Brook, Itzhak

    2005-01-01

    To present the microbiological and clinical features of six children with infected cephalohematomas (IC) caused by anaerobic bacteria. Presentation of a case series. Polymicrobial infection was present in all instances, where the number of isolates varied from two to four. Two patients had anaerobes only and the other four had mixed flora of strict anaerobes and facultatives. There were 16 bacterial isolates (12 anaerobic, 4 aerobic). The anaerobic isolates were Peptostreptococcus spp. (5 isolates), Prevotella spp. (4), Bacteroides fragilis group (2), and Propionibacterium acnes (1). The aerobic isolates were E. coli (2), Staphylococcus aureus (1) and group B streptococci (1). Blood cultures were positive for three patients. The most common predisposing conditions were vacuum extraction and amnionitis (4 instances of each), instrumental delivery (3), electronic fetal monitoring (2), prolonged delivery (1), and premature rupture of membranes (1). All patients underwent drainage, and four also had surgical incision and drainage of the IC. Osteomyelitis developed in one instance and scalp abscess developed in two patients, both of whom had electronic fetal monitoring. All patients eventually recovered from infection after receiving parenteral and subsequent oral antibiotic therapy for a total of 14-38 days. This study highlights the polymicrobial nature and potential importance of anaerobic bacteria in IC in newborns.

  5. Anaerobic Nitrogen Fixers on Mars

    NASA Astrophysics Data System (ADS)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  6. Anaerobic digestion of cellulosic wastes

    SciTech Connect

    Donaldson, T.L.; Lee, D.D.

    1984-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table.

  7. Hemicellulose conversion by anaerobic digestion

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Christopher, R.W.

    1982-01-01

    The digestibility of an aquatic biomass (water hyacinth), a land-based biomass (Coastal Bermuda grass), and a biomass-waste blend (a mixture of hyacinth, grass, MSW, and sludge) under various digestion conditions was studied. Anaerobic digestion of hemicellulose consists of the steps of enzymatic hydrolysis of hemicellulose to glucans, mannans, galactans, xylans, and arabans, and then to simple hexose and pentose sugars; production of C/sub 2/ and higher fatty acids from the simple sugars; conversion of higher fatty acids to acetate; and finally, production of methane and CO/sub 2/ from acetate, and CO/sub 2/ and hydrogen. The conversion of hemicellulose was higher under mesophilic conditions than those of cellulose or protein for all biomass test feeds, probably because the hemicellulose structure was more vulnerable to enzymatic attack than that of the lignocellulosic component. Cellulose conversion efficiencies at the mesophilic and thermophilic temperatures were about the same. However, hemicellulose was converted at a much lower efficiency than cellulose during thermophilic digestion - a situation that was the reverse of that observed at the mesophilic temperature. Cellulose was utilized in preference to hemicellulose during mesophilic digestion of nitrogen-supplemented Bermuda grass. It was speculated that Bermuda grass cellulose was converted at a higher efficiency than hemicellulose in the presence of external nitrogen because the metabolism of the breakdown product (glucose) of cellulose requires the least investment of enzymes and energy.

  8. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria.

    PubMed

    Stams, A J M; Oude Elferink, S J W H; Westermann, P

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems.

  10. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  11. Anaerobic protocol for assessing industrial waste treatability

    SciTech Connect

    Young, J.C.; Khandaker, N.R.

    1996-11-01

    Recent promulgation of strict standards for industrial waste pretreatment has greatly increased the number of wastewaters that are candidates for anaerobic treatment. The challenge with industrial wastes is to determine the potential for anaerobic biodegradation prior to investing large amounts of time and expense in design and field investigation. Various methods have been used to assess the treatability of industrial wastewaters, but the methodology has varied significantly. In response to the need for a consistent procedure for determining the treatability of different industrial wastewaters by anaerobic processes, Young developed an anaerobic treatability screening protocol. The purpose of this paper is to describe the protocol and to report a number of case studies in which the test protocol was used to determine the feasibility of using anaerobic processes for treating specific industrial wastes. Specific examples include food processing wastes, chemical production wastes, petroleum wastes, and landfill leachate. Treatability was based on assessment of the rate and extent of biodegradation, identification of the presence of toxic substances, and dilution effects.

  12. Spectrum and treatment of anaerobic infections.

    PubMed

    Brook, Itzhak

    2016-01-01

    Anaerobes are the most predominant components of the normal human skin and mucous membranes bacterial flora, and are a frequent cause of endogenous bacterial infections. Anaerobic infections can occur in all body locations: the central nervous system, oral cavity, head and neck, chest, abdomen, pelvis, skin, and soft tissues. Treatment of anaerobic infection is complicated by their slow growth in culture, by their polymicrobial nature and by their growing resistance to antimicrobials. Antimicrobial therapy is frequently the only form of therapy needed, whereas in others it is an important adjunct to drainage and surgery. Because anaerobes generally are isolated mixed with aerobes, the antimicrobial chosen should provide for adequate coverage of both. The most effective antimicrobials against anaerobes are: metronidazole, the carbapenems (imipenem, meropenem, doripenem, ertapenem), chloramphenicol, the combinations of a penicillin and a beta-lactamase inhibitors (ampicillin or ticarcillin plus clavulanate, amoxicillin plus sulbactam, piperacillin plus tazobactam), tigecycline, cefoxitin and clindamycin. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Anaerobic Degradation of the Benzene Nucleus by a Facultatively Anaerobic Microorganism1

    PubMed Central

    Taylor, Barrie F.; Campbell, William L.; Chinoy, Ira

    1970-01-01

    A bacterium was isolated by elective culture with p-hydroxybenzoate as substrate and nitrate as electron acceptor. It grew either aerobically or anaerobically, by nitrate respiration, on a range of aromatic compounds. The organism was identified as a pseudomonad and was given the trivial name Pseudomonas PN-1. Benzoate and p-hydroxybenzoate were metabolized aerobically via protocatechuate, followed by meta cleavage catalyzed by protocatechuic acid-4,5-oxygenase, to yield α-hydroxy-γ-carboxymuconic semialdehyde. Pseudomonas PN-1 grew rapidly on p-hydroxybenzoate under strictly anaerobic conditions, provided nitrate was present, even though protocatechuic acid-4,5-oxygenase was repressed. Suspensions of cells grown anaerobically on p-hydroxybenzoate oxidized benzoate with nitrate and produced 4 to 5 μmoles of CO2 per μmole of benzoate added; these cells did not oxidize benzoate aerobically. The patterns of the oxidation of aromatic substrates with oxygen or nitrate by cells grown aerobically or anaerobically on different aromatic compounds indicated that benzoate rather than protocatechuate was a key intermediate in the early stages of anaerobic metabolism. It was concluded that the pathway for the anaerobic breakdown of the aromatic ring is different and quite distinct from the aerobic pathway. Mechanisms for the anaerobic degradation of the benzene nucleus by Pseudomonas PN-1 are discussed. PMID:5419260

  14. Wingate Anaerobic Test peak power and anaerobic capacity classifications for men and women intercollegiate athletes.

    PubMed

    Zupan, Michael F; Arata, Alan W; Dawson, Letitia H; Wile, Alfred L; Payn, Tamara L; Hannon, Megan E

    2009-12-01

    The Wingate Anaerobic Test (WAnT) has been established as an effective tool in measuring both muscular power and anaerobic capacity in a 30-second time period; however, there are no published normative tables by which to compare WAnT performance in men and women intercollegiate athletics. The purpose of this study was to develop a classification system for anaerobic peak power and anaerobic capacity for men and women National Collegiate Athletic Association (NCAA) Division I college athletes using the WAnT. A total of 1,585 (1,374 men and 211 women) tests were conducted on athletes ranging from the ages of 18 to 25 years using the WAnT. Absolute and relative peak power and anaerobic capacity data were recorded. One-half standard deviations were used to set up a 7-tier classification system (poor to elite) for these assessments. These classifications can be used by athletes, coaches, and practitioners to evaluate anaerobic peak power and anaerobic capacity in their athletes.

  15. Physiologically anaerobic microorganisms of the deep subsurface

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  16. Biochemistry and physiology of anaerobic bacteria

    SciTech Connect

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  17. Use of biochars in anaerobic digestion.

    PubMed

    Mumme, Jan; Srocke, Franziska; Heeg, Kathrin; Werner, Maja

    2014-07-01

    This study investigated the behavior of biochars from pyrolysis (pyrochar) and hydrothermal carbonization (hydrochar) in anaerobic digestion regarding their degradability and their effects on biogas production and ammonia inhibition. A batch fermentation experiment (42°C, 63 days) was conducted in 100mL syringes filled with 30 g inoculum, 2g biochar and four levels of total ammonium nitrogen (TAN). For pyrochar, no clear effect on biogas production was observed, whereas hydrochar increased the methane yield by 32%. This correlates with the hydrochar's larger fraction of anaerobically degradable carbon (10.4% of total carbon, pyrochar: 0.6%). Kinetic and microbiota analyses revealed that pyrochar can prevent mild ammonia inhibition (2.1 g TANk g(-1)). Stronger inhibitions (3.1-6.6 g TAN kg(-1)) were not mitigated, neither by pyrochar nor by hydrochar. Future research should pay attention to biochar-microbe interactions and the effects in continuously-fed anaerobic digesters.

  18. Anaerobic fermentation of beef cattle manure

    NASA Astrophysics Data System (ADS)

    Hashimoto, A. G.; Chen, Y. R.; Varel, V. H.

    1981-01-01

    The conversion of livestock manure and crop residues into methane and a high protein feed ingredient by thermophilic anaerobic fermentation is summarized. The major biological and operational factors involved in methanogenesis are discussed, and a kinetic model that describes the fermentation process is presented. Substrate biodegradability, fermentation temperature, and influent substrate concentration to have significant effects on CH4 production rate. Assessment of the energy requirements for anaerobic fermentation systems showed that the major energy requirement for a thermophilic system was for maintaining the fermenter temperature. The next major energy consumption was due to the mixing of the influent slurry and fermenter liquor. An approach to optimizing anaerobic fermenter s by selecting design criteria that maximize the net energy production per unit cost is presented.

  19. Anaerobes: a new aetiology in cavitary pneumoconiosis.

    PubMed Central

    del Campo, J M; Hitado, J; Gea, G; Colmeiro, A; Lanza, A M; Muñoz, J A; Mosquera, J A

    1982-01-01

    The role of mycobacteria in the cavitation of large pneumoconiotic masses is well established. In other cases softness is attributed to an ischaemic or aseptic necrosis. Five cases are described in which cavitation of the pulmonary masses was caused by anaerobic bacteria, confirmed by the growth of such bacterial in cultures after transtracheal or transpleural puncture. Repeated cultures for mycobacteria gave negative results. Two cases were acute, having serious complications such as bronchopleural fistula, empyema, and serious respiratory insufficiency. The role of anaerobes in cavitary pneumoconiosis has not been recognised previously, probably because of the special conditions required to culture these bacteria and the infrequent use of transtracheal puncture in the diagnosis of this entity. The prevalence of anaerobes as agents capable of cavitating pneumoconiotic masses remains to be established. Images PMID:6128024

  20. Anaerobic lipid degradation through acidification and methanization.

    PubMed

    Kim, Ijung; Kim, Sang-Hyoun; Shin, Hang-Sik; Jung, Jin-Young

    2010-01-01

    In biological wastewater treatment high lipid concentration is known to inhibit microorganisms and cause active biomass flotation. To reduce lipid inhibition, a two-phase anaerobic system, consisting of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic sludge blanket (UASB) reactor, was applied to synthetic dairy wastewater. During 153 days of operation, the two-phase system showed stable performance in lipid degradation. In the ASBR, a 13% lipid removal efficiency and 10% double bond removal efficiency were maintained. In the UASB, the chemical oxygen demand (COD), lipid and volatile fatty acid (VFA) removal efficiencies were more than 80%, 70% and 95%, respectively, up to organic loading rate 6.5 g COD/L/day. There were no operational problems such as serious scum formation or sludge washout. Protein degradation occurred prior to degradation during acidogenesis.

  1. Improving Project Outcomes and Growing the Anaerobic Digestion Industy Report

    EPA Pesticide Factsheets

    Anaerobic digestion ombudsmen assist with project development, ensure the long-term sustainability of projects, and help advance the industry. This report explores the benefits of anaerobic digestion ombudsmen and provides guidance for implementing them.

  2. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  3. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  4. A miniaturized counting technique for anaerobic bacteria.

    PubMed

    Sharpe, A N; Pettipher, G L; Lloyd, G R

    1976-12-01

    A miniaturized counting technique gave results as good as the pour-plate and Most Probable Number (MPN) techniques for enumeration of clostridia spp. and anaerobic isolates from the gut. Highest counts were obtained when ascorbic acid (1%) and dithiothreitol (0.015%) were added to the reinforced clostridial medium used for counting. This minimized the effect of exposure to air before incubation. The miniature technique allowed up to 40 samples to be plated and incubated in one McIntosh-Filde's-type anaerobic jar, compared with 3 or 4 by the normal pour plate.

  5. Robust regulation of anaerobic digestion processes.

    PubMed

    Mailleret, L; Bernard, O; Steyer, J P

    2003-01-01

    This paper deals with the problem of controlling anaerobic digestion processes. A two-step (i.e. acidogenesis-methanization) mass balance model is considered for a 1 m3 fixed bed digester treating industrial wine distillery wastewater. The control law aims at regulating the organic pollution level while avoiding washout of biomass. To this end, a simple output feedback controller is considered which regulates a variable strongly related to the Chemical Oxygen Demand (COD). Numerical simulations assuming noisy measurements first illustrate the robustness of this control procedure. Then, the regulating procedure is implemented on the considered anaerobic digestion process in order to validate and demonstrate its efficiency in real life experiments.

  6. [Sulfa-drug wastewater treatment with anaerobic/aerobic process].

    PubMed

    Wu, L; Zhang, H; Zhu, H; Zhang, Z; Zhuang, Y; Dai, S

    2001-09-01

    Sulfa drug wastewater was treated with anaerobic/aerobic process. The removal ratios of TOC reached about 50% in anaerobic phase and about 70% in aerobic phase respectively, while volume loading rate of TOC was about 1.2 kg/(m3.d) in anaerobic phase and about 0.6 kg/(m3.d) in aerobic phase. Removal of TOC in anaerobic phase was attributed to the reduction of sulfate.

  7. Convenient anaerobic techniques, science from the supermarket shelf.

    PubMed

    Bennett, G N; Hickford, J G H; Zhou, H

    2006-02-01

    We describe the application and evaluation of a widely available commercial jar as an anaerobic container suitable for the growth of a wide variety of anaerobes. A system for generating stable anaerobiosis was developed by combining standard anaerobic environment generators with Click-Clack jars produced by Click-Clack Ltd. This system was simple, reliable, and reduced capital outlay on anaerobic jars by at least an order of magnitude.

  8. Waste to Energy Potential - A High Concentration Anaerobic Bioreactor

    DTIC Science & Technology

    2012-05-23

    output • Uses the organic portion of solid waste (such as food waste , paper products, and agricultural waste ) to fuel an anaerobic digestion ...Sustainability Symposium & Exhibition Anaerobic Digestion • What does it do? • Offers sustainability by addressing renewable energy, waste ... Waste to Energy Potential – A High Concentration Anaerobic Bioreactor Presenter: Scott Murphy & Rebecca Robbennolt ARCADIS/Malcolm Pirnie Date

  9. The Influence of Hydration on Anaerobic Performance: A Review

    ERIC Educational Resources Information Center

    Kraft, Justin A.; Green, James M.; Bishop, Phillip A.; Richardson, Mark T.; Neggers, Yasmin H.; Leeper, James D.

    2012-01-01

    This review examines the influence of dehydration on muscular strength and endurance and on single and repeated anaerobic sprint bouts. Describing hydration effects on anaerobic performance is difficult because various exercise modes are dominated by anaerobic energy pathways, but still contain inherent physiological differences. The critical…

  10. The Influence of Hydration on Anaerobic Performance: A Review

    ERIC Educational Resources Information Center

    Kraft, Justin A.; Green, James M.; Bishop, Phillip A.; Richardson, Mark T.; Neggers, Yasmin H.; Leeper, James D.

    2012-01-01

    This review examines the influence of dehydration on muscular strength and endurance and on single and repeated anaerobic sprint bouts. Describing hydration effects on anaerobic performance is difficult because various exercise modes are dominated by anaerobic energy pathways, but still contain inherent physiological differences. The critical…

  11. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  12. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    SciTech Connect

    Mosey, F.E.

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  13. Studies on upflow anaerobic filter

    NASA Astrophysics Data System (ADS)

    Varandani, Nanik Sobhraj

    The thesis presents a critical review of the available literature on the various studies carried out on various aspects of Upflow Anaerobic Filter (UAF) throughout the world. Young and McCarty (1969) did the pioneering work in developing UAF in 1969, since then several studies have been carried out by different researchers using different substrates under different operating conditions and variety of supporting media. However, the most significant modification of the original reactor developed by Young and McCarty (1968), has been the development and use of high porosity media. The use of high porosity media, in fact, has changed the character of the reactor, from basically a fixed film reactor to a fixed film reactor in which the contribution by the suspended bio-solids, entrapped in the numerous media pores, in the substrate removal is quite significant that is to say that the reactor no longer remains a biological reactor which can be modeled and designed on the basis of biofilm kinetics only. The thesis presents an attempt to validate the developed mathematical model(s) by using the laboratory scale reactor performance data and the calculated values of reaction kinetic and bio-kinetic constants. To simplify the verification process, computer programmes have been prepared using the "EXCELL" software and C language. The results of the "EXCELL" computer program runs are tabulated at table no. 7.1 to 7.5. The verification of various mathematical models indicate that the model III B, i.e. Non ideal plug flow model assumed to consist of Complete Mix Reactors in series based on reaction kinetics, gives results with least deviation from the real situation. An interesting observation being that the model offers least deviation or nearly satisfies the real situation for a particular COD removal efficiency, for a particular OLR, eg. the least deviations are obtained at COD removal efficiency of 89% for OLR 2, 81.5% for OLR 4, 78.5% for OLR 6 . However, the use of the

  14. Anaerobic Digestion in a Flooded Densified Leachbed

    NASA Technical Reports Server (NTRS)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  15. Anaerobic threshold measurements of elite oarsmen.

    PubMed

    Mickelson, T C; Hagerman, F C

    1982-01-01

    Anaerobic threshold (AT) and Vo2max were determined by automated analysis for 25 members of the 1980 U.S. Olympic Rowing Team during a progressive rowing ergometer exercise to exhaustion. Heart rates and power outputs were also measured to gauge severity of the exercise and to compare with metabolic data. Power increments of 27 W each min were achieved by progressively increasing the brake weight resistance on the ergometer while maintaining a stroke rate of 28-32 strokes/min and spinning the ergometer flywheel at 550 rpm. Anaerobic threshold measurements were determined by observing the onset of the non-linear relationship between Vo2 and VE-Vco2; plots of delta FEO2 and FECO2 were also utilized to confirm recorded AT's. A mean AT of 83% of Vo2max attests to the high aerobic capacity of oarsmen and supports previous research conducted with these subjects. Power output data indicated that 72% of total power is generated at AT; this substantiates previous energy cost data recorded during simulated rowing during which work was 70% aerobic and 30% anaerobic. High levels of anaerobic thresholds among oarsmen are attributed to the specific nature of training regimens that increase oxidative capacity of muscle fibers and significantly improve the cardiorespiratory transport system. Measurement of heart rate at AT has provided coaches and athletes an objective method of determining the intensity of training sessions.

  16. Anaerobic Toxicity of Cationic Silver Nanoparticles

    EPA Science Inventory

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  17. Anaerobic fitness tests: what are we measuring?

    PubMed

    Van Praagh, Emmanuel

    2007-01-01

    Anaerobic fitness, during growth and development, has not received the same attention from researchers as aerobic fitness. This is surprising given the level of anaerobic energy used daily during childhood and adolescence. During physical activity and sport, the child is spontaneously more attracted to short-burst movements than to long-term activities. It is, however, well known that in anaerobic activities such as sprint cycling, sprint running or sprint swimming, the child's performance is distinctly poorer than that of the adult. This partly reflects the child's lesser ability to generate mechanical energy from chemical energy sources during short-term high-intensity work or exercise. Direct measurements of the rate or capacity of anaerobic pathways for energy turnover presents several ethical and methodological difficulties. Therefore, rather than measure energy supply, pediatric exercise scientists have concentrated on measuring short-term power output by means of standardized protocol tests such as short-term cycling power tests, running tests or vertical jump tests. There is, however, no perfect test and, therefore, it is important to acknowledge the benefits and limitations of each testing method. Mass-related short-term power output was shown to increase dramatically during growth and development, whereas the corresponding increase in peak blood lactate was considerably lower. This suggests that the observed difference between children and adolescents during short-term power output testing may be related to neuromuscular factors, hormonal factors and improved motor coordination.

  18. Anaerobic Toxicity of Cationic Silver Nanoparticles

    EPA Science Inventory

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  19. The anaerobic digestion of organic solid wastes

    SciTech Connect

    Hartung, H.A.

    1996-09-01

    Anaerobic digestion offers many advantages in the processing of organic solid wastes, using a closed system to convert the waste to combustible gas and a stabilized organic residue.Odors are contained while digestion removes their source and gas is collected for energy recovery as heat or electricity. The stabilized residue is less than the starting waste by the mass of gas produced, and it can be disposed of by land application, land filling, incineration or composting. The stimulation of digesters and the phenomenon of co-digestion are two ways the performance of anaerobic digesters can be enhanced. Data from farm digesters and municipal wastewater treatment plants illustrate the present venue of the process; laboratory studies of the anaerobic digestion of a variety of solid wastes show that the process can be applied to these materials as well. About two thirds of municipal solid waste is shown to be amenable to anaerobic digestion in a substrate from an active municipal sewage plant digester.

  20. Optimizing anaerobic soil disinfestation for California strawberries

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD), a biological alternative to soil fumigation, can control soilborne pathogens and nematodes in numerous crop production systems. To optimize ASD for California strawberries, a series of field and pot experiments have been conducted since 2003. Overall, ASD treatme...

  1. Early Microbial Evolution: The Age of Anaerobes.

    PubMed

    Martin, William F; Sousa, Filipa L

    2015-12-18

    In this article, the term "early microbial evolution" refers to the phase of biological history from the emergence of life to the diversification of the first microbial lineages. In the modern era (since we knew about archaea), three debates have emerged on the subject that deserve discussion: (1) thermophilic origins versus mesophilic origins, (2) autotrophic origins versus heterotrophic origins, and (3) how do eukaryotes figure into early evolution. Here, we revisit those debates from the standpoint of newer data. We also consider the perhaps more pressing issue that molecular phylogenies need to recover anaerobic lineages at the base of prokaryotic trees, because O2 is a product of biological evolution; hence, the first microbes had to be anaerobes. If molecular phylogenies do not recover anaerobes basal, something is wrong. Among the anaerobes, hydrogen-dependent autotrophs--acetogens and methanogens--look like good candidates for the ancestral state of physiology in the bacteria and archaea, respectively. New trees tend to indicate that eukaryote cytosolic ribosomes branch within their archaeal homologs, not as sisters to them and, furthermore tend to root archaea within the methanogens. These are major changes in the tree of life, and open up new avenues of thought. Geochemical methane synthesis occurs as a spontaneous, abiotic exergonic reaction at hydrothermal vents. The overall similarity between that reaction and biological methanogenesis fits well with the concept of a methanogenic root for archaea and an autotrophic origin of microbial physiology. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Circadian rhythm in anaerobic power and capacity.

    PubMed

    Hill, D W; Smith, J C

    1991-03-01

    Anaerobic power and capacity were measured in nine college-age men at four different times of day: 03.00 h, 09.00 h, 15.00 h, and 21.00 h. Modified Wingate tests were performed against a common resistance of 5.5 kg (0.074 +/- 0.004 kg per kg body mass). Peak power was defined as the highest power output during a 5-s period in the test, and anaerobic capacity was defined as the total external work during the 30-s test. Peak power tended to differ across testing times (F = 2.50, p = .10), with the mean at 21.00 h about 8% higher (p less than .05) than at 03.00 h. Anaerobic capacity differed across the times of day (F = 9.58, p less than .01), with the means at 15.00 h and 21.00 h about 5% higher (p less than .05) than at 03.00 h and 09.00 h. These results suggest that there are circadian rhythms in anaerobic power and capacity.

  3. Gender differences in anaerobic power tests.

    PubMed

    Mayhew, J L; Salm, P C

    1990-01-01

    The purpose of this study was to determine if the differences in anaerobic power between males and females could be accounted for by differences in body composition, strength, and neuromuscular function. A total of 82 untrained men and 99 women took part in the study. Body composition, somatotype, isometric strength, neuromuscular function were measured, and four anaerobic power tests performed. The men were significantly different from the women on all strength, power, and neuromuscular measurements except reaction time and on all anthropometric and somatotype dimensions except ectomorphy. Strength and anthropometric dimensions were similarly related to anaerobic power values within each sex. Relative fat (%fat) exerted different degrees of influence on sprint and jump performances in each sex. Removing the influence of anthropometric, strength, and neuromuscular differences by analysis of covariance reduced, but did not remove, the significant differences between the sexes. Therefore, factors other than lean body mass, leg strength, and neuromuscular function may be operating in short-term, explosive power performances to account for the differences between the sexes. The task-specific nature of anaerobic power tests and the relatively large influence of anthropometric factors on power production were confirmed.

  4. Biofilm-growing intestinal anaerobic bacteria.

    PubMed

    Donelli, Gianfranco; Vuotto, Claudia; Cardines, Rita; Mastrantonio, Paola

    2012-07-01

    Sessile growth of anaerobic bacteria from the human intestinal tract has been poorly investigated, so far. We recently reported data on the close association existing between biliary stent clogging and polymicrobial biofilm development in its lumen. By exploiting the explanted stents as a rich source of anaerobic bacterial strains belonging to the genera Bacteroides, Clostridium, Fusobacterium, Finegoldia, Prevotella, and Veillonella, the present study focused on their ability to adhere, to grow in sessile mode and to form in vitro mono- or dual-species biofilms. Experiments on dual-species biofilm formation were planned on the basis of the anaerobic strains isolated from each clogged biliary stent, by selecting those in which a couple of anaerobic strains belonging to different species contributed to the polymicrobial biofilm development. Then, strains were investigated by field emission scanning electron microscopy and confocal laser scanning microscopy to reveal if they are able to grow as mono- and/or dual-species biofilms. As far as we know, this is the first report on the ability to adhere and form mono/dual-species biofilms exhibited by strains belonging to the species Bacteroides oralis, Clostridium difficile, Clostridium baratii, Clostridium fallax, Clostridium bifermentans, Finegoldia magna, and Fusobacterium necrophorum. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Hemicellulases from anaerobic thermophiles. Progress report

    SciTech Connect

    Wiegel, J.

    1994-05-01

    The longterm goal of this research effort is to obtain an anaerobic thermophilic bacterium that efficiently converts various hemicellulose-containing biomass to ethanol over a broad pH range. The strategy is to modify the outfit and regulation of the rate-limiting xylanases, glycosidases and xylan esterases in the ethanologenic, anaerobic thermophile Thermoanaerobacter ethanolicus, which grows between pH 4.5 and 9.5. Although it utilizes xylans, the xylanase, acetyl(xylan) esterase and O-methylglucuronidase activities in T. ethanolicus are barely measurable and regarded as the rate limiting steps in its xylan utilization. Thus, and also due to the presently limited knowledge of hemicellulases in anaerobic thermophiles, we characterize the hemicellulolytic enzymes from this and other anaerobic thermophiles as enzyme donors. Beside the active xylosidase/arabinosidase from T. ethanolicus, exhibiting the two different activities, we characterized 2 xylosidases, two acetyl(xylan) esterases, and an O-methylglucuronidase from Thermoanaerobacterium spec. We will continue with the characterization of xylanases from novel isolated slightly acidophilic, neutrophilic and slightly alkalophilic thermophiles. We have cloned, subcloned and partially sequenced the 165,000 Da (2 x 85,000) xylosidase/arabinosidase from T. ethanolicus and started with the cloning of the esterases from Thermoanaerobacterium spec. Consequently, we will develop a shuttle vector and continue to apply electroporation of autoplasts as a method for cloning into T. ethanolicus.

  6. Monitoring the Atmosphere in an Anaerobic Chamber

    PubMed Central

    Sudo, Sara Z.; Hersch, Paul A.

    1974-01-01

    The Couloximeter, a fuel cell designed to measure trace amounts of oxygen, was used to monitor the atmosphere in an anaerobic chamber. The device, easy to operate and to maintain, allowed both major and minor fluctuations in oxygen concentration to be measured. Using a hose attached to the outlet within the box, defective (ruptured) gloves were consistently distinguishable from intact gloves. PMID:16350004

  7. Anaerobic digestion of space mission wastes.

    PubMed

    Chynoweth, D P; Owens, J M; Teixeira, A A; Pullammanappallil, P; Luniya, S S

    2006-01-01

    The technical feasibility of applying leachbed high-solids anaerobic digestion for reduction and stabilization of the organic fraction of solid wastes generated during space missions was investigated. This process has the advantages of not requiring oxygen or high temperature and pressure while producing methane, carbon dioxide, nutrients, and compost as valuable products. Anaerobic biochemical methane potential assays run on several waste feedstocks expected during space missions resulted in ultimate methane yields ranging from 0.23 to 0.30 L g-1 VS added. Modifications for operation of a leachbed anaerobic digestion process in space environments were incorporated into a new design, which included; (1) flooded operation to force leachate through densified feedstock beds; and (2) separation of biogas from leachate in a gas collection reservoir. This mode of operation resulted in stable performance with 85% conversion of a typical space solid waste blend, and a methane yield of 0.3 Lg per g VS added after a retention time of 15 days. These results were reproduced in a full-scale prototype system. A detailed analysis of this process was conducted to design the system sized for a space mission with a six-person crew. Anaerobic digestion compared favorably with other technologies for solid waste stabilization.

  8. Wingate Anaerobic Test Peak Power and Anaerobic Capacity Classification for Men and Women Intercollegiate Athletes

    DTIC Science & Technology

    2009-12-01

    including football, sprinting, soccer, baseball, lacrosse, and gymnastics - use anaerobic metabolism extensively during competition. This study...1 . 3 62j + 7.7 167.1 + 7 .9 Tennis, track, soccer, and gymnastics urements allow a coach to observe individual improvements; however, it is...require short bursts of peak power and a high anaerobic capacity during competition to include lacrosse, gymnastics , sprint cycling, football, baseball

  9. Recovery of anaerobic, facultative, and aerobic bacteria from clinical specimens in three anaerobic transport systems.

    PubMed

    Helstad, A G; Kimball, J L; Maki, D G

    1977-06-01

    With aspirated specimens from clinical infections, we evaluated the recovery of anaerobic, aerobic, and facultative bacteria in three widely used transport systems: (i) aspirated fluid in a gassed-out tube (FGT), (ii) swab in modified Cary and Blair transport medium (SCB), and (iii) swab in a gassed-out tube (SGT). Transport tubes were held at 25 degrees C and semiquantitatively sampled at 0, 2, 24, and 48 h. Twenty-five clinical specimens yielded 75 anaerobic strains and 43 isolates of facultative and 3 of aerobic bacteria. Only one anaerobic isolate was not recovered in the first 24 h, and then, only in the SGT. At 48 h, 73 anaerobic strains (97%) were recovered in the FGT, 69 (92%) in the SCB, and 64 (85%) in the SGT. Two problems hindered the recovery of anaerobes in the SCB and SGT systems: first die-off of organisms, as evidenced by a decrease in colony-forming units of 20 strains (27%) in the SCB and 25 strains (33%) in the SGT, as compared with 7 strains (9%) in the FGT, over 48 h; and second, overgrowth of facultative bacteria, more frequent with SCB and SGT. The FGT method was clearly superior at 48 h to the SCB and SGT systems in this study and is recommended as the preferred method for transporting specimens for anaerobic culture.

  10. Anaerobic characteristics in male children and adolescents.

    PubMed

    Inbar, O; Bar-Or, O

    1986-06-01

    Only sparse information has been published on the effects of growth, development, and maturation on the ability to perform high intensity, short-term "anaerobic" tasks. Cross-sectional studies on Italian, African, British, and American females and males have indicated an age-related progression in the performance of the Margaria step-running test. Children had a distinctly lower mechanical power output than adolescents and young adults, both in absolute terms and when divided by body weight, or by fat-free mass. Data are presented on some 300 10- to 45-yr-old Israeli males who performed the Wingate anaerobic test by cycling or by arm cranking. Both the peak power at any 5-s period and the mean power throughout the test were lowest in the children, whether expressed in absolute power units or corrected for body weight. Performance progressed with age and reached the highest values at the end of the third decade for cycling and at the end of the second decade for arm cranking. This pattern is unlike that described for maximal O2 uptake per kg body weight which, in males, remains virtually unchanged from childhood to young adulthood. In females, maximal O2 uptake per kg is even higher in children than among adolescents or adults. Biochemical correlates of such a low anaerobic performance in children are their lower maximal lactate concentration in muscle and blood, lower rate of anaerobic glycolysis, and lower levels of acidosis at maximal exercise. The mechanisms for the relatively deficient anaerobic characteristics of children are not clear.

  11. Anaerobic benzene oxidation by Geobacter species.

    PubMed

    Zhang, Tian; Bain, Timothy S; Nevin, Kelly P; Barlett, Melissa A; Lovley, Derek R

    2012-12-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 10(9) and 8.4 × 10(9) cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 10(9) cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated.

  12. Anaerobic Benzene Oxidation by Geobacter Species

    PubMed Central

    Bain, Timothy S.; Nevin, Kelly P.; Barlett, Melissa A.; Lovley, Derek R.

    2012-01-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated. PMID:23001648

  13. Anaerobic protozoa and their growth in biomethanation systems.

    PubMed

    Priya, M; Haridas, Ajit; Manilal, V B

    2008-04-01

    This study was to investigate growth of protozoa and its influence on biodegradation in anaerobic treatment systems. It was done by specifically controlling and monitoring growth of protozoa versus degradation in continuous stirred anaerobic reactors and batch anaerobic reactors. Occurrence of a diverse protozoa population such as the ciliates, Prorodon, Vorticella, Cyclidium, Spathidium, Loxodes, Metopus were observed in stable anaerobic systems and the flagellates, Rhynchomonas, Naeglaria, Amoeboflagellates, Tetramitus, Trepomonas and Bodo during increased VFA concentration and affected periods of biomethanation. The abundance of ciliates in the anaerobic system had significant correlation with the reduction of MLSS, increased rate of COD removal and higher methane production. The results of this study thus tend to relate increased anaerobic degradation with the abundance of protozoa, mainly ciliates, which indicate their possible involvement in the process. Present study also reveals that performance of anaerobic process can be assessed by monitoring the protozoa population in the system.

  14. Metabolic determinants in Listeria monocytogenes anaerobic listeriolysin O production.

    PubMed

    Wallace, Nathan; Newton, Eric; Abrams, Elizabeth; Zani, Ashley; Sun, Yvonne

    2017-03-13

    Listeria monocytogenes is a human pathogen and a facultative anaerobe. To better understand how anaerobic growth affects L. monocytogenes pathogenesis, we first showed that anaerobic growth led to decreased growth and changes in surface morphology. Moreover, compared to aerobically grown bacteria, anaerobically grown L. monocytogenes established higher level of invasion but decreased intracellular growth and actin polymerization in cultured cells. The production of listeriolysin O (LLO) was significantly lower in anaerobic cultures-a phenotype observed in wild type and isogenic mutants lacking transcriptional regulators SigB or CodY or harboring a constitutively active PrfA. To explore potential regulatory mechanisms, we established that the addition of central carbon metabolism intermediates, such as acetate, citrate, fumarate, pyruvate, lactate, and succinate, led to an increase in LLO activity in the anaerobic culture supernatant. These results highlight the regulatory role of central carbon metabolism in L. monocytogenes pathogenesis under anaerobic conditions.

  15. Techniques for controlling variability in gram staining of obligate anaerobes.

    PubMed Central

    Johnson, M J; Thatcher, E; Cox, M E

    1995-01-01

    Identification of anaerobes recovered from clinical samples is complicated by the fact that certain gram-positive anaerobes routinely stain gram negative; Peptostreptococcus asaccharolyticus, Eubacterium plautii, Clostridium ramosum, Clostridium symbiosum, and Clostridium clostridiiforme are among the nonconformists with regard to conventional Gram-staining procedures. Accurate Gram staining of American Type Culture Collection strains of these anaerobic bacteria is possible by implementing fixing and staining techniques within a gloveless anaerobic chamber. Under anaerobic conditions, gram-positive staining occurred in all test organisms with "quick" fixing techniques with both absolute methanol and formalin. The results support the hypothesis that, when anaerobic bacteria are exposed to oxygen, a breakdown of the physical integrity of the cell wall occurs, introducing Gram stain variability in gram-positive anaerobes. PMID:7538512

  16. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  17. In situ detection of anaerobic alkane metabolites in subsurface environments

    PubMed Central

    Agrawal, Akhil; Gieg, Lisa M.

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments. PMID:23761789

  18. In situ detection of anaerobic alkane metabolites in subsurface environments.

    PubMed

    Agrawal, Akhil; Gieg, Lisa M

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  19. Anaerobic work calculated in cycling time trials of different length.

    PubMed

    Mulder, Roy C; Noordhof, Dionne A; Malterer, Katherine R; Foster, Carl; de Koning, Jos J

    2015-03-01

    Previous research showed that gross efficiency (GE) declines during exercise and therefore influences the expenditure of anaerobic and aerobic resources. To calculate the anaerobic work produced during cycling time trials of different length, with and without a GE correction. Anaerobic work was calculated in 18 trained competitive cyclists during 4 time trials (500, 1000, 2000, and 4000-m). Two additional time trials (1000 and 4000 m) that were stopped at 50% of the corresponding "full" time trial were performed to study the rate of the decline in GE. Correcting for a declining GE during time-trial exercise resulted in a significant (P<.001) increase in anaerobically attributable work of 30%, with a 95% confidence interval of [25%, 36%]. A significant interaction effect between calculation method (constant GE, declining GE) and distance (500, 1000, 2000, 4000 m) was found (P<.001). Further analysis revealed that the constant-GE calculation method was different from the declining method for all distances and that anaerobic work calculated assuming a constant GE did not result in equal values for anaerobic work calculated over different time-trial distances (P<.001). However, correcting for a declining GE resulted in a constant value for anaerobically attributable work (P=.18). Anaerobic work calculated during short time trials (<4000 m) with a correction for a declining GE is increased by 30% [25%, 36%] and may represent anaerobic energy contributions during high-intensity exercise better than calculating anaerobic work assuming a constant GE.

  20. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes.

    PubMed

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J; Henze, Katrin; Woehle, Christian; Gould, Sven B; Yu, Re-Young; van der Giezen, Mark; Tielens, Aloysius G M; Martin, William F

    2012-06-01

    Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.

  1. Note: Small anaerobic chamber for optical spectroscopy

    SciTech Connect

    Chauvet, Adrien A. P. Chergui, Majed; Agarwal, Rachna; Cramer, William A.

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  2. FCPP application to utilize anaerobic digester gas

    SciTech Connect

    Nakayama, Yoshio; Kusama, Nobuyuki; Wada, Katsuya

    1996-12-31

    Toshiba and a municipal organization of Yokohama city are jointly conducting a program to utilize ADG (Anaerobic Digester Gas) more effectively. ADG which contains about 60% methane is produced by anaerobic digestion of waste water treatment sludge and has been used as an energy source for heating digestion tanks in sewage treatment plants and/or for combustion engine fuel. This program is focused on operating a commercial Phosphoric Acid Fuel Cell (PAFC) power plant on ADG because of its inherently high fuel efficiency and low emissions characteristics. According to the following joint program, we have successfully demonstrated an ADG fueled FCPP The success of this study promises that the ADG fueled FCPP, an environment-friendly power generation system, will be added to the line-up of PC25{trademark}C applications.

  3. Note: Small anaerobic chamber for optical spectroscopy.

    PubMed

    Chauvet, Adrien A P; Agarwal, Rachna; Cramer, William A; Chergui, Majed

    2015-10-01

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  4. Anaerobic contribution during maximal anaerobic running test: correlation with maximal accumulated oxygen deficit.

    PubMed

    Zagatto, A; Redkva, P; Loures, J; Kalva Filho, C; Franco, V; Kaminagakura, E; Papoti, M

    2011-12-01

    The aims of this study were: (i) to measure energy system contributions in maximal anaerobic running test (MART); and (ii) to verify any correlation between MART and maximal accumulated oxygen deficit (MAOD). Eleven members of the armed forces were recruited for this study. Participants performed MART and MAOD, both accomplished on a treadmill. MART consisted of intermittent exercise, 20 s effort with 100 s recovery, after each spell of effort exercise. Energy system contributions by MART were also determined by excess post-exercise oxygen consumption, lactate response, and oxygen uptake measurements. MAOD was determined by five submaximal intensities and one supramaximal intensity exercises corresponding to 120% at maximal oxygen uptake intensity. Energy system contributions were 65.4±1.1% to aerobic; 29.5±1.1% to anaerobic a-lactic; and 5.1±0.5% to anaerobic lactic system throughout the whole test, while only during effort periods the anaerobic contribution corresponded to 73.5±1.0%. Maximal power found in MART corresponded to 111.25±1.33 mL/kg/min but did not significantly correlate with MAOD (4.69±0.30 L and 70.85±4.73 mL/kg). We concluded that the anaerobic a-lactic system is the main energy system in MART efforts and this test did not significantly correlate to MAOD.

