Sample records for anaerobic microorganisms involved

  1. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    PubMed

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  2. Electroactive microorganisms in bulk solution contribute significantly to methane production in bioelectrochemical anaerobic reactor.

    PubMed

    Feng, Qing; Song, Young-Chae; Ahn, Yongtae

    2018-07-01

    The role of anaerobic microorganisms suspended in the bulk solution on methane production was investigated in a bioelectrochemical anaerobic reactor with the electrode polarized at 0.5 V. The electron transfer from substrate to methane and hydrogen were 25% and 7.5%, respectively, in the absence of the anaerobic microorganisms in the bulk solution. As the anaerobic microorganisms increased to 4400 mg/L, the electrons transferred to methane increased to 83.3% but decreased to 0.3% in hydrogen. The electroactive microorganisms (EAM), including exoelectrogens and electrotrophs, enriched in the bulk solution that confirmed by the redox peaks in the cyclic voltammogram was proportional to the anaerobic microorganism. The methane yield based on COD removal was dependent on the anaerobic microorganisms in the bulk solution rather than on the bioelectrode surface. The EAM suspended in the bulk solution are enriched by the polarized electrode, and significantly improve methane production in bioelectrochemical anaerobic reactor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    DOEpatents

    Buelter, Thomas [Denver, CO; Meinhold, Peter [Denver, CO; Feldman, Reid M. Renny [San Francisco, CA; Hawkins, Andrew C [Parker, CO; Urano, Jun [Irvine, CA; Bastian, Sabine [Pasadena, CA; Arnold, Frances [La Canada, CA

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  4. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal

    PubMed Central

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-01-01

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM. PMID:26144551

  5. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal.

    PubMed

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-07-06

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM.

  6. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.

    1992-01-01

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.

  7. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, J.L.; Clausen, E.C.

    1992-12-22

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H[sub 2]O and/or CO[sub 2] and H[sub 2] in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate. 3 figs.

  8. Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres.

    PubMed

    Carnegie, D; Ramsay, J A

    2009-07-01

    Although aerobic degradation of ethylene glycol is well documented, only anaerobic biodegradation via methanogenesis or fermentation has been clearly shown. Enhanced ethylene glycol degradation has been demonstrated by microorganisms in the rhizosphere of shallow-rooted plants such as alfalfa and grasses where conditions may be aerobic, but has not been demonstrated in the deeper rhizosphere of poplar or willow trees where conditions are more likely to be anaerobic. This study evaluated ethylene glycol degradation under nitrate-, and sulphate-reducing conditions by microorganisms from the rhizosphere of poplar and willow trees planted in the path of a groundwater plume containing up to 1.9 mol l(-1) (120 g l(-1)) ethylene glycol and, the effect of fertilizer addition when nitrate or sulphate was provided as a terminal electron acceptor (TEA). Microorganisms in these rhizosphere soils degraded ethylene glycol using nitrate or sulphate as TEAs at close to the theoretical stoichiometric amounts required for mineralization. Although the added nitrate or sulphate was primarily used as TEA, TEAs naturally present in the soil or CO(2) produced from ethylene glycol degradation were also used, demonstrating multiple TEA usage. Anaerobic degradation produced acetaldehyde, less acetic acid, and more ethanol than under aerobic conditions. Although aerobic degradation rates were faster, close to 100% disappearance was eventually achieved anaerobically. Degradation rates under nitrate-reducing conditions were enhanced upon fertilizer addition to achieve rates similar to aerobic degradation with up to 19.3 mmol (1.20 g) of ethylene glycol degradation l(-1) day(-1) in poplar soils. This is the first study to demonstrate that microorganisms in the rhizosphere of deep rooted trees like willow and poplar can anaerobically degrade ethylene glycol. Since anaerobic biodegradation may significantly contribute to the phytoremediation of ethylene glycol in the deeper subsurface, the need

  9. [Research advances on anaerobic ferrous-oxidizing microorganisms].

    PubMed

    Zhang, Meng; Zheng, Ping; Ji, Jun-yuan

    2013-08-01

    Anaerobic ferrous-oxidizing microorganisms (AFOM) are one of the important discoveries in microbiology, geology and environmental science. The study of AFOM is of significance to make clear the banded iron formations (BIFs), promote the biogeochemical cycles of iron, nitrogen and carbon, enrich the microbiological content, develop new biotechnologies for anaerobic iron oxidation, and explore the ancient earth environment and extraterrestrial life. This paper summarized the research advances on AFOM, introduced the habitats of AFOM, discussed the biodiversity and the nutritive and metabolic characteristics of AFOM, and assessed the potential functions of AFOM. An outlook was made on the future researches of new species AFOM, their microbial metabolism mechanisms, and their development and applications.

