Science.gov

Sample records for anaerobic energy metabolism

  1. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

  2. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes.

    PubMed

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J; Henze, Katrin; Woehle, Christian; Gould, Sven B; Yu, Re-Young; van der Giezen, Mark; Tielens, Aloysius G M; Martin, William F

    2012-06-01

    Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.

  3. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  4. Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea.

    PubMed

    McGlynn, Shawn E

    2017-03-17

    Anaerobic methane oxidation in archaea is often presented to operate via a pathway of "reverse methanogenesis". However, if the cumulative reactions of a methanogen are run in reverse there is no apparent way to conserve energy. Recent findings suggest that chemiosmotic coupling enzymes known from their use in methylotrophic and acetoclastic methanogens-in addition to unique terminal reductases-biochemically facilitate energy conservation during complete CH4 oxidation to CO2. The apparent enzyme modularity of these organisms highlights how microbes can arrange their energy metabolisms to accommodate diverse chemical potentials in various ecological niches, even in the extreme case of utilizing "reverse" thermodynamic potentials.

  5. Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea

    PubMed Central

    McGlynn, Shawn E.

    2017-01-01

    Anaerobic methane oxidation in archaea is often presented to operate via a pathway of “reverse methanogenesis”. However, if the cumulative reactions of a methanogen are run in reverse there is no apparent way to conserve energy. Recent findings suggest that chemiosmotic coupling enzymes known from their use in methylotrophic and acetoclastic methanogens—in addition to unique terminal reductases—biochemically facilitate energy conservation during complete CH4 oxidation to CO2. The apparent enzyme modularity of these organisms highlights how microbes can arrange their energy metabolisms to accommodate diverse chemical potentials in various ecological niches, even in the extreme case of utilizing “reverse” thermodynamic potentials. PMID:28321009

  6. Energy metabolism of the anaerobic protozoon Giardia lamblia.

    PubMed

    Lindmark, D G

    1980-03-01

    Cells of the aerotolerant anaerobe Giardia lamblia respire in the presence of oxygen. Endogenous respiration is stimulated by glucose but not by other carbohydrates and Krebs cycle intermediates. Endogenous and glucose-stimulated respiration are insensitive to cyanide, malonate, and 2,4-dinitrophenol, but are inhibited by atabrin and iodoacetamide. G. lamblia produces ethanol, acetate and CO2 both aerobically and anaerobically either from endogenous reserves or exogenous glucose. Molecular hydrogen is not produced. The following enzyme activities were detected in homogenates: hexokinase, fructose-biphosphate aldolase, pyruvate kinase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, malate dehydrogenase (decarboxylating), pyruvate synthase, acetyl-CoA synthetase, alcohol dehydrogenase (NADP+), NADH dehydrogenase, NADPH dehydrogenase, NADPH oxidoreductase and superoxide dismutase. The enzymes of energy and carbohydrate metabolism are nonsedimentable (109 000 x g for 30 min). Activities of lactate dehydrogenase, hydrogenase, phosphate acetyltransferase, acetate kinase, citrate synthase, succinate dehydrogenase, fumarate hydratase and catalase were below the limits of detection. The results suggest the occurrence of glycolysis, energy production by substrate level phosphorylation and a flavin, iron-sulfur protein mediated electron transport system as well as the absence of cytochrome mediated oxidative phosphorylation and functional Krebs cycle.

  7. Re-interpreting anaerobic metabolism: an argument for the application of both anaerobic glycolysis and excess post-exercise oxygen comsumption (EPOC) as independent sources of energy expenditure.

    PubMed

    Scott, C B

    1998-02-01

    Due to current technical difficulties and changing cellular conditions, the measurement of anaerobic and recovery energy expenditure remains elusive. During rest and low-intensity steady-state exercise, indirect calorimetric measurements successfully represent energy expenditure. The same steady-state O2 uptake methods are often used to describe the O2 deficit and excess post-oxygen consumption (EPOC): 1 l O2 = 5 kcal = 20.9 kJ. However, an O2 deficit plus exercise O2 uptake measurement ignores energy expenditure during recovery, and an exercise O2 uptake plus EPOC measurement misrepresents anaerobic energy expenditure. An alternative solution has not yet been proposed. Anaerobic glycolysis and mitochondrial respiration are construed here as a symbiotic union of metabolic pathways, each contributing independently to energy expenditure and heat production. Care must be taken when using O2 uptake alone to quantify energy expenditure because various high-intensity exercise models reveal that O2 uptake can lag behind estimated energy demands or exceed them. The independent bioenergetics behind anaerobic glycolysis and mitochondrial respiration can acknowledge these discrepancies. Anaerobic glycolysis is an additive component to an exercise O2 uptake measurement. Moreover, it is the assumptions behind steady-state O2 uptake that do not permit proper interpretation of energy expenditure during EPOC; 1 l O2 not = 20.9 kJ. Using both the O2 deficit and a modified EPOC for interpretation, rather than one or the other, leads to a better method of quantifying energy expenditure for higher intensity exercise and recovery.

  8. Early anaerobic metabolisms

    PubMed Central

    Canfield, Don E; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8 Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle. PMID:17008221

  9. Anaerobic Metabolism of Indoleacetate

    PubMed Central

    Ebenau-Jehle, Christa; Thomas, Markus; Scharf, Gernot; Kockelkorn, Daniel; Knapp, Bettina; Schühle, Karola; Heider, Johann

    2012-01-01

    The anaerobic metabolism of indoleacetate (indole-3-acetic acid [IAA]) in the denitrifying betaproteobacterium Azoarcus evansii was studied. The strain oxidized IAA completely and grew with a generation time of 10 h. Enzyme activities that transformed IAA were present in the soluble cell fraction of IAA-grown cells but were 10-fold downregulated in cells grown on 2-aminobenzoate or benzoate. The transformation of IAA did not require molecular oxygen but required electron acceptors like NAD+ or artificial dyes. The first products identified were the enol and keto forms of 2-oxo-IAA. Later, polar products were observed, which could not yet be identified. The first steps likely consist of the anaerobic hydroxylation of the N-heterocyclic pyrrole ring to the enol form of 2-oxo-IAA, which is catalyzed by a molybdenum cofactor-containing dehydrogenase. This step is probably followed by the hydrolytic ring opening of the keto form, which is catalyzed by a hydantoinase-like enzyme. A comparison of the proteome of IAA- and benzoate-grown cells identified IAA-induced proteins. Owing to the high similarity of A. evansii with strain EbN1, whose genome is known, we identified a cluster of 14 genes that code for IAA-induced proteins involved in the early steps of IAA metabolism. These genes include a molybdenum cofactor-dependent dehydrogenase of the xanthine oxidase/aldehyde dehydrogenase family, a hydantoinase, a coenzyme A (CoA) ligase, a CoA transferase, a coenzyme B12-dependent mutase, an acyl-CoA dehydrogenase, a fusion protein of an enoyl-CoA hydratase and a 3-hydroxyacyl-CoA dehydrogenase, a beta-ketothiolase, and a periplasmic substrate binding protein for ABC transport as well as a transcriptional regulator of the GntR family. Five predicted enzymes form or act on CoA thioesters, indicating that soon after the initial oxidation of IAA and possibly ring opening, CoA thioesters are formed, and the carbon skeleton is rearranged, followed by a CoA-dependent thiolytic

  10. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  11. The anammoxosome organelle is crucial for the energy metabolism of anaerobic ammonium oxidizing bacteria.

    PubMed

    van Teeseling, Muriel C F; Neumann, Sarah; van Niftrik, Laura

    2013-01-01

    Anammox bacteria convert ammonium and nitrite to dinitrogen gas under anaerobic conditions to obtain their energy for growth. The anammox reaction was deemed impossible until its discovery in the early 1990s. Now, anammox bacteria are recognized as major players in the global nitrogen cycle and estimated to be responsible for up to 50% of the nitrogen in the air that we breathe. In addition, anammox bacteria are extremely valuable for wastewater treatment where they are applied for the removal of ammonium. Besides their importance in industry and the environment, anammox bacteria defy some basic biological concepts. Whereas most other bacteria have only one cell compartment, the cytoplasm, anammox bacteria have three independent cell compartments bounded by bilayer membranes, from out- to inside; the paryphoplasm, riboplasm and anammoxosome. The anammoxosome is the largest compartment of the anammox cell and is proposed to be dedicated to energy conservation. As such it would be analogous to the mitochondria of eukaryotes. This review will discuss the anammox cell plan in detail, with the main focus on the anammoxosome. The identity of the anammoxosome as a prokaryotic organelle and the importance of this organelle for anammox bacteria are discussed as well as challenges these bacteria face by having three independent cell compartments.

  12. Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations.

    PubMed

    González-Cabaleiro, Rebeca; Lema, Juan M; Rodríguez, Jorge

    2015-01-01

    The fermentation of glucose using microbial mixed cultures is of great interest given its potential to convert wastes into valuable products at low cost, however, the difficulties associated with the control of the process still pose important challenges for its industrial implementation. A deeper understanding of the fermentation process involving metabolic and biochemical principles is very necessary to overcome these difficulties. In this work a novel metabolic energy based model is presented that accurately predicts for the first time the experimentally observed changes in product spectrum with pH. The model predicts the observed shift towards formate production at high pH, accompanied with ethanol and acetate production. Acetate (accompanied with a more reduced product) and butyrate are predicted main products at low pH. The production of propionate between pH 6 and 8 is also predicted. These results are mechanistically explained for the first time considering the impact that variable proton motive potential and active transport energy costs have in terms of energy harvest over different products yielding. The model results, in line with numerous reported experiments, validate the mechanistic and bioenergetics hypotheses that fermentative mixed cultures products yielding appears to be controlled by the principle of maximum energy harvest and the necessity of balancing the redox equivalents in absence of external electron acceptors.

  13. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  14. Anaerobic metabolism in Brassica seedlings

    NASA Astrophysics Data System (ADS)

    Park, Myoung-Ryoul; Hasenstein, Karl H.

    Germination typically depends on oxidative respiration. The lack of convection under space conditions may create hypoxic or conditions during seed germination. We investigated the effect of reduced oxygen on seed germination and metabolism to understand how metabolic constraints affect seed growth and responsiveness to reorientation. Germination was completely inhibited when seeds were imbibed in the absence of oxygen; germination occurred at 5% oxygen and higher levels. Adding oxygen after 72 h resulted in immediate germination (protrusion of the radicle). Hypoxia typically activates alcohol dehydrogenase (ADH, EC 1.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) which produce ethanol and/or L-lactate, respectively. We report on the expression of ADH1 and LDH1, and changes in total soluble sugars, starch, pH, and L-lactate in seedlings grown at 28°C in 0, 2.5, 5, 10% and ambient (21%) oxygen conditions as controls. The highest consumption (lowest level) of sugars was seen at 0% oxygen but the lowest level of starch occurred 24 h after imbibition under ambient condition. Expression levels of ADH1 in ambient oxygen condition increased within 24 h but increased threefold under hypoxic conditions; LDH1 increased up to 8-fold under hypoxia compared to controls but ADH1 and LDH1 were less expressed as the oxygen levels increased. The intracellular pH of seeds decreased as the content of L-lactate increased for all oxygen concentrations. These results indicate that germination of Brassica is sensitive to oxygen levels and that oxygen availability during germination is an important factor for metabolic activities. (Supported by NASA grant NNX10AP91G)

  15. Integrated Analysis of Protein Complexes and Regulatory Networks Involved in Anaerobic Energy Metabolism of Shewanella Oneidensis MR-1

    SciTech Connect

    Tiedje, James M.

    2005-06-01

    Anaerobic Nitrate Reduction. Nitrate is an extensive co-contaminant at some DOE sites making metal and radionuclide reduction problematic. Hence, we sought to better understand the nitrate reduction pathway and its control in S. oneidensis MR-1. It is not known whether the nitrate reduction is by denitrification or dissimilatory nitrate reduction into ammonium (DNRA). By both physiological and genetic evidence, we proved that DNRA is the nitrate reduction pathway in this organism. Using the complete genome sequence of S. oneidensis MR-1, we identified a gene encoding a periplasmic nitrate reductase based on its 72% sequence identity with the napA gene in E. coli. Anaerobic growth of MR-1 on nitrate was abolished in a site directed napA mutant, indicating that NapA is the only nitrate reductase present. The anaerobic expression of napA and nrfA, a homolog of the cytochrome b552 nitrite reductase in E. coli, increased with increasing nitrate concentration until a plateau was reached at 3 mM KNO3. This indicates that these genes are not repressed by increasing concentrations of nitrate. The reduction of nitrate can generate intermediates that can be toxic to the microorganism. To determine the genetic response of MR-1 to high concentrations of nitrate, DNA microarrays were used to obtain a complete gene expression profile of MR-1 at low (1 mM) versus high (40 mM) nitrate concentrations. Genes encoding transporters and efflux pumps were up-regulated, perhaps as a mechanism to export toxic compounds. In addition, the gene expression profile of MR-1, grown anaerobically with nitrate as the only electron acceptor, suggested that this dissimilatory pathway contributes to N assimilation. Hence the nitrate reduction pathway could serve a dual purpose. The role of EtrA, a homolog of Fnr (global anaerobic regulator in E. coli) was examined using an etrA deletion mutant we constructed, S. oneidensis EtrA7-1.

  16. Contribution of anaerobic energy expenditure to whole body thermogenesis

    PubMed Central

    Scott, Christopher B

    2005-01-01

    Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis). An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure. PMID:15958171

  17. Metabolic determinants in Listeria monocytogenes anaerobic listeriolysin O production.

    PubMed

    Wallace, Nathan; Newton, Eric; Abrams, Elizabeth; Zani, Ashley; Sun, Yvonne

    2017-03-13

    Listeria monocytogenes is a human pathogen and a facultative anaerobe. To better understand how anaerobic growth affects L. monocytogenes pathogenesis, we first showed that anaerobic growth led to decreased growth and changes in surface morphology. Moreover, compared to aerobically grown bacteria, anaerobically grown L. monocytogenes established higher level of invasion but decreased intracellular growth and actin polymerization in cultured cells. The production of listeriolysin O (LLO) was significantly lower in anaerobic cultures-a phenotype observed in wild type and isogenic mutants lacking transcriptional regulators SigB or CodY or harboring a constitutively active PrfA. To explore potential regulatory mechanisms, we established that the addition of central carbon metabolism intermediates, such as acetate, citrate, fumarate, pyruvate, lactate, and succinate, led to an increase in LLO activity in the anaerobic culture supernatant. These results highlight the regulatory role of central carbon metabolism in L. monocytogenes pathogenesis under anaerobic conditions.

  18. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  19. A novel mode of lactate metabolism in strictly anaerobic bacteria.

    PubMed

    Weghoff, Marie Charlotte; Bertsch, Johannes; Müller, Volker

    2015-03-01

    Lactate is a common substrate for major groups of strictly anaerobic bacteria, but the biochemistry and bioenergetics of lactate oxidation is obscure. The high redox potential of the pyruvate/lactate pair of E0 ' = -190 mV excludes direct NAD(+) reduction (E0 ' = -320 mV). To identify the hitherto unknown electron acceptor, we have purified the lactate dehydrogenase (LDH) from the strictly anaerobic, acetogenic bacterium Acetobacterium woodii. The LDH forms a stable complex with an electron-transferring flavoprotein (Etf) that exhibited NAD(+) reduction only when reduced ferredoxin (Fd(2-) ) was present. Biochemical analyses revealed that the LDH/Etf complex of A. woodii uses flavin-based electron confurcation to drive endergonic lactate oxidation with NAD(+) as oxidant at the expense of simultaneous exergonic electron flow from reduced ferredoxin (E0 ' ≈ -500 mV) to NAD(+) according to: lactate + Fd(2-)  + 2 NAD(+)  → pyruvate + Fd + 2 NADH. The reduced Fd(2-) is regenerated from NADH by a sequence of events that involves conversion of chemical (ATP) to electrochemical ( Δ μ ˜ Na + ) and finally redox energy (Fd(2-) from NADH) via reversed electron transport catalysed by the Rnf complex. Inspection of genomes revealed that this metabolic scenario for lactate oxidation may also apply to many other anaerobes.

  20. Insights into the global regulation of anaerobic metabolism for improved biohydrogen production.

    PubMed

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Xing, Xin-Hui

    2016-01-01

    To improve the biohydrogen yield in bacterial dark fermentation, a new approach of global anaerobic regulation was introduced. Two cellular global regulators FNR and NarP were overexpressed in two model organisms: facultatively anaerobic Enterobacter aerogenes (Ea) and strictly anaerobic Clostridium paraputrificum (Cp). The overexpression of FNR and NarP greatly altered anaerobic metabolism and increased the hydrogen yield by 40%. Metabolic analysis showed that the global regulation caused more reducing environment inside the cell. To get a thorough understanding of the global metabolic regulation, more genes (fdhF, fhlA, ppk, Cb-fdh1, and Sc-fdh1) were overexpressed in different Ea and Cp mutants. For the first time, it demonstrated that there were approximately linear relationships between the relative change of hydrogen yield and the relative change of NADH yield or ATP yield. It implied that cellular reducing power and energy level played vital roles in the biohydrogen production.

  1. Anaerobic bacterial metabolism in the ancient eukaryote Giardia duodenalis.

    PubMed

    Brown, D M; Upcroft, J A; Edwards, M R; Upcroft, P

    1998-01-01

    The protozoan parasite, Giardia duodenalis, shares many metabolic and genetic attributes of the bacteria, including fermentative energy metabolism which relies heavily on pyrophosphate rather than adenosine triphosphate and as a result contains two typically bacterial glycolytic enzymes which are pyrophosphate dependent. Pyruvate decarboxylation and subsequent electron transport to as yet unidentified anaerobic electron acceptors relies on a eubacterial-like pyruvate:ferredoxin oxidoreductase and an archaebacterial/eubacterial-like ferredoxin. The presence of another 2-ketoacid oxidoreductase (with a preference for alpha-ketobutyrate) and multiple ferredoxins in Giardia is also a trait shared with the anaerobic bacteria. Giardia pyruvate:ferredoxin oxidoreductase is distinct from the pyruvate dehydrogenase multienzyme complex invariably found in mitochondria. This is consistent with a lack of mitochondria, citric acid cycle, oxidative phosphorylation and glutathione in Giardia. Giardia duodenalis actively consumes oxygen and yet lacks the conventional mechanisms of oxidative stress management, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. In their place Giardia contains a prokaryotic H2O-producing NADH oxidase, a membrane-associated NADH peroxidase, a broad-range prokaryotic thioredoxin reductase-like disulphide reductase and the low molecular weight thiols, cysteine, thioglycolate, sulphite and coenzyme A. NADH oxidase is a major component of the electron transport pathway of Giardia which, in conjunction with disulphide reductase, protects oxygen-labile proteins such as ferredoxin and pyruvate:ferredoxin oxidoreductase against oxidative stress by maintaining a reduced intracellular environment. As the terminal oxidase, NADH oxidase provides a means of removing excess H+, thereby enabling continued pyruvate decarboxylation and the resultant production of acetate and adenosine triphosphate. A

  2. Anaerobic performance and metabolism in boys and male adolescents.

    PubMed

    Beneke, Ralph; Hütler, Matthias; Leithäuser, Renate M

    2007-12-01

    Short-term maximum intensity performance, absolute and related to body mass, is lower in children than adolescents. The underlying mechanisms are not clear. We analysed Wingate Anaerobic Test (WAnT) performance and metabolism in ten boys (mean (SD); age 11.8 (0.5) years, height 1.51 (0.05) m, body mass 36.9 (2.5) kg, muscle mass 13.0 (1.0) kg) and 10 adolescents (16.3 (0.7) years, 1.81 (0.05) m, 67.3 (4.1) kg, 28.2 (1.7) kg). Related to body mass, power of flywheel acceleration (6.0 (1.6) vs. 8.1 (1.1) W kg(-1)), peak power (10.8 (0.7) vs. 11.5 (0.6) W kg(-1)), average power (7.9 (0.5) vs. 8.9 (0.7) W kg(-1)), minimum power (6.1 (0.7) vs. 6.9 (0.9) W kg(-1)) and anaerobic lactic energy (687.6 (75.6) vs. 798.2 (43.0) J kg(-1)) were lower (P < 0.05) in boys than in adolescents. Related to muscle mass the change in lactate (0.69 (0.08) vs. 0.69 (0.04) mmol kg (MM) (-1) s(-1)) and PCr (0.60 (0.17) vs. 0.52 (0.10) mmol kg (MM) (-1) s(-1)) were not different. The corresponding oxygen uptake (1.34 (0.13) vs. 1.09 (0.13) ml kg (MM) (-1) s(-1)), total metabolic rate (132.4 (12.6) vs. 119.7 (8.5) W kg (MM) (-1) ) and PP (30.5 (2.6) vs. 27.5 (1.7 W) kg (MM) (-1) ) were higher (P < 0.01) in boys than in adolescents. The results reflect a lower relative muscle mass combined with no differences in muscular anaerobic but fascilitated aerobic metabolism in boys. Compared with adolescents, boys' performance seemed to be significantly impaired by flywheel inertia but supported by identical brake force related to body mass.

  3. Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study.

    PubMed

    Torregrosa-Crespo, J; Martínez-Espinosa, R M; Esclapez, J; Bautista, V; Pire, C; Camacho, M; Richardson, D J; Bonete, M J

    2016-01-01

    A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter.

  4. Acetate Metabolism in Anaerobes from the Domain Archaea

    PubMed Central

    Ferry, James G.

    2015-01-01

    Acetate and acetyl-CoA play fundamental roles in all of biology, including anaerobic prokaryotes from the domains Bacteria and Archaea, which compose an estimated quarter of all living protoplasm in Earth’s biosphere. Anaerobes from the domain Archaea contribute to the global carbon cycle by metabolizing acetate as a growth substrate or product. They are components of anaerobic microbial food chains converting complex organic matter to methane, and many fix CO2 into cell material via synthesis of acetyl-CoA. They are found in a diversity of ecological habitats ranging from the digestive tracts of insects to deep-sea hydrothermal vents, and synthesize a plethora of novel enzymes with biotechnological potential. Ecological investigations suggest that still more acetate-metabolizing species with novel properties await discovery. PMID:26068860

  5. Waste to Energy Potential - A High Concentration Anaerobic Bioreactor

    DTIC Science & Technology

    2012-05-23

    output • Uses the organic portion of solid waste (such as food waste , paper products, and agricultural waste ) to fuel an anaerobic digestion ...Sustainability Symposium & Exhibition Anaerobic Digestion • What does it do? • Offers sustainability by addressing renewable energy, waste ... Waste to Energy Potential – A High Concentration Anaerobic Bioreactor Presenter: Scott Murphy & Rebecca Robbennolt ARCADIS/Malcolm Pirnie Date

  6. Assessment of hydrogen metabolism in commercial anaerobic digesters.

    PubMed

    Kern, Tobias; Theiss, Juliane; Röske, Kerstin; Rother, Michael

    2016-05-01

    Degradation of biomass in the absence of exogenous electron acceptors via anaerobic digestion involves a syntrophic association of a plethora of anaerobic microorganisms. The commercial application of this process is the large-scale production of biogas from renewable feedstock as an alternative to fossil fuels. After hydrolysis of polymers, monomers are fermented to short-chain fatty acids and alcohols, which are further oxidized to acetate. Carbon dioxide, molecular hydrogen (H2), and acetate generated during the process are converted to methane by methanogenic archaea. Since many of the metabolic pathways as well as the syntrophic interactions and dependencies during anaerobic digestion involve formation, utilization, or transfer of H2, its metabolism and the methanogenic population were assessed in various samples from three commercial biogas plants. Addition of H2 significantly increased the rate of methane formation, which suggested that hydrogenotrophic methanogenesis is not a rate-limiting step during biogas formation. Methanoculleus and Methanosarcina appeared to numerically dominate the archaeal population of the three digesters, but their proportion and the Bacteria-to-Archaea ratio did not correlate with the methane productivity. Instead, hydrogenase activity in cell-free extracts from digester sludge correlated with methane productivity in a positive fashion. Since most microorganisms involved in biogas formation contain this activity, it approximates the overall anaerobic metabolic activity and may, thus, be suitable for monitoring biogas reactor performance.

  7. Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity.

    PubMed

    Abbott, Derek A; van den Brink, Joost; Minneboo, Inge M K; Pronk, Jack T; van Maris, Antonius J A

    2009-05-01

    Conversion of glucose to lactic acid is stoichiometrically equivalent to ethanol formation with respect to ATP formation from substrate-level phosphorylation, redox equivalents and product yield. However, anaerobic growth cannot be sustained in homolactate fermenting Saccharomyces cerevisiae. ATP-dependent export of the lactate anion and/or proton, resulting in net zero ATP formation, is suspected as the underlying cause. In an effort to understand the mechanisms behind the decreased lactic acid production rate in anaerobic homolactate cultures of S. cerevisiae, aerobic carbon-limited chemostats were performed and subjected to anaerobic perturbations in the presence of high glucose concentrations. Intracellular measurements of adenosine phosphates confirmed ATP depletion and decreased energy charge immediately upon anaerobicity. Unexpectedly, readily available sources of carbon and energy, trehalose and glycogen, were not activated in homolactate strains as they were in reference strains that produce ethanol. Finally, the anticipated increase in maximal velocity (V(max)) of glycolytic enzymes was not observed in homolactate fermentation suggesting the absence of protein synthesis that may be attributed to decreased energy availability. Essentially, anaerobic homolactate fermentation results in energy depletion, which, in turn, hinders protein synthesis, central carbon metabolism and subsequent energy generation.

  8. Anaerobic alactic energy assessment in middle distance swimming.

    PubMed

    Sousa, Ana; Figueiredo, Pedro; Zamparo, Paola; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2013-08-01

    To estimate the anaerobic alactic contribution in a 200 m middle distance swimming trial by means of two different methods based: (1) on the fast component of the VO2 off-kinetics (Ana recovery) and (2) on the kinetics of maximal phosphocreatine splitting in the contracting muscle (Ana pcr). Ten elite male swimmers performed a 200 m front crawl trial at maximal velocity during which VO2 was directly measured using a telemetric portable gas analyser; during the recovery period VO2 data were collected until baseline values were reached. No significant differences between the two methods were observed; mean ± SD values were 31.7 ± 2.5 and 32.6 ± 2.8 kJ, for Ana pcr and Ana recovery, respectively. Despite the existence of some caveats regarding both methods for estimation of the anaerobic alactic contribution, data reported in this study indicate that both yield similar results and both allow to estimate this contribution in supra-maximal swimming trials. This has important implications on swimming energetics, since the non-inclusion of the anaerobic alactic contribution to total metabolic energy expenditure leads to an underestimation of the energy cost at supra-maximal speeds.

  9. Experimental evidence for growth advantage and metabolic shift stimulated by photophosphorylation of proteorhodopsin expressed in Escherichia coli at anaerobic condition.

    PubMed

    Wang, Ying; Li, Yan; Xu, Tuan; Shi, Zhenyu; Wu, Qiong

    2015-05-01

    Since solar light energy is the source of all renewable biological energy, the direct usage of light energy by bacterial cell factory has been a very attractive concept, especially using light energy to promote anaerobic fermentation growth and even recycle low-energy carbon source when energy is the limiting factor. Proteorhodopsin(PR), a light-driven proton pump proven to couple with ATP synthesis when expressed heterogeneously, is an interesting and simple option to enable light usage in engineered strains. However, although it was reported to influence fermentation in some cases, heterogeneous proteorhodopsin expression was never shown to support growth advantage or cause metabolic shift by photophosphorylation so far. Hereby, we presented the first experimental evidence that heterogeneously expressed proteorhodopsin can provide growth advantage and cause ATP-dependent metabolism shift of acetate and lactate changes in Escherichia coli at anaerobic condition. Those discoveries suggest further application potential of PR in anaerobic fermentation where energy is a limiting factor.

  10. Intermediary Metabolism in Protists: a Sequence-based View of Facultative Anaerobic Metabolism in Evolutionarily Diverse Eukaryotes

    PubMed Central

    Ginger, Michael L.; Fritz-Laylin, Lillian K.; Fulton, Chandler; Cande, W. Zacheus; Dawson, Scott C.

    2011-01-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2–3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H2 in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. PMID:21036663

  11. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes.

    PubMed

    Ginger, Michael L; Fritz-Laylin, Lillian K; Fulton, Chandler; Cande, W Zacheus; Dawson, Scott C

    2010-12-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes.

  12. Energy from anaerobic methane production. [Sweden

    SciTech Connect

    Not Available

    1982-02-01

    Since 1970 Swedish researchers have been testing the ANAMET (anaerobic-aerobic-methane) process, which involves converting industrial wastewaters via an initial anaerobic microbiological step followed by an aerobic one. Recycling the biomass material in each step allows shorter hydraulic retention times without decreasing stability or solids reduction. Since the first ANAMET plants began operating at a Swedish sugar factory in 1972, 17 more plants have started up or are under construction. Moreover, the ANAMET process has engendered to offshoot BIOMET (biomass-methane) process, a thermophilic anaerobic scheme that can handle sugar-beet pulp as well as grass and other soft, fast-growing biomasses.

  13. Transcription of genes coding for metabolic key functions in Nitrosomonas europaea during aerobic and anaerobic growth.

    PubMed

    Beyer, Sonja; Gilch, Stefan; Meyer, Ortwin; Schmidt, Ingo

    2009-01-01

    Nitrosomonas europaea can grow under conditions of chemolithoautotrophic aerobic (oxygen as oxidant) as well as anaerobic [nitrogen dioxide (NO(2)) as oxidant] nitrification or chemoorganotrophic anaerobic pyruvate-dependent denitrification. In this study, the adaptation of the transcription (mRNA synthesis/concentration) of N. europaea to aerobic and anaerobic growth conditions was evaluated and the transcription of genes coding for metabolic key functions was analyzed: nitrogen and energy metabolism (amoA, hao, rh1, nirK, norB, nsc, aceE, ldhA, ppc, gltA, odhA, coxA), carbon dioxide fixation (cbbL), gluconeogenesis (ppsA), cell growth (ftsZ), and oxidative stress (sodB). During aerobic ammonia oxidation the specific activities of ammonia oxidation, nitrite reduction, and the growth rates correlated with the transcription level of the corresponding genes amoA/hao, nirK/norB/nsc, and cbbL/ftsZ. In anaerobically ammonia-oxidizing cells of N. europaea, the cellular mRNA concentrations of amoA, hao, rh1,coxA, cbbL, ftsZ, and sodB were reduced compared with aerobically nitrifying cells, but the mRNA levels of nirK, norB, and nsc were significantly increased. During anaerobic pyruvate-dependent denitrification, the mRNA abundance of nirK, norB, nsc, aceE, gltA, and odhA was increased, while the concentrations of amoA,hao, rh1, coxAcbbL, ftsZ, and sodB were significantly reduced. Temperature, pH value, and NH(4)(+), O(2), NO, and NO(2) concentrations had comparatively small effects on the transcription of the studied genes.

  14. Slow swimming, fast strikes: effects of feeding behavior on scaling of anaerobic metabolism in epipelagic squid.

    PubMed

    Trueblood, Lloyd A; Seibel, Brad A

    2014-08-01

    Many pelagic fishes engage prey at high speeds supported by high metabolic rates and anaerobic metabolic capacity. Epipelagic squids are reported to have among the highest metabolic rates in the oceans as a result of demanding foraging strategies and the use of jet propulsion, which is inherently inefficient. This study examined enzymatic proxies of anaerobic metabolism in two species of pelagic squid, Dosidicus gigas and Doryteuthis pealeii (Lesueur 1821), over a size range of six orders of magnitude. We hypothesized that activity of the anaerobically poised enzymes would be high and increase with size as in ecologically similar fishes. In contrast, we demonstrate that anaerobic metabolic capacity in these organisms scales negatively with body mass. We explored several cephalopod-specific traits, such as the use of tentacles to capture prey, body morphology and reduced relative prey size of adult squids, that may create a diminished reliance on anaerobically fueled burst activity during prey capture in large animals.

  15. Anaerobic

    MedlinePlus

    ... shock. Anaerobic is the opposite of aerobic . In exercise, our bodies need to perform both anaerobic and aerobic reactions ... during shorter, more intense activities like sprinting. Anaerobic ... removing the lactic acid by providing oxygen to their bodies.

  16. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism

    USGS Publications Warehouse

    Coates, J.D.; Councell, T.; Ellis, D.J.; Lovley, D.R.

    1998-01-01

    An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, Gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO-3, Mn(IV), U(VI), fumarate, malate, S2O32-, and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process.

  17. Brain Regulation of Energy Metabolism

    PubMed Central

    2016-01-01

    In healthy individuals, energy intake is in balance with energy expenditure, which helps to maintain a normal body weight. The brain's inability to control energy homeostasis underlies the pathology of hyperphagia and obesity. The brain detects body energy excess and deficit by sensing the levels of circulating metabolic hormones and nutrients and by receiving metabolic information from the periphery via the autonomic nervous system. A specialized neuronal network coordinates energy intake behavior and the metabolic processes affecting energy expenditure. Here, we briefly review neuronal mechanisms by which our body maintains energy balance. PMID:28029023

  18. Brain Regulation of Energy Metabolism.

    PubMed

    Roh, Eun; Kim, Min Seon

    2016-12-01

    In healthy individuals, energy intake is in balance with energy expenditure, which helps to maintain a normal body weight. The brain's inability to control energy homeostasis underlies the pathology of hyperphagia and obesity. The brain detects body energy excess and deficit by sensing the levels of circulating metabolic hormones and nutrients and by receiving metabolic information from the periphery via the autonomic nervous system. A specialized neuronal network coordinates energy intake behavior and the metabolic processes affecting energy expenditure. Here, we briefly review neuronal mechanisms by which our body maintains energy balance.

  19. The role of anaerobic digestion in the emerging energy economy.

    PubMed

    Batstone, Damien John; Virdis, Bernardino

    2014-06-01

    Anaerobic digestion is the default process for biological conversion of residue organics to renewable energy and biofuel in the form of methane. However, its scope of application is expanding, due to availability of new technologies, and the emerging drivers of energy and nutrient conservation and recovery. Here, we outline two of these new application areas, namely wastewater nutrient and energy recovery, and generation of value added chemicals through mixed culture biotechnology. There exist two options for nutrient and energy recovery from domestic wastewater: low energy mainline and partition-release-recovery. Both are heavily dependent on anaerobic digestion as an energy generating and nutrient release step, and have been enabled by new technologies such as low emission anaerobic membrane processes. The area of mixed culture biotechnology has been previously identified as a key industrial opportunity, but is now moving closer to application due application of existing and new technologies. As well as acting as a core technology option in bioproduction, anaerobic digestion has a key role in residual waste valorization and generation of energy for downstream processing. These new application areas and technologies are emerging simultaneously with substantial advances in knowledge of underlying mechanisms such as electron transfer, understanding of which is critical to development of the new application areas.

  20. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by (13)C metabolic flux analysis.

    PubMed

    Gonzalez, Jacqueline E; Long, Christopher P; Antoniewicz, Maciek R

    2017-01-01

    Glucose and xylose are the two most abundant sugars derived from the breakdown of lignocellulosic biomass. While aerobic glucose metabolism is relatively well understood in E. coli, until now there have been only a handful of studies focused on anaerobic glucose metabolism and no (13)C-flux studies on xylose metabolism. In the absence of experimentally validated flux maps, constraint-based approaches such as MOMA and RELATCH cannot be used to guide new metabolic engineering designs. In this work, we have addressed this critical gap in current understanding by performing comprehensive characterizations of glucose and xylose metabolism under aerobic and anaerobic conditions, using recent state-of-the-art techniques in (13)C metabolic flux analysis ((13)C-MFA). Specifically, we quantified precise metabolic fluxes for each condition by performing parallel labeling experiments and analyzing the data through integrated (13)C-MFA using the optimal tracers [1,2-(13)C]glucose, [1,6-(13)C]glucose, [1,2-(13)C]xylose and [5-(13)C]xylose. We also quantified changes in biomass composition and confirmed turnover of macromolecules by applying [U-(13)C]glucose and [U-(13)C]xylose tracers. We demonstrated that under anaerobic growth conditions there is significant turnover of lipids and that a significant portion of CO2 originates from biomass turnover. Using knockout strains, we also demonstrated that β-oxidation is critical for anaerobic growth on xylose. Quantitative analysis of co-factor balances (NADH/FADH2, NADPH, and ATP) for different growth conditions provided new insights regarding the interplay of energy and redox metabolism and the impact on E. coli cell physiology.

  1. Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae.

    PubMed

    Bott, M; Meyer, M; Dimroth, P

    1995-11-01

    Three enzymes are specifically required for uptake and catabolism of citrate by Klebsiella pneumoniae under anaerobic conditions: a Na+ -dependent citrate carrier (CitS), citrate lyase (CitDEF), and the Na+ pump oxaloacetate decarboxylase (OadGAB). The corresponding genes are clustered on the chromosome, with the citCDEFG genes located upstream and divergent to the citS-oadGAB genes. We found that expression of citS from its native promoter in Escherichia coli requires the DNA region downstream of oadB. Nucleotide sequence analysis of this region revealed the presence of two adjacent genes, citA and citB. By sequence similarity, the predicted CitA and CitB proteins were identified as members of the two-component regulatory systems. The sensor kinase CitA contained, in the N-terminal half, two putative transmembrane helices which enclosed a presumably periplasmic domain of about 130 amino acids. The C-terminal half of the response regulator CitB harboured a helix-turn-helix motif typical of DNA-binding proteins. K. pneumoniae citB null mutants were unable to grow anaerobically with citrate as the sole carbon and energy source (Cit- phenotype). When cultivated anaerobically with citrate plus glycerol, all of the citrate-specific fermentation enzymes were synthesized in the wild type, but not in the citB mutants. This showed that citS, oadGAB and citDEF required the CitB protein for expression and therefore are part of a regulon. In the wild type, synthesis of CitS, oxaloacetate decarboxylase and citrate lyase was dependent on the presence of citrate, sodium ions and a low oxygen tension. In a citA null mutant which expressed citB constitutively at high levels, none of these signals was required for the formation of the citrate fermentation enzymes. This result suggested that citrate, Na+, and oxygen exerted their regulatory effects via the CitA/CitB system. In the presence of these signals, the citAB gene products induced their own synthesis. The positive

  2. Anaerobic digestion for energy production and environmental protection

    SciTech Connect

    Lettinga, G.; Haandel, A.C. Vaan

    1993-12-31

    Anaerobic digestion is the decomposition of complex molecules into simpler substances by micro-organisms in the absence of oxygen. Anaerobic digestion processes can be employed for resource conservation, for the production of biogas and other useful end products from biomass, and for environmental protection through waste and wastewater treatment. Modern high-rate anaerobic wastewater-treatment processes can effectively remove organic pollutants from wastewater at a cost far below that of conventional aerobic processes. These anaerobic wastewater treatment processes can also be profitably applied for the generation of biogas from energy crops such as sugarcane. In fact, these methods might even be an attractive alternative for the alcohol fermentation extensively employed in Brazil for the production of fuel alcohol from sugarcane. The potential of modern anaerobic processes for this purpose has not yet been widely recognized. This paper describes the principles and use of these processes and demonstrates their prospects for producing energy from sugarcane (1) by treating vinasse, the wastewater generated during the production of ethanol from sugarcane, and (2) as a direct method for producing biogas from sugarcane juice.

  3. Juvenile roach (Rutilus rutilus) increase their anaerobic metabolism in response to copper exposure in laboratory conditions.

    PubMed

    Maes, Virginie; Betoulle, Stéphane; Jaffal, Ali; Dedourge-Geffard, Odile; Delahaut, Laurence; Geffard, Alain; Palluel, Olivier; Sanchez, Wilfried; Paris-Palacios, Séverine; Vettier, Aurélie; David, Elise

    2016-07-01

    This study aims to determine the potential impairment of cell energy synthesis processes (glycolysis and respiratory chain pathways) by copper in juvenile roach at different regulation levels by using a multi-marker approach. Juvenile roach were exposed to 0, 10, 50, and 100 µg/L of copper for 7 days in laboratory conditions. The glycolysis pathway was assessed by measuring the relative expression levels of 4 genes encoding glycolysis enzymes. The respiratory chain was studied by assessing the electron transport system and cytochrome c oxidase gene expression. Muscle mitochondria ultrastructure was studied, and antioxidant responses were measured. Furthermore, the main energy reserves-carbohydrates, lipids, and proteins-were measured, and cellular energy was evaluated by measuring ATP, ADP, AMP and IMP concentrations. This study revealed a disturbance of the cell energy metabolism due to copper exposure, with a significant decrease in adenylate energy charge in roach exposed to 10 μg/L of copper after 1 day. Moreover, ATP concentrations significantly decreased in roach exposed to 10 μg/L of copper after 1 day. This significant decrease persisted in roach exposed to 50 µg/L of copper after 7 days. AMP concentrations increased in all contaminated fish after 1 day of exposure. In parallel, the relative expression of 3 genes encoding for glycolysis enzymes increased in all contaminated fish after 1 day of copper exposure. Focusing on the respiratory chain, cytochrome c oxidase gene expression also increased in all contaminated fish at the two time-points. The activity of the electron transport system was not disturbed by copper, except in roach exposed to 100 µg/L of copper after 1 day. Copper induced a metabolic stress. Juvenile roach seemed to respond to the ensuing high energy demand by increasing their anaerobic metabolism, but the energy produced by the anaerobic metabolism is unable to compensate for the stress induced by copper after 7

  4. Metabolic regulation as a consequence of anaerobic 5-methylthioadenosine recycling in Rhodospirillum rubrum

    DOE PAGES

    North, Justin A.; Sriram, Jaya; Chourey, Karuna; ...

    2016-07-12

    Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence ofmore » sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. Lastly, these results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source.« less

  5. Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum

    PubMed Central

    North, Justin A.; Sriram, Jaya; Chourey, Karuna; Ecker, Christopher D.; Sharma, Ritin; Wildenthal, John A.; Hettich, Robert L.

    2016-01-01

    ABSTRACT Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence of sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. These results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source. PMID:27406564

  6. Metabolic energy required for flight

    NASA Astrophysics Data System (ADS)

    Lane, H. W.; Gretebeck, R. J.

    1994-11-01

    This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in space and their roles in energy metabolism during space flight.

  7. Metabolic energy required for flight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Gretebeck, R. J.

    1994-01-01

    This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in spaced and their roles in energy metabolism during space flight.

  8. Effects of pulp and paper mill effluent extracts on liver anaerobic and aerobic metabolic enzymes in rainbow trout.

    PubMed

    Orrego, Rodrigo; Pandelides, Zacharias; Guchardi, John; Holdway, Douglas

    2011-05-01

    This study investigates whether pulse exposure to Chilean pulp and paper mill effluent solid phase extracted (SPE) extracts via intraperitoneal injection (IP), would result in changes in the activities of the respiratory metabolic enzymes citrate synthase (CS) and lactate dehydrogenase (LDH) in rainbow trout livers. It also investigated if an alteration in liver metabolic capacity influenced the liver detoxification processes and estrogenic effects previously reported. Besides, a comparison of those enzymatic activities with fish IP injected with SPE extracts of two model effluents coming from industries that process 100% different type of feedstock (softwood, SW and hardwood, HW) was also evaluated. An initial induction of the anaerobic metabolism (increase in LDH enzymatic activity) was detected in all Chilean pulp mill effluent extracts evaluated, contrary to the initial unaltered aerobic metabolism (CS enzymatic activity) observed. A compensatory relationship in energy metabolism (Pasteur effect) was observed when comparing both enzymatic activities of fish exposed to those effluent extracts. LDH and CS activities observed in fish injected with Chilean extracts seem to be related to the effects observed in fish injected with SW extracts. This study showed that intraperitoneal injection of pulp and paper mill effluent extracts affected the anaerobic and aerobic metabolic capacities in rainbow trout livers, but this metabolic alteration did not affect detoxification capability or estrogenic effect previously reported.

  9. Energy metabolism during human pregnancy.

    PubMed

    Forsum, Elisabet; Löf, Marie

    2007-01-01

    This review summarizes information regarding how human energy metabolism is affected by pregnancy, and current estimates of energy requirements during pregnancy are presented. Such estimates can be calculated using either increases in basal metabolic rate (BMR) or increases in total energy expenditure (TEE). The two modes of calculation give similar results for a complete pregnancy but different distributions of energy requirements in the three trimesters. Recent information is presented regarding the effect of pregnancy on BMR, TEE, diet-induced thermogenesis, and physical activity. The validity of energy intake (EI) data recently assessed in well-nourished pregnant women was evaluated using information regarding energy metabolism during pregnancy. The results show that underreporting of EI is common during pregnancy and indicate that additional longitudinal studies, taking the total energy budget during pregnancy into account, are needed to satisfactorily define energy requirements during the three trimesters of gestation.

  10. Energy metabolism in heart failure

    PubMed Central

    Ventura-Clapier, Renée; Garnier, Anne; Veksler, Vladimir

    2004-01-01

    Heart failure (HF) is a syndrome resulting from the inability of the cardiac pump to meet the energy requirements of the body. Despite intensive work, the pathogenesis of the cardiac intracellular abnormalities that result from HF remains incompletely understood. Factors that lead to abnormal contraction and relaxation in the failing heart include metabolic pathway abnormalities that result in decreased energy production, energy transfer and energy utilization. Heart failure also affects the periphery. Patients suffering from heart failure always complain of early muscular fatigue and exercise intolerance. This is linked in part to intrinsic alterations of skeletal muscle, among which decreases in the mitochondrial ATP production and in the transfer of energy through the phosphotransfer kinases play an important role. Alterations in energy metabolism that affect both cardiac and skeletal muscles argue for a generalized metabolic myopathy in heart failure. Recent evidence shows that decreased expression of mitochondrial transcription factors and mitochondrial proteins are involved in mechanisms causing the energy starvation in heart failure. This review will focus on energy metabolism alterations in long-term chronic heart failure with only a few references to compensated hypertrophy when necessary. It will briefly describe the energy metabolism of normal heart and skeletal muscles and their alterations in chronic heart failure. It is beyond the scope of this review to address the metabolic switches occurring in compensated hypertrophy; readers could refer to well-documented reviews on this subject. PMID:14660709

  11. Laribacter hongkongensis anaerobic adaptation mediated by arginine metabolism is controlled by the cooperation of FNR and ArgR.

    PubMed

    Xiong, Lifeng; Yang, Ying; Ye, Yuan-Nong; Teng, Jade L L; Chan, Elaine; Watt, Rory M; Guo, Feng-Biao; Lau, Susanna K P; Woo, Patrick C Y

    2017-03-01

    Laribacter hongkongensis is a fish-borne pathogen associated with invasive infections and gastroenteritis. Its adaptive mechanisms to oxygen-limiting conditions in various environmental niches remain unclear. In this study, we compared the transcriptional profiles of L. hongkongensis under aerobic and anaerobic conditions using RNA-sequencing. Expression of genes involved in arginine metabolism significantly increased under anoxic conditions. Arginine was exploited as the sole energy source in L. hongkongensis for anaerobic respiration via the arginine catabolism pathway: specifically via the arginine deiminase (ADI) pathway. A transcriptional regulator FNR was identified to coordinate anaerobic metabolism by tightly regulating the expression of arginine metabolism genes. FNR executed its regulatory function by binding to FNR boxes in arc operons promoters. Survival of isogenic fnr mutant in macrophages decreased significantly when compared with wild-type; and expression level of fnr increased 8 h post-infection. Remarkably, FNR directly interacted with ArgR, another regulator that influences the biological fitness and intracellular survival of L. hongkongensis by regulating arginine metabolism genes. Our results demonstrated that FNR and ArgR work in coordination to respond to oxygen changes in both extracellular and intracellular environments, by finely regulating the ADI pathway and arginine anabolism pathways, thereby optimizing bacterial fitness in various environmental niches.

  12. Effect of anaerobic reactor process configuration on useful energy production.

    PubMed

    DiStefano, Thomas D; Palomar, Albert

    2010-04-01

    The effect of reactor process configuration on anaerobic production of useful energy (hydrogen and methane) from a complex substrate was investigated for the following reactor systems: suspended growth, two-phase mixed, two-stage mixed, upflow anaerobic sludge blanket (UASB) reactor, and two-phase UASB. The mixed two-phase and two-stage configurations yielded the highest specific energy productions of 13.3 and 13.4 kJ/g COD fed, respectively. Reactor process configuration influenced microbial pathways in acidogenic reactors in that butyrate was the predominant volatile acid in phased configurations, whereas acetate was predominant in the staged configuration. The UASB reactor achieved the highest average daily energy production per reactor volume of 101 kJ/L reactor-d. All reactor configurations achieved high COD removals on the order of 99%. However, hydrogen represented only 3% of the total energy produced by the two-phase mixed and two-phase UASB configurations. Theoretical analysis revealed that the maximum specific energy production by the two-phase suspended-growth configuration is only 9% higher than that for a single-stage mixed reactor. Consequently, the production of hydrogen from complex substrates in these process configurations does not seem to be justifiable solely from an energy point of view. Instead, it is suggested that phased anaerobic systems should be considered primarily for improved process stability whereas resultant hydrogen production is of secondary benefit.

  13. Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Kaida, Kenichi; Hayakawa, Atsushi; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Fudou, Ryosuke; Matsui, Kazuhiko; Usuda, Yoshihiro; Sode, Koji

    2014-09-01

    Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5% yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions.

  14. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    PubMed Central

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh K.; Smith, Jessica A.; Bain, Timothy S.; Lovley, Derek R.

    2014-01-01

    Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III) as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further studied. Strains were constructed in which one of the remaining six genes was deleted. The strain in which the monocistronic gene Gmet 0232 was deleted metabolized phenol, but not benzene. Transcript abundance of the adjacent monocistronic gene, Gmet 0231, predicted to encode a zinc-containing oxidoreductase, was elevated in cells metabolizing benzene, although not at a statistically significant level. However, deleting Gmet 0231 also yielded a strain that could metabolize phenol, but not benzene. Although homologs of Gmet 0231 and Gmet 0232 are found in microorganisms not known to anaerobically metabolize benzene, the adjacent localization of these genes is unique to G. metallireducens. The discovery of genes that are specifically required for the metabolism of benzene, but not phenol in G. metallireducens is an important step in potentially identifying the mechanisms for anaerobic benzene activation. PMID:24904558

  15. Energy Metabolism of Monocytic Ehrlichia

    DTIC Science & Technology

    1989-03-01

    Security Classification) Energy metabolism of monocytic Ehrlichia 12. PERSONAL AU1TOR(S) Weiss E, Williams JC, Dasch GA, Kang Y 13a. TYPE OF REPORT 13b...monocytic Ehrlichia (intracellular bacteria/animal pathogens/human pathogens) EMILIO WEISS*t, JIM C. WILLIAMSO§, GREGORY A. DASCH*, AND YUAN-HSU KANG...by Carl R. Woese, December 1, 1988 ABSTRACT We investigated if the monocytic Ehrlichia some ATP from the metabolism of glutamine. as is the case are

  16. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa

    PubMed Central

    Arai, Hiroyuki

    2011-01-01

    Pseudomonas aeruginosa is a ubiquitously distributed opportunistic pathogen that inhabits soil and water as well as animal-, human-, and plant-host-associated environments. The ubiquity would be attributed to its very versatile energy metabolism. P. aeruginosa has a highly branched respiratory chain terminated by multiple terminal oxidases and denitrification enzymes. Five terminal oxidases for aerobic respiration have been identified in the P. aeruginosa cells. Three of them, the cbb3-1 oxidase, the cbb3-2 oxidase, and the aa3 oxidase, are cytochrome c oxidases and the other two, the bo3 oxidase and the cyanide-insensitive oxidase, are quinol oxidases. Each oxidase has a specific affinity for oxygen, efficiency of energy coupling, and tolerance to various stresses such as cyanide and reactive nitrogen species. These terminal oxidases are used differentially according to the environmental conditions. P. aeruginosa also has a complete set of the denitrification enzymes that reduce nitrate to molecular nitrogen via nitrite, nitric oxide (NO), and nitrous oxide. These nitrogen oxides function as alternative electron acceptors and enable P. aeruginosa to grow under anaerobic conditions. One of the denitrification enzymes, NO reductase, is also expected to function for detoxification of NO produced by the host immune defense system. The control of the expression of these aerobic and anaerobic respiratory enzymes would contribute to the adaptation of P. aeruginosa to a wide range of environmental conditions including in the infected hosts. Characteristics of these respiratory enzymes and the regulatory system that controls the expression of the respiratory genes in the P. aeruginosa cells are overviewed in this article. PMID:21833336

  17. Anaerobic fermentation of glycerol in Paenibacillus macerans: metabolic pathways and environmental determinants.

    PubMed

    Gupta, Ashutosh; Murarka, Abhishek; Campbell, Paul; Gonzalez, Ramon

    2009-09-01

    Paenibacillus macerans is one of the species with the broadest metabolic capabilities in the genus Paenibacillus, able to ferment hexoses, deoxyhexoses, pentoses, cellulose, and hemicellulose. However, little is known about glycerol metabolism in this organism, and some studies have reported that glycerol is not fermented. Despite these reports, we found that several P. macerans strains are capable of anaerobic fermentation of glycerol. One of these strains, P. macerans N234A, grew fermentatively on glycerol at a maximum specific growth rate of 0.40 h(-1) and was chosen for further characterization. The use of [U-13C]glycerol and further analysis of extracellular metabolites and proteinogenic amino acids via nuclear magnetic resonance (NMR) spectroscopy allowed identification of ethanol, formate, acetate, succinate, and 1,2-propanediol (1,2-PDO) as fermentation products and demonstrated that glycerol is incorporated into cellular components. A medium formulation with low concentrations of potassium and phosphate, cultivation at acidic pH, and the use of a CO2-enriched atmosphere stimulated glycerol fermentation and are proposed to be environmental determinants of this process. The pathways involved in glycerol utilization and synthesis of fermentation products were identified using NMR spectroscopy in combination with enzyme assays. Based on these studies, the synthesis of ethanol and 1,2-PDO is proposed to be a metabolic determinant of glycerol fermentation in P. macerans N234A. Conversion of glycerol to ethanol fulfills energy requirements by generating one molecule of ATP per molecule of ethanol synthesized. Conversion of glycerol to 1,2-PDO results in the consumption of reducing equivalents, thus facilitating redox balance. Given the availability, low price, and high degree of reduction of glycerol, the high metabolic rates exhibited by P. macerans N234A are of paramount importance for the production of fuels and chemicals.