  5. Enhancing post anaerobic digestion of full-scale anaerobically digested sludge using free nitrous acid treatment.

    PubMed

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Yuan, Zhiguo

    2016-05-01

    In some wastewater treatment plants (WWTPs), the ever increasing production of sludge with the expanding population overloaded the anaerobic digestion which compromises the sludge reduction efficiency. Post anaerobic digestion of anaerobically digested sludge (ADS) has been applied to enhance sludge reduction, however, to a very limited extent. This study verified the effectiveness of free nitrous acid (FNA i.e. HNO2) pre-treatment on enhancing full-scale ADS degradation in post anaerobic digestion. The ADS collected from a full-scale WWTP was subject to FNA treatment at concentrations of 0.77, 1.54, 2.31, 3.08, and 3.85 mg N/L for 24 h followed by biochemical methane potential tests. The FNA treatment at all concentrations resulted in an increase (from 1.5-3.1 % compared to the control) in sludge reduction with the highest improvement achieved at 0.77 mg HNO2-N/L. The FNA treatment at this concentration also resulted in the highest increase in methane production (40 %) compared to the control. The economic analysis indicates that FNA treatment is economically attractive for enhancing post anaerobic digestion of full-scale ADS.

  6. Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-Associated Clean Rooms▿

    PubMed Central

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-01-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus. PMID:19363082

  7. The role of anaerobic sludge recycle in improving anaerobic digester performance.

    PubMed

    Young, Michelle N; Krajmalnik-Brown, Rosa; Liu, Wenjun; Doyle, Michael L; Rittmann, Bruce E

    2013-01-01

    Solids retention time (SRT) is a critical parameter for the performance of anaerobic digesters (AD) in wastewater treatment plants. AD SRT should increase when active biomass is input to the AD by recycling anaerobic sludge via the wastewater-treatment tanks, creating a hybrid aerobic/anaerobic system. When 85% of the flow through the AD was recycled in pilot-scale hybrid systems, the AD SRT increased by as much as 9-fold, compared to a parallel system without anaerobic-sludge recycle. Longer AD SRTs resulted in increased hydrolysis and methanogenesis in the AD: net solids yield decreased by 39-96% for overall and 23-94% in the AD alone, and AD methane yield increased 1.5- to 5.5-fold. Microbial community assays demonstrated higher, more consistent Archaea concentrations in all tanks in the wastewater-treatment system with anaerobic-sludge recycle. Thus, multiple lines of evidence support that AD-sludge recycle increased AD SRT, solids hydrolysis, and methane generation.

  8. Anaerobic biodegradation of surrogate naphthenic acids.

    PubMed

    Clothier, Lindsay N; Gieg, Lisa M

    2016-03-01

    Surface bitumen extraction from the Alberta's oil sands region generates large settling basins known as tailings ponds. The oil sands process-affected water (OSPW) stored in these ponds contain solid and residual bitumen-associated compounds including naphthenic acids (NAs) that can potentially be biodedgraded by indigenous tailings microorganisms. While the biodegradation of some NAs is known to occur under aerobic conditions, little is understood about anaerobic NA biodegradation even though tailings ponds are mainly anoxic. Here, we investigated the potential for anaerobic NA biodegradation by indigenous tailings microorganisms. Enrichment cultures were established from anoxic tailings that were amended with 5 single-ringed surrogate NAs or acid-extractable organics (AEO) from OSPW and incubated under nitrate-, sulfate-, iron-reducing, and methanogenic conditions. Surrogate NA depletion was observed under all anaerobic conditions tested to varying extents, correlating to losses in the respective electron acceptor (sulfate or nitrate) or the production of predicted products (Fe(II) or methane). Tailings-containing cultures incubated under the different electron-accepting conditions resulted in the enrichment and putative identification of microbial community members that may function in metabolizing surrogate NAs under the various anoxic conditions. In addition, more complex NAs (in the form of AEO) was observed to drive sulfate and iron reduction relative to controls. Overall, this study has shown that simple surrogate NAs can be biodegraded under a variety of anoxic conditions, a key first step in understanding the potential anaerobic metabolism of NAs in oil sands tailings ponds and other industrial wastewaters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Anaerobic digestion of municipal solid waste

    SciTech Connect

    Dasgupta, A.; Nemerow, N.L.; Farooq, S.; Daly, E.L. Jr.; Sengupta, S.; Gerrish, H.P.; Wong, K.F.

    1981-03-01

    A demonstration anaerobic digestion plant has been installed at Pompano Beach, Florida, capable of treating 100 tons per day of municipal solid waste. The suitability of this process and its environmental effects at a full scale operation level is being examined. The study presented and discussed in this paper had as its main objective the characterization of various waste streams and an assessment of their environmental effects if discharged into the environment.

  10. Manganese Dependent Anaerobic Oxidation of Methane

    NASA Astrophysics Data System (ADS)

    Beal, E.; House, C.

    2007-12-01

    Understanding the anaerobic oxidation is not only important for understanding hydrocarbon degradation but it also important for understanding the global carbon cycle. The anaerobic oxidation of methane (AOM) is a large sink for methane consuming 5-20% of today's methane flux (Valentine and Reeburgh, 2000), yet the requirements for this process are not well understood. It has been suggested that no other electron acceptors other than sulfate can be used in the AOM (Nauhaus, 2005). However, our new data suggests that manganese, in the form of birnessite, can be used as an electron acceptor instead of sulfate (Beal et al., in prep). Methane seep sediment from the Eel River Basin, CA was incubated with methane, 13C-labeled methane, and carbon dioxide. Because the net result of the AOM is the production of carbon dioxide from methane, the rate of the AOM in each of the incubations can be determined by measuring the incorporation of 13C in the carbon dioxide. Using this method, it was found that cultures incubated with nitrate showed inhibition of the AOM, while cultures incubated with iron gave inconclusive results. The only positive results that were found for alternate electron acceptors are the incubations that were given manganese and no sulfate, which showed methane oxidation. Further, when more manganese was injected into these incubations, the rate of AOM increased. Preliminary analysis of the microbial population using terminal restriction fragment length polymorphism (TRFLP) targeting the mcr gene showed an unidentified organism in these cultures. Future work with TRFLP, as well as clone libraries, will help to identify the organisms responsible for this process. Nauhaus, K., 2005, Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities: Environmental microbiology, v. 7, p. 98. Valentine, D.L., and Reeburgh, W.S., 2000, New perspectives on anaerobic methane oxidation: Environmental Microbiology, v. 2, p

  11. Anaerobic methane oxidation on the Amazon shelf

    SciTech Connect

    Blair, N.E.; Aller, R.C.

    1995-09-01

    Anaerobic methane oxidation on the Amazon shelf is strongly controlled by dynamic physical sedimentation processes. Rapidly accumulating, physically reworked deltaic sediments characteristic of much of the shelf typically support what appear to be low rates of steady state anaerobic methane oxidation at depths of 5-8 m below the sediment-water interface. Methane oxidation in these cases is responsible for < {approximately}10% of the {Sigma}CO{sub 2} inventory in the oxidation zone and is limited largely by the steady-state diffusive flux of methane into the overlying sulfate reduction zone. In contrast, a large area of the shelf has been extensively eroded, reexposing once deeply buried (>10 m) methane-charged sediment directly to seawater. In this nonsteady-state situation, methane is a major source of recently produced {Sigma}CO{sub 2} and an important reductant for sulfate. These observations suggest that authigenic sedimentary carbonates derived from anaerobic methane oxidation may sometimes reflect physically enhanced nonsteady-state exposure of methane to sulfate in otherwise biogeochemically unreactive deposits. The concentration profiles of CH{sub 4}, SO{sub 4}{sup =}, and {Sigma}CO{sub 2} in the eroded deposit were reproduced by a coupled reaction-transport model. This area of the shelf was reexposed to seawater approximately 5-10 years ago based on the model results and the assumption that the erosion of the deposit occurred as a single event that has now ceased. The necessary second order rate constant for anaerobic methane oxidation was {le}0.1 mM{sup -1} d{sup -1}.

  12. Hog farm in California uses anaerobic digestion

    SciTech Connect

    Swanson, D.

    1995-12-31

    This article describes a system of covered lagoons which help address the waste management problems of hog farmers as well as producing methane used to power generators. Four advantages of anaerobic digestion are described along with the system: energy production from methane; fertilizer for fields; economic development in rural areas; and improved water quality through reduction of nonpoint source pollution. Address for full report is given.

  13. Aerobic and anaerobic performances in tethered swimming.

    PubMed

    Papoti, M; da Silva, A S R; Araujo, G G; Santiago, V; Martins, L E B; Cunha, S A; Gobatto, C A

    2013-08-01

    The purpose of this study was to investigate whether the critical force (CritF) and anaerobic impulse capacity (AIC) - estimated by tethered swimming - reflect the aerobic and anaerobic performance of swimmers. 12 swimmers performed incremental test in tethered swimming to determine lactate anaerobic threshold (AnTLAC), maximal oxygen uptake ( ˙VO2MAX) and force associated with the ˙VO2MAX (i ˙VO2MAX). The swimmers performed 4 exhaustive (tlim) exercise bouts (100, 110, 120 and 130% i ˙VO2MAX) to compute the CritF and AIC (F vs. 1/tlim model); a 30-s all-out tethered swimming bout to determine their anaerobic fitness (ANF); 100, 200, and 400-m time-trials to determine the swimming performance. CritF (57.09±11.77 N) did not differ from AnTLAC (53.96±11.52 N, (P>0.05) but was significantly lower than i ˙VO2MAX (71.02±8.36 N). In addition, CritF presented significant correlation with AnTLAC (r=0.76; P<0.05) and i ˙VO2MAX (r=0.74; P<0.05). On the other hand, AIC (286.19±54.91 N.s) and ANF (116.10±13.66 N) were significantly correlated (r=0.81, p<0.05). In addition, CritF and AIC presented significant correlations with all time-trials. In summary, this study demonstrates that CritF and AIC can be used to evaluate AnTLAC and ANF and to predict 100, 200, and 400-m free swimming. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Microbial activity measurements for anaerobic sludge digestion

    SciTech Connect

    Chung, Y.C.

    1988-01-01

    The use of particulate substrate in the anaerobic sludge digestion process makes it difficult to measure the biomass in these reactors. Adenosine triphosphate (ATP) and dehydrogenase activity (DHA) were investigated as indicators of the sludge activity for the anaerobic sludge digestion process. ATP measures the energy pools in the biomass and is therefore a measure of the total sludge activity. DHA measurement relies on the addition of specific substrates to stimulate the metabolic activity of the bacteria. Glucose, starch, propionic acid, butyric acid, acetic acid, and digester feed as added substrates were used to stimulate the metabolic activity for DHA measurements. Laboratory experiments were performed to monitor the microbial activity of anaerobic sludge digesters operated both under steady state and in batch mode. The ATP content responded rapidly to changes in the digester operation, which may be the result of increased non-growth associated biochemical activity, not that of increased numbers of the bacteria. DHA was more sensitive than ATP at both low and high sludge ages and seemed to be correlated with the cell's growth phase. At low sludge ages (less than 10 days) glucose as added substrate showed the highest DHA responses, while the digester food and no added substrated showed the highest response when the sludge age exceeded 20 days. A kinetic model based on the solids balances was developed to determine the microbial mass and activity. Both ATP and DHA on a VSS basis (viability) appeared nearly constant over a wide range of sludge ages for the kinetic model data, indicating that ATP and DHA may be used as a rapid and convenient indicator of microbial mass and activity for anaerobic sludge digestion.

  15. Anaerobic microbiology in the NASA space program.

    PubMed

    Brewer, J H

    1980-01-01

    After briefly reviewing the earlier methods used to monitor the microbial load of returned lunar material, the author reports the more accurate research on the ability of terrestrial organisms to grow under simulated Martian environments. The possible importance of anaerobic microbiology can readily be seen because of the low level of O2 found on Mars. The question of whether any of the experiments on board the Viking landers show any indication of life on Mars is discussed in detail.

  16. Some unique features of alkaliphilic anaerobes

    NASA Astrophysics Data System (ADS)

    Roof, Erin; Pikuta, Elena; Otto, Christopher; Williams, George; Hoover, Richard

    2013-09-01

    This article explores two topics involving the examination of four strains of alkaliphilic anaerobes. The first topic was dedicated to detection of the ability of microorganisms to metabolize alternative chirality substrates. Two saccharolytic anaerobic bacteria were chosen for the first experiment: Anaerovirgula multivorans strain SCAT, which is gram positive and spore-forming; and Spirochaeta dissipatitropha, strain ASpC2T, which is gram negative. It was found that both checked sugarlytics were able to use L-ribose and L-arabinose, as growth substrates. The second part was concerned of study a chemolithotrophy in two halo-alkaliphilic sulfate reducing bacteria: Desulfonatornum thiodismutans strain MLF1T and Desulfonatronum lacustre strain Z-7951T. The experiments with lithotrophs had demonstrated that strain MLF1T was capable to grow without any organic source of carbon, while strain Z-7951T had required at least 2 mM sodium acetate for growth. Anaerobic technique was used for preparation of the growth media and maintenance of these bacterial cultures. Standard methods for Gram, spore, and flagella staining were applied for characterization of cytomorphology. In this article, the results of the experiments performed on cytological, physiological, and biochemical levels are presented and discussed.

  17. Anaerobic Biodegradation of Soybean Biodiesel and Diesel ...

    EPA Pesticide Factsheets

    Biotransformation of soybean biodiesel and the inhibitory effect of petrodiesel were studied under methanogenic conditions. Biodiesel removal efficiency of more than 95% was achieved in a chemostat with influent biodiesel concentrations up to 2.45 g/L. The kinetics of anaerobic biodegradation of soybean biodiesel B100 (biodiesel only) with different petrodiesel loads were studied using biomass pre-acclimated to B100 and B80 (80% biodiesel and 20 petrodiesel). The results indicated that the biodiesel fraction of the blend could be effectively biodegraded, whereas petrodiesel was not biodegraded at all under methanogenic conditions. The presence of petrodiesel in blends with biodiesel had a greater inhibitory effect on the rate of biodegradation than the biodegradation efficiency (defined as the efficiency of methane production). Both the biodegradation rate coefficient and the methane production efficiency increased almost linearly with the increasing fraction of biodiesel. With the increasing fraction of petrodiesel, the biodegradation rate and efficiency were correlated with the concentration of soluble FAMEs in the water. The objective of this study was to investigate the anaerobic biodegradation of soybean biodiesel blends under methanogenic conditions. Biological methane potential (BMP) tests were conducted in serum bottles to determine the anaerobic biodegradation kinetics of biodiesel in the absence and presence of different concentrations of petrod

  18. Anaerobic O-demethylation of phenylmethylethers

    SciTech Connect

    Frazer, A.C.; Young, L.Y.

    1990-01-01

    Anaerobic O-demethylation (AOD) of phenylmethylethers is a process of both basic and applied significance. The aryl-O-methyl ethers are abundant in natural products, particularly as components of lignin. They are present as methoxylated lignin monomers in anaerobic environments and can be completely degraded there by mixed microbial populations. AOD is an essential early step in this process, and it is also a key reaction in the utilization of the O-methyl substituent as a C-one substrate by acetogens. An understanding of the AOD reaction mechanism might suggest new ways in which chemicals could be derived from lignocellulosic materials. The biochemical mechanism for the anaerobic cleavage of the aryl-O-methyl ether bond is an intriguing, but relatively unexplored process. In contrast to aerobic O-demethylating enzymes, AOD appears to involve methyl group transfer. Thus, novel biochemical information on an important biotransformation reaction will be gained from the research proposed. Recently, we have shown that AOD activity is inducible and have developed an assay for detecting AOD activity in cell-free extracts of Acetobacterium woodii. AOD activity is stimulated in vitro by the addition of ATP (1mM) and pyruvate (30 mM), the K{sub M} for vanillate being 0.4 mM. In collaboration with protein purification experts, we proposed to purify the AOD enzyme and characterize the protein(s) and the enzymatic reaction involved. 8 figs., 5 tabs.

  19. Alternating Current Influences Anaerobic Electroactive Biofilm Activity.

    PubMed

    Wang, Xin; Zhou, Lean; Lu, Lu; Lobo, Fernanda Leite; Li, Nan; Wang, Heming; Park, Jaedo; Ren, Zhiyong Jason

    2016-09-06

    Alternating current (AC) is known to inactivate microbial growth in suspension, but how AC influences anaerobic biofilm activities has not been systematically investigated. Using a Geobacter dominated anaerobic biofilm growing on the electrodes of microbial electrochemical reactors, we found that high frequency AC ranging from 1 MHz to 1 kHz (amplitude of 5 V, 30 min) showed only temporary inhibition to the biofilm activity. However, lower frequency (100 Hz, 1.2 or 5 V) treatment led to 47 ± 19% permanent decrease in limiting current on the same biofilm, which is attributed to the action of electrohydrodynamic force that caused biofilm damage and loss of intercellular electron transfer network. Confocal microscopy images show such inactivation mainly occurred at the interface between the biofilm and the electrode. Reducing the frequency further to 1 Hz led to water electrolysis, which generated gas bubbles that flushed all attached cells out of the electrode. These findings provide new references on understanding and regulating biofilm growth, which has broader implications in biofouling control, anaerobic waste treatment, energy and product recovery, and general understanding of microbial ecology and physiology.

  20. Biogeochemistry of anaerobic crude oil biodegradation

    NASA Astrophysics Data System (ADS)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.

  1. Anaerobic Degradation of Cyanuric Acid, Cysteine, and Atrazine by a Facultative Anaerobic Bacterium

    PubMed Central

    Jessee, J. A.; Benoit, R. E.; Hendricks, A. C.; Allen, G. C.; Neal, J. L.

    1983-01-01

    A facultative anaerobic bacterium that rapidly degrades cyanuric acid (CA) was isolated from the sediment of a stream that received industrial wastewater effluent. CA decomposition was measured throughout the growth cycle by using a high-performance liquid chromatography assay, and the concomitant production of ammonia was also measured. The bacterium used CA or cysteine as a major, if not the sole, carbon and energy source under anaerobic, but not aerobic, conditions in a defined medium. The cell yield was greatly enhanced by the simultaneous presence of cysteine and CA in the medium. Cysteine was preferentially used rather than CA early in the growth cycle, but all of the CA was used without an apparent lag after the cysteine was metabolized. Atrazine was also degraded by this bacterium under anaerobic conditions in a defined medium. PMID:16346187

  2. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  3. Anaerobic filters for the treatment of coal gasification wastewater.

    PubMed

    Suidan, M T; Siekerka, G L; Kao, S W; Pfeffer, J T

    1983-06-01

    A process train consisting of the following sequence of unit processes, a berl-saddle-packed anaerobic filter, an expanded bed, granular activated carbon anaerobic filter, and an activated sludge nitrification system was evaluated for the treatment of a synthetically prepared coal gasification wastewater. The first-stage anaerobic filter resulted in very little removal of organic matter and no methane production. Excellent reduction in organic matter occurred in the granular activated carbon anaerobic filter. The removal mechanism was initially adsorptive and near the end of the study, removal of organic matter was primarily through conversion to methane gas. It is felt that the success of the activated carbon anaerobic filter was due to the ability of the activated carbon to sequester some components of the wastewater that were toxic to the mixed culture of anaerobic microorganisms. The activated sludge nitrification system resulted in complete ammonia oxidation and was very efficient in final effluent polishing.

  4. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    PubMed

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  5. Sequential anaerobic, aerobic/anoxic treatment of simulated landfill leachate.

    PubMed

    Agdag, O N; Sponza, D T

    2008-02-01

    In this study COD, ammonia and nitrate were treated through methanogenesis, nitrification denitrification and anammox processes in anaerobic-aerobic and anaerobic/anoxic sequential in leachate samples produced from municipal solid waste in an anaerobic simulated landfilling bioreactor. The experiments were performed in an upflow anaerobic sludge blanket reactor (UASB), aerobic completely stirred tank reactor (CSTR) and upflow anaerobic/anoxic sludge blanket reactor (UA/A(N)SB). Hydraulic retention times in anaerobic, aerobic and anaerobic/anoxic stages were 1, 3.6 and 1 days, respectively, through 244 days of total operation period with 168 days of adaptation period of microorganisms to the reactors. The organic loading rates increased from 5.9 to 50 kg COD m(-3) day(-1). The total COD and TN removal efficiencies of the anaerobic-aerobic-anoxic system were 96% and 99%, respectively, at an influent OLR as high as 50 kg COD m(-3) day(-1). The maximum methane percentage in the UASB reactor was 82% while the methane percentage was zero in UA/A(N)SB reactor for the aforementioned OLR at the end of steady-state conditions. NH4-N removal efficiency of the aerobic reactor was 90% while anaerobic ammonia oxidation was measured as 99% in the anoxic reactor. The denitrification efficiency was 99% in the same reactor. Total TN removal of the whole system was 99%.

  6. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  7. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum.

    PubMed

    Lee, Sang-Hyun; Kim, Sooah; Kwon, Min-A; Jung, Young Hoon; Shin, Yong-An; Kim, Kyoung Heon

    2014-12-01

    Well-established metabolome sample preparation is a prerequisite for reliable metabolomic data. For metabolome sampling of a Gram-positive strict anaerobe, Clostridium acetobutylicum, fast filtration and metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v) at -20°C under anaerobic conditions has been commonly used. This anaerobic metabolite processing method is laborious and time-consuming since it is conducted in an anaerobic chamber. Also, there have not been any systematic method evaluation and development of metabolome sample preparation for strict anaerobes and Gram-positive bacteria. In this study, metabolome sampling and extraction methods were rigorously evaluated and optimized for C. acetobutylicum by using gas chromatography/time-of-flight mass spectrometry-based metabolomics, in which a total of 116 metabolites were identified. When comparing the atmospheric (i.e., in air) and anaerobic (i.e., in an anaerobic chamber) processing of metabolome sample preparation, there was no significant difference in the quality and quantity of the metabolomic data. For metabolite extraction, pure methanol at -20°C was a better solvent than acetonitrile/methanol/water (2:2:1, v/v/v) at -20°C that is frequently used for C. acetobutylicum, and metabolite profiles were significantly different depending on extraction solvents. This is the first evaluation of metabolite sample preparation under aerobic processing conditions for an anaerobe. This method could be applied conveniently, efficiently, and reliably to metabolome analysis for strict anaerobes in air.

  8. Oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system.

    PubMed

    Meng, Yao; Jost, Carsten; Mumme, Jan; Wang, Kaijun; Linke, Bernd

    2016-07-01

    In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0-431mL O2/gvs were conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431mL O2/gvs increased the methane yield by 82.2%. Aeration intensities of 0-355mL O2/gvs were conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen (DO) of UASS and AF reactors kept around 1.39±0.27 and 0.99±0.38mg/L, respectively. pH was relatively stable around 7.11±0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85±7mL/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity. Copyright © 2016. Published by Elsevier B.V.

  9. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion.

    PubMed

    Fagbohungbe, Michael O; Herbert, Ben M J; Hurst, Lois; Ibeto, Cynthia N; Li, Hong; Usmani, Shams Q; Semple, Kirk T

    2017-03-01

    Biochar, like most other adsorbents, is a carbonaceous material, which is formed from the combustion of plant materials, in low-zero oxygen conditions and results in a material, which has the capacity to sorb chemicals onto its surfaces. Currently, research is being carried out to investigate the relevance of biochar in improving the soil ecosystem, digestate quality and most recently the anaerobic digestion process. Anaerobic digestion (AD) of organic substrates provides both a sustainable source of energy and a digestate with the potential to enhance plant growth and soil health. In order to ensure that these benefits are realised, the anaerobic digestion system must be optimized for process stability and high nutrient retention capacity in the digestate produced. Substrate-induced inhibition is a major issue, which can disrupt the stable functioning of the AD system reducing microbial breakdown of the organic waste and formation of methane, which in turn reduces energy output. Likewise, the spreading of digestate on land can often result in nutrient loss, surface runoff and leaching. This review will examine substrate inhibition and their impact on anaerobic digestion, nutrient leaching and their environmental implications, the properties and functionality of biochar material in counteracting these challenges.

  10. Can anaerobes be acid fast? A novel, clinically relevant acid fast anaerobe

    PubMed Central

    Jump, Robin; Canaday, David H.; Wnek, Maria D.; SenGupta, Dhruba J.; McQuiston, John R.; Bell, Melissa

    2016-01-01

    Introduction: Anaerobic acid fast bacilli (AFB) have not been previously reported in clinical microbiology. This is the second case report of a novel anaerobic AFB causing disease in humans. Case presentation: An anaerobic AFB was isolated from an abdominal wall abscess in a 64–year-old Caucasian diabetic male, who underwent distal pancreatectomy and splenectomy for resection of a pancreatic neuroendocrine tumour. The isolated bacteria were gram-variable and acid-fast, consisting of small irregular rods. The 16S rRNA gene sequence analysis showed that the isolate is a novel organism described in the literature only once before. The organism was studied at the CDC (Centers for Disease Control and Prevention) by the same group that worked with the isolates from the previous report; their findings suggest that the strain belongs to the suborder Corynebacterineae. Conclusion: This is the fifth reported case of an anaerobic AFB involved in clinical disease; its microbiological features and 16S RNA sequence are identical to previously reported cases. Clinical disease with this organism seems to be associated with recent history of surgery and abscess formation in deep soft tissues. Acquisition from surgical material is uncertain but seems unlikely. PMID:28348766

  11. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    SciTech Connect

    Mendes, Carlos Esquerre, Karla Matos Queiroz, Luciano

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  12. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    PubMed

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05).

  13. Horse manure as feedstock for anaerobic digestion.

    PubMed

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  14. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    PubMed

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume.

  15. Anaerobic digestion of municipal solid waste

    SciTech Connect

    Dasgupta, A.; Nemerow, N.L.; Farooq, S.; Daly, E.L.Jr.; Sengupta, S.; Gerrish, H.P.; Wong, K.F.

    1981-01-01

    Filtrate from an anaerobic municipal waste digestion plant at Pompano Beach, Florida, has BOD, COD, and total organic C contents of 1075, 6855, and 1655 mg/L, respectively. The treatment does not inactivate total coliforms; that of the digester slurry and filtrate are 2.3 X 10 to the power of 6 and 1.7 X 10 to the power of 6/100 mL, respectively. The average concentrations of Cr, Cu, Mn, Fe, Ni, and Zn in the filtrate are 0.48, 1.29, 7.29, 32, 0.35, and 11 mg/L, respectively. The filtrate requires treatment prior to discharge.

  16. Improvement of anaerobic digestion of sludge.

    PubMed

    Dohányos, M; Zábranská, J; Kutil, J; Jenícek, P

    2004-01-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of the process conditions, pretreatment of input sludge and increase of process temperature is frequently used. The thermophilic process brings a higher solids reduction and biogas production, a high resistance to foaming, no problems with odour, better pathogens destruction and an improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in a lysate centrifuge was proved to cause increase of biogas production in full-scale conditions. The rapid thermal conditioning of digested sludge is an acceptable method of particulate matter disintegration and solubilization.

  17. Hybrid modelling of anaerobic wastewater treatment processes.

    PubMed

    Karama, A; Bernard, O; Genovesi, A; Dochain, D; Benhammou, A; Steyer, J P

    2001-01-01

    This paper presents a hybrid approach for the modelling of an anaerobic digestion process. The hybrid model combines a feed-forward network, describing the bacterial kinetics, and the a priori knowledge based on the mass balances of the process components. We have considered an architecture which incorporates the neural network as a static model of unmeasured process parameters (kinetic growth rate) and an integrator for the dynamic representation of the process using a set of dynamic differential equations. The paper contains a description of the neural network component training procedure. The performance of this approach is illustrated with experimental data.

  18. Muscle deoxygenation in aerobic and anaerobic exercise.

    PubMed

    Nioka, S; Moser, D; Lech, G; Evengelisti, M; Verde, T; Chance, B; Kuno, S

    1998-01-01

    It has been generally accepted that the use of oxygen is a major contributor of ATP synthesis in endurance exercise but not in short sprints. In anaerobic exercise, muscle energy is thought to be initially supported by the PCr-ATP system followed by glycolysis, not through mitochondrial oxidative phosphorylation. However, in real exercise practice, we do not know how much of this notion is true when an athlete approaches his/her maximal capacity of aerobic and anaerobic exercise, such as during a graded VO2max test. This study investigates the use of oxygen in aerobic and anaerobic exercise by monitoring oxygen concentration of the vastus lateralis muscle at maximum intensity using Near Infra-red Spectroscopy (NIRS). We tested 14 sprinters from the University of Penn track team, whose competitive events are high jump, pole vault, 100 m, 200 m, 400 m, and 800 m. The Wingate anaerobic power test was performed on a cycle ergometer with 10% body weight resistance for 30 seconds. To compare oxygenation during aerobic exercise, a steady-state VO2max test with a cycle ergometer was used with 25 watt increments every 2 min. until exhaustion. Results showed that in the Wingate test, total power reached 774 +/- 86 watt, about 3 times greater than that in the VO2max test (270 +/- 43 watt). In the Wingate test, the deoxygenation reached approximately 80% of the established maximum value, while in the VO2max test resulted in approximately 36% deoxygenation. There was no delay in onset of deoxygenation in the Wingate test, while in the VO2max test, deoxygenation did not occur under low intensity work. The results indicate that oxygen was used from the beginning of sprint test, suggesting that the mitochondrial ATP synthesis was triggered after a surprisingly brief exercise duration. One explanation is that prior warm-up (unloaded exercise) was enough to provide the mitochondrial substrates; ADP and Pi to activate oxidative phosphorylation by the type II a and type I myocytes. In

  19. Evidence of hydrolytic route for anaerobic cyanide degradation.

    PubMed Central

    Fallon, R D

    1992-01-01

    Products observed during anaerobic cyanide transformation are consistent with a hydrolytic pathway (HCN + H2O <--> HCONH2 + H2O <--> HCOOH + NH3). Formate, the most frequently observed product, was generally converted to bicarbonate. Formamide was rapidly hydrolyzed to formate upon exposure to the anaerobic consortium but was not detected as an intermediate of cyanide transformation. PMID:1444430

  20. Detection of Gas Leaks in an Anaerobic Glove Box

    PubMed Central

    Jones, Gilda L.; Dever, Stanley M.

    1974-01-01

    An inert gas, Freon, can be added to the atmosphere of an anaerobic glove box without deleterious effect to cultures of anaerobic microorganisms. The sensitive probe of a Halogen Leak Detector passing over the outside surface of the box will pinpoint any escaping Freon and therefore locate the leak. PMID:4596756

  1. Detection of gas leaks in an anaerobic glove box.

    PubMed

    Jones, G L; Dever, S M

    1974-04-01

    An inert gas, Freon, can be added to the atmosphere of an anaerobic glove box without deleterious effect to cultures of anaerobic microorganisms. The sensitive probe of a Halogen Leak Detector passing over the outside surface of the box will pinpoint any escaping Freon and therefore locate the leak.

  2. Molecular AND logic gate based on bacterial anaerobic respiration.

    PubMed

    Arugula, Mary Anitha; Shroff, Namita; Katz, Evgeny; He, Zhen

    2012-10-21

    Enzyme coding genes that integrate information for anaerobic respiration in Shewanella oneidensis MR-1 were used as input for constructing an AND logic gate. The absence of one or both genes inhibited electrochemically-controlled anaerobic respiration, while wild type bacteria were capable of accepting electrons from an electrode for DMSO reduction.

  3. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    EPA Science Inventory

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  4. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    EPA Science Inventory

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  5. Anaerobic soil disinfestation and soil borne pest management

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD; also referred to as Biological Soil Disinfestation (BSD)) is a pre-plant soil treatment method developed to control plant disease and manage yield decline in many crop production systems. The practice involves induction of anaerobic soil conditions by increasing m...

  6. Balancing hygienization and anaerobic digestion of raw sewage sludge.

    PubMed

    Astals, S; Venegas, C; Peces, M; Jofre, J; Lucena, F; Mata-Alvarez, J

    2012-12-01

    The anaerobic digestion of raw sewage sludge was evaluated in terms of process efficiency and sludge hygienization. Four different scenarios were analyzed, i.e. mesophilic anaerobic digestion, thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a 60 °C or by an 80 °C hygienization treatment. Digester performance (organic matter removal, process stability and biogas yield) and the hygienization efficiency (reduction of Escherichia coli, somatic coliphages and F-specific RNA phages) were the main examined factors. Moreover, a preliminary economical feasibility study of each option was carried out throughout an energy balance (heat and electricity). The obtained results showed that both thermophilic anaerobic digestion and mesophilic anaerobic digestion followed by a hygienization step were able to produce an effluent sludge that fulfills the American and the European legislation for land application. However, higher removal efficiencies of indicators were obtained when a hygienization post-treatment was present. Regarding the energy balance, it should be noted that all scenarios have a significant energy surplus. Particularly, positive heat balances will be obtained for the thermophilic anaerobic digestion and for the mesophilic anaerobic digestion followed by 60 °C hygienization post-treatment if an additional fresh-sludge/digested sludge heat exchanger is installed for energy recovery.

  7. Identification, distribution, and toxigenicity of obligate anaerobes in polluted waters.

    PubMed Central

    Daily, O P; Joseph, S W; Gillmore, J D; Colwell, R R; Seidler, R J

    1981-01-01

    A seasonal occurrence of obligately anaerobic bacteria, predominantly of the genera Bacteroides and Clostridium, in a polluted water site has been observed. The number of anaerobes varied from 1.8 X 10(3) cells/ml in the warmer months to 10 cells/ml in winter. Several isolates were toxigenic, indicating a potential human health hazard. PMID:7235706

  8. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  9. Anaerobic Biodegradation of soybean biodiesel and diesel ...

    EPA Pesticide Factsheets

    Biotransformation of soybean biodiesel and its biodiesel/petrodiesel blends were investigated under sulfate-reducing conditions. Three blends of biodiesel, B100, B50, and B0, were treated using microbial cultures pre-acclimated to B100 (biodiesel only) and B80 (80% biodiesel and 20% petrodiesel). Results indicate that the biodiesel could be effectively biodegraded in the presence or absence of petrodiesel, whereas petrodiesel could not be biodegraded at all under sulfate-reducing conditions. The kinetics of biodegradation of individual Fatty Acid Methyl Ester (FAME) compounds and their accompanying sulfate-reduction rates were studied using a serum bottle test. As for the biodegradation of individual FAME compounds, the biodegradation rates for the saturated FAMEs decreased with increasing carbon chain length. For unsaturated FAMEs, biodegradation rates increased with increasing number of double bonds. The presence of petrodiesel had a greater effect on the rate of biodegradation of biodiesel than on the extent of removal. The objective of this study was to investigate anaerobic biodegradation of soybean biodiesel and petrodiesel blends in a sulfate-reducing environment, which is a prevalent condition in anaerobic sediments.

  10. Anaerobic Toxicity of Cationic Silver Nanoparticles | Science ...

    EPA Pesticide Factsheets

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNps) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L-1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L-1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L-1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. The current

  11. Anaerobic Toxicity of Cationic Silver Nanoparticles | Science ...

    EPA Pesticide Factsheets

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNps) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L-1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L-1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L-1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. The current

  12. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  13. Expert system for control of anaerobic digesters

    SciTech Connect

    Pullammanappallil, P.C.; Svoronos, S.A.; Chynoweth, D.P.; Lyberatos, G.

    1998-04-05

    Anaerobic digestion is a biochemical process that converts organic matter into methane and carbon dioxide along with the production of bacterial matter. It is primarily used for waste and wastewater treatment but can also be used for energy production. Continuous anaerobic digesters are systems that present challenging control problems including the possibility that an unmeasured disturbance can change the sign of the steady-state process gain. An expert system is developed that recognizes changes in the sign of process gain and implements appropriate control laws. The sole on-line measured variable is the methane production rate, and the manipulated input is the dilution rate. The expert system changes the dilution rate according to one of four possible strategies: a constrained conventional set-point control law, a constant yield control law (CYCL) that is nearly optimal for the most common cause of change in the sign of the process gain, batch operation, or constant dilution rate. The algorithm uses a t test for determining when to switch to the CYCL and returns to the conventional set-point control law with bumpless transfer. The expert system has proved successful in several experimental tests: severe overload; mild, moderate, and severe underload; and addition of phenol in low and high levels. Phenol is an inhibitor that in high concentrations changes the sign of the process gain.

  14. Electrolysis-enhanced anaerobic digestion of wastewater.

    PubMed

    Tartakovsky, B; Mehta, P; Bourque, J-S; Guiot, S R

    2011-05-01

    This study demonstrates enhanced methane production from wastewater in laboratory-scale anaerobic reactors equipped with electrodes for water electrolysis. The electrodes were installed in the reactor sludge bed and a voltage of 2.8-3.5 V was applied resulting in a continuous supply of oxygen and hydrogen. The oxygen created micro-aerobic conditions, which facilitated hydrolysis of synthetic wastewater and reduced the release of hydrogen sulfide to the biogas. A portion of the hydrogen produced electrolytically escaped to the biogas improving its combustion properties, while another part was converted to methane by hydrogenotrophic methanogens, increasing the net methane production. The presence of oxygen in the biogas was minimized by limiting the applied voltage. At a volumetric energy consumption of 0.2-0.3 Wh/L(R), successful treatment of both low and high strength synthetic wastewaters was demonstrated. Methane production was increased by 10-25% and reactor stability was improved in comparison to a conventional anaerobic reactor.

  15. Tolerance of anaerobic bacteria to chlorinated solvents.

    PubMed

    Koenig, Joanna C; Groissmeier, Kathrin D; Manefield, Mike J

    2014-01-01

    The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation.

  16. Anaerobic biodegradation of hexazinone in four sediments.

    PubMed

    Wang, Huili; Xu, Shuxia; Tan, Chengxia; Wang, Xuedong

    2009-05-30

    Anaerobic biodegradation of hexazinone was investigated in four sediments (L1, L2, Y1 and Y2). Results showed that the L2 sediment had the highest biodegradation potential among four sediments. However, the Y1 and Y2 sediments had no capacity to biodegrade hexazinone. Sediments with rich total organic carbon, long-term contamination history by hexazinone and neutral pH may have a high biodegradation potential because the former two factors can induce the growth of microorganisms responsible for biodegradation and the third factor can offer suitable conditions for biodegradation. The addition of sulfate or nitrate as electron acceptors enhanced hexazinone degradation. As expected, the addition of electron donors (lactate, acetate or pyruvate) substantially inhibited the degradation. In natural environmental conditions, the effect of intermediate A [3-(4-hydroxycyclohexyl)-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H, 3H)dione] on anaerobic hexazinone degradation was negligible because of its low level.

  17. Anaerobic digestion of marine microalgae in different salinity levels.

    PubMed

    Mottet, Alexis; Habouzit, Frédéric; Steyer, Jean Philippe

    2014-04-01

    In the context of biofuel production from marine microalgae, anaerobic digestion has the potential to make the process more sustainable and to increase energy efficiency. However, the use of salt-containing microalgae organic residues entails the presence of salts which inhibits methanogenesis. The search for suitable anaerobic microbial consortium adapted to saline conditions can boost the anaerobic conversion into methane. The anaerobic digestion performance of three different anaerobic microbial consortia was assessed in batch tests at different salinities between 15 and 150 g L(-1) and for three successive substrate additions. After an acclimation period, the methane (CH4) yield of the halophilic methanogens at 35 g L(-1) of salinity was close to the reference value without salt addition. Above 75 g L(-1) of salinity, methanogenesis was considerably slowed down. The results underline that methane production from halophilic sediment can be envisaged and promoted for practical application at a seawater concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Absence of microbial mineralization of lignin in anaerobic enrichment cultures.

    PubMed Central

    Odier, E; Monties, B

    1983-01-01

    The existence of anaerobic biodegradation of lignin was examined in mixed microflora. Egyptian soil samples, in which rapid mineralization of organic matter takes place in the presence of an important anaerobic microflora, were used to obtain the anaerobic enrichment cultures for this study. Specifically, 14CO2 or [14C]lignin wood was used to investigate the release of labeled gaseous or soluble degradation products of lignin in microbial cultures. No conversion of 14C-labeled lignin to 14CO2 or 14CH4 was observed after 6 months of incubation at 30 degrees C in anaerobic conditions with or without NO3-. A small increase in soluble radioactivity was observed in certain cultures, but it could not be related to the release of catabolic products during the anaerobic biodegradation of lignin. PMID:6639020

  19. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  20. Anaerobic Antimicrobial Therapy After Necrotizing Enterocolitis in VLBW Infants

    PubMed Central

    Autmizguine, Julie; Hornik, Christoph P.; Benjamin, Daniel K.; Laughon, Matthew M.; Clark, Reese H.; Cotten, C. Michael; Cohen-Wolkowiez, Michael; Benjamin, Daniel K.