  10. High-density natural luffa sponge as anaerobic microorganisms carrier for degrading 1,1,1-TCA in groundwater.

    PubMed

    Wang, Wenbing; Wu, Yanqing; Zhang, Chi

    2017-03-01

    Anaerobic microorganisms were applied to degrade organic contaminants in groundwater with permeable reactive barriers (PRBs). However, anaerobic microorganisms need to select optimal immobilizing material as carrier. The potential of high-density natural luffa sponge (HDLS) (a new variety of luffa) for the immobilization and protection of anaerobic microorganisms was investigated. The HDLS has a dense structure composed of a complicated interwoven fibrous network. Therefore, the abrasion rate of HDLS (0.0068 g s -1 ) was the smallest among the four carriers [HDLS, ordinary natural luffa sponge (OLS), polyurethane sponge (PS), and gel carrier AQUAPOROUSGEL (APG)]. The results suggest that it also had the greatest water retention (10.26 H 2 O-g dry carrier-g -1 ) and SS retention (0.21 g dry carrier-g -1 ). In comparison to well-established commercialized gel carrier APG, HDLS was of much better mechanical strength, hydrophilicity and stability. Microbial-immobilized HDLS also had the best performance for the remediation of 1,1,1-TCA simulated groundwater. Analysis of the clone libraries from microorganism-immobilized HDLS showed the HDLS could protect microorganisms from the toxicity of 1,1,1-TCA and maintain the stability of microbial community diversity. The mechanism of HDLS immobilizing and protecting microorganisms was proposed as follows. The HDLS had a micron-scale honeycomb structure (30-40 μm) and an irregular ravine structure (4-20 μm), which facilitate the immobilization of anaerobic microorganisms and protect the anaerobic microorganisms.

  11. The antihistamine diphenhydramine is demethylated by anaerobic wastewater microorganisms.

    PubMed

    Wolfson, Sarah J; Porter, Abigail W; Villani, Thomas S; Simon, James E; Young, Lily Y

    2018-07-01

    While emerging pharmaceutical contaminants are monitored in wastewater treatment and the environment, there is little information concerning their microbial metabolites. The transformation of diphenhydramine by microorganisms in anaerobic digester sludge was investigated using anaerobic cultures amended with 1 mM diphenhydramine as the sole carbon source. Complete transformation of the parent compound to a persistent metabolite occurred within 191 days. Using GC/MS analysis, the metabolite was identified as N-desmethyl diphenhydramine. Loss of the parent compound diphenhydramine followed a first order rate constant of 0.013 day -1 . There was no observed decrease in metabolite concentration even after a further 12 months of incubation, suggesting that the metabolite resists further degradation during wastewater treatment. Bacterial community diversity in the diphenhydramine transforming assay cultures showed enrichment in Comamonadaceae, Symbiobacteriaceae, Anaerolineaceae, and Prevotellaceae relative to unamended background controls. An anaerobic toxicity assay demonstrated that diphenhydramine has an inhibitory effect on both fermentative bacteria and methanogenic archaea in the wastewater community. In contrast, the metabolite N-desmethyl diphenhydramine partially suppressed methanogens but did not impact the fermenting community. To our knowledge, this is the first report of diphenhydramine metabolism by a bacterial community. The limited transformation of diphenhydramine by wastewater microorganisms indicates that N-desmethyl diphenhydramine will enter the environment along with unmetabolized diphenhydramine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. [A comparison between 2 different methods for calculating the percentage of anaerobic microorganisms in the subgingival microbial flora].

    PubMed

    Petti, S; Renzini, G

    1994-03-01

    The percentage of anaerobic micro-organisms in the subgingival microflora represents a simple microbiological index which not only refers to the state but also the risks of periodontal health. The present study aimed to compare two different methods of calculating this index. The study was performed in 45 subjects with moderate gingivitis provoked by the previous application of dental fixtures anchored to both arches. A sample of subgingival microflora was collected from each patient at the level of the vestibular gingival sulcus of the first upper right molar. This was then vortexed, diluted and inoculated in three series of plates. It was chosen to use Walker's culture medium. The total bacterial count was evaluated by incubating the first series of plates in anaerobiosis; the anaerobic bacterial was calculated by subtracting from the total the of facultative aerobic-anaerobic micro-organisms, which in turn was obtained using two methods: the first (method AE) consisted of incubating another series of plates in aerobiosis; the second (method M) involved incubating the last series of plates in anaerobiosis, and adding metronidazole to the culture medium in a solution of 2.5 mg/l. The plates were then kept at 37 degrees C for seven days. The mean percentage of anaerobic microorganisms, given by the percentage ratio between anaerobic and total, relating to the 45 cases studied, was as follows: using method AE: 57.8 +/- 26.3%, and using method M: 40.2 +/- 27.2%. Both figures come close to that proposed and calculated using a much more sophisticated method by Slots, namely 41.5 +/- 19.2% in the event of gingivitis.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Biochemical Mechanisms and Microorganisms Involved in Anaerobic Testosterone Metabolism in Estuarine Sediments