  18. Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism

    NASA Astrophysics Data System (ADS)

    Boardman, Leigh; Sørensen, Jesper G.; Koštál, Vladimír; Šimek, Petr; Terblanche, John S.

    2016-09-01

    Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.

  19. Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism

    PubMed Central

    Boardman, Leigh; Sørensen, Jesper G.; Koštál, Vladimír; Šimek, Petr; Terblanche, John S.

    2016-01-01

    Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit. PMID:27619175

  20. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactobacillus buchneri has recently been associated with anaerobic spoilage of fermented cucumbers due to its ability to metabolize lactic acid into acetic acid and 1,2-propanediol. However, we have limited knowledge of other chemical components in fermented cucumber that may be related to spoilage ...

  1. Exercise- and Hypoxia-Induced Anaerobic Metabolism and Recovery: A Student Laboratory Exercise Using Teleost Fish

    ERIC Educational Resources Information Center

    Rees, B. B.; Boily, P.; Williamson, L. A. C.

    2009-01-01

    Anaerobic metabolism is recruited in vertebrates under conditions of intense exercise or lowered environmental oxygen availability (hypoxia), typically resulting in the accumulation of lactate in blood and tissues. Lactate will be cleared over time after the reoxygenation of tissues, eventually returning to control levels. Here, we present a…

  2. (Anaerobic metabolism of aromatic compounds by phototrophic bacteria: Biochemical aspects)

    SciTech Connect

    Gibson, J.

    1989-01-01

    Two aspects of the work proposed have received major emphasis during the period since the grant was activated: isolation and characterization of transposon insertion mutants of Rhodopseudomonas palusrtis defective in phototrophic growth on aromatic compounds, and attempts to purify and characterize the Coenzyme A ligase enzyme involved in activating 4-hydroxybenzoate. The HPLC apparatus was installed in August, and calibration of columns both for metabolite and for protein separations has been initiated. A start has also been made on synthesis of Coenzyme A thioesters of compounds that are potential intermediates in the anaerobic degradation pathways. 1 tab.

  3. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.

    PubMed

    Kuyper, Marko; Winkler, Aaron A; van Dijken, Johannes P; Pronk, Jack T

    2004-03-01

    When xylose metabolism in yeasts proceeds exclusively via NADPH-specific xylose reductase and NAD-specific xylitol dehydrogenase, anaerobic conversion of the pentose to ethanol is intrinsically impossible. When xylose reductase has a dual specificity for both NADPH and NADH, anaerobic alcoholic fermentation is feasible but requires the formation of large amounts of polyols (e.g., xylitol) to maintain a closed redox balance. As a result, the ethanol yield on xylose will be sub-optimal. This paper demonstrates that anaerobic conversion of xylose to ethanol, without substantial by-product formation, is possible in Saccharomyces cerevisiae when a heterologous xylose isomerase (EC 5.3.1.5) is functionally expressed. Transformants expressing the XylA gene from the anaerobic fungus Piromyces sp. E2 (ATCC 76762) grew in synthetic medium in shake-flask cultures on xylose with a specific growth rate of 0.005 h(-1). After prolonged cultivation on xylose, a mutant strain was obtained that grew aerobically and anaerobically on xylose, at specific growth rates of 0.18 and 0.03 h(-1), respectively. The anaerobic ethanol yield was 0.42 g ethanol x g xylose(-1) and also by-product formation was comparable to that of glucose-grown anaerobic cultures. These results illustrate that only minimal genetic engineering is required to recruit a functional xylose metabolic pathway in Saccharomyces cerevisiae. Activities and/or regulatory properties of native S. cerevisiae gene products can subsequently be optimised via evolutionary engineering. These results provide a gateway towards commercially viable ethanol production from xylose with S. cerevisiae.

  4. Comparison of endogenous metabolism during long-term anaerobic starvation of nitrite/nitrate cultivated denitrifying phosphorus removal sludges.

    PubMed

    Wang, Yayi; Zhou, Shuai; Wang, Hong; Ye, Liu; Qin, Jian; Lin, Ximao

    2015-01-01

    Denitrifying phosphorus removal (DPR) by denitrifying phosphorus-accumulating organisms (DPAOs) is a promising approach for reducing energy and carbon usage. However, influent fluctuations or interruptions frequently expose the DPAOs biomass to starvation conditions, reducing biomass activity and amount, and ultimately degrading the performance of DPR. Therefore, a better understanding of the endogenous metabolism and recovery ability of DPAOs is urgently required. In the present study, anaerobic starvation (12 days) and recovery were investigated in nitrite- and nitrate-cultivated DPAOs at 20 ± 1 °C. The cell decay rates in nitrite-DPAOs sludges from the end of the anaerobic and aerobic phase were 0.008 day⁻¹ and 0.007 day⁻¹, respectively, being 64% and 68% lower than those of nitrate-DPAOs sludges. Nitrite-DPAOs sludges also recovered more rapidly than nitrate-DPAOs sludge after 12 days of starvation. The maintenance energy of nitrite-DPAOs sludges from the end of the anaerobic and aerobic phase were approximately 31% and 34% lower, respectively, than those of nitrate-DPAOs sludges. Glycogen and polyphosphate (poly-P) sequentially served as the main maintenance energy sources in both nitrite-and nitrate-DPAOs sludges. However, the transformation pathway of the intracellular polymers during starvation differed between them. Nitrate-DPAOs sludge used extracellular polymeric substances (EPS) (mainly polysaccharides) as an additional maintenance energy source during the first 3 days of starvation. During this phase, EPS appeared to contribute to 19-27% of the ATP production in nitrate-DPAOs, but considerably less to the cell maintenance of nitrite-DPAOs. The high resistance of nitrite-DPAOs to starvation might be attributable to frequent short-term starvation and exposure to toxic substances such as nitrite/free nitrous acids in the parent nitrite-fed reactor. The strong resistance of nitrite-DPAOs sludge to anaerobic starvation may be exploited in P removal

  5. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate

    USGS Publications Warehouse

    Loftin, Keith A.; Henny, Cynthia; Adams, Craig D.; Surampali, Rao; Mormile, Melanie R.

    2005-01-01

    Antibiotics are used to maintain healthy livestock and to promote weight gain in concentrated animal feed operations. Antibiotics rarely are metabolized completely by livestock and, thus, are often present in livestock waste and in waste-treatment lagoons. The introduction of antibiotics into anaerobic lagoons commonly used for swine waste treatment has the potential for negative impacts on lagoon performance, which relies on a consortium of microbes ranging from fermentative microorganisms to methanogens. To address this concern, the effects of eight common veterinary antibiotics on anaerobic activity were studied. Anaerobic microcosms, prepared from freshly collected lagoon slurries, were amended with individual antibiotics at 10 mg/L for the initial screening study and at 1, 5, and 25 mg/L for the dose-response study. Monitored metabolic indicators included hydrogen, methane, and volatile fatty acid concentrations as well as chemical oxygen demand. The selected antibiotics significantly inhibited methane production relative to unamended controls, thus indicating that antibiotics at concentrations commonly found in swine lagoons can negatively impact anaerobic metabolism. Additionally, historical antibiotic usage seems to be a potential factor in affecting methane production. Specifically, less inhibition of methane production was noted in samples taken from the lagoon with a history of multiple-antibiotic use.

  6. Partitioning the metabolic scope: the importance of anaerobic metabolism and implications for the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis.

    PubMed

    Ejbye-Ernst, Rasmus; Michaelsen, Thomas Y; Tirsgaard, Bjørn; Wilson, Jonathan M; Jensen, Lasse F; Steffensen, John F; Pertoldi, Cino; Aarestrup, Kim; Svendsen, Jon C

    2016-01-01

    Ongoing climate change is predicted to affect the distribution and abundance of aquatic ectotherms owing to increasing constraints on organismal physiology, in particular involving the metabolic scope (MS) available for performance and fitness. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis prescribes MS as an overarching benchmark for fitness-related performance and assumes that any anaerobic contribution within the MS is insignificant. The MS is typically derived from respirometry by subtracting standard metabolic rate from the maximal metabolic rate; however, the methodology rarely accounts for anaerobic metabolism within the MS. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), this study tested for trade-offs (i) between aerobic and anaerobic components of locomotor performance; and (ii) between the corresponding components of the MS. Data collection involved measuring oxygen consumption rate at increasing swimming speeds, using the gait transition from steady to unsteady (burst-assisted) swimming to detect the onset of anaerobic metabolism. Results provided evidence of the locomotor performance trade-off, but only in S. aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic performance. Our results suggest that without accounting for anaerobic metabolism within the MS, studies involving the OCLTT hypothesis could overestimate the metabolic scope available for

  7. Partitioning the metabolic scope: the importance of anaerobic metabolism and implications for the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis

    PubMed Central

    Ejbye-Ernst, Rasmus; Michaelsen, Thomas Y.; Tirsgaard, Bjørn; Wilson, Jonathan M.; Jensen, Lasse F.; Steffensen, John F.; Pertoldi, Cino; Aarestrup, Kim; Svendsen, Jon C.

    2016-01-01

    Ongoing climate change is predicted to affect the distribution and abundance of aquatic ectotherms owing to increasing constraints on organismal physiology, in particular involving the metabolic scope (MS) available for performance and fitness. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis prescribes MS as an overarching benchmark for fitness-related performance and assumes that any anaerobic contribution within the MS is insignificant. The MS is typically derived from respirometry by subtracting standard metabolic rate from the maximal metabolic rate; however, the methodology rarely accounts for anaerobic metabolism within the MS. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), this study tested for trade-offs (i) between aerobic and anaerobic components of locomotor performance; and (ii) between the corresponding components of the MS. Data collection involved measuring oxygen consumption rate at increasing swimming speeds, using the gait transition from steady to unsteady (burst-assisted) swimming to detect the onset of anaerobic metabolism. Results provided evidence of the locomotor performance trade-off, but only in S. aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic performance. Our results suggest that without accounting for anaerobic metabolism within the MS, studies involving the OCLTT hypothesis could overestimate the metabolic scope available for

  8. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    SciTech Connect

    Boopathy, R.; Kulpa, C.F.

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  9. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials.

    PubMed

    Zhao, Zhiqiang; Zhang, Yaobin; Woodard, T L; Nevin, K P; Lovley, D R

    2015-09-01

    Syntrophic metabolism of alcohols and fatty acids is a critical step in anaerobic digestion, which if enhanced can better stabilize the process and enable shorter retention times. Direct interspecies electron transfer (DIET) has recently been recognized as an alternative route to hydrogen interspecies transfer as a mechanism for interspecies syntrophic electron exchange. Therefore, the possibility of accelerating syntrophic metabolism of ethanol in up-flow anaerobic sludge blanket (UASB) reactors by incorporating conductive materials in reactor design was investigated. Graphite, biochar, and carbon cloth all immediately enhanced methane production and COD removal. As the hydraulic retention time was decreased the increased effectiveness of treatment in reactors with conductive materials increased versus the control reactor. When these conductive materials were removed from the reactors rates of syntrophic metabolism declined to rates comparable to the control reactor. These results suggest that incorporating conductive materials in the design of UASB reactors may enhance digester effectiveness.

  10. Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes.

    PubMed

    Hug, Laura A; Stechmann, Alexandra; Roger, Andrew J

    2010-02-01

    Protists that live in low oxygen conditions often oxidize pyruvate to acetate via anaerobic ATP-generating pathways. Key enzymes that commonly occur in these pathways are pyruvate:ferredoxin oxidoreductase (PFO) and [FeFe]-hydrogenase (H(2)ase) as well as the associated [FeFe]-H(2)ase maturase proteins HydE, HydF, and HydG. Determining the origins of these proteins in eukaryotes is of key importance to understanding the origins of anaerobic energy metabolism in microbial eukaryotes. We conducted a comprehensive search for genes encoding these proteins in available whole genomes and expressed sequence tag data from diverse eukaryotes. Our analyses of the presence/absence of eukaryotic PFO, [FeFe]-H(2)ase, and H(2)ase maturase sequences across eukaryotic diversity reveal orthologs of these proteins encoded in the genomes of a variety of protists previously not known to contain them. Our phylogenetic analyses revealed: 1) extensive lateral gene transfers of both PFO and [FeFe]-H(2)ase in eubacteria, 2) decreased support for the monophyly of eukaryote PFO domains, and 3) that eukaryotic [FeFe]-H(2)ases are not monophyletic. Although there are few eukaryote [FeFe]-H(2)ase maturase orthologs characterized, phylogenies of these proteins do recover eukaryote monophyly, although a consistent eubacterial sister group for eukaryotic homologs could not be determined. An exhaustive search for these five genes in diverse genomes from two representative eubacterial groups, the Clostridiales and the alpha-proteobacteria, shows that although these enzymes are nearly universally present within the former group, they are very rare in the latter. No alpha-proteobacterial genome sequenced to date encodes all five proteins. Molecular phylogenies and the extremely restricted distribution of PFO, [FeFe]-H(2)ases, and their associated maturases within the alpha-proteobacteria do not support a mitochondrial origin for these enzymes in eukaryotes. However, the unexpected prevalence of PFO

  11. Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus

    PubMed Central

    Holmes, Dawn E; Risso, Carla; Smith, Jessica A; Lovley, Derek R

    2012-01-01

    Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (>80° C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as having a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA (coenzyme A) reductase (BCR) found in all strictly anaerobic bacteria, but has instead genes coding for a bzd-type ATP-consuming class I BCR, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for phenol carboxylation proceeding through a phenylphosphate intermediate were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative reverse transcriptase polymerase chain reaction demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates vs growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism are highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets. PMID:21776029

  12. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    PubMed

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  13. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion.

    PubMed

    Smith, Adam L; Stadler, Lauren B; Cao, Ling; Love, Nancy G; Raskin, Lutgarde; Skerlos, Steven J

    2014-05-20

    The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), conventional activated sludge with anaerobic digestion (CAS+AD), and an aerobic membrane bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater treatment under baseline assumptions at 15 °C, AnMBR recovered 49% more energy as biogas than HRAS+AD, the most energy positive conventional technology considered, but had significantly higher energy demands and environmental emissions. Global warming impacts associated with AnMBR were largely due to emissions of effluent dissolved methane. For high strength domestic wastewater treatment, AnMBR recovered 15% more net energy than HRAS+AD, and the environmental emissions gap between the two systems was reduced. Future developments of AnMBR technology in low energy fouling control, increased flux, and management of effluent methane emissions would make AnMBR competitive with HRAS+AD. Rapid advancements in AnMBR technology must continue to achieve its full economic and environmental potential as an energy recovery strategy for domestic wastewater.

  14. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production.

    PubMed

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production.

  15. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production

    PubMed Central

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production. PMID:23969939

  16. Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria.

    PubMed

    Rabus, Ralf; Jarling, René; Lahme, Sven; Kühner, Simon; Heider, Johann; Widdel, Friedrich; Wilkes, Heinz

    2011-09-01

    Diverse microorganisms have been described to degrade petroleum hydrocarbons anaerobically. Strains able to utilize n-alkanes do not grow with aromatic hydrocarbons, whereas strains able to utilize aromatic hydrocarbons do not grow with n-alkanes. To investigate this specificity in more detail, three anaerobic n-alkane degraders (two denitrifying, one sulfate-reducing) and eight anaerobic alkylbenzene degraders (five denitrifying, three sulfate-reducing) were incubated with mixtures of n-alkanes and toluene. Whereas the toluene degradationers formed only the characteristic toluene-derived benzylsuccinate and benzoate, but no n-alkane-derived metabolites, the n-alkane degraders formed toluene-derived benzylsuccinate, 4-phenylbutanoate, phenylacetate and benzoate besides the regular n-alkane-derived (1-methylalkyl)succinates and methyl-branched alkanoates. The co-metabolic conversion of toluene by anaerobic n-alkane degraders to the level of benzoate obviously follows the anaerobic n-alkane degradation pathway with C-skeleton rearrangement and decarboxylation rather than the β-oxidation pathway of anaerobic toluene metabolism. Hence, petroleum-derived aromatic metabolites detectable in anoxic environments may not be exclusively formed by genuine alkylbenzene degraders. In addition, the hitherto largely unexplored fate of fumarate hydrogen during the activation reactions was examined with (2,3-(2) H(2) )fumarate as co-substrate. Deuterium was completely exchanged with hydrogen at the substituted carbon atom (C-2) of the succinate adducts of n-alkanes, whereas it is retained in toluene-derived benzylsuccinate, regardless of the type of enzyme catalysing the fumarate addition reaction.

  17. The clinical importance of the anaerobic energy system and its assessment in human performance.

    PubMed

    Cahill, B R; Misner, J E; Boileau, R A

    1997-01-01

    The anaerobic energy system is involved in providing energy for all forms of physical activity. The relevance of this system to human performance and physical fitness throughout the age spectrum is underscored here and contrasted with the aerobic energy system. The anaerobic system responds to high-intensity training with biochemical, neural, and anatomic adaptations. Unlike the aerobic system, this response tends to be primarily a local phenomenon with little systemic adaptation. An important factor distinguishing anaerobic training from aerobic training is the intensity of the exercise dose. For anaerobic training to occur, the dose must be of high intensity and performed to near-exhaustion. The anaerobic system can be indirectly assessed by performance tests, such as a vertical jump or stair climb, or more directly by supramaximal bicycle tests. The impact of recent research regarding the trainability of the anaerobic system, particularly in the elderly population, is encouraging. The elderly respond to anaerobic training and, as a result, their independence, quality of life, and safety from falls can be improved. While little is known about anaerobic rehabilitation after injury, it is known that isokinetic and performance tests may be considered normal after rehabilitation, despite incomplete rehabilitation of the anaerobic system. Thus, appropriate application of the anaerobic system assessments and training principles is an important aspect of sports medicine practice.

  18. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists.

    PubMed

    Calbet, J A L; De Paz, J A; Garatachea, N; Cabeza de Vaca, S; Chavarren, J

    2003-02-01

    The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O(2) fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O(2) uptake than S (72 +/- 1 and 62 +/- 2 ml x kg(-1) x min(-1), P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E (P < 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E (P < 0.05); however, S showed a larger fatigue index in both conditions (P < 0.05). Compared with normoxia, hypoxia lowered O(2) uptake by 16% in E and S (P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.

  19. Improve bio-activity of anaerobic sludge by low energy ultrasound.

    PubMed

    Zhu, Yichun; Li, Xin; Du, Maoan; Liu, Zuwen; Luo, Hui; Zhang, Tao

    2015-01-01

    This research focused on ultrasound-enhanced bio-activity of anaerobic sludge. Low energy ultrasound irradiation can increase the bio-activity of anaerobic sludge. Ultrasonic parameter, characteristics of anaerobic sludge and experimental conditions are important parameters which affect the enhancement effect on anaerobic sludge. In order to assess the effects of characteristics of anaerobic sludge and experimental conditions on ultrasonic irradiation of anaerobic sludge, experiments with different characteristics of anaerobic sludge were carried out and analyzed with the content of coenzyme F420 and dehydrogenase activity (DHA). The results showed that anaerobic sludge bio-activity was impacted by the initial temperature, initial chemical oxygen demand (COD), sludge concentration, and stirring during the ultrasonic process. Optimal performance was achieved when sound frequency, power density, and ultrasonic irradiation period was 20 kHz, 0.1 W/mL, and 10 min, respectively, under which the wastewater COD removal efficiency was increased by 12.9 percentage points. The results indicated that low temperature could affect the anaerobic sludge irradiation effect, while intermittent stirring could enhance the bio-activity of anaerobic sludge irradiation effect and low substrate concentration improved anaerobic sludge activity by ultrasound.

  20. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    PubMed

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  1. Phylogenetic and Metabolic Diversity of Planctomycetes from Anaerobic, Sulfide- and Sulfur-Rich Zodletone Spring, Oklahoma▿

    PubMed Central

    Elshahed, Mostafa S.; Youssef, Noha H.; Luo, Qingwei; Najar, Fares Z.; Roe, Bruce A.; Sisk, Tracy M.; Bühring, Solveig I.; Hinrichs, Kai-Uwe; Krumholz, Lee R.

    2007-01-01

    We investigated the phylogenetic diversity and metabolic capabilities of members of the phylum Planctomycetes in the anaerobic, sulfide-saturated sediments of a mesophilic spring (Zodletone Spring) in southwestern Oklahoma. Culture-independent analyses of 16S rRNA gene sequences generated using Planctomycetes-biased primer pairs suggested that an extremely diverse community of Planctomycetes is present at the spring. Although sequences that are phylogenetically affiliated with cultured heterotrophic Planctomycetes were identified, the majority of the sequences belonged to several globally distributed, as-yet-uncultured Planctomycetes lineages. Using complex organic media (aqueous extracts of the spring sediments and rumen fluid), we isolated two novel strains that belonged to the Pirellula-Rhodopirellula-Blastopirellula clade within the Planctomycetes. The two strains had identical 16S rRNA gene sequences, and their closest relatives were isolates from Kiel Fjord (Germany), Keauhou Beach (HI), a marine aquarium, and tissues of marine organisms (Aplysina sp. sponges and postlarvae of the giant tiger prawn Penaeus monodon). The closest recognized cultured relative of strain Zi62 was Blastopirellula marina (93.9% sequence similarity). Detailed characterization of strain Zi62 revealed its ability to reduce elemental sulfur to sulfide under anaerobic conditions, as well as its ability to produce acids from sugars; both characteristics may potentially allow strain Zi62 to survive and grow in the anaerobic, sulfide- and sulfur-rich environment at the spring source. Overall, this work indicates that anaerobic metabolic abilities are widely distributed among all major Planctomycetes lineages and suggests carbohydrate fermentation and sulfur reduction as possible mechanisms employed by heterotrophic Planctomycetes for growth and survival under anaerobic conditions. PMID:17545322

  2. Biomarkers of Microbial Metabolism for Monitoring in-situ Anaerobic PAH Degradation

    NASA Astrophysics Data System (ADS)

    Young, L.; Phelps, C.; Battistelli, J.

    2002-12-01

    Monoaromatic and polycyclic aromatic compounds found in petroleum and its products are subject to biodegradation in the absence of oxygen. These anaerobic pathways reveal novel mechanism of microbial transformation through a series of metabolites and intermediates which are unique to the anaerobic degradation process. The presence of these compounds in-situ, then conceptually can serve as indicators that anaerobic degradation is taking place. We have laboratory studies and field samples which support this concept for BTX and PAH compounds. Environments in which these anaerobic degradation processes have been observed include freshwater and estuarine sediments, groundwater from impacted aquifers at a former manufactured gas plant and gasoline station, and a creosote-contaminated aquifer. Analytical protocols were developed to detect nanomolar concentrations from soil slurries and groundwater samples and microcosm studies verified their formation from field samples and use as biomarkers of activity. Recent studies on the mechanisms of anaerobic naphthalene and methylnaphthalene metabolism have identified several unusual compounds that can serve as biomarkers for monitoring in situ PAH biodegradation. For naphthalene these include 2-naphthoic acid (2-NA), tetrahydro-2-naphthoic acid (TH-2-NA), hexahydro-2-naphthoic acid (HH-2-NA) and methylnaphthoic acid (MNA) generated by sulfate-reducing bacteria degrading naphthalene or methylnaphthalene. Groundwater samples were analyzed from wells distributed throughout an anaerobic, creosote-contaminated aquifer and also from a leaking underground storage site. Samples were extracted, derivatized and analyzed by GC/MS. The concentration of 2-NA at each monitoring well was quantified and correlated to the zones of naphthalene contamination. Taken together with measurements of the aquifer's physical characteristics, these biomarker data can be used to describe the extent of naphthalene biodegradation at these site.

  3. Energy flows, metabolism and translation

    PubMed Central

    Pascal, Robert; Boiteau, Laurent

    2011-01-01

    Thermodynamics provides an essential approach to understanding how living organisms survive in an organized state despite the second law. Exchanges with the environment constantly produce large amounts of entropy compensating for their own organized state. In addition to this constraint on self-organization, the free energy delivered to the system, in terms of potential, is essential to understand how a complex chemistry based on carbon has emerged. Accordingly, the amount of free energy brought about through discrete events must reach the strength needed to induce chemical changes in which covalent bonds are reorganized. The consequence of this constraint was scrutinized in relation to both the development of a carbon metabolism and that of translation. Amino acyl adenylates involved as aminoacylation intermediates of the latter process reach one of the higher free energy levels found in biochemistry, which may be informative on the range in which energy was exchanged in essential early biochemical processes. The consistency of this range with the amount of energy needed to weaken covalent bonds involving carbon may not be accidental but the consequence of the abovementioned thermodynamic constraints. This could be useful in building scenarios for the emergence and early development of translation. PMID:21930587

  4. Energy flows, metabolism and translation.

    PubMed

    Pascal, Robert; Boiteau, Laurent

    2011-10-27

    Thermodynamics provides an essential approach to understanding how living organisms survive in an organized state despite the second law. Exchanges with the environment constantly produce large amounts of entropy compensating for their own organized state. In addition to this constraint on self-organization, the free energy delivered to the system, in terms of potential, is essential to understand how a complex chemistry based on carbon has emerged. Accordingly, the amount of free energy brought about through discrete events must reach the strength needed to induce chemical changes in which covalent bonds are reorganized. The consequence of this constraint was scrutinized in relation to both the development of a carbon metabolism and that of translation. Amino acyl adenylates involved as aminoacylation intermediates of the latter process reach one of the higher free energy levels found in biochemistry, which may be informative on the range in which energy was exchanged in essential early biochemical processes. The consistency of this range with the amount of energy needed to weaken covalent bonds involving carbon may not be accidental but the consequence of the above mentioned thermodynamic constraints. This could be useful in building scenarios for the emergence and early development of translation.

  5. Metabolic regulation as a consequence of anaerobic 5-methylthioadenosine recycling in Rhodospirillum rubrum

    SciTech Connect

    North, Justin A.; Sriram, Jaya; Chourey, Karuna; Ecker, Christopher D.; Sharma, Ritin; Wildenthal, John A.; Hettich, Robert L.; Tabita, F. Robert

    2016-07-12

    Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence of sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. Lastly, these results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source.

  6. Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate Test.

    PubMed

    Collomp, K; Ahmaidi, S; Audran, M; Chanal, J L; Préfaut, C

    1991-10-01

    In order to determine the effects of caffeine ingestion on performance and metabolic responses during supramaximal exercise, six healthy volunteers performed the Wingate Anaerobic Test twice. Sixty min before each trial, while in a fasting state, they took capsules containing either caffeine (5 mg/kg) or a placebo, according to a single blind and randomized procedure. Caffeine administration did not significantly change either maximal anaerobic capacity (AC) or power (AP) and power decrease (PD). It did, however, induce significant (p less than 0.05) increases in both catecholamine and blood lactate levels as compared to values obtained after placebo administration. Moreover, maximal blood lactate occurred earlier (p less than 0.05), and lactate output seemed to be greater with caffeine (p less than 0.01). There was a strong correlation, both with and without caffeine, between epinephrine and lactate levels (r = 0.81) and between both AP and AC and lactate levels. These data suggest that caffeine, essentially via epinephrine, modifies glycolytic metabolism but fails to improve performance during the Wingate Anaerobic Test in nonspecifically trained subjects.

  7. New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria.

    PubMed

    Selmer, Thorsten; Pierik, Antonio J; Heider, Johann

    2005-10-01

    During the last decade, an increasing number of new enzymes containing glycyl radicals in their active sites have been identified and biochemically characterised. These include benzylsuccinate synthase (Bss), 4-hydroxyphenylacetate decarboxylase (Hpd) and the coenzyme B12-independent glycerol dehydratase (Gdh). These are involved in metabolic pathways as different as anaerobic toluene metabolism, fermentative production of p-cresol and glycerol fermentation. Some features of these newly discovered enzymes are described and compared with those of the previously known glycyl radical enzymes pyruvate formate-lyase (Pfl) and anaerobic ribonucleotide reductase (Nrd). Among the new enzymes, Bss and Hpd share the presence of small subunits, the function of which in the catalytic mechanisms is still enigmatic, and both enzymes contain metal centres in addition to the glycyl radical prosthetic group. The activating enzymes of the novel systems also deviate from the standard type, containing at least one additional Fe-S cluster. Finally, the available whole-genome sequences of an increasing number of strictly or facultative anaerobic bacteria revealed the presence of many more hitherto unknown glycyl radical enzyme (GRE) systems. Recent studies suggest that the particular types of these enzymes represent the ends of different evolutionary lines, which emerged early in evolution and diversified to yield remarkably versatile biocatalysts for chemical reactions that are otherwise difficult to perform in anoxic environments.

  8. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    PubMed

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane.

  9. Computational Approaches for Understanding Energy Metabolism

    PubMed Central

    Shestov, Alexander A; Barker, Brandon; Gu, Zhenglong; Locasale, Jason W

    2013-01-01

    There has been a surge of interest in understanding the regulation of metabolic networks involved in disease in recent years. Quantitative models are increasingly being used to i nterrogate the metabolic pathways that are contained within this complex disease biology. At the core of this effort is the mathematical modeling of central carbon metabolism involving glycolysis and the citric acid cycle (referred to as energy metabolism). Here we discuss several approaches used to quantitatively model metabolic pathways relating to energy metabolism and discuss their formalisms, successes, and limitations. PMID:23897661

  10. Resistance to freshwater exposure in White Sea Littorina spp. I: Anaerobic metabolism and energetics.

    PubMed

    Sokolova, I M; Bock, C; Pörtner, H O

    2000-03-01

    Anaerobic metabolism and changes in the osmotic concentration of extravisceral fluid were studied in the White Sea periwinkles (Littorina littorea, Littorina saxatilis and Littorina obtusata) during freshwater exposure. Resistance to hypoosmotic stress increased in the order: L. obtusata < L. saxatilis < L. littorea. Our data suggest that osmotic shock is not a primary reason for mortality of the periwinkles under these conditions. During environmental anaerobiosis, considerable succinate accumulation (up to 10(-19) micromol g(-1) wet weight), and depletion of phosphagen and ATP pools were found in the studied species. Other metabolic end products (alanopine, strombine, lactate, acetate or propionate) were not detected. Succinate accumulation and net ATP breakdown were the fastest in the least resistant species, L. obtusata, and slowest in the most resistant, L. littorea. Rate of ATP turnover decreased during freshwater exposure in L. littorea and L. saxatilis, but not in L. obtusata. Our data suggest that differential resistance of three studied Littorina spp. to extreme hypoosmotic stress may be related to their different abilities to reduce metabolic rate and ATP turnover during sustained anoxia. Species-specific variations in anaerobic capacity of Littorina spp. are discussed in relation to their vertical distribution, size and ecology.

  11. Geographic differences in digoxin inactivation, a metabolic activity of the human anaerobic gut flora.

    PubMed Central

    Mathan, V I; Wiederman, J; Dobkin, J F; Lindenbaum, J

    1989-01-01

    The inactivation of digoxin by conversion to reduced metabolites (digoxin reduction products, or DRP), a function of the anaerobic gut flora, was studied in normal volunteers from southern India and the United States. Digoxin was metabolised to DRP by 28 (13.7%) of 204 healthy south Indians in contrast to 67 (36.0%) of 186 New Yorkers (p less than 1 X 10(-6)). Only 1.0% of Indians compared with 14.0% of Americans excreted large amounts of metabolites (greater than 40% DRP) in the urine (p less than 1 X 10(-5)). Of 104 urban Indians, 23 (22.1%) were metabolisers, in contrast with five of 100 rural villagers (p less than 0.001). Within the urban group, digoxin metabolism correlated with education, frequency of animal protein intake, and most significantly, personal income. Organisms capable of reducing digoxin in vitro were found with similar frequencies in stool cultures from Indians and Americans. In the cultures of some subjects, DRP production was inhibited at lower dilutions but expressed at higher dilutions. We conclude that variations in drug metabolism between population groups may result from differences in the metabolic activity of the anaerobic gut flora probably mediated by environmentally determined factors. PMID:2759492

  12. Metabolic Capacity of Mitochondrion-related Organelles in the Free-living Anaerobic Stramenopile Cantina marsupialis.

    PubMed

    Noguchi, Fumiya; Shimamura, Shigeru; Nakayama, Takuro; Yazaki, Euki; Yabuki, Akinori; Hashimoto, Tetsuo; Inagaki, Yuji; Fujikura, Katsunori; Takishita, Kiyotaka

    2015-11-01

    Functionally and morphologically degenerate mitochondria, so-called mitochondrion-related organelles (MROs), are frequently found in eukaryotes inhabiting hypoxic or anoxic environments. In the last decade, MROs have been discovered from a phylogenetically broad range of eukaryotic lineages and these organelles have been revealed to possess diverse metabolic capacities. In this study, the biochemical characteristics of an MRO in the free-living anaerobic protist Cantina marsupialis, which represents an independent lineage in stramenopiles, were inferred based on RNA-seq data. We found transcripts for proteins known to function in one form of MROs, the hydrogenosome, such as pyruvate:ferredoxin oxidoreductase, iron-hydrogenase, acetate:succinate CoA-transferase, and succinyl-CoA synthase, along with transcripts for acetyl-CoA synthetase (ADP-forming). These proteins possess putative mitochondrial targeting signals at their N-termini, suggesting dual ATP generation systems through anaerobic pyruvate metabolism in Cantina MROs. In addition, MROs in Cantina were also shown to share several features with canonical mitochondria, including amino acid metabolism and an "incomplete" tricarboxylic acid cycle. Transcripts for all four subunits of complex II (CII) of the electron transport chain were detected, while there was no evidence for the presence of complexes I, III, IV, or F1Fo ATPase. Cantina MRO biochemistry challenges the categories of mitochondrial organelles recently proposed.

  13. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  14. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion

    PubMed Central

    2013-01-01

    Background In solid-state anaerobic digestion (AD) bioprocesses, hydrolytic and acidogenic microbial metabolisms have not yet been clarified. Since these stages are particularly important for the establishment of the biological reaction, better knowledge could optimize the process performances by process parameters adjustment. Results This study demonstrated the effect of total solids (TS) content on microbial fermentation of wheat straw with six different TS contents ranging from wet to dry conditions (10 to 33% TS). Three groups of metabolic behaviors were distinguished based on wheat straw conversion rates with 2,200, 1,600, and 1,400 mmol.kgVS-1 of fermentative products under wet (10 and 14% TS), dry (19 to 28% TS), and highly dry (28 to 33% TS) conditions, respectively. Furthermore, both wet and dry fermentations showed acetic and butyric acid metabolisms, whereas a mainly butyric acid metabolism occurred in highly dry fermentation. Conclusion Substrate conversion was reduced with no changes of the metabolic pathways until a clear limit at 28% TS content, which corresponded to the threshold value of free water content of wheat straw. This study suggested that metabolic pathways present a limit of TS content for high-solid AD. PMID:24261971

  15. In vitro metabolism of rebaudioside B, D, and M under anaerobic conditions: comparison with rebaudioside A.

    PubMed

    Purkayastha, Sidd; Pugh, George; Lynch, Barry; Roberts, Ashley; Kwok, David; Tarka, Stanley M

    2014-03-01

    The hydrolysis of the steviol glycosides rebaudioside A, B, D, and M, as well as of steviolbioside (a metabolic intermediate) to steviol was evaluated in vitro using human fecal homogenates from healthy donors under anaerobic conditions. Incubation of each of the rebaudiosides resulted in rapid hydrolysis to steviol. Metabolism was complete within 24h, with the majority occurring within the first 8h. There were no clear differences in the rate or extent of metabolism of rebaudioside B, D, or M, relative to the comparative control rebaudioside A. The hydrolysis of samples containing 2.0mg/mL of each rebaudioside tended to take slightly longer than solutions containing 0.2mg/mL. There was no apparent gender differences in the amount of metabolism of any of the rebaudiosides, regardless of the concentrations tested. An intermediate in the hydrolysis of rebaudioside M to steviol, steviolbioside, was also found to be rapidly degraded to steviol. The results demonstrate that rebaudiosides B, D, and M are metabolized to steviol in the same manner as rebaudioside A. These data support the use of toxicology data available on steviol, and on steviol glycosides metabolized to steviol (i.e., rebaudioside A) to substantiate the safety of rebaudiosides B, D, and M.

  16. Cellulose digestion and metabolism induced biocatalytic transitions in anaerobic microbial ecosystems.

    PubMed

    Yamazawa, Akira; Iikura, Tomohiro; Morioka, Yusuke; Shino, Amiu; Ogata, Yoshiyuki; Date, Yasuhiro; Kikuchi, Jun

    2013-12-31

    Anaerobic digestion of highly polymerized biomass by microbial communities present in diverse microbial ecosystems is an indispensable metabolic process for biogeochemical cycling in nature and for industrial activities required to maintain a sustainable society. Therefore, the evaluation of the complicated microbial metabolomics presents a significant challenge. We here describe a comprehensive strategy for characterizing the degradation of highly crystallized bacterial cellulose (BC) that is accompanied by metabolite production for identifying the responsible biocatalysts, including microorganisms and their metabolic functions. To this end, we employed two-dimensional solid- and one-dimensional solution-state nuclear magnetic resonance (NMR) profiling combined with a metagenomic approach using stable isotope labeling. The key components of biocatalytic reactions determined using a metagenomic approach were correlated with cellulose degradation and metabolic products. The results indicate that BC degradation was mediated by cellulases that contain carbohydrate-binding modules and that belong to structural type A. The degradation reactions induced the metabolic dynamics of the microbial community and produced organic compounds, such as acetic acid and propionic acid, mainly metabolized by clostridial species. This combinatorial, functional and structural metagenomic approach is useful for the comprehensive characterization of biomass degradation, metabolic dynamics and their key components in diverse ecosystems.

  17. Spore Germination and Carbon Metabolism in Fusarium solani V. Changes in Anaerobic Metabolism and Related Enzyme Activities during Development 1

    PubMed Central

    Cochrane, Vincent W.; Cochrane, Jean C.

    1966-01-01

    Macroconidia of Fusarium solani f. phascoli have no detectable capacity to respire glucose anaerobically; germinated spores and mycelium, on the other hand, ferment glucose, although slowly. Extracts of ungerminated spores contain hexokinase, phosphohexoisomerase, phosphofructokinase, aldolase, triose phosphate dehydrogenase, triose phosphate isomerase, phosphoglyceric kinase, enolase, phosphoglyceric mutase, pyruvate kinase, and pyruvate decarboxylase. It follows, therefore, that the appearance of fermentative capacity during spore germination cannot be ascribed to the de novo synthesis of any of these enzymes. During germination and mycelial development the specific activity of all of the enzymes named except phosphohexoisomerase and aldolase increases 2- to 8-fold. Specific activity of all of the enzymes is substantially higher than the fermentative capacity of intact cells, i.e., none is limiting to anaerobic respiration. The enzymatic assay data are consistent with a conclusion reached earlier on the basis of studies of aerobic glucose metabolism, that the process of germination involves an acceleration of pre-existing metabolic systems rather than an appearance of new pathways. PMID:16656324

  18. Metabolic sequences of anaerobic fermentation on glucose-based feeding substrates based on correlation analyses of microbial and metabolite profiling.

    PubMed

    Date, Yasuhiro; Iikura, Tomohiro; Yamazawa, Akira; Moriya, Shigeharu; Kikuchi, Jun

    2012-12-07

    Degradation processes in various biomasses are managed by complex metabolic dynamics created by diverse and extensive interactions and competition in microbial communities and their environments. It is important to develop visualization methods to provide a bird's-eye view when characterizing the entire sequential metabolic process in an environmental ecosystem. Here, we describe an approach for the visualization of the metabolic sequences in anaerobic fermentation ecosystems, characterizing the entire metabolic dynamics using a combination of microbial community profiles and metabolic profiles. By evaluating their time-dependent variation, we found that microbial community profiles and metabolite production processes were characteristically affected by the feeding of different glucose-based substrates (glucose, starch, cellulose), although the compositions of the major microbial community and the metabolites detected were likely to be similar in all experiments. This combinatorial approach to variation in microbial communities and metabolic profiles was used successfully to visualize metabolic sequences in anaerobic fermentation ecosystems, in addition to mining candidate microbiota for cellulose degradation. Thus, this approach provides a powerful tool for visualizing and evaluating metabolic sequences within the biomass degradation process in an environmental ecosystem. This is the first report to visualize the entire metabolic dynamic in an anaerobic fermentation ecosystem as metabolic sequences.

  19. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion.

    PubMed

    Gerin, Patrick A; Vliegen, François; Jossart, Jean-Marc

    2008-05-01

    Energy crops can be used to feed anaerobic digesters and produce renewable energy. However, sustainability of this option requires that it contributes to a net production of renewable energy and a net reduction of fossil CO2 emission. In this paper, the net balance of CO2 emission and renewable energy production is assessed for maize and grass energy crops produced in several agricultural systems relevant for Southern Belgium and surrounding areas. The calculated net energy yields are 8-25 (maize) and 7.4-15.5 (grass) MWh of renewable CH4 per MWh of fossil energy invested, depending on the agricultural option considered. After conversion to electricity, the specific CO2 emissions range from 31 to 104 kg(CO2)MWhelectricity(-1), depending on the case considered. This corresponds to a significant reduction in CO2 emissions compared to the current reference gas-steam turbine technology which produces 456 kg(CO2)MWhelectricity(-1).

  20. Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms.

    PubMed

    Meuser, Jonathan E; Ananyev, Gennady; Wittig, Lauren E; Kosourov, Sergey; Ghirardi, Maria L; Seibert, Michael; Dismukes, G Charles; Posewitz, Matthew C

    2009-06-01

    Several species of green algae use [FeFe]-hydrogenases to oxidize and/or produce H(2) during anoxia. To further define unique aspects of algal hydrogenase activity, the well-studied anaerobic metabolisms of Chlamydomonas reinhardtii were compared with four strains of Chlamydomonas moewusii and a Lobochlamys culleus strain. In vivo and in vitro hydrogenase activity, starch accumulation/degradation, and anaerobic end product secretion were analyzed. The C. moewusii strains showed the most rapid induction of hydrogenase activity, congruent with high rates of starch catabolism, and anoxic metabolite accumulation. Intriguingly, we observed significant differences in morphology and hydrogenase activity in the C. moewusii strains examined, likely the result of long-term adaptation and/or genetic drift during culture maintenance. Of the C. moewusii strains examined, SAG 24.91 showed the highest in vitro hydrogenase activity. However, SAG 24.91 produced little H(2) under conditions of sulfur limitation, which is likely a consequence of its inability to utilize exogenous acetate. In L. culleus, hydrogenase activity was minimal unless pulsed light was used to induce significant H(2) photoproduction. Overall, our results demonstrate that unique anaerobic acclimation strategies have evolved in distinct green algae, resulting in differential levels of hydrogenase activity and species-specific patterns of NADH reoxidation during anoxia.

  1. Phenotypic Diversity of Hydrogen Production in Chlorophycean Algae Reflects Distinct Anaerobic Metabolisms

    SciTech Connect

    Meuser, J. E.; Ananyev, G.; Wittig, L. E.; Kosourov, S.; Ghirardi, M. L.; Seibert, M.; Dismukes, G. C.; Posewitz, M. C.

    2009-01-01

    Several species of green algae use [FeFe]-hydrogenases to oxidize and/or produce H{sub 2} during anoxia. To further define unique aspects of algal hydrogenase activity, the well-studied anaerobic metabolisms of Chlamydomonas reinhardtii were compared with four strains of Chlamydomonas moewusii and a Lobochlamys culleus strain. In vivo and in vitro hydrogenase activity, starch accumulation/degradation, and anaerobic end product secretion were analyzed. The C. moewusii strains showed the most rapid induction of hydrogenase activity, congruent with high rates of starch catabolism, and anoxic metabolite accumulation. Intriguingly, we observed significant differences in morphology and hydrogenase activity in the C. moewusii strains examined, likely the result of long-term adaptation and/or genetic drift during culture maintenance. Of the C. moewusii strains examined, SAG 24.91 showed the highest in vitro hydrogenase activity. However, SAG 24.91 produced little H{sub 2} under conditions of sulfur limitation, which is likely a consequence of its inability to utilize exogenous acetate. In L. culleus, hydrogenase activity was minimal unless pulsed light was used to induce significant H2 photoproduction. Overall, our results demonstrate that unique anaerobic acclimation strategies have evolved in distinct green algae, resulting in differential levels of hydrogenase activity and species-specific patterns of NADH reoxidation during anoxia.

  2. The contribution of energy systems during the upper body Wingate anaerobic test.

    PubMed

    Lovell, Dale; Kerr, Ava; Wiegand, Aaron; Solomon, Colin; Harvey, Leonie; McLellan, Chris

    2013-02-01

    The purpose of this study was to measure the contribution of the aerobic, anaerobic lactic, and alactic systems during an upper body Wingate Anaerobic test (WAnT). Oxygen uptake and blood lactate were measured before, during, and after the WAnT and body composition analyzed by dual-energy X-ray absorptiometry. The contribution of the energy systems was 11.4% ± 1.4%, 60.3% ± 5.6%, and 28.3% ± 4.9% for the aerobic, anaerobic lactic, and alactic systems, respectively.

  3. Modeling central metabolism and energy biosynthesis across microbial life

    DOE PAGES

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal; ...

    2016-08-08

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential

  4. Modeling central metabolism and energy biosynthesis across microbial life

    SciTech Connect

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal; Xia, Fangfang; Overbeek, Ross; Stevens, Rick L.; Henry, Christopher S.

    2016-08-08

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of model organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to

  5. Global transcriptomic analysis uncovers a switch to anaerobic metabolism in tellurite-exposed Escherichia coli.

    PubMed

    Molina-Quiroz, Roberto C; Loyola, David E; Díaz-Vásquez, Waldo A; Arenas, Felipe A; Urzúa, Ulises; Pérez-Donoso, José M; Vásquez, Claudio C

    2014-09-01

    Tellurite (TeO3(2-)) is harmful for most microorganisms, especially Gram-negative bacteria. Even though tellurite toxicity involves a number of individual aspects, including oxidative stress, malfunctioning of metabolic enzymes and a drop in the reduced thiol pool, among others, the general mechanism of toxicity is rather complex and not completely understood to date. This work focused on DNA microarray analysis to evaluate the Escherichia coli global transcriptomic response when exposed to the toxicant. Confirming previous results, the induction of the oxidative stress response regulator soxS was observed. Upregulation of a number of genes involved in the global stress response, protein folding, redox processes and cell wall organization was also detected. In addition, downregulation of aerobic respiration-related genes suggested a metabolic switch to anaerobic respiration. The expression results were validated through oxygen consumption experiments, which corroborated that tellurite-exposed cells effectively consume oxygen at lower rates than untreated controls.

  6. Interplay between oxidant species and energy metabolism

    PubMed Central

    Quijano, Celia; Trujillo, Madia; Castro, Laura; Trostchansky, Andrés

    2015-01-01

    It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. PMID:26741399

  7. Energy Systems Contribution in the Running-based Anaerobic Sprint Test.

    PubMed

    Milioni, F; Zagatto, A M; Barbieri, R A; Andrade, V L; Dos Santos, J W; Gobatto, C A; da Silva, A S R; Santiago, P R P; Papoti, M

    2017-03-01

    The aims of the present study were to verify the contributions of the energy systems during repeated sprints with a short recovery time and the associations of the time- and power-performance of repeated sprints with energetic contributions and aerobic and anaerobic variables. 13 healthy men performed the running-based anaerobic sprint test (RAST) followed by an incremental protocol for lactate minimum intensity determination. During the RAST, the net energy system was estimated using the oxygen consumption and the blood lactate responses. The relative contributions of oxidative phosphorylation, glycolytic, and phosphagen pathways were 38, 34, and 28%, respectively. The contribution of the oxidative pathway increased significantly during RAST especially from the third sprint, at the same time that power- and time-performances decreases significantly. The phosphagen pathway was associated with power-performance (peak power=432±107 W, r=0.65; mean power=325±80 W, r=0.65; minimum power=241±77 W, r=0.57; force impulse=1 846±478 N·s, r=0.74; p<0.05). The time-performance (total time=37.9±2.5 s; best time=5.7±0.4 s; mean time=6.3±0.4 s; worst time=7.0±0.6 s) was significantly correlated with the oxidative phosphorylation pathway (0.57+0.65; p<0.05) and glycolytic pathway (0.57+<+r>0.58; p<0.05). The oxidative pathway appears to play an important role in better recovery between sprints, and the continued use of the glycolytic metabolic pathway seems to decrease sprint performances. Finally, the phosphagen pathway was linked to power production/maintenance.

  8. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea

    PubMed Central

    Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is

  9. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.

    PubMed

    Wang, Qingzhao; Ou, Mark S; Kim, Y; Ingram, L O; Shanmugam, K T

    2010-04-01

    During anaerobic growth of Escherichia coli, pyruvate formate-lyase (PFL) and lactate dehydrogenase (LDH) channel pyruvate toward a mixture of fermentation products. We have introduced a third branch at the pyruvate node in a mutant of E. coli with a mutation in pyruvate dehydrogenase (PDH*) that renders the enzyme less sensitive to inhibition by NADH. The key starting enzymes of the three branches at the pyruvate node in such a mutant, PDH*, PFL, and LDH, have different metabolic potentials and kinetic properties. In such a mutant (strain QZ2), pyruvate flux through LDH was about 30%, with the remainder of the flux occurring through PFL, indicating that LDH is a preferred route of pyruvate conversion over PDH*. In a pfl mutant (strain YK167) with both PDH* and LDH activities, flux through PDH* was about 33% of the total, confirming the ability of LDH to outcompete the PDH pathway for pyruvate in vivo. Only in the absence of LDH (strain QZ3) was pyruvate carbon equally distributed between the PDH* and PFL pathways. A pfl mutant with LDH and PDH* activities, as well as a pfl ldh double mutant with PDH* activity, had a surprisingly low cell yield per mole of ATP (Y(ATP)) (about 7.0 g of cells per mol of ATP) compared to 10.9 g of cells per mol of ATP for the wild type. The lower Y(ATP) suggests the operation of a futile energy cycle in the absence of PFL in this strain. An understanding of the controls at the pyruvate node during anaerobic growth is expected to provide unique insights into rational metabolic engineering of E. coli and related bacteria for the production of various biobased products at high rates and yields.

  10. Characterization of Microbes Capable of Using Vinyl Chloride and Ethene as Sole Carbon and Energy Sources by Anaerobic Oxidation

    DTIC Science & Technology

    2013-09-01

    nov., sp. nov., obligately organohalide- respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial...FINAL REPORT Characterization of Microbes Capable of Using Vinyl Chloride and Ethene as Sole Carbon and Energy Sources by Anaerobic Oxidation...1 1.1 Background: Anaerobic Mineralization of VC

  11. Changes in gene expression of Actinobacillus pleuropneumoniae in response to anaerobic stress reveal induction of central metabolism and biofilm formation.

    PubMed

    Li, Lu; Zhu, Jiawen; Yang, Kui; Xu, Zhuofei; Liu, Ziduo; Zhou, Rui

    2014-06-01

    Actinobacillus pleuropneumoniae is an important porcine respiratory pathogen causing great economic losses in the pig industry worldwide. Oxygen deprivation is a stress that A. pleuropneumoniae will encounter during both early infection and the later, persistent stage. To understand modulation of A. pleuropneumoniae gene expression in response to the stress caused by anaerobic conditions, gene expression profiles under anaerobic and aerobic conditions were compared in this study. The microarray results showed that 631 genes (27.7% of the total ORFs) were differentially expressed in anaerobic conditions. Many genes encoding proteins involved in glycolysis, carbon source uptake systems, pyruvate metabolism, fermentation and the electron respiration transport chain were up-regulated. These changes led to an increased amount of pyruvate, lactate, ethanol and acetate in the bacterial cells as confirmed by metabolite detection. Genes encoding proteins involved in cell surface structures, especially biofilm formation, peptidoglycan biosynthesis and lipopolysaccharide biosynthesis were up-regulated as well. Biofilm formation was significantly enhanced under anaerobic conditions. These results indicate that induction of central metabolism is important for basic survival of A. pleuropneumoniae after a shift to an anaerobic environment. Enhanced biofilm formation may contribute to the persistence of this pathogen in the damaged anaerobic host tissue and also in the early colonization stage. These discoveries give new insights into adaptation mechanisms of A. pleuropneumoniae in response to environmental stress.

  12. Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea

    DOE PAGES

    Rother, Michael; Krzycki, Joseph A.

    2010-01-01

    Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to putmore » this knowledge into the context of their unique energy metabolism.« less

  13. Mechanically versus electro-magnetically braked cycle ergometer: performance and energy cost of the Wingate Anaerobic Test.

    PubMed

    Micklewright, D; Alkhatib, A; Beneke, R

    2006-04-01

    Performance and metabolic profiles of the Wingate Anaerobic Test (WAnT) were compared between a mechanically resisted (ME) and an electro-magnetically braked (EE) cycle ergometer. Fifteen healthy subjects (24.0+/-3.5 years, 180.5+/-6.1 cm, 75.4+/-11.9 kg) performed a WAnT on ME, and EE 3 days apart. Performance was measured as peak power (PP), minimum power (MP), mean power (AP), time to PP (TTPP), fatigue rate (FR), and maximum cadence (RPM(MAX)). Lactic (W (LAC)) and alactic (W (PCR)) anaerobic energy were calculated from net lactate appearance and the fast component of post-exercise oxygen uptake. Aerobic metabolism (W (AER)) was calculated from oxygen uptake during the WAnT. Total energy cost (W (TOT)) was calculated as the sum of W (LAC), W (PCR), and W (AER). There was no difference between ME and EE in PP (873+/-159 vs. 931+/-193 W) or AP (633+/-89 vs. 630+/-89 W). In the EE condition TTPP (2.3+/-0.7 vs. 4.3+/-0.7 s) was longer (P<0.001), MP (464+/-78 vs. 388+/-57 W) was lower (P<0.001), FR (15.2+/-5.2 vs. 20.5+/-6.8%) was higher (P<0.005), and RPM(MAX) (168+/-18 vs. 128+/-15 rpm) was slower (P<0.001). There was no difference in W (TOT) (1,331+/-182 vs. 1,373+/-120 J kg(-1)), W (AER) (292+/-76 vs. 309+/-72 J kg(-1)), W (PCR) (495+/-153 vs. 515+/-111 J kg(-1)) or W (LAC) (545+/-132 vs. 549+/-141 J kg(-1)) between ME and EE devices. The EE produces distinctly different performance measures but valid metabolic WAnT results that may be used to evaluate anaerobic fitness.