    2015-01-01

    OBJECTIVE: To evaluate the effect of anaerobic antimicrobial therapy for necrotizing enterocolitis (NEC) on clinical outcomes in very low birth weight (≤1500 g) infants. METHODS: We identified very low birth weight infants with NEC from 348 US NICUs from 1997 to 2012. Anaerobic antimicrobial therapy was defined by antibiotic exposure on the first day of NEC. We matched (1:1) infants exposed to anaerobic antimicrobial therapy with infants who were not exposed by using a propensity score stratified by NEC severity (medical and surgical). The primary composite outcome was in-hospital death or intestinal stricture. We assessed the relationship between anaerobic antimicrobial therapy and outcome by using a conditional logistic regression on the matched cohort. RESULTS: A total of 1390 infants exposed to anaerobic antimicrobial therapy were matched with 1390 infants not exposed. Mean gestational age and birth weight were 27 weeks and 946 g, respectively, and were similar in both groups. We found no significant difference in the combined outcome of death or strictures, but strictures as a single outcome were more common in the anaerobic antimicrobial therapy group (odds ratio 1.73; 95% confidence interval, 1.11–2.72). Among infants with surgical NEC, mortality was less common with anaerobic antimicrobial therapy (odds ratio 0.71; 95% confidence interval, 0.52–0.95). CONCLUSIONS: Anaerobic antimicrobial therapy was not associated with the composite outcome of death or strictures but was associated with an increase in intestinal strictures. This higher incidence of intestinal strictures may be explained by the fact that death is a competing outcome for intestinal strictures, and mortality was slightly lower in the anaerobic cohort. Infants with surgical NEC who received anaerobic antimicrobial therapy had lower mortality. PMID:25511117

  1. The effect of biological sulfate reduction on anaerobic color removal in anaerobic-aerobic sequencing batch reactors.

    PubMed

    Cirik, Kevser; Kitis, Mehmet; Cinar, Ozer

    2013-05-01

    Combination of anaerobic-aerobic sequencing processes result in both anaerobic color removal and aerobic aromatic amine removal during the treatment of dye-containing wastewaters. The aim of the present study was to gain more insight into the competitive biochemical reactions between sulfate and azo dye in the presence of glucose as electron donor source. For this aim, anaerobic-aerobic sequencing batch reactor fed with a simulated textile effluent including Remazol Brilliant Violet 5R (RBV 5R) azo dye was operated with a total cycle time of 12 h including anaerobic (6 h) and aerobic cycles (6 h). Microorganism grown under anaerobic phase of the reactor was exposed to different amounts of competitive electron acceptor (sulfate). Performance of the anaerobic phase was determined by monitoring color removal efficiency, oxidation reduction potential, color removal rate, chemical oxygen demand (COD), color, specific anaerobic enzyme (azo reductase) and aerobic enzyme (catechol 1,2-dioxygenase), and formation of aromatic amines. The presence of sulfate was not found to significantly affect dye decolorization. Sulfate and azo dye reductions took place simultaneously in all operational conditions and increase in the sulfate concentration generally stimulated the reduction of RBV 5R. However, sulfate accumulation under anaerobic conditions was observed proportional to increasing sulfate concentration.

  2. [Properties of anaerobic granules developed by bioflocculant].

    PubMed

    Wang, Jing-Song

    2009-11-01

    Three identical UASB reactors (labeled R1, R2, R3) were applied to treat synthetic wastewater of COD concentration 5 500-6 500 mg x L(-1). Under the same process conditions, R1 was operated with addition of 7.5 g CaCl2 and 400 mL bioflocculant MBF21 weekly, R2 was operated with addition of 140 mg cationic PAM weekly, R3 was operated without any addition of flocculants served as control. The objectives of this study were to investigate the effect of bioflocculant MBF21 on development of anaerobic granules and compare it to cationic PAM. The results showed that after 67 days of operation, anaerobic granules developed in these three UASB reactors. The average diameters of granules in R1, R2 and R3 were 1.18, 1.21 and 0.76 mm, respectively, the granulation rates in R1, R2, R3 were 15.37, 15.82 and 9.10 microm x d(-1), respectively, the values of SMA (COD-CH4/VSS x t) of granules were 0.740, 0.657 and 0.558 g x (g x d)(-1), respectively, the VSS/SS of granules were 0.667, 0.629 and 0.607, respectively, the SVI of granules were 14.7, 13.1 and 20.4 mL x g(-1), respectively, the densities of granules were 1.061, 1.064 and 1.054 g x cm(-3), respectively, the integrity coefficients of granules were 92.1, 93.5 and 84.7, respectively. From the photos of SEM, granules developed in R1 and R2 were tighter than those in R3. In the formation of mature granules, all the three reactors showed similar laws, i.e. filamentous microorganisms were predominant on the surface of the seed sludge while bacillus and cocci bacteria were predominant on the surface of the mature granules. This study demonstrated that in the development of anaerobic granules, the effect of bioflocculant MBF21 on enhancement the physical properties of granules was similar to cationic PAM, but the effect of bioflocculant MBF21 on improvement of biochemical and physiological properties of granules was better than cationic PAM.

  3. Estimation of Anaerobic Debromination Rate Constants of PBDE Pathways Using an Anaerobic Dehalogenation Model.

    PubMed

    Karakas, Filiz; Imamoglu, Ipek

    2017-04-01

    This study aims to estimate anaerobic debromination rate constants (km) of PBDE pathways using previously reported laboratory soil data. km values of pathways are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model. Debromination activities published in the literature in terms of bromine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The range of estimated km values is between 0.0003 and 0.0241 d(-1). The median and maximum of km values are found to be comparable to the few available biologically confirmed rate constants published in the literature. The estimated km values can be used as input to numerical fate and transport models for a better and more detailed investigation of the fate of individual PBDEs in contaminated sediments. Various remediation scenarios such as monitored natural attenuation or bioremediation with bioaugmentation can be handled in a more quantitative manner with the help of km estimated in this study.

  4. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells.

    PubMed

    Bruckmann, Astrid; Hensbergen, Paul J; Balog, Crina I A; Deelder, André M; Brandt, Raymond; Snoek, I S Ishtar; Steensma, H Yde; van Heusden, G Paul H

    2009-01-30

    The yeast Saccharomyces cerevisiae is able to grow under aerobic as well as anaerobic conditions. We and others previously found that transcription levels of approximately 500 genes differed more than two-fold when cells from anaerobic and aerobic conditions were compared. Here, we addressed the effect of anaerobic growth at the post-transcriptional level by comparing the proteomes of cells isolated from steady-state glucose-limited anaerobic and aerobic cultures. Following two-dimensional gel electrophoresis and mass spectrometry we identified 110 protein spots, corresponding to 75 unique proteins, of which the levels differed more than two-fold between aerobically and anaerobically-grown cells. For 21 of the 110 spots, the intensities decreased more than two-fold whereas the corresponding mRNA levels increased or did not change significantly under anaerobic conditions. The intensities of the other 89 spots changed in the same direction as the mRNA levels of the corresponding genes, although to different extents. For some genes of glycolysis a small increase in mRNA levels, 1.5-2 fold, corresponded to a 5-10 fold increase in protein levels. Extrapolation of our results suggests that transcriptional regulation is the major but not exclusive mechanism for adaptation of S. cerevisiae to anaerobic growth conditions.

  5. Degradation of natural and synthetic polyesters under anaerobic conditions.

    PubMed

    Abou-Zeid, D M; Müller, R J; Deckwer, W D

    2001-03-30

    Often, degradability under anaerobic conditions is desirable for plastics claimed to be biodegradable, e.g. in anaerobic biowaste treatment plants, landfills and in natural anaerobic sediments. The biodegradation of the natural polyesters poly(beta-hydroxybutyrate) (PHB), poly(beta-hydroxybutyrate-co-11.6%-beta-hydroxyvalerate) (PHBV) and the synthetic polyester poly(epsilon-caprolactone) (PCL) was studied in two anaerobic sludges and individual polyester degrading anaerobic strains were isolated, characterized and used for degradation experiments under controlled laboratory conditions. Incubation of PHB and PHBV films in two anaerobic sludges exhibited significant degradation in a time scale of 6-10 weeks monitored by weight loss and biogas formation. In contrast to aerobic conditions, PHB was degraded anaerobically more rapidly than the copolyester PHBV, when tested with either mixed cultures or a single strained isolate. PCL tends to degrade slower than the natural polyesters PHB and PHBV. Four PHB and PCL degrading isolates were taxonomically identified and are obviously new species belonging to the genus Clostridium group I. The depolymerizing enzyme systems of PHB and PCL degrading isolates are supposed to be different. Using one isolated strain in an optimized laboratory degradation test with PHB powder, the degradation time was drastically reduced compared to the degradation in sludges (2 days vs. 6-10 weeks).

  6. Calorimetric studies of the growth of anaerobic microbes.

    PubMed

    Miyake, Hideo; Maeda, Yukiko; Ishikawa, Takashi; Tanaka, Akiyoshi

    2016-09-01

    This article aims to validate the use of calorimetry to measure the growth of anaerobic microbes. It has been difficult to monitor the growth of strict anaerobes while maintaining optimal growth conditions. Traditionally, optical density and ATP concentration are usually used as measures of the growth of anaerobic microbes. However, to take these measurements it is necessary to extract an aliquot of the culture, which can be difficult while maintaining anaerobic conditions. In this study, calorimetry was used to continuously and nondestructively measure the heat generated by the growth of anaerobic microbes as a function of time. Clostridium acetobutylicum, Clostridium beijerinckii, and Clostridium cellulovorans were used as representative anaerobic microbes. Using a multiplex isothermal calorimeter, we observed that peak time (tp) of C. acetobutylicum heat evolution increased as the inoculation rate decreased. This strong correlation between the inoculation rate and tp showed that it was possible to measure the growth rate of anaerobic microbes by calorimetry. Overall, our results showed that there is a very good correlation between heat evolution and optical density/ATP concentration, validating the use of the method. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    PubMed

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR).

  8. Effect of nitrate on anaerobic azo dye reduction.

    PubMed

    Cirik, Kevser; Kitiş, Mehmet; Çinar, Özer

    2013-01-01

    The aim of the study was to investigate the effect of nitrate on anaerobic color removal efficiencies. For this aim, anaerobic-aerobic sequencing batch reactor (SBR) fed with a simulated textile effluent including Remazol Brilliant Violet 5R azo dye was operated with a total cycle time of 12 h, including anaerobic (6 h) and aerobic cycles (6 h). Microorganism grown under anaerobic phase of the reactor was exposed to different amounts of competitive electron acceptor (nitrate) and performance of the system was determined by monitoring color removal efficiency, nitrate removal, nitrite formation and removal, oxidation reduction potential, color removal rate, chemical oxygen demand (COD), specific anaerobic enzyme (azo reductase) and aerobic enzyme (catechol 1,2 dioxygenase), and formation and removal of aromatic amines. Variations of population dynamics of microorganisms exposed to various amount of nitrate were identified by denaturing gradient gel electrophoresis (DGGE). It was found that nitrate has adverse effect on anaerobic color removal efficiency and color removal was achieved after denitrification process was completed. It was found that nitrate stimulates the COD removal efficiency and accelerates the COD removal in the first hour of anaerobic phase. About 90 % total COD removal efficiencies were achieved in which microorganism exposed to increasing amount of nitrate. Population dynamics of microorganisms exposed to various amount of nitrate were changed and diversity was increased.

  9. Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion.

    PubMed

    Hendriks, A T W M; van Lier, J B; de Kreuk, M K

    2017-09-01

    Fermentation and anaerobic digestion of organic waste and wastewater is broadly studied and applied. Despite widely available results and data for these processes, comparison of the generated results in literature is difficult. Not only due to the used variety of process conditions, but also because of the many different growth media that are used. Composition of growth media can influence biogas production (rates) and lead to process instability during anaerobic digestion. To be able to compare results of the different studies reported, and to ensure nutrient limitation is not influencing observations ascribed to process dynamics and/or reaction kinetics, a standard protocol for creating a defined growth medium for anaerobic digestion and mixed culture fermentation is proposed. This paper explains the role(s) of the different macro- and micronutrients, as well as the choices for a growth medium formulation strategy. In addition, the differences in nutrient requirements between mesophilic and thermophilic systems are discussed as well as the importance of specific trace metals regarding specific conversion routes and the possible supplementary requirement of vitamins. The paper will also give some insight into the bio-availability and toxicity of trace metals. A remarkable finding is that mesophilic and thermophilic enzymes are quite comparable at their optimum temperatures. This has consequences for the trace metal requirements of thermophiles under certain conditions. Under non-limiting conditions, the trace metal requirement of thermophilic systems is about 3 times higher than for mesophilic systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Anaerobic digestion of tannery waste: semi-continuous and anaerobic sequencing batch reactor processes.

    PubMed

    Zupancic, Gregor D; Jemec, A

    2010-01-01

    Disposal of the vast amounts of tannery waste that are currently generated is a significant problem. Anaerobic treatment of different types of tannery waste (fleshings, skin trimmings and wastewater sludge) was investigated. The biochemical methane potential is the same at 37 degrees C or 55 degrees C and an assay of this was shown to be an appropriate screening tool with which to estimate the susceptibility of a substrate to anaerobic digestion. The start-up procedure of a tannery waste thermophilic anaerobic digestion in 100 days using seed from mesophilic digester processing municipal sludge is presented. The specific methane production potential at 55 degrees C is estimated to be 0.617 m(3)kg(-1) of volatile suspended solids for tannery waste sludge, 0.377 m(3)kg(-1) for tannery waste trimmings and 0.649 m(3)kg(-1) for tannery waste fleshings. Additional concerns such as chromium content, salinity and temperature fluctuations were also addressed. Chromium content and salinity showed no adverse effects; however a reactor temperature reduction of 4.4 degrees C led to a drop in biogas production of 25%, indicating a requirement to keep the temperature constant at 55 degrees C.

  11. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    PubMed Central

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  12. [Antimicrobial susceptibility testing of anaerobic bacteria].

    PubMed

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  13. Kinetics of biogas production in Anaerobic Filters.

    PubMed

    Krümpel, Johannes; Schäufele, Friedrich; Schneider, Johannes; Jungbluth, Thomas; Zielonka, Simon; Lemmer, Andreas

    2016-01-01

    This study investigates methane production kinetics from individual volatile fatty acids (VFA) in an Upflow Anaerobic Filter (AF). 1gCOD in the form of acetic (HAc), propionic (HPr) or butyric acid (HBu) was injected into the AF while operating at an organic loading rate (OLRCOD) of 3.5gL(-1)d(-1). A new method is introduced to separate gas production of the baseload from the product formation of VFA degradation after the injection. The lag phase, fractional rate of gas production and half-life has been determined for the methane production of the three VFAs. The half-lives were in the order HAc

  14. Anaerobic biodegradation of cyanide under methanogenic conditions

    SciTech Connect

    Fallon, R.D.; Cooper, D.A.; Henson, M. ); Speece, R. )

    1991-06-01

    Upflow, anaerobic, fixed-bed, activated charcoal biotreatment columns capable of operating at free cyanide concentrations of {gt}100 mg liter{sup {minus}1} with a hydraulic retention time of {lt}48 h were developed. Methanogenesis was maintained under a variety of feed medium conditions which included ethanol, phenol, or methanol as the primary reduced carbon source. Under optimal conditions, {gt}70% of the inflow free cyanide was removed in the first 30% of the column height. Strongly complexed cyanides were resistant to removal. Ammonia was the nitrogen end product of cyanide transformation. In cell material removed from the charcoal columns, ({sup 14}C) bicarbonate was the major carbon end product of ({sup 14}C) cyanide transformation.

  15. Anaerobic biodegradation of cyanide under methanogenic conditions.

    PubMed Central

    Fallon, R D; Cooper, D A; Speece, R; Henson, M

    1991-01-01

    Upflow, anaerobic, fixed-bed, activated charcoal biotreatment columns capable of operating at free cyanide concentrations of greater than 100 mg liter-1 with a hydraulic retention time of less than 48 h were developed. Methanogenesis was maintained under a variety of feed medium conditions which included ethanol, phenol, or methanol as the primary reduced carbon source. Under optimal conditions, greater than 70% of the inflow free cyanide was removed in the first 30% of the column height. Strongly complexed cyanides were resistant to removal. Ammonia was the nitrogen end product of cyanide transformation. In cell material removed from the charcoal columns, [14C]bicarbonate was the major carbon end product of [14C]cyanide transformation. PMID:1872600

  16. CFD simulation of mixing in anaerobic digesters.

    PubMed

    Terashima, Mitsuharu; Goel, Rajeev; Komatsu, Kazuya; Yasui, Hidenari; Takahashi, Hiroshi; Li, Y Y; Noike, Tatsuya

    2009-04-01

    A three-dimensional CFD model incorporating the rheological properties of sludge was developed and applied to quantify mixing in a full-scale anaerobic digester. The results of the model were found to be in good agreement with experimental tracer response curve. In order to predict the dynamics of mixing, a new parameter, UI (uniformity index) was defined. The visual patterns of tracer mixing in simulation were well reflected in the dynamic variation in the value of UI. The developed model and methods were applied to determine the required time for complete mixing in a full-scale digester at different solid concentrations. This information on mixing time is considered to be useful in optimizing the feeding cycles for better digester performance.

  17. Determining anaerobic degradation kinetics from batch tests.

    PubMed

    Moreda, Iván López

    2016-01-01

    Data obtained from a biomethane potential (BMP) test were used in order to obtain the parameters of a kinetic model of solid wastes anaerobic degradation. The proposed model considers a hydrolysis step with a first order kinetic, a Monod kinetic for the soluble organic substrate degradation and a first order decay of microorganisms. The instantaneous release of methane was assumed. The parameters of the model are determined following a direct search optimization procedure. A 'multiple-shooting' technique was used as a first step of the optimization process. The confidence interval of the parameters was determined by using Monte Carlo simulations. Also, the distribution functions of the parameters were determined. Only the hydrolysis first order constant shows a normal distribution.

  18. Enzyme Systems of Anaerobes for Biomass Conversion.

    PubMed

    Munir, Riffat; Levin, David B

    Biofuels from abundantly available cellulosic biomass are an attractive alternative to current petroleum-based fuels (fossil fuels). Although several strategies exist for commercial production of biofuels, conversion of biomass to biofuels via consolidated bioprocessing offers the potential to reduce production costs and increase processing efficiencies. In consolidated bioprocessing (CBP), enzyme production, cellulose hydrolysis, and fermentation are all carried out in a single-step by microorganisms that efficiently employ a multitude of intricate enzymes which act synergistically to breakdown cellulose and its associated cell wall components. Various strategies employed by anaerobic cellulolytic bacteria for biomass hydrolysis are described in this chapter. In addition, the regulation of CAZymes, the role of "omics" technologies in assessing lignocellulolytic ability, and current strategies for improving biomass hydrolysis for optimum biofuel production are highlighted.

  19. PCB dechlorination in anaerobic soil slurry reactors

    SciTech Connect

    Klasson, K.T.; Evans, B.S.

    1993-11-29

    Many industrial locations, including the US Department of Energy`s, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges, including mixed wastes; however, a practical remediation technology has not yet been demonstrated. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River have been used to obtain anaerobic dechlorination of PCBS. The onset of dechlorination activity can be accelerated by addition of nutritional amendments and inducers. After 15 weeks of incubation with PCB-contaminated soil and nutrient solution, dechlorination has been observed under several working conditions. The best results show that the average chlorine content steadily dropped from 4.3 to 3.5 chlorines per biphenyl over a 15-week period.

  20. Degradation of methyl bromide in anaerobic sediments

    USGS Publications Warehouse

    Oremland, R.S.; Miller, L.G.; Strohmaler, F.E.

    1994-01-01

    Methyl bromide (MeBr) was anaerobically degraded in saltmarsh sediments after reaction with sulfide. The product of this nucleophilic substitution reaction was methanethiol, which underwent further chemical and bacterial reactions to form dimethyl sulfide. These two gases appeared transiently during sediment incubations because they were metabolized by methanogenic and sulfate-reducing bacteria. A second, less significant reaction of MeBr was the exchange with chloride, forming methyl chloride, which was also susceptible to attack by sulfide. Incubation of 14C-labeled methyl iodide as an analogue of MeBr resulted in the formation of 14CH4 and 14CO2 and also indicated that sulfate-reducing bacteria as well as methanogens metabolized the methylated sulfur intermediates. These results suggest that exposed sediments with abundant free sulfide, such as coastal salt-marshes, may constitute a sink for atmospheric MeBr.

  1. Photoenhanced anaerobic digestion of organic acids

    DOEpatents

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  2. Isoflurane increases the anaerobic metabolites of halothane.

    PubMed

    Rahman, M; Fujii, K; Sato, N; Yuge, O

    1994-01-01

    The effect of isoflurane on the anaerobic metabolism of halothane to chlorodifluoroethene (CDE) and chlorotrifluoroethane (CTE) was studied with microsomes of guinea pig liver by gas chromatography. The reaction mixture used to measure the end products of anaerobic metabolism consisted of a microsomal suspension, 3 mM NADPH, halothane and isoflurane (except in control groups) in 0.1 M potassium phosphate buffer solution (pH 7.4). The Km values for CDE formation were 601.61 +/- 266.91, 254.22 +/- 86.58, 257.92 +/- 129.11, 268.55 +/- 125.66 and 319.22 +/- 86.76 microM (mean +/- SD, n = 5) at 0 mM (0%), 0.12 mM (0.26%), 0.29 mM (0.64%), 0.58 mM (1.30%) and 1.16 mM (2.59%) isoflurane, respectively. The Km values for CTE formation were 1204.74 +/- 551.64, 553.75 +/- 177.89, 521.14 +/- 249.77, 560.67 +/- 229.61 and 711.05 +/- 317.13 microM (n = 5) at 0 mM (0%), 0.12 mM (0.26%), 0.29 mM (0.64%), 0.58 mM (1.30%) and 1.16 mM (2.59%) isoflurane, respectively. In contrast, the Vmax values for CDE and CTE formation at these isoflurane concentrations were not significantly different than in the control groups. In this study the production of CDE and CTE was significantly (P < 0.05) increased by isoflurane, at concentrations up to 0.58 mM (1.30%).

  3. Determinants of aerobic and anaerobic exercise performance in cystic fibrosis.

    PubMed

    Shah, A R; Gozal, D; Keens, T G

    1998-04-01

    We examined aerobic and anaerobic exercise performance in 17 subjects with cystic fibrosis (CF) (age 25+/-10 [SD] yr; 47% females; FEV1 62+/-21% pred) and 17 age- and sex-matched control subjects (age 25+/-8 [SD] yr; 41% females; FEV1 112+/-15% pred) in relation to pulmonary function and nutritional status. Aerobic capacity was determined as maximal oxygen consumption (VO2max) (ml/kg/min) and anaerobic threshold (AT; ml VO2/kg/min) from a graded exercise stress test on an electronically braked bicycle ergometer. Anaerobic performance was assessed from the average work of two bouts of pedaling to exhaustion at a load corresponding to 130% Vo2max from graded exercise. Both aerobic and anaerobic performances were decreased in subjects with CF (p < 0.001). The duration of anaerobic exercise in subjects with CF was similar to control subjects. In control subjects, pulmonary function did not correlate to aerobic or anaerobic exercise. In subjects with CF significant relationships between FEV1, vital capacity, and FEF25-75% to AT were found, suggesting the pulmonary limitation to aerobic capacity. In both patients with CF and control subjects, lean body mass and arm muscle area significantly correlated with anaerobic performance but not with VO2max or AT. We conclude that nutritional status, rather than pulmonary function, is the major determinant of anaerobic exercise capacity in CF. The preserved duration of anaerobic exercise at equivalent workloads (corresponding to 130% of VO2max from graded exercise) suggests that readily available energy stores in muscle may be similar in CF and normal individuals.

  4. Invited review: anaerobic fermentation of dairy food wastewater.

    PubMed

    Hassan, A N; Nelson, B K

    2012-11-01

    Dairy food wastewater disposal represents a major environmental problem. This review discusses microorganisms associated with anaerobic digestion of dairy food wastewater, biochemistry of the process, factors affecting anaerobic digestion, and efforts to develop defined cultures. Anaerobic digestion of dairy food wastewater offers many advantages over other treatments in that a high level of waste stabilization is achieved with much lower levels of sludge. In addition, the process produces readily usable methane with low nutrient requirements and no oxygen. Anaerobic digestion is a series of complex reactions that broadly involve 2 groups of anaerobic or facultative anaerobic microorganisms: acidogens and methanogens. The first group of microorganisms breaks down organic compounds into CO(2) and volatile fatty acids. Some of these organisms are acetogenic, which convert long-chain fatty acids to acetate, CO(2), and hydrogen. Methanogens convert the acidogens' products to methane. The imbalance among the different microbial groups can lead not only to less methane production, but also to process failure. This is due to accumulation of intermediate compounds, such as volatile fatty acids, that inhibit methanogens. The criteria used for evaluation of the anaerobic digestion include levels of hydrogen and volatile fatty acids, methane:carbon ratio, and the gas production rate. A steady state is achieved in an anaerobic digester when the pH, chemical oxygen demand of the effluent, the suspended solids of the effluent, and the daily gas production remain constant. Factors affecting efficiency and stability of the process are types of microorganisms, feed C:N ratio, hydraulic retention time, reactor design, temperature, pH control, hydrogen pressure, and additives such as manure and surfactants. As anaerobic digesters become increasingly used in dairy plants, more research should be directed toward selecting the best cultures that maximize methane production from dairy

  5. Anaerobic digestion for sustainable development: a natural approach.

    PubMed

    Gljzen, H J

    2002-01-01

    After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These 'natural reactors' exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic posttreatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery.

  6. Peritoneal dialysis peritonitis by anaerobic pathogens: a retrospective case series

    PubMed Central

    2013-01-01

    Background Bacterial infections account for most peritoneal dialysis (PD)-associated peritonitis episodes. However, anaerobic PD peritonitis is extremely rare and intuitively associated with intra-abdominal lesions. In this study, we examined the clinical characteristics of PD patients who developed anaerobic peritonitis. Methods We retrospectively identified all anaerobic PD peritonitis episodes from a prospectively collected PD registry at a single center between 1990 and 2010. Only patients receiving more than 3 months of PD were enrolled. We analyzed clinical features as well as outcomes of anaerobic PD peritonitis patients. Results Among 6 patients, 10 episodes of PD-associated peritonitis were caused by anaerobic pathogens (1.59% of all peritonitis episodes during study the period), in which the cultures from 5 episodes had mixed growth. Bacteroides fragilis was the most common species identified (4 isolates). Only 3 episodes were associated with gastrointestinal lesions, and 4 episodes were related to a break in sterility during exchange procedures. All anaerobic pathogens were susceptible to clindamycin and metronidazole, but penicillin resistance was noted in 4 isolates. Ampicillin/sulbactam resistance was found in 2 isolates. In 5 episodes, a primary response was achieved using the first-generation cephalosporin and ceftazidime or aminoglycoside. In 3 episodes, the first-generation cephalosporin was replaced with aminoglycosides. Tenckhoff catheter removal was necessary in 2 episodes. Only one episode ended with mortality (due to a perforated bowel). Conclusion Anaerobic PD-associated peritonitis might be predominantly caused by contamination, rather than intra-abdominal events. Half of anaerobic PD-associated peritonitis episodes had polymicrobial growth. The overall outcome of anaerobic peritonitis is fair, with a high catheter survival rate. PMID:23705895

  7. Neural fuzzy modeling of anaerobic biological wastewater treatment systems

    SciTech Connect

    Tay, J.H.; Zhang, X.

    1999-12-01

    Anaerobic biological wastewater treatment systems are difficult to model because their performance is complex and varies significantly with different reactor configurations, influent characteristics, and operational conditions. Instead of conventional kinetic modeling, advanced neural fuzzy technology was employed to develop a conceptual adaptive model for anaerobic treatment systems. The conceptual neural fuzzy model contains the robustness of fuzzy systems, the learning ability of neural networks, and can adapt to various situations. The conceptual model was used to simulate the daily performance of two high-rate anaerobic wastewater treatment systems with satisfactory results obtained.

  8. Decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions.

    PubMed

    Işik, Mustafa; Sponza, Delia Teresa

    2004-01-01

    Batch anaerobic and sequential anaerobic upflow anaerobic sludge blanket (UASB)/aerobic continuous stirred tank reactor (CSTR) were used to determine the color and COD removals under anaerobic/aerobic conditions. Two azo dyes namely "Reactive Black 5 (RB 5)," "Congo Red (CR)," and glucose as a carbon source were used for synthetic wastewater. The course of the decolorization process approximates to first order and zero order kinetics with respect to dye concentration for RB 5 and Congo Red azo dyes, respectively, in batch conditions. The decolorization kinetic constant (K0) values increased from 3.6 to 11.8 mg(L h)(-1) as increases in dye concentrations from 200 to 3200 mg L(-1) for CR. Increases in dye concentrations from 0 to 3200 mg L(-1) reduce the decolorization rate constant (k1) values from 0.0141 to 0.0019 h(-1) in batch studies performed with RB 5. Decolorization was achieved effectively under test conditions but ultimate decolorization of azo dyes was not observed at all dye concentrations in batch assay conditions. Dye concentrations of 100 mg L(-1) and 3000 mg L(-1) of glucose-COD containing basal medium were used for continuous studies. The effect of organic loadings and HRT, on the color removal efficiencies and methane gas productions were monitored. 94.1-45.4% COD and 79-73% color removal efficiencies were obtained at an organic system during decolorization of Reactive Black 5. 92.3-77.0% COD and 95.3-92.2% decolorization efficiencies were achieved at a organic loading rate of 1.03-6.65 kg (m3 day)(-1) and a HRT of 3.54-0.49 for Congo Red treatment. The results of this study showed that, although decolorization continued, COD removal efficiencies and methane gas production were depressed at high organic loadings under anaerobic conditions. Furthermore, VFA accumulation, alkalinity consumption, and methane gas percentage were monitored at organic loading as high as 2.49-4.74 kg (m3 day)(-1) and 24.60-30.62 kg (m3 day)(-1), respectively, through the

  9. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    PubMed Central

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  10. Transparent Plastic Incubator for the Anaerobic Glove Box

    PubMed Central

    Balish, Edward; Brown, James F.; Wilkins, Tracy D.

    1977-01-01

    An incubator designed for use inside an anaerobic glove box is described. The incubator is made of transparent plastic material, has sliding plastic doors, and can be made in various sizes from readily available materials. Images PMID:16345202

  11. Comparison of microbial activity in anaerobic and microaerobic digesters.

    PubMed

    Jenicek, P; Celis, C A; Koubova, J; Pokorna, D

    2011-01-01

    Microaerobic alternative of anaerobic digestion offers many advantages especially when sulfide concentration in the digester is high. For better understanding of the microaerobic technology more detailed characterization of biomass activity is needed. Two equal digesters were operated under the same condition except of microaeration in one of them. During long term operation of anaerobic and microaerobic digesters the sludge quality and the biomass activity was monitored. The activity of sulfide oxidizing bacteria of microaerobic biomass was significantly higher in comparison with anaerobic biomass. The activity of sulfate reducing bacteria was comparable. The activity of methanogenic bacteria activity depended on sulfide concentration more than on microaeration. The extent of foaming problems was lower in the microaerobic than in the anaerobic digester.

  12. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    PubMed Central

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. PMID:26887229

  13. Biodegradability of nitrogenous compounds under anaerobic conditions and its estimation.

    PubMed

    Hongwei, Yang; Zhanpeng, Jiang; Shaoqi, Shi

    2006-02-01

    The anaerobic biodegradability of 23 nitrogenous compounds, including nitrogenous heterocyclic compounds and aliphatic amines, was tested and assessed in integration. These nitrogenous compounds were classified into readily, partially, and poorly biodegradable compounds after calculation of their integrated assessment indices (IAIs), Rules for anaerobic biodegradation of these compounds were also drawn. Stepwise regression and backpropagation artificial neural network (BP-ANN) methods were applied to establish quantitative structure-biodegradability relationships (QSBRs) based on the assessment results. In QSBR models, three molecular structure descriptors-second-order molecular connectivity index (2chi(V3)chi(v)p), and energy of the highest occupied molecular orbital (EHOMO)--were included. After analysis of the sensitivity of variables in QSBR models, it was found that the key molecular structure descriptor affecting anaerobic biodegradability of nitrogenous compounds is EHOMO, which is directly proportional to the anaerobic biodegradability of nitrogenous compounds.

  14. Characteristics, process parameters, and inner components of anaerobic bioreactors.

    PubMed

    Abdelgadir, Awad; Chen, Xiaoguang; Liu, Jianshe; Xie, Xuehui; Zhang, Jian; Zhang, Kai; Wang, Heng; Liu, Na

    2014-01-01

    The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB), namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT), Organic Loading Rate (OLR), and sludge retention time (SRT) were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive.

  15. POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS

    EPA Science Inventory

    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  16. NATURAL BIOLOGICAL ATTENUATION OF AROMATIC HYDROCARBONS UNDER ANAEROBIC CONDITIONS

    EPA Science Inventory

    There is little consistent difference in the calculated half-lives of aromatic hydrocarbons in different anaerobic environments, but methanogenic environments might be generally the least supportive of rapid biotransformation. Toluene was usually the most rapidly biotransformed...

  17. [Anaerobic growth ability and alcohol fermentation activity of microscopic fungi].

    PubMed

    Kurakov, A V; Khidirov, K S; Sadykova, V S; Zviagintsev, D G

    2011-01-01

    The method proposed in this study was used to isolate fungi grown under anaerobic conditions and to reveal distinctions in their abundance and species composition in different habitats. The ability of micromycetes of different taxa to grow under anaerobic conditions and ensure alcohol fermentation was determined for a representative sample (344 strains belonging to more than 60 species). The group of fungi growing under anaerobic conditions included species with high, moderate, and low fermentation activity. The ability for anaerobic growth and fermentation depended on the taxonomic affiliation of fungi. In some cases, the expression of these characteristics depended on the habitat from which the strain was isolated. The maximum level of ethanol accumulation in culture liquid (1.2-4.7%) was detected for Absidia spinosa, Aspergillus sp. of group flavus, Aspergillus terreus, Acremonium sp., Mucor circinelloides, Mucor sp., Fusarium oxysporum, F. solani, F. sambucinum, Rhizopus arrhizus var. Arrhizus, Trichoderma atroviride, and Trichoderma sp.

  18. POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS

    EPA Science Inventory

    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  19. Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments.

    PubMed

    Hackstein, J H; Akhmanova, A; Voncken, F; van Hoek, A; van Alen, T; Boxma, B; Moon-van der Staay, S Y; van der Staay, G; Leunissen, J; Huynen, M; Rosenberg, J; Veenhuis, M

    2001-01-01

    Hydrogenosomes are membrane-bound organelles that compartmentalise the final steps of energy metabolism in a number of anaerobic eukaryotes. They produce hydrogen and ATP. Here we will review the data, which are relevant for the questions: how did the hydrogenosomes originate, and what was their ancestor? Notably, there is strong evidence that hydrogenosomes evolved several times as adaptations to anaerobic environments. Most likely, hydrogenosomes and mitochondria share a common ancestor, but an unequivocal proof for this hypothesis is difficult because hydrogenosomes lack an organelle genome - with one remarkable exception (Nyctotherus ovalis). In particular, the diversity of extant hydrogenosomes hampers a straightforward analysis of their origins. Nevertheless, it is conceivable to postulate that the common ancestor of mitochondria and hydrogenosomes was a facultative anaerobic organelle that participated in the early radiation of unicellular eukaryotes. Consequently, it is reasonable to assume that both, hydrogenosomes and mitochondria are evolutionary adaptations to anaerobic or aerobic environments, respectively.

  20. Characteristics, Process Parameters, and Inner Components of Anaerobic Bioreactors

    PubMed Central

    Abdelgadir, Awad; Chen, Xiaoguang; Liu, Jianshe; Xie, Xuehui; Zhang, Jian; Zhang, Kai; Wang, Heng; Liu, Na

    2014-01-01

    The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB), namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT), Organic Loading Rate (OLR), and sludge retention time (SRT) were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive. PMID:24672798

  1. Sequential anaerobic-adsorption treatment of chemical industry wastewater.

    PubMed

    Daga, Kailash; Pallavi, V; Patel, Dharmendra

    2011-10-01

    Treatment technologies needed to reduce the pollutant load of chemical industry effluent have been found to involve exorbitantly high costs. The present investigation aimed to treat the wastewater from chemical industry by cost effective sequential anaerobic-adsorption treatment. Wastewaters from chemical industry that are rich in biodegradable organics are tested for anaerobic treatability. The efficiency of anaerobic reactor is relatively lower 79.3%, and therefore post treatment of effluent was done by adsorption using Poly vinyl alcohol coated Datura stramonium (PVAC-DS) as an adsorbent. An overall COD removal of 93.8 % was achieved after sequential Anaerobic-Adsorption treatment, which lead to a better final effluent and a more economical treatment system.

  2. Anaerobic digestion as a waste disposal option for American Samoa

    SciTech Connect

    Rivard, C

    1993-01-01

    Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

  3. Modeling for Anaerobic Fixed-Bed Biofilm Reactors

    SciTech Connect

    Liu, B. Y. M.; Pfeffer, J. T.

    1989-06-01

    The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

  4. Validity and reliability of the Hawaii anaerobic run test.

    PubMed

    Kimura, Iris F; Stickley, Christopher D; Lentz, Melissa A; Wages, Jennifer J; Yanagi, Kazuhiko; Hetzler, Ronald K

    2014-05-01

    This study examined the reliability and validity of the Hawaii anaerobic run test (HART) by comparing anaerobic capacity measures obtained to those during the Wingate Anaerobic Test (WAnT). Ninety-six healthy physically active volunteers (age, 22.0 ± 2.8 years; height, 163.9 ± 9.5 cm; body mass, 70.6 ± 14.7 kg; body fat %, 19.29 ± 5.39%) participated in this study. Each participant performed 2 anaerobic capacity tests: the WAnT and the HART by random assignment on separate days. The reliability of the HART was calculated from 2 separate trials of the test and then determined through intraclass correlation coefficients (ICCs). Blood samples were collected, and lactate was analyzed both pretest and posttest for each of the 2 exercise modes. Heart rate and rate of perceived exertion were also measured pre- and post-exercise. Hawaii anaerobic run test peak and mean momentum were calculated as body mass times highest or average split velocity, respectively. Intraclass correlation coefficients between trials of the HART for peak and mean momentum were 0.98 and 0.99, respectively (SEM = 18.8 and 25.7, respectively). Validity of the HART was established through comparison of momentum on the HART with power on the WAnT. High correlations were found between peak power and peak momentum (r = 0.88), as well as mean power and mean momentum (r = 0.94). The HART was considered to be a reliable test of anaerobic power. The HART was also determined to be a valid test of anaerobic power when compared with the WAnT. When testing healthy college-aged individuals, the HART offers an easy and inexpensive alternative maximal effort anaerobic power test to other established tests.

  5. ANAEROBIC SOIL DISINFESTATION IN MICROCOSMS OF TWO SANDY SOILS.

    PubMed

    Stremińska, M A; Runia, W T; Termorshuizen, A J; Feil, H; Van Der Wurff, A W G

    2014-01-01

    In recent years, anaerobic soil disinfestation (ASD) has been proposed as an alternative control method of soil-borne plant pathogens. It involves adding a labile carbon source, irrigating the soil to stimulate decomposition of organic material and then covering the soil with air-tight plastic to limit gas exchange. During the ASD process, soil microorganisms switch from aerobic to anaerobic metabolism. As a result, by-products of anaerobic metabolism are released into the soil environment such as various organic acids and gases. These by-products are reported to have a negative effect on survival of soil-borne plant pathogens. However, the efficacy of ASD to reduce soil-borne pathogens in practice may vary significantly. Therefore, we studied the efficacy of the ASD process in two different soils. In addition, it was investigated whether a pre-treatment with an anaerobic bacterial inoculum prior to ASD affected the efficacy of the process. Two sandy soils (dune sand and glacial sand) were inoculated in 2 L soil microcosms. We tested the efficacy of ASD treatment against the potato cyst nematode Globodera pallida. For each soil, three treatments were used: control treatment (no Herbie addition, aerobic incubation), ASD 1 (organic substrate addition, anaerobic incubation) and ASD 2 (organic substrate and anaerobic bacterial inoculum addition, anaerobic incubation). Soil microcosms were incubated in the dark at 20°C for two weeks. We observed that anaerobic soil disinfestation treatments were highly effective against Potato Cyst Nematode (PCN), with pathogen being eradicated totally in all but one ASD treatment (glacial sand ASD2) within two weeks. The relative abundance of Firmicutes (spore-forming bacteria, often fermentative) in total bacteria increased significantly in ASD treated soils. Numbers of these bacteria correlated positively with increased concentrations of acetic and butyric acids in soil water phase in ASD treatments.

  6. Contribution of anaerobic energy expenditure to whole body thermogenesis

    PubMed Central

    Scott, Christopher B

    2005-01-01

    Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis). An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure. PMID:15958171

  7. Assessment of anaerobic blood cultures in pediatric oncology patients.

    PubMed

    Monsonís Cabedo, Manuel; Rives Solá, Susana; Noguera-Julian, Antoni; Urrea Ayala, Mireia; Cruz Martinez, Ofelia; Gené Giralt, Amadeu

    2017-01-01

    The routine use of a single aerobic bottle for blood culture in pediatric patients has become commonplace, as anaerobic bacteria are not frequently involved in clinically significant infections. The aim of this study was to assess the usefulness of routinely performing anaerobic blood cultures in pediatric oncology patients. Prospective study was conducted on pediatric (<18 years) patients affected with febrile syndrome after receiving chemotherapy for hematological or solid malignancies. Samples were inoculated into pediatric aerobic and standard anaerobic bottles (BacT/Alert automatic system). Strains were considered clinically significant, or deemed as contaminants, depending on isolation circumstances and clinical criteria. A total of 876 blood cultures from 228 patients were processed during the 21-month study period (January 2014 to September 2015). Baseline diagnosis included 143 solid tumors and 67/18 cases of leukemia/lymphoma. Bacterial growth was detected in 90 (10.2%) blood cultures for 95 different isolates, of which 62 (7.1%)/63 isolates were considered clinically significant. Among the latter, 38 (60.3%) microorganisms grew in both aerobic and anaerobic bottles, 18 (28.6%) only in aerobic bottles, and 7 (11.1%) only in anaerobic bottles. Gram-negative bacilli (33; 52.4%), mainly from the Enterobacteriaceae family, were the most frequently isolated microorganisms. Overall, only 3 out of 90 isolates (3.3%) were strict anaerobes (Propionibacterium acnes), and all of them were deemed contaminants. Strict anaerobes did not cause significant infections in febrile pediatric oncology patients, and anaerobic blood culture bottles offered no additional advantages over aerobic media. Our results suggest that routine blood cultures should be solely processed in aerobic media in this group of patients. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  8. Decomposition of organic waste products under aerobic and anaerobic conditions

    SciTech Connect

    Gale, P.M.