    PubMed Central

    Shih, Chao-Jen; Chen, Yi-Lung; Wang, Chia-Hsiang; Wei, Sean T.-S.; Lin, I-Ting; Ismail, Wael A.; Chiang, Yin-Ru

    2017-01-01

    Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III)] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment samples were spiked with testosterone (1 mM) and individual electron acceptors (10 mM), including nitrate, Fe3+, and sulfate. The analysis of androgen metabolites indicated that testosterone biodegradation under denitrifying conditions proceeds through the 2,3-seco pathway, whereas testosterone biodegradation under iron-reducing conditions may proceed through an unidentified alternative pathway. Metagenomic analysis and PCR-based functional assays suggested that Thauera spp. were the major testosterone degraders in estuarine sediment samples incubated with testosterone and nitrate. Thauera sp. strain GDN1, a testosterone-degrading betaproteobacterium, was isolated from the denitrifying sediment sample. This strain tolerates a broad range of salinity (0–30 ppt). Although testosterone biodegradation did not occur under sulfate-reducing conditions, we observed the anaerobic biotransformation of testosterone to estrogens in some testosterone-spiked sediment samples. This is unprecedented since biotransformation of androgens to estrogens is known to occur only under oxic conditions. Our metagenomic analysis suggested that Clostridium spp. might play a role in this anaerobic biotransformation. These results expand our understanding of microbial metabolism of steroids under strictly anoxic conditions. PMID:28848528

  14. Microscale analysis of in vitro anaerobic degradation of lignocellulosic wastes by rumen microorganisms.

    PubMed

    Hu, Zhen-Hu; Liu, Shao-Yang; Yue, Zheng-Bo; Yan, Li-Feng; Yang, Ming-Tao; Yu, Han-Qing

    2008-01-01

    Anaerobic degradation of lignin in waste straw by ruminal microbes was directly observed using atomic force microscope (AFM). A series of high-resolution AFM images of the straw surface in the biodegradation show that the wax flakelets and lignin granules covering the straw surface were removed by the rumen microorganisms. Such degradation resulted in an exposure of cellulose fibers located inside the straw. The appearance of holes and microfibers in fermentation reveals that tunneling might be one of the ways for rumen microorganisms to attack the straw. Increases in the atomic ratio of oxygen to carbon (O/C) and the ratio C2/C3 in C1s spectra of X-ray photoelectron spectroscopy confirm that more cellulose was exposed on the surface after the anaerobic fermentation of straw. Gas chromatography/mass spectrometry analytical results demonstrate the decomposition of lignin by rumen microorganisms. Fourier transform infrared spectroscopy spectra and the measurement of degradation efficiency of the main straw components further verify these microscaled observations.

  15. Involvement of formate as an interspecies electron carrier in a syntrophic acetate-oxidizing anaerobic microorganism in coculture with methanogens.

    PubMed

    Hattori, S; Luo, H; Shoun, H; Kamagata, Y

    2001-01-01

    To determine whether formate is involved in interspecies electron transfer between substrate-oxidizing bacteria and hydrogenotrophic microorganisms under anaerobic conditions, a syntrophic acetate-oxidizing bacterium Thermacetogenium phaeum strain PB was cocultured either with a formate /H2-utilizing methanogen strain TM (designated as PB/TM coculture), or an H2-utilizing methanogen strain deltaH (designated as PB/deltaH coculture). Acetate oxidation and subsequent methanogenesis in PB/TM coculture were found to be significantly faster than in PB/deltaH coculture. Formate dehydrogenase and hydrogenase were both detected in strains PB and TM. H2 partial pressures in the PB/TM coculture were kept lower (20 to 40 Pa) than those of the PB/deltaH coculture (40 to 60 Pa) during the exponential growth phase. Formate was also detected in both PB/TM and PB/deltaH cocultures, and the concentration of formate was maintained at a lower level in the PB/TM coculture (5 to 9 microM) than in the PB/deltaH coculture. Thermodynamic calculations revealed that the concentrations of both H2 and formate severely affect the syntrophic oxidation of acetate. These results strongly indicate that not only H2 but also formate may be involved in interspecies electron transfer.