  14. Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria.

    PubMed

    Sun, Jibin; van den Heuvel, Joop; Soucaille, Philippe; Qu, Yinbo; Zeng, An-Ping

    2003-01-01

    The dihydroxyacetone (dha) regulon of bacteria encodes genes for the anaerobic metabolism of glycerol. In this work, genomic data are used to analyze and compare the dha regulon and related genes in different organisms in silico with respect to gene organization, sequence similarity, and possible functions. Database searches showed that among the organisms, the genomes of which have been sequenced so far, only two, i.e., Klebsiella pneumoniae MGH 78578 and Clostridium perfringens contain a complete dha regulon bearing all known enzymes. The components and their organization in the dha regulon of these two organisms differ considerably from each other and also from the previously partially sequenced dha regulons in Citrobacter freundii, Clostridium pasteurianum, and Clostridium butyricum. Unlike all of the other organisms, genes for the oxidative and reductive pathways of anaerobic glycerol metabolism in C. perfringens are located in two separate organization units on the chromosome. Comparisons of deduced protein sequences of genes with similar functions showed that the dha regulon components in K. pneumoniae and C. freundii have high similarities (80-95%) but lower similarities to those of the Clostridium species (30-80%). Interestingly, the protein sequence similarities among the dha genes of the Clostridium species are in many cases even lower than those between the Clostridium species and K. pneumoniae or C. freundii, suggesting two different types of dha regulon in the Clostridium species studied. The in silico reconstruction and comparison of dha regulons revealed several new genes in the microorganisms studied. In particular, a novel dha kinase that is phosphoenolpyruvate-dependent is identified and experimentally confirmed for K. pneumoniae in addition to the known ATP-dependent dha kinase. This finding gives new insights into the regulation of glycerol metabolism in K. pneumoniae and explains some hitherto not well understood experimental observations.

  15. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  16. Alterations in aerobic-anaerobic proportions of metabolism during work in heat.

    PubMed

    Dimri, G P; Malhotra, M S; Sen Gupta, J; Kumar, T S; Arora, B S

    1980-01-01

    With a view to investigating the aerobic and anaerobic proportions of oxygen supply during different grades of muscular activity in varying thermal stress, studies have been conducted on six young healthy Indians naturally acclimatized to heat. The subjects were given submaximal exercises of 400, 500, and 600 kgm/min (equivalent to 65.40, 81.75, and 98.10 W) for 6 min on a bicycle ergometer in three different simulated conditions, i.e., comfortable, hot humid, and very hot humid. Their O2 consumption (VO2), pulmonary ventilation (VE) and heart rate (HR) were measured during rest and throughout the exercise period (6 min) and for 30 min post exercise. Blood lactate level (LA) was measured during rest and recovery. From these, the total O2 cost with aerobic and anaerobic proportions were calculated. Results indicated a significant increase in the total O2 cost for each exercise with increasing thermal stress, along with a significant increase in the anaerobic fraction and a decrease in the aerobic fraction. The increase in anaerobic contribution to the energy supply processes was further confirmed by a significant increase in relative O2 debt (l/kg) and in blood lactate level at each work load. Thus, a highly significant correlation (P < 0.001) was found between O2 debt contracted and increase in thermal stress. A significant fall in VO2 max was also observed in hot humid and very hot humid conditions as against comfortable temperature, with no change in HR max and VE max.

  17. Energy and nutrient recovery from anaerobic treatment of organic wastes

    NASA Astrophysics Data System (ADS)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  18. Energy expenditure during tennis play: a preliminary video analysis and metabolic model approach.

    PubMed

    Botton, Florent; Hautier, Christophe; Eclache, Jean-Paul

    2011-11-01

    The aim of this study was to estimate, using video analysis, what proportion of the total energy expenditure during a tennis match is accounted for by aerobic and anaerobic metabolism, respectively. The method proposed involved estimating the metabolic power (MP) of 5 activities, which are inherent to tennis: walking, running, hitting the ball, serving, and sitting down to rest. The energy expenditure concerned was calculated by sequencing the activity by video analysis. A bioenergetic model calculated the aerobic energy expenditure (EEO2mod) in terms of MP, and the anaerobic energy expenditure was calculated by subtracting this (MP - EEO2mod). Eight tennis players took part in the experiment as subjects (mean ± SD: age 25.2 ± 1.9 years, weight 79.3 ± 10.8 kg, VO2max 54.4 ± 5.1 ml·kg(-1)·min(-1)). The players started off by participating in 2 games while wearing the K4b2, with their activity profile measured by the video analysis system, and then by playing a set without equipment but with video analysis. There was no significant difference between calculated and measured oxygen consumptions over the 16 games (p = 0.763), and these data were strongly related (r = 0.93, p < 0.0001). The EEO2mod was quite weak over all the games (49.4 ± 4.8% VO2max), whereas the MP during points was up to 2 or 3 times the VO2max. Anaerobic metabolism reached 32% of the total energy expenditure across all the games 67% for points and 95% for hitting the ball. This method provided a good estimation of aerobic energy expenditure and made it possible to calculate the anaerobic energy expenditure. This could make it possible to estimate the metabolic intensity of training sessions and matches using video analysis.

  19. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions.

    PubMed Central

    Kaiser, J P; Feng, Y; Bollag, J M

    1996-01-01

    Our review of the metabolic pathways of pyridines and aza-arenes showed that biodegradation of heterocyclic aromatic compounds occurs under both aerobic and anaerobic conditions. Depending upon the environmental conditions, different types of bacteria, fungi, and enzymes are involved in the degradation process of these compounds. Our review indicated that different organisms are using different pathways to biotransform a substrate. Our review also showed that the transformation rate of the pyridine derivatives is dependent on the substituents. For example, pyridine carboxylic acids have the highest transformation rate followed by mono-hydroxypyridines, methylpyridines, aminopyridines, and halogenated pyridines. Through the isolation of metabolites, it was possible to demonstrate the mineralization pathway of various heterocyclic aromatic compounds. By using 14C-labeled substrates, it was possible to show that ring fission of a specific heterocyclic compound occurs at a specific position of the ring. Furthermore, many researchers have been able to isolate and characterize the microorganisms or even the enzymes involved in the transformation of these compounds or their derivatives. In studies involving 18O labeling as well as the use of cofactors and coenzymes, it was possible to prove that specific enzymes (e.g., mono- or dioxygenases) are involved in a particular degradation step. By using H2 18O, it could be shown that in certain transformation reactions, the oxygen was derived from water and that therefore these reactions might also occur under anaerobic conditions. PMID:8840783

  20. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes

    PubMed Central

    Roussel, Erwan G.; Cragg, Barry A.; Webster, Gordon; Sass, Henrik; Tang, Xiaohong; Williams, Angharad S.; Gorra, Roberta; Weightman, Andrew J.; Parkes, R. John

    2015-01-01

    The impact of temperature (0–80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple ‘windows’ within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, ‘Bathyarchaeota’) changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry. PMID:26207045

  1. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes.

    PubMed

    Roussel, Erwan G; Cragg, Barry A; Webster, Gordon; Sass, Henrik; Tang, Xiaohong; Williams, Angharad S; Gorra, Roberta; Weightman, Andrew J; Parkes, R John

    2015-08-01

    The impact of temperature (0-80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple 'windows' within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, 'Bathyarchaeota') changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry.

  2. Pollution and energy management through the anaerobic approach

    SciTech Connect

    Szendrey, L.M.; Dorion, G.H.; Schafer, P.E.

    1982-09-01

    Describes how a rum producer on Puerto Rico is using an anaerobic reactor to convert distillery wastes to methane gas. Reports that the reactor generates enough methane to replace 75 barrels of fuel oil per day while reducing the biochemical oxygen demand (BOD) load. Explains that the reactor is loaded with microbial seed, water and mosto at a rate of 50,000 gpd. Plant operations, requiring minimal personnel, involve maintenance of correct environment for anaerobic microorganisms through periodic adjustment of pH and temperature. Points out that many modifications are possible, and thus the Bacardi process is applicable to still-bottom wastes, spent grain liquors, centrates, pulp and paper wastes, sweet or acid cheese whey, food packing and meat packing wastes, liquid extraction raffinates, sludge heat treatment sidestreams, corn products wastes, protein extraction wastes, and winery wastes.

  3. Some Aspects of Yeast Anaerobic Metabolism Examined by the Inhibition of Pyruvate Decarboxylase

    NASA Astrophysics Data System (ADS)

    Martin, Earl V.

    1998-10-01

    Incubation of yeast cells with various sugars in aqueous alkaline phosphate solutions under anaerobic conditions results in the accumulation of pyruvate in the cell medium after short periods of up to 15 minutes. This accumulation of pyruvate as the end product of glycolysis results from the inhibition of pyruvate decarboxylase under the conditions. This pyruvate production can be readily measured in the cell-free medium by a spectrophotometric assay using lactic dehydrogenase and NADH. The production of pyruvate can be directly related to the ability of the yeast cells to metabolize particular carbon sources provided. Comparison of pyruvate production by yeast from a variety of common sugars, for example, provides students with a means to assess what sugars are readily utilized by this organism. An additional advantage for student laboratory studies is the availability of Sacchromyces cerevisiae at minimal cost as dry granules which are easily weighed and quickly activated.

  4. Anaerobic Central Metabolic Pathways in Shewanella oneidensis MR-1 Reinterpreted in the Light of Isotopic Metabolite Labeling▿

    PubMed Central

    Tang, Yinjie J.; Meadows, Adam L.; Kirby, James; Keasling, Jay D.

    2007-01-01

    It has been proposed that during growth under anaerobic or oxygen-limited conditions, Shewanella oneidensis MR-1 uses the serine-isocitrate lyase pathway common to many methylotrophic anaerobes, in which formaldehyde produced from pyruvate is condensed with glycine to form serine. The serine is then transformed through hydroxypyruvate and glycerate to enter central metabolism at phosphoglycerate. To examine its use of the serine-isocitrate lyase pathway under anaerobic conditions, we grew S. oneidensis MR-1 on [1-13C]lactate as the sole carbon source, with either trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor. Analysis of cellular metabolites indicated that a large percentage (>70%) of lactate was partially oxidized to either acetate or pyruvate. The 13C isotope distributions in amino acids and other key metabolites indicate that under anaerobic conditions, although glyoxylate synthesized from the isocitrate lyase reaction can be converted to glycine, a complete serine-isocitrate pathway is not present and serine/glycine is, in fact, oxidized via a highly reversible degradation pathway. The labeling data also suggest significant activity in the anapleurotic (malic enzyme and phosphoenolpyruvate carboxylase) reactions. Although the tricarboxylic acid (TCA) cycle is often observed to be incomplete in many other anaerobes (absence of 2-oxoglutarate dehydrogenase activity), isotopic labeling supports the existence of a complete TCA cycle in S. oneidensis MR-1 under certain anaerobic conditions, e.g., TMAO-reducing conditions. PMID:17114268

  5. Anaerobic-aerobic sequencing bioreactors improve energy efficiency for treatment of personal care product industry wastes.

    PubMed

    Ahammad, S Z; Bereslawski, J L; Dolfing, J; Mota, C; Graham, D W

    2013-07-01

    Personal care product (PCP) industry liquid wastes contain shampoo residues, which are usually treated by aerobic activated sludge (AS). Unfortunately, AS is expensive for PCP wastes because of high aeration and energy demands, whereas potentially energy-positive anaerobic designs cannot meet effluent targets. Therefore, combined anaerobic-aerobic systems may be the best solution. Seven treatment systems were assessed in terms of energy and treatment performance for shampoo wastes, including one aerobic, three anaerobic (HUASB, AHR and AnCSTR) and three anaerobic-aerobic reactor designs. COD removals were highest in the HUASB-aerobic (87.9 ± 0.4%) and AHR-aerobic (86.8±0.5%) systems, which used 69.2% and 62.5% less energy than aerobic AS. However, actual methane production rates were low relative to theoretical in the UASB and AHR units (∼10% methane/COD removed) compared with the AnCSTR unit (∼70%). Anaerobic-aerobic sequence reactors show promise for treating shampoo wastes, but optimal designs depend upon whether methane production or COD removal is most important to operations.

  6. Genes Involved in Anaerobic Metabolism of Phenol in the Bacterium Thauera aromatica

    PubMed Central

    Breinig, Sabine; Schiltz, Emile; Fuchs, Georg

    2000-01-01

    Genes involved in the anaerobic metabolism of phenol in the denitrifying bacterium Thauera aromatica have been studied. The first two committed steps in this metabolism appear to be phosphorylation of phenol to phenylphosphate by an unknown phosphoryl donor (“phenylphosphate synthase”) and subsequent carboxylation of phenylphosphate to 4-hydroxybenzoate under release of phosphate (“phenylphosphate carboxylase”). Both enzyme activities are strictly phenol induced. Two-dimensional gel electrophoresis allowed identification of several phenol-induced proteins. Based on N-terminal and internal amino acid sequences of such proteins, degenerate oligonucleotides were designed to identify the corresponding genes. A chromosomal DNA segment of about 14 kbp was sequenced which contained 10 genes transcribed in the same direction. These are organized in two adjacent gene clusters and include the genes coding for five identified phenol-induced proteins. Comparison with sequences in the databases revealed the following similarities: the gene products of two open reading frames (ORFs) are each similar to either the central part and N-terminal part of phosphoenolpyruvate synthases. We propose that these ORFs are components of the phenylphosphate synthase system. Three ORFs showed similarity to the ubiD gene product, 3-octaprenyl-4-hydroxybenzoate carboxy lyase; UbiD catalyzes the decarboxylation of a 4-hydroxybenzoate analogue in ubiquinone biosynthesis. Another ORF was similar to the ubiX gene product, an isoenzyme of UbiD. We propose that (some of) these four proteins are involved in the carboxylation of phenylphosphate. A 700-bp PCR product derived from one of these ORFs cross-hybridized with DNA from different Thauera and Azoarcus strains, even from those which have not been reported to grow with phenol. One ORF showed similarity to the mutT gene product, and three ORFs showed no strong similarities to sequences in the databases. Upstream of the first gene cluster, an

  7. Potential for energy generation from anaerobic digestion of food waste in Australia.

    PubMed

    Lou, Xian Fang; Nair, Jaya; Ho, Goen

    2013-03-01

    Published national and state reports have revealed that Australia deposits an average of 16 million Mg of solid waste into landfills yearly, of which approximately 12.6% is comprised of food. Being highly biodegradable and possessing high energy content, anaerobic digestion offers an attractive treatment option alternative to landfilling. The present study attempted to identify the theoretical maximum benefit of food waste digestion in Australia with regard to energy recovery and waste diversion from landfills. The study also assessed the scope for anaerobic process to utilize waste for energy projects through various case study scenarios. Results indicated anaerobic digestion of total food waste generated across multiple sites in Australia could generate 558 453 dam(3) of methane which translated to 20.3 PJ of heating potential or 1915 GWe in electricity generation annually. This would contribute to 3.5% of total current energy supply from renewable sources. Energy contribution from anaerobic digestion of food waste to the total energy requirement in Australia remains low, partially due to the high energy consumption of the country. However its appropriateness in low density regions, which are prevalent in Australia, may allow digesters to have a niche application in the country.

  8. Hydrodynamic chronoamperometry for probing kinetics of anaerobic microbial metabolism - case study of Faecalibacterium prausnitzii

    NASA Astrophysics Data System (ADS)

    Prévoteau, Antonin; Geirnaert, Annelies; Arends, Jan B. A.; Lannebère, Sylvain; van de Wiele, Tom; Rabaey, Korneel

    2015-07-01

    Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 104 to 5 × 107 cells.mL-1). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 μM kcat = 5.3×105 s-1, at 37 °C) and glucose (KM = 6 μM kcat = 2.4 × 105 s-1). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution.

  9. An in Vivo 13C NMR Analysis of the Anaerobic Yeast Metabolism of 1-13C-Glucose

    NASA Astrophysics Data System (ADS)

    Giles, Brent J.; Matsche, Zenziwe; Egeland, Ryan D.; Reed, Ryan A.; Morioka, Scott S.; Taber, Richard L.

    1999-11-01

    A biochemistry laboratory experiment that studies the dynamics of the anaerobic yeast metabolism of 1-13C-D-glucose via NMR is described. Fleischmann's Active Dry yeast, under anaerobic conditions, produces primarily 2-13C-ethanol and some 1-13C-glycerol as end products. An experiment is described in which the yeast is subjected to osmotic shock from an increasing sodium chloride concentration. Under these conditions, the yeast increases the ratio of glycerol to ethanol. The experiment can be accomplished in a single laboratory period.

  10. Anaerobic central metabolic pathways active during polyhydroxyalkanoate production in uncultured cluster 1 Defluviicoccus enriched in activated sludge communities.

    PubMed

    Burow, Luke C; Mabbett, Amanda N; Borrás, Luis; Blackall, Linda L

    2009-09-01

    A glycogen nonpolyphosphate-accumulating organism (GAO) enrichment culture dominated by the Alphaproteobacteria cluster 1 Defluviicoccus was investigated to determine the metabolic pathways involved in the anaerobic formation of polyhydroxyalkanoates, carbon storage polymers important for the proliferation of microorganisms in enhanced biological phosphorus removal processes. FISH-microautoradiography and post-FISH fluorescent chemical staining confirmed acetate assimilation as polyhydroxyalkanoates in cluster 1 Defluviicoccus under anaerobic conditions. Chemical inhibition of glycolysis using iodoacetate, and of isocitrate lyase by 3-nitropropionate and itaconate, indicated that carbon is likely to be channelled through both glycolysis and the glyoxylate cycle in cluster 1 Defluviicoccus. The effect of metabolic inhibitors of aconitase (monofluoroacetate) and succinate dehydrogenase (malonate) suggested that aconitase, but not succinate dehydrogenase, was active, providing further support for the role of the glyoxylate cycle in these GAOs. Metabolic inhibition of fumarate reductase using oxantel decreased polyhydroxyalkanoate production. This indicated reduction of fumarate to succinate and the operation of the reductive branch of the tricarboxylic acid cycle, which is possibly important in the production of the polyhydroxyvalerate component of polyhydroxyalkanoates observed in cluster 1 Defluviicoccus enrichment cultures. These findings were integrated with previous metabolic models for GAOs and enabled an anaerobic central metabolic pathway model for polyhydroxyalkanoate formation in cluster 1 Defluviicoccus to be proposed.

  11. Energy metabolism in neurodevelopment and medulloblastoma.

    PubMed

    Tech, Katherine; Gershon, Timothy R

    2015-01-01

    New, less toxic therapies are needed for medulloblastoma, the most common malignant brain tumor in children. Like many cancers, medulloblastomas demonstrate metabolic patterns that are markedly different from the surrounding non-neoplastic tissue and are highly organized to support tumor growth. Key aspects of medulloblastoma metabolism, including increased lipogenesis and aerobic glycolysis are derived from the metabolic programs of neural progenitors. During neural development, Sonic Hedgehog (Shh) signaling induces lipogenesis and aerobic glycolysis in proliferating progenitors to support rapid growth. Shh-regulated transcription induces specific genes, including hexokinase 2 (Hk2) and fatty acid synthase (FASN) that mediate these metabolic patterns. Medulloblastomas co-opt these developmentally-regulated patterns of metabolic gene expression for sustained tumor growth. Additionally, medulloblastomas limit protein translation through activation of eukaryotic elongation factor 2 kinase (eEF2K), to restrict energy expenditure. The activation of eEF2K reduces the need to generate ATP, enabling reduced dependence on oxidative phosphorylation and increased metabolism of glucose through aerobic glycolysis. Lipogenesis, aerobic glycolysis and restriction of protein translation operate in a network of metabolic processes that is integrated by adenosine monophosphate-activated protein kinase (AMPK) to maintain homeostasis. The homeostatic effect of AMPK has the potential to limit the impact of metabolically targeted interventions. Through combinatorial targeting of lipogenesis, glycolysis and eEF2K, however, this homeostatic effect may be overcome. We propose that combinatorial targeting of medulloblastoma metabolism may produce the synergies needed for effective anti-cancer therapy.

  12. Anaerobic choline metabolism in microcompartments promotes growth and swarming of P roteus mirabilis

    PubMed Central

    Jameson, Eleanor; Fu, Tiantian; Brown, Ian R.; Paszkiewicz, Konrad; Purdy, Kevin J.

    2015-01-01

    Summary Gammaproteobacteria are important gut microbes but only persist at low levels in the healthy gut. The ecology of G ammaproteobacteria in the gut environment is poorly understood. Here, we demonstrate that choline is an important growth substrate for representatives of G ammaproteobacteria. Using P roteus mirabilis as a model, we investigate the role of choline metabolism and demonstrate that the cut C gene, encoding a choline‐trimethylamine lyase, is essential for choline degradation to trimethylamine by targeted mutagenesis of cut C and subsequent complementation experiments. P roteus mirabilis can rapidly utilize choline to enhance growth rate and cell yield in broth culture. Importantly, choline also enhances swarming‐associated colony expansion of P . mirabilis under anaerobic conditions on a solid surface. Comparative transcriptomics demonstrated that choline not only induces choline‐trimethylamine lyase but also genes encoding shell proteins for the formation of bacterial microcompartments. Subsequent analyses by transmission electron microscopy confirmed the presence of such novel microcompartments in cells cultivated in liquid broth and hyper‐flagellated swarmer cells from solid medium. Together, our study reveals choline metabolism as an adaptation strategy for P . mirabilis and contributes to better understand the ecology of this bacterium in health and disease. PMID:26404097

  13. Thyroid hormone signaling in energy homeostasis and energy metabolism.

    PubMed

    McAninch, Elizabeth A; Bianco, Antonio C

    2014-04-01

    The thyroid hormone (TH) plays a significant role in diverse processes related to growth, development, differentiation, and metabolism. TH signaling modulates energy expenditure through both central and peripheral pathways. At the cellular level, the TH exerts its effects after concerted mechanisms facilitate binding to the TH receptor. In the hypothalamus, signals from a range of metabolic pathways, including appetite, temperature, afferent stimuli via the autonomic nervous system, availability of energy substrates, hormones, and other biologically active molecules, converge to maintain plasma TH at the appropriate level to preserve energy homeostasis. At the tissue level, TH actions on metabolism are controlled by transmembrane transporters, deiodinases, and TH receptors. In the modern environment, humans are susceptible to an energy surplus, which has resulted in an obesity epidemic and, thus, understanding the contribution of the TH to cellular and organism metabolism is increasingly relevant.

  14. Thyroid hormone signaling in energy homeostasis and energy metabolism

    PubMed Central

    McAninch, Elizabeth A.; Bianco, Antonio C.

    2014-01-01

    The thyroid hormone plays a significant role in diverse processes related to growth, development, differentiation, and metabolism. Thyroid hormone signaling modulates energy expenditure through both central and peripheral pathways. At the cellular level, the thyroid hormone exerts its effects after concerted mechanisms facilitate binding to the thyroid hormone receptor. In the hypothalamus, signals from a range of metabolic pathways, including appetite, temperature, afferent stimuli via the autonomic nervous system, availability of energy substrates, hormones, and other biologically active molecules, converge to maintain plasma thyroid hormone at the appropriate level to preserve energy homeostasis. At the tissue level, thyroid hormone actions on metabolism are controlled by transmembrane transporters, deiodinases, and thyroid hormone receptors. In the modern environment, humans are susceptible to an energy surplus, which has resulted in an obesity epidemic and thus understanding the contribution of the thyroid hormone to cellular and organism metabolism is increasingly relevant. PMID:24697152

  15. A Genome-Scale Model of Shewanella piezotolerans Simulates Mechanisms of Metabolic Diversity and Energy Conservation

    PubMed Central

    Dufault-Thompson, Keith; Jian, Huahua; Cheng, Ruixue; Li, Jiefu; Wang, Fengping

    2017-01-01

    ABSTRACT Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea. IMPORTANCE The well-studied nature of the metabolic diversity of Shewanella bacteria makes species from this genus a promising platform for investigating the evolution of carbon metabolism and energy

  16. A Genome-Scale Model of Shewanella piezotolerans Simulates Mechanisms of Metabolic Diversity and Energy Conservation.

    PubMed

    Dufault-Thompson, Keith; Jian, Huahua; Cheng, Ruixue; Li, Jiefu; Wang, Fengping; Zhang, Ying

    2017-01-01

    Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea. IMPORTANCE The well-studied nature of the metabolic diversity of Shewanella bacteria makes species from this genus a promising platform for investigating the evolution of carbon metabolism and energy conservation

  17. Extremely thermophilic energy metabolisms: biotechnological prospects.

    PubMed

    Straub, Christopher T; Zeldes, Benjamin M; Schut, Gerrit J; Adams, Michael Ww; Kelly, Robert M

    2017-03-16

    New strategies for metabolic engineering of extremely thermophilic microorganisms to produce bio-based fuels and chemicals could leverage pathways and physiological features resident in extreme thermophiles for improved outcomes. Furthermore, very recent advances in genetic tools for these microorganisms make it possible for them to serve as metabolic engineering hosts. Beyond providing a higher temperature alternative to mesophilic platforms, exploitation of strategic metabolic characteristics of high temperature microorganisms grants new opportunities for biotechnological products. This review considers recent developments in extreme thermophile biology as they relate to new horizons for energy biotechnology.

  18. Metabolism of polyethylene glycol by two anaerobic bacteria, Desulfovibrio desulfuricans and a Bacteroides sp

    SciTech Connect

    Dwyer, D.F.; Tiedje, J.M.

    1986-10-01

    Two anaerobic bacteria were isolated from polyethylene glycol (PEG)-degrading, methanogenic, enrichment cultures obtained from a municipal sludge digester. One isolate, identified as Desulfovibrio desulfuricans (strain DG2), metabolized oligomers ranging from ethylene glycol (EG) to tetraethylene glycol. The other isolate, identified as a Bacteroides sp. (strain PG1), metabolized diethylene glycol and polymers of PEG up to an average molecular mass of 20,000 g/mol (PEG 20000; HO-(CH/sub 2/-CH/sub 2/-O-)/sub n/H). Both strains produced acetaldehyde as an intermediate, with acetate, ethanol, and hydrogen as end products. In coculture with a Methanobacterium sp., the end products were acetate and methane. Polypropylene glycol (HO-(CH/sub 2/-CH/sub 2/-CH/sub 2/-O-)/sub n/H) was not metabolized by either bacterium, and methanogenic enrichments could not be obtained on this substrate. Cell extracts of both bacteria dehydrogenated EG, PEGs up to PEG 400 in size, acetaldehyde, and other mono- and dihydroxylated compounds. Extracts of Bacteroides strain PGI could not dehydrogenate long polymers of PEG (less than or equal to1000 g/mol), but the bacterium grew with PEG 1000 or PEG 20000 as a substrate and therefore possesses a mechanism for PEG depolymerization not present in cell extracts. In contrast, extracts of D. desulfuricans DG2 dehydrogenated long polymers of PEG, but whole cells did not grow with these polymerase substrates. This indicated that the bacterium could not convert PEG to a product suitable for uptake.

  19. Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria.

    PubMed

    Caro-Quintero, Alejandro; Konstantinidis, Konstantinos T

    2015-03-17

    Genome sequencing has revealed that horizontal gene transfer (HGT) is a major evolutionary process in bacteria. Although it is generally assumed that closely related organisms engage in genetic exchange more frequently than distantly related ones, the frequency of HGT among distantly related organisms and the effect of ecological relatedness on the frequency has not been rigorously assessed. Here, we devised a novel bioinformatic pipeline, which minimized the effect of over-representation of specific taxa in the available databases and other limitations of homology-based approaches by analyzing genomes in standardized triplets, to quantify gene exchange between bacterial genomes representing different phyla. Our analysis revealed the existence of networks of genetic exchange between organisms with overlapping ecological niches, with mesophilic anaerobic organisms showing the highest frequency of exchange and engaging in HGT twice as frequently as their aerobic counterparts. Examination of individual cases suggested that inter-phylum HGT is more pronounced than previously thought, affecting up to ∼ 16% of the total genes and ∼ 35% of the metabolic genes in some genomes (conservative estimation). In contrast, ribosomal and other universal protein-coding genes were subjected to HGT at least 150 times less frequently than genes encoding the most promiscuous metabolic functions (for example, various dehydrogenases and ABC transport systems), suggesting that the species tree based on the former genes may be reliable. These results indicated that the metabolic diversity of microbial communities within most habitats has been largely assembled from preexisting genetic diversity through HGT and that HGT accounts for the functional redundancy among phyla.

  20. Bone Remodeling and Energy Metabolism: New Perspectives

    PubMed Central

    de Paula, Francisco J. A.; Rosen, Clifford J.

    2013-01-01

    Bone mineral, adipose tissue and energy metabolism are interconnected by a complex and multilevel series of networks. Calcium and phosphorus are utilized for insulin secretion and synthesis of high energy compounds. Adipose tissue store lipids and cholecalciferol, which, in turn, can influence calcium balance and energy expenditure. Hormones long-thought to solely modulate energy and mineral homeostasis may influence adipocytic function. Osteoblasts are a target of insulin action in bone. Moreover, endocrine mediators, such as osteocalcin, are synthesized in the skeleton but regulate carbohydrate disposal and insulin secretion. Finally, osteoblasts and adipocytes originate from the same mesenchymal progenitor. The mutual crosstalk between osteoblasts and adipocytes within the bone marrow microenvironment plays a crucial role in bone remodeling. In the present review we provide an overview of the reciprocal control between bone and energy metabolism and its clinical implications. PMID:26273493

  1. In situ detection of anaerobic alkane metabolites in subsurface environments.

    PubMed

    Agrawal, Akhil; Gieg, Lisa M

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  2. In situ detection of anaerobic alkane metabolites in subsurface environments

    PubMed Central

    Agrawal, Akhil; Gieg, Lisa M.

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments. PMID:23761789

  3. Aerobic and anaerobic metabolism in oxygen minimum layer fishes: the role of alcohol dehydrogenase.

    PubMed

    Torres, Joseph J; Grigsby, Michelle D; Clarke, M Elizabeth

    2012-06-01

    Zones of minimum oxygen form at intermediate depth in all the world's oceans as a result of global circulation patterns that keep the water at oceanic mid-depths out of contact with the atmosphere for hundreds of years. In areas where primary production is very high, the microbial oxidation of sinking organic matter results in very low oxygen concentrations at mid-depths. Such is the case with the Arabian Sea, with O(2) concentrations reaching zero at 200 m and remaining very low (<0.1 ml O(2)l(-1)) for hundreds of meters below this depth, and in the California borderland, where oxygen levels reach 0.2 ml O(2)l(-1) at 700 m with severely hypoxic (<1.0 ml O(2)l(-1)) waters at depths 300 m above and below that. Despite the very low oxygen, mesopelagic fishes (primarily lanternfishes: Mytophidae) inhabiting the Arabian Sea and California borderland perform a daily vertical migration into the low-oxygen layer, spending daylight hours in the oxygen minimum zone and migrating upward into normoxic waters at night. To find out how fishes were able to survive their daily sojourns into the minimum zone, we tested the activity of four enzymes, one (lactate dehydrogenase, LDH) that served as a proxy for anaerobic glycolysis with a conventional lactate endpoint, a second (citrate synthase, CS) that is indicative of aerobic metabolism, a third (malate dehydrogenase) that functions in the Krebs' cycle and as a bridge linking mitochondrion and cytosol, and a fourth (alcohol dehydrogenase, ADH) that catalyzes the final reaction in a pathway where pyruvate is reduced to ethanol. Ethanol is a metabolic product easily excreted by fish, preventing lactate accumulation. The ADH pathway is rarely very active in vertebrate muscle; activity has previously been seen only in goldfish and other cyprinids capable of prolonged anaerobiosis. Activity of the enzyme suite in Arabian Sea and California fishes was compared with that of ecological analogs in the same family and with the same

  4. Sodium signaling and astrocyte energy metabolism.

    PubMed

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676.

  5. The Dynamic Anaerobic Reactor & Integrated Energy System (DARIES) model: model development, validation, and sensitivity analysis.

    PubMed

    Brouwer, A F; Grimberg, S J; Powers, S E

    2012-12-01

    The Dynamic Anaerobic Reactor & Integrated Energy System (DARIES) model has been developed as a biogas and electricity production model of a dairy farm anaerobic digester system. DARIES, which incorporates the Anaerobic Digester Model No. 1 (ADM1) and simulations of both combined heat and power (CHP) and digester heating systems, may be run in either completely mixed or plug flow reactor configurations. DARIES biogas predictions were shown to be statistically coincident with measured data from eighteen full-scale dairy operations in the northeastern United States. DARIES biogas predictions were more accurate than predictions made by the U.S. AgSTAR model FarmWare 3.4. DARIES electricity production predictions were verified against data collected by the NYSERDA DG/CHP Integrated Data System. Preliminary sensitivity analysis demonstrated that DARIES output was most sensitive to influent flow rate, chemical oxygen demand (COD), and biodegradability, and somewhat sensitive to hydraulic retention time and digester temperature.

  6. Energy metabolism plasticity enables stemness programs.

    PubMed

    Folmes, Clifford D L; Nelson, Timothy J; Dzeja, Petras P; Terzic, Andre

    2012-04-01

    Engineering pluripotency through nuclear reprogramming and directing stem cells into defined lineages underscores cell fate plasticity. Acquisition of and departure from stemness are governed by genetic and epigenetic controllers, with modulation of energy metabolism and associated signaling increasingly implicated in cell identity determination. Transition from oxidative metabolism, typical of somatic tissues, into glycolysis is a prerequisite to fuel-proficient reprogramming, directing a differentiated cytotype back to the pluripotent state. The glycolytic metabotype supports the anabolic and catabolic requirements of pluripotent cell homeostasis. Conversely, redirection of pluripotency into defined lineages requires mitochondrial biogenesis and maturation of efficient oxidative energy generation and distribution networks to match demands. The vital function of bioenergetics in regulating stemness and lineage specification implicates a broader role for metabolic reprogramming in cell fate decisions and determinations of tissue regenerative potential.

  7. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    PubMed

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology.

  8. Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR-1

    SciTech Connect

    Cruz-Garza, Claribel; Murray, Alison E.; Rodrigues, Jorge L.M.; Gralnick, Jeffrey A.; McCue, Lee Ann; Romine, Margaret F.; Loffler, F. E.; Tiedje, James M.

    2011-03-30

    EtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches, shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulators Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is not well understood. The expression of the nap genes, nrfA, cymA and hcp was significantly reduced in etrA deletion mutant EtrA7-1; however, limited anaerobic growth and nitrate reduction occurred, suggesting that multiple regulators control nitrate reduction in this strain. Dimethyl sulfoxide (DMSO) and fumarate reductase gene expression was down regulated at least 2-fold and the EtrA7-1 mutant grew poorly with fumarate and dimethyl sulfoxide (DMSO), suggesting both respiratory pathways are under EtrA control. Transcript analysis further suggested a role of EtrA in prophage activation and down regulation of genes implicated in aerobic metabolism. In contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this study demonstrates that EtrA acts as a global transcriptional regulator and confers physiological advantages to strain MR-1 under certain growth conditions. In conjunction with other regulators, EtrA fine-tunes the expression of genes involved in anaerobic metabolism in S. oneidensis strain MR-1.

  9. Complete Genome of Ignavibacterium album, a Metabolically Versatile, Flagellated, Facultative Anaerobe from the Phylum Chlorobi.

    PubMed

    Liu, Zhenfeng; Frigaard, Niels-Ulrik; Vogl, Kajetan; Iino, Takao; Ohkuma, Moriya; Overmann, Jörg; Bryant, Donald A

    2012-01-01

    Prior to the recent discovery of Ignavibacterium album (I. album), anaerobic photoautotrophic green sulfur bacteria (GSB) were the only members of the bacterial phylum Chlorobi that had been grown axenically. In contrast to GSB, sequence analysis of the 3.7-Mbp genome of I. album shows that this recently described member of the phylum Chlorobi is a chemoheterotroph with a versatile metabolism. I. album lacks genes for photosynthesis and sulfur oxidation but has a full set of genes for flagella and chemotaxis. The occurrence of genes for multiple electron transfer complexes suggests that I. album is capable of organoheterotrophy under both oxic and anoxic conditions. The occurrence of genes encoding enzymes for CO(2) fixation as well as other enzymes of the reductive TCA cycle suggests that mixotrophy may be possible under certain growth conditions. However, known biosynthetic pathways for several amino acids are incomplete; this suggests that I. album is dependent upon on exogenous sources of these metabolites or employs novel biosynthetic pathways. Comparisons of I. album and other members of the phylum Chlorobi suggest that the physiology of the ancestors of this phylum might have been quite different from that of modern GSB.

  10. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    PubMed

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation.

  11. Pluripotent stem cell energy metabolism: an update

    PubMed Central

    Teslaa, Tara; Teitell, Michael A

    2015-01-01

    Recent studies link changes in energy metabolism with the fate of pluripotent stem cells (PSCs). Safe use of PSC derivatives in regenerative medicine requires an enhanced understanding and control of factors that optimize in vitro reprogramming and differentiation protocols. Relative shifts in metabolism from naïve through “primed” pluripotent states to lineage-directed differentiation place variable demands on mitochondrial biogenesis and function for cell types with distinct energetic and biosynthetic requirements. In this context, mitochondrial respiration, network dynamics, TCA cycle function, and turnover all have the potential to influence reprogramming and differentiation outcomes. Shifts in cellular metabolism affect enzymes that control epigenetic configuration, which impacts chromatin reorganization and gene expression changes during reprogramming and differentiation. Induced PSCs (iPSCs) may have utility for modeling metabolic diseases caused by mutations in mitochondrial DNA, for which few disease models exist. Here, we explore key features of PSC energy metabolism research in mice and man and the impact this work is starting to have on our understanding of early development, disease modeling, and potential therapeutic applications. PMID:25476451

  12. Recent development of anaerobic digestion processes for energy recovery from wastes.

    PubMed

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  13. Anaerobic digestion of municipal, industrial, and livestock wastes for energy recovery and disposal

    SciTech Connect

    Sax, R.I.; Lusk, P.D.

    1995-11-01

    The degradation of carbonaceous organic material by anaerobic bacteria leads to the production of methane gas (biogas) at the theoretical stoichiometric conversion rate of 0.35-cubic meters of methane per kilogram of Chemical Oxygen Demand (COD) reasonably close proximity to the site of this digestion process. The untreated biogas generated from anaerobic digestion typically contains from 55% to 75% methane content, with the balance consisting mainly of carbon dioxide and a small, but important, amount of hydrogen sulfide. The untreated biogas is normally saturated with water vapor at the temperature of the digestion process which typically is in the mesophilic range 25 to 38 degrees Celsius. This overview paper describes the types of anaerobic technologies which are presently used for the digestion of various type of municipal, industrial and livestock manure wastes, summarizes the principal developments which have taken place in the field during the past several years, and discusses the energy recovery economics for each of the three usage applications. The paper stratifies the use of anaerobic digestion technology for the treatment of wastewaters from industry (an application which has increased dramatically during the past decade) by geographical region, by industry type, very various categories of food processing, and by technology type, in all cases taking account of system size to emphasize the economics of energy production.

  14. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae

    PubMed Central

    Tremaine, Mary; Hebert, Alexander S.; Myers, Kevin S.; Sardi, Maria; Dickinson, Quinn; Reed, Jennifer L.; Zhang, Yaoping; Coon, Joshua J.; Hittinger, Chris Todd; Gasch, Audrey P.; Landick, Robert

    2016-01-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. PMID:27741250

  15. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    PubMed

    Sato, Trey K; Tremaine, Mary; Parreiras, Lucas S; Hebert, Alexander S; Myers, Kevin S; Higbee, Alan J; Sardi, Maria; McIlwain, Sean J; Ong, Irene M; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; McGee, Mick A; Dickinson, Quinn; La Reau, Alex; Xie, Dan; Tian, Mingyuan; Reed, Jennifer L; Zhang, Yaoping; Coon, Joshua J; Hittinger, Chris Todd; Gasch, Audrey P; Landick, Robert

    2016-10-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  16. Anaerobic conversion of microalgal biomass to sustainable energy carriers--a review.

    PubMed

    Lakaniemi, Aino-Maija; Tuovinen, Olli H; Puhakka, Jaakko A

    2013-05-01

    This review discusses anaerobic production of methane, hydrogen, ethanol, butanol and electricity from microalgal biomass. The amenability of microalgal biomass to these bioenergy conversion processes is compared with other aquatic and terrestrial biomass sources. The highest energy yields (kJ g(-1) dry wt. microalgal biomass) reported in the literature have been 14.8 as ethanol, 14.4 as methane, 6.6 as butanol and 1.2 as hydrogen. The highest power density reported from microalgal biomass in microbial fuel cells has been 980 mW m(-2). Sequential production of different energy carriers increases attainable energy yields, but also increases investment and maintenance costs. Microalgal biomass is a promising feedstock for anaerobic energy conversion processes, especially for methanogenic digestion and ethanol fermentation. The reviewed studies have mainly been based on laboratory scale experiments and thus scale-up of anaerobic utilization of microalgal biomass for production of energy carriers is now timely and required for cost-effectiveness comparisons.

  17. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.

    PubMed

    Evangelisti, Sara; Lettieri, Paola; Borello, Domenico; Clift, Roland

    2014-01-01

    Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded.

  18. Muscle heat production and anaerobic energy turnover during repeated intense dynamic exercise in humans

    PubMed Central

    Krustrup, Peter; González-Alonso, José; Quistorff, Bjørn; Bangsbo, Jens

    2001-01-01

    The aim of the present study was to examine muscle heat production, oxygen uptake and anaerobic energy turnover throughout repeated intense exercise to test the hypotheses that (i) energy turnover is reduced when intense exercise is repeated and (ii) anaerobic energy production is diminished throughout repeated intense exercise. Five subjects performed three 3 min intense one-legged knee-extensor exercise bouts (EX1, EX2 and EX3) at a power output of 65 ± 5 W (mean ±s.e.m.), separated by 6 min rest periods. Muscle, femoral arterial and venous temperatures were measured continuously during exercise for the determination of muscle heat production. In addition, thigh blood flow was measured and femoral arterial and venous blood were sampled frequently during exercise for the determination of muscle oxygen uptake. Anaerobic energy turnover was estimated as the difference between total energy turnover and aerobic energy turnover. Prior to exercise, the temperature of the quadriceps muscle was passively elevated to 37.02 ± 0.12 °C and it increased 0.97 ± 0.08 °C during EX1, which was higher (P < 0.05) than during EX2 (0.79 ± 0.05 °C) and EX3 (0.77 ± 0.06 °C). In EX1 the rate of muscle heat accumulation was higher (P < 0.05) during the first 120 s compared to EX2 and EX3, whereas the rate of heat release to the blood was greater (P < 0.05) throughout EX2 and EX3 compared to EX1. The rate of heat production, determined as the sum of heat accumulation and release, was the same in EX1, EX2 and EX3, and it increased (P < 0.05) from 86 ± 8 during the first 15 s to 157 ± 7 J s−1 during the last 15 s of EX1. Oxygen extraction was higher during the first 60 s of EX2 and EX3 than in EX 1 and thigh oxygen uptake was elevated (P < 0.05) during the first 120 s of EX2 and throughout EX3 compared to EX1. The anaerobic energy production during the first 105 s of EX2 and 150 s of EX3 was lower (P < 0.05) than in EX1. The present study demonstrates that when intense exercise

  19. Role of oxytocin in energy metabolism.

    PubMed

    Chaves, Valéria Ernestânia; Tilelli, Cristiane Queixa; Brito, Nilton Almeida; Brito, Márcia Nascimento

    2013-07-01

    The basic mechanisms that lead obesity are not fully understood; however, several peptides undoubtedly play a role in regulating body weight. Obesity, a highly complex metabolic disorder, involves central mechanisms that control food intake and energy expenditure. Previous studies have shown that central or peripheral oxytocin administration induces anorexia. Recently, in an apparent discrepancy, rodents that were deficient in oxytocin or the oxytocin receptor were shown to develop late-onset obesity without changing their total food intake, which indicates the physiological importance of oxytocin to body metabolism. Oxytocin is synthesized not only within magnocellular and parvocellular neurons but also in several organs, including the ovary, uterus, placenta, testis, thymus, kidney, heart, blood vessels, and skin. The presence of oxytocin receptors in neurons, the myometrium and myoepithelial cells is well recognized; however, this receptor has also been identified in other tissues, including the pancreas and adipose tissue. The oxytocin receptor is a typical class I G protein-coupled receptor that is primarily linked to phospholipase C-β via Gq proteins but can also be coupled to other G proteins, leading to different functional effects. In this review, we summarize the present knowledge of the effects of oxytocin on controlling energy metabolism, focusing primarily on the role of oxytocin on appetite regulation, thermoregulation, and metabolic homeostasis.

  20. Anaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica--a result of promiscuous enzymes and regulators?

    PubMed

    Ding, Bin; Schmeling, Sirko; Fuchs, Georg

    2008-03-01

    The anaerobic metabolism of catechol (1,2-dihydroxybenzene) was studied in the betaproteobacterium Thauera aromatica that was grown with CO2 as a cosubstrate and nitrate as an electron acceptor. Based on different lines of evidence and on our knowledge of enzymes and genes involved in the anaerobic metabolism of other aromatic substrates, the following pathway is proposed. Catechol is converted to catechylphosphate by phenylphosphate synthase, which is followed by carboxylation by phenylphosphate carboxylase at the para position to the phosphorylated phenolic hydroxyl group. The product, protocatechuate (3,4-dihydroxybenzoate), is converted to its coenzyme A (CoA) thioester by 3-hydroxybenzoate-CoA ligase. Protocatechuyl-CoA is reductively dehydroxylated to 3-hydroxybenzoyl-CoA, possibly by 4-hydroxybenzoyl-CoA reductase. 3-Hydroxybenzoyl-CoA is further metabolized by reduction of the aromatic ring catalyzed by an ATP-driven benzoyl-CoA reductase. Hence, the promiscuity of several enzymes and regulatory proteins may be sufficient to create the catechol pathway that is made up of elements of phenol, 3-hydroxybenzoate, 4-hydroxybenzoate, and benzoate metabolism.

  1. Research on Anaerobic Digestion: Optimization and Scalability of Mixed High-strength Food Processing Wastes for Renewable Biogas Energy

    SciTech Connect

    Yu, Zhongtang; Hitzhusen, Fredrick

    2012-12-27

    This research project developed and improved anaerobic digestion technologies, created a comprehensive Inventory of Ohio Biomass and a database of microorganisms of anaerobic digesters, and advanced knowledge and understanding of the underpinning microbiology of the anaerobic digestion process. The results and finding of this research project may be useful for future development and implementation of anaerobic digesters, especially at livestock farms. Policy makers and investors may also find the information on the biomass availability in Ohio and valuation of energy projects useful in policy making and making of investment decisions. The public may benefit from the information on biogas as an energy source and the potential impact of anaerobic digester projects on their neighborhoods.

  2. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion

    PubMed Central

    Lyles, Christopher N.; Le, Huynh M.; Beasley, William Howard; McInerney, Michael J.; Suflita, Joseph M.

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons. PMID:24744752

  3. Anaerobic digestion of thin stillage for energy recovery and water reuse in corn-ethanol plants.

    PubMed

    Alkan-Ozkaynak, A; Karthikeyan, K G

    2011-11-01

    Recycling of anaerobically-digested thin stillage within a corn-ethanol plant may result in the accumulation of nutrients of environmental concern in animal feed coproducts and inhibitory organic materials in the fermentation tank. Our focus is on anaerobic digestion of treated (centrifugation and lime addition) thin stillage. Suitability of digestate from anaerobic treatment for reuse as process water was also investigated. Experiments conducted at various inoculum-to-substrate ratios (ISRs) revealed that alkalinity is a critical parameter limiting digestibility of thin stillage. An ISR level of 2 appeared optimal based on high biogas production level (763 mL biogas/g volatile solids added) and organic matter removal (80.6% COD removal). The digester supernatant at this ISR level was found to contain both organic and inorganic constituents at levels that would cause no inhibition to ethanol fermentation. Anaerobic digestion of treated-thin stillage can be expected to improve the water and energy efficiencies of dry grind corn-ethanol plants.

  4. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'.

    PubMed

    Wu, Ming L; Ettwig, Katharina F; Jetten, Mike S M; Strous, Marc; Keltjens, Jan T; van Niftrik, Laura

    2011-01-01

    Biological methane oxidation proceeds either through aerobic or anaerobic pathways. The newly discovered bacterium Candidatus 'Methylomirabilis oxyfera' challenges this dichotomy. This bacterium performs anaerobic methane oxidation coupled to denitrification, but does so in a peculiar way. Instead of scavenging oxygen from the environment, like the aerobic methanotrophs, or driving methane oxidation by reverse methanogenesis, like the methanogenic archaea in sulfate-reducing systems, it produces its own supply of oxygen by metabolizing nitrite via nitric oxide into oxygen and dinitrogen gas. The intracellularly produced oxygen is then used for the oxidation of methane by the classical aerobic methane oxidation pathway involving methane mono-oxygenase. The present mini-review summarizes the current knowledge about this process and the micro-organism responsible for it.

  5. Effects of anaerobic regulatory mutations and catabolite repression on regulation of hydrogen metabolism and hydrogenase isoenzyme composition in Salmonella typhimurium.

    PubMed

    Jamieson, D J; Sawers, R G; Rugman, P A; Boxer, D H; Higgins, C F

    1986-10-01

    Hydrogen metabolism in Salmonella typhimurium is differentially regulated by mutations in the two anaerobic regulatory pathways, defined by the fnr (oxrA) and oxrC genes, and is controlled by catabolite repression. The synthesis of the individual hydrogenase isoenzymes is also specifically influenced by fnr and oxrC mutations and by catabolite repression in a manner entirely consistent with the proposed role for each isoenzyme in hydrogen metabolism. Synthesis of hydrogenase isoenzyme 2 was found to be fnr dependent and oxrC independent, consistent with a role in respiration-linked hydrogen uptake which was shown to be similarly regulated. Also in keeping with such a respiratory role was the finding that both hydrogen uptake and the expression of isoenzyme 2 are under catabolite repression. In contrast, formate hydrogenlyase-dependent hydrogen evolution, characteristic of fermentative growth, was reduced in oxrC strains but not in fnr strains. Hydrogenase 3 activity was similarly regulated, consistent with a role in hydrogen evolution. Unlike the expression of hydrogenases 2 and 3, hydrogenase 1 expression was both fnr and oxrC dependent. Hydrogen uptake during fermentative growth was also both fnr and oxrC dependent. This provided good evidence for a distinction between hydrogen uptake during fermentation- and respiration-dependent growth and for a hydrogen-recycling process. The pattern of anaerobic control of hydrogenase activities illustrated the functional diversity of the isoenzymes and, in addition, the physiological distinction between the two anaerobic regulatory pathways, anaerobic respiratory genes being fnr dependent and enzymes required during fermentative growth being oxrC dependent.

  6. Radiogenic metabolism: an alternative cellular energy source.

    PubMed

    Benford, M S

    2001-01-01

    The concept of 'healing energy' is commonly used in complementary and alternative medicine; however, efforts to define this concept using contemporary scientific theory, and measure it using modern scientific methods, have been limited to date. Recent experimental testing by Benford et al. observed a uniform, substantial, and consistent decrease in gamma radiation during alternative healing sessions, thus supporting a new energy-balance paradigm hypothesizing ionizing radiation as an alternative cellular energy source. This hypothesis extends the known elements of radiogenic metabolism to potentially explain a number of presumably biopositive energy-related phenomena, including fasting and radiation hormesis, as well as to demystify unexplained anomalies such as idiopathic thermogenesis, halos and auras, and incorruptibility of human corpses.

  7. [Circadian clocks and energy metabolism in rodents].

    PubMed

    Challet, Etienne

    2014-01-01

    Circadian rhythmicity is an important component of physiological processes which provides them with a 24-hour temporal organization and adjustment to cyclical changes in the environment. Circadian rhythms are controlled by a network of endogenous clocks, comprising the main clock in the suprachiasmatic nuclei of the hypothalamus and many secondary clocks in the brain and peripheral tissues. All aspects of energy metabolism, from food intake to intracellular signaling pathways, are strongly influenced by circadian rhythmicity. In turn, meal timing is an efficient synchronizer (time-giver) to set the phase of the peripheral clocks, while the suprachiasmatic clock is synchronized by ambient light. In certain nutritional conditions (i.e., low- or high-calory diets), metabolic factors remaining to be identified modulate the functioning of the suprachiasmatic clock. Animal models of obesity and diabetes show circadian alterations. Conversely, when circadian rhythmicity is disturbed, either due to genetically defective circadian clocks, or to circadian desynchronization (chronic light exposure or repeated meals at odd times of the cycle), lipid and glucose metabolism is deregulated. The metabolic impact of circadian desynchronization justifies the development of preventive or therapeutic strategies that could rely, among others, on dietary interventions combining timed meals and specific composition.

  8. How anaerobic is the Wingate Anaerobic Test for humans?

    PubMed

    Beneke, R; Pollmann, C; Bleif, I; Leithäuser, R M; Hütler, M

    2002-08-01

    The Wingate Anaerobic Test (WAnT) is generally used to evaluate anaerobic cycling performance, but knowledge of the metabolic profile of WAnT is limited. Therefore the energetics of WAnT was analysed with respect to working efficiency and performance. A group of 11 male subjects [mean (SD), age 21.6 (3.8) years, height 178.6 (6.6) cm, body mass 82.2 (12.1) kg] performed a maximal incremental exercise test and a WAnT. Lactic and alactic anaerobic energy outputs were calculated from net lactate production and the fast component of the kinetics of post-exercise oxygen uptake. Aerobic metabolism was determined from oxygen uptake during exercise. The WAnT mean power of 683 (96.0) W resulted from a total energy output above the value at rest of 128.1 (23.2) kJ x 30 s(-1) [mean metabolic power=4.3 (0.8) kW] corresponding to a working efficiency of 16.2 (1.6)%. The WAnT working efficiency was lower (P < 0.01) than the corresponding value of 24.1 (1.7)% at 362 (41) W at the end of an incremental exercise test. During WAnT the fractions of the energy from aerobic, anaerobic alactic and lactic acid metabolism were 18.6 (2.5)%, 31.1 (4.6)%, and 50.3 (5.1)%, respectively. Energy from metabolism of anaerobic lactic acid explained 83% and 81% of the variance of WAnT peak and mean power, respectively. The results indicate firstly that WAnT requires the use of more anaerobically derived energy than previously estimated, secondly that anaerobic metabolism is dominated by glycolysis, thirdly that WAnT mechanical efficiency is lower than that found in aerobic exercise tests, and fourthly that the latter finding partly explains discrepancies between previously published and the present data about the metabolic profile of WAnT.