    1988-01-01

    The objectives of this research were to determine the kinetics of C and N mineralization under aerobic and anaerobic conditions. These parameters were then used to verify the simulation model, DECOMPOSITION, for the anaerobic system. Incubation experiments were conducted to compare the aerobic and anaerobic decomposition of alfalfa (Medicago sativa L.), a substrate with a low C:N ratio. Under anaerobic conditions the net mineralization of N occurred more rapidly than that under aerobic conditions. However, the rate of C mineralization as measured by CO{sub 2} evolution was much lower. For the anaerobic decomposition of alfalfa, C mineralization was best described as the sum of the CO{sub 2} and CH{sub 4} evolved plus the water soluble organic C formed. The kinetics of C mineralization, as determined by this approach, were used to successfully predict the rate and amount of N mineralization from alfalfa undergoing anaerobic decomposition. The decomposition of paper mill sludge, a high C:N ratio substrate, was also evaluated.

  9. Fungal survival during anaerobic digestion of organic household waste.

    PubMed

    Schnürer, Anna; Schnürer, Johan

    2006-01-01

    Anaerobic digestion of organic waste yields energy rich biogas and retains nutrients (N, P, K, S, etc.) in a stabilised residue. For the residue to be used as a soil fertiliser, it must be free from pollutants and harmful microorganisms. Fungal survival during sanitation and anaerobic treatment of source-separated organic household waste and during aerobic storage of the residue obtained was investigated. Decimal reduction times were determined for inoculated fungi (Aspergillus flavus and Aspergillus fumigatus, Penicillium roqueforti, Rhizomucor pusillus, Thermoascus crustaceus and Thermomyces lanuginosus). Several different fungal species were found after waste sanitation treatment (70 degrees C, 1 h), with Aspergillus species dominating in non-inoculated waste. Anaerobic waste degradation decreased the diversity of fungal species for processes run at both 37 and 55 degrees C, but not total fungal colony forming units. Fungi surviving the mesophilic anaerobic digestion were mainly thermotolerant Talaromyces and Paecilomyces species. T. crustaceus and T. lanuginosus were the only inoculated fungi to survive the thermophilic anaerobic degradation process. Aerobic storage of both types of anaerobic residues for one month significantly decreased fungal counts.

  10. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    PubMed

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  11. Using contaminated plants involved in phytoremediation for anaerobic digestion.

    PubMed

    Cao, Zewei; Wang, Shengxiao; Wang, Ting; Chang, Zhizhou; Shen, Zhenguo; Chen, Yahua

    2015-01-01

    This study investigated the anaerobic digestion capability of five plants and the effects of copper (Cu) and S,S'-ethylenediaminedisuccinic acid (EDDS, a chelator widely used in chelant-assisted phytoremediation) on biogas production to determine a feasible disposal method for plants used in remediation. The results showed that in addition to Phytolacca americana L., plants such as Zea mays L., Brassica napus L., Elsholtzia splendens Nakai ex F. Maekawa, and Oenothera biennis L. performed well in biogas production. Among these, O. biennis required the shortest period to finish anaerobic digestion. Compared to normal plants with low Cu content, the plants used in remediation with increased Cu levels (100 mg kg(-1)) not only promoted anaerobic digestion and required a shorter anaerobic digestion time, but also increased the methane content in biogas. When the Cu content in plants increased to 500, 1000, and 5000 mg kg(-1), the cumulative biogas production decreased by 12.3%, 14.6%, and 41.2%, respectively. Studies also found that EDDS conspicuously restrained biogas production from anaerobic digestion. The results suggest that anaerobic digestion has great potential for the disposal of contaminated plants and may provide a solution for the resource utilization of plants used in remediation.

  12. Effect of alkaline pretreatment on anaerobic digestion of solid wastes

    SciTech Connect

    Lopez Torres, M. Espinosa Llorens, Ma. del C.

    2008-11-15

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH){sub 2}), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH){sub 2}/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m{sup 3} CH{sub 4}/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.

  13. Carbon and Hydrogen Isotopic Fractionation during Anaerobic Biodegradation of Benzene

    PubMed Central

    Mancini, Silvia A.; Ulrich, Ania C.; Lacrampe-Couloume, Georges; Sleep, Brent; Edwards, Elizabeth A.; Sherwood Lollar, Barbara

    2003-01-01

    Compound-specific isotope analysis has the potential to distinguish physical from biological attenuation processes in the subsurface. In this study, carbon and hydrogen isotopic fractionation effects during biodegradation of benzene under anaerobic conditions with different terminal-electron-accepting processes are reported for the first time. Different enrichment factors (ɛ) for carbon (range of −1.9 to −3.6‰) and hydrogen (range of −29 to −79‰) fractionation were observed during biodegradation of benzene under nitrate-reducing, sulfate-reducing, and methanogenic conditions. These differences are not related to differences in initial biomass or in rates of biodegradation. Carbon isotopic enrichment factors for anaerobic benzene biodegradation in this study are comparable to those previously published for aerobic benzene biodegradation. In contrast, hydrogen enrichment factors determined for anaerobic benzene biodegradation are significantly larger than those previously published for benzene biodegradation under aerobic conditions. A fundamental difference in the previously proposed initial step of aerobic versus proposed anaerobic biodegradation pathways may account for these differences in hydrogen isotopic fractionation. Potentially, C-H bond breakage in the initial step of the anaerobic benzene biodegradation pathway may account for the large fractionation observed compared to that in aerobic benzene biodegradation. Despite some differences in reported enrichment factors between cultures with different terminal-electron-accepting processes, carbon and hydrogen isotope analysis has the potential to provide direct evidence of anaerobic biodegradation of benzene in the field. PMID:12513995

  14. Anaerobically expressed Escherichia coli genes identified by operon fusion techniques.

    PubMed Central

    Choe, M; Reznikoff, W S

    1991-01-01

    Genes that are expressed under anaerobic conditions were identified by operon fusion techniques with a hybrid bacteriophage of lambda and Mu, lambda placMu53, which creates transcriptional fusions to lacZY. Cells were screened for anaerobic expression on XG medium. Nine strains were selected, and the insertion point of the hybrid phage in each strain was mapped on the Escherichia coli chromosome linkage map. The anaerobic and aerobic expression levels of these genes were measured by beta-galactosidase assays in different medium conditions and in the presence of three regulatory mutations (fnr, narL, and rpoN). The anaerobically expressed genes (aeg) located at minute 99 (aeg-99) and 75 (aeg-75) appeared to be partially regulated by fnr, and aeg-93 is tightly regulated by fnr. aeg-60 requires a functional rpoN gene for its anaerobic expression. aeg-46.5 is repressed by narL. aeg-65A and aeg-65C are partially controlled by fnr but only in media containing nitrate or fumarate. aeg-47.5 and aeg-48.5 were found to be anaerobically induced only in rich media. The effects of a narL mutation on aeg-46.5 expression were observed in all medium conditions regardless of the presence or absence of nitrate. This suggests that narL has a regulatory function in the absence of exogenously added nitrate. PMID:1917846

  15. Metabolic models to investigate energy limited anaerobic ecosystems.

    PubMed

    Rodríguez, J; Premier, G C; Guwy, A J; Dinsdale, R; Kleerebezem, R

    2009-01-01

    Anaerobic wastewater treatment is shifting from a philosophy of solely pollutants removal to a philosophy of combined resource recovery and waste treatment. Simultaneous wastewater treatment with energy recovery in the form of energy rich products, brings renewed interest to non-methanogenic anaerobic bioprocesses such as the anaerobic production of hydrogen, ethanol, solvents, VFAs, bioplastics and even electricity from microbial fuel cells. The existing kinetic-based modelling approaches, widely used in aerobic and methanogenic wastewater treatment processes, do not seem adequate in investigating such energy limited microbial ecosystems. The great diversity of similar microbial species, which share many of the fermentative reaction pathways, makes quantify microbial groups very difficult and causes identifiability problems. A modelling approach based on the consideration of metabolic reaction networks instead of on separated microbial groups is suggested as an alternative to describe anaerobic microbial ecosystems and in particular for the prediction of product formation as a function of environmental conditions imposed. The limited number of existing relevant fermentative pathways in conjunction with the fact that anaerobic reactions proceed very close to thermodynamic equilibrium reduces the complexity of such approach and the degrees of freedom in terms of product formation fluxes. In addition, energy limitation in these anaerobic microbial ecosystems makes plausible that selective forces associated with energy further define the system activity by favouring those conversions/microorganisms which provide the most energy for growth under the conditions imposed.

  16. Comparison of selected aerobic and anaerobic procedures for MSW treatment.

    PubMed

    Fricke, Klaus; Santen, Heike; Wallmann, Rainer

    2005-01-01

    This paper considers selected efficiency rates and process data of aerobic and anaerobic procedures for the treatment of municipal solid waste and residual waste. Data are exclusively related to mechanical-biological treatment (MBT) procedures for generating waste appropriate for landfilling. The following aspects are regarded: general framework conditions for the application of MBT, efficiency of decomposition and of stabilisation, air and water emissions and energy balances. The presented data can be used for more efficient planning. In comparison to aerobic processes, anaerobic digestion can be ecologically advantageous, particularly with regard to exhaust emissions and energy balances. On the other hand, the wastewater emissions and the wastewater treatment required must be regarded as disadvantageous. Due to the relatively short period of operational history of most anaerobic processes for mechanical-biological waste treatment and thus limited experiences, operational reliability of anaerobic processes is slightly lower. Extensive biological stability of the treated waste for low-emission disposal cannot be reached by anaerobic digestion alone, but only in combination with additional aerobic post-treatment. In connection with the utilisation of renewable energies and the rising relevancy of climate protection, it can be affirmed that anaerobic digestion for the treatment of municipal solid waste has a high potential for further development.

  17. Characterizing the Anaerobic Response of Chlamydomonas reinhardtii by Quantitative Proteomics

    PubMed Central

    Terashima, Mia; Specht, Michael; Naumann, Bianca; Hippler, Michael

    2010-01-01

    The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic (induced by 8 h of argon bubbling) conditions were isolated and analyzed using comparative proteomics. A total of 2315 proteins were identified. Further analysis based on spectral counting clearly localized 606 of these proteins to the chloroplast, including many proteins of the fermentative metabolism. Comparative quantitative analyses were performed with the chloroplast-localized proteins using stable isotopic labeling of amino acids ([13C6]arginine/[12C6]arginine in an arginine auxotrophic strain). The quantitative data confirmed proteins previously characterized as induced at the transcript level as well as identified several new proteins of unknown function induced under anaerobic conditions. These proteins of unknown function provide new candidates for further investigation, which could bring insights for the engineering of hydrogen-producing alga strains. PMID:20190198

  18. Anaerobic treatment of effluents from an industrial polymers synthesis plant

    SciTech Connect

    Araya, P.; Aroca, G.; Chamy, R.

    1999-06-01

    The feasibility of the anaerobic treatment of an industrial polymer synthesis plant effluent was evaluated. The composition of the wastewater includes acrylates, styrene, detergents, a minor amount of silicates and a significant amount of ferric chloride. The average chemical oxygen demand (COD) corresponding is about 2,000 mg/l. The anaerobic biodegradability of the effluent is shown and the toxicity effect on the populations of anaerobic bacteria is evaluated. The results of the anaerobic biodegradation assays show that 62% of the wastewater compounds, measured as COD, could be consumed. An upflow anaerobic sludge blanket (UASB) reactor was used in the evaluation, it has a diameter-height ratio of 1:7, and 4-liter volume. The inoculum was obtained from a UASB pilot plant that treats brewery wastewaters. At the beginning of the operation, the biomass showed an anaerobic activity of 0.58 gCOD/(gVSS {times} d), it decreased only 2.5% in the subsequent 4 months. After 35 days of continuous operation, the reactor was operated at different steady states for 140 days. The COD was maintained at 2,200 mg/l in the feed. The results were: organic loading rate (OLR): 4.3 kg COD/(m{sup 3} {times} d), hydraulic retention time: 12 h, superficial velocity: 1 m/h, average biogas productivity: 290 L CH{sub 4}/kg COD fed, biogas composition: 70--75% methane and a COD removal percentage > 75%.

  19. Anaerobic benzene oxidation via phenol in Geobacter metallireducens.

    PubMed

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A; Bain, Timothy S; Lovley, Derek R

    2013-12-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 μM) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with (18)O during growth in H2(18)O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.

  20. Anaerobic Benzene Oxidation via Phenol in Geobacter metallireducens

    PubMed Central

    Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A.; Bain, Timothy S.; Lovley, Derek R.

    2013-01-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 μM) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with 18O during growth in H218O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation. PMID:24096430

  1. C4-Dicarboxylate Degradation in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Kleefeld, Alexandra

    2004-12-01

    C4-dicarboxylates, like succinate, fumarate, L- and D-malate, tartrate, and the C4-dicarboxylic amino acid aspartate, support aerobic and anaerobic growth of Escherichia coli and related bacteria and can serve as carbon and energy sources. In aerobic growth, the C4-dicarboxylates are oxidized in the citric acid cycle. Due to the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of the C4-dicarboxylates depends on fumarate reduction to succinate. In some related bacteria (e.g., Klebsiella), degradation of C4-dicarboxylates, like tartrate, uses a different mechanism and pathway. It requires the functioning of an Na+-dependent and membrane-associated oxaloacetate decarboxylase. Due to the incomplete function of the citric acid cycle in anaerobic growth, succinate supports only aerobic growth of E. coli. This chapter describes the pathways of and differences in aerobic and anaerobic C4-dicarboxylate metabolism and the physiological consequences. The citric acid cycle, fumarate respiration, and fumarate reductase are discussed here only in the context of aerobic and anaerobic C4-dicarboxylate metabolism. Some recent aspects of C4-dicarboxylate metabolism, such as transport and sensing of C4-dicarboxylates, and their relationships are treated in more detail.

  2. Anaerobic bioventing of unsaturated zone contaminated with DDT and DNT.

    PubMed

    Shah, J K; Sayles, G D; Suidan, M T; Mihopoulos, P; Kaskassian, S

    2001-01-01

    Initial degradation of highly chlorinated compounds and nitroaromatic compounds found in munition waste streams is accelerated under anaerobic conditions followed by aerobic treatment of the degradation products. The establishment of anaerobic environment in a vadose zone can be accomplished by feeding appropriate anaerobic gas mixture, i.e., "anaerobic bioventing". The gas mixture contains an electron donor for the reduction of these compounds. Lab scale study was conducted to evaluate potential of anaerobic bioventing for the treatment of an unsaturated zone contaminated with 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and 2,4-dinitrotoluene (DNT). Hydrogen was used as the electron donor. Using the soil columns innoculate with anaerobic microorganisms, it was observed that by feeding a gas mixture of 1% hydrogen, 1% carbon dioxide and nitrogen, methanogenic conditions were established and DDT was reductively dechlorinated. 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD) accumulated as the intermediate product. The half life of DDT was calculated to be 8.5 months. DNT completely disappeared after six months of operation and no intermediates could be detected.

  3. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment.

    PubMed

    Ghattas, Ann-Kathrin; Fischer, Ferdinand; Wick, Arne; Ternes, Thomas A

    2017-06-01

    Although strictly anaerobic conditions prevail in several environmental compartments, up to now, biodegradation studies with emerging organic contaminants (EOCs), such as pharmaceuticals and personal care products, have mainly focused on aerobic conditions. One of the reasons probably is the assumption that the aerobic degradation is more energetically favorable than degradation under strictly anaerobic conditions. Certain aerobically recalcitrant contaminants, however, are biodegraded under strictly anaerobic conditions and little is known about the organisms and enzymatic processes involved in their degradation. This review provides a comprehensive survey of characteristic anaerobic biotransformation reactions for a variety of well-studied, structurally rather simple contaminants (SMOCs) bearing one or a few different functional groups/structural moieties. Furthermore it summarizes anaerobic degradation studies of more complex contaminants with several functional groups (CMCs), in soil, sediment and wastewater treatment. While strictly anaerobic conditions are able to promote the transformation of several aerobically persistent contaminants, the variety of observed reactions is limited, with reductive dehalogenations and the cleavage of ether bonds being the most prevalent. Thus, it becomes clear that the transferability of degradation mechanisms deduced from culture studies of SMOCs to predict the degradation of CMCs, such as EOCs, in environmental matrices is hampered due the more complex chemical structure bearing different functional groups, different environmental conditions (e.g. matrix, redox, pH), the microbial community (e.g. adaptation, competition) and the low concentrations typical for EOCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The simple biochemistry of molecular hydrogen is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, a great majority of microbial redox processes involve hydrogen as a reactant, product or potential by-product. Accordingly, the energetics (thermodynamics) of each of these processes is affected by variations in local H2 concentrations. It has long been established that this effect is important in governing microbe-microbe interactions and there are multiple demonstrations that "interspecies hydrogen transfer" can alter the products of, inhibit/stimulate, or even reverse microbial metabolic reactions. In anoxic sediments, H2 concentrations themselves are thought to be controlled by the thermodynamics of the predominant H2-consuming microbial process. In sediments from Cape Lookout Bight, this relationship quantitatively describes the co-variation of H2 concentrations with temperature (for methanogens and sulfate reducers) and with sulfate concentration (for sulfate reducers). The quantitative aspect is import= for two reasons: 1) it permits the modeling of H2-sensitive biogeochemistry, such as anaerobic methane oxidation or pathways of organic matter remineralization, as a function of environmental controls; 2) for such a relationship to be observed requires that intracellular biochemistry and bioenergetics are being directly expressed in a component of the extracellular medium. H2 could therefore be utilized a non-invasive probe of cellular energetic function in intact microbial ecosystems. Based on the latter principle we have measured down-core profiles of H2 and other relevant physico-chemical parameters in order to calculate the metabolic energy yields (DG) that support microbial metabolism in Cape Lookout Bight sediments. Methanogens in this system apparently function with energy yields significantly smaller than the minimum requirements suggested by pure

  5. Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The simple biochemistry of molecular hydrogen is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, a great majority of microbial redox processes involve hydrogen as a reactant, product or potential by-product. Accordingly, the energetics (thermodynamics) of each of these processes is affected by variations in local H2 concentrations. It has long been established that this effect is important in governing microbe-microbe interactions and there are multiple demonstrations that "interspecies hydrogen transfer" can alter the products of, inhibit/stimulate, or even reverse microbial metabolic reactions. In anoxic sediments, H2 concentrations themselves are thought to be controlled by the thermodynamics of the predominant H2-consuming microbial process. In sediments from Cape Lookout Bight, this relationship quantitatively describes the co-variation of H2 concentrations with temperature (for methanogens and sulfate reducers) and with sulfate concentration (for sulfate reducers). The quantitative aspect is import= for two reasons: 1) it permits the modeling of H2-sensitive biogeochemistry, such as anaerobic methane oxidation or pathways of organic matter remineralization, as a function of environmental controls; 2) for such a relationship to be observed requires that intracellular biochemistry and bioenergetics are being directly expressed in a component of the extracellular medium. H2 could therefore be utilized a non-invasive probe of cellular energetic function in intact microbial ecosystems. Based on the latter principle we have measured down-core profiles of H2 and other relevant physico-chemical parameters in order to calculate the metabolic energy yields (DG) that support microbial metabolism in Cape Lookout Bight sediments. Methanogens in this system apparently function with energy yields significantly smaller than the minimum requirements suggested by pure

  6. Biogas plasticization coupled anaerobic digestion: continuous flow anaerobic pump test results.

    PubMed

    Schimel, Keith A; Boone, David R

    2010-03-01

    In this investigation, the Anaerobic Pump (TAP) and a conventional continuous flow stirred tank reactor (CFSTR) were tested side by side to compare performance. TAP integrates anaerobic digestion (AD) with biogas plasticization-disruption cycle to improve mass conversion to methane. Both prototypes were fed a "real world" 50:50 mixture of waste-activated sludge (WAS) and primary sludge and operated at room temperature (20 degrees Celsius). The quantitative results from three steady states show TAP peaked at 97% conversion of the particulate COD in a system hydraulic residence time (HRT) of only 6 days. It achieved a methane production of 0.32 STP cubic meter CH(4) per kilogram COD fed and specific methane yield of 0.78 m(3) CH(4) per cubic meter per day. This was more than three times the CFSTR specific methane yield (0.22 m(3) CH(4) per cubic meter per day) and more than double the CFSTR methane production (0.15 m(3) CH(4) per kilogram COD fed). A comparative kinetics analysis showed the TAP peak substrate COD removal rate (R (o)) was 2.24 kg COD per cubic meter per day, more than three times the CFSTR substrate removal rate of 0.67 kg COD per cubic meter per day. The three important factors contributing to the superior TAP performance were (1) effective solids capture (96%) with (2) mass recycle and (3) stage II plasticization-disruption during active AD. The Anaerobic Pump (TAP) is a high rate, high efficiency-low temperature microbial energy engine that could be used to improve renewable energy yields from classic AD waste substrates like refuse-derived fuels, treatment plant sludges, food wastes, livestock residues, green wastes and crop residuals.

  7. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter.

    PubMed

    Gannoun, H; Bouallagui, H; Okbi, A; Sayadi, S; Hamdi, M

    2009-10-15

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6g COD/Ld in mesophilic conditions and at OLRs from 0.9 to 9 g COD/Ld in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/Ld in mesophilic conditions, while the highest OLRs i.e. 9 g COD/Ld led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/Ld. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.

  8. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools.

    PubMed

    Mamo, Gashaw

    Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these

  9. Phytase activity of anaerobic ruminal bacteria.

    PubMed

    Yanke, L J; Bae, H D; Selinger, L B; Cheng, K J

    1998-06-01

    Phytase catalyses the release of phosphate from phytate (myo-inositol hexakisphosphate), the predominant form of phosphorus in cereal grains, oilseeds and legumes. The presence of phytase activity was investigated in 334 strains of 22 species of obligately anaerobic ruminal bacteria. Measurable activities were demonstrated in strains of Selenomonas ruminantium, Megasphaera elsdenii, Prevotella ruminicola, Mitsuokella multiacidus and Treponema spp. Strains isolated from fermentations with cereal grains proved to have high activity, and activity was particularly prevalent in S. ruminantium, with over 96% of the tested strains being positive. The measured phytase activity was found exclusively associated with the bacterial cells and was produced in the presence of approximately 14 mM phosphate. The most highly active strains were all S. ruminantium, with the exception of the one Mitsuokella multiacidus strain examined. Phytase activity varied greatly among positive strains but activities as high as 703 nmol phosphate released (ml culture)-1 were measured for a S. ruminantium strain and 387 nmol phosphate released (ml culture)-1 for the Mitsuokella multiacidus strain.

  10. Anaerobic effluent disinfection using ozone: byproducts formation.

    PubMed

    Silva, G H R; Daniel, L A; Bruning, H; Rulkens, W H

    2010-09-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15 min. The wastewater used in this research was generated by the wastewater treatment plant (WWTP), University of São Paulo - Brazil. The total coliform inactivation range was 2.00-4.06 log(10), and the inactivation range for Escherichia coli was 2.41-4.65 log(10). Mean chemical oxygen demand (COD) reductions were 37.6%, 48.8% and 42.4% for doses of 5.0, 8.0 and 10.0mg O(3)L(-1), respectively. Aldehyde formation varied with dosage only when the ozone dose was increased from 5.0 to 8.0mg O(3)L(-1) for acetaldehyde and from 5.0 to 8.0 and from 8.0 to 10.0mg O(3)L(-1) for glyoxal.

  11. Anaerobic degradation of linoleic oleic acids

    SciTech Connect

    Lalman, J.A.; Bagley, D.M.

    1999-07-01

    The anaerobic degradation of linoleic (C18:2) and oleic (C18:1) acids was examined in batch experiments. By-product distribution depended on both the type of long chain fatty acid added and initial substrate concentration. Major by-products were palmitic (C16), myristic (C14) and acetic acids. Trace quantities of palmitoleic (C16:1) and lauric (C12) acids were observed together with larger amounts of palmitic (C16), myristic (C14) and hexanoic (C6) acids in cultures incubated with 100 mg/L linoleic (C18:2) acid. Bio-hydrogenation of C18 fatty acids was not necessary for the {beta}-oxidation mechanism to proceed. Aceticlastic methanogenic inhibition was observed in cultures inoculated with greater than 50 mg/L linoleic (C18:2) acid. In cultures incubated with greater than 50 mg/L oleic (C18:1) acid, aceticlastic methanogenic inhibition was observed for a short time period.

  12. Anaerobic biotransformation of trichlorofluoroethene in groundwater microcosms

    SciTech Connect

    Vancheeswaran, S.; Semprini, L. . Dept. of Civil, Construction, and Environmental Engineering); Hyman, M.R. . Dept. of Microbiology)

    1999-06-15

    The biological reduction of trichlorofluoroethene (TCFE) was investigated in anaerobic groundwater microcosms. TCFE was reductively dehalogenated by microorganisms to produce three dichlorofluoroethene isomers, with cis-1,2-dichlorofluoroethene (c-DCFE) being the main isomer formed. Further sequential biological transformation of these compounds to mono-chlorofluoroethene isomers was incomplete and occurred at much slower rates. The rates of TCFE reduction were compared to the rates of reduction of two common chlorinated solvents, perchloroethene (PCE) and trichloroethene (TCE), when present at similar concentrations. Aqueous concentrations ranged from 7.0 to 14.0 mg/L for TCFE and from 7.5 to 15.0 mg/L for PCE and TCE. Similar rates of PCE and TCE transformation relative to TCFE were observed in single-compound tests (PCE, TCE, and TCFE in separate microcosms) and when the contaminants were present together as mixtures in the microcosms. The close similarities between the time course and kinetics of TCFE degradation and the degradation of both PCE and TCE, when present at comparable initial concentrations, suggest that TCFE could potentially be used as a benign reactive tracer to measure in-situ rates of PCE and TCE transformation in contaminated environments.

  13. A stability assessment tool for anaerobic codigestion.

    PubMed

    Cook, Sherri M; Skerlos, Steven J; Raskin, Lutgarde; Love, Nancy G

    2017-04-01

    Anaerobic codigestion allows for greater resource recovery from organic substrates and provides opportunities for more stable operation than mono-digestion. Despite these benefits, the adoption of codigestion is limited because it can introduce operational complexity and suffers from some of the same challenges as mono-digestion, such as ammonia inhibition and nutrient imbalances. There is a need for rapid and cost-effective assessments that can provide insight to design engineers as they explore the valorization of local organic waste streams and seek to maintain or improve digester stability. To address this need, we developed and tested a tool that can yield useful stability indicators, performance predictions, and substrate selection protocols for codigestion. This tool uses quantitative, empirical data on stability indicators within an assessment framework to evaluate a digester's process stability. The tool's accuracy was tested using real and simulated digester data, and the importance of the nitrogen and lipid composition of a substrate was identified. The resulting stability assessment tool improves our fundamental understanding of codigestion, provides a mechanism to reduce the number of experiments, and guides selection of appropriate substrate combinations that can maximize energy recovery during codigestion without compromising process stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Essential metal depletion in an anaerobic reactor.

    PubMed

    Osuna, M B; Iza, J; Zandvoort, M; Lens, P N L

    2003-01-01

    The effect of the absence of trace elements on the conversion of a mixture of volatile fatty acids by a distillery anaerobic granular sludge was investigated. Two UASB reactors were operated under identical operational conditions except for the influent trace metal concentrations, during 140 days. Experiments were carried out in three periods, where different organic loading rates (OLR) were applied to the reactors. The total trace metal concentration steadily decreased at a rate of 48 microg metal/g TS.d in the deprived reactor (down to 35% of their initial value). In contrast, trace metals accumulated in granules present in the control reactor. At the end of the experiment, the COD removal efficiencies were 99% and 77% for the control and deprived reactors, respectively, due to the lack of propionate conversion. Cobalt sorption experiments were carried out in order to study its speciation, and its effects on the speciation of other metals as well. A paper mill wastewater treating granular sludge was also included in the study as a comparison. Results obtained showed that the principal metal forms normally associated with any sludge are a function of each soluble metal concentration in the system, and the characteristics of the particular sludge.

  15. Anaerobic digestion of cellulosic wastes: laboratory tests

    SciTech Connect

    Lee, D.D.; Donaldson, T.L.

    1984-11-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 10 references, 17 figures, 4 tables.

  16. Superoxide Dismutase as an Anaerobic Polypeptide 1

    PubMed Central

    Monk, Lorna S.; Fagerstedt, Kurt V.; Crawford, Robert M. M.

    1987-01-01

    The perennating organ, the rhizome, was chosen for examination of response to anoxia in the species Iris pseudacorus L., Iris germanica L. var Quechei, and Glyceria maxima (Hartm.) Holmberg. These monocots are known to differ in their tolerance of anoxia. Intact rhizomes were subjected to periods of prolonged anoxia of up to 28 days and superoxide dismutase (SOD) activity was determined in a 48 hour postanoxic recovery phase. Tests were performed to ensure the accuracy of the measured enzyme activities. In the most anoxia tolerant species, I. pseudacorus, SOD activity rose continuously during the period of imposed anoxia, and levels were maintained in the postanoxic recovery phases: 28 days brought about a 13-fold increase to 1576 U SOD per milligram protein. Small increases were found in the less anoxia tolerant I. germanica during anoxic/postanoxic phases, while a drop in activity was recorded in the least anoxia tolerant G. maxima. However, initial levels in G. maxima were more than twice as high as in the other two species. Experiments applying cycloheximide to anoxic rhizome slices of I. pseudacorus inhibited the increase in SOD activity. This indicates that SOD is, paradoxically, induced under anoxia and we suggest that in this species SOD is one of the enzymes identified as anaerobic polypeptides. The significance of the induction of an `oxygen-protecting' enzyme during complete oxygen deprivation is discussed with regard to a possible critical role during recovery from anoxic stress. PMID:16665795

  17. Thermal pretreatment of algae for anaerobic digestion.

    PubMed

    Marsolek, Michael D; Kendall, Elizabeth; Thompson, Phillip L; Shuman, Teodora Rutar

    2014-01-01

    The objective of this work was to determine the benefit of thermal pretreatment on biogas yield from microalgae-fed anaerobic digester mesocosms. Replicate Nanochloropsis oculata cultures were heated for 4h at 30, 60, and 90°C, as well as at a constant temperature of 90°C for 1, 3.5, and 12h. Net biogas production increased from 0.28L biogas/g volatile solids added (VSa) for the control to 0.39 L biogas/g VSa (p<0.01) when heated at 90°C, but there was no improvement at 30 or 60°C. Increased biogas production correlated with increased soluble chemical oxygen demand (COD). Net biogas production increased as a function of heating time, from 0.32 L biogas/g VSa for the control, to 0.41, 0.43, and 0.44 L biogas/g VSa (p<0.05 for all combinations vs. control) when preheated at 90°C for 1, 3.5, and 12h, respectively. However, despite enhanced biogas production the energy balance is negative for thermal pretreatment.

  18. Comparative anaerobic power of men and women.

    PubMed

    Murphy, M M; Patton, J F; Frederick, F A

    1986-07-01

    The purpose of this study was to determine the differences in anaerobic power (AnP) between men and women and the contribution of anthropometric variables in accounting for these differences. There were 18 female and 19 male subjects who performed the 30-s Wingate test where power outputs in watts are expressed as mean power (MP, the mean for 30 s) and peak power (PP, the highest 5-s interval). Thigh volume (TV), lean body mass (LBM) and body weight (BW) were used as anthropometric variables. Absolute AnP of men was 35% and 40% higher (p less than 0.001) than that of women for PP and MP, respectively. These differences decreased to 10% and 17% for PP and MP when expressed relative to kg LBM. Anthropometric variables explained less than 50% of the variation in PP and MP for men, while in women, TV accounted for 66% and 71% of the variation in PP and MP, respectively. When the data were combined, TV, BW, and LBM explained 48%, 74%, and 79% of variation in MP and 53%, 71%, and 76% in PP, respectively. These data show that gender differences in indices of AnP are similar to those reported for muscular strength and aerobic power. Additionally, a larger portion of the between gender variation compared to the within gender variation in AnP can be accounted for by anthropometric variables.

  19. Antibody-catalyzed anaerobic destruction of methamphetamine

    PubMed Central

    Xu, Yang; Hixon, Mark S.; Yamamoto, Noboru; McAllister, Laura A.; Wentworth, Anita D.; Wentworth, Paul; Janda, Kim D.

    2007-01-01

    Methamphetamine [(+)-2] abuse has emerged as a fast-rising global epidemic, with immunopharmacotherapeutic approaches being sought for its treatment. Herein, we report the generation and characterization of a monoclonal antibody, YX1-40H10, that catalyzes the photooxidation of (+)-2 into the nonpsychoactive compound benzaldehyde (14) under anaerobic conditions in the presence of riboflavin (6). Studies have revealed that the antibody facilitates the conversion of (+)-2 into 14 by binding the triplet photoexcited state of 6 in proximity to (+)-2. The antibody binds riboflavin (Kd = 180 μM), although this was not programmed into hapten design, and the YX1-40H10-catalyzed reaction is inhibited by molecular oxygen via the presumed quenching of the photoexcited triplet state of 6. Given that this reaction is another highlight in the processing of reactive intermediates by antibodies, we speculate that this process may have future significance in vivo with programmed immunoglobulins that use flavins as cofactors to destroy selectable molecular targets under hypoxic or even anoxic conditions. PMID:17360412

  20. Parasite ova in anaerobically digested sludge

    SciTech Connect

    Arther, R.G.; Fitzgerald, P.R.; Fox, J.C.

    1981-08-01

    The Metropolitan Sanitary District of Greater Chicago produces anaerobically digested wastewater sludge from a 14-day continuous-flow process maintained at 35 degrees Celcius. Some of the sludge is ultimately applied to strip-mined lands in Central Illinois (Fulton County) as a soil conditioner and fertilizer. Parasitic nematode ova were isolated from freshly processed samples, as well as from samples collected from storage lagoons, using a system of continuous sucrose solution gradients. The mean number of ova per 100 g of dry sludge was 203 Ascaris spp., 173 Toxocara spp., 48 Toxascaris leonina, and 36 Trichuris spp. An assessment of the viability of these ova was determined by subjecting the ova to conditions favorable for embryonation. Recovered ova were placed in 1.5% formalin and aerated at 22 degrees Celcius for 21 to 28 days. Development of ova isolated from freshly digested sludge occurred in 64% of the Ascaris spp., 53% of the Toxocara, 63% of the Toxascaris leonina, and 20% of the Trichuris spp. Viability was also demonstrated in ova recovered from sludge samples held in storage lagoons for a period of up to 5 years; embryonation occurred in 24% of the Ascaris spp., 10% of the Toxocara spp., 43% of the Toxascaris leonina, and 6% of the Trichuris spp. (Refs. 24).

  1. Anaerobic sludge digestion with a biocatalytic additive

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    The objective of this research was to evaluate the effects of a lactobacillus additive an anaerobic sludge digestion under normal, variable, and overload operating conditions. The additive was a whey fermentation product of an acid-tolerant strain of Lactobacillus acidophilus fortified with CaCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid. The lactobacillus additive is multifunctional in nature and provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. The experimental work consisted of several pairs of parallel mesophilic (35/sup 0/C) digestion runs (control and test) conducted in five experimental phases. Baseline runs without the additive showed that the two experimental digesters had the same methane content, gas production rate (GPR), and ethane yield. The effect of the additive was to increase methane yield and GPR by about 5% (which was statistically significant) during digester operation at a loading rate (LR) of 3.2 kg VS/m/sup 3/-day and a hydraulic retention time (HRT) of 14 days. Data collected from the various experimental phases showed that the biochemical additive increased methane yield, gas production rate, and VS reduction, and decreased volatile acids accumulation. In addition, it enhanced digester buffer capacity and improved the fertilizer value and dewatering characteristics of the digested residue.

  2. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1.

    PubMed

    Liang, Lei; Song, Xiaohui; Kong, Jing; Shen, Chenghui; Huang, Tongwang; Hu, Zhong

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0-20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.

  3. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    PubMed

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  4. Bacterial Drug Tolerance under Clinical Conditions Is Governed by Anaerobic Adaptation but not Anaerobic Respiration

    PubMed Central

    Hemsley, Claudia M.; Luo, Jamie X.; Andreae, Clio A.; Butler, Clive S.; Soyer, Orkun S.

    2014-01-01

    Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, β-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro. PMID:25049258

  5. Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration.

    PubMed

    Hemsley, Claudia M; Luo, Jamie X; Andreae, Clio A; Butler, Clive S; Soyer, Orkun S; Titball, Richard W

    2014-10-01

    Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, β-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro. Copyright © 2014 Hemsley et al.

  6. Anaerobic treatment of distillery spent wash - a study on upflow anaerobic fixed film bioreactor.

    PubMed

    Acharya, Bhavik K; Mohana, Sarayu; Madamwar, Datta

    2008-07-01

    Anaerobic digestion of wastewater from a distillery industry having very high COD (1,10,000-1,90,000 mg/L) and BOD (50,000-60,000 mg/L) was studied in a continuously fed, up flow fixed film column reactor using different support materials such as charcoal, coconut coir and nylon fibers under varying hydraulic retention time and organic loading rates. The seed consortium was prepared by enrichment with distillery spent wash in a conventional type reactor having working capacity of 3 L and was used for charging the anaerobic column reactor. Amongst the various support materials studied the reactor having coconut coir could treat distillery spent wash at 8d hydraulic retention time with organic loading rate of 23.25 kg COD m(-3)d(-1) leading to 64% COD reduction with biogas production of 7.2 m3 m(-3)d(-1) having high methane yield without any pretreatment or neutralization of the distillery spent wash. This study indicates fixed film biomethanation of distillery spent wash using coconut coir as the support material appears to be a cost effective and promising technology for mitigating the problems caused by distillery effluent.

  7. Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating awamori distillery wastewater.

    PubMed

    Tang, Yue-Qin; Fujimura, Yutaka; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

    2007-10-01

    Distillery wastewater from awamori making was anaerobically treated for one year using thermophilic upflow anaerobic filter (UAF) reactors packed with pyridinium group-containing nonwoven fabric material. The microbial structure and spatial distribution of microorganisms on the support material were characterized using molecular biological methods. The reactor steadily achieved a high TOC loading rate of 18 g/l/d with approximately 80% TOC removal efficiency when non-diluted wastewater was fed. The maximum TOC loading rate increased to 36 g/l/d when treating thrice-diluted wastewater. However, the TOC removal efficiency and gas evolution rate decreased compared with that when non-diluted wastewater was used. Methanogens closely related to Methanosarcina thermophila and Methanoculleus bourgensis and bacteria in the phyla Firmicutes and Bacteroidetes were predominant methanogens and bacteria in the thermophilic UFA reactor, as indicated by 16S rRNA gene clone analysis. Fluorescence in situ hybridization (FISH) results showed that a large quantity of bacterial cells adhered throughout the whole support, and Methanosarcina-like methanogens existed mainly in the relative outside region while Methanoculleus cells were located in the relative inner part of the support. The support material used proved to be an excellent carrier for microorganisms, and a UAF reactor using this kind of support can be used for high-rate treatment of awamori/shochu distillery wastewater.

  8. Anaerobic mesophilic treatment of cattle manure in an upflow anaerobic sludge blanket reactor with prior pasteurization.

    PubMed

    Marañón, Elena; Castrillón, Leonor; Fernández, Juan José; Fernández, Yolanda; Peláez, Ana Isabel; Sánchez, Jesús

    2006-02-01

    Different autonomous communities located in northern Spain have large populations of dairy cattle. In the case of Asturias, the greatest concentration of dairy farms is found in the areas near the coast, where the elimination of cattle manure by means of its use as a fertilizer may lead to environmental problems. The aim of the present research work was to study the anaerobic treatment of the liquid fraction of cattle manure at mesophilic temperature using an upflow anaerobic sludge blanket (UASB) reactor combined with a settler after a pasteurization process at 70 degrees C for 2 hr. The manure used in this study came from two different farms, with 40 and 200 cows, respectively. The manure from the smaller farm was pretreated in the laboratory by filtration through a 1-mm mesh, and the manure from the other farm was pretreated on the farm by filtration through a separator screw press (0.5-mm mesh). The pasteurization process removed the pathogenic microorganisms lacking spores, such as Enterococcus, Yersinia, Pseudomonas, and coliforms, but bacterial spores are only reduced by this treatment, not removed. The combination of a UASB reactor and a settler proved to be effective for the treatment of cattle manure. In spite of the variation in the organic loading rate and total solids in the influent during the experiment, the chemical oxygen demand (COD) of the effluent from the settler remained relatively constant, obtaining reductions in the COD of approximately 85%.

  9. Anaerobic digestion of municipal wastewater sludges using anaerobic fluidized bed bioreactor.

    PubMed

    Mustafa, Nizar; Elbeshbishy, Elsayed; Nakhla, George; Zhu, Jesse

    2014-11-01

    The anaerobic digestion of primary sludge (PS) and thickened waste activated sludge (TWAS) using an anaerobic fluidized bed bioreactor (AnFBR) employing zeolite particles as the carrier media was investigated at different organic loading rates (OLRs). PS was tested at OLRs from 4.2 to 39kgCOD/m(3)-d corresponding to hydraulic retention times (HRTs) from 1.0 to 8.9days. The highest COD removal and VSS destruction efficiencies for primary sludge of 85% and 88%, respectively, were achieved at an HRT of 8.9days and OLR of 4.2kgCOD/m(3)-d. For TWAS, VSS destruction efficiencies varied from 42% at an HRT of 2.6days and OLR of 13.1kgCOD/m(3)-d to 69% at an HRT of 8.8days and an OLR of 4.2kgCOD/m(3)-d. The first-order COD biodegradation rates in the AnFBR for PS and TWAS were 0.4d(-1) and 0.1d(-1), respectively, almost double the rates in conventional high-rate digesters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Anaerobic respiration of Escherichia coli in the mouse intestine.

    PubMed

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  11. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol.