  16. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    PubMed

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation.

  17. Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass.

    PubMed

    Yue, Zheng-Bo; Li, Wen-Wei; Yu, Han-Qing

    2013-01-01

    Rumen in the mammalian animals is a natural cellulose-degrading system and the microorganisms inside have been found to be able to effectively digest lignocellulosic biomass. Furthermore, methane or volatile fatty acids, which could be further converted to other biofuels, are the two major products in such a system. This paper offers an overview of recent development in the application of rumen microorganisms for lignocellulosic biomass conversion. Application of recent molecular tools in the analysis of rumen microbial community, progress in the development of artificial rumen reactors, the latest research results about characterizing rumen-dominated anaerobic digestion process and energy products are summarized. Also, the potential application of such a rumen-dominated process is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    NASA Astrophysics Data System (ADS)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  19. Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion.

    PubMed

    Lin, Qiang; He, Guihua; Rui, Junpeng; Fang, Xiaoyu; Tao, Yong; Li, Jiabao; Li, Xiangzhen

    2016-06-03

    Temperature is an important factor determining the performance and stability of the anaerobic digestion process. However, the microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion systems remain further elusive. To address this issue, we investigated the changes in composition, diversity and activities of microbial communities under temperature gradient from 25 to 55 °C using 16S rRNA gene amplicon sequencing approach based on genomic DNA (refer to as "16S rDNA") and total RNA (refer to as "16S rRNA"). Microbial community structure and activities changed dramatically along the temperature gradient, which corresponded to the variations in digestion performance (e.g., daily CH4 production, total biogas production and volatile fatty acids concentration). The ratios of 16S rRNA to 16S rDNA of microbial taxa, as an indicator of the potentially relative activities in situ, and whole activities of microbial community assessed by the similarity between microbial community based on 16S rDNA and rRNA, varied strongly along the temperature gradient, reflecting different metabolic activities. The daily CH4 production increased with temperature from 25 to 50 °C and declined at 55 °C. Among all the examined microbial properties, the whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities showed highest correlations to the performance. The whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities were sensitive indicators for the performance of anaerobic digestion systems under temperature gradient, while beta-diversity could predict functional differences. Microorganism-regulated mechanisms of temperature effects on anaerobic digestion performance were likely realized through increasing alpha-diversity of both microbial communities and potentially relative activities to supply

  20. The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses

    PubMed Central

    Bohmeier, Maria; Perras, Alexandra K.; Schwendner, Petra; Rabbow, Elke; Moissl-Eichinger, Christine; Cockell, Charles S.; Pukall, Rüdiger; Vannier, Pauline; Marteinsson, Viggo T.; Monaghan, Euan P.; Ehrenfreund, Pascale; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Gaboyer, Frédéric; Westall, Frances; Cabezas, Patricia; Walter, Nicolas; Rettberg, Petra

    2017-01-01

    The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today. PMID:29069099

  1. Entrapment of anaerobic thermophilic and hyperthermophilic marine micro-organisms in a gellan/xanthan matrix.

    PubMed

    Landreau, M; Duthoit, F; Claeys-Bruno, M; Vandenabeele-Trambouze, O; Aubry, T; Godfroy, A; Le Blay, G

    2016-06-01

    The aims of this study were (i) to develop a protocol for the entrapment of anaerobic (hyper)thermophilic marine micro-organisms; (ii) to test the use of the chosen polymers in a range of physical and chemical conditions and (iii) to validate the method with batch cultures. The best conditions for immobilization were obtained at 80°C with gellan and xanthan gums. After 5-week incubation, beads showed a good resistance to all tested conditions except those simultaneously including high temperature (100°C), low NaCl (<0∙5 mol l(-1) ) and extreme pH (4/8). To confirm the method efficiency, batch cultures with immobilized Thermosipho sp. strain AT1272 and Thermococcus kodakarensis strain KOD1 showed an absence of detrimental effect on cell viability and a good growth within and outside the beads. This suggests that entrapment in a gellan-xanthan matrix could be employed for the culture of anaerobic (hyper)thermophilic marine micro-organisms. (Hyper)thermophilic marine micro-organisms possess a high biotechnological potential. Generally microbial cells are grown as free-cell cultures. The use of immobilized cells may offer several advantages such as protection against phage attack, high cell biomass and better production rate of desired metabolites. © 2016 The Society for Applied Microbiology.