  9. Integration of an [FeFe]-hydrogenase into the anaerobic metabolism of Escherichia coli

    PubMed Central

    Kelly, Ciarán L.; Pinske, Constanze; Murphy, Bonnie J.; Parkin, Alison; Armstrong, Fraser; Palmer, Tracy; Sargent, Frank

    2015-01-01

    Biohydrogen is a potentially useful product of microbial energy metabolism. One approach to engineering biohydrogen production in bacteria is the production of non-native hydrogenase activity in a host cell, for example Escherichia coli. In some microbes, hydrogenase enzymes are linked directly to central metabolism via diaphorase enzymes that utilise NAD+/NADH cofactors. In this work, it was hypothesised that heterologous production of an NAD+/NADH-linked hydrogenase could connect hydrogen production in an E. coli host directly to its central metabolism. To test this, a synthetic operon was designed and characterised encoding an apparently NADH-dependent, hydrogen-evolving [FeFe]-hydrogenase from Caldanaerobacter subterranus. The synthetic operon was stably integrated into the E. coli chromosome and shown to produce an active hydrogenase, however no H2 production was observed. Subsequently, it was found that heterologous co-production of a pyruvate::ferredoxin oxidoreductase and ferredoxin from Thermotoga maritima was found to be essential to drive H2 production by this system. This work provides genetic evidence that the Ca.subterranus [FeFe]-hydrogenase could be operating in vivo as an electron-confurcating enzyme. PMID:26839796

  10. Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO).

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2014-09-01

    The use of saline water as secondary quality water in urban environments for sanitation is a promising alternative towards mitigating fresh water scarcity. However, this alternative will increase the salinity in the wastewater generated that may affect the biological wastewater treatment processes, such as biological phosphorus removal. In addition to the production of saline wastewater by the direct use of saline water in urban environments, saline wastewater is also generated by some industries. Intrusion of saline water into the sewers is another source of salinity entering the wastewater treatment plant. In this study, the short-term effects of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) were investigated to assess the impact of salinity on enhanced biological phosphorus removal. Hereto, PAO and GAO cultures enriched at a relatively low salinity level (0.02 % W/V) were exposed to salinity concentrations of up to 6 % (as NaCl) in anaerobic batch tests. It was demonstrated that both PAO and GAO are affected by higher salinity levels, with PAO being the more sensitive organisms to the increasing salinity. The maximum acetate uptake rate of PAO decreased by 71 % when the salinity increased from 0 to 1 %, while that of GAO decreased by 41 % for the same salinity increase. Regarding the stoichiometry of PAO, a decrease in the P-release/HAc uptake ratio accompanied with an increase in the glycogen consumption/HAc uptake ratio was observed for PAO when the salinity increased from 0 to 2 % salinity, indicating a metabolic shift from a poly-P-dependent to a glycogen-dependent metabolism. The anaerobic maintenance requirements of PAO and GAO increased as the salinity concentrations risen up to 4 % salinity.

  11. Glycolysis in energy metabolism during seizures☆

    PubMed Central

    Yang, Heng; Wu, Jiongxing; Guo, Ren; Peng, Yufen; Zheng, Wen; Liu, Ding; Song, Zhi

    2013-01-01

    Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter γ-minobutyric acid, and changes in the intra- and extracellular environment. PMID:25206426

  12. Evaluation of sludge reduction of three metabolic uncouplers in laboratory-scale anaerobic-anoxic-oxic process.

    PubMed

    Li, Ping; Li, Hechao; Li, Jin; Guo, Xuesong; Liu, Junxin; Xiao, Benyi

    2016-12-01

    To evaluate the sludge reduction of three metabolic uncouplers (3,3',4',5-tetrachlorosalicylanilide (TCS), 2,4-dichlorophenol (DCP), and tetrakis (hydroxymethyl) phosphonium sulfate (THPS)), we conducted continuous experiments on laboratory-scale anaerobic-anoxic-oxic processes. The three metabolic uncouplers were separately added in each oxic tank of the three systems, and a system without uncoupler addition was used as control. During the 85-day operation, sludge production and observed growth yields decreased to 38.6% and 16.98%, 43.4% and 17.55%, and 39.3% and 17.04% by the addition of TCS, DCP, and THPS, respectively. The addition of metabolic uncouplers slightly reduced the wastewater treatment efficiencies of the system (about 1.1-8.7%) and increased sludge SVIs (about 69.9-80.6%). Meanwhile, the differences among three metabolic uncouplers were little. Besides metabolic uncoupling and maintenance metabolism, which exist in the TCS- and DCP-added systems, lysis-cryptic growth also exists in the THPS-added system.

  13. Hepatic Control of Energy Metabolism via the Autonomic Nervous System

    PubMed Central

    2017-01-01

    Although the human liver comprises approximately 2.8% of the body weight, it plays a central role in the control of energy metabolism. While the biochemistry of energy substrates such as glucose, fatty acids, and ketone bodies in the liver is well understood, many aspects of the overall control system for hepatic metabolism remain largely unknown. These include mechanisms underlying the ascertainment of its energy metabolism status by the liver, and the way in which this information is used to communicate and function together with adipose tissues and other organs involved in energy metabolism. This review article summarizes hepatic control of energy metabolism via the autonomic nervous system. PMID:27592630

  14. Melatonin, energy metabolism, and obesity: a review.

    PubMed

    Cipolla-Neto, J; Amaral, F G; Afeche, S C; Tan, D X; Reiter, R J

    2014-05-01

    Melatonin is an old and ubiquitous molecule in nature showing multiple mechanisms of action and functions in practically every living organism. In mammals, pineal melatonin functions as a hormone and a chronobiotic, playing a major role in the regulation of the circadian temporal internal order. The anti-obesogen and the weight-reducing effects of melatonin depend on several mechanisms and actions. Experimental evidence demonstrates that melatonin is necessary for the proper synthesis, secretion, and action of insulin. Melatonin acts by regulating GLUT4 expression and/or triggering, via its G-protein-coupled membrane receptors, the phosphorylation of the insulin receptor and its intracellular substrates mobilizing the insulin-signaling pathway. Melatonin is a powerful chronobiotic being responsible, in part, by the daily distribution of metabolic processes so that the activity/feeding phase of the day is associated with high insulin sensitivity, and the rest/fasting is synchronized to the insulin-resistant metabolic phase of the day. Furthermore, melatonin is responsible for the establishment of an adequate energy balance mainly by regulating energy flow to and from the stores and directly regulating the energy expenditure through the activation of brown adipose tissue and participating in the browning process of white adipose tissue. The reduction in melatonin production, as during aging, shift-work or illuminated environments during the night, induces insulin resistance, glucose intolerance, sleep disturbance, and metabolic circadian disorganization characterizing a state of chronodisruption leading to obesity. The available evidence supports the suggestion that melatonin replacement therapy might contribute to restore a more healthy state of the organism.

  15. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    PubMed

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  16. Vampires, Pasteur and reactive oxygen species. Is the switch from aerobic to anaerobic metabolism a preventive antioxidant defence in blood-feeding parasites?

    PubMed

    Oliveira, Pedro L; Oliveira, Marcus F

    2002-08-14

    Several species of parasites show a reduction of their respiratory activity along their developmental cycles after they start to feed on vertebrate blood, relying on anaerobic degradation of carbohydrates to achieve their energy requirements. Usually, these parasites choose not to breathe despite of living in an environment of high oxygen availability such as vertebrate blood. Absence of the 'Pasteur effect' in most of these parasites has been well documented. Interestingly, together with the switch from aerobic to anaerobic metabolism in these parasites, there is clear evidence pointing to an increase in their antioxidant defences. As the respiratory chain in mitochondria is a major site of production of reactive oxygen species (ROS), we propose here that the arrest of respiration constitutes an adaptation to avoid the toxic effects of ROS. This situation would be especially critical for blood-feeding parasites because ROS produced in mitochondria would interact with pro-oxidant products of blood digestion, such as haem and/or iron, and increase the oxidative damage to the parasite's cells.

  17. Energy metabolism in sepsis and injury.

    PubMed

    Chioléro, R; Revelly, J P; Tappy, L

    1997-09-01

    The development of malnutrition is often rapid in critically ill patients with sepsis and severe trauma. In such patients, a wide array of hormonal and nonhormonal mediators are released, inducing complex metabolic changes. Hypermetabolism, associated with protein and fat catabolism, negative nitrogen balance, hyperglycemia, and resistance to insulin, constitute the hallmark of this response. Critically ill patients demonstrate a marked alteration in the adaptation to prolonged starvation: resting metabolic rate and tissue catabolism stay elevated, while ketogenesis remains suppressed. The response to nutrition support is impaired. Substrate use is modified in septic and traumatized patients. Glucose administration during severe aggression does not suppress the enhanced hepatic glucose production and the lipolysis. This phenomenon, related to tissue insulin resistance, ensures a high flow of glucose to the predominantly glucose-consuming cells, such as the wound, the inflammatory, and immune cells, all insulin-independent cells. In addition, the elevated protein catabolism is difficult to abolish, even during aggressive nutrition support. Thus, in patients with prolonged aggression, these alterations produce a progressive loss of body cell mass and foster the development of malnutrition and it dire complications. In this review, the relevant physiologic data and the nutritional implications related to energy metabolism in septic and injured patients are discussed, while potential therapeutic strategies are proposed.

  18. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate.

    PubMed

    Litsanov, Boris; Brocker, Melanie; Bott, Michael

    2012-05-01

    Previous studies have demonstrated the capability of Corynebacterium glutamicum for anaerobic succinate production from glucose under nongrowing conditions. In this work, we have addressed two shortfalls of this process, the formation of significant amounts of by-products and the limitation of the yield by the redox balance. To eliminate acetate formation, a derivative of the type strain ATCC 13032 (strain BOL-1), which lacked all known pathways for acetate and lactate synthesis (Δcat Δpqo Δpta-ackA ΔldhA), was constructed. Chromosomal integration of the pyruvate carboxylase gene pyc(P458S) into BOL-1 resulted in strain BOL-2, which catalyzed fast succinate production from glucose with a yield of 1 mol/mol and showed only little acetate formation. In order to provide additional reducing equivalents derived from the cosubstrate formate, the fdh gene from Mycobacterium vaccae, coding for an NAD(+)-coupled formate dehydrogenase (FDH), was chromosomally integrated into BOL-2, leading to strain BOL-3. In an anaerobic batch process with strain BOL-3, a 20% higher succinate yield from glucose was obtained in the presence of formate. A temporary metabolic blockage of strain BOL-3 was prevented by plasmid-borne overexpression of the glyceraldehyde 3-phosphate dehydrogenase gene gapA. In an anaerobic fed-batch process with glucose and formate, strain BOL-3/pAN6-gap accumulated 1,134 mM succinate in 53 h with an average succinate production rate of 1.59 mmol per g cells (dry weight) (cdw) per h. The succinate yield of 1.67 mol/mol glucose is one of the highest currently described for anaerobic succinate producers and was accompanied by a very low level of by-products (0.10 mol/mol glucose).

  19. Hydroxylation and hydrolysis: two main metabolic ways of spiramycin I in anaerobic digestion.

    PubMed

    Zhu, Pei; Chen, Daijie; Liu, Wenbin; Zhang, Jianbin; Shao, Lei; Li, Ji-an; Chu, Ju

    2014-02-01

    The anaerobic degradation behaviors of five macrolides including spiramycin I, II, III, midecamycin and josamycin by sludge were investigated. Within 32days, 95% of spiramycin I, II or III was degraded, while the remove rate of midecamycin or josamycin was 75%. SPM I degradation was much higher in nutrition supplementation than that just in sludge. The degradation products and processes of spiramycin I were further characterized. Three molecules, designated P-1, P-2 and P-3 according to their order of occurrence, were obtained and purified. Structural determination was then performed by nuclear magnetic resonance and MS/MS spectra, and data indicated that hydroxylation and hydrolysis were main reactions during the anaerobic digestion of spiramycin I. P-1 is the intermediate of hydroxylation, and P-2 is the intermediate of hydrolysis. P-3 is the final product of the both reaction. This study revealed a hydroxylation and hydrolysis mechanism of macrolide in anaerobic digestion.

  20. Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies.

    PubMed

    Schievano, Andrea; Tenca, Alberto; Scaglia, Barbara; Merlino, Giuseppe; Rizzi, Aurora; Daffonchio, Daniele; Oberti, Roberto; Adani, Fabrizio

    2012-08-07

    Two-stage anaerobic digestion (AD) for integrated biohydrogen and biomethane production from organic materials has been reported to promise higher process efficiency and energy recoveries as compared to traditional one-stage AD. This work presents a comparison between two-stage (reactors R1 and R2) and one-stage (reactor R3) AD systems, fed with identical organic substrates and loading rates, focusing the attention on chemical and microbiological aspects. Contrary to previous experiences, no significant differences in overall energy recovery were found for the two-stage and one-stage AD systems. However, an accumulation in R2 of undegraded intermediate metabolites (volatile fatty acids, ketones, amines, amino acids, and phenols) was observed by GC-MS. These compounds were thought to be both cause and effect of this partial inefficiency of the two-stage system, as confirmed also by the less diverse, and thereby less efficient, population of fermentative bacteria observed (by PCR-DGGE) in R2. The extreme environment of R1 (low pH and high metabolites concentrations) probably acted as selector of metabolic pathways, favoring H(2)-producing bacteria able to degrade such a wide variability of intermediate metabolites while limiting other strains. Therefore, if two-stage AD may potentially lead to higher energy recoveries, further efforts should be directed to ensure process efficiency and stability.

  1. The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures.

    PubMed

    Nielsen, Marina Karelina; Arneborg, Nils

    2007-02-01

    The effects of citric acid at pH values of 3.0, 4.0, and 4.5 on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures were investigated. S. cerevisiae and Z. bailii exhibited similar tolerances to citric acid, as determined by growth measurements, at all three pH values investigated. The citric-acid-induced growth inhibition of both yeast species increased with increasing pH values, indicating that the antimicrobial mechanism of citric acid differs from that of classical weak-acid preservatives. In S. cerevisiae, citric acid shifted the primary energy metabolism towards lower ethanol production and higher glycerol production, thus resulting in lower ATP production. These metabolic changes in S. cerevisiae were pH-dependent; i.e. the higher the pH, the lower the ATP production, and they may explain why growth of S. cerevisiae is more inhibited by citric acid at higher pH values. In Z. bailii, citric acid also caused an increased glycerol production, although to a lesser extent than in S. cerevisiae, but it caused virtually no changes in ethanol and ATP production.

  2. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    DOE PAGES

    Lin, Xueju; Handley, Kim M.; Gilbert, Jack A.; ...

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiablemore » carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.« less

  3. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    SciTech Connect

    Lin, Xueju; Handley, Kim M.; Gilbert, Jack A.; Kostka, Joel E.

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  4. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat.

    PubMed

    Lin, Xueju; Handley, Kim M; Gilbert, Jack A; Kostka, Joel E

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  5. Anoxia tolerance and anaerobic metabolism in two tropical weevil species (Coleoptera, Curculionidae).

    PubMed

    Kölsch, G

    2001-10-01

    Although the two curculionid beetle species Cosmopolites sordidus and Temnoschoita nigroplagiata are found in the same habitat (banana plantation), they differ with respect to their microhabitat preference and thereby in their risk of being submerged after rain. The physiological characteristics of the two species that might be important in this context were investigated. As expected, C. sordidus is more resistant to submergence (faster recovery, lower mortality: 30% after 9 days submergence at 20 degrees C); this can be attributed to a generally lower metabolic rate, higher glycogen reserves (135 micromol glycosyl units x g FW(-1)) and a moderate lactate production under anoxia. In T. nigroplagiata, the glycogen reserves are almost completely depleted after 1 day submergence at 20 degrees C and a higher proportion of this glycogen can recovered as lactate (16%). During submergence, the adenylate energy charge falls in both species to 0.2 or below, whereas the total adenine nucleotide content decreases only slowly, especially in C. sordidus.

  6. Anaerobic digestion of spring and winter wheat: Comparison of net energy yields.

    PubMed

    Rincón, Bárbara; Heaven, Sonia; Salter, Andrew M; Banks, Charles J

    2016-10-14

    Anaerobic digestion of wheat was investigated under batch conditions. The article compares the potential net energy yield between a winter wheat (sown in the autumn) and a spring wheat (sown in the spring) grown in the same year and harvested at the same growth stage in the same farm. The spring wheat had a slightly higher biochemical methane potential and required lower energy inputs in cultivation, but produced a lower dry biomass yield per hectare, which resulted in winter wheat providing the best overall net energy yield. The difference was small; both varieties gave a good net energy yield. Spring sowing may also offer the opportunity for growing an additional over-winter catch crop for spring harvest, thus increasing the overall biomass yield per hectare, with both crops being potential digester feedstocks.

  7. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.

    PubMed

    Kuyper, Marko; Hartog, Miranda M P; Toirkens, Maurice J; Almering, Marinka J H; Winkler, Aaron A; van Dijken, Johannes P; Pronk, Jack T

    2005-02-01

    After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a mu(max) of 0.03 h(-1). In order to investigate whether reactions downstream of the isomerase control the rate of xylose consumption, we overexpressed structural genes for all enzymes involved in the conversion of xylulose to glycolytic intermediates, in a xylose-isomerase-expressing S. cerevisiae strain. The overexpressed enzymes were xylulokinase (EC 2.7.1.17), ribulose 5-phosphate isomerase (EC 5.3.1.6), ribulose 5-phosphate epimerase (EC 5.3.1.1), transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2). In addition, the GRE3 gene encoding aldose reductase was deleted to further minimise xylitol production. Surprisingly the resulting strain grew anaerobically on xylose in synthetic media with a mu(max) as high as 0.09 h(-1) without any non-defined mutagenesis or selection. During growth on xylose, xylulose formation was absent and xylitol production was negligible. The specific xylose consumption rate in anaerobic xylose cultures was 1.1 g xylose (g biomass)(-1) h(-1). Mixtures of glucose and xylose were sequentially but completely consumed by anaerobic batch cultures, with glucose as the preferred substrate.

  8. ANAEROBIC BIODEGRADATION OF VEGETABLE OIL AND ITS METABOLIC INTERMEDIATES IN OIL-ENRICHED FRESHWATER SEDIMENTS

    EPA Science Inventory

    Anaerobic biodegradation of vegetable oil in freshwater sediments is strongly inhibited by high concentrations of oil, but the presence of ferric hydroxide relieves the inhibition. The effect of ferric hydroxide is not due to physical or chemical interactions with long-chain fatt...

  9. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.

    PubMed

    Amon, Thomas; Amon, Barbara; Kryvoruchko, Vitaliy; Machmüller, Andrea; Hopfner-Sixt, Katharina; Bodiroza, Vitomir; Hrbek, Regina; Friedel, Jürgen; Pötsch, Erich; Wagentristl, Helmut; Schreiner, Matthias; Zollitsch, Werner

    2007-12-01

    Biogas production is of major importance for the sustainable use of agrarian biomass as renewable energy source. Economic biogas production depends on high biogas yields. The project aimed at optimising anaerobic digestion of energy crops. The following aspects were investigated: suitability of different crop species and varieties, optimum time of harvesting, specific methane yield and methane yield per hectare. The experiments covered 7 maize, 2 winter wheat, 2 triticale varieties, 1 winter rye, and 2 sunflower varieties and 6 variants with permanent grassland. In the course of the vegetation period, biomass yield and biomass composition were measured. Anaerobic digestion was carried out in eudiometer batch digesters. The highest methane yields of 7500-10200 m(N)(3)ha(-1) were achieved from maize varieties with FAO numbers (value for the maturity of the maize) of 300 to 600 harvested at "wax ripeness". Methane yields of cereals ranged from 3200 to 4500 m(N)(3)ha(-1). Cereals should be harvested at "grain in the milk stage" to "grain in the dough stage". With sunflowers, methane yields between 2600 and 4550 m(N)(3)ha(-1) were achieved. There were distinct differences between the investigated sunflower varieties. Alpine grassland can yield 2700-3500 m(N)(3)CH(4)ha(-1). The methane energy value model (MEVM) was developed for the different energy crops. It estimates the specific methane yield from the nutrient composition of the energy crops. Energy crops for biogas production need to be grown in sustainable crop rotations. The paper outlines possibilities for optimising methane yield from versatile crop rotations that integrate the production of food, feed, raw materials and energy. These integrated crop rotations are highly efficient and can provide up to 320 million t COE which is 96% of the total energy demand of the road traffic of the EU-25 (the 25 Member States of the European Union).

  10. Potential hepatic toxicity of buprofezin at sublethal concentrations: ROS-mediated conversion of energy metabolism.

    PubMed

    Ji, Xiaotong; Ku, Tingting; Zhu, Na; Ning, Xia; Wei, Wei; Li, Guangke; Sang, Nan

    2016-12-15

    Buprofezin is known for its broad-spectrum action and environmental safety. The popularity of buprofezin has raised concerns about its potentially adverse effects on human health and risk to the environment. In this study, we first identified the liver as one of the major organs in which buprofezin accumulated, and we detected a severe oxidative stress response. Next, we demonstrated that sublethal concentrations of buprofezin promoted the conversion of energy metabolism from the aerobic tricarboxylic acid (TCA) cycle and oxidative phosphorylation to anaerobic glycolysis. Importantly, reactive oxygen species (ROS) generation partially accounted for the shunting of the energy metabolism through the buprofezin-mediated inhibition of cytochrome c oxidase activity. ROS directly perturbed the activities of several key TCA cycle enzymes, stimulated glycolysis, and indirectly disturbed the activity of the respiratory chain complex by altering mitochondrial DNA (mtDNA). These findings clarify the potential mechanisms of buprofezin toxicity and provide biomarkers for buprofezin-mediated hepatotoxicity at sublethal concentrations.

  11. Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions.

    PubMed

    Espinosa-Solares, Teodoro; Bombardiere, John; Chatfield, Mark; Domaschko, Max; Easter, Michael; Stafford, David A; Castillo-Angeles, Saul; Castellanos-Hernandez, Nehemias

    2006-01-01

    Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.

  12. Phosphorus metabolism and population dynamics in a biological phosphate-removal system with simultaneous anaerobic phosphate stripping.

    PubMed

    Lv, Jing-hua; Yuan, Lin-jiang; Chen, Xi; Liu, Lun; Luo, Da-cheng

    2014-12-01

    In this study, the metabolism of phosphorus and changes in population dynamics were investigated via simultaneous chemical stripping in sidestream in an acetate-fed sequencing batch reactor. The synthesized intracellular polyphosphate (poly-P) by polyphosphate-accumulating organisms (PAOs) gradually decreased when the biomass was subjected to 83 d of P stripping. Initially, the P removal efficiency of the system improved from 94.3% to 96.9%. Thereafter, a relatively high level of P in effluent was observed, during which time the stoichiometric ratios of Prelease/HAcuptake decreased, Glycogendegraded/HAcuptake and poly-β-hydroxyvalerate/PHA increased. The results revealed that a metabolic shift from polyphosphate-accumulating metabolism to glycogen-accumulating metabolism. Correspondingly, PAOs declined to less than 1% of the population, glycogen-accumulating organisms proliferated to almost 20% instead. The results of PCR–DGGE also indicated that the microbial community structure considerably changed in response to the gradually decreasing poly-P content. These findings imply that intracellular poly-P level is important for the stable of P removal system. Furthermore, it suggests that it is not a stable and effective way for P recycling from anaerobic stage of the biological P removal system in sidestream.

  13. Aspartoacylase supports oxidative energy metabolism during myelination

    PubMed Central

    Francis, Jeremy S; Strande, Louise; Markov, Vladamir; Leone, Paola

    2012-01-01

    The inherited leukodystrophy Canavan disease arises due to a loss of the ability to catabolize N-acetylaspartic acid (NAA) in the brain and constitutes a major point of focus for efforts to define NAA function. Accumulation of noncatabolized NAA is diagnostic for Canavan disease, but contrasts with the abnormally low NAA associated with compromised neuronal integrity in a broad spectrum of other clinical conditions. Experimental evidence for NAA function supports a role in white matter lipid synthesis, but does not explain how both elevated and lowered NAA can be associated with pathology in the brain. We have undertaken a systematic analysis of postnatal development in a mouse model of Canavan disease that delineates development and pathology by identifying markers of oxidative stress preceding oligodendrocyte loss and dysmyelination. These data suggest a role for NAA in the maintenance of metabolic integrity in oligodendrocytes that may be of relevance to the strong association between NAA and neuronal viability. N-acetylaspartic acid is proposed here to support lipid synthesis and energy metabolism via the provision of substrate for both cellular processes during early postnatal development. PMID:22617649

  14. Pyruvate Oxidoreductases Involved in Glycolytic Anaerobic Metabolism of Polychaetes from the Continental Shelf off Central-South Chile

    NASA Astrophysics Data System (ADS)

    González, R. R.; Quiñones, R. A.

    2000-10-01

    The presence of low oxygen conditions in extensive areas of the continental shelf off central-south Chile has important effects on the biochemical adaptations of the organisms living in this ecosystem. Polychaetes assemblages cohabit on the shelf with an extensively distributed prokaryotic community made up of giant filamentous sulfur bacteria (mainly Thioploca sp.). The aim of this research was to characterize the pyruvate oxidoreductases enzymes involved in the biochemical adaptation of these benthic polychaetes. Nine polychaete species ( Paraprionospio pinnata, Nephtys ferruginea, Glycera americana, Haploscoloplos sp., Lumbrineris composita, Sigambra bassi, Aricidea pigmentata , Cossura chilensis, and Pectinaria chilensis) were assayed for lactic dehydrogenase (LDH), octopine dehydrogenase (OPDH), strombine dehydrogenase (STRDH) and alanopine dehydrogenase (ALPDH). Each species had a characteristic number of the pyruvate oxidoreductases assayed ranging from 4 in Paraprionospio pinnata to 1 in Pectinaria chilensis . The pyruvate saturation curves obtained for the enzymes from all species analysed, except L. composita, suggest that NADH can be oxidized at different rates depending on the amino acid used in the reaction with pyruvate. Our results indicate that organisms having more that one pyruvate oxidoreductase present a greater metabolic capacity to cope with functional and environmental hypoxia because these enzymes would better regulate the pyruvate consumption rate during the transition period. Thus, the dominance of Paraprionospio pinnata in the study area and its worldwide distribution is consistent with its higher number of pyruvate oxidoreductases with different pyruvate consumption rates involved in anaerobic metabolism. Finally, a positive allometric relationship was found between body size and the specific activity of ALPDH, STRDH, and maximum pyruvate oxidoreductase specific activity. This latter result suggests a positive scaling of the specific

  15. Anaerobic Digestion of Algae Biomass to Produce Energy during Wastewater Treatment.

    PubMed

    Peng, Shanshan; Colosi, Lisa M

    2016-01-01

    Water resource recovery facilities (WRRFs) are asked to improve both energy efficiency and nutrient removal efficacy. Integration of algaculture offers several potential synergies that could address these goals, including an opportunity to leverage anaerobic digestion at WRRFs. In this study, bench-scale experiments are used to measure methane yield during co-digestion of Scenedesmus dimorphus or mixed WRRF-grown algae with WRRF biosolids. The results indicate that normalized methane yield decreases with increasing algae content in a manner than can be reasonably well fit using linear regression (R(2) = 67%). It is thus possible to predict methane yield for any mixture of algae and biosolids based on the methane yield of the biosolids alone. Using revised methane yields, the energy return on investment of a typical WRRF increases from 0.53 (without algae) to 0.66 (with algae). Thus, algae-based wastewater treatment may hold promise for improving WRRF energy efficiency without compromising effluent quality.

  16. Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system.

    PubMed

    Miki, K; Lin, E C

    1975-12-01

    A particulate subcellular fraction from Escherichia coli K-12 induced in anaerobic sn-glycerol 3-phosphate (G3P) dehydrogenase and fumarate reductase can catalyze under anaerobic conditions the transfer of hydrogens from G3P to fumarate, with attendant generation of high-energy phosphate. The phsophorylation process is more sensitive than the transhydrogenation process to inhibition by the detergent Triton X-100. The same is true with respect to sensitivity to sodium azide, carbonyl cyanide m-chlorophenylhydrazone and N,N'-dicyclohexylcarbodiimide. Such a preparation derived from cells with beta-galactoside permease can accumulate thiomethyl beta-D-galactoside anaerobically, and the accumulation can be stimulated twofold by adding G3P and fumarate. Mutants lacking the membrane-associated Mg2+-dependent adenosine triphosphatase cannot grow anaerobically on glycerol with fumarate as the hydrogen acceptor, although they can grow aerobically on glycerol alone.

  17. Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system.

    PubMed Central

    Miki, K; Lin, E C

    1975-01-01

    A particulate subcellular fraction from Escherichia coli K-12 induced in anaerobic sn-glycerol 3-phosphate (G3P) dehydrogenase and fumarate reductase can catalyze under anaerobic conditions the transfer of hydrogens from G3P to fumarate, with attendant generation of high-energy phosphate. The phsophorylation process is more sensitive than the transhydrogenation process to inhibition by the detergent Triton X-100. The same is true with respect to sensitivity to sodium azide, carbonyl cyanide m-chlorophenylhydrazone and N,N'-dicyclohexylcarbodiimide. Such a preparation derived from cells with beta-galactoside permease can accumulate thiomethyl beta-D-galactoside anaerobically, and the accumulation can be stimulated twofold by adding G3P and fumarate. Mutants lacking the membrane-associated Mg2+-dependent adenosine triphosphatase cannot grow anaerobically on glycerol with fumarate as the hydrogen acceptor, although they can grow aerobically on glycerol alone. PMID:127785

  18. Energy conservation and production in a packed-bed anaerobic bioreactor

    SciTech Connect

    Pit, W.W. Jr.; Genung, R.K.

    1980-01-01

    Oak Ridge National Laboratory (ORNL) is developing an energy-conserving/ producing wastewater treatment system based on a fixed-film anaerobic bioreactor. The treatment process is based on passing wastewaters upward through the bioreactor for continuous treatment by gravitational settling, biophysical filtration and biological decomposition. A two-year pilot-plant project using a bioreactor designed to treat 5000 gpd has been conducted using raw wastewater on a municipal site in Oak Ridge, Tennessee. Data obtained for the performance of the bioreactor during this project have been analyzed by ORNL and Associated Water and Air Resources Engineers (AWARE), Inc. of Nashville, Tennessee. From these analyses it was estimated that hydraulic loading rates of 0.25 gpm/ft/sup 2/ and hydraulic residence times of 10 hours could be used in designing such bioreactors for the secondary treatment of municipal wastewaters. Conceptual designs for total treatment systems processing up to one million gallons of wastewater per day were developed based on the performance of the pilot plant bioreactor. These systems were compared to activated sludge treatment systems also operating under secondary treatment requirements and were found to consume as little as 30% of the energy required by the activated sludge systems. Economic advantages of the process result from the elimination of operating energy requirements associated with the aeration of aerobic-based processes and with the significant decrease of sludge-handling costs required with conventional activated sludge treatment systems.Furthermore, methane produced by anaerobic fermentation processes occurring during the biological decomposition of carbonaceous wastes also represented a significant and recoverable energy production. For dilute municipal wastewaters this would completely offset the remaining energy required for treatment, while for concentrated industrial wastewater would result in a net production of energy.

  19. Limits to anaerobic energy and cytosolic concentration in the living cell

    NASA Astrophysics Data System (ADS)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  20. Characterization of partial anaerobic metabolic pathway for 2,4,6-trinitrotoluene degradation by a sulfate-reducing bacterial consortium.

    PubMed

    Boopathy, R; Manning, J F

    1996-12-01

    The anaerobic degradative pathway for metabolism of 2,4,6-trinitrotoluene (TNT) by a consortium of Desulfovibrio spp. isolated from a creek sediment was studied. This consortium has the metabolic capability to degrade TNT to fatty acids. The growth of the consortium and the metabolism of TNT were greatly enhanced in the presence of an additional carbon source like pyruvate. The optimal concentration of pyruvate for the maximum rate of TNT degradation was 15-20 mM. Various intermediates of TNT metabolism were identified. The first step in the pathway was reduction of TNT to 4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene, which were further reduced to 2,4-diamino,6-nitrotoluene. The next intermediate to appear in the culture medium was nitrobenzoic acid, followed by cyclohexanone, 2-methyl pentanoic acid, butyric acid, and acetic acid. A study using radiolabeled TNT showed that no CO2 was produced from TNT during metabolism. The mass balance of the radiolabeled study showed that 49.6% of the TNT was converted to acetic acid, 28% was assimilated into biomass as trichloroacetic acid precipitable materials, and the rest was distributed as various TNT intermediates. Most Desulfovibrio spp. are incomplete oxidizers that are unable to carry out the terminal oxidation of organic substrates. The major end product of TNT metabolism was acetic acid. The bacteria grew on all the TNT intermediates tested as sole source of carbon, except on acetic acid, confirming that the Desulfovibrio spp. have the enzymes necessary for complete degradation of TNT to acetate.

  1. Enzymatic evidence for an involvement of pyruvate dehydrogenase in the anaerobic glycerol metabolism of Klebsiella pneumoniae.

    PubMed

    Menzel, K; Zeng, A P; Deckwer, W D

    1997-08-11

    Stoichiometric analysis of pathways involved in anaerobic bioconversion of glycerol by Klebsiella pneumoniae revealed that enzyme(s) in addition to pyruvate formate-lyase (PFL) must be involved in pyruvate decarboxylation. In this work, enzymatic evidence is presented that confirmed a simultaneous involvement of pyruvate dehydrogenase complex (PDH) and excluded the presence of pyruvate:ferredoxin oxidoreductase in this anaerobic bioprocess. The in vitro PDH activity of cell extract from continuous culture was found to be strongly affected by the substrate (glycerol) concentration in medium and cell growth rate (dilution rate). It increases with increasing glycerol concentration and correlates well with the specific substrate uptake rate at different dilution rates in a kind of saturation function. At a similar substrate uptake rate, it decreases with cell growth rate. The in vitro activity of PDH is much higher than its in vivo activity calculated from the pathway stoichiometry but comparable to the calculated in vivo activity of PFL.

  2. Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea.

    PubMed

    Ortmann, Christian; Grieshaber, Manfred K

    2003-11-01

    Since its invasion of Europe in the early 1980s, the Asian clam Corbicula fluminea has become very abundant in nearly all western river systems. Today this species is one of the most important biomass producers in the River Rhine. Monitoring the valve movements of C. fluminea over a period of 2 years revealed a circadian rhythm in summer, with extended periods (10-12 h) of valve closure, predominantly in the morning hours. Altogether valve movements were very scarce, frequently fewer than four movements per individual per day. Simultaneous measurements of heat dissipation and oxygen consumption (calorespirometry) revealed an intermittent metabolism in the clam. With the onset of valve closure, C. fluminea reduced its metabolic rate to 10% of the standard metabolic rate (SMR) measured when the valves were open. Nevertheless, this depressed metabolism remained aerobic for several hours, enabling the clam to save energy and substrates compared to the requirements of the tenfold higher SMR. Only during long-lasting periods of valve closure (more than 5-10 h) did the clams become anaerobic and accumulate succinate within their tissues (2 micromol g(-1) fresh mass). Succinate is transported into the mantle cavity fluid, where it reaches concentrations of 4-6 mmol l(-1). Because this succinate-enriched fluid must pass the gills when the valves open again, we suggest that this anaerobic end product is at least partly reabsorbed, thus reducing the loss of valuable substrates during anaerobiosis. Propionate was also produced, but only during experimental N2-incubation, under near-anoxic conditions. The intermittent metabolism of C. fluminea is discussed as an adaption to efficiently exploit the rare food supply, saving substrates by the pronounced metabolic depression during valve closure.

  3. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy.

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2013-09-17

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications.

  4. Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2013-01-01

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications. PMID:24048207

  5. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.

    PubMed

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2017-03-09

    Glycerol is used by the cosmetic, paint, automotive, food, and pharmaceutical industries and for production of explosives. Currently, glycerol is available in commercial quantities as a by-product from biodiesel production, but the purity and the cost of its purification are prohibitive. The industrial production of glycerol by glucose aerobic fermentation using osmotolerant strains of the yeasts Candida sp. and Saccharomyces cerevisiae has been described. A major drawback of the aerobic process is the high cost of production. For this reason, the development of yeast strains that effectively convert glucose to glycerol anaerobically is of great importance. Due to its ability to grow under anaerobic conditions, the yeast S. cerevisiae is an ideal system for the development of this new biotechnological platform. To increase glycerol production and accumulation from glucose, we lowered the expression of TPI1 gene coding for triose phosphate isomerase; overexpressed the fused gene consisting the GPD1 and GPP2 parts coding for glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate phosphatase, respectively; overexpressed the engineered FPS1 gene that codes for aquaglyceroporin; and overexpressed the truncated gene ILV2 that codes for acetolactate synthase. The best constructed strain produced more than 20 g of glycerol/L from glucose under micro-aerobic conditions and 16 g of glycerol/L under anaerobic conditions. The increase in glycerol production led to a drop in ethanol and biomass accumulation.

  6. Effects of oral D-ribose supplementation on anaerobic capacity and selected metabolic markers in healthy males.

    PubMed

    Kreider, R B; Melton, C; Greenwood, M; Rasmussen, C; Lundberg, J; Earnest, C; Almada, A

    2003-03-01

    Oral D-ribose supplementation has been reported to increase adenine nucleotide synthesis and exercise capacity in certain clinical populations. Theoretically, increasing adenine nucleotide availability may enhance high intensity exercise capacity. This study evaluated the potential ergogenic value of D-ribose supplementation on repetitive high-intensity exercise capacity in 19 trained males. Subjects were familiarized to the testing protocol and performed two practice-testing trials before pre-supplementation testing. Each test involved warming up for 5 min on a cycle ergometer and then performing two 30-s Wingate anaerobic sprint tests on a computerized cycle ergometer separated by 3 min of rest recovery. In the pre- and post-supplementation trials, blood samples were obtained at rest, immediately following the first and second sprints, and following 5 min of recovery from exercise. Subjects were then matched according to body mass and anaerobic capacity and assigned to ingest, in a randomized and double blind manner, capsules containing either 5 g of a dextrose placebo (P) or D-ribose (R) twice daily (10 g/d) for 5 d. Subjects then performed post-supplementation tests on the 6th day. Data were analyzed by ANOVA for repeated measures. Results revealed a significant interaction (p =.04) in total work output. Post hoc analysis revealed that work significantly declined (-18 +/- 51 J) during the second post-supplementation sprint in the P group while being maintained in the R group (-0.0 +/- 31 J). No significant interactions were observed in peak power, average power, torque, fatigue index, lactate, ammonia, glucose, or uric acid. Results indicate that oral ribose supplementation (10 g/d for 5 d) does not affect anaerobic exercise capacity or metabolic markers in trained subjects as evaluated in this study.

  7. Metabolic energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    The international space community, including the USSR, Japan, Germany, the European Space Agency, and the US, is preparing for extended stays in space. Much of the research planned for space will be tended by humans, thus, maintaining adequate nutritional status during long stays in space has lately become an issue of much interest. Historically, it appears that minimum nutritional requirements are being met during stays in space. Thus far, crewmembers have been able to consume food adequate for maintaining nominal performance in microgravity. The physiological data obtained from ground-based and flight research that may enable us to understand the biochemical alterations that effect energy utilization and performance. Focus is on energy utilization during the Apollo lunar missions, Skylab's extended space lab missions, and Space Shuttle flights. Available data includes those recorded during intra- and extravehicular activities as well as during microgravity simulation (bed rest). Data on metabolism during flight and during bed rest are discussed, with a follow-up on human gastrointestinal function.

  8. Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism.

    PubMed

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Mohanty, Sriprakash; Samanta, Mrinal; Maiti, Nikhil Kumar

    2016-07-01

    Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring.

  9. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization

    SciTech Connect

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H.; Hao, Xiying

    2015-09-15

    Highlights: • Anaerobic digestion and nutrient mineralization of paunch in a CSTR. • Low CH{sub 4} yield and high CH{sub 4} productivity was obtained at an OLR of 2.8 g VS L{sup −1} day{sup −1.} • Post-digestion of the digestate resulted in a CH{sub 4} yield of 0.067 L g{sup −1} VS. • Post-digestion is recommended for further digestate stabilization. - Abstract: A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8 g VS L{sup −1} day{sup −1} with a 30-day hydraulic retention time (HRT), a CH{sub 4} yield of 0.213 L g{sup −1} VS and CH{sub 4} production rate of 0.600 L L{sup −1} day{sup −1} were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30 days at 40 °C recovered 0.067 L g{sup −1} VS as CH{sub 4}, which was 21% of the batch CH{sub 4} potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K{sup +}, Ca{sup 2+} and Mg{sup 2+} were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system.

  10. Estimates of methane loss and energy recovery potential in anaerobic reactors treating domestic wastewater.

    PubMed

    Lobato, L C S; Chernicharo, C A L; Souza, C L

    2012-01-01

    This work aimed at developing a mathematical model that could estimate more precisely the fraction of chemical oxygen demand (COD) recovered as methane in the biogas and which, effectively, represented the potential for energy recovery in upflow anaerobic sludge blanket (UASB) reactors treating domestic wastewater. The model sought to include all routes of conversion and losses in the reactor, including the portion of COD used for the reduction of sulfates and the loss of methane in the residual gas and dissolved in the effluent. Results from the production of biogas in small- and large-scale UASB reactors were used to validate the model. The results showed that the model allowed a more realistic estimate of biogas production and of its energy potential.

  11. Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants.

    PubMed

    Fdz-Polanco, F; Velazquez, R; Perez-Elvira, S I; Casas, C; del Barrio, D; Cantero, F J; Fdz-Polanco, M; Rodriguez, P; Panizo, L; Serrat, J; Rouge, P

    2008-01-01

    A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy.

  12. Energy Metabolism of Human Neutrophils during Phagocytosis

    PubMed Central

    Borregaard, Niels; Herlin, Troels

    1982-01-01

    Detailed quantitative studies were performed on the generation and utilization of energy by resting and phagocytosing human neutrophils. The ATP content was 1.9 fmol/cell, was constant during rest, and was not influenced by the presence or absence of glucose in the medium. The intracellular content of phosphocreatine was less than 0.2 fmol/cell. In the presence of glucose, ATP was generated almost exclusively from lactate produced from glucose taken up from the surrounding medium. The amount of lactate produced could account for 85% of the glucose taken up by the cells, and the intracellular glycosyl store, glycogen, was not drawn upon. The rate of ATP generation as calculated from the rate of lactate production was 1.3 fmol/cell/min. During phagocytosis, there was no measurable increase in glucose consumption or lactate production, and the ATP content fell rapidly to 0.8 fmol/cell. This disappearance of ATP was apparently irreversible since no corresponding increase in ADP or AMP was observed. It therefore appears that this phagocytosis-induced fall in ATP concentration represents all the extra energy utilized in human neutrophils in the presence of glucose. In the absence of glucose, the rate of ATP generation in the resting cell was considerably smaller, 0.75 fmol/cell per min, as calculated from the rate of glycolysis, which is sustained exclusively by glycogenolysis. Under this condition, however, phagocytosis induces significant enhancement of glycogenolysis and the rate of lactate production is increased by 60%, raising the rate of ATP generation to 1.2 fmol/cell per min. Nonetheless, the ATP content drops significantly from 1.9 to 1.0 fmol/cell. Neutrophils from patients with chronic granulomatous disease have the same rate of glycolysis and the same ATP content as normal cells, thus confirming that the defective respiration of these cells does not affect their energy metabolism. PMID:7107894

  13. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  14. Energy Metabolism in the Acquisition and Maintenance of Stemness

    PubMed Central

    Folmes, Clifford D. L.; Terzic, Andre

    2016-01-01

    Energy metabolism is traditionally considered a reactive homeostatic system addressing stage-specific cellular energy needs. There is however growing appreciation of metabolic pathways in the active control of vital cell functions. Case in point, the stem cell lifecycle – from maintenance and acquisition of stemness to lineage commitment and specification – is increasingly recognized as a metabolism-dependent process. Indeed, metabolic reprogramming is an early contributor to the orchestrated departure from or reacquisition of stemness. Recent advances in metabolomics have helped decipher the identity and dynamics of metabolic fluxes implicated in fueling cell fate choices by regulating the epigenetic and transcriptional identity of a cell. Metabolic cues, internal and/or external to the stem cell niche, facilitate progenitor pool restitution, long-term tissue renewal or ensure adoption of cytoprotective behavior. Convergence of energy metabolism with stem cell fate regulation opens a new avenue in understanding primordial developmental biology principles with future applications in regenerative medicine practice. PMID:26868758

  15. Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process.

    PubMed

    Sträuber, Heike; Lucas, Rico; Kleinsteuber, Sabine

    2016-01-01

    Two-phasic anaerobic digestion processes (hydrolysis/acidogenesis separated from acetogenesis/methanogenesis) can be used for biogas production on demand or a combined chemicals/bioenergy production. For an effective process control, detailed knowledge about the microbial catalysts and their correlation to process conditions is crucial. In this study, maize silage was digested in a two-phase process and interrelationships between process parameters and microbial communities were revealed. In the first-phase reactor, alternating metabolic periods were observed which emerged independently from the feeding frequency. During the L-period, up to 11.8 g L(-1) lactic acid was produced which significantly correlated to lactic acid bacteria of the genus Lactobacillus as the most abundant community members. During the alternating G-period, the production of volatile fatty acids (up to 5.3, 4.0 and 3.1 g L(-1) for propionic, n-butyric and n-caproic acid, respectively) dominated accompanied by a high gas production containing up to 28 % hydrogen. The relative abundance of various Clostridiales increased during this metabolic period. In the second-phase reactor, the metabolic fluctuations of the first phase were smoothed out resulting in a stable biogas production as well as stable bacterial and methanogenic communities. However, the biogas composition followed the metabolic dynamics of the first phase: the hydrogen content increased during the L-period whereas highest CH4/CO2 ratios (up to 2.8) were reached during the G-period. Aceticlastic Methanosaeta as well as hydrogenotrophic Methanoculleus and Methanobacteriaceae were identified as dominant methanogens. Consequently, a directed control of the first-phase stabilizing desired metabolic states can lead to an enhanced productivity regarding chemicals and bioenergy.

  16. Microcalorimetric study of the anaerobic growth of Escherichia coli: measurements of the affinity of whole cells for various energy substrates.

    PubMed Central

    Belaich, A; Belaich, J P

    1976-01-01

    Microcalorimetry has been used to determine the affinity of whole cells of Escherichia coli for glucose, galactose, fructose, and lactose. Anaerobic growth thermograms were analyzed, and the Km and Vmax values for these energy substrates were measured at pH 7.8. Results obtained with this technique using various organisms growing anaerobically on different sugars are compared. This comparison shows that in practically all cases the cellular rate of catabolic activity is a hyperbolic function of the energy substrate concentrations at low sugar concentrations. In some cases this technique also allows determination of kinetics at high sugar concentrations. PMID:1373

  17. A cellular perspective on brain energy metabolism and functional imaging.

    PubMed

    Magistretti, Pierre J; Allaman, Igor

    2015-05-20

    The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales.

  18. Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1.

    PubMed

    Alves, Mónica N; Neto, Sónia E; Alves, Alexandra S; Fonseca, Bruno M; Carrêlo, Afonso; Pacheco, Isabel; Paquete, Catarina M; Soares, Cláudio M; Louro, Ricardo O

    2015-01-01

    The versatile anaerobic metabolism of the Gram-negative bacterium Shewanella oneidensis MR-1 (SOMR-1) relies on a multitude of redox proteins found in its periplasm. Most are multiheme cytochromes that carry electrons to terminal reductases of insoluble electron acceptors located at the cell surface, or bona fide terminal reductases of soluble electron acceptors. In this study, the interaction network of several multiheme cytochromes was explored by a combination of NMR spectroscopy, activity assays followed by UV-visible spectroscopy and comparison of surface electrostatic potentials. From these data the small tetraheme cytochrome (STC) emerges as the main periplasmic redox shuttle in SOMR-1. It accepts electrons from CymA and distributes them to a number of terminal oxidoreductases involved in the respiration of various compounds. STC is also involved in the electron transfer pathway to reduce nitrite by interaction with the octaheme tetrathionate reductase (OTR), but not with cytochrome c nitrite reductase (ccNiR). In the main pathway leading the metal respiration STC pairs with flavocytochrome c (FccA), the other major periplasmic cytochrome, which provides redundancy in this important pathway. The data reveals that the two proteins compete for the binding site at the surface of MtrA, the decaheme cytochrome inserted on the periplasmic side of the MtrCAB-OmcA outer-membrane complex. However, this is not observed for the MtrA homologues. Indeed, neither STC nor FccA interact with MtrD, the best replacement for MtrA, and only STC is able to interact with the decaheme cytochrome DmsE of the outer-membrane complex DmsEFABGH. Overall, these results shown that STC plays a central role in the anaerobic respiratory metabolism of SOMR-1. Nonetheless, the trans-periplasmic electron transfer chain is functionally resilient as a consequence of redundancies that arise from the presence of alternative pathways that bypass/compete with STC.

  19. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Results Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. Conclusions This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further

  20. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1.

    PubMed

    Hunt, Kristopher A; Flynn, Jeffrey M; Naranjo, Belén; Shikhare, Indraneel D; Gralnick, Jeffrey A

    2010-07-01

    It is well established that respiratory organisms use proton motive force to produce ATP via F-type ATP synthase aerobically and that this process may reverse during anaerobiosis to produce proton motive force. Here, we show that Shewanella oneidensis strain MR-1, a nonfermentative, facultative anaerobe known to respire exogenous electron acceptors, generates ATP primarily from substrate-level phosphorylation under anaerobic conditions. Mutant strains lacking ackA (SO2915) and pta (SO2916), genes required for acetate production and a significant portion of substrate-level ATP produced anaerobically, were tested for growth. These mutant strains were unable to grow anaerobically with lactate and fumarate as the electron acceptor, consistent with substrate-level phosphorylation yielding a significant amount of ATP. Mutant strains lacking ackA and pta were also shown to grow slowly using N-acetylglucosamine as the carbon source and fumarate as the electron acceptor, consistent with some ATP generation deriving from the Entner-Doudoroff pathway with this substrate. A deletion strain lacking the sole F-type ATP synthase (SO4746 to SO4754) demonstrated enhanced growth on N-acetylglucosamine and a minor defect with lactate under anaerobic conditions. ATP synthase mutants grown anaerobically on lactate while expressing proteorhodopsin, a light-dependent proton pump, exhibited restored growth when exposed to light, consistent with a proton-pumping role for ATP synthase under anaerobic conditions. Although S. oneidensis requires external electron acceptors to balance redox reactions and is not fermentative, we find that substrate-level phosphorylation is its primary anaerobic energy conservation strategy. Phenotypic characterization of an ackA deletion in Shewanella sp. strain MR-4 and genomic analysis of other sequenced strains suggest that this strategy is a common feature of Shewanella.

  1. Effects of Dietary Acid Load on Exercise Metabolism and Anaerobic Exercise Performance

    PubMed Central

    Caciano, Susan L.; Inman, Cynthia L.; Gockel-Blessing, Elizabeth E.; Weiss, Edward P.

    2015-01-01

    Dietary acid load, quantified as the potential renal acid load (PRAL) of the diet, affects systemic pH and acid-base regulation. In a previous cross-sectional study, we reported that a low dietary PRAL (i.e. alkaline promoting diet) is associated with higher respiratory exchange ratio (RER) values during maximal exercise. The purpose of the present study was to confirm the previous findings with a short-term dietary intervention study. Additionally, we sought to determine if changes in PRAL affects submaximal exercise RER (as a reflection of substrate utilization) and anaerobic exercise performance. Subjects underwent a graded treadmill exercise test (GXT) to exhaustion and an anaerobic exercise performance test on two occasions, once after following a low-PRAL diet and on a separate occasion, after a high-PRAL diet. The diets were continued as long as needed to achieve an alkaline or acid fasted morning urine pH, respectively, with all being 4-9 days in duration. RER was measured during the GXT with indirect calorimetry. The anaerobic performance test was a running time-to-exhaustion test lasting 1-4 min. Maximal exercise RER was lower in the low-PRAL trial compared to the high-PRAL trial (1.10 ± 0.02 vs. 1.20 ± 0.05, p = 0.037). The low-PRAL diet also resulted in a 21% greater time to exhaustion during anaerobic exercise (2.56 ± 0.36 vs. 2.11 ± 0.31 sec, p = 0.044) and a strong tendency for lower RER values during submaximal exercise at 70% VO2max (0.88 ± 0.02 vs. 0.96 ± 0.04, p = 0.060). Contrary to our expectations, a short-term low-PRAL (alkaline promoting) diet resulted in lower RER values during maximal-intensity exercise. However, the low-PRAL diet also increased anaerobic exercise time to exhaustion and appears to have shifted submaximal exercise substrate utilization to favor lipid oxidation and spare carbohydrate, both of which would be considered favorable effects in the context of exercise performance. Key points Short-term (4-9 days) changes in

  2. [Dynamic variance of intracellular metabolic energies under rhythmical control for dissolved oxygen in PHB mixed cultivation].

    PubMed

    Qian, Z W; Tohyama, M; Hua, Q; Shimizu, K

    2001-07-01

    The mixed cultivation using cheaper carbon source-wasted food material contained glucose and lactate at the same time was conducted in 5L fermentor, within which glucose was converted to lactate by L. delbrueckii in anaerobic condition and the lactate was converted to PHB by R. eutropha in aerobic condition. Considering dissolved oxygen concentration may affect the level of intracellular ATP and NADPH of the metabolic pathways for R. eutropha in lactate under autotrophy or heterotrophy, rhythmical oscillated control for DO based on chaos control method was consequently presented. This method was employed to satisfy two strains for opposite oxygen preferences, moreover, excite the intracellular metabolic energy simultaneously. The values examined through spectrophotofluorimetry represented that both ATP and NADPH exhibited fluctuations in accordance with the DO rhythm. By means of this control design, the concentration of PHB can be doubled than the usual under stable DO control.