    PubMed

    Trinh, Cong T; Li, Johnny; Blanch, Harvey W; Clark, Douglas S

    2011-07-01

    Fermentation enables the production of reduced metabolites, such as the biofuels ethanol and butanol, from fermentable sugars. This work demonstrates a general approach for designing and constructing a production host that uses a heterologous pathway as an obligately fermentative pathway to produce reduced metabolites, specifically, the biofuel isobutanol. Elementary mode analysis was applied to design an Escherichia coli strain optimized for isobutanol production under strictly anaerobic conditions. The central metabolism of E. coli was decomposed into 38,219 functional, unique, and elementary modes (EMs). The model predictions revealed that during anaerobic growth E. coli cannot produce isobutanol as the sole fermentative product. By deleting 7 chromosomal genes, the total 38,219 EMs were constrained to 12 EMs, 6 of which can produce high yields of isobutanol in a range from 0.29 to 0.41 g isobutanol/g glucose under anaerobic conditions. The remaining 6 EMs rely primarily on the pyruvate dehydrogenase enzyme complex (PDHC) and are typically inhibited under anaerobic conditions. The redesigned E. coli strain was constrained to employ the anaerobic isobutanol pathways through deletion of 7 chromosomal genes, addition of 2 heterologous genes, and overexpression of 5 genes. Here we present the design, construction, and characterization of an isobutanol-producing E. coli strain to illustrate the approach. The model predictions are evaluated in relation to experimental data and strategies proposed to improve anaerobic isobutanol production. We also show that the endogenous alcohol/aldehyde dehydrogenase AdhE is the key enzyme responsible for the production of isobutanol and ethanol under anaerobic conditions. The glycolytic flux can be controlled to regulate the ratio of isobutanol to ethanol production.

  12. Caffeine supplementation and peak anaerobic power output.

    PubMed

    Glaister, Mark; Muniz-Pumares, Daniel; Patterson, Stephen D; Foley, Paul; McInnes, Gillian

    2015-01-01

    The aim of this study was to investigate the effects of caffeine supplementation on peak anaerobic power output (Wmax). Using a counterbalanced, randomised, double-blind, placebo-controlled design, 14 well-trained men completed three trials of a protocol consisting of a series of 6-s cycle ergometer sprints, separated by 5-min passive recovery periods. Sprints were performed at progressively increasing torque factors to determine the peak power/torque relationship and Wmax. Apart from Trial 1 (familiarisation), participants ingested a capsule containing 5 mg·kg(-1) of caffeine or placebo, one hour before each trial. The effects of caffeine on blood lactate were investigated using capillary samples taken after each sprint. The torque factor which produced Wmax was not significantly different (p ≥ 0.05) between the caffeine (1.15 ± 0.08 N·m·kg(-1)) and placebo (1.13 ± 0.10 N·m·kg(-1)) trials. There was, however, a significant effect (p < 0.05) of supplementation on Wmax, with caffeine producing a higher value (1885 ± 303 W) than placebo (1835 ± 290 W). Analysis of the blood lactate data revealed a significant (p < 0.05) torque factor × supplement interaction with values being significantly higher from the sixth sprint (torque factor 1.0 N·m·kg(-1)) onwards following caffeine supplementation. The results of this study confirm previous reports that caffeine supplementation significantly increases blood lactate and Wmax. These findings may explain why the majority of previous studies, which have used fixed-torque factors of around 0.75 N·m·kg(-1) and thereby failing to elicit Wmax, have failed to find an effect of caffeine on sprinting performance.

  13. Anaerobic corrosion reaction kinetics of nanosized iron.

    PubMed

    Reardon, Eric J; Fagan, Randal; Vogan, John L; Przepiora, Andrzej

    2008-04-01

    Nanosized Fe0 exhibits markedly different anaerobic corrosion rates in water compared to that disseminated in moist quartz sand. In water, hydrogen production from corrosion exhibits an autocatalytic style, attaining a maximum rate of 1.9 mol kg(-1) d(-1) within 2 d of reaction. The rate then drops sharply over the next 20 d and enters a period of uniformly decreasing rate, represented equally well by first-order or diffusion-controlled kinetic expressions. In quartz sand, hydrogen production exhibits a double maximum over the first 20 d, similar to the hydration reaction of Portland cement, and the highest rate attained is less than 0.5 mol kg(-1) d(-1). We ascribe this difference in early time corrosion behavior to the ability of the released hydrogen gas to convect both water and iron particles in an iron/water system and to its inability to do so when the iron particles are disseminated in sand. By 30 d, the hydrogen production rate of iron in quartz sand exhibits a uniform decrease as in the iron/water system, which also can be described by first-order or diffusion-controlled kinetic expressions. However, the corrosion resistance of the iron in moist sand is 4 times greater than in pure water (viz. t1/2 of 365 d vs 78 d, respectively). The lower rate for iron in sand is likely due to the effect of dissolved silica sorbing onto iron reaction sites and acting as an anodic inhibitor, which reduces the iron's susceptibility to oxidation by water. This study indicates that short-term laboratory corrosion tests of nanosized Fe0/water slurries will substantially underestimate both the material's longevity as an electron source and its potential as a long-term source of hydrogen gas in groundwater remediation applications.

  14. Biochemical reaction engineering and process development in anaerobic wastewater treatment.

    PubMed

    Aivasidis, Alexander; Diamantis, Vasileios

    2005-01-01

    Developments in production technology have frequently resulted in the concentrated local accumulation of highly organic-laden wastewaters. Anaerobic wastewater treatment, in industrial applications, constitutes an advanced method of synthesis by which inexpensive substrates are converted into valuable disproportionate products. A critical discussion of certain fundamental principles of biochemical reaction engineering relevant to the anaerobic mode of operation is made here, with special emphasis on the roles of thermodynamics, kinetics, mass and heat transfer, reactor design, biomass retention and recycling. The applications of the anaerobic processes are discussed, introducing the principles of an upflow anaerobic sludge bed reactor and a fixed-bed loop reactor. The merits of staging reactor systems are presented using selected examples based on two decades of research in the field of anaerobic fermentation and wastewater treatment at the Forschungszentrum Julich (Julich Research Center, Germany). Wastewater treatment is an industrial process associated with one of the largest levels of mass throughput known, and for this reason it provides a major impetus to further developments in bioprocess technology in general.

  15. Identification of Anaerobic Selenate-Respiring Bacteria from Aquatic Sediments▿

    PubMed Central

    Narasingarao, Priya; Häggblom, Max M.

    2007-01-01

    The diversity population of microorganisms with the capability to use selenate as a terminal electron acceptor, reducing it to selenite and elemental selenium by the process known as dissimilatory selenate reduction, is largely unknown. The overall objective of this study was to gain an in-depth understanding of anaerobic biotransformation of selenium in the environment, particularly anaerobic respiration, and to characterize the microorganisms catalyzing this process. Here, we demonstrate the isolation and characterization of four novel anaerobic dissimilatory selenate-respiring bacteria enriched from a variety of sources, including sediments from three different water bodies in Chennai, India, and a tidal estuary in New Jersey. Strains S5 and S7 from India, strain KM from the Meadowlands, NJ, and strain pn1, categorized as a laboratory contaminant, were all phylogenetically distinct, belonging to various phyla in the bacterial domain. The 16S rRNA gene sequence shows that strain S5 constitutes a new genus belonging to Chrysiogenetes, while strain S7 belongs to the Deferribacteres, with greater than 98% 16S rRNA gene similarity to Geovibrio ferrireducens. Strain KM is related to Malonomonas rubra, Pelobacter acidigallici, and Desulfuromusa spp., with 96 to 97% 16S rRNA gene similarity. Strain pn1 is 99% similar to Pseudomonas stutzeri. Strains S5, S7, and KM are obligately anaerobic selenate-respiring microorganisms, while strain pn1 is facultatively anaerobic. Besides respiring selenate, all these strains also respire nitrate. PMID:17435005

  16. Distinctive non-methanogen archaeal populations in anaerobic digestion.

    PubMed

    Chen, Si; He, Qiang

    2016-01-01

    Methanogens define the archaeal communities involved in anaerobic digestion. Recently, non-methanogen archaeal populations have been unexpectedly identified in anaerobic digestion processes. To gain insight into the ecophysiology of these uncharacterized archaeal populations, for the first time, a phylogenetic analysis was performed on a collection of non-methanogen archaeal 16S rRNA gene sequences from anaerobic digesters of broad geographic distribution, revealing a distinct clade formed by these sequences in subgroup 6 of the Miscellaneous Crenarchaeotal Group in the newly proposed archaeal phylum Bathyarchaeota. This exclusive phylogenetic assemblage enabled the development of a real-time quantitative PCR (qPCR) assay specifically targeting these non-methanogen archaeal populations in anaerobic digestion. Application of the qPCR assay in continuous anaerobic digesters indicated that these archaeal populations were minor constituents of the archaeal communities, and the abundance of these populations remained relatively constant irrespective of process perturbations. Analysis of the archaeal populations in methanogenic communities further revealed the co-occurrence of these non-methanogen archaea with acetoclastic methanogens. Nevertheless, the low abundance of non-methanogen archaea as compared with acetoclastic methanogens suggests that the non-methanogen archaeal populations were not major players in animal waste-fed methanogenic processes investigated in this study and the functions of these archaeal populations remain to be identified.

  17. Anaerobic biosynthesis of the lower ligand of vitamin B12

    PubMed Central

    Hazra, Amrita B.; Han, Andrew W.; Mehta, Angad P.; Mok, Kenny C.; Osadchiy, Vadim; Begley, Tadhg P.; Taga, Michiko E.

    2015-01-01

    Vitamin B12 (cobalamin) is required by humans and other organisms for diverse metabolic processes, although only a subset of prokaryotes is capable of synthesizing B12 and other cobamide cofactors. The complete aerobic and anaerobic pathways for the de novo biosynthesis of B12 are known, with the exception of the steps leading to the anaerobic biosynthesis of the lower ligand, 5,6-dimethylbenzimidazole (DMB). Here, we report the identification and characterization of the complete pathway for anaerobic DMB biosynthesis. This pathway, identified in the obligate anaerobic bacterium Eubacterium limosum, is composed of five previously uncharacterized genes, bzaABCDE, that together direct DMB production when expressed in anaerobically cultured Escherichia coli. Expression of different combinations of the bza genes revealed that 5-hydroxybenzimidazole, 5-methoxybenzimidazole, and 5-methoxy-6-methylbenzimidazole, all of which are lower ligands of cobamides produced by other organisms, are intermediates in the pathway. The bza gene content of several bacterial and archaeal genomes is consistent with experimentally determined structures of the benzimidazoles produced by these organisms, indicating that these genes can be used to predict cobamide structure. The identification of the bza genes thus represents the last remaining unknown component of the biosynthetic pathway for not only B12 itself, but also for three other cobamide lower ligands whose biosynthesis was previously unknown. Given the importance of cobamides in environmental, industrial, and human-associated microbial metabolism, the ability to predict cobamide structure may lead to an improved ability to understand and manipulate microbial metabolism. PMID:26246619

  18. Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment.

    PubMed

    Svojitka, Jan; Dvořák, Lukáš; Studer, Martin; Straub, Jürg Oliver; Frömelt, Heinz; Wintgens, Thomas

    2017-04-01

    Anaerobic treatment of wastewater and waste organic solvents originating from the pharmaceutical and chemical industries was tested in a pilot anaerobic membrane bioreactor, which was operated for 580days under different operational conditions. The goal was to test the long-term treatment efficiency and identify inhibitory factors. The highest COD removal of up to 97% was observed when the influent concentration was increased by the addition of methanol (up to 25gL(-1) as COD). Varying and generally lower COD removal efficiency (around 78%) was observed when the anaerobic membrane bioreactor was operated with incoming pharmaceutical wastewater as sole carbon source. The addition of waste organic solvents (>2.5gL(-1) as COD) to the influent led to low COD removal efficiency or even to the breakdown of anaerobic digestion. Changes in the anaerobic population (e.g., proliferation of the genus Methanosarcina) resulting from the composition of influent were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Anaerobic treatment of brewery wastewater with an internal membrane bioreactor.

    PubMed

    Cornelissen, E R; van Buggenhout, S; van Ermen, S; De Smedt, M; Van Impe, J; Koning, J

    2001-01-01

    Anaerobic treatment is growing very popular these days because of low sludge production compared to activated sludge processes. The drawback of the process is the risk of sludge washout, especially when the formation of granular sludge is not expected. By using an internal anaerobic bioreactor this problem can be overcome. A lab scale internal anaerobic membrane bioreactor was operated at SEGHERSbetter technology for Water N.V. to which brewery wastewater was fed (COD=2300 mg/l). Hollow fibres were inserted into the anaerobic bioreactor, from which the effluent was extracted by underpressure. The COD-removal was excellent and very constant at a value of 95%. No suspended solids were present in the effluent. The membrane permeability stabilised at relatively low value of 18 l/m2.h.bar due to an irreversible adhesion of constituents in the bioreactor. No growth of biomass was found during two months of operation. Inocculated granular sludge fell apart into loose flocs within several weeks of the startup, not affecting biological performance. The internal anaerobic membrane bioreactor is a promising new area within the field of wastewater treatment. It is expected that this process will have an important future.

  20. Anaerobic digestion for energy production and environmental protection

    SciTech Connect

    Lettinga, G.; Haandel, A.C. Vaan

    1993-12-31

    Anaerobic digestion is the decomposition of complex molecules into simpler substances by micro-organisms in the absence of oxygen. Anaerobic digestion processes can be employed for resource conservation, for the production of biogas and other useful end products from biomass, and for environmental protection through waste and wastewater treatment. Modern high-rate anaerobic wastewater-treatment processes can effectively remove organic pollutants from wastewater at a cost far below that of conventional aerobic processes. These anaerobic wastewater treatment processes can also be profitably applied for the generation of biogas from energy crops such as sugarcane. In fact, these methods might even be an attractive alternative for the alcohol fermentation extensively employed in Brazil for the production of fuel alcohol from sugarcane. The potential of modern anaerobic processes for this purpose has not yet been widely recognized. This paper describes the principles and use of these processes and demonstrates their prospects for producing energy from sugarcane (1) by treating vinasse, the wastewater generated during the production of ethanol from sugarcane, and (2) as a direct method for producing biogas from sugarcane juice.

  1. Susceptibility testing of anaerobic bacteria: myth, magic, or method?

    PubMed Central

    Wexler, H M

    1991-01-01

    The demand for susceptibility testing of anaerobes has increased, yet consensus as to procedure and interpretation in this area has not been achieved. While routine testing of anaerobic isolates is not needed, certain isolates in specific clinical settings should be tested. Also, laboratories may monitor their local antibiograms by doing periodic surveillance batch testing. The National Committee for Clinical Laboratory Standards has published a protocol of methods approved for susceptibility testing of anaerobic bacteria. Both agar and broth microdilution are included; however, the broth disk elution method is no longer approved by the National Committee for Clinical Laboratory Standards because of method-related interpretive errors. A number of newer methods are undergoing evaluation and seem promising. Clinicians and microbiologists reviewing susceptibility reports should be aware of sources of variability in the test results. Variables in susceptibility testing of anaerobes include the media and methods used, organisms chosen for testing, breakpoints chosen for interpretation, antibiotic, and determination of endpoint. Clustering of MICs around the breakpoint may lead to significant variability in test results. Adherence of testing laboratories to approved methods and careful descriptions of the method and the breakpoints used for interpretation would facilitate interlaboratory comparisons and allow problems of emerging resistance to be noted. A variety of resistance mechanisms occurs in anaerobic bacteria, including the production of beta-lactamase and other drug-inactivating enzymes, alteration of target proteins, and inability of the drug to penetrate the bacterial wall. Antimicrobial resistance patterns in the United States and abroad are described. PMID:1747863

  2. Anaerobic bioleaching of metals from waste activated sludge.

    PubMed

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E; Lens, Piet N L

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g(-1) of copper, 487 μg g(-1) of lead, 793 μg g(-1) of zinc, 27 μg g(-1) of nickel and 2.3 μg g(-1) of cadmium. During the anaerobic acidification of 3 gdry weight L(-1) waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  3. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  4. Anaerobic biosynthesis of the lower ligand of vitamin B12.

    PubMed

    Hazra, Amrita B; Han, Andrew W; Mehta, Angad P; Mok, Kenny C; Osadchiy, Vadim; Begley, Tadhg P; Taga, Michiko E

    2015-08-25

    Vitamin B12 (cobalamin) is required by humans and other organisms for diverse metabolic processes, although only a subset of prokaryotes is capable of synthesizing B12 and other cobamide cofactors. The complete aerobic and anaerobic pathways for the de novo biosynthesis of B12 are known, with the exception of the steps leading to the anaerobic biosynthesis of the lower ligand, 5,6-dimethylbenzimidazole (DMB). Here, we report the identification and characterization of the complete pathway for anaerobic DMB biosynthesis. This pathway, identified in the obligate anaerobic bacterium Eubacterium limosum, is composed of five previously uncharacterized genes, bzaABCDE, that together direct DMB production when expressed in anaerobically cultured Escherichia coli. Expression of different combinations of the bza genes revealed that 5-hydroxybenzimidazole, 5-methoxybenzimidazole, and 5-methoxy-6-methylbenzimidazole, all of which are lower ligands of cobamides produced by other organisms, are intermediates in the pathway. The bza gene content of several bacterial and archaeal genomes is consistent with experimentally determined structures of the benzimidazoles produced by these organisms, indicating that these genes can be used to predict cobamide structure. The identification of the bza genes thus represents the last remaining unknown component of the biosynthetic pathway for not only B12 itself, but also for three other cobamide lower ligands whose biosynthesis was previously unknown. Given the importance of cobamides in environmental, industrial, and human-associated microbial metabolism, the ability to predict cobamide structure may lead to an improved ability to understand and manipulate microbial metabolism.

  5. Anaerobic growth of a "strict aerobe" (Bacillus subtilis).

    PubMed

    Nakano, M M; Zuber, P

    1998-01-01

    There was a long-held belief that the gram-positive soil bacterium Bacillus subtilis is a strict aerobe. But recent studies have shown that B. subtilis will grow anaerobically, either by using nitrate or nitrite as a terminal electron acceptor, or by fermentation. How B. subtilis alters its metabolic activity according to the availability of oxygen and alternative electron acceptors is but one focus of study. A two-component signal transduction system composed of a sensor kinase, ResE, and a response regulator, ResD, occupies an early stage in the regulatory pathway governing anaerobic respiration. One of the essential roles of ResD and ResE in anaerobic gene regulation is induction of fnr transcription upon oxygen limitation. FNR is a transcriptional activator for anaerobically induced genes, including those for respiratory nitrate reductase, narGHJI.B. subtilis has two distinct nitrate reductases, one for the assimilation of nitrate nitrogen and the other for nitrate respiration. In contrast, one nitrite reductase functions both in nitrite nitrogen assimilation and nitrite respiration. Unlike many anaerobes, which use pyruvate formate lyase, B. subtilis can carry out fermentation in the absence of external electron acceptors wherein pyruvate dehydrogenase is utilized to metabolize pyruvate.

  6. Potential nanosilver impact on anaerobic digestion at moderate silver concentrations.

    PubMed

    Yang, Yu; Chen, Qian; Wall, Judy D; Hu, Zhiqiang

    2012-03-15

    Silver nanoparticles (AgNPs, nanosilver) entering the sewers and wastewater treatment plants (WWTPs) are mostly accumulated in the sludge. In this study, we determined the impact of AgNPs on anaerobic glucose degradation, sludge digestion and methanogenic assemblages. At ambient (22 °C) and mesophilic temperatures (37 °C), there was no significant difference in biogas and methane production between the sludge treated with AgNPs at the concentrations up to 40 mg Ag/L (13.2 g silver/Kg biomass COD) and the control. In these anaerobic digestion samples, acetate and propionic acid were the only detectable volatile fatty acids (VFAs) and they were depleted in 3 days. On the other hand, more than 90% of AgNPs was removed from the liquid phase and associated with the sludge while almost no silver ions were released from AgNPs under anaerobic conditions. Quantitative PCR results indicated that Methanosaeta and Methanomicrobiales were the dominant methanogens, and the methanogenic diversity and population remained largely unchanged after nanosilver exposure and anaerobic digestion. The results suggest that AgNPs at moderate concentrations (e.g., ≤40 mg/L) have negligible impact on anaerobic digestion and methanogenic assemblages because of little to no silver ion release.

  7. Foaming phenomenon in bench-scale anaerobic digesters.

    PubMed

    Siebels, Amanda M; Long, Sharon C

    2013-04-01

    The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues.

  8. Anaerobic Fungi and Their Potential for Biogas Production.

    PubMed

    Dollhofer, Veronika; Podmirseg, Sabine Marie; Callaghan, Tony Martin; Griffith, Gareth Wyn; Fliegerová, Kateřina

    2015-01-01

    Plant biomass is the largest reservoir of environmentally friendly renewable energy on earth. However, the complex and recalcitrant structure of these lignocellulose-rich substrates is a severe limitation for biogas production. Microbial pro-ventricular anaerobic digestion of ruminants can serve as a model for improvement of converting lignocellulosic biomass into energy. Anaerobic fungi are key players in the digestive system of various animals, they produce a plethora of plant carbohydrate hydrolysing enzymes. Combined with the invasive growth of their rhizoid system their contribution to cell wall polysaccharide decomposition may greatly exceed that of bacteria. The cellulolytic arsenal of anaerobic fungi consists of both secreted enzymes, as well as extracellular multi-enzyme complexes called cellulosomes. These complexes are extremely active, can degrade both amorphous and crystalline cellulose and are probably the main reason of cellulolytic efficiency of anaerobic fungi. The synergistic use of mechanical and enzymatic degradation makes anaerobic fungi promising candidates to improve biogas production from recalcitrant biomass. This chapter presents an overview about their biology and their potential for implementation in the biogas process.

  9. Anaerobic waste digestion in Germany--status and recent developments.

    PubMed

    Weiland, P

    2000-01-01

    Anaerobic treatment processes are especially suited for the utilization of wet organic wastes from agriculture and industry as well as for the organic part of source-separated household wastes. Anaerobic degradation is a very cost-effective method for treating biogenic wastes because the formed biogas can be used for heat and electricity production and the digester residues can be recycled to agriculture as a secondary fertilizer. Anaerobic technology will also be used for the common treatment of wastes together with renewable energy crops in order to reduce the CO2-emissions according the Kyoto protocol. Various process types are applied in Germany which differ in material, reaction conditions and in the form of the used reactor systems. The widespread introduction of anaerobic digestion in Germany has shown that biogenic organic wastes are a valuable source for energy and nutrients. Anaerobic waste treatment is done today in approx. 850 biogas plants on small farm scale as well as on large industrial scale with the best beneficial and economic outcome. Due to some new environmental protection acts which promote the recycling of wastes and their utilization for renewable energy formation it can be expected that several hundreds new biogas plants will be built per year in Germany. In order to use the synergetic effects of a combined fermentation of wastes and energy crops new process types must be developed in order to optimize the substrate combinations and the process conditions for maximum biodegradation.

  10. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    NASA Technical Reports Server (NTRS)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  11. Use of an anaerobic sequencing batch reactor for parameter estimation in modelling of anaerobic digestion.

    PubMed

    Batstone, D J; Torrijos, M; Ruiz, C; Schmidt, J E

    2004-01-01

    The model structure in anaerobic digestion has been clarified following publication of the IWA Anaerobic Digestion Model No. 1 (ADM1). However, parameter values are not well known, and uncertainty and variability in the parameter values given is almost unknown. Additionally, platforms for identification of parameters, namely continuous-flow laboratory digesters, and batch tests suffer from disadvantages such as long run times, and difficulty in defining initial conditions, respectively. Anaerobic sequencing batch reactors (ASBRs) are sequenced into fill-react-settle-decant phases, and offer promising possibilities for estimation of parameters, as they are by nature, dynamic in behaviour, and allow repeatable behaviour to establish initial conditions, and evaluate parameters. In this study, we estimated parameters describing winery wastewater (most COD as ethanol) degradation using data from sequencing operation, and validated these parameters using unsequenced pulses of ethanol and acetate. The model used was the ADM1, with an extension for ethanol degradation. Parameter confidence spaces were found by non-linear, correlated analysis of the two main Monod parameters; maximum uptake rate (k(m)), and half saturation concentration (K(S)). These parameters could be estimated together using only the measured acetate concentration (20 points per cycle). From interpolating the single cycle acetate data to multiple cycles, we estimate that a practical "optimal" identifiability could be achieved after two cycles for the acetate parameters, and three cycles for the ethanol parameters. The parameters found performed well in the short term, and represented the pulses of acetate and ethanol (within 4 days of the winery-fed cycles) very well. The main discrepancy was poor prediction of pH dynamics, which could be due to an unidentified buffer with an overall influence the same as a weak base (possibly CaCO3). Based on this work, ASBR systems are effective for parameter

  12. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  13. My Lifelong Passion for Biochemistry and Anaerobic Microorganisms.

    PubMed

    Thauer, Rudolf Kurt

    2015-01-01

    Early parental influence led me first to medical school, but after developing a passion for biochemistry and sensing the need for a deeper foundation, I changed to chemistry. During breaks between semesters, I worked in various biochemistry labs to acquire a feeling for the different areas of investigation. The scientific puzzle that fascinated me most was the metabolism of the anaerobic bacterium Clostridium kluyveri, which I took on in 1965 in Karl Decker's lab in Freiburg, Germany. I quickly realized that little was known about the biochemistry of strict anaerobes such as clostridia, methanogens, acetogens, and sulfate-reducing bacteria and that these were ideal model organisms to study fundamental questions of energy conservation, CO2 fixation, and the evolution of metabolic pathways. My passion for anaerobes was born then and is unabated even after 50 years of study.

  14. ANAEROBIC GLYCOLYSIS OF THE BRAIN IN EXPERIMENTAL POLIOMYELITIS

    PubMed Central

    Wood, Harland G.; Rusoff, Irving I.; Reiner, John M.

    1945-01-01

    The rate of anaerobic glycolysis of brain tissue was compared for normal animals and animals with experimentally induced poliomyelitis, using two different strains of mice and two different procedures. The report of interference of poliomyelitis with anaerobic glycolysis of brain was not confirmed. In one series there was a small increase and in the other series a small decrease in the brain QCOCO2N2 calculated for infected animals as compared to normal animals. When the calculations were made on the basis of wet weight of brain there was no difference in glycolysis. It is considered that the methods so far used for study of the enzymes may be inadequate, and that no decision is as yet possible on the effect of poliomyelitis on anaerobic glycolysis. PMID:19871449

  15. Anaerobic biotransformation of organoarsenical pesticides monomethylarsonic acid and dimethylarsinic acid

    USGS Publications Warehouse

    Sierra-Alvarez, R.; Yenal, U.; Feld, J.A.; Kopplin, M.; Gandolfi, A.J.; Garbarino, J.R.

    2006-01-01

    Monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) are extensively utilized as pesticides, introducing large quantities of arsenic into the environment. Once released into the environment, these organoarsenicals are subject to microbial reactions. Aerobic biodegradation of MMAV and DMAV has been evaluated, but little is known about their fate in anaerobic environments. The objective of this study was to evaluate the biotransformation of MMAV and DMAV in anaerobic sludge. Biologically mediated conversion occurred under methanogenic or sulfate-reducing conditions but not in the presence of nitrate. Monomethylarsonous acid (MMAIII) was consistently observed as an important metabolite of MMAV degradation, and it was recovered in molar yields ranging from 5 to 47%. The main biotransformation product identified from DMAV metabolism was MMAV, which was recovered in molar yields ranging from 8 to 65%. The metabolites indicate that reduction and demethylation are important steps in the anaerobic bioconversion of MMAV and DMAV, respectively. ?? 2006 American Chemical Society.

  16. Full-scale anaerobic bioremediation of trinitrotoluene (TNT) contaminated soil

    SciTech Connect

    Funk, S.B.; Crawford, D.L.; Crawford, R.L.

    1995-12-31

    An anaerobic bioremediation process for the degradation of nitroaromatic compounds in soil was demonstrated. This ex situ process was demonstrated full-scale at a 2,4,6-trinitrotoluene (TNT)-contaminated site near Weldon Spring, MO. A bioreactor was loaded with approx 23 m{sup 3} of TNT-contaminated soil in the form of a 50:50 soil: water slurry. This slurry was augmented with a starchy carbon source (1-2% w/v) and buffered with phosphate to near-neutral pH. Indigenous soil bacteria utilized the oxygen, making the slurry anaerobic within 1-2 d. Anaerobes then degraded the TNT (3000 mg/kg) in approx 11 wk. A relatively long treatment time for the bioremediation of the TNT-contaminated soil was necessary, possibly because of the cool ambient temperatures, high clay content of the soil, high level of contamination, and high level of recalcitrance of TNT in soils.

  17. Model selection, identification and validation in anaerobic digestion: a review.

    PubMed

    Donoso-Bravo, Andres; Mailier, Johan; Martin, Cristina; Rodríguez, Jorge; Aceves-Lara, César Arturo; Vande Wouwer, Alain

    2011-11-01

    Anaerobic digestion enables waste (water) treatment and energy production in the form of biogas. The successful implementation of this process has lead to an increasing interest worldwide. However, anaerobic digestion is a complex biological process, where hundreds of microbial populations are involved, and whose start-up and operation are delicate issues. In order to better understand the process dynamics and to optimize the operating conditions, the availability of dynamic models is of paramount importance. Such models have to be inferred from prior knowledge and experimental data collected from real plants. Modeling and parameter identification are vast subjects, offering a realm of approaches and methods, which can be difficult to fully understand by scientists and engineers dedicated to the plant operation and improvements. This review article discusses existing modeling frameworks and methodologies for parameter estimation and model validation in the field of anaerobic digestion processes. The point of view is pragmatic, intentionally focusing on simple but efficient methods.

  18. Anaerobic orbital cellulitis: a clinical and experimental study.

    PubMed Central

    Jedrzynski, M S; Bullock, J D; McGuire, T W; Elder, B L; Bullock, J D

    1991-01-01

    In this article we have reviewed the clinical and bacteriologic aspects of anaerobic orbital cellulitis and have presented six patients to illustrate these points. Physicians who treat patients with orbital cellulitis should have a high index of suspicion for possible instances involving anaerobes, so that appropriate management can be started early. To investigate this problem further, we created an animal model of anaerobic orbital cellulitis. This model may be useful in future studies of the pathogenesis and treatment of this serious and often devastating disease. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 PMID:1808813

  19. Microbiology and physiology of anaerobic fermentations of cellulose

    SciTech Connect

    Wiegel, J.

    1991-05-01

    The biochemistry and physiology of four major groups of anaerobic bacteria involved in the conversion of cellulose to methane or chemical feedstocks are examined. Aspects of metabolism which are relevant to the interactions and bioenergetics of consortia are being studied. Properties of the cellulolytic enzyme cluster of Clostridium thermocellum are investigated. Five different hydrogenases have been characterized in detail from anaerobic bacteria. Genes for different hydrogenases are being cloned and sequenced to determine their structural relationships. The role of metal clusters in activation of H{sub 2} is being investigated, as is the structure and role of metal clusters in formate metabolism. The function of formate in the total synthesis of acetate from CO{sub 2} and the role of this primary in anaerobes will be examined as well. Finally, these enzyme studies will be performed on thermophilic bacteria and new, pertinent species will be isolated. 50 refs., 3 figs., 1 tab.

  20. Acetate Metabolism in Anaerobes from the Domain Archaea

    PubMed Central

    Ferry, James G.

    2015-01-01

    Acetate and acetyl-CoA play fundamental roles in all of biology, including anaerobic prokaryotes from the domains Bacteria and Archaea, which compose an estimated quarter of all living protoplasm in Earth’s biosphere. Anaerobes from the domain Archaea contribute to the global carbon cycle by metabolizing acetate as a growth substrate or product. They are components of anaerobic microbial food chains converting complex organic matter to methane, and many fix CO2 into cell material via synthesis of acetyl-CoA. They are found in a diversity of ecological habitats ranging from the digestive tracts of insects to deep-sea hydrothermal vents, and synthesize a plethora of novel enzymes with biotechnological potential. Ecological investigations suggest that still more acetate-metabolizing species with novel properties await discovery. PMID:26068860

  1. Effect of respiratory warm-up on anaerobic power.

    PubMed

    Özdal, Mustafa; Bostanci, Özgür; Dağlioğlu, Önder; Ağaoğlu, Seydi Ahmet; Kabadayi, Menderes

    2016-07-01

    [Purpose] The aim of the present study was to examine the effects of respiratory muscle warm-up on anaerobic power. [Subjects and Methods] Thirty male field hockey players (age, 20.5 ± 2.0 years) each participated in a control (CAN) trial and an experimental (EAN) trial. The EAN trial involved respiratory muscle warm-up, while the CAN trial did not. Anaerobic power was measured using the Wingate protocol. Paired sample t-tests were used to compare the EAN and CAN trials. [Results] There were significant increases in peak power and relative peak power, and decreases in the time to peak after the EAN trial by 8.9%, 9.6%, and 28.8% respectively. [Conclusion] Respiratory muscle warm-up may positively affect anaerobic power due to faster attainment of peak power.

  2. Anaerobic Biotransformation and Mobility of Pu and PuEDTA

    SciTech Connect

    Xun, Luying

    2005-06-01

    Although our goal is to isolate anaerobic EDTA degraders, we initiated the experiments to include nitrilotriacetate (NTA), which is a structure homologue of EDTA. All the aerobic EDTA degraders can degrade NTA, but the isolated NTA degraders cannot degrade EDTA. Since NTA is a simpler structure homologue, it is likely that EDTA-degrading ability is evolved from NTA degradation. This hypothesis is further supported from our characterization of EDTA and NTA-degrading enzymes and genes (J. Bact. 179:1112-1116; and Appl. Environ. Microbiol. 67:688-695). The EDTA monooxygenase and NTA monooxygenase are highly homologous. EDTA monooxygenase can use both EDTA and NTA as substrates, but NTA monooxygenase can only use NTA as a substrate. Thus, we put our effort to isolate both NTA and EDTA degraders. In case, an anaerobic EDTA degrader is not immediately enriched, we will try to evolve the NTA degraders to use EDTA. Both aerobic and anaerobic enrichment cultures were set.

  3. [Tinidazole: a classical anaerobical drug with multiple potential uses nowadays].

    PubMed

    Granizo, J J; Pía Rodicio, M; Manso, F J; Giménez, Ma José

    2009-06-01

    Tinidazole is a 5-nitroimidazole active in vitro against a wide variety of anaerobic bacteria and protozoa. Tinidazole is an effective treatment against anaerobic microorganisms based on its pharmacokinetic characteristics (C(max) 51 microg/ml, t(1/2) 12.5 h) and its excellent in vitro activity. Its long half-life allows once a day regimens. Tinidazole is as effective as metronidazole in the treatment of infections caused by T. vaginalis, giardiasis and amebiasis and bacterial vaginosis, malaria, odontogenic infections, anaerobic bacterial infections (pelvic inflammatory disease, diabetic foot), surgical prophylaxis (abdominal and hysterectomy) and Helicobacter pylori eradication. Tinidazole was recently approved by the Food and Drug Administration (FDA) for the treatment of infections caused by Trichomonas vaginalis, Entamoeba histolytica and Giardia lamblia.

  4. Effect of respiratory warm-up on anaerobic power

    PubMed Central

    Özdal, Mustafa; Bostanci, Özgür; Dağlioğlu, Önder; Ağaoğlu, Seydi Ahmet; Kabadayi, Menderes

    2016-01-01

    [Purpose] The aim of the present study was to examine the effects of respiratory muscle warm-up on anaerobic power. [Subjects and Methods] Thirty male field hockey players (age, 20.5 ± 2.0 years) each participated in a control (CAN) trial and an experimental (EAN) trial. The EAN trial involved respiratory muscle warm-up, while the CAN trial did not. Anaerobic power was measured using the Wingate protocol. Paired sample t-tests were used to compare the EAN and CAN trials. [Results] There were significant increases in peak power and relative peak power, and decreases in the time to peak after the EAN trial by 8.9%, 9.6%, and 28.8% respectively. [Conclusion] Respiratory muscle warm-up may positively affect anaerobic power due to faster attainment of peak power. PMID:27512273

  5. Acetate Metabolism in Anaerobes from the Domain Archaea.

    PubMed

    Ferry, James G

    2015-06-09

    Acetate and acetyl-CoA play fundamental roles in all of biology, including anaerobic prokaryotes from the domains Bacteria and Archaea, which compose an estimated quarter of all living protoplasm in Earth's biosphere. Anaerobes from the domain Archaea contribute to the global carbon cycle by metabolizing acetate as a growth substrate or product. They are components of anaerobic microbial food chains converting complex organic matter to methane, and many fix CO2 into cell material via synthesis of acetyl-CoA. They are found in a diversity of ecological habitats ranging from the digestive tracts of insects to deep-sea hydrothermal vents, and synthesize a plethora of novel enzymes with biotechnological potential. Ecological investigations suggest that still more acetate-metabolizing species with novel properties await discovery.

  6. Defining Anaerobic Digestion Stability-Full Scale Study

    NASA Astrophysics Data System (ADS)

    Demitry, M. E., Sr.

    2014-12-01

    A full-scale anaerobic digester receiving a mixture of primary and secondary sludge was monitored for one hundred days. A chemical oxygen demand, COD, and a volatile solids, VS, mass balance was conducted to evaluate the stability of the digester and its capability of producing methane gas. The COD mass balance could account for nearly 90% of the methane gas produced while the VS mass balance showed that 91% of the organic matter removed resulted in biogas formation. Other parameters monitored included: pH, alkalinity, VFA, and propionic acid. The values of these parameters showed that steady state had occurred. Finally, at mesophilic temperature and at steady state performance, the anaerobic digester stability was defined as a constant ratio of methane produced per substrate of ΔVS (average ratio=0.404 l/g). This ratio can be used as universal metric to determine the anaerobic digester stability in an easy and inexpensive way.

  7. The role of anaerobes in diabetic foot infections.

    PubMed

    Charles, Patrick G P; Uçkay, Ilker; Kressmann, Benjamin; Emonet, Stéphane; Lipsky, Benjamin A

    2015-08-01

    Diabetic foot infections (DFI) are a common cause of morbidity and, on occasion, even mortality. Infection can be either mono- or polymicrobial, with a wide variety of potential pathogens. Anaerobes may be involved, particularly in wounds that are deeper or more chronic, and are more frequently identified when using modern molecular techniques, such as 16s PCR and pyrosequencing. It remains unclear whether the presence of anaerobes in DFI leads to more severe manifestations, or if these organisms are largely colonizers associated with the presence of greater degrees of tissue ischemia and necrosis. Commonly used empiric antibiotic therapy for diabetic foot infections is generally broad-spectrum and usually has activity against the most frequently identified anaerobes, such as Peptostreptococcus and Bacteroides species. Adequate surgical debridement and, when needed, foot revascularization may be at least as important as the choice of antibiotic to achieve a successful treatment outcome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Combining mixing regimes for optimized anaerobic wastewater treatment.

    PubMed

    Kleerebezem, Robbert

    2003-01-01

    Operational practice of high-rate anaerobic bioreactors such as upflow anaerobic sludge bed (UASB) reactors is generally based on maximization of the biomass concentration and, in the case of more than one reactor compartment, operation in parallel. In this article, a modeling approach is used to postulate that the treatment performance of anaerobic bioreactors can be improved by simple operational measures. To achieve minimized effluent soluble substrate concentrations, operation of two reactors in series combined with active exchange of biomass between both reactors is suggested. In this way, substrate concentrations lower than the minimum achievable concentration in a completely mixed reactor can be achieved. It is furthermore suggested that maximized biomass concentrations (and solid retention times [SRTs]) do not necessarily lead to minimized effluent concentrations of organic material. At elevated SRTs, the soluble microbial products resulting from biomass turnover are shown to represent the main fraction of soluble organic material in the effluent of the reactor, limiting treatment efficiency.

  9. Anaerobic digestion of microalgal biomass: Challenges, opportunities and research needs.

    PubMed

    Gonzalez-Fernandez, Cristina; Sialve, Bruno; Molinuevo-Salces, Beatriz

    2015-12-01

    Integration of anaerobic digestion (AD) with microalgae processes has become a key topic to support economic and environmental development of this resource. Compared with other substrates, microalgae can be produced close to the plant without the need for arable lands and be fully integrated within a biorefinery. As a limiting step, anaerobic hydrolysis appears to be one of the most challenging steps to reach a positive economic balance and to completely exploit the potential of microalgae for biogas and fertilizers production. This review covers recent investigations dealing with microalgae AD and highlights research opportunities and needs to support the development of this resource. Novel approaches to increase hydrolysis rate, the importance of the reactor design and the noteworthiness of the microbial anaerobic community are addressed. Finally, the integration of AD with microalgae processes and the potential of the carboxylate platform for chemicals and biofuels production are reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation.

    PubMed Central

    Krumholz, L R; Sharp, R; Fishbain, S S

    1996-01-01

    Strain TT4B has been isolated from anaerobic sediments known to be contaminated with a variety of organic solvents. It is a gram-negative, rod-shaped bacterium and grew anaerobically with acetate as the electron donor and tetrachloroethylene as the electron acceptor in a mineral medium. cis-Dichloroethylene was the halogenated product. This strain did not grow fermentatively and used only acetate or pyruvate as electron donors. Tetrachloroethylene and trichloroethylene were used as electron acceptors, as were ferric nitriloacetate and fumarate. Nitrogen and sulfur oxyanions were not able to substitute as the electron acceptor for this organism. Modest growth occurred in a two-phase system with 1 ml of hexadecane containing 50 to 200 mM tetrachloroethylene (aqueous concentrations, 25 to 100 microM) and 10 ml of anaerobic mineral solution with Na2S as the reducing agent. Growth was completely inhibited at tetrachloroethylene levels above 100 microM. PMID:8900001

  11. Anaerobic treatability of wastewater contaminated with propylene glycol.

    PubMed

    Sezgin, Naim; Tonuk, Gulseven Ubay

    2013-09-01

    The purpose of this study was to investigate the biodegradability of propylene glycol in anaerobic conditions by using methanogenic culture. A master reactor was set up to develop a culture that would be acclimated to propylene glycol. After reaching steady-state, culture was transferred to serum bottles. Three reactors with same initial conditions were run for consistency. Propylene glycol was completely biodegradable under anaerobic methanogenic conditions. Semi-continuous reactors operated at a temperature of 35°C had consistently achieved a propylene glycol removal of higher than 95 % based on chemical oxygen demand (COD). It was found that in semi-continuous reactors, anaerobic treatment of propylene glycol at concentrations higher than 1,500 mg COD m(-3) day(-1) was not convenient due to instable effluent COD.