  2. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge.

    PubMed

    Mustapha, Nurul Asyifah; Hu, Anyi; Yu, Chang-Ping; Sharuddin, Siti Suhailah; Ramli, Norhayati; Shirai, Yoshihito; Maeda, Toshinari

    2018-06-01

    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.

  3. High-rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gijzen, H.J.; Zwart, K.B.; Verhagen, F.J.M.

    1988-04-05

    A novel two-stage anaerobic process for the microbial conversion of cellulose into biogas has been developed. In the first phase, a mixed population of rumen bacteria and ciliates was used in the hydrolysis and fermentation of cellulose. The volatile fatty acids (VFA) produced in this acidogenic reactor were subsequently converted into biogas in a UASB-type methanogenic reactor. A stepwise increase of the loading rate from 11.9 to 25.8 g volatile solids/L reactor volume/day (g VS/L/day) did not affect the degradation efficiency in the acidogenic reactor, whereas the methanogenic reactor appeared to be overloaded at the highest loading rate. Cellulose digestionmore » was almost complete at all loading rates applied. The two-stage anaerobic process was also tested with a closed fluid circuit. In this instance total methane production was 0.438 L CH/sub 4//g VS added, which is equivalent to 98% of the theoretical value. The application of rumen microorganisms in combination with a high-rate methane reactor is proposed as a means of efficient anaerobic degradation of cellulosic residues to methane. Because this newly developed two-phase system is based on processes and microorganisms from the ruminant, it will be referred to as Rumen Derived Anaerobic Digestion (RUDAD)-process.« less

  4. Microorganisms isolated from root canals presenting necrotic pulp and their drug susceptibility in vitro.

    PubMed

    Lana, M A; Ribeiro-Sobrinho, A P; Stehling, R; Garcia, G D; Silva, B K; Hamdan, J S; Nicoli, J R; Carvalho, M A; Farias, L de M

    2001-04-01

    The knowledge about causative agents involved in endodontic infections is increasing, especially due to the improvement of culture techniques for anaerobic bacteria, showing that these microorganisms are predominant in this pathology. In this study, 31 canals with pulp necrosis were microbiologically analyzed before and after manipulation. Obligate and facultative anaerobes, microaerophilic bacteria and yeasts were recovered from 24, 14, 5 and 2 clinical specimens, respectively. The most frequent genera were Prevotella, Fusobacterium, Lactobacillus, Streptococcus, Clostridium and Peptostreptococcus for bacteria and Candida and Saccharomyces for yeasts. Strong positive associations, using an odds ratio system, were found between Clostridium and Prevotella and between Peptostreptococcus and Fusobacterium. Even after the instrumentation and the use of Ca(OH)2, facultative anaerobes were detected in two root canals and yeasts in three. Microorganisms were isolated from seven canals at the end of the endodontic treatment: facultative anaerobes from five and yeasts from one. The microbiological evaluation of root canals with pulp necrosis suggests the presence of polymicrobial infections, mainly involving obligate anaerobes, and shows that the infection may persist after treatment.

  5. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    PubMed

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The effect of anaerobic fermentation processing of cattle waste for biogas as a renewable energy resources on the number of contaminant microorganism

    NASA Astrophysics Data System (ADS)

    Kurnani, Tb. Benito A.; Hidayati, Yuli Astuti; Marlina, Eulis Tanti; Harlia, Ellin

    2016-02-01

    Beef cattle waste has a positive potential that can be exploited, as well as a negative potential that must be controlled so as not to pollute the environment. Beef cattle waste can be processed into an alternative energy, namely biogas. Anaerobic treatment of livestock waste to produce gas can be a solution in providing optional energy, while the resulted sludge as the fermentation residue can be used as organic fertilizer for crops. However, this sludge may containt patogenic microorganism that will damage human and environmet healt. Therefor, this study was aimed to know the potency of beef cattle waste to produce biogas and the decrease of the microorganism's number by using fixed dome digester. Beef cattle waste was processed into biogas using fixed dome digester with a capacity of 12 m3. Biogas composition was measured using Gas Cromatografi, will microorganism species was identified using Total plate Count Methode. The result of this study shows that the produced biogas contains of 75.77% Mol (CH4), 13.28% Mol (N), and 6.96% Mol (CO2). Furthermor, this study show that the anaerobic fermrntation process is capable of reducing microorganisms that could potentially pollute the environment. The number of Escherichia coli and Samonella sp. were <30 MPN/ml respectively save for environment. This process can reduce 84.70% the amount of molds. The only molds still existed after fermentation was A.fumigatus. The number of protozoa can be reduced in order of 94.73%. Protozoa that can be identified in cattle waste before, and after anaerobic fermentation was merely Eimeria sp.. The process also reduced the yeast of 86.11%. The remaining yeast after fermentation was Candida sp. Finally, about 93.7% of endoparasites was reduced by this process. In this case, every trematode and cestoda were 100% reduced, while the nematode only 75%. Reducing some microorganisms that have the potential to pollute the environment signifies sludge anaerobic fermentation residue is safe to