  3. Haematological and iron-related parameters in male and female athletes according to different metabolic energy demands.

    PubMed

    Milic, Radoje; Martinovic, Jelena; Dopsaj, Milivoj; Dopsaj, Violeta

    2011-03-01

    We investigated the iron-related haematological parameters in both male and female athletes participating in different sporting disciplines necessitating different metabolic energy demands. A total of 873 athletes (514 males, mean age: 22.08 ± 4.95 years and 359 females, mean age: 21.38 ± 3.88 years) were divided according to gender and to the predominant energy system required for participation in sport (aerobic, anaerobic or mixed) and haematological and iron-related parameters were measured. For both male and female athletes, significant differences related to the predominant energy system were found at a general level: male (Wilks' λ = 0.798, F = 3.047, p < 0.001) and female (Wilks' λ = 0.762, F = 2.591, p < 0.001). According to the ferritin cutoff value of 35 μg/L, whole body iron and sTfR significantly differed in all three groups of male and female athletes (p < 0.001). The percentage of hypochromic erythrocytes in male athletes was significantly higher only in those who required an anaerobic energy source (p < 0.001), whilst in the females hypochromic erythrocytes (p < 0.001) and haemoglobin (anaerobic, p = 0.042; mixed, p = 0.006) were significantly different only in anaerobic and mixed energy source athletes. According to the ferritin cutoff value of 22 μg/L, in females, whole body iron, sTfR and hypochromic erythrocytes were significantly higher in all three groups of athletes than those below the aforementioned cutoff value (p < 0.001). We conclude that the predominant energy system required for participation in sport affects haematological parameters. sTfR and body iron proved to be reliable parameters for monitoring the dynamics of iron metabolism and could contribute to successful iron-deficiency prevention.

  4. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization.

    PubMed

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H; Hao, Xiying

    2015-09-01

    A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8gVSL(-1)day(-1) with a 30-day hydraulic retention time (HRT), a CH4 yield of 0.213Lg(-1)VS and CH4 production rate of 0.600LL(-1)day(-1) were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30days at 40°C recovered 0.067Lg(-1)VS as CH4, which was 21% of the batch CH4 potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K(+), Ca(2+) and Mg(2+) were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system.

  5. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    PubMed

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system.

  6. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    PubMed

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  7. Thermophilic anaerobic digestion to increase the net energy balance of corn grain ethanol.

    PubMed

    Agler, Matthew T; Garcia, Marcelo L; Lee, Eric S; Schlicher, Martha; Angenent, Largus T

    2008-09-01

    U.S. production of fuel ethanol from corn grain has increased considerably over the last 10 years. Intense debate regarding the true environmental impact of the overall production process has been ongoing. The present study evaluated the utilization of thin stillage (a major byproduct of the dry-mill corn grain-to-ethanol process) in laboratory-scale thermophilic anaerobic sequencing batch reactors for conversion to methane. We found that augmentation of cobalt as a growth factor to the thermophilic anaerobic digestion process is required. After reaching sustainable operating performances, the methane potential in the reactors was 0.254 L CH4/g total chemical oxygen demand (TCOD) fed. Together with a reduction in the mass of solids that needs drying, methane generation translates to a 51% reduction of natural gas consumption at a conventional dry mill, which improves the net energy balance ratio from 1.26 to 1.70. At the design hydraulic retention time of 10 days, the digesters achieved TCOD, biodegradable COD, volatile solids, and total solids removal efficiencies of 90%, 75%, 89%, and 81%, respectively. We also found that struvite precipitation occurred in the thermophilic digesters during the course of the study, resulting in possibilities for nutrient recovery.

  8. Respiration, respiratory metabolism and energy consumption under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Makarov, G. F.

    1975-01-01

    Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.

  9. Metal centers in the anaerobic microbial metabolism of CO and CO2

    PubMed Central

    Bender, Güneş; Pierce, Elizabeth; Hill, Jeffrey A.; Darty, Joseph E.

    2014-01-01

    Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO2, for harnessing ‘green’ energy and producing biofuels. One strategy is to convert CO2 into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO2 and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO2, we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO2 and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe4S4 clusters, catalyzes the addition and elimination of CO2 during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron–sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B12 and a Fe4S4 cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co3+ intermediate. Studies of CO and CO2 enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C–C and C–S bond formations. PMID:21647480

  10. The endocannabinoid system and energy metabolism.

    PubMed

    Bellocchio, L; Cervino, C; Pasquali, R; Pagotto, U

    2008-06-01

    Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors [cannabinoid receptor type 1 (CB1) and CB2] participate in the physiological modulation of many central and peripheral functions. The ability of the endocannabinoid system to control appetite, food intake and energy balance has recently received considerable attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptors and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system was recently shown to control several metabolic functions by acting on peripheral tissues such as adipocytes, hepatocytes, the gastrointestinal tract, the skeletal muscles and the endocrine pancreas. The relevance of the system is further strengthened by the notion that visceral obesity seems to be a condition in which an overactivation of the endocannabinoid system occurs, and therefore drugs interfering with this overactivation by blocking CB1 receptors are considered as potentially valuable candidates for the treatment of obesity and related cardiometabolic risk factors.

  11. Anaerobes in Industrial- and Environmental Biotechnology.

    PubMed

    Hatti-Kaul, Rajni; Mattiasson, Bo

    Anaerobic microorganisms present in diverse ecological niches employ alternative strategies for energy conservation in the absence of oxygen which enables them to play a key role in maintaining the global cycles of carbon, nitrogen, and sulfur, and the breakdown of persistent compounds. Thereby they become useful tools in industrial and environmental biotechnology. Although anaerobes have been relatively neglected in comparison to their aerobic counterparts, with increasing knowledge about their diversity and metabolic potential and the development of genetic tools and process technologies to utilize them, we now see a rapid expansion of their applications in the society. This chapter summarizes some of the developments in the use of anaerobes as tools for biomass valorization, in production of energy carriers and chemicals, wastewater treatment, and the strong potential in soil remediation. The ability of several autotrophic anaerobes to reduce carbon dioxide is attracting growing attention as a means for developing a platform for conversion of waste gases to chemicals, materials, and biofuels.

  12. Anaerobic codigestion of dairy manure and food manufacturing waste for renewable energy generation in New York State

    NASA Astrophysics Data System (ADS)

    Rankin, Matthew J.

    Anaerobic digestion is a microbiological process that converts biodegradable organic material into biogas, consisting primarily of methane and carbon dioxide. Anaerobic digestion technologies have been integrated into wastewater treatment facilities nationwide for many decades to increase the economic viability of the treatment process by converting a waste stream into two valuable products: biogas and fertilizer. Thus, anaerobic digestion offers potential economic and environmental benefits of organic waste diversion and renewable energy generation. The use of biogas has many applications, including cogeneration, direct combustion, upgrading for conversion to feed a fuel cell, and compression for injection into the natural gas grid or for vehicular use. The potential benefits of waste diversion and renewable energy generation are now being realized by major organic waste generators in New York State, in particular the food manufacturing and dairy industries, thus warranting an analysis of the energy generation potential for these waste products. Anaerobic codigestion of dairy manure and food-based feedstocks reflects a cradle-to- cradle approach to organic waste management. Given both of their abundance throughout New York State, waste-to-energy processes represent promising waste management strategies. The objective of this thesis was to evaluate the current technical and economic feasibility of anaerobically codigesting existing dairy manure and food manufacturing waste feedstocks in New York State to produce high quality biogas for renewable energy generation. The first element to determining the technical feasibility of anaerobic codigestion potential in New York State was to first understand the feedstock availability. A comprehensive survey of existing organic waste streams was conducted. The key objective was to identify the volume and composition of dairy manure and liquid-phase food manufacturing waste streams available in New York State to make

  13. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    PubMed Central

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  14. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw.

    PubMed

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.

  15. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    PubMed

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes.

  16. Sublethal Concentrations of Antibiotics Cause Shift to Anaerobic Metabolism in Listeria monocytogenes and Induce Phenotypes Linked to Antibiotic Tolerance

    PubMed Central

    Knudsen, Gitte M.; Fromberg, Arvid; Ng, Yin; Gram, Lone

    2016-01-01

    The human pathogenic bacterium Listeria monocytogenes is exposed to antibiotics both during clinical treatment and in its saprophytic lifestyle. As one of the keys to successful treatment is continued antibiotic sensitivity, the purpose of this study was to determine if exposure to sublethal antibiotic concentrations would affect the bacterial physiology and induce antibiotic tolerance. Transcriptomic analyses demonstrated that each of the four antibiotics tested caused an antibiotic-specific gene expression pattern related to mode-of-action of the particular antibiotic. All four antibiotics caused the same changes in expression of several metabolic genes indicating a shift from aerobic to anaerobic metabolism and higher ethanol production. A mutant in the bifunctional acetaldehyde-CoA/alcohol dehydrogenase encoded by lmo1634 did not have altered antibiotic tolerance. However, a mutant in lmo1179 (eutE) encoding an aldehyde oxidoreductase where rerouting caused increased ethanol production was tolerant to three of four antibiotics tested. This shift in metabolism could be a survival strategy in response to antibiotics to avoid generation of ROS production from respiration by oxidation of NADH through ethanol production. The monocin locus encoding a cryptic prophage was induced by co-trimoxazole and repressed by ampicillin and gentamicin, and this correlated with an observed antibiotic-dependent biofilm formation. A monocin mutant (ΔlmaDCBA) had increased biofilm formation when exposed to increasing concentration of co-trimoxazole similar to the wild type, but was more tolerant to killing by co-trimoxazole and ampicillin. Thus, sublethal concentrations of antibiotics caused metabolic and physiological changes indicating that the organism is preparing to withstand lethal antibiotic concentrations. PMID:27462313

  17. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures.

    PubMed

    Alff-Tuomala, Susanne; Salusjärvi, Laura; Barth, Dorothee; Oja, Merja; Penttilä, Merja; Pitkänen, Juha-Pekka; Ruohonen, Laura; Jouhten, Paula

    2016-01-01

    Xylose is present with glucose in lignocellulosic streams available for valorisation to biochemicals. Saccharomyces cerevisiae has excellent characteristics as a host for the bioconversion, except that it strongly prefers glucose to xylose, and the co-consumption remains a challenge. Further, since xylose is not a natural substrate of S. cerevisiae, the regulatory response it induces in an engineered strain cannot be expected to have evolved for its utilisation. Xylose-induced effects on metabolism and gene expression during anaerobic growth of an engineered strain of S. cerevisiae on medium containing both glucose and xylose medium were quantified. The gene expression of S. cerevisiae with an XR-XDH pathway for xylose utilisation was analysed throughout the cultivation: at early cultivation times when mainly glucose was metabolised, at times when xylose was co-consumed in the presence of low glucose concentrations, and when glucose had been depleted and only xylose was being consumed. Cultivations on glucose as a sole carbon source were used as a control. Genome-scale dynamic flux balance analysis models were simulated to analyse the metabolic dynamics of S. cerevisiae. The simulations quantitatively estimated xylose-dependent flux dynamics and challenged the utilisation of the metabolic network. A relative increase in xylose utilisation was predicted to induce the bi-directionality of glycolytic flux and a redox challenge even at low glucose concentrations. Remarkably, xylose was observed to specifically delay the glucose-dependent repression of particular genes in mixed glucose-xylose cultures compared to glucose cultures. The delay occurred at a cultivation time when the metabolic flux activities were similar in the both cultures.

  18. Spatial decision support system to evaluate crop residue energy potential by anaerobic digestion.

    PubMed

    Escalante, Humberto; Castro, Liliana; Gauthier-Maradei, Paola; Rodríguez De La Vega, Reynel

    2016-11-01

    Implementing anaerobic digestion (AD) in energy production from crop residues requires development of decision tools to assess its feasibility and sustainability. A spatial decision support system (SDSS) was constructed to assist decision makers to select appropriate feedstock according to biomethanation potential, identify the most suitable location for biogas facilities, determine optimum plant capacity and supply chain, and evaluate associated risks and costs. SDSS involves a spatially explicit analysis, fuzzy multi-criteria analysis, and statistical and optimization models. The tool was validated on seven crop residues located in Santander, Colombia. For example, fique bagasse generates about 0.21millionm(3)CH4year(-1) (0.329m(3)CH4kg(-1) volatile solids) with a minimum profitable plant of about 2000tonyear(-1) and an internal rate of return of 10.5%. SDSS can be applied to evaluate other biomass resources, availability periods, and co-digestion potential.

  19. In vitro metabolism of rebaudioside E under anaerobic conditions: Comparison with rebaudioside A.

    PubMed

    Purkayastha, Sidd; Bhusari, Sachin; Pugh, George; Teng, Xiaowei; Kwok, David; Tarka, Stanley M

    2015-08-01

    The hydrolysis of the steviol glycosides rebaudioside (Reb) A and E, as well as steviolbioside (a metabolic intermediate) to steviol was evaluated in vitro using human fecal homogenates from healthy Caucasian and Asian donors. Incubation of each of the Rebs in both groups resulted in a rapid hydrolysis to steviol. Metabolism of 0.2mg/mL sample was complete within 24h, with the majority occurring within the first 16 h. There were no clear differences in the rate or extent of metabolism of Reb E relative to the comparative control Reb A. The hydrolysis of samples containing 2.0mg/mL of steviol glycosides Reb A and Reb E tended to take slightly longer than 0.2mg/mL samples. Herein, we report for the first time that there were no apparent gender or ethnicity differences in the rate of metabolism of any of the Rebs, regardless of the concentrations tested. Steviolbioside, an intermediate in the hydrolysis of Reb E to steviol was also found to be rapidly degraded to steviol. These results demonstrate Reb E is metabolized to steviol in the same manner as Reb A. These data support the use of toxicology data available on steviol, and on steviol glycosides metabolized to steviol (i.e., Reb A) to underpin the safety of Reb E.

  20. Site-Specific Management of Miscanthus Genotypes for Combustion and Anaerobic Digestion: A Comparison of Energy Yields.

    PubMed

    Kiesel, Andreas; Nunn, Christopher; Iqbal, Yasir; Van der Weijde, Tim; Wagner, Moritz; Özgüven, Mensure; Tarakanov, Ivan; Kalinina, Olena; Trindade, Luisa M; Clifton-Brown, John; Lewandowski, Iris

    2017-01-01

    In Europe, the perennial C4 grass miscanthus is currently mainly cultivated for energy generation via combustion. In recent years, anaerobic digestion has been identified as a promising alternative utilization pathway. Anaerobic digestion produces a higher-value intermediate (biogas), which can be upgraded to biomethane, stored in the existing natural gas infrastructure and further utilized as a transport fuel or in combined heat and power plants. However, the upgrading of the solid biomass into gaseous fuel leads to conversion-related energy losses, the level of which depends on the cultivation parameters genotype, location, and harvest date. Thus, site-specific crop management needs to be adapted to the intended utilization pathway. The objectives of this paper are to quantify (i) the impact of genotype, location and harvest date on energy yields of anaerobic digestion and combustion and (ii) the conversion losses of upgrading solid biomass into biogas. For this purpose, five miscanthus genotypes (OPM 3, 6, 9, 11, 14), three cultivation locations (Adana, Moscow, Stuttgart), and up to six harvest dates (August-March) were assessed. Anaerobic digestion yielded, on average, 35% less energy than combustion. Genotype, location, and harvest date all had significant impacts on the energy yield. For both, this is determined by dry matter yield and ash content and additionally by substrate-specific methane yield for anaerobic digestion and moisture content for combustion. Averaged over all locations and genotypes, an early harvest in August led to 25% and a late harvest to 45% conversion losses. However, each utilization option has its own optimal harvest date, determined by biomass yield, biomass quality, and cutting tolerance. By applying an autumn green harvest for anaerobic digestion and a delayed harvest for combustion, the conversion-related energy loss was reduced to an average of 18%. This clearly shows that the delayed harvest required to maintain biomass quality

  1. Site-Specific Management of Miscanthus Genotypes for Combustion and Anaerobic Digestion: A Comparison of Energy Yields

    PubMed Central

    Kiesel, Andreas; Nunn, Christopher; Iqbal, Yasir; Van der Weijde, Tim; Wagner, Moritz; Özgüven, Mensure; Tarakanov, Ivan; Kalinina, Olena; Trindade, Luisa M.; Clifton-Brown, John; Lewandowski, Iris

    2017-01-01

    In Europe, the perennial C4 grass miscanthus is currently mainly cultivated for energy generation via combustion. In recent years, anaerobic digestion has been identified as a promising alternative utilization pathway. Anaerobic digestion produces a higher-value intermediate (biogas), which can be upgraded to biomethane, stored in the existing natural gas infrastructure and further utilized as a transport fuel or in combined heat and power plants. However, the upgrading of the solid biomass into gaseous fuel leads to conversion-related energy losses, the level of which depends on the cultivation parameters genotype, location, and harvest date. Thus, site-specific crop management needs to be adapted to the intended utilization pathway. The objectives of this paper are to quantify (i) the impact of genotype, location and harvest date on energy yields of anaerobic digestion and combustion and (ii) the conversion losses of upgrading solid biomass into biogas. For this purpose, five miscanthus genotypes (OPM 3, 6, 9, 11, 14), three cultivation locations (Adana, Moscow, Stuttgart), and up to six harvest dates (August–March) were assessed. Anaerobic digestion yielded, on average, 35% less energy than combustion. Genotype, location, and harvest date all had significant impacts on the energy yield. For both, this is determined by dry matter yield and ash content and additionally by substrate-specific methane yield for anaerobic digestion and moisture content for combustion. Averaged over all locations and genotypes, an early harvest in August led to 25% and a late harvest to 45% conversion losses. However, each utilization option has its own optimal harvest date, determined by biomass yield, biomass quality, and cutting tolerance. By applying an autumn green harvest for anaerobic digestion and a delayed harvest for combustion, the conversion-related energy loss was reduced to an average of 18%. This clearly shows that the delayed harvest required to maintain biomass

  2. Formate Dehydrogenase, an Enzyme of Anaerobic Metabolism, Is Induced by Iron Deficiency in Barley Roots1

    PubMed Central

    Suzuki, Kazuya; Itai, Reiko; Suzuki, Koichiro; Nakanishi, Hiromi; Nishizawa, Naoko-Kishi; Yoshimura, Etsuro; Mori, Satoshi

    1998-01-01

    To identify the proteins induced by Fe deficiency, we have compared the proteins of Fe-sufficient and Fe-deficient barley (Hordeum vulgare L.) roots by two-dimensional polyacrylamide gel electrophoresis. Peptide sequence analysis of induced proteins revealed that formate dehydrogenase (FDH), adenine phosphoribosyltransferase, and the Ids3 gene product (for Fe deficiency-specific) increased in Fe-deficient roots. FDH enzyme activity was detected in Fe-deficient roots but not in Fe-sufficient roots. A cDNA encoding FDH (Fdh) was cloned and sequenced. Fdh expression was induced by Fe deficiency. Fdh was also expressed under anaerobic stress and its expression was more rapid than that induced by Fe deficiency. Thus, the expression of Fdh observed in Fe-deficient barley roots appeared to be a secondary effect caused by oxygen deficiency in Fe-deficient plants. PMID:9489019

  3. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    EPA Science Inventory

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  4. Effects of low and high levels of moderate hypoxia on anaerobic energy release during supramaximal cycle exercise.

    PubMed

    Ogura, Yuji; Katamoto, Shizuo; Uchimaru, Jin; Takahashi, Kohei; Naito, Hisashi

    2006-09-01

    The purpose of this study was to investigate whether hypoxia can alter anaerobic energy release during supramaximal exercise. Seven male subjects performed 12 submaximal cycling tests to establish the relationship between workload and O2 demand. The subjects also performed 40 s Wingate tests (WT) under normoxia (room air), two levels of moderate hypoxia of 16.4% O2 and 12.7% O2. We measured the power output and oxygen uptake (VO2) during each test and estimated the O2 demand, O2 deficit and percentage of anaerobic energy release (%AnAER). These data were analyzed for each 20 s interval. At all intervals, there were no differences in Pmean per body mass (BM)(-1), O2 demand per BM(-1) or O2 deficit per BM(-1) among the three O2 conditions. However, under hypoxia of 12.7%, VO2 per BM(-1) was significantly decreased and %AnAER was significantly increased in the late phase (20-40 s) of the WT, compared to normoxia (P<0.05). There were no such significant differences between normoxia and hypoxia of 16.4%. Thus, the present results show that the degree of hypoxia affects the magnitude of the hypoxia-induced increase in anaerobic energy release in the late phase of the WT and suggest that certain degrees of hypoxia induce significant increases in the amount of anaerobic energy released, compared to normoxia.

  5. Multiple metabolisms constrain the anaerobic nitrite budget in the Eastern Tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Babbin, Andrew R.; Peters, Brian D.; Mordy, Calvin W.; Widner, Brittany; Casciotti, Karen L.; Ward, Bess B.

    2017-02-01

    The Eastern Tropical South Pacific is one of the three major oxygen deficient zones (ODZs) in the global ocean and is responsible for approximately one third of marine water column nitrogen loss. It is the best studied of the ODZs and, like the others, features a broad nitrite maximum across the low oxygen layer. How the microbial processes that produce and consume nitrite in anoxic waters interact to sustain this feature is unknown. Here we used 15N-tracer experiments to disentangle five of the biologically mediated processes that control the nitrite pool, including a high-resolution profile of nitrogen loss rates. Nitrate reduction to nitrite likely depended on organic matter fluxes, but the organic matter did not drive detectable rates of denitrification to N2. However, multiple lines of evidence show that denitrification is important in shaping the biogeochemistry of this ODZ. Significant rates of anaerobic nitrite oxidation at the ODZ boundaries were also measured. Iodate was a potential oxidant that could support part of this nitrite consumption pathway. We additionally observed N2 production from labeled cyanate and postulate that anammox bacteria have the ability to harness cyanate as another form of reduced nitrogen rather than relying solely on ammonification of complex organic matter. The balance of the five anaerobic rates measured—anammox, denitrification, nitrate reduction, nitrite oxidation, and dissimilatory nitrite reduction to ammonium—is sufficient to reproduce broadly the observed nitrite and nitrate profiles in a simple one-dimensional model but requires an additional source of reduced nitrogen to the deeper ODZ to avoid ammonium overconsumption.

  6. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings.

  7. HIF-1α and PFKFB3 mediate a tight relationship between pro-inflammatory activation and anaerobic metabolism in atherosclerotic macrophages

    PubMed Central

    Tawakol, Ahmed; Singh, Parmanand; Mojena, Marina; Pimentel-Santillana, María; Emami, Hamed; MacNabb, Megan; Rudd, James H.F.; Narula, Jagat; Enriquez, José A.; Través, Paqui G.; Fernández-Velasco, María; Bartrons, Ramón; Martín-Sanz, Paloma; Fayad, Zahi A.; Tejedor, Alberto; Boscá, Lisardo

    2015-01-01

    Objective While it is accepted that macrophage glycolysis is up-regulated under hypoxic conditions, it is not known whether this is linked to a similar increase in macrophage pro-inflammatory activation and whether specific energy demands regulate cell viability in the atheromatous plaque. Approach and Results We studied the interplay between macrophage energy metabolism, polarization and viability in the context of atherosclerosis. Cultured human and murine macrophages and an in vivo murine model of atherosclerosis were used to evaluate the mechanisms underlying metabolic and inflammatory activity of macrophages in the different atherosclerotic conditions analyzed. We observed that macrophage energetics and inflammatory activation are closely and linearly related, resulting in dynamic calibration of glycolysis to keep pace with inflammatory activity. Additionally, we show that macrophage glycolysis and proinflammatory activation mainly depend on hypoxia-inducible factor (HIF) and on its impact on glucose uptake, and on the expression of hexokinase II and ubiquitous 6-phosphofructo-2-kinase (PFKFB3). As a consequence, hypoxia potentiates inflammation and glycolysis mainly via these pathways. Moreover, when macrophages’ ability to increase glycolysis through PFKFB3 is experimentally attenuated, cell viability is reduced if subjected to proinflammatory and/or hypoxic conditions, but unaffected under control conditions. In addition to this, GM-CSF enhances anaerobic glycolysis while exerting a mild pro-inflammatory activation. Conclusions These findings, in human and murine cells and in an animal model, show that hypoxia potentiates macrophage glycolytic flux in concert with a proportional up-regulation of pro-inflammatory activity, in a manner that is dependent on both HIF-1α and PFKFB3. PMID:25882065

  8. Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle.

    PubMed

    Mouisel, Etienne; Relizani, Karima; Mille-Hamard, Laurence; Denis, Raphaël; Hourdé, Christophe; Agbulut, Onnik; Patel, Ketan; Arandel, Ludovic; Morales-Gonzalez, Susanne; Vignaud, Alban; Garcia, Luis; Ferry, Arnaud; Luquet, Serge; Billat, Véronique; Ventura-Clapier, Renée; Schuelke, Markus; Amthor, Helge

    2014-08-15

    Myostatin (Mstn) participates in the regulation of skeletal muscle size and has emerged as a regulator of muscle metabolism. Here, we hypothesized that lack of myostatin profoundly depresses oxidative phosphorylation-dependent muscle function. Toward this end, we explored Mstn(-/-) mice as a model for the constitutive absence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myostatin blockade in adult wild-type mice. We show that muscles from Mstn(-/-) mice, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts muscle from aerobic toward anaerobic energy metabolism, as evidenced by decreased mitochondrial respiration, reduced expression of PPAR transcriptional regulators, increased enolase activity, and exercise-induced lactic acidosis. As a consequence, constitutively reduced myostatin signaling diminishes exercise capacity, while the hypermuscular state of Mstn(-/-) mice increases oxygen consumption and the energy cost of running. We wondered whether these results are the mere consequence of the congenital fiber-type switch toward a glycolytic phenotype of constitutive Mstn(-/-) mice. Hence, we overexpressed myostatin propeptide in adult mice, which did not affect fiber-type distribution, while nonetheless causing increased muscle fatigability, diminished exercise capacity, and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus regulating the delicate balance between muscle mass, muscle force, energy metabolism, and endurance capacity.

  9. Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.

    PubMed

    Hublin, Andrea; Schneider, Daniel Rolph; Džodan, Janko

    2014-07-01

    Anaerobic digestion of agro-industrial waste is of significant interest in order to facilitate a sustainable development of energy supply. Using of material and energy potentials of agro-industrial waste, in the framework of technical, economic, and ecological possibilities, contributes in increasing the share of energy generated from renewable energy sources. The paper deals with the benefits arising from the utilization of biogas produced by co-digestion of whey and cow manure. The advantages of this process are the profitability of the plant and the convenience in realizing an anaerobic digestion plant to produce biogas that is enabled by the benefits from the sale of electric energy at favorable prices. Economic aspects are related to the capital cost (€ 2,250,000) of anaerobic digestion treatment in a biogas plant with a 300 kW power and 510 kW heating unit in a medium size farm (450 livestock units). Considering the optimum biogas yield of 20.7 dm(3) kg(-1) of wet substrate and methane content in the biogas obtained of 79%, the anaerobic process results in a daily methane production of 2,500 kg, with the maximum power generation of 2,160,000 kWh y(-1) and heat generation of 2,400,000 kWh y(-1) The net present value (NPV), internal rate of return (IRR) and payback period for implementation of profitable anaerobic digestion process is evaluated. Ecological aspects related to carbon dioxide (CO2) and methane (CH4) emission reduction are assessed.

  10. Milestones in the history of research on cardiac energy metabolism.

    PubMed

    Beloukas, Apostolos I; Magiorkinis, Emmanouil; Tsoumakas, Theofanis L; Kosma, Alexandra G; Diamantis, Aristidis

    2013-11-01

    The present study summarizes the history of research on cardiac metabolism from antiquity till the 21st century. It describes important landmarks regarding the discovery of oxygen and of the 3 steps of cellular respiration, as well as major research on cardiac energy metabolism. For this purpose, we conducted a thorough search of original manuscripts, books, and contemporary reviews published in PubMed. The first views and concepts about the heart's function appear in Greek philosophic manuscripts of 2500 years ago. According to Aristotle, the heart is responsible for heat production, which is essential for life. The understanding of cardiac metabolism awaited new discoveries. The discovery of oxygen during the 18th century, along with the idea of energy conservation, or what is now known as one of the first versions of the first law of thermodynamics, played an important role in initiating the study of energy metabolism in general and heart metabolism later. The discovery of glycolysis, of the Krebs cycle, and of adenosine triphosphate offered a better understanding of cellular respiration, necessary for later research. Indeed, many researchers dedicated their studies to energy metabolism, but Richard John Bing, the renowned German research cardiologist, is the one who guided the exploration of cardiac metabolism, and he is therefore considered to be the father of cardiac energy metabolism. Since then, encouraging new research has been taking place, offering important clinical applications for heart patients.

  11. Comparison of lymphomononuclear cell energy metabolism between healthy, impaired glucose intolerance and type 2 diabetes mellitus patients.

    PubMed

    Ozsari, L; Karadurmus, N; Sahin, M; Uckaya, G; Ural, A U; Kutlu, M

    2010-02-01

    Diabetes mellitus (DM) is a complex disease that affects many systems. The most important cells of the immune system are lymphomononuclear (LMN) cells. Here, we aimed to evaluate the energy metabolism of LMN cells in patients with diabetes and impaired glucose tolerance. We measured LMN cell energy metabolism in patients with type 2 diabetes mellitus, impaired glucose tolerance (IGT) and healthy subjects. Cells were freshly isolated from peripheral blood and the subgroups were determined by flow cytometric method. Lactate production and glycogen utilization were significantly increased in the LMN cells of patients with type 2 DM and IGT when compared with healthy volunteers. No statistical difference was observed between the patients with type 2 DM and IGT. There was a significant correlation between fasting plasma glucose and lactate production in LMN cells. LMN cells changed their energy pathway in a diabetic state and preferred anaerobic glycolysis. Prediabetic range also affected energy metabolism in LMN cells. This abnormal energy production might cause dysfunction in LMN cells and the immune system in diabetic and prediabetic patients. In conclusion, we concluded that impaired glucose metabolism could change energy metabolism.

  12. The relationship between repeated sprint ability and the aerobic and anaerobic energy systems.

    PubMed

    Wadley, G; Le Rossignol, P

    1998-06-01

    A large number of team games require participants to repeatedly produce maximal or near maximal sprints of short duration with brief recovery periods. The purpose of the present study was to determine the relationship between a repeated sprint ability (RSA) test that is specific to the energy demands of Australian Rules football (ARF), and the aerobic and anaerobic energy systems. Seventeen ARF players participated in the study. Each participant was assessed for VO2 max, accumulated oxygen deficit (AOD), best 20 m sprint time and RSA. The RSA test involved 12x20 m sprints departing every 20 s. When including the work performed during the time taken to decelerate, the test involved a work to rest ratio of approximately 1:3. Total sprinting time and the percentage decrement of repeated sprinting times were the two derived measures of RSA. The results indicate that the best 20 m sprint time was the only factor to correlate significantly with total sprinting time (r = 0.829, P < 0.001) and percentage decrement (r = -0.722, P < 0.01). VO2 max and AOD were not related to the total sprinting time or the percentage decrement that was produced by the RSA test. This was interpreted to signify that the phosphagen system was the major energy contributor for this test.

  13. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane.

    PubMed

    Wegener, Gunter; Krukenberg, Viola; Ruff, S Emil; Kellermann, Matthias Y; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine) could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1-7‰ of archaeal 16S rRNA gene amplicons). In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1-9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results support a functioning of AOM as

  14. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane

    PubMed Central

    Wegener, Gunter; Krukenberg, Viola; Ruff, S. Emil; Kellermann, Matthias Y.; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine) could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1–7‰ of archaeal 16S rRNA gene amplicons). In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1–9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results support a functioning of AOM

  15. Anaerobic central metabolic pathways in Shewanella oneidensis MR-1interpreted in the light of isotopic metabolite labeling, enzymeactivities and genome annotation

    SciTech Connect

    Tang, Yinjie J.; Meadows, Adam L.; Kirby, James; Keasling, Jay D.

    2006-06-27

    It has been proposed that during growth under anaerobic oroxygen-limited conditions Shewanella oneidensis MR-1 uses theserine-isocitrate lyase pathway common to many methylotrophic anaerobes,in which formaldehyde produced from pyruvate is condensed with glycine toform serine. The serine is then transformed through hydroxypyruvate andglycerate to enter central metabolism at phosphoglycerate. To examine itsuse of the serine-isocitrate lyase pathway under anaerobic conditions, wegrew S. oneidensis MR-1 on [1-13C]lactate as the sole carbon source witheither trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor.Analysis of cellular metabolites indicates that a large percentage(>75 percent) of lactate was partially oxidized to either acetate orpyruvate. The 13C isotope distributions in amino acids and other keymetabolites indicate that, under anaerobic conditions, a complete serinepathway is not present, and lactate is oxidized via a highly reversibleserine degradation pathway. The labeling data also suggest significantactivity in the anaplerotic (malic enzyme and phosphoenolpyruvatecarboxylase) and glyoxylate shunt (isocitrate lyase and malate synthase)reactions. Although the tricarboxylic acid (TCA) cycle is often observedto be incomplete in many other anaerobes (absence of 2-oxoglutaratedehydrogenase activity), isotopic labeling supports the existence of acomplete TCA cycle in S. oneidensis MR-1 under TMAO reductioncondition.

  16. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism

    PubMed Central

    den Besten, Gijs; van Eunen, Karen; Groen, Albert K.; Venema, Koen; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2013-01-01

    Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism. PMID:23821742

  17. Metabolic properties of Eubacterium pyruvativorans, a ruminal 'hyper-ammonia-producing' anaerobe with metabolic properties analogous to those of Clostridium kluyveri.

    PubMed

    Wallace, R John; Chaudhary, Lal C; Miyagawa, Eiichi; McKain, N; Walker, Nicola D

    2004-09-01

    Eubacterium pyruvativorans I-6(T) is a non-saccharolytic, amino-acid-fermenting anaerobe from the rumen, isolated by its ability to grow on pancreatic casein hydrolysate (PCH) as sole C source. This study investigated its metabolic properties and its likely ecological niche. Additional growth was supported by pyruvate, vinyl acetate, and, to a lesser extent, lactate and crotonate, and also by a mixture of amino acids (alanine, glycine, serine and threonine) predicted to be catabolized to pyruvate. No single amino acid supported growth, and peptides were required for growth on amino acids. Alanine, followed by leucine, serine and proline, were used most extensively during growth, but only alanine and asparate were extensively modified before incorporation. Growth on PCH, but not on pyruvate, was increased by the addition of acetate, propionate and butyrate. l-Lactate was fermented incompletely, mainly to acetate, but no lactate-C was incorporated. Propionate and butyrate were utilized during growth, forming valerate and caproate, respectively. Labelling experiments suggested a metabolic pattern where two C atoms of butyrate, valerate and caproate were derived from amino acids, with the others being formed from acetate, propionate and butyrate. The metabolic strategy of E. pyruvativorans therefore resembles that of Clostridium kluyveri, which ferments ethanol only when the reaction is coupled to acetate, propionate or butyrate utilization. The fermentative niche of E. pyruvativorans appears to be to scavenge amino acids, lactate and possibly other metabolites in order to generate ATP via acetate formation, using volatile fatty acid elongation with C(2) units derived from other substrates to dispose of reducing equivalents.

  18. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity.

    PubMed

    Sánchez, Ailen M; Bennett, George N; San, Ka-Yiu

    2005-05-01

    A novel in vivo method of producing succinate has been developed. A genetically engineered Escherichia coli strain has been constructed to meet the NADH requirement and carbon demand to produce high quantities and yield of succinate by strategically implementing metabolic pathway alterations. Currently, the maximum theoretical succinate yield under strictly anaerobic conditions through the fermentative succinate biosynthesis pathway is limited to one mole per mole of glucose due to NADH limitation. The implemented strategic design involves the construction of a dual succinate synthesis route, which diverts required quantities of NADH through the traditional fermentative pathway and maximizes the carbon converted to succinate by balancing the carbon flux through the fermentative pathway and the glyoxylate pathway (which has less NADH requirement). The synthesis of succinate uses a combination of the two pathways to balance the NADH. Consequently, experimental results indicated that these combined pathways gave the most efficient conversion of glucose to succinate with the highest yield using only 1.25 moles of NADH per mole of succinate in contrast to the sole fermentative pathway, which uses 2 moles of NADH per mole of succinate. A recombinant E. coli strain, SBS550MG, was created by deactivating adhE, ldhA and ack-pta from the central metabolic pathway and by activating the glyoxylate pathway through the inactivation of iclR, which encodes a transcriptional repressor protein of the glyoxylate bypass. The inactivation of these genes in SBS550MG increased the succinate yield from glucose to about 1.6 mol/mol with an average anaerobic productivity rate of 10 mM/h (approximately 0.64 mM/h-OD600). This strain is capable of fermenting high concentrations of glucose in less than 24 h. Additional derepression of the glyxoylate pathway by inactivation of arcA, leading to a strain designated as SBS660MG, did not significantly increase the succinate yield and it decreased

  19. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  20. Analysis of metabolic energy utilization in the Skylab astronauts

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Skylab biomedical data regarding man's metabolic processes for extended periods of weightlessness is presented. The data was used in an integrated metabolic balance analysis which included analysis of Skylab water balance, electrolyte balance, evaporative water loss, and body composition. A theoretical analysis of energy utilization in man is presented. The results of the analysis are presented in tabular and graphic format.

  1. Energetics of end product excretion in anaerobic bacteria and the metabolism of fatty acids by Syntrophomonas wolfei. Progress report, January 31-December 15, 1985

    SciTech Connect

    McInerney, M.J.

    1985-01-01

    This work addresses the metabolism of fatty acids and the energetics of growth of the anaerobic, syntrophic, fatty acid-degrading bacterium, Syntrophomonas wolfei. S. wolfei degrades C/sub 4/ to C/sub 8/ straight chain fatty acids to acetate and H/sub 2/ or acetate, propionate and H/sub 2/; isoheptanoate is degraded to isovalerate, acetate, and H/sub 2/. S. wolfei can not use any common bacterial energy source that will allow it to grow in pure culture. A significant breakthrough in the cultivation of S. wolfei was achieved. Long term (3 months) incubation of S. wolfei cocultures in medium with crotonate selects for a population of S. wolfei cells that can use this compound. These cultures contain large numbers of S. wolfei cells and very few cells of the methanogen. Pure cultures of S. wolfei do not use butyrate. However, when pure cultures of S. wolfei are incubated in the presence of H/sub 2/-using bacteria, butyrate is degraded to acetate and H/sub 2/. These data show that the cells present in the pure cultures are in fact S. wolfei. Growth of S. wolfei with crotonate is faster and much higher cell densities are obtained. Thus, large amounts of cell material will be available for biochemical studies. 3 refs.

  2. Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings II: light exposure reduces needs for fermentation and extends survival during anaerobiosis.

    PubMed

    Mustroph, Angelika; Boamfa, Elena I; Laarhoven, Lucas J J; Harren, Frans J M; Pörs, Yvonne; Grimm, Bernhard

    2006-12-01

    Low oxygen stress in plants can occur during flooding and compromise the availability and utilization of carbohydrates in root and shoot tissues. Low-oxygen-tolerant rice and -sensitive wheat plants were analyzed under anaerobiosis in light to evaluate main factors of the primary metabolism that affect sensitivity against oxygen deprivation: activity of glycolysis and the rate of photosynthesis. Relatively stable ATP contents (93 and 58% of aerated control levels after 24 h anaerobiosis) in illuminated shoot tissues account for enhanced tolerance of rice and wheat seedlings to anaerobiosis upon light exposure in comparison to anoxia in darkness. Although the photosynthetic process was inhibited during low oxygen stress, which was partly due to CO(2) deficiency, more light-exposed than dark-incubated seedlings survived. Illuminated plants could tolerate a 70% lower anaerobic ethanol production in shoots in comparison to darkness, although still an 18-times higher ethanol production rate was determined in rice than in wheat leaves. In conclusion, light-exposed plants grown under anaerobiosis may recycle low amounts of generated oxygen between photosynthesis and dissimilation and generate additional energy not only from substrate phosphorylation during glycolysis but also from other sources like cyclic electron transport.

  3. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas

  4. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation.

    PubMed

    Kreft, Marko; Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2012-04-27

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.

  5. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    PubMed Central

    Kreft, Marko; Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation. PMID:22435484

  6. Perturbed Energy Metabolism and Neuronal Circuit Dysfunction in Cognitive Impairment

    PubMed Central

    Kapogiannis, Dimitrios; Mattson, Mark P.

    2010-01-01

    Summary Epidemiological, neuropathological and functional neuroimaging evidence implicates global and regional derangements in brain metabolism and energetics in the pathogenesis of cognitive impairment. Nerve cell microcircuits are modified adaptively by excitatory and inhibitory synaptic activity and neurotrophic factors. Aging and Alzheimer’s disease (AD) cause perturbations in cellular energy metabolism, level of excitation/inhibition and neurotrophic factor release that overwhelm compensatory mechanisms and result in neuronal microcircuit and brain network dysfunction. A prolonged positive energy balance impairs the ability of neurons to respond adaptively to oxidative and metabolic stress. Experimental studies in animals demonstrate how derangements related to chronic positive energy balance, such as diabetes, set the stage for accelerated cognitive aging and AD. Therapeutic interventions to allay cognitive dysfunction that target energy metabolism and adaptive stress responses (such as neurotrophin signaling) have shown efficacy in animal models and preliminary studies in humans. PMID:21147038

  7. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate

    PubMed Central

    Rafalski, Victoria A.; Mancini, Elena; Brunet, Anne

    2012-01-01

    Summary Metabolism is influenced by age, food intake, and conditions such as diabetes and obesity. How do physiological or pathological metabolic changes influence stem cells, which are crucial for tissue homeostasis? This Commentary reviews recent evidence that stem cells have different metabolic demands than differentiated cells, and that the molecular mechanisms that control stem cell self-renewal and differentiation are functionally connected to the metabolic state of the cell and the surrounding stem cell niche. Furthermore, we present how energy-sensing signaling molecules and metabolism regulators are implicated in the regulation of stem cell self-renewal and differentiation. Finally, we discuss the emerging literature on the metabolism of induced pluripotent stem cells and how manipulating metabolic pathways might aid cellular reprogramming. Determining how energy metabolism regulates stem cell fate should shed light on the decline in tissue regeneration that occurs during aging and facilitate the development of therapies for degenerative or metabolic diseases. PMID:23420198

  8. Innovative two-stage mesophilic/thermophilic anaerobic degradation of sonicated sludge: performances and energy balance.

    PubMed

    Gianico, A; Braguglia, C M; Gallipoli, A; Mininni, G

    2015-05-01

    This study investigates for the first time, on laboratory scale, the possible application of an innovative enhanced stabilization process based on sequential mesophilic/thermophilic anaerobic digestion of waste-activated sludge, with low-energy sonication pretreatment. The first mesophilic digestion step was conducted at short hydraulic retention time (3-5 days), in order to favor volatile fatty acid production, followed by a longer thermophilic step of 10 days to enhance the bioconversion kinetics, assuring a complete pathogen removal. The high volatile solid removals, up to 55%, noticeably higher compared to the performances of a single-stage process carried out in same conditions, can guarantee the stability of the final digestate for land application. The ultrasonic pretreatment influenced significantly the fatty acid formation and composition during the first mesophilic step, improving consequently the thermophilic conversion of these compounds into methane. Methane yield from sonicated sludge digestion reached values up to 0.2 Nm(3)/kgVSfed. Positive energy balances highlighted the possible exploitation of this innovative two-stage digestion in place of conventional single-stage processes.

  9. Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment.

    PubMed

    Aslam, Muhammad; McCarty, Perry L; Shin, Chungheon; Bae, Jaeho; Kim, Jeonghwan

    2017-03-06

    An aluminum dioxide (Al2O3) ceramic membrane was used in a single-stage anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for low-strength wastewater treatment. The AFCMBR was operated continuously for 395days at 25°C using a synthetic wastewater having a chemical oxygen demand (COD) averaging 260mg/L. A membrane net flux as high as 14.5-17L/m(2)h was achieved with only periodic maintenance cleaning, obtained by adding 25mg/L of sodium hypochlorite solution. No adverse effect of the maintenance cleaning on organic removal was observed. An average SCOD in the membrane permeate of 23mg/L was achieved with a 1h hydraulic retention time (HRT). Biosolids production averaged 0.014±0.007gVSS/gCOD removed. The estimated electrical energy required to operate the AFCMBR system was 0.039kWh/m(3), which is only about 17% of the electrical energy that could be generated with the methane produced.

  10. The techno-economic potential of renewable energy through the anaerobic digestion of microalgae.

    PubMed

    Zamalloa, Carlos; Vulsteke, Elien; Albrecht, Johan; Verstraete, Willy

    2011-01-01

    The potential of microalgae as feedstock for methane production is evaluated from a process technical and economic point of view. Production of mixed culture algae in raceway ponds on non-agricultural sites, such as landfills, was identified as a preferred approach. The potential of straightforward bio-methanation, which includes pre-concentration of microalgae and utilization of a high rate anaerobic reactor was examined based on the premises of achievable up-concentration from 0.2-0.6 kg m(-3) to 20-60 kg dry matter (DM) m(-3) and an effective bio-methanation of the concentrate at a loading rate of 20 kg DM m(-3) d(-1). The costs of biomass available for bio-methanation under such conditions were calculated to be in the range of €86-€124 ton(-1) DM. The levelized cost of energy by means of the process line "algae biomass--biogas--total energy module" would be in the order of €0.170-0.087 kWh(-1), taking into account a carbon credit of about €30 ton(-1) CO2(eq).

  11. Effects of Wound Bacteria on Postburn Energy Metabolism

    DTIC Science & Technology

    1988-08-01

    bacterial products (enzymes, toxins , etc.) or cytokines produced by host inflammatory cells in response to bacteria /’ products. Endotoxin is a prime...Best Available Copy ~~ ~ADyj ) EFFECTS OF WOUND BACTERIA ON POSTBURN ENERGY METABOLISM ANNUAL REPORT DT!C ,’ ELECTE 7 Louis H. Aulick, Ph.D. % NOV3...62772A874 AD 134 II. TITLE (Include Secuity Classification) Effects of Wound Bacteria on Postburn Energy Metabolism 12. PERSONAL AUTHOR(S) Louis H

  12. Isolation, growth, and metabolism of an obligately anaerobic, selenate- respiring bacterium, strain SES-3

    USGS Publications Warehouse

    Oremland, R.S.; Blum, J.S.; Culbertson, C.W.; Visscher, P.T.; Miller, L.G.; Dowdle, P.; Strohmaier, F.E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate- grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m- chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.

  13. Berberine interfered with breast cancer cells metabolism, balancing energy homeostasis.

    PubMed

    Tan, Wen; Li, Ning; Tan, Rui; Zhong, Zhangfeng; Suo, Zhanwei; Yang, Xian; Wang, Yitao; Hu, Xiaodong

    2015-01-01

    Berberine exerted anti-cancer effect in various cancer cell lines, and was also implied in the treatment of metabolic related diseases. Given the metabolic modulation, we hypothesized that berberine possessed anti-cancer effect under the assistance of metabolic interference. Working as a modulator, metabolic enzyme inhibitor or complex network regulator in energy metabolism, berberine was highlighted in current cancer research. A reasonable cross talk between Chinese medicine and energy homeostasis provided a solid foundation for berberine interference on cancer cells reprogramming metabolism. Our result showed that berberine regulated the reprogramming metabolism through three aspects simultaneously, including mitochondrial oxidative phosphorylation, glycolysis and macromolecular synthesis. This interference with reprogramming metabolism was a continuous, simultaneous and sustainable approach in a moderate mode. And it could be regarded as a gentle and virtuous cycle from a multi-level perspective, indicating an integrated approach in cancer therapy. Meanwhile, we thought that Chinese medicine could link cancer and metabolic related diseases from a dynamic perspective through integrated network pharmacology. This cross talk would be a realistic and significant strategy for anti-cancer drug discovery and needs further investigation in future.

  14. Semecarpus anacardium nut extract promotes the antioxidant defence system and inhibits anaerobic metabolism during development of lymphoma.

    PubMed

    Verma, Nibha; Vinayak, Manjula

    2009-06-01

    Antioxidants are substances that fight against ROS (reactive oxygen species) and protect the cells from their damaging effects. Production of ROS during cellular metabolism is balanced by their removal by antioxidants. Any condition leading to increased levels of ROS results in oxidative stress, which promotes a large number of human diseases, including cancer. Therefore antioxidants may be regarded as potential anticarcinogens, as they may slow down or prevent development of cancer by reducing oxidative stress. Fruits and vegetables are rich source of antioxidants. Moreover, a number of phytochemicals present in medicinal plants are known to possess antioxidant activity. Therefore the aim of the present study was to investigate antioxidant activity of the aqueous extract of nuts of the medicinal plant Semecarpus anacardium in AKR mouse liver during the development of lymphoma. Antioxidant action was monitored by the activities of antioxidant enzymes catalase, superoxide dismutase and glutathione transferase. The effect of S. anacardium was also studied by observing the activity of LDH (lactate dehydrogenase), an enzyme of anaerobic metabolism. LDH activity serves as a tumour marker. The activities of antioxidant enzymes decreased gradually as lymphoma developed in mouse. However, LDH activity increased progressively. Administration of the aqueous extract of S. anacardium to lymphoma-transplanted mouse led to an increase in the activities of antioxidant enzymes, whereas LDH activity decreased significantly, indicating a decrease in carcinogenesis. The aqueous extract was found to be more effective than doxorubicin, a classical anticarcinogenic drug, with respect to its action on antioxidant enzymes and LDH in the liver of mice with developing lymphomas.

  15. Anaerobic arginine metabolism of Mycobacterium tuberculosis is mediated by arginine deiminase (arcA), but is not essential for chronic persistence in an aerogenic mouse model of infection.

    PubMed

    Sürken, Michael; Keller, Christine; Röhker, Claudia; Ehlers, Stefan; Bange, Franz-Christoph

    2008-10-01

    In many pathogens, degradation of arginine via the arginine deiminase pathway supports anaerobic metabolism. Here we show by deletion of Rv1001 (arcA) in Mycobacterium tuberculosis that this gene functions as an arginine deiminase. Arginine metabolism in the presence of oxygen was not affected by the mutation, indicating a separate pathway for arginine degradation under aerobic conditions. Following aerosol infection in mice, the DeltaarcA mutant and wild-type strain of M. tuberculosis multiplied and persisted in infected organs in a similar fashion.

  16. Inborn Errors of Energy Metabolism Associated with Myopathies

    PubMed Central

    Das, Anibh M.; Steuerwald, Ulrike; Illsinger, Sabine

    2010-01-01

    Inherited neuromuscular disorders affect approximately one in 3,500 children. Structural muscular defects are most common; however functional impairment of skeletal and cardiac muscle in both children and adults may be caused by inborn errors of energy metabolism as well. Patients suffering from metabolic myopathies due to compromised energy metabolism may present with exercise intolerance, muscle pain, reversible or progressive muscle weakness, and myoglobinuria. In this review, the physiology of energy metabolism in muscle is described, followed by the presentation of distinct disorders affecting skeletal and cardiac muscle: glycogen storage diseases types III, V, VII, fatty acid oxidation defects, and respiratory chain defects (i.e., mitochondriopathies). The diagnostic work-up and therapeutic options in these disorders are discussed. PMID:20589068

  17. Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion.

    PubMed

    Nayal, Figen Sisman; Mammadov, Aydin; Ciliz, Nilgun

    2016-12-15

    While Turkey is one of the world's largest producers and exporters of agricultural goods, it is also, at the same time a net importer of energy carriers. This dichotomy offers a strong incentive to generate energy from agricultural and farming waste; something which could provide energy security for rural areas. Combined with the enhanced energy security for farming areas, the production of energy in this manner could conceivably contribute to the overall national effort to reduce the Turkey's carbon footprint. This study explores the environmental benefits and burdens of one such option, that is, biogas production from a mixture of agricultural and animal waste through anaerobic digestion (AD), and its subsequent use for electricity and heat generation. A life-cycle assessment methodology was used, to measure the potential environmental impact of this option, in terms of global warming and total weighed impact, and to contrast it with the impact of producing the same amount of energy via an integrated gasification combined cycle process and a hard coal power plant. This study concentrates on an AD and cogeneration pilot plant, built in the Kocaeli province of Turkey and attempts to evaluate its potential environmental impacts. The study uses laboratory-scale studies, as well as literature and LCI databases to derive the operational parameters, yield and emissions of the plant. The potential impacts were calculated with EDIP 2003 methodology, using GaBi 5 LCA software. The results indicate that N2O emissions, resulting from the application of liquid and solid portions of digestate (a by-product of AD), as an organic fertilizer, are by far the largest contributors to global warming among all the life cycle stages. They constitute 68% of the total, whereas ammonia losses from the same process are the leading cause of terrestrial eutrophication. The photochemical ozone formation potential is significantly higher for the cogeneration phase, compared to other life cycle

  18. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.

    PubMed

    Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J

    2016-05-01

    Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch.

  19. Mitochondrial metabolism and energy sensing in tumor progression.

    PubMed

    Iommarini, Luisa; Ghelli, Anna; Gasparre, Giuseppe; Porcelli, Anna Maria

    2017-02-14

    Energy homeostasis is pivotal for cell fate since metabolic regulation, cell proliferation and death are strongly dependent on the balance between catabolic and anabolic pathways. In particular, metabolic and energetic changes have been observed in cancer cells even before the discovery of oncogenes and tumor suppressors, but have been neglected for a long time. Instead, during the past 20years a renaissance of the study of tumor metabolism has led to a revised and more accurate sight of the metabolic landscape of cancer cells. In this scenario, genetic, biochemical and clinical evidences place mitochondria as key actors in cancer metabolic restructuring, not only because there are energy and biosynthetic intermediates manufacturers, but also because occurrence of mutations in metabolic enzymes encoded by both nuclear and mitochondrial DNA has been associated to different types of cancer. Here we provide an overview of the possible mechanisms modulating mitochondrial energy production and homeostasis in the intriguing scenario of neoplastic cells, focusing on the double-edged role of 5'-AMP activated protein kinase in cancer metabolism. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.