  12. Evaluation of PCB dechlorination pathways in anaerobic sediment microcosms using an anaerobic dechlorination model.

    PubMed

    Demirtepe, Hale; Kjellerup, Birthe; Sowers, Kevin R; Imamoglu, Ipek

    2015-10-15

    A detailed quantitative analysis of anaerobic dechlorination (AD) pathways of polychlorinated biphenyls (PCBs) in sediment microcosms was performed by applying an anaerobic dechlorination model (ADM). The purpose of ADM is to systematically analyze changes in a contaminant profile that result from microbial reductive dechlorination according to empirically determined dechlorination pathways. In contrast to prior studies that utilized modeling tools to predict dechlorination pathways, ADM also provides quantification of individual pathways. As only microbial reductive dechlorination of PCBs occurred in the modeled laboratory microcosms, extensive analysis of AD pathways was possible without the complicating effect of concurrent physico-chemical or other weathering mechanisms. The results from this study showed: (1) ninety three AD pathways are active; (2) tetra- to hepta-chlorobiphenyl (CB) congeners were common intermediates in several AD pathways, penta-CBs being the most frequently observed; (3) the highest rates of dechlorination were for penta-CB homologs during the initial 185 days; (4) the dominant terminal products of AD were PCB 32(26-4), 49(24-25), 51(24-26), 52(25-25), 72(25-35), 73(26-35) and 100(246-24), (5) potential toxicity of the sediment was reduced. ADM serves as a powerful tool not only for a thorough analysis of AD pathways, but also for providing necessary input for numerical fate models (as a degradation term) that investigate dechlorination products or outcome of natural attenuation, or bioremediation/bioaugmentation of PCB-impacted sediments. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Hydrogenispora ethanolica gen. nov., sp. nov., an anaerobic carbohydrate-fermenting bacterium from anaerobic sludge.

    PubMed

    Liu, Yi; Qiao, Jiang-Tao; Yuan, Xian-Zheng; Guo, Rong-Bo; Qiu, Yan-Ling

    2014-05-01

    An anaerobic, spore-forming, ethanol-hydrogen-coproducing bacterium, designated LX-BT, was isolated from an anaerobic sludge treating herbicide wastewater. Cells of strain LX-BT were non-motile rods (0.3-0.5×3.0-18.0 µm). Spores were terminal with a bulged sporangium. Growth occurred at 20-50 °C (optimum 37-45 °C), pH 5.0-8.0 (optimum pH 6.0-7.7) and 0-2.5% (w/v) NaCl. The strain could grow fermentatively on glucose, maltose, arabinose, fructose, xylose, ribose, galactose, mannose, raffinose, sucrose, pectin, starch, glycerol, fumarate, tryptone and yeast extract. The major end-products of glucose fermentation were acetate, ethanol and hydrogen. Yeast extract was not required but stimulated growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite, anthraquinone-2,6-disulfonate, fumarate and Fe (III) nitrilotriacetate were not used as terminal electron acceptors. The G+C content of the genomic DNA was 56.1 mol%. The major cellular fatty acids were anteiso-C15:0, iso-C14:0 and C16:0. The most abundant polar lipids of strain LX-BT were diphosphatidylglycerol and phosphatidylglycerol. 16S rRNA gene sequence analysis revealed that it belongs to an as-yet-unidentified taxon at the order- or class-level (OPB54) within the phylum Firmicutes, showing 86.5% sequence similarity to previously described species of the Desulfotomaculum cluster. The name Hydrogenispora ethanolica gen. nov., sp. nov. is proposed to accommodate strain LX-BT (=DSM 25471T=JCM 18117T=CGMCC 1.5175T) as the type strain.

  14. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis.

    PubMed

    Yoon, Sang Sun; Hennigan, Robert F; Hilliard, George M; Ochsner, Urs A; Parvatiyar, Kislay; Kamani, Moneesha C; Allen, Holly L; DeKievit, Teresa R; Gardner, Paul R; Schwab, Ute; Rowe, John J; Iglewski, Barbara H; McDermott, Timothy R; Mason, Ronald P; Wozniak, Daniel J; Hancock, Robert E W; Parsek, Matthew R; Noah, Terry L; Boucher, Richard C; Hassett, Daniel J

    2002-10-01

    Recent data indicate that cystic fibrosis (CF) airway mucus is anaerobic. This suggests that Pseudomonas aeruginosa infection in CF reflects biofilm formation and persistence in an anaerobic environment. P. aeruginosa formed robust anaerobic biofilms, the viability of which requires rhl quorum sensing and nitric oxide (NO) reductase to modulate or prevent accumulation of toxic NO, a byproduct of anaerobic respiration. Proteomic analyses identified an outer membrane protein, OprF, that was upregulated approximately 40-fold under anaerobic versus aerobic conditions. Further, OprF exists in CF mucus, and CF patients raise antisera to OprF. An oprF mutant formed poor anaerobic biofilms, due, in part, to defects in anaerobic respiration. Thus, future investigations of CF pathogenesis and therapy should include a better understanding of anaerobic metabolism and biofilm development by P. aeruginosa.

  15. The Effects of Desiccation on Methanogens Under Aerobic and Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Murphy, C.; Kral, T. A.

    2010-04-01

    Survival of methanogens following desiccation depends on whether they are maintained under aerobic or anaerobic conditions. Cells maintained in a desiccated state in the presence of oxygen did not survive as well as those maintained anaerobically.

  16. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  18. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  19. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.

  20. Adaptation and Antibiotic Tolerance of Anaerobic Burkholderia pseudomallei ▿ †

    PubMed Central

    Hamad, Mohamad A.; Austin, Chad R.; Stewart, Amanda L.; Higgins, Mike; Vázquez-Torres, Andrés; Voskuil, Martin I.

    2011-01-01

    The Gram-negative bacterium Burkholderia pseudomallei is the etiological agent of melioidosis and is remarkably resistant to most classes of antibacterials. Even after months of treatment with antibacterials that are relatively effective in vitro, there is a high rate of treatment failure, indicating that this pathogen alters its patterns of antibacterial susceptibility in response to cues encountered in the host. The pathology of melioidosis indicates that B. pseudomallei encounters host microenvironments that limit aerobic respiration, including the lack of oxygen found in abscesses and in the presence of nitric oxide produced by macrophages. We investigated whether B. pseudomallei could survive in a nonreplicating, oxygen-deprived state and determined if this physiological state was tolerant of conventional antibacterials. B. pseudomallei survived initial anaerobiosis, especially under moderately acidic conditions similar to those found in abscesses. Microarray expression profiling indicated a major shift in the physiological state of hypoxic B. pseudomallei, including induction of a variety of typical anaerobic-environment-responsive genes and genes that appear specific to anaerobic B. pseudomallei. Interestingly, anaerobic B. pseudomallei was unaffected by antibacterials typically used in therapy. However, it was exquisitely sensitive to drugs used against anaerobic pathogens. After several weeks of anaerobic culture, a significant loss of viability was observed. However, a stable subpopulation that maintained complete viability for at least 1 year was established. Thus, during the course of human infection, if a minor subpopulation of bacteria inhabited an oxygen-restricted environment, it might be indifferent to traditional therapy but susceptible to antibiotics frequently used to treat anaerobic infections. PMID:21537012

  1. Microbial degradation of lignin-derived compounds under anaerobic conditions

    SciTech Connect

    Colberg, P.J.

    1983-01-01

    Lignin is the second most abundant form of organic carbon in the biosphere. Recent laboratory studies indicate that a large fraction of polymeric lignin is incompletely degraded by aerobic lignolytic microorganisms and is subsequently released as lignin fragments of reduced molecular size. If such lignin-derived compounds become available in the anaerobic environment, they may serve as potential sources of organic carbon for organisms which release methane precursors. The methanogenic bacteria, in turn, serve as terminal members of the anaerobic food chain, and thus, limit the accumulation of organic carbon in anaerobic sinks. This thesis presents evidence to suggest that lignin-derived compounds which have molecular sizes greater than those of single-ring aromatic compounds (MW > 200) are anaerobically biodegradable to methane. This research involved development of selective enrichment cultures capable of utilizing oligolignols as sole carbon sources. Radiolabeled water-soluble catabolites, released during aerobic lignin degradation by the white rot fungus Phanerochaete chrysosporium, were subjected to anaerobic degradation. The second phase of work involved capillary gas chromatographic analyses of enrichment cultures fed a /sup 14/C-labeled, lignin-derived substrate of average molecular weight 600. 2-Bromoethanesulfonic acid was used to inhibit methane formation and enhance buildup of metabolic intermediates, resulting in the accumulation of volatile fatty acids, phenylacetate, benzoate, catechol, 3-phenyl-propionate, vanillin, syringic acid, vanillic acid, ferulic acid, and caffeic acid. A conceptual model for the anaerobic degradation of two- and three-ring lignin fragments is proposed which overlaps both the ferulate and benzoate degradation pathways at the level of single-ring aromatic compounds.

  2. Aged refuse enhances anaerobic digestion of waste activated sludge.

    PubMed

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi

    2017-10-15

    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hydroponic system for the treatment of anaerobic liquid.

    PubMed

    Krishnasamy, K; Nair, J; Bäuml, B

    2012-01-01

    The effluent from anaerobic digestion process has high concentrations of nutrients, particularly nitrogen, essential for plant growth but is not suitable for direct disposal or application due to high chemical oxygen demand (COD), low dissolved oxygen (DO), odour issues and is potentially phytotoxic. This research explored the optimum conditions of anaerobic effluent for application and dilutions of the effluent required to obtain better plant growth. A small-scale hydroponic system was constructed in a glasshouse to test different concentrations of anaerobic effluent against a commercial hydroponic medium as the control for the growth of silverbeet. It was found that the survival of silverbeet was negatively affected at 50% concentration due to low DO and NH(4) toxicity. The concentration of 20% anaerobic liquid was found to be the most efficient with highest foliage yield and plant growth. The hydroponic system with 20% concentrated effluent had better utilisation of nutrients for plant growth and a COD reduction of 95% was achieved during the 50-day growth period. This preliminary evaluation revealed that the growth and development of silverbeet was significantly lower in anaerobic effluent compared with a commercial hydroponic plant growth solution. The nutrient quality of anaerobic effluent could be highly variable with the process and the waste material used and dilution may depend on the nutrient content of the effluent. It is recommended that, a pre-treatment of the effluent to increase DO and reduce ammonium content is required before plant application, and simple dilution by itself is not suitable for optimum plant growth in a hydroponic system.

  4. Microbial aggregates in anaerobic wastewater treatment.

    PubMed

    Kosaric, N; Blaszczyk, R

    1990-01-01

    The phenomenon aggregation of anaerobic bacteria gives an opportunity to speed up the digestion rate during methanogenesis. The aggregates are mainly composed of methanogenic bacteria which convert acetate and H2/CO2 into methane. Other bacteria are also included in the aggregates but their concentration is rather small. The aggregates may also be formed during acetogenesis or even hydrolysis but such aggregates are not stable and disrupt quickly when not fed. A two stage process seems to be suitable when high concentrated solid waste must be treated. Special conditions are necessary to promote aggregate formation from methanogenic bacteria but aggregates once formed are stable without feeding even for a few years. The structure, texture and activity of bacterial aggregates depend on several parameters: (1)--temperature and pH, (2)--wastewater composition and (3)--hydrodynamic conditions within the reactor. The common influence of all these parameters is still rather unknown but some recommendations may be given. Temperature and pH should be maintained in the range which is optimal for methanogenic bacteria e.g. a temperature between 32 and 50 degrees C and a value pH between 6.5 and 7.5. Wastewaters should contain soluble wastes and the specific loading rate should be around one kgCOD(kgVSS)-1 d-1. The concentration of the elements influences aggregate composition and probably structure and texture. At high calcium concentration a change in the colour of the granules has been observed. Research is necessary to investigate the influence of other elements and organic toxicants on maintenance of the aggregates. Hydrodynamic conditions seem to influence the stability of the granules over long time periods. At low liquid stream rates, aggregates may starve and lysis within the aggregates is possible which results in hollowing of aggregates and their floating. At high liquid stream rates the aggregates may be disrupted and washed out of the reactor as a flocculent

  5. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  6. Improved anaerobic digestion by staged fermentation and advanced reactor design

    SciTech Connect

    Ghosh, S.; Bostian, H.E.; Henry, M.P.; Sajjad, A.; Farrell, J.B.; Salotto, B.V.

    1985-01-01

    The anaerobic digestion process has taken on new importance and emphasis in recent years because of its potential applications for energy and chemicals production from various types of renewable-carbon resources, and because it can be coupled with certain electrochemical, thermochemical, and biochemical processes to generate electric power, hydrocarbons, methanol, and other high-value products. A number of initiatives have been taken to improve the anaerobic digestion process in keeping with the increasing appreciation for its utility and versatility of application in municipal, industrial, and rural settings.

  7. A novel process for anaerobic composting of municipal solid waste

    SciTech Connect

    Chynoweth, D.P.; Bosch, G.; Earle, J.F.K.

    1991-12-31

    A novel process has been developed and evaluated in a pilot-scale program for conversion of the biodegradable fraction of municipal solid waste (MSW) to methane via anaerobic composting. The sequential batch anaerobic composting (SEBAC) process employs leachate management to provide organisms, moisture, and nutrients required for rapid conversion of MSW and removal of inhibitory fermentation products during start-up. The biodegradable organic materials are converted to methane and carbon dioxide in 21-42 d, rather than the years required in landfills.

  8. Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures

    USGS Publications Warehouse

    Culbertson, Charles W.; Zehnder, Alexander J. B.; Oremland, Ronald S.

    1981-01-01

    Acetylene disappeared from the gas phase of anaerobically incubated estuarine sediment slurries, and loss was accompanied by increased levels of carbon dioxide. Acetylene loss was inhibited by chloramphenicol, air, and autoclaving. Addition of 14C2H2 to slurries resulted in the formation of 14CO2 and the transient appearance of 14C-soluble intermediates, of which acetate was a major component. Acetylene oxidation stimulated sulfate reduction; however, sulfate reduction was not required for the loss of C2H2 to occur. Enrichment cultures were obtained which grew anaerobically at the expense of C2H2.

  9. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities.

    PubMed

    Sawatdeenarunat, Chayanon; Surendra, K C; Takara, Devin; Oechsner, Hans; Khanal, Samir Kumar

    2015-02-01

    Anaerobic digestion (AD) of lignocellulosic biomass provides an excellent opportunity to convert abundant bioresources into renewable energy. Rumen microorganisms, in contrast to conventional microorganisms, are an effective inoculum for digesting lignocellulosic biomass due to their intrinsic ability to degrade substrate rich in cellulosic fiber. However, there are still several challenges that must be overcome for the efficient digestion of lignocellulosic biomass. Anaerobic biorefinery is an emerging concept that not only generates bioenergy, but also high-value biochemical/products from the same feedstock. This review paper highlights the current status of lignocellulosic biomass digestion and discusses its challenges. The paper also discusses the future research needs of lignocellulosic biomass digestion.

  10. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    DOEpatents

    Buelter, Thomas [Denver, CO; Meinhold, Peter [Denver, CO; Feldman, Reid M. Renny [San Francisco, CA; Hawkins, Andrew C [Parker, CO; Urano, Jun [Irvine, CA; Bastian, Sabine [Pasadena, CA; Arnold, Frances [La Canada, CA

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  11. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  12. Anaerobic Oxidation of Acetylene by Estuarine Sediments and Enrichment Cultures

    PubMed Central

    Culbertson, Charles W.; Zehnder, Alexander J. B.; Oremland, Ronald S.

    1981-01-01

    Acetylene disappeared from the gas phase of anaerobically incubated estuarine sediment slurries, and loss was accompanied by increased levels of carbon dioxide. Acetylene loss was inhibited by chloramphenicol, air, and autoclaving. Addition of 14C2H2 to slurries resulted in the formation of 14CO2 and the transient appearance of 14C-soluble intermediates, of which acetate was a major component. Acetylene oxidation stimulated sulfate reduction; however, sulfate reduction was not required for the loss of C2H2 to occur. Enrichment cultures were obtained which grew anaerobically at the expense of C2H2. PMID:16345714

  13. Phylogenetic Analysis of an Anaerobic, Trichlorobenzene-Transforming Microbial Consortium

    PubMed Central

    von Wintzingerode, Friedrich; Selent, Burkhard; Hegemann, Werner; Göbel, Ulf B.

    1999-01-01

    A culture-independent phylogenetic survey for an anaerobic trichlorobenzene-transforming microbial community was carried out. Small-subunit rRNA genes were PCR amplified from community DNA by using primers specific for Bacteria or Euryarchaeota and were subsequently cloned. Application of a new hybridization-based screening approach revealed 51 bacterial clone families, one of which was closely related to dechlorinating Dehalobacter species. Several clone sequences clustered to rDNA sequences obtained from a molecular study of an anaerobic aquifer contaminated with hydrocarbons and chlorinated solvents (Dojka et al., Appl. Env. Microbiol. 64:3869–3877, 1998). PMID:9872791

  14. Degradation of toxaphene in water during anaerobic and aerobic conditions.

    PubMed

    LacayoR, M; van Bavel, B; Mattiasson, B

    2004-08-01

    The degradation of technical toxaphene in water with two kinds of bioreactors operating in sequence was studied. One packed bed reactor was filled with Poraver (foam glass particles) running at anaerobic conditions and one suspended carrier biofilm reactor working aerobically. Chemical oxygen demand (COD), chloride, sulphate, pH, dissolved oxygen, total toxaphene and specific toxaphene isomers were measured. After 6 weeks approx. 87% of the total toxaphene was degraded reaching 98% by week 39. The majority of the conversion took place in the anaerobic reactor. The concentrations of toxaphene isomers with more chlorine substituents decreased more rapidly than for isomers with less chlorine substituents.

  15. Treatment of packaging board whitewater in anaerobic/aerobic biokidney.

    PubMed

    Alexandersson, T; Malmqvist, A

    2005-01-01

    Whitewater from production of packaging board was treated in a combined anaerobic/aerobic biokidney, both in laboratory scale and pilot plant experiments. Both the laboratory experiments and the pilot plant trial demonstrate that a combined anaerobic/aerobic process is suitable for treating whitewater from a packaging mill. It is also possible to operate the process at the prevailing whitewater temperature. In the laboratory under mesophilic conditions the maximal organic load was 12 kg COD/m3*d on the anaerobic reactor and 6.7 kg COD/m3*d on the aerobic reactor. This gave a hydraulic retention time, HRT, in the anaerobic reactor of 10 hours and 2 hours in the aerobic reactor. The reduction of COD was between 85 and 90% after the first stage and the total reduction was between 88 to 93%. Under thermophilic conditions in the laboratory the organic load was slightly lower than 9.6 COD/m3*d and between 10 and 16 COD/m3*d, respectively. The HRT was 16.5 and 3.4 hours and the removal was around 75% after the anaerobic reactor and 87% after the total process. For the pilot plant experiment at a mill the HRT in the anaerobic step varied between 3 and 17 hours and the corresponding organic load between 4 and 44 kg COD/m3*d. The HRT in the aerobic step varied between 1 and 6 hours and the organic load between 1.5 and 26 kg COD/m3*d. The removal of soluble organic matter was 78% in the anaerobic step and 86% after the combined treatment at the lowest loading level. The removal efficiency at the highest loading level was about 65% in the anaerobic step and 77% after the aerobic step. In the pilot plant trial the removal efficiency was not markedly affected by the variations in whitewater composition that were caused by change of production. The variations, however, made the manual control of the nutrient dosage inadequate and resulted in large variations in effluent nutrient concentration. This demonstrates the need for an automatic nutrient dosage system. The first step

  16. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria.

    PubMed

    Ferousi, Christina; Lindhoud, Simon; Baymann, Frauke; Kartal, Boran; Jetten, Mike Sm; Reimann, Joachim

    2017-04-01

    The most abundant transition metal in biological systems is iron. It is incorporated into protein cofactors and serves either catalytic, redox or regulatory purposes. Anaerobic ammonium oxidizing (anammox) bacteria rely heavily on iron-containing proteins - especially cytochromes - for their energy conservation, which occurs within a unique organelle, the anammoxosome. Both their anaerobic lifestyle and the presence of an additional cellular compartment challenge our understanding of iron processing. Here, we combine existing concepts of iron uptake, utilization and metabolism, and cellular fate with genomic and still limited biochemical and physiological data on anammox bacteria to propose pathways these bacteria may employ. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. (Microbial ecology of thermophilic anaerobic digestion): (Progress report, Year 4)

    SciTech Connect

    Zinder, S.H.

    1988-01-01

    The goal of this project is to gain a more complete understanding of the microorganisms converting a lignocellulose waste to methane in a thermophilic (58/degree/C) anaerobic bioreactor. We have directly examined microbial populations in the bioreactor and have examined the properties of microorganisms isolated from the bioreactor. The primary focus has been on anaerobic thermophiles involved in the formation and degradation of acetic acid, the precursor of two-thirds of the methane produced in the bioreactor. Also, novel organisms of fundamental and practical significance have been isolated and characterized.

  18. Improved anaerobic use of arginine by Saccharomyces cerevisiae.

    PubMed

    Martin, Olga; Brandriss, Marjorie C; Schneider, Gisbert; Bakalinsky, Alan T

    2003-03-01

    Anaerobic arginine catabolism in Saccharomyces cerevisiae was genetically modified to allow assimilation of all four rather than just three of the nitrogen atoms in arginine. This was accomplished by bypassing normal formation of proline, an unusable nitrogen source in the absence of oxygen, and causing formation of glutamate instead. A pro3 ure2 strain expressing a PGK1 promoter-driven PUT2 allele encoding Delta(1)-pyrroline-5-carboxylate dehydrogenase lacking a mitochondrial targeting sequence produced significant cytoplasmic activity, accumulated twice as much intracellular glutamate, and produced twice as much cell mass as the parent when grown anaerobically on limiting arginine as sole nitrogen source.

  19. Role of surface active media in anaerobic filters

    SciTech Connect

    Khan, K.A.; Suidan, M.T.; Cross, W.H.

    1982-01-01

    Activated C and anthracite coal of the same particle size (10 x 16 mesh) were compared as packing media in completely mixed anaerobic filters. Synthetic glucose- and PhOH-containing solutions and a diluted paint stripping bath wastewater were used as the test substrates. Each wastewater was fed to the two anaerobic filters until stable operating conditions were reached. The granular activated C-packed filter resulted in better COD conversion, higher rates of CH4 production, and lower biomass production than the anthracite-packed filter for all the conditions tested.

  20. Prospective study of the clinical performance of three BACTEC media in a modern emergency department: Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F.

    PubMed

    Rocchetti, Andrea; Di Matteo, Luigi; Bottino, Paolo; Foret, Benjamin; Gamalero, Elisa; Calabresi, Alessandra; Guido, Gianluca; Casagranda, Ivo

    2016-11-01

    The performance of 3 blood culture bottles (BACTEC Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F) were analyzed with clinical specimens collected from 688 Emergency Department patients. A total of 270 strains belonging to 33 species were identified, with E. coli and S. aureus as the most frequently detected. Overall recovery rate (RR) of bacteria and yeast was equivalent in the Plus Aerobic/F vials (208 of 270 isolates; 77.0%) and Anaerobic Lytic/F vials (206 isolates; 76.3%) and significantly better than in the Plus Anaerobic/F vials (189 isolates; 70.0%). Median time to detection (TTD) was earliest with the Anaerobic Lytic/F vials (12.0h) compared with the Plus Aerobic/F (14.6h) and Plus Anaerobic/F vials (15.4h). Positivity rate (PR) was similar for Anaerobic Lytic/F vials (76.9%) and Plus Aerobic/F vials (76.5%), but better if compared with Plus Anaerobic/F vials (69.4%). The PR and TTD for the combination of Plus Aerobic/F with Anaerobic Lytic/F (94.5% and 12.3h, respectively) was significantly better than with Plus Aerobic/F with Plus Anaerobic/F (87.8% and 14.1h).

  1. Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste.

    PubMed

    Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2015-01-01

    The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data.

  2. Treatment of artificial soybean wastewater anaerobic effluent in a continuous aerobic-anaerobic coupled (CAAC) process with excess sludge reduction.

    PubMed

    Wang, Jun; Li, Xiaoxia; Fu, Weichao; Wu, Shihan; Li, Chun

    2012-12-01

    In this study, treatment of artificial soybean wastewater anaerobic effluent was studied in a continuous aerobic-anaerobic coupled (CAAC) process. The focus was on COD and nitrogen removal as well as excess sludge reduction. During the continuous operation without reflux, the COD removal efficiency was 96.5% at the optimal hydraulic retention time (HRT) 1.3 days. When HRT was shortened to 1.0 day, reflux from anaerobic zone to moving bed biofilm reactor (MBBR) was introduced. The removal efficiencies of COD and TN were 94.4% and 76.0% at the optimal reflux ratio 30%, respectively. The sludge yield coefficient of CAAC was 0.1738, the simultaneous removal of COD and nitrogen with in situ sludge reduction could be achieved in this CAAC process. The sludge reduction mechanism was discussed by soluble components variation along the water flow.

  3. Comparative In Vitro Activities of Gemifloxacin, Other Quinolones, and Nonquinolone Antimicrobials against Obligately Anaerobic Bacteria

    PubMed Central

    Kleinkauf, Niels; Ackermann, Grit; Schaumann, Reiner; Rodloff, Arne C.

    2001-01-01

    The in vitro activity of gemifloxacin was compared to that of other quinolone and nonquinolone antimicrobials against 204 anaerobes by the agar dilution technique. The data indicate that gemifloxacin has a rather selective anaerobic activity. Most Peptostreptococcus, Porphyromonas, and Fusobacterium species are susceptible, while gemifloxacin's activity against other gram-negative anaerobes appears to be variable. PMID:11353648

  4. 40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Collection Efficiencies of Anaerobic Digesters JJ Table JJ-6 to Subpart JJ of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Table JJ-6 Table JJ-6 to Subpart JJ of Part 98—Collection Efficiencies of Anaerobic Digesters Anaerobic...

  5. 40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Collection Efficiencies of Anaerobic Digesters JJ Table JJ-6 to Subpart JJ of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Table JJ-6 Table JJ-6 to Subpart JJ of Part 98—Collection Efficiencies of Anaerobic Digesters Anaerobic...

  6. Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.

    PubMed

    Ni, Bing-Jie; Batstone, Damien; Zhao, Bai-Hang; Yu, Han-Qing

    2015-08-04

    Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.

  7. Anaerobic Biotransformation and Mobility of Pu and Pu-EDTA

    SciTech Connect

    Bolton, H., Jr.; Bailey, V.L.; Plymale, A.E.; Rai, D.; Xun, L.

    2006-04-05

    The complexation of radionuclides (e.g., plutonium (Pu) and {sup 60}Co) by co-disposed ethylenediaminetetraacetate (EDTA) has enhanced their transport in sediments at DOE sites. Pu(IV)-EDTA is not stable in the presence of relatively soluble Fe(III) compounds. Since most DOE sites have Fe(III) containing sediments, Pu(IV) is likely not the mobile form of Pu-EDTA. The only other Pu-EDTA complex stable in groundwater relevant to DOE sites would be Pu(III)-EDTA, which only forms under anaerobic conditions. Research is therefore needed to investigate the biotransformation of Pu and Pu-EDTA under anaerobic conditions and the anaerobic biodegradation of Pu-EDTA. The biotransformation of Pu and Pu-EDTA under various anaerobic regimes is poorly understood including the reduction kinetics of Pu(IV) to Pu(III) from soluble (Pu(IV)-EDTA) and insoluble Pu(IV), the redox conditions required for this reduction, the strength of the Pu(III)-EDTA, how the Pu(III)-EDTA competes with other dominant anoxic soluble metals (e.g., Fe(II)), and the oxidation kinetics of Pu(III)-EDTA. Finally, soluble Pu(III)-EDTA under anaerobic conditions would require anaerobic degradation of the EDTA to limit Pu(III) transport. Anaerobic EDTA degrading microorganisms have never been isolated. Recent results have shown that Shewanella oneidensis MR-1, a dissimilatory metal reducing bacterium, can reduce Pu(IV) to Pu(III). The Pu(IV) was provided as insoluble PuO2. The highest rate of Pu(IV) reduction was with the addition of AQDS, an electron shuttle. Of the total amount of Pu solubilized (i.e., soluble through a 0.36 nm filter), approximately 70% was Pu(III). The amount of soluble Pu was between 4.8 and 3.2 micromolar at day 1 and 6, respectively, indicating rapid reduction. The micromolar Pu is significant since the drinking water limit for Pu is 10{sup -12} M. On-going experiments are investigating the influence of EDTA on the rate of Pu reduction and the stability of the formed Pu(III). We have also

  8. A STUDY OF LAND APPLICATION OF ANAEROBICALLY DIGESTED BIOSOLIDS

    EPA Science Inventory

    A field-scale research project was conducted in 2004-2005 to evaluate land application of anaerobically digested biosolids at agronomic levels. Biosolids had not been applied to this land previously. For this study, biosolids wee applied in a 100-m diameter circle by a side dis...

  9. Biogas energy production from tropical biomass wastes by anaerobic digestion

    USDA-ARS?s Scientific Manuscript database

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  10. The Impact of Temperature on Anaerobic Biological Perchlorate Treatment

    EPA Science Inventory

    A 20-month pilot-scale study was conducted to examine the impact of temperature on the performance of an anaerobic biological contactor used to treat perchlorate-contaminated water. The contactor was successfully acclimated with indigenous micro-organisms. Influent temperatures...

  11. Metal Oxide Reduction Linked to Anaerobic Methane Oxidation.

    PubMed

    Oni, Oluwatobi E; Friedrich, Michael W

    2017-02-01

    Microbial methanotrophy is important in mitigating methane emissions to the atmosphere. Geochemical evidence suggests the occurrence of anaerobic methane oxidation with metal oxides in natural environments. A study has now identified, for the first time, novel freshwater archaea of the order Methanosarcinales that can oxidize methane with Fe(III) and Mn(IV) minerals as electron acceptors.

  12. ANAEROBIC BIODEGRADATION OF ALKYLBENZENES IN LABORATORY MICROCOSMS REPRESENTING AMBIENT CONDITIONS

    EPA Science Inventory

    A microcosm study was performed to document the anaerobic biodegradation of benzene, toluene, ethylbenzene, m- xylene, and/or o-xylene in petroleum-contaminated aquifer sediment from sites in Michigan (MI) and North Carolina (NC) and relate the results to previous field investiga...

  13. Factors involved in anaerobic growth of Saccharomyces cerevisiae.

    PubMed

    Ishtar Snoek, I S; Yde Steensma, H

    2007-01-01

    Life in the absence of molecular oxygen requires several adaptations. Traditionally, the switch from respiratory metabolism to fermentation has attracted much attention in Saccharomyces cerevisiae, as this is the basis for the use of this yeast in the production of alcohol and in baking. It has also been clear that under anaerobic conditions the yeast is not able to synthesize sterols and unsaturated fatty acids and that for anaerobic growth these have to be added to the media. More recently it has been found that many more factors play a role. Several other biosynthetic reactions also require molecular oxygen and the yeast must have alternatives for these. In addition, the composition of the cell wall and cell membrane show major differences when aerobic and anaerobic cells are compared. All these changes are reflected by the observation that the transcription of more than 500 genes changes significantly between aerobically and anaerobically growing cultures. In this review we will give an overview of the factors that play a role in the survival in the absence of molecular oxygen.

  14. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress.

    PubMed

    Modig, Tobias; Granath, Katarina; Adler, Lennart; Lidén, Gunnar

    2007-05-01

    Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80-90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.

  15. Inactivation of dairy manure-borne pathogens by anaerobic digestion

    USDA-ARS?s Scientific Manuscript database

    Background: Anaerobic digestion of animal manure has the potential to inactivate enteric pathogens, thereby reducing exposures to livestock and humans when the products of digestion are disposed by land-spreading or irrigation or returned to livestock uses such as bedding. Data on digester effectiv...

  16. Anaerobic Digestion Analysis. Training Module 5.120.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with alkalinity, volatile acids and carbon dioxide determinations for an anaerobic sludge digester. Included are objectives, instructor guides, student handouts and transparency masters. This module considers total and bicarbonate…

  17. INCREASE OF INDICATOR ORGANISMS FOLLOWING ANAEROBIC DIGESTION AND CENTRIFUGE DEWATERING.

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled “Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges”. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bac...

  18. Treatment of phthalic waste by anaerobic hybrid reactor

    SciTech Connect

    Tur, M.Y.; Huang, J.C.

    1997-11-01

    The anaerobic treatment performance of phthalic acid at 4,000 mg/L (dry weight) by a hybrid reactor consisting of an upflow anaerobic sludge blanket (UASB) and a biofilter was examined. Using anaerobic sewage sludge as the seed and glucose as a carbon supplement, it took 3 months to initiate phthalate degradation. After that, the glucose supplement could be discontinued. At 35 C and a phthalic loading of 20 g-COD/L-d, the chemical oxygen demand (COD) removal efficiency was nearly 95%. About 89.5% of the removed phthalic COD was converted to methane. When the phthalic loadings were increased to 26.7, 33.0, 39.7, and 46.3 g-COD/L-d, the COD removal efficiencies were progressively reduced to 78, 65, 58, and 47.7%, respectively. More than 95% of the residual effluent COD was composed of nondecomposed phthalic acid. In the hybrid reactor, 86% of the biomass was found in the UASB section while the remaining 14% was found in the biofilter section. The anaerobic sludge could lead to granulation. At 35 C and a phthalic loading of 26 g-COD/L-D, the overall specific removal rate was 0.81--0.85 g-COD/g VSS-d, and the corresponding methane production rate was 0.24--0.26 L CH{sub 4}/g VSS-d.

  19. USDA,ARS Areawide project on anaerobic soil disinfestation

    USDA-ARS?s Scientific Manuscript database

    Initial research allowed for the development of a “standard” anaerobic soil disinfestation (ASD) consisting of CBL at the rate of 22 Mg ha-1, molasses (Agricultural Carbon Source, Terra Feed, LLC, Plant City, FL) at 13.9 m3 ha-1, applied under Vaporsafe® Totally Impermeable Film (TIF™, Raven Industr...

  20. Anaerobic incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis.

    PubMed

    Wade, Mary Margaret; Zhang, Ying

    2004-08-01

    Pyrazinamide (PZA) is an unconventional front line tuberculosis drug characterized by high in vivo sterilizing activity, but poor in vitro activity. This disparity in PZA activity may reflect differences between the in vivo tissue environment and in vitro culture conditions. This study examined the effect of anaerobic conditions, which exist in granulomatous lesions in vivo, on PZA activity in vitro. Low oxygen enhanced the activity of PZA against Mycobacterium tuberculosis, with anaerobic conditions resulting in greater enhancement than microaerobic conditions. ATPase and respiratory chain enzyme inhibitors enhanced PZA activity under normal atmospheric conditions, but not under anaerobic conditions. Furthermore, the inhibitors did not enhance isoniazid or rifampicin activity. Nitrate as an alternative electron acceptor antagonized PZA activity under anaerobic conditions. These findings provide further support for a proposed mechanism of action of PZA in which the active form of PZA (pyrazinoic acid) depletes the membrane energy reserve. They also provide another explanation for the higher sterilizing activity of PZA within in vivo lesions with low oxygen than under in vitro drug susceptibility testing conditions with ambient oxygen.

  1. A mixed plug flow anaerobic digester for dairy manure

    SciTech Connect

    Cournoyer, M.S.; Delisle, U.; Ferland, D.; Chagnon, R.

    1985-01-01

    In 1982, a ''mixed plug-flow'' anaerobic digester has been built to produce biogas from the manure of 350 dairy cows and, subsequently, to produce electricity for on-farm use only. This paper describes the digester and presents the main results of one year of technical follow-up.

  2. Effect of anaerobic soil disinfestation on weed seed germination

    USDA-ARS?s Scientific Manuscript database

    The project goal is to optimize anaerobic soil disinfestation (ASD) as an alternative to methyl bromide fumigation using strawberry in coastal California and pepper/eggplant double crop in southeast Florida as model systems (Shennan et al., 2007). In preparation for field experiments, a series of po...

  3. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE

    EPA Science Inventory

    In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...

  4. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER

    EPA Science Inventory

    In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...

  5. The role of anaerobic digestion in the emerging energy economy.

    PubMed

    Batstone, Damien John; Virdis, Bernardino

    2014-06-01

    Anaerobic digestion is the default process for biological conversion of residue organics to renewable energy and biofuel in the form of methane. However, its scope of application is expanding, due to availability of new technologies, and the emerging drivers of energy and nutrient conservation and recovery. Here, we outline two of these new application areas, namely wastewater nutrient and energy recovery, and generation of value added chemicals through mixed culture biotechnology. There exist two options for nutrient and energy recovery from domestic wastewater: low energy mainline and partition-release-recovery. Both are heavily dependent on anaerobic digestion as an energy generating and nutrient release step, and have been enabled by new technologies such as low emission anaerobic membrane processes. The area of mixed culture biotechnology has been previously identified as a key industrial opportunity, but is now moving closer to application due application of existing and new technologies. As well as acting as a core technology option in bioproduction, anaerobic digestion has a key role in residual waste valorization and generation of energy for downstream processing. These new application areas and technologies are emerging simultaneously with substantial advances in knowledge of underlying mechanisms such as electron transfer, understanding of which is critical to development of the new application areas.

  6. Anaerobic bacteria in the intestinal microbiota of Brazilian children

    PubMed Central

    Talarico, Silvia T; Santos, Florenza E; Brandt, Katia Galeão; Martinez, Marina B; Taddei, Carla R

    2017-01-01

    OBJECTIVE: Changes in the neonatal gut environment allow for the colonization of the mucin layer and lumen by anaerobic bacteria. The aim of the present study was to evaluate Bifidobacterium, Lactobacillus and Lactococcus colonization through the first year of life in a group of 12 Brazilian infants and to correlate these data with the levels of Escherichia coli. The presence of anaerobic members of the adult intestinal microbiota, including Eubacterium limosum and Faecalibacterium prausnitzii, was also evaluated. METHODS: Fecal samples were collected during the first year of life, and 16S rRNA from anaerobic and facultative bacteria was detected by real-time PCR. RESULTS: Bifidobacterium was present at the highest levels at all of the studied time points, followed by E. coli and Lactobacillus. E. limosum was rarely detected, and F. prausnitzii was detected only in the samples from the latest time points. CONCLUSION: These results are consistent with reports throughout the world on the community structure of the intestinal microbiota in infants fed a milk diet. Our findings also provide evidence for the influence of the environment on intestinal colonization due to the high abundance of E. coli. The presence of important anaerobic genera was observed in Brazilian infants living at a low socioeconomic level, a result that has already been well established for infants living in developed countries. PMID:28355361

  7. Anaerobic bacteria in the intestinal microbiota of Brazilian children.

    PubMed

    Talarico, Silvia T; Santos, Florenza E; Brandt, Katia Galeão; Martinez, Marina B; Taddei, Carla R

    2017-03-01

    Changes in the neonatal gut environment allow for the colonization of the mucin layer and lumen by anaerobic bacteria. The aim of the present study was to evaluate Bifidobacterium, Lactobacillus and Lactococcus colonization through the first year of life in a group of 12 Brazilian infants and to correlate these data with the levels of Escherichia coli. The presence of anaerobic members of the adult intestinal microbiota, including Eubacterium limosum and Faecalibacterium prausnitzii, was also evaluated. Fecal samples were collected during the first year of life, and 16S rRNA from anaerobic and facultative bacteria was detected by real-time PCR. Bifidobacterium was present at the highest levels at all of the studied time points, followed by E. coli and Lactobacillus. E. limosum was rarely detected, and F. prausnitzii was detected only in the samples from the latest time points. These results are consistent with reports throughout the world on the community structure of the intestinal microbiota in infants fed a milk diet. Our findings also provide evidence for the influence of the environment on intestinal colonization due to the high abundance of E. coli. The presence of important anaerobic genera was observed in Brazilian infants living at a low socioeconomic level, a result that has already been well established for infants living in developed countries.

  8. Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.

    PubMed

    Michel, Andrea; Koch-Koerfges, Abigail; Krumbach, Karin; Brocker, Melanie; Bott, Michael

    2015-11-01

    Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2 is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology of C. glutamicum under anaerobic conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Anaerobic Growth of Corynebacterium glutamicum via Mixed-Acid Fermentation

    PubMed Central

    Michel, Andrea; Koch-Koerfges, Abigail; Krumbach, Karin; Brocker, Melanie

    2015-01-01

    Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2 is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology of C. glutamicum under anaerobic conditions. PMID:26276118

  10. Anaerobic Metabolism of Biodiesel and Its Impact on Metal Corrosion

    DTIC Science & Technology

    2010-05-05

    stimulate biocorrosion suggest caution when integrating this alternate fuel with the existing infrastructure. Introduction Biodiesel is amixture...monitored by gas chromatography,15 and sulfate reduction was analyzed by ion chromatography.18 Electrochemical/Corrosion Experiments. Biocorrosion experi...indeed microbial lipids. To test whether anaerobic methyl ester biodegradation could accelerate the rate of biocorrosion , we immersed carbon steel

  11. Involvement of protozoa in anaerobic wastewater treatment process.

    PubMed

    Priya, M; Haridas, Ajit; Manilal, V B

    2007-12-01

    It is only very rarely recognised in literature that anaerobic reactors may contain protozoa in addition to various bacterial and archeal groups. The role of protozoa in anaerobic degradation was studied in anaerobic continuous stirred tank reactors (CSTR) and batch tests. Anaerobic protozoa, especially the ciliated protozoa, have direct influence on the performance of CSTR at all organic loading rates (1-2g CODl(-1)d(-1)) and retention times (5-10 days). The studies revealed that chemical oxygen demand (COD) removal is strongly correlated to ciliate density in CSTR fed with oleate (suspended COD) and acetate (soluble COD). There was no significant difference in COD removal between reactors fed suspended COD and those fed soluble COD. However, the diversity and number of ciliates is greater in CSTR fed with particulate feed. The mixed liquor suspended solids (MLSS) representing biomass was significantly lower (16-34%) in CSTR with protozoa. In batch tests, increased COD removal and methane production was observed in sludge having ciliates as compared with sludge without protozoa. Methane production increased linearly with number of ciliates (R(2)=0.96) in batch tests with protozoa. Direct utilization of COD by flagellates and ciliates was observed in bacteria-suppressed cultures. The technological importance of these results is that reactors with protozoa-rich sludge can enhance the rate of mineralization of complex wastewater, especially wastewater containing particulate COD.