  7. The impact of anaerobic microorganisms activities in ruminant waste and coal

    NASA Astrophysics Data System (ADS)

    Harlia, Ellin; Hamdani, H.; Winantris, Kurnani, Tb. B. A.; Hidayati, Y. A.; Marlina, E. T.; Rahmah, K. N.; Arief, H.; Ridwan, R.; Joni, I. M.

    2018-02-01

    Ruminant (dairy cattle, beef cattle and buffalo) waste from intensive farming concentrated in highly populated areas when stacked and accumulated in certain heights and in anaerobic condition, may produce Green House Gases (GHGs) which lead to global warming. This condition is generated through fermentation by microorganism contained in livestock waste and biogenic activities on coal. The GHGs include CH4 (methane), CO2 (carbon dioxide) and N2O (nitrous oxide). The GHG emission should be early monitored to minimize greater problems. In the other hand, methane can be utilized as an environmental friendly energy after stored as biogas on digester. The aim of this research is to detect how much GHGs formed from ruminant waste and biogenic activities on coal, which can be utilized as an alternative energy. This research conducted as an explorative study utilizing dairy cattle feces, beef cattle feces, buffalo feces and three types of coal: lignite, bituminous and sub-bituminous, which is separately added into medium 98-5 made from mixture of agar medium and chemical components in powder and crystal form diluted with distilled water and rumen liquid, with six repetitions. Each sample was stored into 250 mL anaerobic digester, observed weekly for period of 4 weeks, analyzed by Gas Chromatography (GC-A14). The result showed that GHGs: CH4, CO2 and N2O were found in all samples. Anticipation of GHGs formation to avoid air pollution is by utilizing livestock waste and coal in aerobic condition or in anaerobic condition through digester.

  8. Activated zeolite--suitable carriers for microorganisms in anaerobic digestion processes?

    PubMed

    Weiß, S; Lebuhn, M; Andrade, D; Zankel, A; Cardinale, M; Birner-Gruenberger, R; Somitsch, W; Ueberbacher, B J; Guebitz, G M

    2013-04-01

    Plant cell wall structures represent a barrier in the biodegradation process to produce biogas for combustion and energy production. Consequently, approaches concerning a more efficient de-polymerisation of cellulose and hemicellulose to monomeric sugars are required. Here, we show that natural activated zeolites (i.e. trace metal activated zeolites) represent eminently suitable mineral microhabitats and potential carriers for immobilisation of microorganisms responsible for anaerobic hydrolysis of biopolymers stabilising related bacterial and methanogenic communities. A strategy for comprehensive analysis of immobilised anaerobic populations was developed that includes the visualisation of biofilm formation via scanning electron microscopy and confocal laser scanning microscopy, community and fingerprint analysis as well as enzyme activity and identification analyses. Using SDS polyacrylamide gel electrophoresis, hydrolytical active protein bands were traced by congo red staining. Liquid chromatography/mass spectroscopy revealed cellulolytical endo- and exoglucanase (exocellobiohydrolase) as well as hemicellulolytical xylanase/mannase after proteolytic digestion. Relations to hydrolytic/fermentative zeolite colonisers were obtained by using single-strand conformation polymorphism analysis (SSCP) based on amplification of bacterial and archaeal 16S rRNA fragments. Thereby, dominant colonisers were affiliated to the genera Clostridium, Pseudomonas and Methanoculleus. The specific immobilisation on natural zeolites with functional microbes already colonising naturally during the fermentation offers a strategy to systematically supply the biogas formation process responsive to population dynamics and process requirements.