  20. Metabolic Strategies in Energy-Limited Microbial Communities in the Anoxic Subsurface (Frasassi Cave System, Italy)

    NASA Astrophysics Data System (ADS)

    McCauley, R. L.; Jones, D. S.; Schaperdoth, I.; Steinberg, L.; Macalady, J. L.

    2010-12-01

    Two major sources of energy, light and chemical potential, are available to microorganisms. However, energy is not always abundant and is often a limiting factor in microbial survival and replication. The anoxic, terrestrial subsurface offers a unique opportunity to study microorganisms and their potentially novel metabolic strategies that are relevant for understanding biogeochemistry and biosignatures as related to the non-photosynthetic, energy-limited environments on the modern and ancient Earth and elsewhere in the solar system. Geochemical data collected in a remote stratified lake 600 m below ground surface in the sulfidic Frasassi cave system (Italy) suggest that little redox energy is available for life, consistent with low signal from domain-specific FISH probes. The carbon isotope signatures of biofilms (-33‰) and DIC (-9‰) in the anoxic water suggest in situ production by lithoautotrophs using RuBisCO. 16S rDNA libraries constructed from the biofilm are dominated by diverse sulfate reducing bacteria. The remaining bacterial and archaeal clones affiliate with more than 11 major uncultivated or novel prokaryotic lineages. Diverse dsrAB gene sequences are consistent with high sulfate concentrations and undetectable or extremely low oxygen, nitrate, and iron concentrations. However, the electron donor for sulfate reduction is unclear. Methane is detectable in the anoxic water although no 16S rDNA sequences associated with known methanogens or anaerobic methane oxidizers were retrieved. mcrA gene sequences retrieved from the biofilm by cloning are not related to cultivated methanogens or to known anaerobic methane oxidizers. Non-purgable organic carbon (NPOC) is below detection limits (i.e. <42 μM acetate) suggesting that alternative electron donors or novel metabolisms may be important. A sample collected by cave divers in October 2009 was pyrosequenced at the Pennsylvania State University Genomics Core Facility using Titanium chemistry (454 Life

  1. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    SciTech Connect

    Miller, Lance D; Mosher, Jennifer J; Venkateswaran, Amudhan; Yang, Zamin Koo; Palumbo, Anthony Vito; Phelps, Tommy Joe; Podar, Mircea; Schadt, Christopher Warren; Keller, Martin

    2010-01-01

    Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors.

  2. Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production.

    PubMed

    Ruggeri, Bernardo; Luongo Malave, Andrea C; Bernardi, Milena; Fino, Debora

    2013-11-01

    The production of hydrogen through Anaerobic Digestion (AD) has been investigated to verify the efficacy of several pretreatment processes. Three types of waste with different carbon structures have been tested to obtain an extensive representation of the behavior of the materials present in Organic Waste (OW). The following types of waste were selected: Sweet Product Residue (SPR), i.e., confectionary residue removed from the market after the expiration date, Organic Waste Market (OWM) refuse from a local fruit and vegetable market, and Coffee Seed Skin (CSS) waste from a coffee production plant. Several pretreatment processes have been applied, including physical, chemical, thermal, and ultrasonic processes and a combination of these processes. Two methods have been used for the SPR to remove the packaging, manual (SPR) and mechanical (SPRex). A pilot plant that is able to extrude the refuse to 200atm was utilized. Two parameters have been used to score the different pretreatment processes: efficiency (ξ), which takes into account the amount of energy produced in the form of hydrogen compared with the available energy embedded in the refuse, and efficacy (η), which compares the efficiency obtained using the pretreated refuse with that obtained using the untreated refuse. The best result obtained for the SPR was the basic pretreatment, with η=6.4, whereas the thermal basic pretreatment gave the highest value, η=17.0 for SPRex. The best result for the OWM was obtained through a combination of basic/thermal pretreatments with η=9.9; lastly, the CSS residue with ultrasonic pretreatment produced the highest quantity of hydrogen, η=5.2.

  3. Energy metabolism of Macaca mulatta during spaceflight

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Stein, T. P.; Dotsenko, M. A.; Korolkov, V. I.; Fuller, C. A.

    2000-01-01

    The mean daily energy expenditure rates of two rhesus monkeys (Macaca mulatta) were determined during spaceflight on the joint U.S./Russian Bion 11 mission by the doubly labeled water (DLW, 2H218O) method. Control values were obtained from two studies performed under flight-like conditions (n = 4). The mean inflight energy expenditure for the two Bion 11 monkeys was 81.3 kcal/kg/day, which was higher than that seen previously. The average energy expenditure (77.6 +/- 4.4 kcal/kg/day) for the four ground control monkeys was slightly lower than had been measured previously.

  4. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    NASA Astrophysics Data System (ADS)

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-08-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states.

  5. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    PubMed Central

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-01-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states. PMID:27483987

  6. Microbial catabolic activities are naturally selected by metabolic energy harvest rate

    PubMed Central

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-01-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate. PMID:26161636

  7. Cerebral energy metabolism and microdialysis in neurocritical care.

    PubMed

    Nordström, Carl-Henrik

    2010-04-01

    It is of obvious clinical importance to monitor cerebral metabolism--in particular, cerebral energy metabolism and indicators of cellular damage-online at the bedside. The technique of cerebral microdialysis provides the opportunity for continuous monitoring of metabolic changes in the tissue before they are reflected in peripheral blood chemistry or in systemic physiological parameters. The basic idea of microdialysis is to mimic the function of a blood capillary by positioning a thin dialysis tube in the tissue and to be used to analyze the chemical composition of the interstitial fluid. The biochemical variables used during routine monitoring were chosen to cover important aspects of cerebral energy metabolism (glucose, pyruvate and lactate), to indicate excessive interstitial levels of excitatory transmitter substance (glutamate) and to give indications of degradation of cellular membranes (glycerol). Furthermore, pharmokinetic studies can be conducted using microdialysis. This article discusses technical and physiological aspects of microdialysis, and its clinical applications in brain injury.

  8. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism

    PubMed Central

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. PMID:25199978

  9. Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study.

    PubMed

    Pérez-Elvira, S I; Fdz-Polanco, F

    2012-01-01

    Experimental data obtained from the operation in a pilot plant are used to perform mass and energy balances to a global process combining units of thermal hydrolysis (TH) of secondary sludge, anaerobic digestion (AD) of hydrolysed secondary sludge together with fresh primary sludge, and cogeneration from biogas by using a gas engine in which the biogas produces electricity and heat from the exhaust gases. Three scenarios were compared, corresponding to the three digesters operated: C (conventional AD, 17 days residence time), B (combined TH + AD, same time), and A (TH + AD at half residence time). The biogas production of digesters B and A was 33 and 24% better, respectively when compared with C. In the case of the combined TH + AD process (scenarios A and B), the key factors in the energy balance were the recovery of heat from hot streams, and the concentration of sludge. The results of the balances showed that for 8% DS concentration of the secondary sludge tested in the pilot plant, the process can be energetically self-sufficient, but a fraction of the biogas must by-pass the gas engine to be directly burned. From an economic point of view, scenario B is more profitable in terms of green energy and higher waste removal, while scenario A reduces the digester volume required by a half. Considering a population of 100,000 inhabitants, the economic benefit is 87,600 €/yr for scenario A and 132,373 €/yr for B. This value can be increased to 223,867 €/yr by increasing the sludge concentration of the feeding to the TH unit to a minimum value that allows use of all the biogas to produce green energy. This concentration is 13% DS, which is still possible from a practical point of view. Additional benefits gained with the combined TH + AD process are the enhancement of the digesters rheology and the possibility of getting Class A biosolids. The integration study presented here set the basis for the scale-up to a demonstration plant.

  10. Sodium Nitroprusside Changed The Metabolism of Mesenchymal Stem Cells to An Anaerobic State while Viability and Proliferation Remained Intact

    PubMed Central

    Pari, Sadiyeh; Abnosi, Mohammad Hussein; Pakyari, Reza

    2017-01-01

    Objective We used sodium nitroprusside (SNP), a nitric oxide (NO) releasing molecule, to understand its effect on viability and proliferation of rat bone marrow mesenchymal stem cells (BM-MSCs). Materials and Methods This experimental study evaluated the viability and morphology of MSCs in the presence of SNP (100 to 2000 µM) at 1, 5, and 15 hours. We chose the 100, 1000, and 2000 µM concentrations of SNP for one hour exposure for further analyses. Cell proliferation was investigated by the colony forming assay and population doubling number (PDN). Na+, K+, and Ca2+ levels as well as activities of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), aspartate transaminase (AST), and alanine transaminase (ALT) were measured. Results The viability of MSCs dose-dependently reduced from 750 µM at one hour and 250 µM at 5 and 15 hours. The 100 µM caused no change in viability, however we observed a reduction in the cytoplasmic area at 5 and 15 hours. This change was not observed at one hour. The one hour treatment with 100 µM of SNP reduced the mean colony numbers but not the diameter when the cells were incubated for 7 and 14 days. In addition, one hour treatment with 100 µM of SNP significantly reduced ALT, AST, and ALP activities whereas the activity of LDH increased when incubated for 24 hours. The same treatment caused an increase in Ca2+ and reduction in Na+ content. The 1000 and 2000 µM concentrations reduced all the factors except Ca2+ and LDH which increased. Conclusion The high dose of SNP, even for a short time, was toxic. The low dose was safe with respect to viability and proliferation, especially over a short time. However elevated LDH activity might increase anaerobic metabolism. PMID:28367425

  11. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    PubMed Central

    2010-01-01

    Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network. PMID:20497531

  12. Effect of anaerobic digestion on sequential pyrolysis kinetics of organic solid wastes using thermogravimetric analysis and distributed activation energy model.

    PubMed

    Li, Xiaowei; Mei, Qingqing; Dai, Xiaohu; Ding, Guoji

    2017-03-01

    Thermogravimetric analysis, Gaussian-fit-peak model (GFPM), and distributed activation energy model (DAEM) were firstly used to explore the effect of anaerobic digestion on sequential pyrolysis kinetic of four organic solid wastes (OSW). Results showed that the OSW weight loss mainly occurred in the second pyrolysis stage relating to organic matter decomposition. Compared with raw substrate, the weight loss of corresponding digestate was lower in the range of 180-550°C, but was higher in 550-900°C. GFPM analysis revealed that organic components volatized at peak temperatures of 188-263, 373-401 and 420-462°C had a faster degradation rate than those at 274-327°C during anaerobic digestion. DAEM analysis showed that anaerobic digestion had discrepant effects on activation energy for four OSW pyrolysis, possibly because of their different organic composition. It requires further investigation for the special organic matter, i.e., protein-like and carbohydrate-like groups, to confirm the assumption.

  13. AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis.

    PubMed

    Perera, Nirma D; Turner, Bradley J

    2016-03-01

    Amyotrophic lateral sclerosis (ALS) is caused by selective loss of upper and lower motor neurons by complex mechanisms that are incompletely understood. Motor neurons are large, highly polarised and excitable cells with unusually high energetic demands to maintain resting membrane potential and propagate action potentials. This leads to higher ATP consumption and mitochondrial metabolism in motor neurons relative to other cells. Here, we review increasing evidence that defective energy metabolism and homeostasis contributes to selective vulnerability and degeneration of motor neurons in ALS. Firstly, we provide a brief overview of major energetic pathways in the CNS, including glycolysis, oxidative phosphorylation and the AMP-activated protein kinase (AMPK) signalling pathway, while highlighting critical metabolic interactions between neurons and astrocytes. Next, we review evidence from ALS patients and transgenic mutant SOD1 mice for weight loss, hypermetabolism, hyperlipidemia and mitochondrial dysfunction in disease onset and progression. Genetic and therapeutic modifiers of energy metabolism in mutant SOD1 mice will also be summarised. We also present evidence that additional ALS-linked proteins, TDP-43 and FUS, lead to energy disruption and mitochondrial defects in motor neurons. Lastly, we review emerging evidence including our own that dysregulation of the AMPK signalling cascade in motor neurons is an early and common event in ALS pathogenesis. We suggest that an imbalance in energy metabolism should be considered an important factor in both progression and potential treatment of ALS.

  14. Ellagic acid induces novel and atypical PKC isoforms and promotes caspase-3 dependent apoptosis by blocking energy metabolism.

    PubMed

    Mishra, Sudha; Vinayak, Manjula

    2014-01-01

    Antioxidant ellagic acid is a herbal polyphenolic compound shown to possess growth-inhibiting and apoptotic activities in cancer. Protein kinase C (PKC) plays an important role in cell proliferation, apoptosis, and differentiation. Apoptosis of tumor cells is induced by inactivation of glycolytic enzyme of anaerobic metabolism, lactate dehydrogenase (LDH)-A, and by activating apoptotic protein caspase-3 via PKCδ. The present study aims to analyze the role of ellagic acid on regulation of novel and atypical isozymes of PKC to modulate apoptosis and anaerobic metabolism to prevent lymphoma growth as its role on classical PKCs is reported earlier. Expression of novel and atypical isozymes of PKC, activity of PKCδ, expression and activity of caspase-3, and LDH-A have been analyzed. Expression is measured by RT-PCR, activities of PKCδ as level of its catalytic fragment, caspase-3 as level of its p17 fragment, and LDH-A by specific staining. Lymphoma bearing mice were treated with 3 different doses of ellagic acid. The treatment enhanced expression of all novel and atypical PKCs, activity and expression of caspase-3, and activity of PKCδ but decreased activity and expression of LDH-A. Our results suggest that ellagic acid induces apoptosis via novel and atypical PKCs in association with caspase-3 and induces cancer cell death by blocking the energy metabolism.

  15. Anaerobic performance at altitude.

    PubMed

    Coudert, J

    1992-10-01

    Anaerobic metabolism is usually evaluated by the determination of the anaerobic capacity and the maximal anaerobic mechanical external power (Wmax). Conflicting results are reported on anaerobic capacity evaluated by maximal oxygen deficit and debt, and maximal blood lactate concentration during acute or chronic hypoxia (acclimatized subjects). Data on muscle biopsies (lactate concentration, changes in ATP, phosphocreatine and glycogen stores, glycolytic enzyme activities) and the few studies on lactate flux give in most cases evidence of a non-alteration of the anaerobic capacity for altitudes up to 5,500 m. No differences are observed in Wmax measured at high altitudes up to 5,200 m during intense short-term exercises: (1) jumps on a force platform which is a good indicator of alactic Wmax, and (2) 7-10 s sprints (i.e. force-velocity test) which solicit alactic metabolism but also lactic pathway. For exercises of duration equal or more than 30 s (i.e. Wingate test), there are conflicting results because a lower participation of aerobic metabolism during this test at high altitude can interfere with anaerobic performance. In conclusion, we can admit that anaerobic performances are not altered by high altitudes up to 5,200 m if the length of exposure does not exceed 5 weeks. After this period, muscle mass begins to decrease.

  16. Preabsorptive Metabolism of Sodium Arsenate by Anaerobic Microbiota of Mouse Cecum Forms a Variety of Methylated and Thiolated Arsenicals

    EPA Science Inventory

    The conventional scheme for arsenic methylation accounts for methylated oxyarsenical production but not for thioarsenical formation. Here, we report that in vitro anaerobic microbiota of mouse cecum converts arsenate into oxy- and thio- arsenicals. Besides methylarsonic acid (MMA...

  17. Measurement of anaerobic work capacities in humans.

    PubMed

    Green, S

    1995-01-01

    The development of simple, noninvasive tests of work capacities, underpinned primarily by anaerobic metabolism, proliferated in the early 1970s. A 30-second maximal cycle test developed at the Wingate Institute initiated efforts to develop work tests of anaerobic capacities. Such tests can be developed using any ergometer which simulates competitive conditions and enables an accurate determination of mechanical work output. A 10-second all-out test is commonly used to measure maximal work output generated primarily via the hydrolysis of high-energy phosphagens (i.e. the alactic work capacity). In contrast, a variety of constant-load and all-out tests of anaerobic (alactic plus lactic) work capacity have been proposed. It has been suggested that all-out tests provide more information about physiological capabilities and are easier to apply than constant-load tests. The optimal duration for an all-out test of anaerobic work capacity is proposed at 30 seconds, a duration which may also provide the basis for the development of accurate field tests of anaerobic capacity. There is evidence that the y-intercept of the maximal work-derivation regression is a valid work estimate of anaerobic capacity in athletes, although its utility is undermined by the number of tests required for its derivation.

  18. Chronic Sympathetic Attenuation and Energy Metabolism in Autonomic Failure

    PubMed Central

    Shibao, Cyndya; Buchowski, Maciej S; Chen, Kong Y; Yu, Chang; Biaggioni, Italo

    2012-01-01

    The sympathetic nervous system regulates thermogenesis and energy homeostasis in humans. When activated it increases energy expenditure, particularly resting energy expenditure. Most human studies used acute infusion of β-blockers as a model to eliminate sympathetic stimulation and examine the contribution of the sympathetic nervous system to energy metabolism and balance. Clinically, however, it is also important to assess the effect of chronic sympathetic attenuation on energy metabolism. In this context, we hypothesized that resting energy expenditure is decreased in patients with autonomic failure who by definition have low sympathetic tone. We measured 24-hour energy expenditure using whole-room indirect calorimeter in 10 adults with chronic autonomic failure, (6 females; age 64.9±9.1 years; body mass index 25.2±4.4 kg/m2) and 15 sedentary healthy controls of similar age and body composition (8 females age 63.1±4.0 years; body mass index 24.4±3.9 kg/m2). In 4 patients, we eliminated residual sympathetic activity with the ganglionic blocker trimethaphan. We found that after adjusting for body composition, resting energy expenditure did not differ between patients with autonomic failure and healthy controls. However, resting energy expenditure significantly decreased when residual sympathetic activity was eliminated. Our findings suggest that sympathetic tonic support of resting energy expenditure is preserved, at least in part, in pathophysiological models of chronic sympathetic attenuation. PMID:22469621

  19. Chronic sympathetic attenuation and energy metabolism in autonomic failure.

    PubMed

    Shibao, Cyndya; Buchowski, Maciej S; Chen, Kong Y; Yu, Chang; Biaggioni, Italo

    2012-05-01

    The sympathetic nervous system regulates thermogenesis and energy homeostasis in humans. When activated it increases energy expenditure, particularly resting energy expenditure. Most human studies used acute infusion of β-blockers as a model to eliminate sympathetic stimulation and to examine the contribution of the sympathetic nervous system to energy metabolism and balance. Clinically, however, it is also important to assess the effect of chronic sympathetic attenuation on energy metabolism. In this context, we hypothesized that resting energy expenditure is decreased in patients with autonomic failure who, by definition, have low sympathetic tone. We measured 24-hour energy expenditure using whole-room indirect calorimeter in 10 adults with chronic autonomic failure (6 women; age, 64.9±9.1 years; body mass index, 25.2±4.4 kg/m(2)) and 15 sedentary healthy controls of similar age and body composition (8 women; age, 63.1±4.0 years; body mass index, 24.4±3.9 kg/m(2)). In 4 patients, we eliminated residual sympathetic activity with the ganglionic blocker trimethaphan. We found that, after adjusting for body composition, resting energy expenditure did not differ between patients with autonomic failure and healthy controls. However, resting energy expenditure significantly decreased when residual sympathetic activity was eliminated. Our findings suggest that sympathetic tonic support of resting energy expenditure is preserved, at least in part, in pathophysiological models of chronic sympathetic attenuation.

  20. Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    PubMed Central

    Sakharkar, Meena K.; Shashni, Babita; Sharma, Karun; Dhillon, Sarinder K.; Ranjekar, Prabhakar R.; Sakharkar, Kishore R.

    2013-01-01

    PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer. PMID:23431283

  1. Anaerobic Co-digestion for Enhanced Renewable Energy and Green House Gas Emission Reduction

    SciTech Connect

    Navaratnam, Navaneethan; Zitomer, Daniel

    2012-05-01

    The need to develop renewable energy is important for replacing fossil fuel, which is limited in quantity and also tends to increase in price over time. The addition of high strength organic wastes in municipal anaerobic digesters is growing and tends to increase renewable energy production. In addition, conversion of wastes to energy significantly reduces uncontrolled greenhouse gas emissions. Co-digestion of municipal sludge with any combination of wastes can result in synergistic, antagonistic or neutral outcomes. The objectives of this study were to identify potential co-digestates, determine synergistic, antagonistic and neutral effects, determine economic benefits, quantify performance of bench scale co-digesters, identify influence of co-digestion on microbial communities and implement appropriate co-digestion, if warranted, after full-scale testing. A market study was used to identify promising co-digestates. Most promising wastes were determined by biochemical methane potential (BMP) and other testing followed by a simple economic analysis. Performance was investigated using bench-scale digesters receiving synthetic primary sludge with and without co-digestates. Denaturing gradient gel electrophoresis (DGGE) and quantitative polymerase chain reaction (qPCR) analyses were performed on the gene encoding the α subunit of methyl coenzyme M reductase (mcrA) to compare methanogen communities among the digesters. One significant band contributing to the greatest difference in banding patterns was excised, cloned, amplified and sequenced. Full- scale co-digestion was conducted using the most promising co-digestate at South Shore Wastewater Reclamation Facility (Oak Creek, WI). Over 80 wastes were identified from 54 facilities within 160 km of an existing municipal digester. A simple economic comparison identified the greatest benefits for seven co-digestates. Methane production rates of two co- digester systems increased by 105% and 66% in comparison to a control

  2. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.

    PubMed

    Nargund, Shilpa; Qiu, Jinshu; Goudar, Chetan T

    2015-01-01

    (13)C-metabolic flux analysis was used to understand copper deficiency-related restructuring of energy metabolism, which leads to excessive lactate production in recombinant protein-producing CHO cells. Stationary-phase labeling experiments with U-(13)C glucose were conducted on CHO cells grown under high and limiting copper in 3 L fed-batch bioreactors. The resultant labeling patterns of soluble metabolites were measured by GC-MS and used to estimate metabolic fluxes in the central carbon metabolism pathways using OpenFlux. Fluxes were evaluated 300 times from stoichiometrically feasible random guess values and their confidence intervals calculated by Monte Carlo simulations. Results from metabolic flux analysis exhibited significant carbon redistribution throughout the metabolic network in cells under Cu deficiency. Specifically, glycolytic fluxes increased (25%-79% relative to glucose uptake) whereas fluxes through the TCA and pentose phosphate pathway (PPP) were lower (15%-23% and 74%, respectively) compared with the Cu-containing condition. Furthermore, under Cu deficiency, 33% of the flux entering TCA via the pyruvate node was redirected to lactate and malate production. Based on these results, we hypothesize that Cu deficiency disrupts the electron transport chain causing ATP deficiency, redox imbalance, and oxidative stress, which in turn drive copper-deficient CHO cells to produce energy via aerobic glycolysis, which is associated with excessive lactate production, rather than the more efficient route of oxidative phosphorylation.

  3. Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study

    PubMed Central

    Zheng, Guifeng; Zou, Hai; Wang, Jian Min; Lin, Yao Yao; Chuka, Chifundo Martha; Ge, Ren Shan; Zhai, Weitao; Wang, Jian Guang

    2015-01-01

    Objectives To explore the pathogenesis of rheumatoid arthritis (RA), the different metabolites were screened in synovial fluid by metabolomics. Methods Synovial fluid from 25 RA patients and 10 normal subjects were analyzed by GC/TOF MS analysis so as to give a broad overview of synovial fluid metabolites. The metabolic profiles of RA patients and normal subjects were compared using multivariate statistical analysis. Different proteins were verified by qPCR and western blot. Different metabolites were verified by colorimetric assay kit in 25 inactive RA patients, 25 active RA patients and 20 normal subjects. The influence of hypoxia-inducible factor (HIF)-1α pathway on catabolism was detected by HIF-1α knockdown. Results A subset of 58 metabolites was identified, in which the concentrations of 7 metabolites related to energy metabolism were significantly different as shown by importance in the projection (VIP) (VIP≥1) and Student’s t-test (p<0.05). In the 7 metabolites, the concentration of glucose was decreased, and the concentration of lactic acid was increased in the synovial fluid of RA patients than normal subjects verified by colorimetric assay Kit. Receiver operator characteristic (ROC) analysis shows that the concentration of glucose and lactic acid in synovial fluid could be used as dependable biomarkers for the diagnosis of active RA, provided an AUC of 0.906 and 0.922. Sensitivity and specificity, which were determined by cut-off points, reached 84% and 96% in sensitivity and 95% and 85% in specificity, respectively. The verification of different proteins identified in our previous proteomic study shows that the enzymes of anaerobic catabolism were up-regulated (PFKP and LDHA), and the enzymes of aerobic oxidation and fatty acid oxidation were down-regulated (CS, DLST, PGD, ACSL4, ACADVL and HADHA) in RA patients. The expression of HIF-1α and the enzymes of aerobic oxidation and fatty acid oxidation were decreased and the enzymes of anaerobic

  4. Targeting Energy Metabolic Pathways as Therapeutic Intervention for Breast Cancer

    DTIC Science & Technology

    2014-12-01

    observed that the cells with knockdown of eEF-2K expression exhibited a decreased glucose consumption (Fig. 1B), as measured by flow cytometric analysis of......3. DATES COVERED 30 Sep 2011 - 20 Sep 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Energy Metabolic Pathways as Therapeutic

  5. CNS Regulation of Energy Metabolism: Ghrelin versus Leptin

    PubMed Central

    Nogueiras, Ruben; Tschöp, Matthias H.; Zigman, Jeffrey M.

    2010-01-01

    In this brief review, we introduce some major themes in the regulation of energy, lipid and glucose metabolism by the central nervous system (CNS). Rather than comprehensively discussing the field, we instead will discuss some of the key findings made regarding the interaction of the hormones ghrelin and leptin with the CNS. PMID:18448790

  6. Targeting Energy Metabolic Pathways as Therapeutic Intervention for Breast Cancer

    DTIC Science & Technology

    2012-10-01

    Intervention for Breast Cancer PRINCIPAL INVESTIGATOR: Yan Cheng, Ph.D. CONTRACTING ORGANIZATION: Pennsylvania State University...Targeting Energy Metabolic Pathways as Therapeutic Intervention for Breast Cancer 5b. GRANT NUMBER W81XWH-11-1-0649 5c. PROGRAM ELEMENT NUMBER...causes of cancer mortality in women. Current therapies for breast cancer mainly target molecular signaling pathways that promote tumor cell

  7. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review

    EPA Science Inventory

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low rem...

  8. Recovery of energy from Taro (Colocasia esculenta) with solid-feed anaerobic digesters (SOFADs).

    PubMed

    Bindu, T; Ramasamy, E V

    2008-01-01

    We present studies on solid-feed anaerobic digesters (SOFADs) in which chopped Colocasia esculenta was fed without any other pretreatment, in an attempt to develop an efficient means of utilizing the semi-aquatic weed that is otherwise an environmental nuisance. Two types of SOFADs were studied. The first type had a single vessel with two compartments. The lower portion of the digester, 25% of the total volume, was separated from the upper by a perforated PVC disk. The weed was charged from the top and inoculated with anaerobically digested cow dung-water slurry. The fermentation of the weed in the digester led to the formation of volatile fatty acids (VFAs) plus some biogas. The bioleachate, rich in the VFAs, passed through the perforated PVC disk and was collected in the lower compartment of the digester. The other type of digesters, referred to as anaerobic multi-phase high-solids digesters (AMHDs), had the same type of compartmentalized digester unit as the first type and an additional methaniser unit. Up-flow anaerobic filters (UAFs) were used as methaniser units, which converted the bioleachate into combustible biogas consisting of approximately 60% methane. All SOFADs developed a consistent performance in terms of biogas yield within 20 weeks from the start. Among the two types of digesters studied, the AMHDs were found to perform better with a twofold increase in biogas yield compared to the first type of digesters.

  9. Test/QA Plan For Verification Of Anaerobic Digester For Energy Production And Pollution Prevention

    EPA Science Inventory

    The ETV-ESTE Program conducts third-party verification testing of commercially available technologies that improve the environmental conditions in the U.S. A stakeholder committee of buyers and users of such technologies guided the development of this test on anaerobic digesters...

  10. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis.

    PubMed

    Pereira, Patrícia M; He, Qiang; Valente, Filipa M A; Xavier, António V; Zhou, Jizhong; Pereira, Inês A C; Louro, Ricardo O

    2008-05-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe] hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energy metabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

  11. The iron stimulon and fur regulon of Geobacter sulfurreducens and their role in energy metabolism.

    PubMed

    Embree, Mallory; Qiu, Yu; Shieu, Wendy; Nagarajan, Harish; O'Neil, Regina; Lovley, Derek; Zengler, Karsten

    2014-05-01

    Iron plays a critical role in the physiology of Geobacter species. It serves as both an essential component for proteins and cofactors and an electron acceptor during anaerobic respiration. Here, we investigated the iron stimulon and ferric uptake regulator (Fur) regulon of Geobacter sulfurreducens to examine the coordination between uptake of Fe(II) and the reduction of Fe(III) at the transcriptional level. Gene expression studies across a variety of different iron concentrations in both the wild type and a Δfur mutant strain were used to determine the iron stimulon. The stimulon consists of a broad range of gene products, ranging from iron-utilizing to central metabolism and iron reduction proteins. Integration of gene expression and chromatin immunoprecipitation (ChIP) data sets assisted in the identification of the Fur transcriptional regulatory network and Fur's role as a regulator of the iron stimulon. Additional physiological and transcriptional analyses of G. sulfurreducens grown with various Fe(II) concentrations revealed the depth of Fur's involvement in energy metabolism and the existence of redundancy within the iron-regulatory network represented by IdeR, an alternative iron transcriptional regulator. These characteristics enable G. sulfurreducens to thrive in environments with fluctuating iron concentrations by providing it with a robust mechanism to maintain tight and deliberate control over intracellular iron homeostasis.

  12. The FlxABCD-HdrABC proteins correspond to a novel NADH dehydrogenase/heterodisulfide reductase widespread in anaerobic bacteria and involved in ethanol metabolism in Desulfovibrio vulgaris Hildenborough.

    PubMed

    Ramos, Ana Raquel; Grein, Fabian; Oliveira, Gonçalo P; Venceslau, Sofia S; Keller, Kimberly L; Wall, Judy D; Pereira, Inês A C

    2015-07-01

    Flavin-based electron bifurcation (FBEB) is an important mechanism for the energy metabolism of anaerobes. A new family of NADH dehydrogenases, the flavin oxidoreductase (FlxABCD, previously called FloxABCD), was proposed to perform FBEB in sulphate-reducing organisms coupled with heterodisulfide reductase (HdrABC). We found that the hdrABC-flxABCD gene cluster is widespread among anaerobic bacteria, pointing to a general and important role in their bioenergetics. In this work, we studied FlxABCD of Desulfovibrio vulgaris Hildenborough. The hdr-flx genes are part of the same transcriptional unit and are increased in transcription during growth in ethanol-sulfate, and to a less extent during pyruvate fermentation. Two mutant strains were generated: one where expression of the hdr-flx genes was interrupted and another lacking the flxA gene. Both strains were unable to grow with ethanol-sulfate, whereas growth was restored in a flxA-complemented strain. The mutant strains also produced very reduced amounts of ethanol compared with the wild type during pyruvate fermentation. Our results show that in D. vulgaris, the FlxABCD-HdrABC proteins are essential for NADH oxidation during growth on ethanol, probably involving a FBEB mechanism that leads to reduction of ferredoxin and the small protein DsrC, while in fermentation they operate in reverse, reducing NAD(+) for ethanol production.

  13. Energy Expenditure and Metabolic Changes of Free-Flying Migrating Northern Bald Ibis.

    PubMed

    Bairlein, Franz; Fritz, Johannes; Scope, Alexandra; Schwendenwein, Ilse; Stanclova, Gabriela; van Dijk, Gertjan; Meijer, Harro A J; Verhulst, Simon; Dittami, John

    2015-01-01

    Many migrating birds undertake extraordinary long flights. How birds are able to perform such endurance flights of over 100-hour durations is still poorly understood. We examined energy expenditure and physiological changes in Northern Bald Ibis Geronticus eremite during natural flights using birds trained to follow an ultra-light aircraft. Because these birds were tame, with foster parents, we were able to bleed them immediately prior to and after each flight. Flight duration was experimentally designed ranging between one and almost four hours continuous flights. Energy expenditure during flight was estimated using doubly-labelled-water while physiological properties were assessed through blood chemistry including plasma metabolites, enzymes, electrolytes, blood gases, and reactive oxygen compounds. Instantaneous energy expenditure decreased with flight duration, and the birds appeared to balance aerobic and anaerobic metabolism, using fat, carbohydrate and protein as fuel. This made flight both economic and tolerable. The observed effects resemble classical exercise adaptations that can limit duration of exercise while reducing energetic output. There were also in-flight benefits that enable power output variation from cruising to manoeuvring. These adaptations share characteristics with physiological processes that have facilitated other athletic feats in nature and might enable the extraordinary long flights of migratory birds as well.

  14. Energy Expenditure and Metabolic Changes of Free-Flying Migrating Northern Bald Ibis

    PubMed Central

    Bairlein, Franz; Fritz, Johannes; Scope, Alexandra; Schwendenwein, Ilse; Stanclova, Gabriela; van Dijk, Gertjan; Meijer, Harro A. J.; Verhulst, Simon

    2015-01-01

    Many migrating birds undertake extraordinary long flights. How birds are able to perform such endurance flights of over 100-hour durations is still poorly understood. We examined energy expenditure and physiological changes in Northern Bald Ibis Geronticus eremite during natural flights using birds trained to follow an ultra-light aircraft. Because these birds were tame, with foster parents, we were able to bleed them immediately prior to and after each flight. Flight duration was experimentally designed ranging between one and almost four hours continuous flights. Energy expenditure during flight was estimated using doubly-labelled-water while physiological properties were assessed through blood chemistry including plasma metabolites, enzymes, electrolytes, blood gases, and reactive oxygen compounds. Instantaneous energy expenditure decreased with flight duration, and the birds appeared to balance aerobic and anaerobic metabolism, using fat, carbohydrate and protein as fuel. This made flight both economic and tolerable. The observed effects resemble classical exercise adaptations that can limit duration of exercise while reducing energetic output. There were also in-flight benefits that enable power output variation from cruising to manoeuvring. These adaptations share characteristics with physiological processes that have facilitated other athletic feats in nature and might enable the extraordinary long flights of migratory birds as well. PMID:26376193

  15. A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes.

    PubMed

    Karagiannidis, A; Perkoulidis, G

    2009-04-01

    This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to biogas recovery from landfills, their advantage is the stability in biogas production and the stabilization of waste prior to final disposal. Anaerobic digestion technologies also show great adaptability to a broad spectrum of different input material beside the organic fraction of municipal solid waste (e.g. agricultural and animal wastes, sewage sludge) and can also be used in remote and isolated communities, either stand-alone or in conjunction to other renewable energy sources. Main driver for this work was the preliminary screening of such methods for potential application in Hellenic islands in the municipal solid waste management sector. Anaerobic digestion technologies follow different approaches to the anaerobic digestion process and also can include production of compost. In the presented multi-criteria analysis exercise, Electre III is implemented for comparing and ranking 5 selected alternative anaerobic digestion technologies. The results of a performed sensitivity analysis are then discussed. In conclusion, the performed multi-criteria approach was found to be a practical and feasible method for the integrated assessment and ranking of anaerobic digestion technologies by also considering different viewpoints and other uncertainties of the decision-making process.

  16. Metabolic Energy of Action Potentials Modulated by Spike Frequency Adaptation

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin

    2016-01-01

    Spike frequency adaptation (SFA) exists in many types of neurons, which has been demonstrated to improve their abilities to process incoming information by synapses. The major carrier used by a neuron to convey synaptic signals is the sequences of action potentials (APs), which have to consume substantial metabolic energies to initiate and propagate. Here we use conductance-based models to investigate how SFA modulates the AP-related energy of neurons. The SFA is attributed to either calcium-activated K+ (IAHP) or voltage-activated K+ (IM) current. We observe that the activation of IAHP or IM increases the Na+ load used for depolarizing membrane, while produces few effects on the falling phase of AP. Then, the metabolic energy involved in Na+ current significantly increases from one AP to the next, while for K+ current it is less affected. As a consequence, the total energy cost by each AP gets larger as firing rate decays down. It is also shown that the minimum Na+ charge needed for the depolarization of each AP is unaffected during the course of SFA. This indicates that the activation of either adaptation current makes APs become less efficient to use Na+ influx for their depolarization. Further, our simulations demonstrate that the different biophysical properties of IM and IAHP result in distinct modulations of metabolic energy usage for APs. These investigations provide a fundamental link between adaptation currents and neuronal energetics, which could facilitate to interpret how SFA participates in neuronal information processing. PMID:27909394

  17. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    PubMed

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced.

  18. Potential therapeutic targets in energy metabolism pathways of breast cancer.

    PubMed

    Islam, Rowshan Ara; Hossain, Sazzad; Chowdhury, Ezharul Hoque

    2017-03-30

    Mutations in proto-oncogenes and tumor suppressor genes make cancer cells proliferate indefinitely. As they possess almost all mechanisms for cell proliferation and survival like healthy cells, it is difficult to specifically target cancer cells in the body. Current treatments in most of the cases are harmful to healthy cells as well. Thus, it would be of great prudence to target specific characters of cancer cells. Since cancer cells avidly use glucose and glutamine to survive and proliferate by upregulating the relevant enzymes and their specific isoforms having important regulatory roles, it has been of great interest recently to target the energy-related metabolic pathways as part of the therapeutic interventions. This paper summarizes the roles of energy metabolism and their cross-talks with other important signaling pathways in regulating proliferation, invasion and metastasis in breast cancer. As breast cancer is a highly heterogeneous disease, a clear understanding of the variations of energy metabolism in different molecular subtypes would help in treating each type with a very customized, safer and efficient treatment regimen, by targeting specific glucose metabolism and related pathways with gene silencing nucleic acid sequences or small molecule drugs, or the combination of both.

  19. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  20. A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia.

    PubMed

    Hadidi, Laith A; Omer, Mohamed Mahmoud

    2017-01-01

    Municipal Solid Waste (MSW) generation in Saudi Arabia is increasingly growing at a fast rate, as it hurtles towards ever increasing urban development coupled with rapid developments and expanding population. Saudi Arabia's energy demands are also rising at a faster rate. Therefore, the importance of an integrated waste management system in Saudi Arabia is increasingly rising and introducing Waste to Energy (WTE) facilities is becoming an absolute necessity. This paper analyzes the current situation of MSW management in Saudi Arabia and proposes a financial model to assess the viability of WTE investments in Saudi Arabia in order to address its waste management challenges and meet its forecasted energy demands. The research develops a financial model to investigate the financial viability of WTE plants utilizing gasification and Anaerobic Digestion (AD) conversion technologies. The financial model provides a cost estimate of establishing both gasification and anaerobic digestion WTE plants in Saudi Arabia through a set of financial indicators, i.e. net present value (NPV), internal rate of return (IRR), modified internal rate of return (MIRR), profitability index (PI), payback period, discounted payback period, Levelized Cost of Electricity (LCOE) and Levelized Cost of Waste (LCOW). Finally, the analysis of the financial model reveals the main affecting factors of the gasification plants investment decision, namely: facility generation capacity, generated electricity revenue, and the capacity factor. Similarly, the paper also identifies facility waste capacity and the capacity factor as the main affecting factors on the AD plants' investment decision.

  1. Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling

    PubMed Central

    Wodke, Judith A H; Puchałka, Jacek; Lluch-Senar, Maria; Marcos, Josep; Yus, Eva; Godinho, Miguel; Gutiérrez-Gallego, Ricardo; dos Santos, Vitor A P Martins; Serrano, Luis; Klipp, Edda; Maier, Tobias

    2013-01-01

    Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint-based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time-dependent changes, albeit using a static model. By performing an in silico knock-out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms. PMID:23549481

  2. Alterations in the energy metabolism of the isolated perfused frog heart during calcium depletion and subsequent repletion.

    PubMed

    Touraki, M; Beis, I

    1991-01-01

    The changes in myocardial energy metabolism of isolated perfused Rana ridibunda hearts subjected to prolonged calcium depletion and reperfusion with calcium-containing medium were studied. Calcium-free perfusion resulted in an increase in the concentrations of glucose, glucose-6-phosphate, alpha-ketoglutarate and malate. The myocardial contents of high-energy phosphates were maintained while concentrations of key amino acids were significantly altered. During the reperfusion period the tissue high-energy phosphate content fell abruptly. A marked increase in glycolytic flux and lactate production was observed. The tissue contents of citric acid cycle intermediates and key amino acids decreased. Examination of the activities of marker enzymes during the calcium-free and reperfusion periods showed that only cytoplasmic enzymes are lost during reperfusion, while the activities of other enzymes remained unchanged. The results suggest that the fluxes of both glycolysis and the citric acid cycle are significantly altered during calcium depletion and following repletion in the amphibian heart. The major characteristics of calcium paradox-induced damage in Rana ridibunda heart are the depletion of high-energy stores, the impairment of mitochondrial oxidative metabolism, and a significant increase in anaerobic metabolism.

  3. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities

    PubMed Central

    FitzGerald, Jamie A.; Allen, Eoin; Wall, David M.; Jackson, Stephen A.; Murphy, Jerry D.; Dobson, Alan D. W.

    2015-01-01

    Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation. PMID:26555136

  4. Energy metabolism and metabolic depression during exercise in Callinectes sapidus, the Atlantic blue crab: effects of the bacterial pathogen Vibrio campbellii.

    PubMed

    Thibodeaux, Lindy K; Burnett, Karen G; Burnett, Louis E

    2009-11-01

    Callinectes sapidus (Rathbun), the Atlantic blue crab, commonly harbors low to moderate amounts of bacteria in hemolymph and other tissues. These bacteria are typically dominated by Vibrio spp., which are known to cause mortality in the blue crab. The dose-dependent lethality of an isolate of Vibrio campbellii was determined in crabs; the mean 48 h LD(50) (half-maximal lethal dose) was 6.2 x 10(5) colony forming units g(-1) crab. Injection of a sublethal dose of V. campbellii into the hemolymph of the crab resulted in a rapid and large depression (30-42%) of metabolic rate, which persisted for 24 h. Because gills are an organ of immune function as well as respiration, we were interested in how bacteria injected into the crab would affect the energetic costs associated with walking. Overall metabolism (aerobic and anaerobic) more than doubled in crabs walking for 30 min at 8 m min(-1). The metabolic depression resulting from bacterial injection persisted throughout the exercise period and patterns of phosphagen and adenylate consumption within walking leg muscle were not affected by treatment. The ability of crabs to supply required energy for walking is largely unaffected by exposure to Vibrio; however, Vibrio-injected crabs are less aerobic while doing so. This depressed metabolic condition in response to bacteria, present during moderate activity, could be a passive result of mounting an immune response or may indicate an actively regulated metabolic depression. A compromised metabolism can affect the performance of daily activities, such as feeding and predator avoidance or affect the ability to cope with environmental stressors, such as hypoxia.

  5. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    PubMed Central

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-01-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community. PMID:28300176

  6. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community.

    PubMed

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-16

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlate(TM) technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  7. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    NASA Astrophysics Data System (ADS)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  8. Anaerobic Treatment of Municipal Solid Waste and Sludge for Energy Production and Recycling of Nutrients

    NASA Astrophysics Data System (ADS)

    Leinonen, S.

    This volume contains 18 papers presented at a Nordic workshop dealing with application of anaerobic decomposition processes on various types of organic wastes, held at the Siikasalmi Research and Experimental Station of the University of Joensuu on 1-2 Oct. 1992. Subject coverage of the presentations extends from the biochemical and microbiological principles of organic waste processing to descriptions and practical experiences of various types of treatment plants. The theoretical and experimental papers include studies on anaerobic and thermophilic degradation processes, methanogenesis, effects of hydrogen, treatment of chlorinated and phenolic compounds, and process modeling, while the practical examples range from treatment of various types of municipal, industrial, and mining wastes to agricultural and fish farm effluents. The papers provide technical descriptions of several biogas plants in operation. Geographically, the presentations span the Nordic and Baltic countries.

  9. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    PubMed Central

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160

  10. Utilising biohydrogen to increase methane production, energy yields and process efficiency via two stage anaerobic digestion of grass.

    PubMed

    Massanet-Nicolau, Jaime; Dinsdale, Richard; Guwy, Alan; Shipley, Gary

    2015-01-01

    Real time measurement of gas production and composition were used to examine the benefits of two stage anaerobic digestion (AD) over a single stage AD, using pelletized grass as a feedstock. Controlled, parallel digestion experiments were performed in order to directly compare a two stage digestion system producing hydrogen and methane, with a single stage system producing just methane. The results indicated that as well as producing additional energy in the form of hydrogen, two stage digestion also resulted in significant increases to methane production, overall energy yields, and digester stability (as indicated by bicarbonate alkalinity and volatile fatty acid removal). Two stage AD resulted in an increase in energy yields from 10.36 MJ kg(-1) VS to 11.74 MJ kg(-1) VS, an increase of 13.4%. Using a two stage system also permitted a much shorter hydraulic retention time of 12 days whilst maintaining process stability.

  11. Deciphering Neuron-Glia Compartmentalization in Cortical Energy Metabolism

    PubMed Central

    Jolivet, Renaud; Magistretti, Pierre J.; Weber, Bruno

    2009-01-01

    Energy demand is an important constraint on neural signaling. Several methods have been proposed to assess the energy budget of the brain based on a bottom-up approach in which the energy demand of individual biophysical processes are first estimated independently and then summed up to compute the brain's total energy budget. Here, we address this question using a novel approach that makes use of published datasets that reported average cerebral glucose and oxygen utilization in humans and rodents during different activation states. Our approach allows us (1) to decipher neuron-glia compartmentalization in energy metabolism and (2) to compute a precise state-dependent energy budget for the brain. Under the assumption that the fraction of energy used for signaling is proportional to the cycling of neurotransmitters, we find that in the activated state, most of the energy (∼80%) is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. Glial cells, while only contributing for a small fraction to energy production (∼6%), actually take up a significant fraction of glucose (50% or more) from the blood and provide neurons with glucose-derived energy substrates. Our results suggest that glycolysis occurs for a significant part in astrocytes whereas most of the oxygen is utilized in neurons. As a consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to take place. Furthermore, we find that the amplitude of this transfer is correlated to (1) the activity level of the brain; the larger the activity, the more metabolites are shuttled from glia to neurons and (2) the oxidative activity in astrocytes; with higher glial pyruvate metabolism, less metabolites are shuttled from glia to neurons. While some of the details of a bottom-up biophysical approach have to be simplified, our method allows for a straightforward assessment of the brain's energy budget from macroscopic measurements with minimal underlying

  12. Leptin regulates energy metabolism in MCF-7 breast cancer cells.

    PubMed

    Blanquer-Rosselló, Maria del Mar; Oliver, Jordi; Sastre-Serra, Jorge; Valle, Adamo; Roca, Pilar

    2016-03-01

    Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phosphate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.

  13. Energy metabolism of hyperthyroid gilthead sea bream Sparus aurata L.

    PubMed

    Vargas-Chacoff, Luis; Ruiz-Jarabo, Ignacio; Arjona, Francisco J; Laiz-Carrión, Raúl; Flik, Gert; Klaren, Peter H M; Mancera, Juan M

    2016-01-01

    Thyroid hormones, in particular 3,5,3'-triiodothyronine or T3, are involved in multiple physiological processes in mammals such as protein, fat and carbohydrate metabolism. However, the metabolic actions of T3 in fish are still not fully elucidated. We therefore tested the effects of T3 on Sparus aurata energy metabolism and osmoregulatory system, a hyperthyroid-induced model that was chosen. Fish were implanted with coconut oil depots (containing 0, 2.5, 5.0 and 10.0μg T3/g body weight) and sampled at day 3 and 6 post-implantation. Plasma levels of free T3 as well as glucose, lactate and triglyceride values increased with increasing doses of T3 at days 3 and 6 post-implantation. Changes in plasma and organ metabolite levels (glucose, glycogen, triglycerides, lactate and total α amino acid) and enzyme activities related to carbohydrate, lactate, amino acid and lipid pathways were detected in organs involved in metabolism (liver) and osmoregulation (gills and kidney). Our data implicate that the liver uses amino acids as an energy source in response to the T3 treatment, increasing protein catabolism and gluconeogenic pathways. The gills, the most important extruder of ammonia, are fuelled not only by amino acids, but also by lactate. The kidney differs significantly in its substrate preference from the gills, as it obtained metabolic energy from lactate but also from lipid oxidation processes. We conclude that in S. aurata lipid catabolism and protein turnover are increased as a consequence of experimentally induced hyperthyroidism, with secondary osmoregulatory effects.

  14. Temperature effects on energy metabolism: a dynamic system analysis.

    PubMed Central

    Chaui-Berlinck, José Guilherme; Monteiro, Luiz Henrique Alves; Navas, Carlos Arturo; Bicudo, José Eduardo P W

    2002-01-01

    Q(10) factors are widely used as indicators of the magnitude of temperature-induced changes in physico-chemical and physiological rates. However, there is a long-standing debate concerning the extent to which Q(10) values can be used to derive conclusions about energy metabolism regulatory control. The main point of this disagreement is whether or not it is fair to use concepts derived from molecular theory in the integrative physiological responses of living organisms. We address this debate using a dynamic systems theory, and analyse the behaviour of a model at the organismal level. It is shown that typical Q(10) values cannot be used unambiguously to deduce metabolic rate regulatory control. Analytical constraints emerge due to the more formal and precise equation used to compute Q(10), derived from a reference system composed from the metabolic rate and the Q(10). Such an equation has more than one unknown variable and thus is unsolvable. This problem disappears only if the Q(10) is assumed to be a known parameter. Therefore, it is concluded that typical Q(10) calculations are inappropriate for addressing questions about the regulatory control of a metabolism unless the Q(10) values are considered to be true parameters whose values are known beforehand. We offer mathematical tools to analyse the regulatory control of a metabolism for those who are willing to accept such an assumption. PMID:11788031

  15. Mechanistic modeling of aberrant energy metabolism in human disease

    PubMed Central

    Sangar, Vineet; Eddy, James A.; Simeonidis, Evangelos; Price, Nathan D.

    2012-01-01

    Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based (CB) models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell. PMID:23112774

  16. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    PubMed Central

    Camporeale, Annalisa; Demaria, Marco; Monteleone, Emanuele; Giorgi, Carlotta; Wieckowski, Mariusz R.; Pinton, Paolo; Poli, Valeria

    2014-01-01

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3C/C) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3C/C MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3C/C MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms. PMID:25089666

  17. Cerebral energy metabolism in diving and non-diving birds during hypoxia and apnoeic asphyxia.

    PubMed Central

    Bryan, R M; Jones, D R

    1980-01-01

    1. Cerebral energy metabolism during apnoeic asphyxia and steady-state hypoxia was compared in ducks and chickens; ducks tolerate apnoeic asphyxia 3-8 times longer than chickens. 2. Fluctuations in the reduced form of respiratory chain nicotinamide adenine dinucleotide (NADH) were monitored from the left cerebral hemisphere by a noninvasive fluorometric technique and used as an indicator of mitochondrial hypoxia. NADH fluorescence was expressed in aribtrary units (a.u.) where 100 a.u. was defined as the fluorescence change from normoxia to anoxia. Electroencephalogram (e.e.g.) and surface Po2 were recorded from the right hemisphere. 3. After 1 min of asphyxia NADH fluorescence increased by 37 a.u.+/-3.60 S.E. of mean (n=54) in paralysed chickens and 8 a.u.+/-1.41 (n=55) in aralysed ducks. After 2 min the fluorescence increased by only 15 a.u.+/-1.95 in ducks. 4. Both species showed an isoelectric e.e.g. when fluorescence increased by approximately 35 a.u., indicating that anaerobic ATP production in ducks did not maintain brain function (e.e.g.) for a greater accumulation of respiratory chain NADH. 5. At a given decrease in tissue Po2 ducks and chickens showed the same level of NADH increase, indicating that both species are equally dependent on tissue Po2 for the maintenance of redox state. 6. We conclude that biochemical adjustment which enhance anaerobic ATP production and/or prolong oxidative phosphorylation during progressive hypoxia are not responsible for increased cerebral tolerance to apnoeic asphyxia in the duck. PMID:7381772

  18. Anaerobic Digestion.

    PubMed

    Liebetrau, Jan; Sträuber, Heike; Kretzschmar, Jörg; Denysenko, Velina; Nelles, Michael

    2017-04-09

    The term anaerobic digestion usually refers to the microbial conversion of organic material to biogas, which mainly consists of methane and carbon dioxide. The technical application of the naturally-occurring process is used to provide a renewable energy carrier and - as the substrate is often waste material - to reduce the organic matter content of the substrate prior to disposal.Applications can be found in sewage sludge treatment, the treatment of industrial and municipal solid wastes and wastewaters (including landfill gas utilization), and the conversion of agricultural residues and energy crops.For biorefinery concepts, the anaerobic digestion (AD) process is, on the one hand, an option to treat organic residues from other production processes. Concomitant effects are the reduction of organic carbon within the treated substance, the conversion of nitrogen and sulfur components, and the production of an energy-rich gas - the biogas. On the other hand, the multistep conversion of complex organic material offers the possibility of interrupting the conversion chain and locking out intermediates for utilization as basic material within the chemical industry.

  19. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

    SciTech Connect

    Pereira, Patricia M.; He, Qiang; Valente, Filipa M.A.; Xavier, Antonio V.; Zhou, Jizhong; Pereira, Ines A.C.; Louro, Ricardo O.

    2007-11-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe]hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energymetabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

  20. PPAR signaling in the control of cardiac energy metabolism.

    PubMed

    Barger, P M; Kelly, D P

    2000-08-01

    Cardiac energy metabolic shifts occur as a normal response to diverse physiologic and dietary conditions and as a component of the pathophysiologic processes which accompany cardiac hypertrophy, heart failure, and myocardial ischemia. The capacity to produce energy via the utilization of fats by the mammalian postnatal heart is controlled in part at the level of expression of nuclear genes encoding enzymes involved in mitochondrial fatty acid beta-oxidation (FAO). The principal transcriptional regulator of FAO enzyme genes is the peroxisome proliferator-activated receptor alpha (PPARalpha), a member of the ligand-activated nuclear receptor superfamily. Among the ligand activators of PPARalpha are long-chain fatty acids; therefore, increased uptake of fatty acid substrate into the cardiac myocyte induces a transcriptional response leading to increased expression of FAO enzymes. PPARalpha-mediated control of cardiac metabolic gene expression is activated during postnatal development, short-term starvation, and in response to exercise training. In contrast, certain pathophysiologic states, such as pressure overload-induced hypertrophy, result in deactivation of PPARalpha and subsequent dysregulation of FAO enzyme gene expression, which sets the stage for abnormalities in cardiac lipid homeostasis and energy production, some of which are influenced by gender. Thus, PPARalpha not only serves a critical role in normal cardiac metabolic homeostasis, but alterations in PPARalpha signaling likely contribute to the pathogenesis of a variety of disease states. PPARalpha as a ligand-activated transcription factor is a potential target for the development of new therapeutic strategies aimed at the prevention of pathologic cardiac remodeling.