  12. Texture-dependent anaerobic microsites constrain soil carbon oxidation rates

    NASA Astrophysics Data System (ADS)

    Keiluweit, Marco; Fendorf, Scott

    2016-04-01

    Soil texture, which is a product of parent material, climate and other soil forming factors, is a predictor for long-term storage of soil organic carbon (SOC) storage in many soil ecosystems. Positive correlation between texture (particularly clay content) and SOC storage have long been attributed to protective associations between clay minerals and organic compounds that prevent microbial and enzymatic access - a mechanism commonly referred to as 'mineral protection'. Texture therefore acts as the primary proxy for mineral protection in terrestrial ecosystem models used to assess SOC storage and its sensitivity to global change impacts. Here we show that this protective effect of texture is not only due to mineral protection, but also to the formation of anaerobic microsites. Combining micro-scale laboratory experiments with field-scale observations, we find that oxygen diffusion limitations within clay-rich domains create anaerobic microsites within seemingly well-aerated soils, shifting microbial metabolism to less efficient anaerobic SOC oxidation pathways. Kinetic and thermodynamic constraints reduce SOC oxidation rates within these anaerobic microsites by an order of magnitude relative to aerobic rates, and caused the preservation of bioavailable, polymeric and reduced organic compounds. Lifting these metabolic constraints through increased soil aeration (e.g., through changes in precipitation patterns or land use) may stimulate microbial oxidation of this inherently bioavailable SOC pool. Models that attribute the effects of texture merely to 'mineral protection' may therefore underestimate the vulnerability of soil C to global change impacts.

  13. Phosphorus uptake by potato from fertilizers recovered from anaerobic digestion

    USDA-ARS?s Scientific Manuscript database

    Field experiments were conducted in the Columbia Basin of South Central Washington to assess the yield of potato (Solanum tuberosum) in response to application of phosphorus enriched materials recovered from anaerobic digestion of manure. The treatments were comprised of four rates (0, 56, 112 and ...

  14. Anaerobic Digestion. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Carnegie, John W., Ed.

    This instructor's guide contains materials needed to teach a four-lesson unit on anaerobic digestion control. These materials include: (1) unit overview; (2) lesson plans; (3) lecture outlines; (4) student worksheets for each lesson (with answers); and (5) two copies of a final quiz (with and without answers). Lesson 1 is a review of the theory of…

  15. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER

    EPA Science Inventory

    In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...

  16. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE

    EPA Science Inventory

    In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...

  17. Anaerobic and aerobic fitness profiling of competitive surfers.

    PubMed

    Farley, Oliver; Harris, Nigel K; Kilding, Andrew E

    2012-08-01

    Despite widespread popularity of competitive surfing internationally, very little research has investigated the physiological profile of surf athletes and attempted to identify the relationships between physiological measures and surfing performance. This study determined the peak oxygen uptake (V(O2)peak) from an incremental ramp test and anaerobic power (watts) during a 10-second maximal-paddling burst using a surf paddle-specific modified kayak ergometer, customized with a surfboard and hand paddles. Twenty nationally ranked surf athletes volunteered to participate in the VV(O2)peak test, and 8 also participated in the anaerobic power test. The interrelationships between these components of athletic performance and surfing performance, as assessed by season rank, were determined using Pearsons correlations. We found a significant relationship between anaerobic power and season rank (r = 0.55, p = 0.05). No significant relationship between VV(O2)peak and season rank was found (r = -0.02, p = 0.97). Although correlations do not imply cause and effect, such a finding provides theoretical support for the importance of including anaerobic paddling power in assessment batteries and conditioning practice for surf athletes.

  18. Fate of estradiol and testosterone in anaerobic lagoon digestors

    USDA-ARS?s Scientific Manuscript database

    Laboratory-scale lagoon digestors were constructed, and the fate of 14C-labelled 17ß-estradiol (E2) and testosterone (Test) were monitored for 42 d anaerobically under biological and sterile conditions. Hormone levels decreased in the liquid layer and increased in the sludge with time. At 42 d, 16-2...

  19. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers.

    PubMed

    Lueders, Tillmann

    2017-01-01

    The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ (13)C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Modelling sodium inhibition on the anaerobic digestion process.

    PubMed

    Hierholtzer, A; Akunna, J C

    2012-01-01

    Sodium is a known process inhibitor in anaerobic systems and impacts on methanogens through an increase of osmotic pressure or complete dehydration of microorganisms. In this study, a combination of experimental and modelling approaches has been employed to determine and simulate sodium inhibition on the anaerobic digestion process. The ADM1, which has been successfully used in modelling anaerobic processes, has been modified to include an extra inhibition function that considers the effect of sodium on acetoclastic methanogens and the impact on biogas production and composition. A non-competitive inhibition function was added to the rate of acetate uptake for the model to take into account sodium toxicity. Experimental studies consisted of both batch and reactor tests to obtain parameters for model calibration and validation. The calibrated model was used to predict the effect of ammonia nitrogen on sodium toxicity. It was found that relatively low sodium levels can bring about significant levels of process inhibition in the presence of high levels of ammonia. On the other hand, where the concentration of ammonia is relatively low, the tolerance threshold for sodium ions increases. Hence, care must be taken in the use of sodium hydroxide for pH adjustment during anaerobic digestion of protein-rich substrates.

  1. Allometric Scaling of Wingate Anaerobic Power Test Scores in Women

    ERIC Educational Resources Information Center

    Hetzler, Ronald K.; Stickley, Christopher D.; Kimura, Iris F.

    2011-01-01

    In this study, we developed allometric exponents for scaling Wingate anaerobic test (WAnT) power data that are reflective in controlling for body mass (BM) and lean body mass (LBM) and established a normative WAnT data set for college-age women. One hundred women completed a standard WAnT. Allometric exponents and percentile ranks for peak (PP)…

  2. A STUDY OF LAND APPLICATION OF ANAEROBICALLY DIGESTED BIOSOLIDS

    EPA Science Inventory

    A field-scale research project was conducted in 2004-2005 to evaluate land application of anaerobically digested biosolids at agronomic levels. Biosolids had not been applied to this land previously. For this study, biosolids wee applied in a 100-m diameter circle by a side dis...

  3. Nitrate- and nitrite-dependent anaerobic oxidation of methane.

    PubMed

    Welte, Cornelia U; Rasigraf, Olivia; Vaksmaa, Annika; Versantvoort, Wouter; Arshad, Arslan; Op den Camp, Huub J M; Jetten, Mike S M; Lüke, Claudia; Reimann, Joachim

    2016-12-01

    Microbial methane oxidation is an important process to reduce the emission of the greenhouse gas methane. Anaerobic microorganisms couple the oxidation of methane to the reduction of sulfate, nitrate and nitrite, and possibly oxidized iron and manganese minerals. In this article, we review the recent finding of the intriguing nitrate- and nitrite-dependent anaerobic oxidation of methane (AOM). Nitrate-dependent AOM is catalyzed by anaerobic archaea belonging to the ANME-2d clade closely related to Methanosarcina methanogens. They were named 'Candidatus Methanoperedens nitroreducens' and use reverse methanogenesis with the key enzyme methyl-coenzyme M (methyl-CoM) reductase for methane activation. Their major end product is nitrite which can be taken up by nitrite-dependent methanotrophs. Nitrite-dependent AOM is performed by the NC10 bacterium 'Candidatus Methylomirabilis oxyfera' that probably utilizes an intra-aerobic pathway through the dismutation of NO to N2 and O2 for aerobic methane activation by methane monooxygenase, yet being a strictly anaerobic microbe. Environmental distribution, physiological and biochemical aspects are discussed in this article as well as the cooperation of the microorganisms involved. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. POLISHING EFFLUENT FROM A PERCHLORATE-REDUCING ANAEROBIC BIOLOGICAL CONTACTOR

    EPA Science Inventory

    The U.S. Environmental Protection Agency undertook at 3 ½ year pilot-scale biological perchlorate treatment study that included two long (311 and 340 days) examinations of anaerobic effluent polishing. The polishing system consisted of hydrogen peroxide addition and aeration, fo...

  5. Assessment of hydrogen metabolism in commercial anaerobic digesters.

    PubMed

    Kern, Tobias; Theiss, Juliane; Röske, Kerstin; Rother, Michael

    2016-05-01

    Degradation of biomass in the absence of exogenous electron acceptors via anaerobic digestion involves a syntrophic association of a plethora of anaerobic microorganisms. The commercial application of this process is the large-scale production of biogas from renewable feedstock as an alternative to fossil fuels. After hydrolysis of polymers, monomers are fermented to short-chain fatty acids and alcohols, which are further oxidized to acetate. Carbon dioxide, molecular hydrogen (H2), and acetate generated during the process are converted to methane by methanogenic archaea. Since many of the metabolic pathways as well as the syntrophic interactions and dependencies during anaerobic digestion involve formation, utilization, or transfer of H2, its metabolism and the methanogenic population were assessed in various samples from three commercial biogas plants. Addition of H2 significantly increased the rate of methane formation, which suggested that hydrogenotrophic methanogenesis is not a rate-limiting step during biogas formation. Methanoculleus and Methanosarcina appeared to numerically dominate the archaeal population of the three digesters, but their proportion and the Bacteria-to-Archaea ratio did not correlate with the methane productivity. Instead, hydrogenase activity in cell-free extracts from digester sludge correlated with methane productivity in a positive fashion. Since most microorganisms involved in biogas formation contain this activity, it approximates the overall anaerobic metabolic activity and may, thus, be suitable for monitoring biogas reactor performance.

  6. The Relationship Between Aerobic and Anaerobic Performance in Recreational Runners

    PubMed Central

    GILLEN, ZACHARY M.; WYATT, FRANK B.; WINCHESTER, JASON B.; SMITH, DALTON A.; GHETIA, VIDHI

    2016-01-01

    Research has indicated that combined aerobic and anaerobic training (concurrent training) may improve aerobic performance greater than aerobic training alone. The purpose of this investigation was to establish any associations between aerobic and anaerobic performance. Eleven participants (n = 11, age = 34.1 ± 13 years, VO2max = 58.4 ± 7.8) volunteered for this study. Participants were asked for endurance training experience (4.7 ± 3.7 years) and resistance training experience (4.1 ± 4.6 years). To meet training status, participants were to have a VO2max in the 80th percentile as per ACSM guidelines. The Bruce treadmill test was used to measure aerobic performance. In order to measure anaerobic performance, several tests were completed utilizing a force platform. A Pearson Product R Correlation Coefficient was calculated to determine correlations between variables. The results show significant correlation between VO2max and RFD (r = 0.68). Further analyses utilizing Cohen’s effect size indicated a strong association between VO2max and peak force, as well as running efficiency and peak power, relative peak power, and power endurance. These results indicate an existing possibility that anaerobic performance measures such as RFD may have a positive relationship with aerobic performance measures such as VO2max. Therefore, it may be beneficial to integrate specific training components which focus on improving RFD as a method of improving running performance. PMID:27990224

  7. INCREASE OF INDICATOR ORGANISMS FOLLOWING ANAEROBIC DIGESTION AND CENTRIFUGE DEWATERING.

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled “Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges”. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bac...

  8. Anaerobic Biotransformation and Mobility of Pu and PuEDTA

    SciTech Connect

    Xun, Luying

    2005-06-01

    The objective of this report is to isolate anaerobic EDTA-degrading bacteria. Although our goal is to isolate anaerobic EDTA degraders, we initiated the experiments to include nitrilotriacetate (NTA), which is a structure homologue of EDTA. All the aerobic EDTA degraders can degrade NTA, but the isolated NTA degraders cannot degrade EDTA. Since NTA is a simpler structure homologue, it is likely that EDTA-degrading ability is evolved from NTA degradation. This hypothesis is further supported from our characterization of EDTA and NTA-degrading enzymes and genes (J. Bact. 179:1112-1116; and Appl. Environ. Microbiol. 67:688-695). The EDTA monooxygenase and NTA monooxygenase are highly homologous. EDTA monooxygenase can use both EDTA and NTA as substrates, but NTA monooxygenase can only use NTA as a substrate. Thus, we put our effort to isolate both NTA and EDTA degraders. In case, an anaerobic EDTA degrader is not immediately enriched, we will try to evolve the NTA degraders to use EDTA. Both aerobic and anaerobic enrichment cultures were set.

  9. Coconut shells as filling material for anaerobic filters.

    PubMed

    Cruz, Luana Mattos de Oliveira; Stefanutti, Ronaldo; Coraucci Filho, Bruno; Tonetti, Adriano Luiz

    2013-01-01

    In rural areas of developing countries, there is a lack of sanitation services and the installation of such infrastructure is hampered by the high investment costs for initial implementation and by the limited availability of qualified personnel. An alternative to traditional sanitation services include an anaerobic filter, but the high cost of appropriate filling material can be an obstacle to its wide-spread implementation. To decrease this construction cost, the objective of this work was to study the use of coconut shells as filling material for anaerobic filters. Anaerobic filters were built and filled with the studied material and operated with up flow and hydraulic retention time of 9 hours. The reactors provided a removal of 79 ± 16% in BOD terms, indicating that the coconut shell filling had efficiency consistent with the literature data. In addition, the husks were found to retain their tensile strength following use in the reactors. Coconut husks have more empty bed volume than other low cost materials, such as crushed stone, nearing properties of traditional materials. The results of this study indicate that coconut husks may prove to be a low cost alternative to traditional fillers for anaerobic treatment in rural communities.

  10. Aerobic Capacity and Anaerobic Power Levels of the University Students

    ERIC Educational Resources Information Center

    Taskin, Cengiz

    2016-01-01

    The aim of study was to analyze aerobic capacity and anaerobic power levels of the university students. Total forty university students who is department physical education and department business (age means; 21.15±1.46 years for male and age means; 20.55±1.79 years for female in department physical education), volunteered to participate in this…

  11. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    EPA Science Inventory

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  12. Pulse power enhancement of the anaerobic digester process

    SciTech Connect

    Greene, H.W.

    1996-12-31

    A pilot study of the effects of Pulse Power Processing on an anaerobic digester system was completed at the Decatur Utilities Dry Creek Wastewater Treatment Plant, in Decatur Alabama, in September, 1995. This patented method generates several significant effects when all biosolids material is treated as it enters the anaerobic system. Intense, high peak-power plasma arcs are created, one at each end of the parabolic processing chamber, to produce an amplified synergy of alterations to the digester sludge flowing between them. The millisecond electric discharges generate localized temperatures as high as 30,000 K{degrees}, followed by a rapid cooling of the flowing liquid, which produces acoustic shock waves with pressures approaching 5,000 atmospheres. This destructive force: ruptures many of the cell walls of the bacteria and other single-cell organisms, releasing their vacuole fluids; breaks carbon bonds to form smaller organic compounds; and pulverizes large particle conglomerates, increasing the overall surface area of the solids. These beneficial results serve to boost the nutrient source for the anaerobes in the digester. In conjunction with LTV radiation, the formation of excited chemical radicals (including OH{sup -}), and the changes in ionic charge through alteration of the zeta potential, the bioreactor system is turbocharged to enhance the conversion of volatile biosolids to methane gas, which is the natural respiratory by-product of anaerobic digestion.

  13. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    EPA Science Inventory

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  14. Apparent posttranscriptional block to anaerobic induction of endogenous leukemia virus.

    PubMed Central

    Whitaker-Dowling, P A; Marotti, K R; Anderson, G R

    1979-01-01

    Uninfected Fischer rat cells were induced by anaerobic stress to transcribe high levels of endogenous type C leukemia virus RNA. Complete 35S virus RNA with attached polyadenylic acid sequences was found associated with polysomes, indicating functional mRNA. Since no mature virus was released under these conditions, the presence of a posttranscriptional block to complete virus synthesis is strongly indicated. PMID:232174

  15. POLISHING EFFLUENT FROM A PERCHLORATE-REDUCING ANAEROBIC BIOLOGICAL CONTACTOR

    EPA Science Inventory

    The U.S. Environmental Protection Agency undertook at 3 ½ year pilot-scale biological perchlorate treatment study that included two long (311 and 340 days) examinations of anaerobic effluent polishing. The polishing system consisted of hydrogen peroxide addition and aeration, fo...

  16. Relating methanogen community structure and anaerobic digester function.

    PubMed

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal.

  17. Fate of 17B-estradiol in anaerobic lagoon digesters

    USDA-ARS?s Scientific Manuscript database

    The fate of [14C]17B-estradiol ([14C]E2) was monitored for 42 d in triplicate 10 L anaerobic digesters. Total radioactive residues (TRR) decreased rapidly in the liquid layer of the digesters and reached a steady-state value of 19-24% of the initial dose after 4 days. LC/MS/MS analyses of the liqu...

  18. Anaerobic Soil Disinfestation For Florida Specialty Crop Production

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD) is a process in which organic amendments are applied to soil, covered with a polyethylene film, and saturated with water to create conditions conducive for soil bacteria to deplete oxygen levels and generate organic acids in soil. The generation of acids and re...

  19. Aerobic and anaerobic cecal bacterial flora of commercially processed broilers

    USDA-ARS?s Scientific Manuscript database

    Differences in the bacterial flora of aerobic and anaerobic cultures of broiler ceca collected from a commercial poultry processing facility were determined. Bacterial isolates from cecal cultures were selected based on the ability of the bacteria to grow in media supplemented with lactate and succ...

  20. ANAEROBIC BIODEGRADATION OF ALKYLBENZENES IN LABORATORY MICROCOSMS REPRESENTING AMBIENT CONDITIONS

    EPA Science Inventory

    A microcosm study was performed to document the anaerobic biodegradation of benzene, toluene, ethylbenzene, m- xylene, and/or o-xylene in petroleum-contaminated aquifer sediment from sites in Michigan (MI) and North Carolina (NC) and relate the results to previous field investiga...

  1. Improving products of anaerobic sludge digestion by microaeration.

    PubMed

    Jenicek, P; Celis, C A; Krayzelova, L; Anferova, N; Pokorna, D

    2014-01-01

    Biogas, digested sludge and sludge liquor are the main products of anaerobic sludge digestion. Each of the products is influenced significantly by specific conditions of the digestion process. Therefore, any upgrade of the digestion technology must be considered with regard to quality changes in all products. Microaeration is one of the methods used for the improvement of biogas quality. Recently, microaeration has been proved to be a relatively simple and highly efficient biological method of sulfide removal in the anaerobic digestion of biosolids, but little attention has been paid to comparing the quality of digested sludge and sludge liquor in the anaerobic and microaerobic digestion and that is why this paper primarily deals with this area of research. The results of the long-term monitoring of digested sludge quality and sludge liquor quality in the anaerobic and microaerobic digesters suggest that products of both technologies are comparable. However, there are several parameters in which the 'microaerobic' products have a significantly better quality such as: sulfide (68% lower) and soluble chemical oxygen demand (COD) (33% lower) concentrations in the sludge liquor and the lower foaming potential of the digested sludge.

  2. Aerobic capacity and anaerobic threshold of wheelchair basketball players.

    PubMed

    Rotstein, A; Sagiv, M; Ben-Sira, D; Werber, G; Hutzler, J; Annenburg, H

    1994-03-01

    This study evaluated the aerobic capacity and anaerobic threshold of national level Israeli wheelchair basketball players. Subjects were tested working on a wheelchair rolling on a motor driven treadmill and on an arm cycle ergometer. Metabolic and cardiopulmonary parameters were measured during graded maximal exercise tests. Blood lactic acid (LA) concentration was measured in the intervals between loads during the test on the wheelchair. Heart rate (HR) and % heart rate reserve (%HRR) corresponding to the anaerobic threshold (4 mM blood LA) were evaluated while working on the wheelchair rolling on a motor driven treadmill. While working on the wheelchair the following peak exercise values were obtained: VO2 = 24.7 ml.kg/min, VE = 92.09 l/min HR = 181.5 b/min and R = 1.22. Values corresponding to the anaerobic threshold were found to be, HR = 139 b/min and %HRR = 57.02. Low correlations were obtained between peak exercise VO2 and VE measured while working on the wheelchair and those measured with arm cycle ergometer (r = 0.57 p = 0.137 and r = 0.4 p = 0.233 respectively). As athletes, subjects in the present study may be classified as having a low aerobic capacity and anaerobic threshold. It is also concluded that the ergometer type may have an important influence on test results.

  3. Optimizing anaerobic soil disinfestation for soilborne disease control

    USDA-ARS?s Scientific Manuscript database

    Soilborne disease management without chemical fumigants is a major challenge for strawberry production in California. Current re-registrations and regulations are likely to intensify this obstacle by severely limiting availability of fumigants on a large percentage of strawberry acreage. Anaerobic s...

  4. Evaluating C-sources for anaerobic soil disinfestation

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD) has been shown to be effective in the control of a wide range of soil-borne plant pathogens. Efficacy of ASD was previously shown to be influenced by carbon input utilized when applied to apple orchard systems. In strawberry, ASD provided comparable yield as that...

  5. Anaerobic digestion of the liquid fraction of dairy manure

    SciTech Connect

    Haugen, V.; Dahlberg, S.; Lindley, J.A.

    1983-06-01

    The authors tested several solid liquid separation systems suitable for processing dairy manure prior to anaerobic digestion. None of the systems tried have completely satisfied the requirements. Evaluated effects of separation on biogas production. Unseparated dairy manure produced more biogas than the liquid fraction.

  6. Anaerobic fermentation of beef cattle manure. Final report

    SciTech Connect

    Hashimoto, A.G.; Chen, Y.R.; Varel, V.H.

    1981-01-01

    The research to convert livestock manure and crop residues into methane and a high protein feed ingredient by thermophilic anaerobic fermentation are summarized. The major biological and operational factors involved in methanogenesis were discussed, and a kinetic model that describes the fermentation process was presented. Substrate biodegradability, fermentation temperature, and influent substrate concentration were shown to have significant effects on CH/sub 4/ production rate. The kinetic model predicted methane production rates of existing pilot and full-scale fermentation systems to within 15%. The highest methane production rate achieved by the fermenter was 4.7 L CH/sub 4//L fermenter day. This is the highest rate reported in the literature and about 4 times higher than other pilot or full-scale systems fermenting livestock manures. Assessment of the energy requirements for anaerobic fermentation systems showed that the major energy requirement for a thermophilic system was for maintaining the fermenter temperature. The next major energy consumption was due to the mixing of the influent slurry and fermenter liquor. An approach to optimizing anaerobic fermenter designs by selecting design criteria that maximize the net energy production per unit cost was presented. Based on the results, we believe that the economics of anaerobic fermentation is sufficiently favorable for farm-scale demonstration of this technology.

  7. Allometric Scaling of Wingate Anaerobic Power Test Scores in Women

    ERIC Educational Resources Information Center

    Hetzler, Ronald K.; Stickley, Christopher D.; Kimura, Iris F.

    2011-01-01

    In this study, we developed allometric exponents for scaling Wingate anaerobic test (WAnT) power data that are reflective in controlling for body mass (BM) and lean body mass (LBM) and established a normative WAnT data set for college-age women. One hundred women completed a standard WAnT. Allometric exponents and percentile ranks for peak (PP)…

  8. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers

    PubMed Central

    Lueders, Tillmann

    2017-01-01

    Abstract The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ. 13C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation. PMID:27810873

  9. Anaerobic treatment of domestic sewage: established technologies and perspectives.

    PubMed

    Foresti, L

    2002-01-01

    The use of anaerobic reactors for domestic sewage treatment has increased significantly since the UASB configuration started to be efficiently applied for this purpose in the beginning of the 1980s. Nowadays, hundreds of UASB reactors, or similar anaerobic units, are used in domestic sewage treatment systems, particularly in developing countries. These units have been operated at ambient temperature, normally higher than 20 degrees C, at hydraulic detention time in the range of 6 to 10 hours, and organic loading rates lower than 3.0 kg COD.m(-3).d(-1). They have presented COD removal efficiencies in the range of 65% to 80%. Besides, new configurations have been developed and assayed in research centres, aiming to amplify the range of application and to improve process performance. At the same time, research is being conducted on the post-treatment of anaerobic effluents attempting to offer alternatives to the existing conventional systems. It takes into consideration not only sanitation and environmental protection, but also considers resources conservation at lower construction and running costs as the main supporting concepts for further development. This text presents some aspects of the consolidated technologies and suggests on further developments in the conception of domestic sewage treatment systems having the anaerobic process as their core.

  10. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats.

    PubMed

    Sorokin, Dimitry Y; Messina, Enzo; Smedile, Francesco; Roman, Pawel; Damsté, Jaap S Sinninghe; Ciordia, Sergio; Mena, Maria Carmen; Ferrer, Manuel; Golyshin, Peter N; Kublanov, Ilya V; Samarov, Nazar I; Toshchakov, Stepan V; La Cono, Violetta; Yakimov, Michail M

    2017-05-01

    Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery of the strictly anaerobic acetotrophic Halanaeroarchaeum compels to change both this assumption and the traditional view on haloarchaea as aerobic heterotrophs. Here we report on isolation and characterization of a novel group of strictly anaerobic lithoheterotrophic haloarchaea, which we propose to classify as a new genus Halodesulfurarchaeum. Members of this previously unknown physiological group are capable of utilising formate or hydrogen as electron donors and elemental sulfur, thiosulfate or dimethylsulfoxide as electron acceptors. Using genome-wide proteomic analysis we have detected the full set of enzymes required for anaerobic respiration and analysed their substrate-specific expression. Such advanced metabolic plasticity and type of respiration, never seen before in haloarchaea, empower the wide distribution of Halodesulfurarchaeum in hypersaline inland lakes, solar salterns, lagoons and deep submarine anoxic brines. The discovery of this novel functional group of sulfur-respiring haloarchaea strengthens the evidence of their possible role in biogeochemical sulfur cycling linked to the terminal anaerobic carbon mineralisation in so far overlooked hypersaline anoxic habitats.

  11. Upflow anaerobic sludge blanket reactor--a review.

    PubMed

    Bal, A S; Dhagat, N N

    2001-04-01

    Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and

  12. Process and design considerations for the anaerobic digestion of municipal solid waste

    SciTech Connect

    Shrivastava, S.R.; Bastuk, B.

    1993-12-31

    Full scale experience exists and justifies implementing anaerobic digestion for pretreatment of high strength industrial waste water and side streams. Anaerobic treatment of sludge and manure have demonstrated cost effective, environmentally sound treatment of these wastes. Recent attention has focused on the potential for anaerobically treating high solids municipal solid wastes to assist in meeting state waste reduction goals and provide a new renewable source of energy. This paper focuses on the fundamental facility design and process protocol considerations necessary for a high solids anaerobic digesting facility. The primary design and equipment considerations are being applied to a 5 to 10 ton per day demonstration anaerobic digestion facility in Bergen, New York.

  13. Animal and industrial waste anaerobic digestion: USA status report

    SciTech Connect

    Lusk, P.D.

    1995-11-01

    Pollutants from unmanaged animal and bio-based industrial wastes can degrade the environment, and methane emitted from decomposing wastes may contribute to global climate change. One waste management system prevents pollution and converts a disposal problem into a new profit center. Case studies of operating systems indicate that the anaerobic digestion of animal and industrial wastes is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel. Growth and concentration of the livestock industry create opportunities to properly dispose of the large quantities of manures generated at dairy, swine, and poultry farms. Beyond the farm, extension of the anaerobic digestion process to recover methane has considerable potential for certain classified industries with a waste steam characterization similar to livestock manures. More than 35 example industries have been identified, and include processors of chemicals, fiber, food, meat, mil, and pharmaceuticals. Some of these industries already recover methane for energy. This status report examines some current opportunities for recovering methane from the anaerobic digestion of animal and industrial wastes in the U.S. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned,{close_quotes} are included as a reality check. Factors necessary for successful projects, as well as a list of reasons explaining why some anaerobic digestion projects fail, are provided. The role of management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at facilities willing to incorporate the uncertainties of a new technology. Anaerobic digestion can provide monetary benefits and mitigate possible pollution problems, thereby sustaining development while maintaining environmental quality.

  14. [Anaerobic bacteria 150 years after their discovery by Pasteur].

    PubMed

    García-Sánchez, José Elías; García-Sánchez, Enrique; Martín-Del-Rey, Ángel; García-Merino, Enrique

    2015-02-01

    In 2011 we celebrated the 150th anniversary of the discovery of anaerobic bacteria by Louis Pasteur. The interest of the biomedical community on such bacteria is still maintained, and is particularly focused on Clostridium difficile. In the past few years important advances in taxonomy have been made due to the genetic, technological and computing developments. Thus, a significant number of new species related to human infections have been characterised, and some already known have been reclassified. At pathogenic level some specimens of anaerobic microflora, that had not been isolated from human infections, have been now isolated in some clinical conditions. There was emergence (or re-emergence) of some species and clinical conditions. Certain anaerobic bacteria have been associated with established infectious syndromes. The virulence of certain strains has increased, and some hypotheses on their participation in certain diseases have been given. In terms of diagnosis, the routine use of MALDI-TOF has led to a shortening of time and a cost reduction in the identification, with an improvement directly related to the improvement of data bases. The application of real-time PCR has been another major progress, and the sequencing of 16srRNA gene and others is currently a reality for several laboratories. Anaerobes have increased their resistance to antimicrobial agents, and the emergence of resistance to carbapenems and metronidazole, and multi-resistance is a current reality. In this situation, linezolid could be an effective alternative for Bacteroides. Fidaxomicin is the only anti-anaerobic agent introduced in the recent years, specifically for the diarrhoea caused by C.difficile. Moreover, some mathematical models have also been proposed in relation with this species. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  15. Effects of spiked metals on the MSW anaerobic digestion.

    PubMed

    Lo, H M; Chiang, C F; Tsao, H C; Pai, T Y; Liu, M H; Kurniawan, T A; Chao, K P; Liou, C T; Lin, K C; Chang, C Y; Wang, S C; Banks, C J; Lin, C Y; Liu, W F; Chen, P H; Chen, C K; Chiu, H Y; Wu, H Y; Chao, T W; Chen, Y R; Liou, D W; Lo, F C

    2012-01-01

    This study aimed to investigate the effects of eight metals on the anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) in bioreactors. Anaerobic bioreactors containing 200 mL MSW mixed completely with 200 m L sludge seeding. Ca and K (0, 1000, 2000 and 6,000 mg L(-1)) and Cr, Ni, Zn, Co, Mo and W (0, 5, 50 and 100 mg  L(-1)) of various dose were added to anaerobic bioreactors to examine their anaerobic digestion performance. Results showed that except K and Zn, Ca (~728 to ~1,461 mg  L(-1)), Cr (~0.0022 to ~0.0212 mg  L(-1)), Ni (~0.801 to ~5.362 mg  L(-1)), Co (~0.148 to ~0.580 mg  L(-1)), Mo (~0.044 to ~52.94 mg  L(-1)) and W (~0.658 to ~40.39 mg  L(-1)) had the potential to enhance the biogas production. On the other hand, except Mo and W, inhibitory concentrations IC(50) of Ca, K, Cr, Ni, Zn and Co were found to be ~3252, ~2097, ~0.124, ~7.239, ~0.482, ~8.625 mg  L(-1), respectively. Eight spiked metals showed that they were adsorbed by MSW to a different extent resulting in different liquid metals levels and potential stimulation and inhibition on MSW anaerobic digestion. These results were discussed and compared to results from literature.

  16. Animal and industrial waste anaerobic digestion: USA status report

    SciTech Connect

    Lusk, P.D.

    1996-01-01

    Pollutants from unmanaged animal and bio-based industrial wastes can degrade the environment, and methane emitted from decomposing wastes may contribute to global climate change. One waste management system prevents pollution and converts a disposal problem into a new profit center. Case studies of operating systems indicate that the anaerobic digestion of animal and industrial wastes is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel. Growth and concentration of the livestock industry create opportunities to properly dispose of the large quantities of manures generated at dairy, swine, and poultry farms. Beyond the farm, extension of the anaerobic digestion process to recover methane has considerable potential for certain classified industries - with a waste stream characterization similar to livestock manures. More than 35 example industries have been identified, and include processors of chemicals, fiber, food, meat, milk, and pharmaceuticals. Some of these industries already recover methane for energy. This status report examines some current opportunities for recovering methane from the anaerobic digestion of animal and industrial wastes in the US. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned,{close_quotes} are included as a reality check. Factors necessary for successful projects, as well as a list of reasons explaining why some anaerobic digestion projects fail, are provided. The role of management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at facilities willing to incorporate the uncertainties of a new technology. Anaerobic digestion can provide monetary benefits and mitigate possible pollution problems, thereby sustaining development while maintaining environmental quality.

  17. Kinetics of thermophilic anaerobes in fixed-bed reactors.

    PubMed

    Perez, M; Romero, L I; Sales, D

    2001-08-01

    The main objective of this study is to estimate growth kinetic constants and the concentration of "active" attached biomass in two anaerobic thermophilic reactors which contain different initial sizes of immobilized anaerobic mixed cultures and decompose distillery wastewater. This paper studies the substrate decomposition in two lab-scale fixed-bed reactors operating at batch conditions with corrugated tubes as support media. It can be demonstrated that high micro-organisms-substrate ratios favor the degradation activity of the different anaerobic cultures, allowing the stable operation without lag-phases and giving better quality in effluent. The kinetic parameters obtained--maximum specific growth rates (mu(max)), non-biodegradable substrate (S(NB)) and "active or viable biomass" concentrations (X(V0))--were obtained by applying the Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz], with COD as substrate and methane (CH4) as the main product of the anaerobic process. This method is suitable to calculate and to differentiate the main kinetic parameters of both the total anaerobic mixed culture and the methanogenic population. Comparison of experimental measured concentration of volatile attached solids (VS(att)) in both reactors with the estimated "active" biomass concentrations obtained by applying Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz] shows that a large amount of inert matter is present in the fixed-bed reactor.

  18. Denitrification in anaerobic lagoons used to treat swine wastewater.

    PubMed

    Hunt, P G; Matheny, T A; Ro, K S; Vanotti, M B; Ducey, T F

    2010-01-01

    Anaerobic lagoons are commonly used for the treatment of swine wastewater. Although these lagoons were once thought to be relatively simple, their physical, chemical, and biological processes are very complex. This study of anaerobic lagoons had two objectives: (i) to quantify denitrification enzyme activity (DEA) and (ii) to evaluate the influence of lagoon characteristics on the DEA. The DEA was measured by the acetylene inhibition method. Wastewater samples and physical and chemical measurements were taken from the wastewater column of nine anaerobic swine lagoons from May 2006 to May 2009. These lagoons were typical for anaerobic swine lagoons in the Carolinas relative to their size, operation, and chemical and physical characteristics. Their mean value for DEA was 87 mg N2O-N m(-3) d(-1). In a lagoon with 2-m depth, this rate of DEA would be compatible with 1.74 kg N ha(-1) d(-1) When nonlimiting nitrate was added, the highest DEA was compatible with 4.38 kg N ha(-1) d(-1) loss. Using stepwise regression for this treatment, the lagoon characteristics (i.e., soluble organic carbon, total nitrogen, temperature, and NO3-N) provided a final step model R2 of 0.69. Nitrous oxide from incomplete denitrification was not a significant part of the system nitrogen balance. Although alternate pathways of denitrification may exist within or beneath the wastewater column, this paper documents the lack of sufficient denitrification enzyme activity within the wastewater column of these anaerobic lagoons to support large N2 gas losses via classical nitrification and denitrification.

  19. Potential application of anaerobic extremophiles for hydrogen production

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    In processes of the substrate fermentation most anaerobes produce molecular hydrogen as a waste end product, which often controls the culture growth as an inhibitor. Usually in nature the hydrogen is easily removed from an ecosystem, due to its physical features, and an immediate consumption by the secondary anaerobes that sometimes behave as competitors for electron donors; a classical example of this kind of substrate competition in anaerobic microbial communities is the interaction between methanogens and sulfate- or sulfur-reducers. Previously, on the mixed cultures of anaerobes at neutral pH, it was demonstrated that bacterial hydrogen production could provide a good alternative energy source. At neutral pH the original cultures could easily contaminated by methanogens, and the most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and furthermore, the cultivation with pathogenic contaminants on an industrial scale would create an unsafe situation. In our laboratory the experiments with obligately alkaliphilic bacteria producing hydrogen as an end metabolic product were performed at different conditions. The mesophilic, haloalkaliphilic and obligately anaerobic bacterium Spirochaeta americana ASpG1T was studied and various cultivation regimes were compared for the most effective hydrogen production. In a highly mineralized media with pH 9.5-10.0 not many known methanogens are capable of growth, and the probability of developing pathogenic contaminants is theoretically is close to zero (in medicine carbonate- saturated solutions are applied as antiseptics). Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as a safe and economical process for large-scale industrial bio-hydrogen production in the future. Here we present and discuss the experimental data

  20. Maximal anaerobic power test in athletes of different sport disciplines.

    PubMed

    Popadic Gacesa, Jelena Z; Barak, Otto F; Grujic, Nikola G

    2009-05-01

    The aim of this study was to investigate the values of anaerobic energetic capacity variables in athletes engaged in different sport disciplines and to compare them in relation to specific demands of each sport. Wingate anaerobic tests were conducted on 145 elite athletes (14 boxers, 17 wrestlers, 27 hockey players, 23 volleyball players, 20 handball players, 25 basketball players, and 19 soccer players). Three variables were measured as markers of anaerobic capacity: peak power, mean power, and explosive power. The highest values of peak power were measured in volleyball 11.71 +/- 1.56 W.kg and basketball players 10.69 +/- 1.67 W.kg, and the difference was significant compared with the other athletes (p 0.05). The measured results show the influence of anaerobic capacity in different sports and the referral values of these variables for the elite male athletes. Explosive power presented a new dimension of anaerobic power, i.e., how fast maximal energy for power development can be obtained, and its values are high in all sports activities that demand explosiveness and fast maximal energy production. Coaches or other experts in the field could, in the future, find useful to follow and improve, through training process, one of the variables that is most informative for that sport.

  1. Anaerobic culture to detect periodontal and caries pathogens

    PubMed Central

    Tanner, Anne C. R.

    2014-01-01

    Background Anaerobic culture has been critical in our understanding of the oral microbiotas. Highlight Studies in advanced periodontitis in the 1970’s revealed microbial complexes that associated with different clinical presentations. Taxonomy studies identified species newly-observed in periodontitis as Aggregatibacter (Actinobacillus) actinomycetemcomitans, Campylobacter (Wolinella) rectus and other Campylobacter species, and Tannerella (Bacteroides) forsythia. Anaerobic culture of initial periodontitis showed overlap in the microbiota with gingivitis, and added Selenomonas noxia and Filifactor alocis as putative periodontal pathogens. Porphyromonas gingivalis and T. forsythia were found to be associated with initial periodontitis in adults. The dominant microbiota of dental caries differs from that of periodontitis. The major cariogenic species are acidogenic and acid tolerant species particularly Streptococcus mutans, and Lactobacillus and Bifidobacterium species. Anaerobic culture of severe early childhood caries revealed a widely diverse microbiota, comparable to that observed using cloning and sequencing. The PCR-based cloning approach, however, underestimated Actinobacteria compared with culture. Only a subset of the caries-associated microbiota was acid tolerant, with different segments of the microbiota cultured on blood agar compared to a low pH acid agar. While the major caries-associated species was S. mutans, a new species, Scardovia wiggsiae, was significantly associated with early childhood caries. Higher counts of S. wiggsiae were also observed in initial white spot carious lesions in adolescents. Conclusion In periodontitis and dental caries, anaerobic culture studies of advanced disease provided a comprehensive analysis of the microbiota of these infections. Anaerobic culture highlighted the limitation of PCR with standard primers that underestimate detection of Actinobacteria. PMID:25678835

  2. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA.

    PubMed

    Isabella, Vincent M; Clark, Virginia L

    2011-10-01

    Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamily of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated fatty acid palmitate. Gonococcal fatty acid profiles confirmed that NGO1024 was involved in UFA synthesis anaerobically, but not aerobically, demonstrating that gonococci contain two distinct pathways for the production of UFAs, with a yet unidentified aerobic mechanism, and an anaerobic mechanism involving NGO1024. Expression of genes involved in classical anaerobic UFA synthesis, fabA, fabM and fabB, was toxic in gonococci and unable to complement a NGO1024 mutation, suggesting that the chemistry involved in gonococcal anaerobic UFA synthesis is distinct from that of the classical pathway. NGO1024 homologues, which we suggest naming UfaA, form a distinct lineage within the 2-nitropropane dioxygenase-like superfamily, and are found in many facultative and obligate anaerobes that produce UFAs but lack fabA, suggesting that UfaA is part of a widespread pathway involved in UFA synthesis.

  3. Modeling of two-phase anaerobic process treating traditional Chinese medicine wastewater with the IWA Anaerobic Digestion Model No. 1.