  9. Assessment of hydrogen metabolism in commercial anaerobic digesters.

    PubMed

    Kern, Tobias; Theiss, Juliane; Röske, Kerstin; Rother, Michael

    2016-05-01

    Degradation of biomass in the absence of exogenous electron acceptors via anaerobic digestion involves a syntrophic association of a plethora of anaerobic microorganisms. The commercial application of this process is the large-scale production of biogas from renewable feedstock as an alternative to fossil fuels. After hydrolysis of polymers, monomers are fermented to short-chain fatty acids and alcohols, which are further oxidized to acetate. Carbon dioxide, molecular hydrogen (H2), and acetate generated during the process are converted to methane by methanogenic archaea. Since many of the metabolic pathways as well as the syntrophic interactions and dependencies during anaerobic digestion involve formation, utilization, or transfer of H2, its metabolism and the methanogenic population were assessed in various samples from three commercial biogas plants. Addition of H2 significantly increased the rate of methane formation, which suggested that hydrogenotrophic methanogenesis is not a rate-limiting step during biogas formation. Methanoculleus and Methanosarcina appeared to numerically dominate the archaeal population of the three digesters, but their proportion and the Bacteria-to-Archaea ratio did not correlate with the methane productivity. Instead, hydrogenase activity in cell-free extracts from digester sludge correlated with methane productivity in a positive fashion. Since most microorganisms involved in biogas formation contain this activity, it approximates the overall anaerobic metabolic activity and may, thus, be suitable for monitoring biogas reactor performance.

  10. Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-Associated Clean Rooms▿

    PubMed Central

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-01-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus. PMID:19363082

  11. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms.

    PubMed

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-06-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.

  12. Complete Reductive Dehalogenation of Brominated Biphenyls by Anaerobic Microorganisms in Sediment

    PubMed Central

    Bedard, Donna L.; Van Dort, Heidi M.

    1998-01-01

    We sought to determine whether microorganisms from the polychlorinated biphenyl (PCB)-contaminated sediment in Woods Pond (Lenox, Mass.) could dehalogenate brominated biphenyls. The PCB dechlorination specificities for the microorganisms in this sediment have been well characterized. This allowed us to compare the dehalogenation specificities for brominated biphenyls and chlorinated biphenyls within a single sediment. Anaerobic sediment microcosms were incubated separately at 25°C with 16 different mono- to tetrabrominated biphenyls (350 μM) and disodium malate (10 mM). Samples were extracted and analyzed by gas chromatography with an electron capture detector and a mass spectrometer detector at various times for up to 54 weeks. All of the tested brominated biphenyls were dehalogenated. For most congeners, including 2,6-dibromobiphenyl (26-BB) and 24-25-BB, the dehalogenation began within 1 to 2 weeks. However, for 246-BB and 2-2-BB, debromination was first observed at 7 and 14 weeks, respectively. Most intermediate products did not persist, but when 2-2-BB was produced as a dehalogenation product, it persisted for at least 15 weeks before it was dehalogenated to 2-BB and then to biphenyl. The dehalogenation specificities for brominated and chlorinated biphenyls were similar: meta and para substituents were generally removed first, and ortho substituents were more recalcitrant. However, the brominated biphenyls were better dehalogenation substrates than the chlorinated biphenyls. All of the tested bromobiphenyls, including those with ortho and unflanked meta and para substituents, were ultimately dehalogenated to biphenyl, whereas their chlorinated counterparts either were not dehalogenation substrates or were only partially dehalogenated. Our data suggest that PCB-dechlorinating microorganisms may be able to dehalogenate brominated biphenyls and may exhibit a relaxed specificity for these substrates. PMID:16349530

  13. [Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang Oilfield (China)].

    PubMed

    Nazina, T N; Shestakova, N M; Grigor'ian, A A; Mikhaĭlova, E M; Turova, T P; Poltaraus, A B; Feng, C; Ni, F; Beliaev, S S

    2006-01-01

    The number of microorganisms of major metabolic groups and the rates of sulfate-reducing and methanogenic processes in the formation waters of the high-temperature horizons of Dagang oilfield have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogenic bacteria. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioassays involving NaH14CO3 and 14CH3COONa. Analysis of 16S rDNA of enrichment cultures of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermoautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not identified. Phylotypes of the representatives of Thermococcus spp. were found among 16S rDNAs of archaea. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found at high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.

  14. Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies.