  1. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).

    PubMed

    Meyer, Carola W; Reitmeir, Peter; Tschöp, Matthias H

    2015-09-01

    Current comprehensive mouse metabolic phenotyping involves studying energy balance in cohorts of mice via indirect calorimetry, which determines heat release from changes in respiratory air composition. Here, we describe the measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR) in mice. These well-defined metabolic descriptors serve as meaningful first-line read-outs for metabolic phenotyping and should be reported when exploring energy expenditure in mice. For further guidance, the issue of appropriate sample sizes and the frequency of sampling of metabolic measurements is also discussed.

  2. STUDIES ON THE CARBOHYDRATE METABOLISM OF A GRAM-NEGATIVE ANAEROBE (BACTEROIDES SYMBIOSUS) USED IN THE CULTURE OF ENTAMOEBA HISTOLYTICA1

    PubMed Central

    Bragg, P. D.; Reeves, Richard E.

    1962-01-01

    Bragg, P. D. (Louisiana State University, New Orleans) and R. E. Reeves. Studies on the carbohydrate metabolism of a gram-negative anaerobe (Bacteroides symbiosus) used in the culture of Entamoeba histolytica. J. Bacteriol. 83:76–84. 1962—Resting cells of Bacteroides symbiosus have been shown to utilize glucose and several other monosaccharides. The fermentation of the sugars is mediated by demonstrable kinases except in the case of mannitol. The main end products of metabolism of glucose are CO2, H2, ethanol, and acetic, butyric, succinic, and lactic acids. Changes in the thiol used in the growth media produce different enzyme complements in the cells. Thus, cells grown with cysteine as the thiol are unable to metabolize glucosamine, whereas those grown with thiomalate rapidly degrade the amino sugar. The results of the enzyme assay and the results from experiments with C14-labelled glucose suggest that glucose is metabolized by resting cells mainly by the Embden-Myerhof pathway. PMID:13872395

  3. Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis.

    PubMed

    Méndez-Giménez, Leire; Rodríguez, Amaia; Balaguer, Inmaculada; Frühbeck, Gema

    2014-11-01

    Aquaglyceroporins and caveolins are submicroscopic integral membrane proteins that are particularly abundant in many mammalian cells. Aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) encompass a subfamily of aquaporins that allow the movement of water, but also of small solutes, such as glycerol, across cell membranes. Glycerol constitutes an important metabolite as a substrate for de novo synthesis of triacylglycerols and glucose as well as an energy substrate to produce ATP via the mitochondrial oxidative phosphorylation. In this sense, the control of glycerol influx/efflux in metabolic organs by aquaglyceroporins plays a crucial role with the dysregulation of these glycerol channels being associated with metabolic diseases, such as obesity, insulin resistance, non-alcoholic fatty liver disease and cardiac hypertrophy. On the other hand, caveolae have emerged as relevant plasma membrane sensors implicated in a wide range of cellular functions, including endocytosis, apoptosis, cholesterol homeostasis, proliferation and signal transduction. Caveolae-coating proteins, namely caveolins and cavins, can act as scaffolding proteins within caveolae by concentrating signaling molecules involved in free fatty acid and cholesterol uptake, proliferation, insulin signaling or vasorelaxation, among others. The importance of caveolae in whole-body homeostasis is highlighted by the link between homozygous mutations in genes encoding caveolins and cavins with metabolic diseases, such as lipodystrophy, dyslipidemia, muscular dystrophy and insulin resistance in rodents and humans. The present review focuses on the role of aquaglyceroporins and caveolins on lipid and glucose metabolism, insulin secretion and signaling, energy production and cardiovascular homeostasis, outlining their potential relevance in the development and treatment of metabolic diseases.

  4. Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments.

    PubMed

    Hackstein, J H; Akhmanova, A; Voncken, F; van Hoek, A; van Alen, T; Boxma, B; Moon-van der Staay, S Y; van der Staay, G; Leunissen, J; Huynen, M; Rosenberg, J; Veenhuis, M

    2001-01-01

    Hydrogenosomes are membrane-bound organelles that compartmentalise the final steps of energy metabolism in a number of anaerobic eukaryotes. They produce hydrogen and ATP. Here we will review the data, which are relevant for the questions: how did the hydrogenosomes originate, and what was their ancestor? Notably, there is strong evidence that hydrogenosomes evolved several times as adaptations to anaerobic environments. Most likely, hydrogenosomes and mitochondria share a common ancestor, but an unequivocal proof for this hypothesis is difficult because hydrogenosomes lack an organelle genome - with one remarkable exception (Nyctotherus ovalis). In particular, the diversity of extant hydrogenosomes hampers a straightforward analysis of their origins. Nevertheless, it is conceivable to postulate that the common ancestor of mitochondria and hydrogenosomes was a facultative anaerobic organelle that participated in the early radiation of unicellular eukaryotes. Consequently, it is reasonable to assume that both, hydrogenosomes and mitochondria are evolutionary adaptations to anaerobic or aerobic environments, respectively.

  5. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    PubMed

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  6. Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation

    PubMed Central

    Guzun, R.; Kaambre, T.; Bagur, R.; Grichine, A.; Usson, Y.; Varikmaa, M.; Anmann, T.; Tepp, K.; Timohhina, N.; Shevchuk, I.; Chekulayev, V.; Boucher, F.; Santos, P. Dos; Schlattner, U.; Wallimann, T.; Kuznetsov, A. V.; Dzeja, P.; Aliev, M.; Saks, V.

    2014-01-01

    To meet high cellular demands, the energy metabolism of cardiac muscles is organized by precise and coordinated functioning of intracellular energetic units (ICEUs). ICEUs represent structural and functional modules integrating multiple fluxes at sites of ATP generation in mitochondria and ATP utilization by myofibrillar, sarcoplasmic reticulum and sarcolemma ion-pump ATPases. The role of ICEUs is to enhance the efficiency of vectorial intracellular energy transfer and fine tuning of oxidative ATP synthesis maintaining stable metabolite levels to adjust to intracellular energy needs through the dynamic system of compartmentalized phosphoryl transfer networks. One of the key elements in regulation of energy flux distribution and feedback communication is the selective permeability of mitochondrial outer membrane (MOM) which represents a bottleneck in adenine nucleotide and other energy metabolite transfer and microcompartmentalization. Based on the experimental and theoretical (mathematical modelling) arguments, we describe regulation of mitochondrial ATP synthesis within ICEUs allowing heart workload to be linearly correlated with oxygen consumption ensuring conditions of metabolic stability, signal communication and synchronization. Particular attention was paid to the structure–function relationship in the development of ICEU, and the role of mitochondria interaction with cytoskeletal proteins, like tubulin, in the regulation of MOM permeability in response to energy metabolic signals providing regulation of mitochondrial respiration. Emphasis was given to the importance of creatine metabolism for the cardiac energy homoeostasis. PMID:24666671

  7. Endocannabinoid signaling and energy metabolism: a target for dietary intervention.

    PubMed

    Kim, Jeffrey; Li, Yong; Watkins, Bruce A

    2011-06-01

    The endocannabinoid (EC) signaling (ECS) system involves the activation of receptors targeted by endogenously produced ligands called endocannabinoids that trigger specific physiologic events in various organs and tissues throughout the body. ECs are lipid mediators that bind to specific receptors and elicit cell signaling. The focus of this review is to discuss the responses that direct pathways of systemic energy metabolism. Recent findings have indicated that an imbalance of the ECS contributes to visceral fat accumulation and disrupts energy homeostasis, which are characteristics of the metabolic syndrome. Constant activation of ECS has been linked to metabolic processes that are associated with the hypothalamus and peripheral tissues of obese patients. In contrast, inhibition of ECS results in weight loss in animal and human subjects. Despite these findings, the mechanism involved in the dysregulation of ECS is unclear. Interestingly, the level of endogenous ligands, derived from arachidonic acid, can be directly manipulated by nutrient intervention, in that a diet rich in long-chain ω-3 polyunsaturated fatty acids will decrease the production of ligands to modulate the activation of target receptors. In contrast, a diet that is high in ω-6 polyunsaturated fatty acids will cause an increase in ECS activation and stimulate tissue specific activities that decrease insulin sensitivity in muscle and promote fat accumulation in the adipose tissue. The purpose of this review is to explain the components of ECS, its role in adipose and muscle energy metabolism, and how nutritional approaches with dietary ω-3 polyunsaturated fatty acids may reverse the dysregulation of this system to improve insulin sensitivity and control body fat.

  8. Cancer: NF-κB regulates energy metabolism.

    PubMed

    Moretti, Marta; Bennett, Jason; Tornatore, Laura; Thotakura, Anil K; Franzoso, Guido

    2012-12-01

    NF-κB transcription factors are evolutionarily conserved, central coordinators of immune and inflammatory responses. They also play a pivotal role in oncogenesis. NF-κB exerts these functions by regulating the transcription of genes encoding many immunoregulators, inflammatory mediators and inhibitors of apoptosis. Several studies during the past few years have also underscored the key role of the IKK/NF-κB pathway in the induction and maintenance of the state of inflammation that underlies metabolic pathologies such as obesity, insulin resistance and type-2 diabetes, reflecting the co-evolution and integration of nutrient- and pathogen-sensing systems. Recent reports, however, are revealing an even more intimate, direct connection between NF-κB and metabolism. These studies demonstrate that NF-κB regulates energy homeostasis via direct engagement of the cellular networks governing glycolysis and respiration, with profound implications that extend beyond metabolic pathologies, to cellular physiology, cancer, and anti-cancer therapy. In this review article, we discuss these emerging metabolic functions of NF-κB and their significance to oncogenesis and cancer treatment.

  9. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement

    PubMed Central

    Tsianos, George A.; MacFadden, Lisa N.

    2016-01-01

    Physical performance emerges from complex interactions among many physiological systems that are largely driven by the metabolic energy demanded. Quantifying metabolic demand is an essential step for revealing the many mechanisms of physical performance decrement, but accurate predictive models do not exist. The goal of this study was to investigate if a recently developed model of muscle energetics and force could be extended to reproduce the kinematics, kinetics, and metabolic demand of submaximal effort movement. Upright dynamic knee extension against various levels of ergometer load was simulated. Task energetics were estimated by combining the model of muscle contraction with validated models of lower limb musculotendon paths and segment dynamics. A genetic algorithm was used to compute the muscle excitations that reproduced the movement with the lowest energetic cost, which was determined to be an appropriate criterion for this task. Model predictions of oxygen uptake rate (VO2) were well within experimental variability for the range over which the model parameters were confidently known. The model's accurate estimates of metabolic demand make it useful for assessing the likelihood and severity of physical performance decrement for a given task as well as investigating underlying physiologic mechanisms. PMID:27248429

  10. Economic and environmental analysis of four different configurations of anaerobic digestion for food waste to energy conversion using LCA for: a food service provider case study.

    PubMed

    Franchetti, Matthew

    2013-07-15

    The US disposes of more than 34 million tons of food waste in landfills per year. As this food waste decomposes it generates methane gas and negatively contributes to global warming. Diverting theses organic food wastes from landfills and to emerging technologies will prevent these wastes and greenhouse gas emissions while at the same time generating a source renewable energy by collecting the emitted gases. From a waste prevention standpoint, instead of the food waste decomposing at local landfills, it is being converted into an energy source and the by-product may be used as a fertilizer (Fine and Hadas, 2012). The purpose of this study was to compare four different configurations of anaerobic digestion of organic waste to energy technologies from an economic, energy, and emissions standpoint using LCA via a case study at a large food services provider in Northwest Ohio, USA. The technologies studied included two-stage anaerobic digestion system using ultrasound pre-treating, two stage continuous combined thermophilic acidogenic hydrogenesis and mesophilic with recirculation of the digested sludge, long-term anaerobic digestion of food waste stabilized by trace elements, and single stage anaerobic digestion. Using LCA, these scenarios were compared to landfill disposal of the food waste. The findings from the case study indicated that implementing on-site waste to energy systems will result in lower operation costs and lower environmental impacts. In addition, a standardized environmental and economic comparison of competing food waste to energy technologies is provided.

  11. Economic screening of renewable energy technologies: Incineration, anaerobic digestion, and biodiesel as applied to waste water scum.

    PubMed

    Anderson, Erik; Addy, Min; Ma, Huan; Chen, Paul; Ruan, Roger

    2016-12-01

    In the U.S., the total amount of municipal solid waste is continuously rising each year. Millions of tons of solid waste and scum are produced annually that require safe and environmentally sound disposal. The availability of a zero-cost energy source like municipal waste scum is ideal for several types of renewable energy technologies. However, the way the energy is produced, distributed and valued also contributes to the overall process sustainability. An economic screening method was developed to compare the potential energy and economic value of three waste-to-energy technologies; incineration, anaerobic digestion, and biodiesel. A St. Paul, MN wastewater treatment facility producing 3175 "wet" kilograms of scum per day was used as a basis of the comparison. After applying all theoretically available subsidies, scum to biodiesel was shown to have the greatest economic potential, valued between $491,949 and $610,624/year. The incineration of scum yielded the greatest reclaimed energy potential at 29billion kilojoules/year.

  12. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    SciTech Connect

    Salinero, Kennan Kellaris; Keller, Keith; Feil, William S.; Feil, Helene; Trong, Stephan; Di Bartolo, Genevieve; Lapidus, Alla

    2008-11-17

    Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. The a priori prediction that the D. aromatica genome would contain previously characterized 'central' enzymes involved in anaerobic aromatic degradation proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzyl succinyl synthase (bssABC) genes (responsible for formate addition to toluene) and the central benzoylCoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex with the somewhat rare exosortase (epsH), is also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and nitrogen fixation (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial species

  13. Intrinsic gas production kinetics of selected intermediates in anaerobic filters for demand-orientated energy supply.

    PubMed

    Krümpel, Johannes Hagen; Illi, Lukas; Lemmer, Andreas

    2017-04-11

    As a consequence of a growing share of solar and wind power, recent research on biogas production highlighted a need for demand-orientated, flexible gas production to provide grid services and enable a decentralized stabilization of the electricity infrastructure. Two-staged anaerobic digestion is particularly suitable for shifting the methane production into times of higher demand due to the spatio-temporal separation of hydrolysis and methanogenesis. To provide a basis for predicting gas production in an anaerobic filter, kinetic parameters of gas production have been determined experimentally in this study. A new methodology is used, enabling their determination during continuous operation. An order in methane production rate could be established by comparing the half lives of methane production. The order was beginning with the fastest: acetic acid>ethanol>butyric acid>iso-butyric acid>valeric acid>propionic acid>1,2propanediol>lactic acid. However, the mixture of a natural hydrolysate from the acidification tank appeared to produce methane faster than all single components tested.

  14. Energy recovery from the effluent of plants anaerobically digesting urban solid waste

    NASA Astrophysics Data System (ADS)

    1983-03-01

    The parameters of concentration, time, temperature, and pH to find optimum conditions for enzymatically converting unreacted cellulose in the effluent of an anaerobic digester to glucose for ultimate conversion to methane, and then to project the economics to a 100 tons per day plant was studied. The amount of cellulose hydrolysis for enzyme concentrations from 5 to 1000 CIU/gram of substrate using either filter paper or anaerobically digested municipal solid waste (MSW) reacted over periods of time of from 0 to 72 hours is illustrated. The feasibility of recycling enzymes by ultrafilter capture was studied and it is shown that the recovered enzyme is not denatured by any of several possible enzyme loss mechanisms chemical, physical, or biological. Although rather stable enzyme substrate complexes seem to be formed, various techniques permit a 55% enzyme recovery. Posttreatment of digested MSW by cellulase enzymes produces nearly a threefold increase in biomethanation. The value of the additional methane produced in the process is not sufficient to support the cost of enzymes.

  15. Polyphosphate - an ancient energy source and active metabolic regulator

    PubMed Central

    2011-01-01

    There are a several molecules on Earth that effectively store energy within their covalent bonds, and one of these energy-rich molecules is polyphosphate. In microbial cells, polyphosphate granules are synthesised for both energy and phosphate storage and are degraded to produce nucleotide triphosphate or phosphate. Energy released from these energetic carriers is used by the cell for production of all vital molecules such as amino acids, nucleobases, sugars and lipids. Polyphosphate chains directly regulate some processes in the cell and are used as phosphate donors in gene regulation. These two processes, energetic metabolism and regulation, are orchestrated by polyphosphate kinases. Polyphosphate kinases (PPKs) can currently be categorized into three groups (PPK1, PPK2 and PPK3) according their functionality; they can also be divided into three groups according their homology (EcPPK1, PaPPK2 and ScVTC). This review discusses historical information, similarities and differences, biochemical characteristics, roles in stress response regulation and possible applications in the biotechnology industry of these enzymes. At the end of the review, a hypothesis is discussed in view of synthetic biology applications that states polyphosphate and calcium-rich organelles have endosymbiotic origins from ancient protocells that metabolized polyphosphate. PMID:21816086

  16. Anaerobic Degradation of Cyanuric Acid, Cysteine, and Atrazine by a Facultative Anaerobic Bacterium

    PubMed Central

    Jessee, J. A.; Benoit, R. E.; Hendricks, A. C.; Allen, G. C.; Neal, J. L.

    1983-01-01

    A facultative anaerobic bacterium that rapidly degrades cyanuric acid (CA) was isolated from the sediment of a stream that received industrial wastewater effluent. CA decomposition was measured throughout the growth cycle by using a high-performance liquid chromatography assay, and the concomitant production of ammonia was also measured. The bacterium used CA or cysteine as a major, if not the sole, carbon and energy source under anaerobic, but not aerobic, conditions in a defined medium. The cell yield was greatly enhanced by the simultaneous presence of cysteine and CA in the medium. Cysteine was preferentially used rather than CA early in the growth cycle, but all of the CA was used without an apparent lag after the cysteine was metabolized. Atrazine was also degraded by this bacterium under anaerobic conditions in a defined medium. PMID:16346187

  17. [Modifications in myocardial energy metabolism in diabetic patients

    NASA Technical Reports Server (NTRS)

    Grynberg, A.

    2001-01-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimetazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by

  18. Characterizing the Anaerobic Response of Chlamydomonas reinhardtii by Quantitative Proteomics

    PubMed Central

    Terashima, Mia; Specht, Michael; Naumann, Bianca; Hippler, Michael

    2010-01-01

    The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic (induced by 8 h of argon bubbling) conditions were isolated and analyzed using comparative proteomics. A total of 2315 proteins were identified. Further analysis based on spectral counting clearly localized 606 of these proteins to the chloroplast, including many proteins of the fermentative metabolism. Comparative quantitative analyses were performed with the chloroplast-localized proteins using stable isotopic labeling of amino acids ([13C6]arginine/[12C6]arginine in an arginine auxotrophic strain). The quantitative data confirmed proteins previously characterized as induced at the transcript level as well as identified several new proteins of unknown function induced under anaerobic conditions. These proteins of unknown function provide new candidates for further investigation, which could bring insights for the engineering of hydrogen-producing alga strains. PMID:20190198

  19. Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity.

    PubMed

    Chouhan, Amit K; Ivannikov, Maxim V; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R; Macleod, Gregory T

    2012-01-25

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations that blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+ and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11 nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13 nM). In summary, we show that when MNs fire at endogenous rates, [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs.

  20. Legal pre-event nutritional supplements to assist energy metabolism.

    PubMed

    Spriet, Lawrence L; Perry, Christopher G R; Talanian, Jason L

    2008-01-01

    Physical training and proper nutrition are paramount for success in sport. A key tissue is skeletal muscle, as the metabolic pathways that produce energy or ATP allow the muscles to complete the many activities critical to success in sport. The energy-producing pathways must rapidly respond to the need for ATP during sport and produce energy at a faster rate or for a longer duration through training and proper nutrition which should translate into improved performance in sport activities. There is also continual interest in the possibility that nutritional supplements could further improve muscle metabolism and the provision of energy during sport. Most legal sports supplements do not improve performance following oral ingestion. However, three legal supplements that have received significant attention over the years include creatine, carnitine and sodium bicarbonate. The ingestion of large amounts of creatine for 4-6 days increases skeletal muscle creatine and phosphocreatine contents. The majority of the experimental evidence suggests that creatine supplementation can improve short-term exercise performance, especially in sports that require repeated short-term sprints. It may also augment the accretion of skeletal muscle when taken in combination with a resistance-exercise training programme. Supplementary carnitine has been touted to increase the uptake and oxidation of fat in the mitochondria. However, muscle carnitine levels are not augmented following oral carnitine supplementation and the majority of well-controlled studies have reported no effect of carnitine on enhancing fat oxidation, Vo(2max) or prolonged endurance exercise performance. The ingestion of sodium bicarbonate before intense exercise decreases the blood [H+] to potentially assist the efflux of H+ from the muscle and temper the metabolic acidosis associated with intense exercise. Many studies have reported performance increases in laboratory-based cycling tests and simulated running races in

  1. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    PubMed Central

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  2. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  3. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: II. Analysis of metabolic rates and pathways under oscillation and steady-state conditions.

    PubMed

    Zeng, A P; Menzel, K; Deckwer, W D

    1996-12-05

    The oscillation phenomena reported in the preceding article for the anaerobic continuous fermentation of glycerol by Klebsiella pneumoniae are analyzed in terms of metabolic fluxes (metabolic rates and yields) and stoichiometry of pathways. Significant oscillations in the fluxes of CO(2), H(2), formic acid, ethanol, and reducing equivalents are observed which show obvious relationships to each other. Changes in the consumption or production rates of glycerol, acetic acid, 1,3-propanediol, and ATP are irregular and have relatively small amplitudes compared with their absolute values. By comparing the metabolic fluxes under oscillation and steady state that have nearly the same environmental conditions it could be shown that pyruvate metabolism is the main step affected under oscillation conditions. The specific formation rates of all the products originating from pyruvate metabolism (CO(2), H(2), formic acid, ethanol, acetic acid, lactic acid, and 2,3-butanediol) show significant differences under conditions of oscillation and steady state. In contrast, the specific rates of substrate uptake, ATP generation, and formation of products deriving either directly from glycerol (1,3-propanediol) or from the upstream of pyruvate metabolism (e.g., succinic acid) are not, or at least not significantly, affected during oscillation. Stoichiometric analysis of metabolic pathways confirms that other enzyme systems, in addition to pyruvate: formate-lyase, must be simultaneously involved in the pyruvate decarboxylation under both oscillation and steady-state conditions. The results strongly suggest oscillations of activities of these enzymes under oscillation conditions. It appears that the reason for the occurrence of oscillation and hysteresis lies in an unstable regulation of pyruvate metabolism of different enzymes triggered by substrate excess and drastic change(s) of environmental conditions.

  4. Energy metabolism and the high-altitude environment.

    PubMed

    Murray, Andrew J

    2016-01-01

    At high altitude the barometric pressure falls, challenging oxygen delivery to the tissues. Thus, whilst hypoxia is not the only physiological stress encountered at high altitude, low arterial P(O2) is a sustained feature, even after allowing adequate time for acclimatization. Cardiac and skeletal muscle energy metabolism is altered in subjects at, or returning from, high altitude. In the heart, energetic reserve falls, as indicated by lower phosphocreatine-to-ATP ratios. The underlying mechanism is unknown, but in the hypoxic rat heart fatty acid oxidation and respiratory capacity are decreased, whilst pyruvate oxidation is also lower after sustained hypoxic exposure. In skeletal muscle, there is not a consensus. With prolonged exposure to extreme high altitude (>5500 m) a loss of muscle mitochondrial density is seen, but this was not observed in a simulated ascent of Everest in hypobaric chambers. At more moderate high altitude, decreased respiratory capacity may occur without changes in mitochondrial volume density, and fat oxidation may be downregulated, although this is not seen in all studies. The underlying mechanisms, including the possible role of hypoxia-signalling pathways, remain to be resolved, particularly in light of confounding factors in the high-altitude environment. In high-altitude-adapted Tibetan natives, however, there is evidence of natural selection centred around the hypoxia-inducible factor pathway, and metabolic features in this population (e.g. low cardiac phosphocreatine-to-ATP ratios, increased cardiac glucose uptake and lower muscle mitochondrial densities) share similarities with those in acclimatized lowlanders, supporting a possible role for the hypoxia-inducible factor pathway in the metabolic response of cardiac and skeletal muscle energy metabolism to high altitude.

  5. My Lifelong Passion for Biochemistry and Anaerobic Microorganisms.

    PubMed

    Thauer, Rudolf Kurt

    2015-01-01

    Early parental influence led me first to medical school, but after developing a passion for biochemistry and sensing the need for a deeper foundation, I changed to chemistry. During breaks between semesters, I worked in various biochemistry labs to acquire a feeling for the different areas of investigation. The scientific puzzle that fascinated me most was the metabolism of the anaerobic bacterium Clostridium kluyveri, which I took on in 1965 in Karl Decker's lab in Freiburg, Germany. I quickly realized that little was known about the biochemistry of strict anaerobes such as clostridia, methanogens, acetogens, and sulfate-reducing bacteria and that these were ideal model organisms to study fundamental questions of energy conservation, CO2 fixation, and the evolution of metabolic pathways. My passion for anaerobes was born then and is unabated even after 50 years of study.

  6. CKM Gene G (Ncoi-) Allele Has a Positive Effect on Maximal Oxygen Uptake in Caucasian Women Practicing Sports Requiring Aerobic and Anaerobic Exercise Metabolism

    PubMed Central

    Gronek, Piotr; Holdys, Joanna; Kryściak, Jakub; Stanisławski, Daniel

    2013-01-01

    The search for genes with a positive influence on physical fitness is a difficult process. Physical fitness is a trait determined by multiple genes, and its genetic basis is then modified by numerous environmental factors. The present study examines the effects of the polymorphism of creatine kinase (CKM) gene on VO2max – a physiological index of aerobic capacity of high heritability. The study sample consisted of 154 men and 85 women, who were students of the University School of Physical Education in Poznań and athletes practicing various sports, including members of the Polish national team. The study revealed a positive effect of a rare G (NcoI−) allele of the CKM gene on maximal oxygen uptake in Caucasian women practicing sports requiring aerobic and anaerobic exercise metabolism. Also a tendency was noted in individuals with NcoI−/− (GG) and NcoI−/+ (GA) genotypes to reach higher VO2max levels. PMID:24511349

  7. CKM Gene G (Ncoi-) Allele Has a Positive Effect on Maximal Oxygen Uptake in Caucasian Women Practicing Sports Requiring Aerobic and Anaerobic Exercise Metabolism.

    PubMed

    Gronek, Piotr; Holdys, Joanna; Kryściak, Jakub; Stanisławski, Daniel

    2013-12-18

    The search for genes with a positive influence on physical fitness is a difficult process. Physical fitness is a trait determined by multiple genes, and its genetic basis is then modified by numerous environmental factors. The present study examines the effects of the polymorphism of creatine kinase (CKM) gene on VO2max - a physiological index of aerobic capacity of high heritability. The study sample consisted of 154 men and 85 women, who were students of the University School of Physical Education in Poznań and athletes practicing various sports, including members of the Polish national team. The study revealed a positive effect of a rare G (NcoI-) allele of the CKM gene on maximal oxygen uptake in Caucasian women practicing sports requiring aerobic and anaerobic exercise metabolism. Also a tendency was noted in individuals with NcoI-/- (GG) and NcoI-/+ (GA) genotypes to reach higher VO2max levels.

  8. Primary cilia in energy balance signaling and metabolic disorder

    PubMed Central

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-01-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654] PMID:26538252

  9. Experimental ocean acidification alters the allocation of metabolic energy

    PubMed Central

    Pan, T.-C. Francis; Applebaum, Scott L.; Manahan, Donal T.

    2015-01-01

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors. PMID:25825763

  10. Experimental ocean acidification alters the allocation of metabolic energy.

    PubMed

    Pan, T-C Francis; Applebaum, Scott L; Manahan, Donal T

    2015-04-14

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

  11. Changes in protein expression in the salt marsh mussel Geukensia demissa: evidence for a shift from anaerobic to aerobic metabolism during prolonged aerial exposure

    PubMed Central

    Fields, Peter A.; Eurich, Chris; Gao, William L.; Cela, Bekim

    2014-01-01

    During aerial exposure (emersion), most sessile intertidal invertebrates experience cellular stress caused by hypoxia, and the amount and types of hypoxia-induced stress will differ as exposure time increases, likely leading to altered metabolic responses. We examined proteomic responses to increasing emersion times and decreasing recovery (immersion) times in the mussel Geukensia demissa, which occurs in salt marshes along the east coast of North America. Individuals are found above mean tide level, and can be emersed for over 18 h during spring tides. We acclimated mussels to full immersion at 15°C for 4 weeks, and compared changes in gill protein expression between groups of mussels that were continually immersed (control), were emersed for 6 h and immersed during recovery for 18 h (6E/18R), were emersed for 12 h and recovered for 12 h (12E/12R), or were emersed for 18 h with a 6 h recovery (18E/6R). We found clear differences in protein expression patterns among the treatments. Proteins associated with anaerobic fermentation increased in abundance in 6E/18R but not in 12E/12R or 18E/6R. Increases in oxidative stress proteins were most apparent in 12E/12R, and in 18E/6R changes in cytoskeletal protein expression predominated. We conclude that G. demissa alters its strategy for coping with emersion stress over time, relying on anaerobic metabolism for short- to medium-duration exposure, but switching to an air-gaping strategy for long-term exposure, which reduces hypoxia stress but may cause structural damage to gill tissue. PMID:24501137

  12. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism

    PubMed Central

    Weigel, WA; Demuth, DR; Torres-Escobar, A; Juárez-Rodríguez, MD

    2015-01-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment. PMID:25923132

  13. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism.

    PubMed

    Weigel, W A; Demuth, D R; Torres-Escobar, A; Juárez-Rodríguez, M D

    2015-10-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment.

  14. Communication of bone cells with hematopoiesis, immunity and energy metabolism

    PubMed Central

    Asada, Noboru; Sato, Mari; Katayama, Yoshio

    2015-01-01

    The bone contains the bone marrow. The functional communication between bone cells and hematopoiesis has been extensively studied in the past decade or so. Osteolineage cells and their modulators, such as the sympathetic nervous system, macrophages and osteoclasts, form a complex unit to maintain the homeostasis of hematopoiesis, called the ‘microenvironment'. Recently, bone-embedded osteocytes, the sensors of gravity and mechanical stress, have joined the microenvironment, and they are demonstrated to contribute to whole body homeostasis through the control of immunity and energy metabolism. The inter-organ communication orchestrated by the bone is summarized in this article. PMID:26512322

  15. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    SciTech Connect

    Bond, P.L.; Keller, J.; Blackall, L.L.

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  16. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism.

    PubMed

    Yen, Chi-Liang Eric; Nelson, David W; Yen, Mei-I

    2015-03-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation.

  17. Donepezil regulates energy metabolism and favors bone mass accrual.

    PubMed

    Eimar, Hazem; Alebrahim, Sharifa; Manickam, Garthiga; Al-Subaie, Ahmed; Abu-Nada, Lina; Murshed, Monzur; Tamimi, Faleh

    2016-03-01

    The autonomous nervous system regulates bone mass through the sympathetic and parasympathetic arms. The sympathetic nervous system (SNS) favors bone loss whereas the parasympathetic nervous system (PNS) promotes bone mass accrual. Donepezil, a central-acting cholinergic agonist, has been shown to down-regulate SNS and up-regulate PNS signaling tones. Accordingly, we hypothesize that the use of donepezil could have beneficial effects in regulating bone mass. To test our hypothesis, two groups of healthy female mice were treated either with donepezil or saline. Differences in body metabolism and bone mass of the treated groups were compared. Body and visceral fat weights as well as serum leptin level were increased in donepezil-treated mice compared to control, suggesting that donepezil effects on SNS influenced metabolic activity. Donepezil-treated mice had better bone quality than controls due to a decrease in osteoclasts number. These results indicate that donepezil is able to affect whole body energy metabolism and favors bone mass in young female WT mice.

  18. Combined anaerobic digestion and photocatalytic treatment of distillery effluent in fluidized bed reactors focusing on energy conservation.

    PubMed

    Apollo, Seth; Aoyi, Ochieng

    2016-09-01

    Anaerobic digestion (AD) can remove substantial amount of organic load when applied in treating distillery effluent but it is ineffective in colour reduction. Conversely, photodegradation is effective in colour reduction but has high energy requirement. A study on the synergy of a combined AD and ultra violet (UV) photodegradation treatment of distillery effluent was carried out in fluidized bed reactors to evaluate pollution reduction and energy utilization efficiencies. The combined process improved colour removal from 41% to 85% compared to that of AD employed as a stand-alone process. An overall corresponding total organic carbon (TOC) reduction of 83% was achieved. The bioenergy production by the AD step was 14.2 kJ/g total organic carbon (TOC) biodegraded while UV lamp energy consumption was 0.9 kJ/mg TOC, corresponding to up to 100% colour removal. Electrical energy per order analysis for the photodegradation process showed that the bioenergy produced was 20% of that required by the UV lamp to photodegrade 1 m(3) of undiluted pre-AD treated effluent up to 75% colour reduction. It was concluded that a combined AD-UV system for treatment of distillery effluent is effective in organic load removal and can be operated at a reduced cost.

  19. The SCFA Receptor GPR43 and Energy Metabolism.

    PubMed

    Kimura, Ikuo; Inoue, Daisuke; Hirano, Kanako; Tsujimoto, Gozoh

    2014-01-01

    Free fatty acids (FFAs) are essential nutrients and act as signaling molecules in various cellular processes via binding with FFA receptors. Of these receptors, GPR43 is activated by short-chain fatty acids (SCFAs; e.g., acetate, propionate, and butyrate). During feeding, SCFAs are produced by microbial fermentation of dietary fiber in the gut, and these SCFAs become important energy sources for the host. The gut microbiota affects nutrient acquisition and energy regulation of the host and can influence the development of obesity, insulin resistance, and diabetes. Recently, GPR43 has been reported to regulate host energy homeostasis in the gastrointestinal tract and adipose tissues. Hence, GPR43 is also thought to be a potential drug target for metabolic disorders, such as obesity and diabetes. In this review, we summarize the identification, structure, and activities of GPR43, with a focus on host energy regulation, and present an essential overview of our current understanding of its physiological roles in host energy regulation that is mediated by gut microbiota. We also discuss the potential for GPR43 as a therapeutic target.

  20. Regulation of energy metabolism by the skeleton: osteocalcin and beyond.

    PubMed

    Ferron, Mathieu; Lacombe, Julie

    2014-11-01

    The skeleton has recently emerged as an endocrine organ implicated in the regulation of glucose and energy metabolism. This function of bone is mediated, at least in part, by osteocalcin, an osteoblast-derived protein acting as a hormone stimulating insulin sensitivity, insulin secretion and energy expenditure. Osteocalcin secretion and bioactivity is in turn regulated by several hormonal cues including insulin, leptin, the sympathetic nervous system and glucocorticoids. Recent findings support the notion that osteocalcin functions and regulations are conserved between mice and humans. Moreover, studies in mice suggest that osteocalcin could represent a viable therapeutic approach for the treatment of obesity and insulin resistance. In this review, we summarize the current knowledge on osteocalcin functions, its various modes of action and the mechanisms implicated in the control of this hormone.

  1. [Test for bioenergetic progress and specific energy metabolism in isopod crustaceans (Isopoda) of various ecology].

    PubMed

    Kleĭmenov, S Iu; Alekseeva, T A

    2002-01-01

    We studied energy metabolism of terrestrial and cavernicolous isopods and demonstrated much lower standard metabolism in the troglobionts as compared to other Isopoda representatives. The test for bioenergetic progress proved to be applicable for both aromorphosis and katamorphosis. Different patterns of the relationship between energy metabolism and temperature in stenothermal and eurythermal species have been proposed.

  2. Energy metabolism and hindbrain AMPK: regulation by estradiol.

    PubMed

    Briski, Karen P; Ibrahim, Baher A; Tamrakar, Pratistha

    2014-03-01

    Nerve cell energy status is screened within multiple classically defined hypothalamic and hindbrain components of the energy balance control network, including the hindbrain dorsal vagal complex (DVC). Signals of caudal DVC origin have a physiological role in glucostasis, e.g., maintenance of optimal supply of the critical substrate fuel, glucose, through control of motor functions such as fuel consumption and gluco-counterregulatory hormone secretion. A2 noradrenergic neurons are a likely source of these signals as combinatory laser microdissection/high-sensitivity Western blotting reveals expression of multiple biomarkers for metabolic sensing, including adenosine 5'-monophosphate-activated protein kinase (AMPK). Hypoglycemia elicits estradiol-dependent sex differences in A2 AMPK activation as phospho-AMPK (pAMPK) expression is augmented in male and ovariectomized (OVX) female, but not estrogen-replaced, OVX rats. This dichotomy may reflect, in part, estradiol-mediated up-regulation of glycolytic and tricarboxylic acid cycle enzyme expression during hypoglycemia. Our new model for short-term feeding abstinence has physiological relevance to planned (dieting) or unplanned (meal delay) interruption of consumption in modern life, which is negatively correlated with appetite control and obesity, and is useful for investigating how estrogen may mitigate the effects of disrupted fuel acquisition on energy balance via actions within the DVC. Estradiol reduces DVC AMPK activity after local delivery of the AMP mimic, 5-aminoimidazole-4-carboxamide-riboside, or cessation of feeding for 12 h but elevates pAMPK expression when these treatments are combined. These data suggest that estrogen maintains cellular energy stability over periods of suspended fuel acquisition and yet optimizes, by DVC AMPK-dependent mechanisms, counter-regulatory responses to metabolic challenges that occur during short-span feeding abstinence.

  3. Impaired energy metabolism of the taurine‑deficient heart.

    PubMed

    Schaffer, Stephen W; Shimada-Takaura, Kayoko; Jong, Chian Ju; Ito, Takashi; Takahashi, Kyoko

    2016-02-01

    Taurine is a β-amino acid found in high concentrations in excitable tissues, including the heart. A significant reduction in myocardial taurine content leads to the development of a unique dilated, atrophic cardiomyopathy. One of the major functions of taurine in the heart is the regulation of the respiratory chain. Hence, we tested the hypothesis that taurine deficiency-mediated defects in respiratory chain function lead to impaired energy metabolism and reduced ATP generation. We found that while the rate of glycolysis was significantly enhanced in the taurine-deficient heart, glucose oxidation was diminished. The major site of reduced glucose oxidation was pyruvate dehydrogenase, an enzyme whose activity is reduced by the increase in the NADH/NAD+ ratio and by decreased availability of pyruvate for oxidation to acetyl CoA and changes in [Mg2+]i. Also diminished in the taurine-deficient heart was the oxidation of two other precursors of acetyl CoA, endogenous fatty acids and exogenous acetate. In the taurine-deficient heart, impaired citric acid cycle activity decreased both acetate oxidation and endogenous fatty acid oxidation, but reductions in the activity of the mitochondrial transporter, carnitine palmitoyl transferase, appeared to also contribute to the reduction in fatty acid oxidation. These changes diminished the rate of ATP production, causing a decline in the phosphocreatine/ATP ratio, a sign of reduced energy status. The findings support the hypothesis that the taurine-deficient heart is energy starved primarily because of impaired respiratory chain function, an increase in the NADH/NAD+ ratio and diminished long chain fatty acid uptake by the mitochondria. The results suggest that improved energy metabolism contributes to the beneficial effect of taurine therapy in patients suffering from heart failure.

  4. Glutaric acid moderately compromises energy metabolism in rat brain.

    PubMed

    da C Ferreira, Gustavo; Viegas, Carolina M; Schuck, Patrícia F; Latini, Alexandra; Dutra-Filho, Carlos S; Wyse, Angela T S; Wannmacher, Clóvis M D; Vargas, Carmen R; Wajner, Moacir

    2005-12-01

    Glutaric acidemia type I is an inherited metabolic disorder biochemically characterized by tissue accumulation of predominantly glutaric acid (GA). Affected patients present frontotemporal hypotrophy, as well as caudate and putamen injury following acute encephalopathic crises. Considering that the underlying mechanisms of basal ganglia damage in this disorder are poorly known, in the present study we tested the effects of glutaric acid (0.2-5mM) on critical enzyme activities of energy metabolism, namely the respiratory chain complexes I-IV, succinate dehydrogenase and creatine kinase in midbrain of developing rats. Glutaric acid significantly inhibited creatine kinase activity (up to 26%) even at the lowest dose used in the assays (0.2mM). We also observed that CK inhibition was prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of GA was possibly mediated by oxidation of essential thiol groups of the enzyme. In addition, the activities of the respiratory chain complex I-III and of succinate dehydrogenase were also significantly inhibited by 20 and 30%, respectively, at the highest glutaric acid concentration tested (5mM). In contrast, complexes II-III and IV activities of the electron transport chain were not affected by the acid. The effect of glutaric acid on the rate of oxygen consumption in intact mitochondria from the rat cerebrum was also investigated. Glutaric acid (1mM) significantly lowered the respiratory control ratio (state III/state IV) up to 40% in the presence of the respiratory substrates glutamate/malate or succinate. Moreover, state IV respiration linked to NAD and FAD substrates was significantly increased in GA-treated mitochondria while state III was significantly diminished. The results indicate that the major metabolite accumulating in glutaric acidemia type I moderately compromises brain energy metabolism in vitro.

  5. Caloric Restriction and Rapamycin Differentially Alter Energy Metabolism in Yeast.

    PubMed

    Choi, Kyung-Mi; Hong, Seok-Jin; van Deursen, Jan M; Kim, Sooah; Kim, Kyoung Heon; Lee, Cheol-Koo

    2017-03-08

    Rapamycin (RM), a drug that inhibits the mechanistic target of rapamycin (mTOR) pathway and responds to nutrient availability, seemingly mimics the effects of caloric restriction (CR) on healthy life span. However, the extent of the mechanistic overlap between RM and CR remains incompletely understood. Here, we compared the impact of CR and RM on cellular metabolic status. Both regimens maintained intracellular ATP through the chronological aging process and showed enhanced mitochondrial capacity. Comparative transcriptome analysis showed that CR had a stronger impact on global gene expression than RM. We observed a like impact on the metabolome and identified distinct metabolites affected by CR and RM. CR severely reduced the level of energy storage molecules including glycogen and lipid droplets, whereas RM did not. RM boosted the production of enzymes responsible for the breakdown of glycogen and lipid droplets. Collectively, these results provide insights into the distinct energy metabolism mechanisms induced by CR and RM, suggesting that these two anti-aging regimens might extend life span through distinctive pathways.

  6. Follistatin promotes adipocyte differentiation, browning, and energy metabolism.

    PubMed

    Braga, Melissa; Reddy, Srinivasa T; Vergnes, Laurent; Pervin, Shehla; Grijalva, Victor; Stout, David; David, John; Li, Xinmin; Tomasian, Venina; Reid, Christopher B; Norris, Keith C; Devaskar, Sherin U; Reue, Karen; Singh, Rajan

    2014-03-01

    Follistatin (Fst) functions to bind and neutralize the activity of members of the transforming growth factor-β superfamily. Fst has a well-established role in skeletal muscle, but we detected significant Fst expression levels in interscapular brown and subcutaneous white adipose tissue, and further investigated its role in adipocyte biology. Fst expression was induced during adipogenic differentiation of mouse brown preadipocytes and mouse embryonic fibroblasts (MEFs) as well as in cold-induced brown adipose tissue from mice. In differentiated MEFs from Fst KO mice, the induction of brown adipocyte proteins including uncoupling protein 1, PR domain containing 16, and PPAR gamma coactivator-1α was attenuated, but could be rescued by treatment with recombinant FST. Furthermore, Fst enhanced thermogenic gene expression in differentiated mouse brown adipocytes and MEF cultures from both WT and Fst KO groups, suggesting that Fst produced by adipocytes may act in a paracrine manner. Our microarray gene expression profiling of WT and Fst KO MEFs during adipogenic differentiation identified several genes implicated in lipid and energy metabolism that were significantly downregulated in Fst KO MEFs. Furthermore, Fst treatment significantly increases cellular respiration in Fst-deficient cells. Our results implicate a novel role of Fst in the induction of brown adipocyte character and regulation of energy metabolism.

  7. Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study.

    PubMed

    Cano, R; Nielfa, A; Fdz-Polanco, M

    2014-09-01

    An economic assessment of thermal hydrolysis as a pretreatment to anaerobic digestion has been achieved to evaluate its implementation in full-scale plants. Six different solid wastes have been studied, among them municipal solid waste (MSW). Thermal hydrolysis has been tested with batch lab-scale tests, from which an energy and economic assessment of three scenarios is performed: with and without energy integration (recovering heat to produce steam in a cogeneration plant), finally including the digestate management costs. Thermal hydrolysis has lead to an increase of the methane productions (up to 50%) and kinetics parameters (even double). The study has determined that a proper energy integration design could lead to important economic savings (5 €/t) and thermal hydrolysis can enhance up to 40% the incomes of the digestion plant, even doubling them when digestate management costs are considered. In a full-scale MSW treatment plant (30,000 t/year), thermal hydrolysis would provide almost 0.5 M€/year net benefits.

  8. Effect of energy grass on methane production and heavy metal fractionation during anaerobic digestion of sewage sludge.

    PubMed

    Zhang, Min; Yang, Changming; Jing, Yachao; Li, Jianhua

    2016-12-01

    Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas as renewable energy. The relatively low organic matter content and high heavy metal concentrations in sewage sludge have severely restricted the application and development of AD technology in China. In this study, the effect of energy grass (Pennisetum alopecuroides) addition on methane production and heavy metal fractionation during the AD of sewage sludge was evaluated. Methane production was enhanced by 11.2% by the addition of P. alopecuroides. The addition of P. alopecuroides significantly reduced the percentages of the water-soluble and exchangeable fractions of the target heavy metals in the sewage sludge after AD, and the dominant species were concentrated in Fe-Mn oxide-bound and organic- and sulfide-bound fractions of the digested sludge. The addition of P. alopecuroides at a dosage of 0.3kg significantly (P<0.05) decreased the mobility factors (MFs) of the target heavy metals after AD. In particular, the MFs of Cr and Ni were 61% and 32% lower, respectively, relative to the control. The increase in the added dose did not necessarily lead to further decreases in the MFs of the heavy metals. These results demonstrate that an appropriate addition of energy grass could enhance AD, decrease the mobility of heavy metals and promote heavy metal stabilization in sewage sludge during AD, which is beneficial for the subsequent land application of sewage sludge.

  9. Modelling energy efficiency of an integrated anaerobic digestion and photodegradation of distillery effluent using response surface methodology.

    PubMed

    Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

    2016-10-01

    Anaerobic digestion (AD) is efficient in organic load removal and bioenergy recovery when applied in treating distillery effluent; however, it is ineffective in colour reduction. In contrast, ultraviolet (UV) photodegradation post-treatment for the AD-treated distillery effluent is effective in colour reduction but has high energy requirement. The effects of operating parameters on bioenergy production and energy demand of photodegradation were modelled using response surface methodology (RSM) with a view of developing a sustainable process in which the biological step could supply energy to the energy-intensive photodegradation step. The organic loading rate (OLRAD) and hydraulic retention time (HRTAD) of the initial biological step were the variables investigated. It was found that the initial biological step removed about 90% of COD and only about 50% colour while photodegradation post-treatment removed 98% of the remaining colour. Maximum bioenergy production of 180.5 kWh/m(3) was achieved. Energy demand of the UV lamp was lowest at low OLRAD irrespective of HRTAD, with values ranging between 87 and 496 kWh/m(3). The bioenergy produced formed 93% of the UV lamp energy demand when the system was operated at OLRAD of 3 kg COD/m(3) d and HRT of 20 days. The presumed carbon dioxide emission reduction when electricity from bioenergy was used to power the UV lamp was 28.8 kg CO2 e/m(3), which could reduce carbon emission by 31% compared to when electricity from the grid was used, leading to environmental conservation.

  10. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease.

    PubMed

    McHill, A W; Wright, K P

    2017-02-01

    Weight gain, obesity and diabetes have reached alarming levels in the developed world. Traditional risk factors such as over-eating, poor nutritional choices and lack of exercise cannot fully account for the high prevalence of metabolic disease. This review paper examines the scientific evidence on two novel risk factors that contribute to dys-regulated metabolic physiology: sleep disruption and circadian misalignment. Specifically, fundamental relationships between energy metabolism and sleep and circadian rhythms and the impact of sleep and circadian disruption on metabolic physiology are examined. Millions of individuals worldwide do not obtain sufficient sleep for healthy metabolic function, and many participate in shift work and social activities at times when the internal physiological clock is promoting sleep. These behaviours predispose an individual for poor metabolic health by promoting excess caloric intake in response to reduced sleep, food intake at internal biological times when metabolic physiology is not prepared, decreased energy expenditure when wakefulness and sleep are initiated at incorrect internal biological times, and disrupted glucose metabolism during short sleep and circadian misalignment. In addition to the traditional risk factors of poor diet and exercise, disturbed sleep and circadian rhythms represent modifiable risk factors for prevention and treatment of metabolic disease and for promotion of healthy metabolism.

  11. Ghrelin O-acyltransferase (GOAT) and energy metabolism.

    PubMed

    Li, Ziru; Mulholland, Michael; Zhang, Weizhen

    2016-03-01

    Ghrelin O-acyltransferase (GOAT), a member of MBOATs family, is essential for octanoylation of ghrelin, which is required for active ghrelin to bind with and activate its receptor. GOAT is expressed mainly in the stomach, pancreas and hypothalamus. Levels of GOAT are altered by energy status. GOAT contains 11 transmembrane helices and one reentrant loop. Its invariant residue His-338 and conserved Asn-307 are located in the endoplasmic reticulum lumen and cytosol respectively. GOAT contributes to the regulation of food intake and energy expenditure, as well as glucose and lipids homeostasis. Deletion of GOAT blocks the acylation of ghrelin leading to subsequent impairment in energy homeostasis and survival when mice are challenged with high energy diet or severe caloric restriction. GO-CoA-Tat, a peptide GOAT inhibitor, attenuates acyl-ghrelin production and prevents weight gain induced by a medium-chain triglycerides-rich high fat diet. Further, GO-CoA-Tat increases glucose- induced insulin secretion. Overall, inhibition of GOAT is a novel strategy for treatment of obesity and related metabolic disorders.

  12. Triheptanoin improves brain energy metabolism in patients with Huntington disease

    PubMed Central

    Adanyeguh, Isaac Mawusi; Rinaldi, Daisy; Henry, Pierre-Gilles; Caillet, Samantha; Valabregue, Romain; Durr, Alexandra

    2015-01-01

    Objective: Based on our previous work in Huntington disease (HD) showing improved energy metabolism in muscle by providing substrates to the Krebs cycle, we wished to obtain a proof-of-concept of the therapeutic benefit of triheptanoin using a functional biomarker of brain energy metabolism validated in HD. Methods: We performed an open-label study using 31P brain magnetic resonance spectroscopy (MRS) to measure the levels of phosphocreatine (PCr) and inorganic phosphate (Pi) before (rest), during (activation), and after (recovery) a visual stimulus. We performed 31P brain MRS in 10 patients at an early stage of HD and 13 controls. Patients with HD were then treated for 1 month with triheptanoin after which they returned for follow-up including 31P brain MRS scan. Results: At baseline, we confirmed an increase in Pi/PCr ratio during brain activation in controls—reflecting increased adenosine triphosphate synthesis—followed by a return to baseline levels during recovery (p = 0.013). In patients with HD, we validated the existence of an abnormal brain energy profile as previously reported. After 1 month, this profile remained abnormal in patients with HD who did not receive treatment. Conversely, the MRS profile was improved in patients with HD treated with triheptanoin for 1 month with the restoration of an increased Pi/PCr ratio during visual stimulation (p = 0.005). Conclusion: This study suggests that triheptanoin is able to correct the bioenergetic profile in the brain of patients with HD at an early stage of the disease. Classification of evidence: This study provides Class III evidence that, for patients with HD, treatment with triheptanoin for 1 month restores an increased MRS Pi/PCr ratio during visual stimulation. PMID:25568297

  13. The effect of the uremic toxin cyanate (CNO⁻) on anaerobic cysteine metabolism and oxidative processes in the rat liver: a protective effect of lipoate.

    PubMed

    Sokołowska, Maria; Niedzielska, Ewa; Iciek, Małgorzata; Bilska, Anna; Lorenc-Koci, Elżbieta; Włodek, Lidia

    2011-07-01

    Chronic renal failure (CRF) patients have an increased plasma level of urea, which can be a source of cyanate. This compound can cause protein carbamoylation thereby changing biological activity of proteins. Therefore, in renal failure patients, cyanate can disturb metabolism and functioning of the liver. This work presents studies demonstrating that the treatment of rats with cyanate alone causes the following changes in the liver: (1) inhibition of rhodanese (TST), cystathionase (CST) and 3-mercaptopyruvate sulfotransferase (MPST) activities, (2) decrease in sulfane sulfur level (S*), (3) lowering of nonprotein sulfhydryl groups (NPSH) group level, and (4) enhancement of prooxidant processes (rise in reactive oxygen species (ROS) and malondialdehyde (MDA) level). This indicates that cyanate inhibits anaerobic cysteine metabolism and shows prooxidant action in the liver. Out of the above-mentioned changes, lipoate administered with cyanate jointly was able to correct MDA, ROS and NPSH levels, and TST activity. It had no significant effect on MPST and CST activities. It indicates that lipoate can prevent prooxidant cyanate action and cyanate-induced TST inhibition. These observations can be promising for CRF patients since lipoate can play a dual role in these patients as an efficient antioxidant defense and a protection against cyanate and cyanide toxicity.

  14. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion

    SciTech Connect

    Sanders, R.W.; Porter, K.G.