    PubMed

    Chen, Zhaobo; Hu, Dongxue; Zhang, Zhenpeng; Ren, Nanqi; Zhu, Haibo

    2009-10-01

    The aim of the study was to implement a mathematical model to simulate two-phase anaerobic digestion (TPAD) process which consisted of an anaerobic continuous stirred tank reactor (CSTR) and an upflow anaerobic sludge blanket (UASB) reactor in series treating traditional Chinese medicine (TCM) wastewater. A model was built on the basis of Anaerobic Digestion Model No. 1 (ADM1) while considering complete mixing model for the CSTR, and axial direction discrete model and mixed series connection model for the UASB. The mathematical model was implemented with the simulation software package MATLABTM/Simulinks. System performance, in terms of COD removal, volatile fatty acids (VFA) accumulation and pH fluctuation, was simulated and compared with the measured values. The simulation results indicated that the model built was able to well predict the COD removal rate (-4.8-5.0%) and pH variation (-2.9-1.4%) of the UASB reactor, while failed to simulate the CSTR performance. Comparing to the measured results, the simulated acetic acid concentration of the CSTR effluent was underpredicted with a deviation ratios of 13.8-23.2%, resulting in an underprediction of total VFA and COD concentrations despite good estimation of propionic acid, butyric acid and valeric acid. It is presumed that ethanol present in the raw wastewater was converted into acetic acid during the acidification process, which was not considered by the model. Additionally, due to the underprediction of acetic acid the pH of CSTR effluent was overestimated.

  4. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1).

    PubMed

    Blumensaat, F; Keller, J

    2005-01-01

    The aim of the study presented was to implement a process model to simulate the dynamic behaviour of a pilot-scale process for anaerobic two-stage digestion of sewage sludge. The model implemented was initiated to support experimental investigations of the anaerobic two-stage digestion process. The model concept implemented in the simulation software package MATLAB/Simulink is a derivative of the IWA Anaerobic Digestion Model No.1 (ADM1) that has been developed by the IWA task group for mathematical modelling of anaerobic processes. In the present study the original model concept has been adapted and applied to replicate a two-stage digestion process. Testing procedures, including balance checks and 'benchmarking' tests were carried out to verify the accuracy of the implementation. These combined measures ensured a faultless model implementation without numerical inconsistencies. Parameters for both, the thermophilic and the mesophilic process stage, have been estimated successfully using data from lab-scale experiments described in literature. Due to the high number of parameters in the structured model, it was necessary to develop a customised procedure that limited the range of parameters to be estimated. The accuracy of the optimised parameter sets has been assessed against experimental data from pilot-scale experiments. Under these conditions, the model predicted reasonably well the dynamic behaviour of a two-stage digestion process in pilot scale.

  5. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion.

    PubMed

    Smith, Adam L; Stadler, Lauren B; Cao, Ling; Love, Nancy G; Raskin, Lutgarde; Skerlos, Steven J

    2014-05-20

    The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), conventional activated sludge with anaerobic digestion (CAS+AD), and an aerobic membrane bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater treatment under baseline assumptions at 15 °C, AnMBR recovered 49% more energy as biogas than HRAS+AD, the most energy positive conventional technology considered, but had significantly higher energy demands and environmental emissions. Global warming impacts associated with AnMBR were largely due to emissions of effluent dissolved methane. For high strength domestic wastewater treatment, AnMBR recovered 15% more net energy than HRAS+AD, and the environmental emissions gap between the two systems was reduced. Future developments of AnMBR technology in low energy fouling control, increased flux, and management of effluent methane emissions would make AnMBR competitive with HRAS+AD. Rapid advancements in AnMBR technology must continue to achieve its full economic and environmental potential as an energy recovery strategy for domestic wastewater.

  6. Molecular characterization of anaerobic sulfur-oxidizing microbial communities in up-flow anaerobic sludge blanket reactor treating municipal sewage.

    PubMed

    Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi

    2014-11-01

    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Improve bio-activity of anaerobic sludge by low energy ultrasound.

    PubMed

    Zhu, Yichun; Li, Xin; Du, Maoan; Liu, Zuwen; Luo, Hui; Zhang, Tao

    2015-01-01

    This research focused on ultrasound-enhanced bio-activity of anaerobic sludge. Low energy ultrasound irradiation can increase the bio-activity of anaerobic sludge. Ultrasonic parameter, characteristics of anaerobic sludge and experimental conditions are important parameters which affect the enhancement effect on anaerobic sludge. In order to assess the effects of characteristics of anaerobic sludge and experimental conditions on ultrasonic irradiation of anaerobic sludge, experiments with different characteristics of anaerobic sludge were carried out and analyzed with the content of coenzyme F420 and dehydrogenase activity (DHA). The results showed that anaerobic sludge bio-activity was impacted by the initial temperature, initial chemical oxygen demand (COD), sludge concentration, and stirring during the ultrasonic process. Optimal performance was achieved when sound frequency, power density, and ultrasonic irradiation period was 20 kHz, 0.1 W/mL, and 10 min, respectively, under which the wastewater COD removal efficiency was increased by 12.9 percentage points. The results indicated that low temperature could affect the anaerobic sludge irradiation effect, while intermittent stirring could enhance the bio-activity of anaerobic sludge irradiation effect and low substrate concentration improved anaerobic sludge activity by ultrasound.

  8. Extracellular polymeric substances and dewaterability of waste activated sludge during anaerobic digestion.

    PubMed

    Ye, Fenxia; Liu, Xinwen; Li, Ying

    2014-01-01

    Anaerobic digestion of waste activated sludge was conducted to gain insight into the mechanisms underlying change in sludge dewaterability during its anaerobic digestion. Unexpectedly, the results indicated that sludge dewatering properties measured by capillary suction time only deteriorated after 10 days of anaerobic digestion, after which dewaterability recovered and remained stable. The loosely bound extracellular polymeric substance (LB-EPS) content increased three-fold after 20 days of anaerobic digestion, and did not change significantly during the remaining 30 days. The tightly bound EPS (TB-EPS) content reduced slightly after 20 days of anaerobic digestion, and stabilized during the last 30 days. Polysaccharides (PS) and proteins (PN) content in LB-EPS increased after 10 days of anaerobic digestion. However, PS and PN contents in TB-EPS decreased slightly. The relationship analysis showed that only LB-EPS correlated with dewaterability of the sludge during anaerobic digestion.

  9. The incidence of anaerobes in the sputum of patients with cystic fibrosis.

    PubMed

    Jewes, L A; Spencer, R C

    1990-04-01

    The number of anaerobes in selected sputum samples from patients with cystic fibrosis (CF) was investigated. When cultured by a semi-quantitative method, 26 (23.85%) of 109 sputum specimens from 21 CF patients contained greater than 10(5) cfu of anaerobic organisms/ml. Nine (42.7%) of the 21 patients produced sputum containing such concentrations of anaerobes on at least one occasion. Anaerobes were isolated from repeated sputum specimens from five patients. The anaerobes most often isolated were Bacteroides disiens, pigmented Bacteroides spp. and anaerobic gram-positive cocci. Anaerobes were isolated more often from sputum liquefied by sonication than from unliquefied sputum, suggesting that they were unlikely to be oropharyngeal contaminants.

  10. Comparative mesophilic and thermophilic anaerobic digestion of palm oil mill effluent using upflow anaerobic sludge blanket.

    PubMed

    Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2012-07-01

    The effects of organic loading rate and operating temperature on the microbial diversity and performances of upflow anaerobic sludge blanket (UASB) reactors treating palm oil mill effluent (POME) were investigated. The following two UASB reactors were run in parallel for comparison: (1) under a mesophilic condition (37 degrees C) and (2) under a mesophilic condition in transition to a thermophilic condition (57 degrees C). A polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial population profiles significantly changed with the organic loading rate (OLR) and the temperature transition from the mesophilic to the thermophilic condition. Significant biomass washout was observed for the mesophilic UASB when operating at a high organic loading rate (OLR) of 9.5 g chemical oxygen demand (COD)/L.d. In contrast, the thermophilic UASB can be operated at this OLR and at a temperature of 57 degrees C with satisfactory COD removal and biogas production. The PCR-based DGGE analysis suggested that the thermophilic temperature of 57 degrees C was suitable for a number of hydrolytic, acidogenic, and acetogenic bacteria.

  11. Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system.

    PubMed

    Yoo, Rihye; Kim, Jeonghwan; McCarty, Perry L; Bae, Jaeho

    2012-09-01

    A laboratory-scale staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was used to treat a municipal wastewater primary-clarifier effluent. It was operated continuously for 192 days at 6-11 L/m(2)/h flux and trans-membrane pressure generally of 0.1 bar or less with no fouling control except the scouring effect of the fluidized granular activated carbon on membrane surfaces. With a total hydraulic retention time of 2.3h at 25°C, the average effluent chemical oxygen demand and biochemical oxygen demand concentrations of 25 and 7 mg/L yielded corresponding removals of 84% and 92%, respectively. Also, near complete removal of suspended solids was obtained. Biosolids production, representing 5% of the COD removed, equaled 0.049 g VSS/g BOD(5) removed, far less than the case with comparable aerobic processes. The electrical energy required for the operation of the SAF-MBR system, 0.047 kW h/m(3), could be more than satisfied by using the methane produced.

  12. Oxygen regulated gene expression in facultatively anaerobic bacteria.

    PubMed

    Unden, G; Becker, S; Bongaerts, J; Schirawski, J; Six, S

    1994-01-01

    In facultatively anaerobic bacteria such as Escherichia coli, oxygen and other electron acceptors fundamentally influence catabolic and anabolic pathways. E. coli is able to grow aerobically by respiration and in the absence of O2 by anaerobic respiration with nitrate, nitrite, fumarate, dimethylsulfoxide and trimethylamine N-oxide as acceptors or by fermentation. The expression of the various catabolic pathways occurs according to a hierarchy with 3 or 4 levels. Aerobic respiration at the highest level is followed by nitrate respiration (level 2), anaerobic respiration with the other acceptors (level 3) and fermentation. In other bacteria, different regulatory cascades with other underlying principles can be observed. Regulation of anabolism in response to O2 availability is important, too. It is caused by different requirements of cofactors or coenzymes in aerobic and anaerobic metabolism and by the requirement for different O2-independent biosynthetic routes under anoxia. The regulation mainly occurs at the transcriptional level. In E. coli, 4 global regulatory systems are known to be essential for the aerobic/anaerobic switch and the described hierarchy. A two-component sensor/regulator system comprising ArcB (sensor) and ArcA (transcriptional regulator) is responsible for regulation of aerobic metabolism. The FNR protein is a transcriptional sensor-regulator protein which regulates anaerobic respiratory genes in response to O2 availability. The gene activator FhlA regulates fermentative formate and hydrogen metabolism with formate as the inductor. ArcA/B and FNR directly respond to O2, FhlA indirectly by decreased levels of formate in the presence of O2. Regulation of nitrate/nitrite catabolism is effected by two 2-component sensor/regulator systems NarX(Q)/NarL(P) in response to nitrate/nitrite. Co-operation of the different regulatory systems at the target promoters which are in part under dual (or manifold) transcriptional control causes the expression

  13. Anaerobic Biotransformation and Mobility of Pu and Pu-EDTA

    SciTech Connect

    Bolton, H., Jr.; Rai, D.; Xun, L.

    2005-04-18

    The complexation of radionuclides (e.g., plutonium (Pu) and {sup 60}Co) by codisposed ethylenediaminetetraacetate (EDTA) has enhanced their transport in sediments at DOE sites. Our previous NABIR research investigated the aerobic biodegradation and biogeochemistry of Pu(IV)-EDTA. Plutonium(IV) forms stable complexes with EDTA under aerobic conditions and an aerobic EDTA degrading bacterium can degrade EDTA in the presence of Pu and decrease Pu mobility. However, our recent studies indicate that while Pu(IV)-EDTA is stable in simple aqueous systems, it is not stable in the presence of relatively soluble Fe(III) compounds (i.e., Fe(OH){sub 3}(s)--2-line ferrihydrite). Since most DOE sites have Fe(III) containing sediments, Pu(IV) in likely not the mobile form of Pu-EDTA in groundwater. The only other Pu-EDTA complex stable in groundwater relevant to DOE sites would be Pu(III)-EDTA, which only forms under anaerobic conditions. Research is therefore needed in this brand new project to investigate the biotransformation of Pu and Pu-EDTA under anaerobic conditions. The biotransformation of Pu and Pu-EDTA under various anaerobic regimes is poorly understood including the reduction kinetics of Pu(IV) to Pu(III) from soluble (Pu(IV)-EDTA) and insoluble Pu(IV) as PuO2(am) by metal reducing bacteria, the redox conditions required for this reduction, the strength of the Pu(III)-EDTA complex, how the Pu(III)-EDTA complex competes with other dominant anoxic soluble metals (e.g., Fe(II)), and the oxidation kinetics of Pu(III)-EDTA. Finally, the formation of a stable soluble Pu(III)-EDTA complex under anaerobic conditions would require degradation of the EDTA complex to limit Pu(III) transport in geologic environments. Anaerobic EDTA degrading microorganisms have not been isolated. These knowledge gaps preclude the development of a mechanistic understanding of how anaerobic conditions will influence Pu and Pu-EDTA fate and transport to assess, model, and design approaches to stop

  14. Nodulation of Mimosa spp. by the beta-proteobacterium Ralstonia taiwanensis.

    PubMed

    Chen, Wen-Ming; James, Euan K; Prescott, Alan R; Kierans, Martin; Sprent, Janet I

    2003-12-01

    Several beta-proteobacteria have been isolated from legume root nodules and some of these are thought to be capable of nodulating and fixing N2. However, in no case has there been detailed studies confirming that they are the active symbionts. Here, Ralstonia taiwanensis LMG19424, which was originally isolated from Mimosa pudica nodules, was transformed to carry the green fluorescent protein (gfp) reporter gene before being used to inoculate axenically-grown seedlings of M. pudica and M. diplotricha. Plants were harvested at various intervals for 56 days after inoculation, then examined for evidence of infection and nodule formation. Nodulation of both Mimosa spp. was abundant, and acetylene reduction assays confirmed that nodules had nitrogenase activity. Confocal laser scanning microscopy (CLSM) showed that fresh M. pudica nodules with nitrogenase activity had infected cells containing bacteroids expressing gfp. In parallel, fixed and embedded nodules from both Mimosa spp. were sectioned for light and electron microscopy, followed by immunogold labeling with antibodies raised against gfp and nitrogenase Fe (nifH) protein. Significant immunolabeling with these antibodies confirmed that R. taiwanensis LMG19424 is an effective N2-fixing symbiont of Mimosa spp. Both species were infected via root hairs and, in all respects, the nodule ontogeny and development was similar to that described for other mimosoid legumes. The nodules were indeterminate with a persistent meristem, an invasion zone containing host cells being invaded via prominent infection threads, and an N2-fixing zone with infected cells containing membrane-bound symbiosomes.

  15. Quadricoccus australiensis gen. nov., sp. nov., a beta-proteobacterium from activated sludge biomass.

    PubMed

    Maszenan, A M; Seviour, R J; Patel, B K C; Schumann, P

    2002-01-01

    A gram-negative coccus, designated strain Ben 117T, was obtained in axenic culture by micromanipulation from an Australian activated sludge biomass sample, which had been subjected to chlorination in order to alleviate problems associated with foaming and bulking. This isolate was a strict aerobe and grew in axenic culture, also appearing in biomass samples as cocci or clusters of cocci in tetrads, thus resembling the morphotype 'G-bacteria' seen commonly in activated sludge samples. Strain Ben 117T was non-motile, aerobic, oxidase-negative and catalase-positive and grew between 15 and 30 degrees C, with an optimum of 25-30 degrees C. The pH range for growth was between 6.0 and 8.5, with an optimum of 7.5-8.5. The isolate stained positively for intracellular polyphosphate and poly-beta-hydroxybutyrate and its G+C content was 67 mol%. 16S rDNA sequence analysis suggests that strain Ben 117T is phylogenetically different from members of the genera Amaricoccus, gram-negative 'G-bacteria' isolated previously in this laboratory. Ben 117T is a member of the Rhodocyclus group in the beta-Proteobacteria and equidistantly placed (similarity value of 95%) between Ferribacterium limneticum and Dechloromonas agitata (mean similarity value of 92% with the genus Rhodocyclus). Based on phenotypic and phylogenetic evidence, it is proposed that strain Ben 117T be designated a novel species in a new genus, Quadricoccus australiensis gen. nov., sp. nov.; the type strain is Ben 117T (= NCIMB 13738T = CIP 107055T).

  16. Isolation of Brachymonas petroleovorans CHX, a novel cyclohexane-degrading beta-proteobacterium.

    PubMed

    Rouvière, Pierre E; Chen, Mario W

    2003-10-10

    A new bacterium that grows aerobically on cyclohexane was isolated from the wastewater plant of a petroleum refinery. This strain grows on a range of light hydrocarbons (C5-C10) as well as on some aromatic compounds such as toluene and m-cresol. Growth on hydrocarbons requires the presence of yeast extract and other complex media components that are not substrates for growth themselves. Strain CHX is resistant to cyclohexane and grows at concentrations up to 2 g l(-1). Strain CHX branches deeply within the Comamonadeae family of beta-proteobacteria and is tentatively assigned to the Brachymonas genus as Brachymonas petroleovorans CHX.

  17. Herminiimonas fonticola gen. nov., sp. nov., a Betaproteobacterium isolated from a source of bottled mineral water.

    PubMed

    Fernandes, Chantal; Rainey, Fred A; Nobre, M Fernanda; Pinhal, Isabel; Folhas, Fátima; da Costa, Milton S

    2005-09-01

    Several yellowish-pigmented bacteria with an optimum growth temperature of about 30 degrees C, were recovered from the source (borehole) of bottled mineral water in the Serra da Estrela in Eastern Portugal. Phylogenetic analyses of the 16S rRNA gene sequence of strains S-94T , S-97, S-99 and S-92 indicated that these organisms represent a new species of the Betaproteobacteria that is not closely related to any other known species. The major fatty acids of the strains are 16:1 omega7c and 16:0. Ubiquinone 8 is the major respiratory quinone. The new isolates are strictly organotrophic and aerobic. The new strains only assimilated organic acids, glycine and alanine. Casamino acids and a mixture of all natural amino acids are not used as sole carbon and nitrogen sources; these are used as nitrogen source in the presence of organic acids. On the basis of the phylogenetic analyses, physiological and biochemical characteristics, we are of the opinion that strains S-94T, S-97, S-99 and S-92 represent a new species of a novel genus for which we propose the name Herminiimonas fonticola gen. nov., sp. nov.

  18. Denitratisoma oestradiolicum gen. nov., sp. nov., a 17beta-oestradiol-degrading, denitrifying betaproteobacterium.

    PubMed

    Fahrbach, Michael; Kuever, Jan; Meinke, Ruth; Kämpfer, Peter; Hollender, Juliane

    2006-07-01

    A Gram-negative, motile, denitrifying bacterium (strain AcBE2-1(T)) was isolated from activated sludge of a municipal wastewater treatment plant using 17beta-oestradiol (E2) as sole source of carbon and energy. Cells were curved rods, 0.4-0.8 x 0.8-2.0 microm in size, non-fermentative, non-spore-forming, oxidase-positive and catalase-negative. E2 was oxidized completely to carbon dioxide and water by reduction of nitrate to a mixture of dinitrogen monoxide and dinitrogen, with the intermediate accumulation of nitrite. Electron recoveries were between 90 and 100 %, taking assimilated E2 into account. With nitrate as the electron acceptor, the bacterium also grew on fatty acids (C(2) to C(6)), isobutyrate, crotonate, dl-lactate, pyruvate, fumarate and succinate. Phylogenetic analysis of its 16S rRNA gene sequence revealed that strain AcBE2-1(T) represents a separate line of descent within the family Rhodocyclaceae (Betaproteobacteria). The closest relatives are the cholesterol-degrading, denitrifying bacteria Sterolibacterium denitrificans DSM 13999(T) and strain 72Chol (=DSM 12783), with <93.9 % sequence similarity. The G+C content of the DNA was 61.4 mol%. Detection of a quinone system with ubiquinone Q-8 as the predominant compound and a fatty acid profile that included high concentrations of C(16 : 1)omega7c/iso-C(15 : 0) 2-OH and C(16 : 0), in addition to C(18 : 1)omega7c and small amounts of C(8 : 0) 3-OH, supported the results of the phylogenetic analysis. On the basis of 16S rRNA gene sequence data in combination with chemotaxonomic and physiological data, strain AcBE2-1(T) (=DSM 16959(T)=JCM 12830(T)) is placed in a new genus Denitratisoma gen. nov. as the type strain of the type species Denitratisoma oestradiolicum gen. nov., sp. nov.

  19. A single betaproteobacterium dominates the microbial community of the crambescidine-containing sponge Crambe crambe

    PubMed Central

    Croué, Julie; West, Nyree J.; Escande, Marie-Line; Intertaglia, Laurent; Lebaron, Philippe; Suzuki, Marcelino T.

    2013-01-01

    Crambe crambe is a marine sponge that produces high concentrations of the pharmacologically significant pentacyclic guanidine alkaloids (PGAs), Crambescines and Crambescidines. Although bio-mimetic chemical synthesis of PGAs suggests involvement of microorganisms in their biosynthesis, there are conflicting reports on whether bacteria are associated with this sponge or not. Using 16S rRNA gene pyrosequencing we show that the associated bacterial community of C. crambe is dominated by a single bacterial species affiliated to the Betaproteobacteria. Microscopy analysis of sponge tissue sections using a specific probe and in situ hybridization confirmed its dominance in the sponge mesohyl and a single microbial morphology was observed by transmission electron microscopy. If confirmed the presence of a simple bacteria community in C. crambe makes this association a very pertinent model to study sponge-bacteria interactions and should allow further research into the possible implication of bacteria in PGA biosynthesis. PMID:24002533

  20. Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic.

    PubMed

    Alawi, Mashal; Lipski, André; Sanders, Tina; Pfeiffer, Eva Maria; Spieck, Eva

    2007-07-01

    Permafrost-affected soils of the Siberian Arctic were investigated with regard to identification of nitrite oxidizing bacteria active at low temperature. Analysis of the fatty acid profiles of enrichment cultures grown at 4 degrees C, 10 degrees C and 17 degrees C revealed a pattern that was different from that of known nitrite oxidizers but was similar to fatty acid profiles of Betaproteobacteria. Electron microscopy of two enrichment cultures grown at 10 degrees C showed prevalent cells with a conspicuous ultrastructure. Sequence analysis of the 16S rRNA genes allocated the organisms to a so far uncultivated cluster of the Betaproteobacteria, with Gallionella ferruginea as next related taxonomically described organism. The results demonstrate that a novel genus of chemolithoautotrophic nitrite oxidizing bacteria is present in polygonal tundra soils and can be enriched at low temperatures up to 17 degrees C. Cloned sequences with high sequence similarities were previously reported from mesophilic habitats like activated sludge and therefore an involvement of this taxon in nitrite oxidation in nonarctic habitats is suggested. The presented culture will provide an opportunity to correlate nitrification with nonidentified environmental clones in moderate habitats and give insights into mechanisms of cold adaptation. We propose provisional classification of the novel nitrite oxidizing bacterium as 'Candidatus Nitrotoga arctica'.

  1. Anaerobic Biodegradation of Raw and Pre-treated Brewery Spent Grain Utilizing Solid State Anaerobic Digestion.

    PubMed

    Panjičko, Mario; Zupančič, Gregor Drago; Zelić, Bruno

    2015-01-01

    The brewery spent grain (BSG) represents approximately 85% of the total quantity of by-products from the brewing industry. The biogas production from the BSG has been the subject of several studies in recent years, due to relatively high energy consumption in the brewing process and due to the increasing energy costs. The biodegradability of raw and pre-treated BSG in a single-stage and two-stage solid-state anaerobic digestion (SS-AD) system was determined in this study. The results show that the BSG have a biogas potential of 120 L/kg(-1). In the single-stage system, the biogas yield obtained from raw BSG (87.4 L/kg(-1)) was almost equal to the yield obtained from the pre-treated BSG (89.1 L/kg(-1)), while the methane yield was 51.9 and 55.3 L/kg(-1) and the biodegradation was 62.0% and 62.2% for raw and pre-treated BSG, respectively. In two-stage SS-AD the pre-treated BSG showed better results, with the biogas yield of 103.2 L/kg(-1) and the biodegradation of 73.6%, while the biogas yield obtained from raw BSG was 89.1 L/kg(-1), with the biodegradation of 63.5%. In two-stage process the obtained methane yields from raw and pre-treated BSG were identical (58.7 L/kg(-1)).

  2. Heart rate recovery after aerobic and anaerobic tests: is there an influence of anaerobic speed reserve?

    PubMed

    Del Rosso, Sebastián; Nakamura, Fabio Y; Boullosa, Daniel A

    2017-05-01

    The present study assessed if differences in the metabolic profile, inferred from the anaerobic speed reserve (ASR), would influence the dynamics of heart rate recovery (HRR) after two modes of exercise. Thirty-nine physical education students (14 females and 25 males) volunteered for this study. Participants carried out three separate testing sessions to assess maximal sprinting speed (MSS, 1st session), repeated sprint ability (RSA, 2nd session) and maximal aerobic speed (MAS) using the Université of Montreal Track Test (UMTT, 3rd session). ASR was defined as the difference between MSS and MAS. Heart rate was continuously registered throughout the tests and during the 5-min post-test recovery. To evaluate the influence of ASR on post-exercise, HRR comparisons between ASR-based groups [high ASR vs. low ASR] and sex groups (males vs. females) were performed. Significant differences (P < 0.05) were found between high ASR and low ASR groups of the same sex for indices of relative HRR after the RSA and UMTT. In addition, after the RSA test, males from the high ASR group had a significantly slower HRR kinetics compared with the males of the low ASR (P < 0.05) and the females of high ASR (P < 0.05); whereas females of the high ASR groups had a faster HRR kinetics compared with the females of low ASR group (P < 0.05). Our results showed that in males, post-exercise HRR could be related to the ASR, whereas in females, the influence of ASR is less clear.

  3. Time-to-positivity-based discrimination between Enterobacteriaceae, Pseudomonas aeruginosa and strictly anaerobic Gram-negative bacilli in aerobic and anaerobic blood culture vials.

    PubMed

    Defrance, Gilles; Birgand, Gabriel; Ruppé, Etienne; Billard, Morgane; Ruimy, Raymond; Bonnal, Christine; Andremont, Antoine; Armand-Lefèvre, Laurence

    2013-05-01

    Time-to-positivity (TTP) of first positive blood cultures growing Gram-negative bacilli (GNB) was investigated. When anaerobic vials were positive first, TTP ≤ 18 h differentiated Enterobacteriaceae from strict anaerobic Gram-negative bacilli (PPV 98.8%). When the aerobic ones were first, TTP ≤ 13 h differentiated Enterobacteriaceae from Pseudomonas aeruginosa and other GNB (PPV 80.8%).

  4. The clinical importance of the anaerobic energy system and its assessment in human performance.

    PubMed

    Cahill, B R; Misner, J E; Boileau, R A

    1997-01-01

    The anaerobic energy system is involved in providing energy for all forms of physical activity. The relevance of this system to human performance and physical fitness throughout the age spectrum is underscored here and contrasted with the aerobic energy system. The anaerobic system responds to high-intensity training with biochemical, neural, and anatomic adaptations. Unlike the aerobic system, this response tends to be primarily a local phenomenon with little systemic adaptation. An important factor distinguishing anaerobic training from aerobic training is the intensity of the exercise dose. For anaerobic training to occur, the dose must be of high intensity and performed to near-exhaustion. The anaerobic system can be indirectly assessed by performance tests, such as a vertical jump or stair climb, or more directly by supramaximal bicycle tests. The impact of recent research regarding the trainability of the anaerobic system, particularly in the elderly population, is encouraging. The elderly respond to anaerobic training and, as a result, their independence, quality of life, and safety from falls can be improved. While little is known about anaerobic rehabilitation after injury, it is known that isokinetic and performance tests may be considered normal after rehabilitation, despite incomplete rehabilitation of the anaerobic system. Thus, appropriate application of the anaerobic system assessments and training principles is an important aspect of sports medicine practice.

  5. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria

    PubMed Central

    Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith

    2017-01-01

    Aim/Background: Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Methods: Standard, ATCC, strains of four anaerobic bacteria (Clostridium difficile, Clostridium perfringens, Bacteroides fragilis, and Bacteroides thetaiotaomicron), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. Results: TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. Conclusions: TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections. PMID:28163966

  6. Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium.

    PubMed

    Speranza, Giovanna; Morelli, Carlo F; Cairoli, Paola; Müller, Britta; Schink, Bernhard

    2006-10-20

    Triethanolamine (TEA) is converted into acetate and ammonia by a strictly anaerobic, gram-positive Acetobacterium strain LuTria3. Fermentation experiments with resting cell suspensions and specifically deuterated substrates indicate that in the acetate molecule the carboxylate and the methyl groups correspond to the alcoholic function and to its adjacent methylene group, respectively, of the 2-hydroxyethyl unit of TEA. A 1,2 shift of a hydrogen (deuterium) atom from -CH2-O- to =N-CH2- without exchange with the medium was observed. This fact gives evidence that a radical mechanism occurs involving the enzyme and/or coenzyme molecule as a hydrogen carrier. Such a biodegradation appears analogous to the conversion of 2-phenoxyethanol into acetate mediated by another strain of the anaerobic homoacetogenic bacterium Acetobacterium.

  7. Degradation of PCE by Two Kinds of Anaerobic Bacteria

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Sook; Takaoka, Hidemitsu; Takamizawa, Kazuhiro

    Anaerobic decomposition of PCE was examined using Clostridium bifermentans DPH-1 with degradation ability of PCE to cis-1,2-dichloroethylene (DCE) and cis-DCE decomposing bacterium, Clostridium sp. strain KYT-1. In the serial 2 step reactions, it was demonstrated that PCE was degraded completely by Clostridium bifermentans DPH-1 in the first reaction and 39% of cis-DCE, byproduct of PCE degrading was eliminated by Clostridium sp. strain KYT-1 in the second reaction with glucose provided as carbon source. On the other hand, in the mixed culture of anaerobic bacteria, PCE was not eliminated perfectly and remained as much as 33% of initial concentration of PCE. But the accumulation of cis-DCE and VC as intermediate metabolites of PCE degradation was not shown.

  8. Anaerobic conditions improve germination of a gibberellic acid deficient rice

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2002-01-01

    Dwarf plants are useful in research because multiple plants can be grown in a small area. Rice (Oryza sativa L.) is especially important since its relatively simple genome has recently been sequenced. We are characterizing a gibberellic acid (GA) mutant of rice (japonica cv 'Shiokari,' line N-71) that is extremely dwarf (20 cm tall). Unfortunately, this GA mutation is associated with poor germination (70%) under aerobic conditions. Neither exogenous GA nor a dormancy-breaking heat treatment improved germination. However, 95% germination was achieved by germinating the seeds anaerobically, either in a pure N2 environment or submerged in unstirred tap water. The anaerobic conditions appear to break a mild post-harvest dormancy in this rice cultivar. Copyright 2002 Crop Science Society of America.

  9. A model for anaerobic ponds combining settling and biological processes.

    PubMed

    Effebi, K R; Jupsin, H; Keffala, C; Vasel, J L

    2013-01-01

    This work presents an approach to an anaerobic pond model by combining the stoichiometry of the hydrolysis and acidogenic processes of the main constituents of wastewater, i.e. carbohydrates, proteins, and lipids, grouped as a 'combined substrate' with a previously published settling model (see 'Suspended solids settling and half removal time in stabilization ponds (Tunisia)' by Effebi et al. (2011)). This approach includes biomass production. Coupling the kinetics and stoichiometry of the previous processes with the usual methanogenic model, we developed an anaerobic pond model. This paper gives the stoichiometry of the different chemical reactions that occur during the degradation of a conventional influent (corresponding to what we define as a 'combined substrate') of domestic wastewater and the model's first results.

  10. Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium

    SciTech Connect

    Speranza, Giovanna . E-mail: giovanna.speranza@unimi.it; Morelli, Carlo F.; Cairoli, Paola; Mueller, Britta; Schink, Bernhard

    2006-10-20

    Triethanolamine (TEA) is converted into acetate and ammonia by a strictly anaerobic, gram-positive Acetobacterium strain LuTria3. Fermentation experiments with resting cell suspensions and specifically deuterated substrates indicate that in the acetate molecule the carboxylate and the methyl groups correspond to the alcoholic function and to its adjacent methylene group, respectively, of the 2-hydroxyethyl unit of TEA. A 1,2 shift of a hydrogen (deuterium) atom from -CH{sub 2} -O- to =N-CH{sub 2} - without exchange with the medium was observed. This fact gives evidence that a radical mechanism occurs involving the enzyme and/or coenzyme molecule as a hydrogen carrier. Such a biodegradation appears analogous to the conversion of 2-phenoxyethanol into acetate mediated by another strain of the anaerobic homoacetogenic bacterium Acetobacterium.

  11. Analysis and behavior of colistin during anaerobic fermentation.

    PubMed

    Riemenschneider, C; Zerr, W; Vater, N; Brunn, H; Mohring, S A I; Hamscher, G

    2014-10-01

    A new analytical method for the determination of colistin in fermenter samples was developed followed by a study on the behavior of this substance during anaerobic fermentation. Analysis of colistin A and B was carried out by liquid chromatography-tandem mass spectrometry. Separation of the analytes was performed on a Security Guard column (4×3mm). Fourteen fermentation tests in batch as well as in continuous reactors were carried out. After 44days of anaerobic digestion of cattle manure, initially spiked with 500mg/kg of colistin sulfate, a considerable decrease of the colistin concentration to less than 1mg/kg could be observed. Furthermore, the daily production of biogas and methane was measured. A correlation between gas production and colistin concentration could not be determined. However, an increase of 10% of the cumulative methane production was observed in those fermenters spiked with an initial bolus of 500mg/kg colistin.

  12. Anamet anaerobic-aerobic treatment of concentrated wastewaters

    SciTech Connect

    Frostell, B.

    1982-01-01

    The process, consisting of a closed anaerobic tank reactor with side mounted agitator and electric heaters to control temperature at 35-37 degrees, an external solids separator for recycle of anaerobic sludge, an open aerobic tank reactor with an air sparger at the bottom, and a conical settling clarifier to separate and recycle aerobic sludge, decreased the COD from 3-89 to 0.10-18 and the BOD5 from 1.4-26 to 0.03-0.30 g O2/L in dairy, vegetable cannery, beet sugar, wheat starch, mixed pulp and paper, citric acid, and rum distillery wastewater. Recoveries of CH4-containing gas produced by the process were 69-107% of theory. Total excess sludge production was only 0.05 kg/kg COD added or 0.06 kg/kg COD removed.

  13. Low-temperature anaerobic digestion for wastewater treatment.

    PubMed

    McKeown, Rory M; Hughes, Dermot; Collins, Gavin; Mahony, Thérèse; O'Flaherty, Vincent

    2012-06-01

    Methanogenesis is an important biogeochemical process for the degradation of organic matter within cold environments, and is associated with the release of the potent greenhouse gas, methane. Cold methanogenesis has been harnessed, in engineered systems, as low-temperature anaerobic digestion (LTAD) for wastewater treatment and bioenergy generation. LTAD represents a nascent wastewater treatment biotechnology, which offers an attractive alternative to conventional aerobic and anaerobic processes. Successful, high-rate, LTAD of sewage and industrial wastewaters (e.g. from the brewery, food-processing and pharmaceutical sectors), with concomitant biogas generation, has been demonstrated at laboratory-scale and pilot-scale. A holistic, polyphasic approach, which integrates bioprocess, physiological and molecular biological datasets has been critical to the development of the LTAD concept. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Anaerobic Cultures from Preserved Tissues of Baby Mammoth

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Fisher, Daniel

    2011-01-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 4 C. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that prevents other bacteria from over-dominating a system. Permafrost and lactic acid preserved the body of this one-month old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete such specimen ever recovered. The diversity of novel anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here we discuss the specifics of the isolation of new strains, differentiation from trivial contamination, and preliminary results for the characterization of cultures.

  15. [Diversity of facultatively anaerobic microscopic mycelial fungi in soils].

    PubMed

    Kurakov, A V; Lavrent'ev, R B; Nechitaĭlo, T Iu; Golyshin, P N; Zviagintsev, D G

    2008-01-01

    The numbers of microscopic fungi isolated from soil samples after anaerobic incubation varied from tens to several hundreds of CFU per one gram of soil; a total of 30 species was found. This group is composed primarily of mitotic fungi of the ascomycete affinity belonging to the orders Hypocreales (Fusarium solani, F. oxysporum, Fusarium sp., Clonostachys grammicospora, C. rosea. Acremonium sp., Gliocladium penicilloides, Trichoderma aureoviride, T. harzianum, T. polysporum, T. viride. T. koningii, Lecanicillum lecanii, and Tolypocladium inflatum) and Eurotiales (Aspergillus terreus, A. niger, and Paecilomyces lilacimus), as well as to the phylum Zygomycota, to the order Mucorales (Actinomucor elegans, Absidia glauca, Mucor circinelloides, M. hiemalis, M. racemosus, Mucor sp., Rhizopus oryzae, Zygorrhynchus moelleri, Z. heterogamus, and Umbelopsis isabellina) and the order Mortierellales (Mortierella sp.). As much as 10-30% of the total amount of fungal mycelium remains viable for a long time (one month) under anaerobic conditions.

  16. Pollution and energy management through the anaerobic approach

    SciTech Connect

    Szendrey, L.M.; Dorion, G.H.; Schafer, P.E.

    1982-09-01

    Describes how a rum producer on Puerto Rico is using an anaerobic reactor to convert distillery wastes to methane gas. Reports that the reactor generates enough methane to replace 75 barrels of fuel oil per day while reducing the biochemical oxygen demand (BOD) load. Explains that the reactor is loaded with microbial seed, water and mosto at a rate of 50,000 gpd. Plant operations, requiring minimal personnel, involve maintenance of correct environment for anaerobic microorganisms through periodic adjustment of pH and temperature. Points out that many modifications are possible, and thus the Bacardi process is applicable to still-bottom wastes, spent grain liquors, centrates, pulp and paper wastes, sweet or acid cheese whey, food packing and meat packing wastes, liquid extraction raffinates, sludge heat treatment sidestreams, corn products wastes, protein extraction wastes, and winery wastes.

  17. Anaerobic threshold determination with analysis of salivary amylase.

    PubMed

    Calvo, F; Chicharro, J L; Bandrés, F; Lucía, A; Pérez, M; Alvarez, J; Mojares, L L; Vaquero, A F; Legido, J C

    1997-12-01

    The purpose of this study was to determine the anaerobic threshold from analysis of amylase concentration in total saliva during a laboratory exercise test. Each of 20 healthy young men performed both a submaximal and a maximal test on a treadmill. During the submaximal test, capillary blood and total saliva samples were collected for determination of anaerobic threshold (AT) and saliva threshold (Tsa), respectively. Tsa was defined as the point at which the first continuous increase in amylase concentration occurred during exercise. The results showed no significant difference between values of AT and Tsa when both were expressed either as running velocity or as heart rate. In addition, there existed a high correlation between AT and Tsa (r = .93, p < .001). It was therefore concluded that the analysis of amylase concentration in total saliva during exercise might be used as a valid new method for determining AT.

  18. Waste heat utilization in an anaerobic digestion system

    NASA Astrophysics Data System (ADS)

    Boissevain, Brett

    Anaerobic digestion has great potential as an energy source. Not only does it provide an effective method for waste mitigation, but it has the potential to generate significant quantities of fuel and electricity. In order to ensure efficient digestion and biomass utilization, however, the system must be continuously maintained at elevated temperatures. It is technically feasible to supplement such a system with outside energy, but it is more cost effective to heat the system using only the produced biogas. While there is considerable literature covering the theory of anaerobic digestion, there are very few practical studies to show how heat utilization affects system operation. This study considers the effect of major design variables (i.e. heat exchanger efficiencies and biogas conditioning) on promoting a completely self-sustaining digestion system. The thesis considers a real world system and analyzes how it can be improved to avoid the need of an external energy source.

  19. Anaerobic conditions improve germination of a gibberellic acid deficient rice

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2002-01-01

    Dwarf plants are useful in research because multiple plants can be grown in a small area. Rice (Oryza sativa L.) is especially important since its relatively simple genome has recently been sequenced. We are characterizing a gibberellic acid (GA) mutant of rice (japonica cv 'Shiokari,' line N-71) that is extremely dwarf (20 cm tall). Unfortunately, this GA mutation is associated with poor germination (70%) under aerobic conditions. Neither exogenous GA nor a dormancy-breaking heat treatment improved germination. However, 95% germination was achieved by germinating the seeds anaerobically, either in a pure N2 environment or submerged in unstirred tap water. The anaerobic conditions appear to break a mild post-harvest dormancy in this rice cultivar. Copyright 2002 Crop Science Society of America.

  20. [Reductive Dechlorination of Trichloroethylene by Benzoate-Enriched Anaerobic Cultures].

    PubMed

    Li, Jiang-wei; Yang, Xiao-yong; Hu, An-yi; Yu, Chang-ping

    2015-10-01

    Gas chromatography was used to monitor the reductive dechlorination of trichloroethylene (TCE) by anaerobic enrichment cultures with benzoate as the sole carbon source. The 454 pyrosequencing technique was used to investigate the microbial community and the real-time quantitative PCR was used to quantify the gene copies of Dehalococcoides spp. (DHC). The results showed that TCE was dechlorinated to vinyl chloride along with the formation of methane in 94 days. The anaerobic enrichment cultures exhibited a high diversity, which were classified into 16 phyla, 33 classes, 52 orders, 88 families and 129 genera, while 51.2% of them belonged to unclassified group, which inferred that there were a large portion of bacteria with unknown functional in this system. Degradation of TCE was accomplished by reductive dechlorinating and other functional populations, and the DHC which carried tceA gene could be the dominant reductive dechlorinating populations in the system.