    1986-07-01

    Inhibitors of eucaryotes (cycloheximide and amphotericin B) and procaryotes (penicillin and chloramphenical) were used to estimate bacterivory and bacterial production in a eutrophic lake. Bacterial production appeared to be slightly greater than protozoan grazing in the aerobic waters of Lake Oglethorpe. Use of penicillin and cycloheximide yielded inconsistent results in anaerobic water and in aerobic water when bacterial production was low. Production measured by inhibiting eucaryotes with cycloheximide did not always agree with (/sup 3/H)thymidine estimates or differential filtration methods. Laboratory experiments showed that several common freshwater protozoans continued to swim and ingest bacterium-size latex beads in the presence of the eucaryote inhibitor. Penicillin also affected grazing rates of some ciliates. The authors recommended that caution and a corroborating method be used when estimating ecologically important parameters with specific inhibitors.

  15. A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism.

    PubMed

    Killiny, Nabil; Hijaz, Faraj; Ebert, Timothy A; Rogers, Michael E

    2017-03-01

    Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. "Candidatus Liberibacter asiaticus" (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides.IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular and biochemical

  16. The Role of Energy Metabolism in Cutaneous Sulfur Mustard Injury

    DTIC Science & Technology

    2006-11-01

    the initial insult, as several key metabolic enzymes are regulated by the NAD(P)H / NAD(P)+ ratio. 2.6 Effects of HD on Oxidative Metabolism ... Glucose Metabolism: Oxidative metabolism of glucose via the Krebs cycle was determined as the production of 14CO2 from 6-14C-glucose (Martens, 1998

  17. Energetics of end product excretion in anaerobic bacteria and the metabolism of fatty acids by Syntrophomonas wolfei: Progress report, March 15, 1985--June 30, 1988

    SciTech Connect

    McInerney, M.J.

    1988-01-01

    We developed methods to physically separate cells of the anaerobic, fatty acid degrade, Syntrophomonas wolfei, from cells of the hydrogen user by Percoll gradient centrifugation and to selectively lyse S. wolfei cells using lysozyme. These methods allowed the study of the physiology of S. wolfei without significant contamination. Fatty acids were degraded by the B-oxidation pathway using a coenzyme A (CoA) transferase activity to activate the fatty acid and substrate- level phosphorylation reactions to synthesize. The substrate specificity of the CoA transferase activity in the pure culture of S. wolfei differed from that found in the coculture suggesting that the ability to use crotonate resulted from an alteration of this enzyme. S. wolfei grown alone degraded crotonate in a manner similar to that of other crotonate-fermenting anaerobes, but the molar growth yields of S. wolfei were 2 to 3 times higher than those organisms. This suggests that the reduction of crotonyl-CoA to butyryl-CoA is energy yielding. S. wolfei contained a c-type cytochrome which may be involved in this reaction. S. wolfei synthesized large amounts of the storage polymer, poly-B-hydroxybutyrate.

  18. Sleep Apnea and Fatty Liver Are Coupled Via Energy Metabolism

    PubMed Central

    Arısoy, Ahmet; Sertoğullarından, Bunyamin; Ekin, Selami; Özgökçe, Mesut; Bulut, Mehmet Deniz; Huyut, Mehmet Tahir; Ölmez, Şehmus; Turan, Mahfuz

    2016-01-01

    Background Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder characterized by intermittent hypoxia. Non-alcoholic fatty liver disease is the most common cause of chronic liver disease worldwide. We aimed to evaluate the relationship between OSA and fatty liver. Material/Methods We enrolled 176 subjects to this study who underwent polysomnography (PSG) for suspected OSA. The control group included 42 simple snoring subjects. PSG, biochemical tests, and ultrasonographic examination were performed all subjects. Results The simple snoring and mild, moderate, and severe OSA groups included 18/42 (42.86%), 33/52 (63.5%), 27/34 (79.4%), and 28/48 (79.2%) subjects with hepatosteatosis, respectively. There were significant differences in hepatosteatosis and hepatosteatosis grade between the simple snoring and the moderate and severe OSA groups. Logistic regression analysis showed that BMI and average desaturation were independently and significantly related to hepatic steatosis. Conclusions Our study shows that BMI and the average desaturation contribute to non-alcoholic fatty liver in subjects with OSA. In this regard, sleep apnea may trigger metabolic mitochondrial energy associated processes thereby altering lipid metabolism and obesity as well. PMID:26993969

  19. [Endocannabinoid system and energy metabolism: physiology and pathophysiology].

    PubMed

    Pagotto, Uberto; Vicennati, Valentina; Pasquali, Renato

    2008-04-01

    The ability of the endocannabinoid system to control appetite, food intake and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system has recently been shown to control several metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the skeletal muscles and the endocrine pancreas. The relevance of the system is further strengthened by the notion that visceral obesity seems to be a condition in which an overactivation of the endocannabinoid system occurs, therefore drugs interfering with this overactivation by blocking CB1 receptor are considered as valuable candidates for the treatment of obesity and related cardiometabolic risk factors.

  20. Aldehyde dehydrogenase is used by cancer cells for energy metabolism

    PubMed Central

    Kang, Joon Hee; Lee, Seon-Hyeong; Hong, Dongwan; Lee, Jae-Seon; Ahn, Hee-Sung; Ahn, Ju-Hyun; Seong, Tae Wha; Lee, Chang-Hun; Jang, Hyonchol; Hong, Kyeong Man; Lee, Cheolju; Lee, Jae-Ho; Kim, Soo-Youl

    2016-01-01

    We found that non-small-cell lung cancer (NSCLC) cells express high levels of multiple aldehyde dehydrogenase (ALDH) isoforms via an informatics analysis of metabolic enzymes in NSCLC and immunohistochemical staining of NSCLC clinical tumor samples. Using a multiple reaction-monitoring mass spectrometry analysis, we found that multiple ALDH isozymes were generally abundant in NSCLC cells compared with their levels in normal IMR-90 human lung cells. As a result of the catalytic reaction mediated by ALDH, NADH is produced as a by-product from the conversion of aldehyde to carboxylic acid. We hypothesized that the NADH produced by ALDH may be a reliable energy source for ATP production in NSCLC. This study revealed that NADH production by ALDH contributes significantly to ATP production in NSCLC. Furthermore, gossypol, a pan-ALDH inhibitor, markedly reduced the level of ATP. Gossypol combined with phenformin synergistically reduced the ATP levels, which efficiently induced cell death following cell cycle arrest. PMID:27885254

  1. Stimulus specific changes of energy metabolism in hypertrophied heart.

    PubMed

    Rimbaud, S; Sanchez, H; Garnier, A; Fortin, D; Bigard, X; Veksler, V; Ventura-Clapier, R

    2009-06-01

    Cardiac energy metabolism is a determinant of the response to hypertrophic stimuli. To investigate how it responds to physiological or pathological stimuli, we compared the energetic status in models of hypertrophy induced by physiological stimuli (pregnancy or treadmill running) and by pathological stimulus (spontaneously hypertensive rats, SHR) in 15 week-old female rats, leading to a 10% cardiac hypertrophy. Late stage of compensated hypertrophy was also studied in 25 week-old SHR (35% of hypertrophy). Markers of cardiac remodelling did not follow a unique pattern of expression: in trained rats, only ANF was increased; in gravid rats, calcineurin activation and BNP expression were reduced while beta-MHC expression was enhanced; all markers were clearly up-regulated in 25 week-old SHR. Respiration of permeabilized fibers revealed a 17% increase in oxidative capacity in trained rats only. Mitochondrial enzyme activities, expression of the master regulator PGC-1alpha and mitochondrial transcription factor A, and content of mitochondrial DNA were not consistently changed, suggesting that compensated hypertrophy does not involve alterations of mitochondrial biogenesis. Mitochondrial fatty acid utilization tended to increase in trained rats and decreased by 14% in 15 week-old SHR. Expression of markers of lipid oxidation, PPARalpha and its down-stream targets MCAD and CPTI, was up-regulated after training and tended to decrease in gravid and 15 week-old SHR rats. Taken together these results show that there is no univocal pattern of cardiac adaptation in response to physiological or pathological hypertrophic stimuli, suggesting that other factors could play a role in determining adaptation of energy metabolism to increased workload.

  2. Actions of juglone on energy metabolism in the rat liver

    SciTech Connect

    Saling, Simoni Cristina; Comar, Jurandir Fernando; Mito, Marcio Shigueaki; Peralta, Rosane Marina; Bracht, Adelar

    2011-12-15

    Juglone is a phenolic compound used in popular medicine as a phytotherapic to treat inflammatory and infectious diseases. However, it also acts as an uncoupler of oxidative phosphorylation in isolated liver mitochondria and, thus, may interfere with the hepatic energy metabolism. The purpose of this work was to evaluate the effect of juglone on several metabolic parameters in the isolated perfused rat liver. Juglone, in the concentration range of 5 to 50 {mu}M, stimulated glycogenolysis, glycolysis and oxygen uptake. Gluconeogenesis from both lactate and alanine was inhibited with half-maximal effects at the concentrations of 14.9 and 15.7 {mu}M, respectively. The overall alanine transformation was increased by juglone, as indicated by the stimulated release of ammonia, urea, L-glutamate, lactate and pyruvate. A great increase (9-fold) in the tissue content of {alpha}-ketoglutarate was found, without a similar change in the L-glutamate content. The tissue contents of ATP were decreased, but those of ADP and AMP were increased. Experiments with isolated mitochondria fully confirmed previous notions about the uncoupling action of juglone. It can be concluded that juglone is active on metabolism at relatively low concentrations. In this particular it resembles more closely the classical uncoupler 2,4-dinitrophenol. Ingestion of high doses of juglone, thus, presents the same risks as the ingestion of 2,4-dinitrophenol which comprise excessive compromising of ATP production, hyperthermia and even death. Low doses, i.e., moderate consumption of natural products containing juglone, however, could be beneficial to health if one considers recent reports about the consequences of chronic mild uncoupling. -- Highlights: Black-Right-Pointing-Pointer We investigated how juglone acts on liver metabolism. Black-Right-Pointing-Pointer The actions on hepatic gluconeogenesis, glycolysis and ureogenesis. Black-Right-Pointing-Pointer Juglone stimulates glycolysis and ureagenesis and

  3. Effects of ingesting JavaFit Energy Extreme functional coffee on aerobic and anaerobic fitness markers in recreationally-active coffee consumers.

    PubMed

    Roberts, Michael D; Taylor, Lemuel W; Wismann, Jennifer A; Wilborn, Colin D; Kreider, Richard B; Willoughby, Darryn S

    2007-12-08

    The purpose of this study was to examine the effects of ingesting JavaFittrade mark Energy Extreme (JEE) on aerobic and anaerobic performance measures in recreationally-active male and female coffee drinkers. Five male (27.6 +/- 4.2 yrs, 93.2 +/- 11.7 kg, 181.6 +/- 6.9 cm) and five female (29 +/- 4.6 yrs, 61.5 +/- 9.2 kg, 167.6 +/- 6.9 cm) regular coffee drinkers (i.e., 223.9 +/- 62.7 mg.d-1 of caffeine) participated in this study. In a cross-over, randomized design, participants performed a baseline (BASELINE) graded treadmill test (GXT) for peak VO2 assessment and a Wingate test for peak power. Approximately 3-4 d following BASELINE testing, participants returned to the lab for the first trial and ingested 354 ml of either JEE or decaffeinated coffee (DECAF), after which they performed a GXT and Wingate test. Criterion measures during the GXT included an assessment of peakVO2 at maximal exercise, as well as VO2 at 3 minutes and 10 minutes post-exercise. Additionally, time-to-exhaustion (TTE), maximal RPE, mean heart rate (HR), mean systolic pressure (SBP), and mean diastolic blood pressure (DBP) were measured during each condition. Criterion measures for the Wingate included mean HR, SBP, DBP, peak power, and time to peak power (TTP). Participants then returned to the lab approximately one week later to perform the second trial under the same conditions as the first, except consuming the remaining coffee. Data were analyzed using a one way ANOVA (p < 0.05). Our results indicate that JEE significantly increased VO2 at 3 minutes post-exercise when compared to BASELINE (p = 0.04) and DECAF (p = 0.02) values, which may be beneficial in enhancing post-exercise fat metabolism.

  4. Effects of ingesting JavaFit Energy Extreme functional coffee on aerobic and anaerobic fitness markers in recreationally-active coffee consumers

    PubMed Central

    Roberts, Michael D; Taylor, Lemuel W; Wismann, Jennifer A; Wilborn, Colin D; Kreider, Richard B; Willoughby, Darryn S

    2007-01-01

    The purpose of this study was to examine the effects of ingesting JavaFit™ Energy Extreme (JEE) on aerobic and anaerobic performance measures in recreationally-active male and female coffee drinkers. Five male (27.6 ± 4.2 yrs, 93.2 ± 11.7 kg, 181.6 ± 6.9 cm) and five female (29 ± 4.6 yrs, 61.5 ± 9.2 kg, 167.6 ± 6.9 cm) regular coffee drinkers (i.e., 223.9 ± 62.7 mg·d-1 of caffeine) participated in this study. In a cross-over, randomized design, participants performed a baseline (BASELINE) graded treadmill test (GXT) for peak VO2 assessment and a Wingate test for peak power. Approximately 3–4 d following BASELINE testing, participants returned to the lab for the first trial and ingested 354 ml of either JEE or decaffeinated coffee (DECAF), after which they performed a GXT and Wingate test. Criterion measures during the GXT included an assessment of peakVO2 at maximal exercise, as well as VO2 at 3 minutes and 10 minutes post-exercise. Additionally, time-to-exhaustion (TTE), maximal RPE, mean heart rate (HR), mean systolic pressure (SBP), and mean diastolic blood pressure (DBP) were measured during each condition. Criterion measures for the Wingate included mean HR, SBP, DBP, peak power, and time to peak power (TTP). Participants then returned to the lab approximately one week later to perform the second trial under the same conditions as the first, except consuming the remaining coffee. Data were analyzed using a one way ANOVA (p < 0.05). Our results indicate that JEE significantly increased VO2 at 3 minutes post-exercise when compared to BASELINE (p = 0.04) and DECAF (p = 0.02) values, which may be beneficial in enhancing post-exercise fat metabolism. PMID:18067677

  5. Anaerobic threshold measurements of elite oarsmen.

    PubMed

    Mickelson, T C; Hagerman, F C

    1982-01-01

    Anaerobic threshold (AT) and Vo2max were determined by automated analysis for 25 members of the 1980 U.S. Olympic Rowing Team during a progressive rowing ergometer exercise to exhaustion. Heart rates and power outputs were also measured to gauge severity of the exercise and to compare with metabolic data. Power increments of 27 W each min were achieved by progressively increasing the brake weight resistance on the ergometer while maintaining a stroke rate of 28-32 strokes/min and spinning the ergometer flywheel at 550 rpm. Anaerobic threshold measurements were determined by observing the onset of the non-linear relationship between Vo2 and VE-Vco2; plots of delta FEO2 and FECO2 were also utilized to confirm recorded AT's. A mean AT of 83% of Vo2max attests to the high aerobic capacity of oarsmen and supports previous research conducted with these subjects. Power output data indicated that 72% of total power is generated at AT; this substantiates previous energy cost data recorded during simulated rowing during which work was 70% aerobic and 30% anaerobic. High levels of anaerobic thresholds among oarsmen are attributed to the specific nature of training regimens that increase oxidative capacity of muscle fibers and significantly improve the cardiorespiratory transport system. Measurement of heart rate at AT has provided coaches and athletes an objective method of determining the intensity of training sessions.

  6. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen

    USGS Publications Warehouse

    Kiene, R.P.; Oremland, Ronald S.; Catena, Anthony; Miller, Laurence G.; Capone, D.G.

    1986-01-01

    Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDS, or MSH added to sediments. However, when DMS was added at ∼2-μM levels as [14C]DMS, metabolism by sediments resulted in a 14CH4/14CO2 ratio of only 0.06. Addition of molybdate increased the ratio to 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block 14CO2 production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a “noncompetitive” substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [14C]-DMS to yield a 14CH4/14CO2 ratio of ∼2.8. Reduced methylated sulfur compounds represent a new class of substrates for methanogens and may be potential precursors of methane in a variety of aquatic habitats.

  7. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen

    SciTech Connect

    Kiene, R.P.; Oremland, R.S.; Catena, A.; Miller, L.G.; Capone, A.G.

    1986-11-01

    Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDs, or MSH added to sediments. However, when DMS was added at approx.2-3=M levels as (/sup 14/C)DMS, metabolism by sediments resulted in a /sup 14/CH/sub 4///sup 14/CO/sub 2/ ratio of only 0.06. Addition of molybdate increased the ratio of 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block /sup 14/CO/sub 2/ production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a noncompetitive substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized (/sup 14/C)-DMS to yield a /sup 14/CH/sub 4///sup 14/CO/sub 2/ ratio of approx. 2.8.

  8. Standard Gibbs Energy of Metabolic Reactions: I. Hexokinase Reaction.

    PubMed

    Meurer, Florian; Bobrownik, Maria; Sadowski, Gabriele; Held, Christoph

    2016-10-11

    The standard Gibbs energy of reaction enables calculation of the driving force of a (bio)chemical reaction. Gibbs energies of reaction are required in thermodynamic approaches to determine fluxes as well as single reaction conversions of metabolic bioreactions. The hexokinase reaction (phosphorylation of glucose) is the entrance step of glycolysis, and thus its standard Gibbs energy of reaction (Δ(R)g°) is of great impact. Δ(R)g° is accessible from equilibrium measurements, and the very small concentrations of the reacting agents cause usually high error bars in data reduction steps. Even worse, works from literature do not account for the nonideal behavior of the reacting agents (activity coefficients were assumed to be unity); thus published Δ(R)g° values are not standard data. Consistent treatment of activity coefficients of reacting agents is crucial for the accurate determination of standard Gibbs energy from equilibrium measurements. In this work, equilibrium molalities of hexokinase reaction were measured with an enzyme kit. These results were combined with reacting agents' activity coefficients obtained with the thermodynamic model ePC-SAFT. Pure-component parameters for adenosine triphosphate (ATP) and adenosine diphosphate (ADP) were fitted to experimental osmotic coefficients (water + Na2ATP, water + NaADP). Δ(R)g° of the hexokinase reaction at 298.15 K and pH 7 was found to be -17.83 ± 0.52 kJ·mol(-1). This value was compared with experimental literature data; very good agreement between the different Δ(R)g° values was obtained by accounting for pH, pMg, and the activity coefficients of the reacting agents.

  9. MudPIT Profiling Reveals a Link between Anaerobic Metabolism and the Alkaline Adaptive Response of Listeria monocytogenes EGD-e

    PubMed Central

    Nilsson, Rolf E.; Ross, Tom; Bowman, John P.; Britz, Margaret L.

    2013-01-01

    Listeria monocytogenes is a foodborne human pathogen capable of causing life-threatening disease in susceptible populations. Previous proteomic analysis we performed demonstrated that different strains of L. monocytogenes initiate a stringent response when subjected to alkaline growth conditions. Here, using multidimensional protein identification technology (MudPIT), we show that in L. monocytogenes EGD-e this response involves an energy shift to anaerobic pathways in response to the extracellular pH environment. Importantly we show that this supports a reduction in relative lag time following an abrupt transition to low oxygen tension culture conditions. This has important implications for the packaging of fresh and ready-to-eat foods under reduced oxygen conditions in environments where potential exists for alkaline adaptation. PMID:23342094

  10. Variation in energy available to populations of subsurface anaerobes in response to geological carbon storage.

    PubMed

    Kirk, Matthew F

    2011-08-01

    Microorganisms can strongly influence the chemical and physical properties of the subsurface. Changes in microbial activity caused by geological CO(2) storage, therefore, have the potential to influence the capacity, injectivity, and integrity of CO(2) storage reservoirs and ultimately the environmental impact of CO(2) injection. This analysis uses free energy calculations to examine variation in energy available to Fe(III) and SO(4)(2-) reducers and methanogens because of changes in the bulk composition of brine and shallow groundwater following subsurface CO(2) injection. Calculations were performed using data from two field experiments, the Frio Formation experiment and an experiment at the Zero Emission Research and Technology test site. Energy available for Fe(III) reduction increased significantly during CO(2) injection in both experiments, largely because of a decrease in pH from near-neutral levels to just below 6. Energy available to SO(4)(2-) reducers and methanogens varied little. These changes can lead to a greater rate of microbial Fe(III) reduction following subsurface CO(2) injection in reservoirs where Fe(III) oxides or oxyhydroxides are available and the rate of Fe(III) reduction is limited by energy available prior to injection.

  11. Human muscle net K(+) release during exercise is unaffected by elevated anaerobic metabolism, but reduced after prolonged acclimatization to 4,100 m.

    PubMed

    Nordsborg, Nikolai B; Calbet, José A L; Sander, Mikael; van Hall, Gerrit; Juel, Carsten; Saltin, Bengt; Lundby, Carsten

    2010-07-01

    It was investigated whether skeletal muscle K(+) release is linked to the degree of anaerobic energy production. Six subjects performed an incremental bicycle exercise test in normoxic and hypoxic conditions prior to and after 2 and 8 wk of acclimatization to 4,100 m. The highest workload completed by all subjects in all trials was 260 W. With acute hypoxic exposure prior to acclimatization, venous plasma [K(+)] was lower (P < 0.05) in normoxia (4.9 +/- 0.1 mM) than hypoxia (5.2 +/- 0.2 mM) at 260 W, but similar at exhaustion, which occurred at 400 +/- 9 W and 307 +/- 7 W (P < 0.05), respectively. At the same absolute exercise intensity, leg net K(+) release was unaffected by hypoxic exposure independent of acclimatization. After 8 wk of acclimatization, no difference existed in venous plasma [K(+)] between the normoxic and hypoxic trial, either at submaximal intensities or at exhaustion (360 +/- 14 W vs. 313 +/- 8 W; P < 0.05). At the same absolute exercise intensity, leg net K(+) release was less (P < 0.001) than prior to acclimatization and reached negative values in both hypoxic and normoxic conditions after acclimatization. Moreover, the reduction in plasma volume during exercise relative to rest was less (P < 0.01) in normoxic than hypoxic conditions, irrespective of the degree of acclimatization (at 260 W prior to acclimatization: -4.9 +/- 0.8% in normoxia and -10.0 +/- 0.4% in hypoxia). It is concluded that leg net K(+) release is unrelated to anaerobic energy production and that acclimatization reduces leg net K(+) release during exercise.

  12. Growth states of catalytic reaction networks exhibiting energy metabolism

    NASA Astrophysics Data System (ADS)

    Kondo, Yohei; Kaneko, Kunihiko

    2011-07-01

    All cells derive nutrition by absorbing some chemical and energy resources from the environment; these resources are used by the cells to reproduce the chemicals within them, which in turn leads to an increase in their volume. In this study we introduce a protocell model exhibiting catalytic reaction dynamics, energy metabolism, and cell growth. Results of extensive simulations of this model show the existence of four phases with regard to the rates of both the influx of resources and cell growth. These phases include an active phase with high influx and high growth rates, an inefficient phase with high influx but low growth rates, a quasistatic phase with low influx and low growth rates, and a death phase with negative growth rate. A mean field model well explains the transition among these phases as bifurcations. The statistical distribution of the active phase is characterized by a power law, and that of the inefficient phase is characterized by a nearly equilibrium distribution. We also discuss the relevance of the results of this study to distinct states in the existing cells.

  13. The plasma membrane as a capacitor for energy and metabolism

    PubMed Central

    Ray, Supriyo; Kassan, Adam; Busija, Anna R.; Rangamani, Padmini

    2016-01-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as “capacitors for energy and metabolism.” Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  14. Metabolic energy from arsenite oxidation in Alcaligenes faecalis

    NASA Astrophysics Data System (ADS)

    Anderson, G. L.; Love, M.; Zeider, B. K.

    2003-05-01

    The aerobic soil bacterium, Alcaligenes faecalis, survives in cultures containing greater than 10 g/L of aqueous arsenic. Toleration of arsenite occurs by the enzymatic oxidation of arsenite (As^III), to the less toxic arsenate (As^V). In defined media, the bacterium grows faster in the presence of arsenite than in its absence. This suggests that the bacterium uses the redox potential of arsenite oxidation as metabolic energy. The oxidation occurs via periplasmic arsenite oxidase, azurin, and cytochrome c [11] which presumably pass electron equivalents through an electron transport chain involving cytochrome c oxidase aud oxygen as the terminal electron acceptor. The associated proton translocation would allow synthesis of ATP and provide a useful means of harnessing the redox potential of arsenite oxidation. Arsenite and arsenate assays of the media during bacterial growth indicate that arsenite is depleted during the exponential growth phase and occurs concomitantly with the expression of arsenite oxidase. These results suggest that arsenite is detoxified to arsenate during bacterial growth and are inconsistent with previous reported interpretations of growth data. Alcaligenes faecalis is dependent on organic carbon sources and is therefore not chemolithoautotrophic. The relationship between succinate and arsenite utilisation provides evidence for the use of arsenite as a supplemental energy source. Because Alcaligenes faecalis not only tolerates, but thrives, in very high concentrations of arsenic has important implications in bioremediation of environments contaminated by aqueous arsenic.

  15. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    PubMed

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  16. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects.

    PubMed

    Martin, Francois-Pierre J; Rezzi, Serge; Peré-Trepat, Emma; Kamlage, Beate; Collino, Sebastiano; Leibold, Edgar; Kastler, Jürgen; Rein, Dietrich; Fay, Laurent B; Kochhar, Sunil

    2009-12-01

    Dietary preferences influence basal human metabolism and gut microbiome activity that in turn may have long-term health consequences. The present study reports the metabolic responses of free living subjects to a daily consumption of 40 g of dark chocolate for up to 14 days. A clinical trial was performed on a population of 30 human subjects, who were classified in low and high anxiety traits using validated psychological questionnaires. Biological fluids (urine and blood plasma) were collected during 3 test days at the beginning, midtime and at the end of a 2 week study. NMR and MS-based metabonomics were employed to study global changes in metabolism due to the chocolate consumption. Human subjects with higher anxiety trait showed a distinct metabolic profile indicative of a different energy homeostasis (lactate, citrate, succinate, trans-aconitate, urea, proline), hormonal metabolism (adrenaline, DOPA, 3-methoxy-tyrosine) and gut microbial activity (methylamines, p-cresol sulfate, hippurate). Dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, beta-alanine) and gut microbial activities (hippurate and p-cresol sulfate). The study provides strong evidence that a daily consumption of 40 g of dark chocolate during a period of 2 weeks is sufficient to modify the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism.

  17. Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion.

    PubMed

    Corneli, Elisa; Dragoni, Federico; Adessi, Alessandra; De Philippis, Roberto; Bonari, Enrico; Ragaglini, Giorgio

    2016-07-01

    Aim of this study was to evaluate the suitability of ensiled giant reed, ensiled maize, ensiled olive pomace, wheat bran for combined systems (CS: dark fermentation+anaerobic digestion (AD)) producing hydrogen-rich biogas (biohythane), tested in batch under basic operational conditions (mesophilic temperatures, no pH control). Substrates were also analyzed under a single stage AD batch test, in order to investigate the effects of DF on estimated energy recovery (ER) in combined systems. In CS, maize and wheat bran exhibited the highest hydrogen potential (13.8 and 18.9NLkgVS(-1)) and wheat bran the highest methane potential (243.5NLkgVS(-1)). In one-stage AD, giant reed, maize and wheat bran showed the highest methane production (239.5, 267.3 and 260.0NLkgVS(-1)). Butyrate/acetate ratio properly described the dark fermentation, correlating with hydrogen production (r=0.92). Wheat bran proved to be a promising residue for CS in terms of hydrogen/methane potential and ER.

  18. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment.

    PubMed

    Wei, Chun-Hai; Harb, Moustapha; Amy, Gary; Hong, Pei-Ying; Leiknes, TorOve

    2014-08-01

    The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10 gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50 mg/L for general reuse was 6 gCOD/L/d and 0.63 gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6 gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300 ml/gCOD (even approaching the theoretical value of 382 ml/gCOD). A low biomass production of 0.015-0.026 gMLVSS/gCOD and a sustainable flux of 6L/m(2)/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area.

  19. Anaerobic reduction of elemental sulfur by Chromatium vinosum and Beggiatoa alba

    NASA Technical Reports Server (NTRS)

    Schmidt, T. M.

    1985-01-01

    The effect of sulfur globules on the buoyant density of Chromatium vinosum and Beggiatoa alba was examined. The potential use of sulfur as a terminal electron acceptor in the anaerobic metabolism of Beggiatoa alba is also examined. The effect of the reduction of intracellular sulfur was investigated during dark metabolism on the buoyant density of C. vinosum. It is hypothesized from the results that the sulfur reduction to sulfide is part of an anaerobic energy operating system. Carbon stored as PHB can be oxidized with the concomitant reduction of sulfur to sulfide.

  20. Energy substrate metabolism in pyruvate dehydrogenase complex deficiency.

    PubMed

    Stenlid, Maria Halldin; Ahlsson, Fredrik; Forslund, Anders; von Döbeln, Ulrika; Gustafsson, Jan

    2014-11-01

    Pyruvate dehydrogenase (PDH) deficiency is an inherited disorder of carbohydrate metabolism, resulting in lactic acidosis and neurological dysfunction. In order to provide energy for the brain, a ketogenic diet has been tried. Both the disorder and the ketogenic therapy may influence energy production. The aim of the study was to assess hepatic glucose production, lipolysis and resting energy expenditure (REE) in an infant, given a ketogenic diet due to neonatal onset of the disease. Lipolysis and glucose production were determined for two consecutive time periods by constant-rate infusions of [1,1,2,3,3-²H₅]-glycerol and [6,6-²H²]-glucose. The boy had been fasting for 2.5 h at the start of the sampling periods. REE was estimated by indirect calorimetry. Rates of glucose production and lipolysis were increased compared with those of term neonates. REE corresponded to 60% of normal values. Respiratory quotient (RQ) was increased, indicating a predominance of glucose oxidation. Blood lactate was within the normal range. Several mechanisms may underlie the increased rates of glucose production and lipolysis. A ketogenic diet will result in a low insulin secretion and reduced peripheral and hepatic insulin sensitivity, leading to increased production of glucose and decreased peripheral glucose uptake. Surprisingly, RQ was high, indicating active glucose oxidation, which may reflect a residual enzyme activity, sufficient during rest. Considering this, a strict ketogenic diet might not be the optimal choice for patients with PDH deficiency. We propose an individualised diet for this group of patients aiming at the highest glucose intake that each patient will tolerate without elevated lactate levels.

  1. Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. Role of acetyl CoA synthetase in anaerobic ATP synthesis.

    PubMed

    Takasaki, Kazuto; Shoun, Hirofumi; Yamaguchi, Masashi; Takeo, Kanji; Nakamura, Akira; Hoshino, Takayuki; Takaya, Naoki

    2004-03-26

    Fungal ammonia fermentation is a novel dissimilatory metabolic mechanism that supplies energy under anoxic conditions. The fungus Fusarium oxysporum reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP (Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., and Shoun, H. (2002) J. Biol. Chem. 277, 1892-1896). We identified the Aspergillus nidulans genes involved in ammonia fermentation by analyzing fungal mutants. The results showed that assimilatory nitrate and nitrite reductases (the gene products of niaD and niiA) were essential for reducing nitrate and for anaerobic cell growth during ammonia fermentation. We also found that ethanol oxidation is coupled with nitrate reduction and catalyzed by alcohol dehydrogenase, coenzyme A (CoA)-acylating aldehyde dehydrogenase, and acetyl-CoA synthetase (Acs). This is similar to the mechanism suggested in F. oxysporum except A. nidulans uses Acs to produce ATP instead of the ADP-dependent acetate kinase of F. oxysporum. The production of Acs requires a functional facA gene that encodes Acs and that is involved in ethanol assimilation and other metabolic processes. We purified the gene product of facA (FacA) from the fungus to show that the fungus acetylates FacA on its lysine residue(s) specifically under conditions of ammonia fermentation to regulate its substrate affinity. Acetylated FacA had higher affinity for acetyl-CoA than for acetate, whereas non-acetylated FacA had more affinity for acetate. Thus, the acetylated variant of the FacA protein is responsible for ATP synthesis during fungal ammonia fermentation. These results showed that the fungus ferments ammonium via coupled dissimilatory and assimilatory mechanisms.

  2. Recent Advances in Targeting Tumor Energy Metabolism with Tumor Acidosis as a Biomarker of Drug Efficacy

    PubMed Central

    Akhenblit, Paul J; Pagel, Mark D

    2016-01-01

    Cancer cells employ a deregulated cellular metabolism to leverage survival and growth advantages. The unique tumor energy metabolism presents itself as a promising target for chemotherapy. A pool of tumor energy metabolism targeting agents has been developed after several decades of efforts. This review will cover glucose and fatty acid metabolism, PI3K/AKT/mTOR, HIF-1 and glutamine pathways in tumor energy metabolism, and how they are being exploited for treatments and therapies by promising pre-clinical or clinical drugs being developed or investigated. Additionally, acidification of the tumor extracellular microenvironment is hypothesized to be the result of active tumor metabolism. This implies that tumor extracellular pH (pHe) can be a biomarker for assessing the efficacy of therapies that target tumor metabolism. Several translational molecular imaging methods (PET, MRI) for interrogating tumor acidification and its suppression are discussed as well. PMID:26962408

  3. Novel metabolic roles of L-arginine in body energy metabolism and possible clinical applications.

    PubMed

    Hristina, K; Langerholc, T; Trapecar, M

    2014-01-01

    Although the body can synthesize L-arginine, exogenous supplementation may be sometimes necessary, especially in particular conditions which results in depleted endogenous source. Among diseases and states when exogenous supplementation may be necessary are: burns, severe wounds, infections, insufficient circulation, intensive physical activity or sterility. In recent time, the attention was paid to the use of L-arginine supplementation by athletes during intensive sport activity, to enhance tissue growth and general performance, to potentiate the ergogenic potential and muscle tolerance to high intensive work and gas exchange threshold, to decrease ammonia liberation and recovery performance period and to improve wound healing. High-intensity exercise produces transient hyperammoniemia, presumably due to AMP catabolism. Catabolic pathways of AMP may involve its deamination or dephosphorylation, mainly in order to compensate fall in adenylate enrgy charge (AEC), due to AMP rise. The enzymes of purine metabolism have been documented to be particularly sensitive to the effect of dietary L-arginine supplementation. L-arginine supplementation leads to redirection of AMP deamination on account of increased AMP dephosphorylation and subsequent adenosine production and may increase ATP regeneration via activation of AMP kinase (AMPK) pathway. The central role of AMPK in regulating cellular ATP regeneration, makes this enzyme as a central control point in energy homeostasis. The effects of L-arginine supplementation on energy expenditure were successful independently of age or previous disease, in young sport active, elderly, older population and patients with angina pectoris.

  4. Adaptation to anaerobic metabolism in two mussel species, Mytilus edulis and Mytilus galloprovincialis, from the tidal zone at Arcachon Bay, France

    NASA Astrophysics Data System (ADS)

    de Vooys, C. G. N.

    Aspects of anaerobic metabolism were investigated in two sympatric mussel species, viz. Mytilus edulis and Mytilus galloprovincialis, living in the tidal zone in Arcachon Bay, France. Specific activities of pyruvate kinase (PK) and phosphoenolpyruvate kinase (PEP-CK) were remarkably similar in the two sympatric species and generally corresponded more closely to those observed in M. galloprovincialis in the Mediterranean than with M. edulis in the Dutch Wadden Sea. However, the values for the radio PK: PEP-CK for the two species in Arcachon Bay agreed with those of intertidal M. edulis from the Dutch Wadden Sea. Succinate accumulation during the first 24 h of anaerobicsis was about the same as in M. galloprovincialis in the Mediterranean, but decreased during the second 24 h, particularly in M. edulis, obviously due to propionate formation. Decrease in ATP concentrations in the tissues during anaerobiosis corresponded to that of intertidal M. edulis from the Dutch Wadden Sea. With the exception of specific activities of PK and PEP-CK, all properties investigated in both species were as expected in intertidal mussels.

  5. Body size, body composition, and metabolic profile explain higher energy expenditure in overweight children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lower relative rates of energy expenditure (EE), increased energetic efficiency, and altered fuel utilization purportedly associated with obesity have not been demonstrated indisputably in overweight children. We hypothesized that differences in energy metabolism between nonoverweight and overweight...

  6. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism

    PubMed Central

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  7. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens

    PubMed Central

    Risso, Carla; Sun, Jun; Zhuang, Kai; Mahadevan, Radhakrishnan; DeBoy, Robert; Ismail, Wael; Shrivastava, Susmita; Huot, Heather; Kothari, Sagar; Daugherty, Sean; Bui, Olivia; Schilling, Christophe H; Lovley, Derek R; Methé, Barbara A

    2009-01-01

    Background Rhodoferax ferrireducens is a metabolically versatile, Fe(III)-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about R. ferrireducens, the complete genome sequence of this organism was further annotated and then the physiology of R. ferrireducens was investigated with a constraint-based, genome-scale in silico metabolic model and laboratory studies. Results The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why R. ferrireducens is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that R. ferrireducens is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress. Conclusion This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms. PMID:19772637

  8. Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium Thauera aromatica.

    PubMed

    Breese, K; Boll, M; Alt-Mörbe, J; Schägger, H; Fuchs, G

    1998-08-15

    Many aromatic compounds are anaerobically oxidized to CO2 via benzoyl-CoA as the common aromatic intermediate. In Thauera aromatica, the central benzoyl-CoA pathway comprises the ATP-driven two-electron reduction of the benzene ring; this reaction uses a ferredoxin as electron donor and is catalyzed by benzoyl-CoA reductase. The first intermediate, cyclohex-1,5-diene-1-carboxyl-CoA, is subsequently hydrated by dienoyl-CoA hydratase to 6-hydroxycyclohex-1-ene-1-carboxyl-CoA. Formation of the main product produced by cell extracts, 3-hydroxypimelyl-CoA, requires at least two further steps; the oxidation of a hydroxyl group and the hydrolytic carbon ring cleavage of a CoA-activated beta-oxoacid. In addition, enoyl-CoA hydratase may come into play. A cluster of eight adjacent genes, which are transcribed in the same direction and may form an operon, was found in this bacterium. The cluster codes for proven and postulated enzymes of the benzoyl-CoA pathway. The genes for the enzymes code for ferredoxin, four subunits of benzoyl-CoA reductase, dienoyl-CoA hydratase, 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase (NAD+), and the ring hydrolyzing enzyme. The deduced amino acid sequences of these proteins were 35-86% similar to the corresponding sequences found in Rhodopseudomonas palustris. Benzoyl-CoA reductase subunits exhibit distinct similarities with 2-hydroxyglutaryl-CoA dehydratase and its ATP-hydrolysing activase protein of Acidaminococcus fermentans as well as with open reading frames of unknown function in other bacteria. Conversion of benzoyl-CoA to 3-hydroxypimelyl-CoA can be explained by a minimal model of the benzoyl-CoA pathway assuming the four enzymes whose genes were characterized and an additional enoyl-CoA hydratase. In R. palustris the dienoyl-CoA hydratase gene is lacking suggesting the operation of a modified benzoyl-CoA pathway with cyclohex-1-ene-1-carboxyl-CoA as intermediate.

  9. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review.

    PubMed

    Crone, Brian C; Garland, Jay L; Sorial, George A; Vane, Leland M

    2016-11-01

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10-30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11-100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Microporous membranes can recover up to 98.9% of dissolved methane in AnMBR effluents which have low COD and SS concentrations. Sequential Down-flow Hanging Sponge (DHS) reactors have been used to recover between 57 and 88% of dissolved methane from Upflow Anaerobic Sludge Blanket (UASB) reactor effluent at concentrations of greater than 30% and oxidize the rest for a 99% removal of total dissolved methane. They can also remove 90% of suspended solids and COD in UASB effluents and produce a high quality effluent. In

  10. Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cattle waste in anaerobic digestion.

    PubMed

    Budde, Jörn; Prochnow, Annette; Plöchl, Matthias; Suárez Quiñones, Teresa; Heiermann, Monika

    2016-03-01

    In this study modeled full scale application of thermobarical hydrolysis of less degradable feedstock for biomethanation was assessed in terms of energy balance, greenhouse gas emissions, and economy. Data were provided whether the substitution of maize silage as feedstock for biogas production by pretreated cattle wastes is beneficial in full-scale application or not. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and/or solid cattle waste (feces, litter, and feed residues from animal husbandry of high-performance dairy cattle, dry cows, and heifers). The integration of thermobarical pretreatment is beneficial for raw material with high contents of organic dry matter and ligno-cellulose: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis.

  11. Metabolomics analysis of Cistus monspeliensis leaf extract on energy metabolism activation in human intestinal cells.

    PubMed

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells.

  12. Metabolomics Analysis of Cistus monspeliensis Leaf Extract on Energy Metabolism Activation in Human Intestinal Cells

    PubMed Central

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469

  13. Municipal anaerobic digesters for codigestion, energy recovery, and greenhouse gas reductions.

    PubMed

    Zitomer, Daniel H; Adhikari, Prasoon; Heisel, Craig; Dineen, Dennis

    2008-03-01

    Codigestion of five wastes and municipal wastewater sludge was evaluated using full-scale testing. Synergistic, antagonistic, and neutral outcomes were observed depending on codigestate identity and concentration, highlighting the value of careful blending. Yeast waste resulted in notable synergism, increasing biogas production by over 50%, whereas aircraft deicing waste resulted in antagonism at high loadings and neutral outcomes at lower loadings. Restaurant waste codigestion resulted in neutral outcomes. The synergisim with yeast codigestates may have resulted from trace nutrients (i.e., iron, nickel, and cobalt) in the wastes that increased microbiological activity. Antagonist outcomes with deicing waste may have been the result of organic overload or inhibitory deicer constituents. Codigestion of wastes at the feed rates investigated was estimated to produce 0.50 ML/d of methane having an energy equivalent of 17 500 MJ/d. This was estimated to reduce net carbon dioxide emissions by 560 tonnes/y.

  14. Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage.

    PubMed

    Sambusiti, C; Rollini, M; Ficara, E; Musatti, A; Manzoni, M; Malpei, F

    2014-03-01

    Biochemical methane potential (BMP) tests were run on ensiled sorghum forage using four inocula (urban, agricultural, mixture of agricultural and urban, granular) and differences on their metabolic and enzymatic activities were also discussed. Results indicate that no significant differences were observed in terms of BMP values (258±14NmLCH4g(-1)VS) with a slightly higher value when agricultural sludge was used as inoculum. Significant differences can be observed among different inocula, in terms of methane production rate. In particular the fastest biomethanization occurred when using the urban sludge (hydrolytic kinetic constant kh=0.146d(-1)) while the slowest one was obtained from the agricultural sludge (kh=0.049d(-1)). Interestingly, positive correlations between the overall enzymatic activities and methane production rates were observed for all sludges, showing that a high enzymatic activity may favour the hydrolysis of complex substrate and accelerate the methanization process of sorghum.

  15. Dynamic changes in energy metabolism upon embryonic stem cell differentiation support developmental toxicant identification.

    PubMed

    van Dartel, Dorien A M; Schulpen, Sjors H; Theunissen, Peter T; Bunschoten, Annelies; Piersma, Aldert H; Keijer, Jaap

    2014-10-03

    Embryonic stem cells (ESC) are widely used to study embryonic development and to identify developmental toxicants. Particularly, the embryonic stem cell test (EST) is well known as in vitro model to identify developmental toxicants. Although it is clear that energy metabolism plays a crucial role in embryonic development, the modulation of energy metabolism in in vitro models, such as the EST, is not yet described. The present study is among the first studies that analyses whole genome expression data to specifically characterize metabolic changes upon ESC early differentiation. Our transcriptomic analyses showed activation of glycolysis, truncated activation of the tricarboxylic acid (TCA) cycle, activation of lipid synthesis, as well as activation of glutaminolysis during the early phase of ESC differentiation. Taken together, this energy metabolism profile points towards energy metabolism reprogramming in the provision of metabolites for biosynthesis of cellular constituents. Next, we defined a gene set that describes this energy metabolism profile. We showed that this gene set could be successfully applied in the EST to identify developmental toxicants known to modulate cellular biosynthesis (5-fluorouracil and methoxyacetic acid), while other developmental toxicants or the negative control did not modulate the expression of this gene set. Our description of dynamic changes in energy metabolism during early ESC differentiation, as well as specific identification of developmental toxicants modulating energy metabolism, is an important step forward in the definition of the applicability domain of the EST.

  16. Arsenic, Anaerobes, and Astrobiology

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  17. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.

    PubMed

    Amoedo, N D; Obre, E; Rossignol, R

    2017-02-16

    The search for new drugs capable of blocking the metabolic vulnerabilities of human tumors has now entered the clinical evaluation stage, but several projects already failed in phase I or phase II. In particular, very promising in vitro studies could not be translated in vivo at preclinical stage and beyond. This was the case for most glycolysis inhibitors that demonstrated systemic toxicity. A more recent example is the inhibition of glutamine catabolism in lung adenocarcinoma that failed in vivo despite a strong addiction of several cancer cell lines to glutamine in vitro. Such contradictory findings raised several questions concerning the optimization of drug discovery strategies in the field of cancer metabolism. For instance, the cell culture models in 2D or 3D might already show strong limitations to mimic the tumor micro- and macro-environment. The microenvironment of tumors is composed of cancer cells of variegated metabolic profiles, supporting local metabolic exchanges and symbiosis, but also of immune cells and stroma that further interact with and reshape cancer cell metabolism. The macroenvironment includes the different tissues of the organism, capable of exchanging signals and fueling the tumor 'a distance'. Moreover, most metabolic targets were identified from their increased expression in tumor transcriptomic studies, or from targeted analyses looking at the metabolic impact of particular oncogenes or tumor suppressors on selected metabolic pathways. Still, very few targets were identified from in vivo analyses of tumor metabolism in patients because such studies are difficult and adequate imaging methods are only currently being developed for that purpose. For instance, perfusion of patients with [(13)C]-glucose allows deciphering the metabolomics of tumors and opens a new area in the search for effective targets. Metabolic imaging with positron emission tomography and other techniques that do not involve [(13)C] can also be used to evaluate tumor

  18. Energy Metabolism and Drug Efflux in Mycobacterium tuberculosis

    PubMed Central

    Black, Philippa A.; Warren, Robin M.; Louw, Gail E.; van Helden, Paul D.; Victor, Thomas C.

    2014-01-01

    The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed. PMID:24614376

  19. Effects of copper exposure on the energy metabolism in juveniles of the marine clam Mesodesma mactroides.

    PubMed

    Giacomin, Marina; Jorge, Marianna Basso; Bianchini, Adalto

    2014-07-01

    In freshwater osmoregulating mollusks, Cu can cause toxicity by inducing ionoregulatory disturbances. In mussels, it inhibits the activity of key enzymes involved in Na(+) uptake and consequently induces ionic and osmotic disturbances. In snails, Cu induces disruption of the Ca(2+) homeostasis leading to effects in shell deposition and snail growth. However, the mechanisms involved in Cu toxicity in osmoconforming sweater mollusks remain unclear. Recent findings from our laboratory have suggested that Cu toxicity in marine invertebrates can be associated with both ionic and respiratory disturbances. In the present study, metabolic changes induced by waterborne Cu exposure were evaluated in the osmoconforming clam Mesodesma mactroides, a bivalve species widely distributed along the South American sandy beaches. Juvenile clams were kept under control conditions (no Cu addition in the water) or acutely (96h) exposed to Cu (96-h LC10=150μgL(-1)) in artificial seawater (30ppt). ATP, protein, lipid, glycogen and glucose contents were analyzed in gills, digestive gland, pedal muscle and hemolymph. Dinucleotide (NAD(+) and NADH) content was also analyzed in gills, digestive gland and pedal muscle while pyruvate and lactate content was determined in pedal muscle and hemolymph. In all tissues analyzed, Cu exposure did not affect ATP content and NAD(+)/NADH ratio, except in the hemolymph, where a decrease in ATP content was observed. These findings indicate that clam cells, except those from hemolymph, were able to maintain a constant level of free energy. A significant increase in total protein content was observed in the digestive gland, which could be a compensatory mechanism to counteract the higher level of protein oxidation previously observed in M. mactroides exposed to Cu under the same experimental conditions. Finally, reduced glucose content in the pedal muscle paralleled by increased lactate content in the pedal muscle and hemolymph was observed in Cu

  20. Economic viability of anaerobic digestion

    SciTech Connect

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  1. The anaerobic threshold: definition, physiological significance and identification.

    PubMed

    Wasserman, K

    1986-01-01

    During exercise, the oxygen consumption above which aerobic energy production is supplemented by anaerobic mechanisms, causing a sustained increase in lactate and metabolic acidosis, is termed the anaerobic threshold (AT). The oxygen consumption at the AT depends on factors that affect oxygen delivery to the tissues. It is increased when oxygen flow is enhanced and decreased when oxygen flow is diminished. Its value is quite low in patients with heart disease. The AT is an important functional demarcation since the physiological responses to exercise are different above the AT compared to below the AT. Above the AT, in addition to the development of metabolic acidosis, exercise endurance is reduced, VO2 kinetics are slowed so that a steady state is delayed, and VE increases disproportionately to the metabolic requirement and a progressive tachypnea develops. The AT can be measured directly from the lactate concentration with precise threshold detection from a log-log transformation of lactate and VO2. This threshold also defines the VO2 above which the lactate/pyruvate ratio increases. As bicarbonate changes reciprocally with lactate, its measurement can also be used to estimate the lactate threshold. But most convenient are gas exchange measurements made during exercise testing which can be used to noninvasively detect the lactate or anaerobic threshold. These methods are based on the physical-chemical event of buffering lactic acid with bicarbonate, and the increased CO2 output which occurs in association with the acute development of a metabolic acidosis.

  2. Adaptations of energy metabolism during cerebellar neurogenesis are co-opted in medulloblastoma.

    PubMed

    Tech, Katherine; Deshmukh, Mohanish; Gershon, Timothy R

    2015-01-28

    Recent studies show that metabolic patterns typical of cancer cells, including aerobic glycolysis and increased lipogenesis, are not unique to malignancy, but rather originate in physiologic development. In the postnatal brain, where sufficient oxygen for energy metabolism is scrupulously maintained, neural progenitors nevertheless metabolize glucose to lactate and prioritize lipid synthesis over fatty acid oxidation. Medulloblastoma, a cancer of neural progenitors that is the most common malignant brain tumor in children, recapitulates the metabolic phenotype of brain progenitor cells. During the physiologic proliferation of neural progenitors, metabolic enzymes generally associated with malignancy, including Hexokinase 2 (Hk2) and Pyruvate kinase M2 (PkM2) configure energy metabolism to support growth. In these non-malignant cells, expression of Hk2 and PkM2 is driven by transcriptional regulators that are typically identified as oncogenes, including N-myc. Importantly, N-myc continues to drive Hk2 and PkM2 in medulloblastoma. Similarly E2F transcription factors and PPARγ function in both progenitors and medulloblastoma to optimize energy metabolism to support proliferation. These findings show that the "metabolic transformation" that is a hallmark of cancer is not specifically limited to cancer. Rather, metabolic transformation represents a co-opting of developmental programs integral to physiologic growth. Despite their physiologic origins, the molecular mechanisms that mediate metabolic transformation may nevertheless present ideal targets for novel anti-tumor therapy.

  3. The anaerobic digestion process

    SciTech Connect

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  4. Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism.

    PubMed

    Cha, Minseok; Chung, Daehwan; Westpheling, Janet

    2016-02-01

    The anaerobic, hyperthermophlic, cellulolytic bacterium Caldicellulosiruptor bescii grows optimally at ∼80 °C and effectively degrades plant biomass without conventional pretreatment. It utilizes a variety of carbohydrate carbon sources, including both C5 and C6 sugars, released from plant biomass and produces lactate, acetate, CO2, and H2 as primary fermentation products. The C. bescii genome encodes two hydrogenases, a bifurcating [Fe-Fe] hydrogenase and a [Ni-Fe] hydrogenase. The [Ni-Fe] hydrogenase is the most widely distributed in nature and is predicted to catalyze hydrogen production and to pump protons across the cellular membrane creating proton motive force. Hydrogenases are the key enzymes in hydrogen metabolism and their crystal structure reveals complexity in the organization of their prosthetic groups suggesting extensive maturation of the primary protein. Here, we report the deletion of a cluster of genes, hypABFCDE, required for maturation of the [Ni-Fe] hydrogenase. These proteins are specific for the hydrogenases they modify and are required for hydrogenase activity. The deletion strain grew more slowly than the wild type or the parent strain and produced slightly less hydrogen overall, but more hydrogen per mole of cellobiose. Acetate yield per mole of cellobiose was increased ∼67 % and ethanol yield per mole of cellobiose was decreased ∼39 %. These data suggest that the primary role of the [Ni-Fe] hydrogenase is to generate a proton gradient in the membrane driving ATP synthesis and is not the primary enzyme for hydrogen catalysis. In its absence, ATP is generated from increased acetate production resulting in more hydrogen produced per mole of cellobiose.

  5. Giant cane (Arundo donax L.) can substitute traditional energy crops in producing energy by anaerobic digestion, reducing surface area and costs: A full-scale approach.

    PubMed

    Corno, Luca; Lonati, Samuele; Riva, Carlo; Pilu, Roberto; Adani, Fabrizio

    2016-10-01

    Arundo donax L. (Giant cane) was used in a full-scale anaerobic digester (AD) plant (power of 380kWhEE) in partial substitution for corn to produce biogas and electricity. Corn substitution was made on a biomethane potential (BMP) basis so that A. donax L. after substitution accounted for 15.6% of the total mix-BMP (BMPmix) and corn for 66.6% BMPmix. Results obtained indicated that Giant cane was able to substitute for corn, reducing both biomass and electricity production costs, because of both higher biomass productivity (Mg total solid Ha(-1)) and lower biomass cost (€Ha(-1)). Total electricity biogas costs were reduced by 5.5%. The total biomass cost, the total surface area needed to produce the energy crop and the total cost of producing electricity can be reduced by 75.5%, 36.6% and 22%, by substituting corn completely with Giant cane in the mix fed to the full-scale plant.

  6. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    NASA Astrophysics Data System (ADS)

    Hassan, Siti Roshayu; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reac