    PubMed

    Nijenhuis, Ivonne; Kuntze, Kevin

    2016-04-01

    Contamination and remediation of groundwater with halogenated organics and understanding of involved microbial reactions still poses a challenge. Over the last years, research in anaerobic microbial dehalogenation has advanced in many aspects providing information about the reaction, physiology of microorganisms as well as approaches to investigate the activity of microorganisms in situ. Recently published crystal structures of reductive dehalogenases (Rdh), heterologous expression systems and advanced analytical, proteomic and stable isotope approaches allow addressing the overall reaction and specific enzymes as well as co-factors involved during anaerobic microbial dehalogenation. In addition to Dehalococcoides spp., Dehalobacter and Dehalogenimonas strains have been recognized as important and versatile organohalide respirers. Together, these provide perspectives for integrated concepts allowing to improve and monitor in situ biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Method for treating wastewater using microorganisms and vascular aquatic plants

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  16. Analysis of Membrane Lipids of Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    MacNaughton, Sarah

    2006-01-01

    A method of characterization of airborne micro-organisms in a given location involves (1) large-volume filtration of air onto glass-fiber filters; (2) accelerated extraction of membrane lipids of the collected micro-organisms by use of pressurized hot liquid; and (3) identification and quantitation of the lipids by use of gas chromatography and mass spectrometry. This method is suitable for use in both outdoor and indoor environments; for example, it can be used to measure airborne microbial contamination in buildings ("sick-building syndrome"). The classical approach to analysis of airborne micro-organisms is based on the growth of cultureable micro-organisms and does not provide an account of viable but noncultureable micro-organisms, which typically amount to more than 90 percent of the micro-organisms present. In contrast, the present method provides an account of all micro-organisms, including cultureable, noncultureable, aerobic, and anaerobic ones. The analysis of lipids according to this method makes it possible to estimate the number of viable airborne micro-organisms present in the sampled air and to obtain a quantitative profile of the general types of micro-organisms present along with some information about their physiological statuses.

  17. Anaerobic thermophilic culture system

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

  18. Anaerobic Redox Cycling of Iron by Freshwater Sediment Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Karrie A.; Urrutia, Matilde M.; Churchill, Perry F.

    2006-01-01

    The potential for microbially-mediated anaerobic redox cycling of iron (Fe) was examined in a first-generation enrichment culture of freshwater wetland sediment microorganisms. MPN enumerations revealed the presence of significant populations of Fe(III)-reducing (ca. 108 cells mL-1) and Fe(II)-oxidizing, nitrate-reducing organisms (ca. 105 cells mL-1) in the sediment used to inoculate the enrichment cultures. Nitrate reduction commenced immediately following inoculation of acetate-containing (ca. 1 mM) medium with a small quantity (1% vol/vol) of wetland sediment, and resulted in the transient accumulation of NO2- and production of a mixture of end-products including NH4+. Fe(III) oxide (high surface area goethite) reduction took placemore » - after NO3- was depleted and continued until all the acetate was utilized. Addition of NO3 after Fe(III) reduction ceased resulted in the immediate oxidation of Fe(II) coupled to reduction of + NO3-to NH4 . No significant NO2- accumulation was observed during nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation occurred in pasteurized controls. Microbial community structure in the enrichment was monitored by DGGE analysis of PCR amplified 16s rDNA and RT-PCR amplified 16S rRNA, as well as by construction of 16S rDNA clone libraries for four different time points during the experiment. Strong similarities in dominant members of the microbial community were observed in the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases of the experiment, specifically the common presence of organisms closely related (= 95% sequence similarity) to the genera Geobacter and Dechloromonas. These results indicate that the wetland sediments contained organisms such as Geobacter sp. which are capable of both + dissimilatory Fe(III) reduction and oxidation of Fe(II) with reduction of NO3-reduction to NH4 . Our findings suggest that microbially-catalyzed nitrate-dependent Fe(II) oxidation has the potential to contribute to a dynamic

  19. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    PubMed Central

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. PMID:26887229

  20. Anaerobic thermophilic culture

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

  1. My Lifelong Passion for Biochemistry and Anaerobic Microorganisms.

    PubMed

    Thauer, Rudolf Kurt

    2015-01-01

    Early parental influence led me first to medical school, but after developing a passion for biochemistry and sensing the need for a deeper foundation, I changed to chemistry. During breaks between semesters, I worked in various biochemistry labs to acquire a feeling for the different areas of investigation. The scientific puzzle that fascinated me most was the metabolism of the anaerobic bacterium Clostridium kluyveri, which I took on in 1965 in Karl Decker's lab in Freiburg, Germany. I quickly realized that little was known about the biochemistry of strict anaerobes such as clostridia, methanogens, acetogens, and sulfate-reducing bacteria and that these were ideal model organisms to study fundamental questions of energy conservation, CO2 fixation, and the evolution of metabolic pathways. My passion for anaerobes was born then and is unabated even after 50 years of study.

  2. Assessment of anaerobic blood cultures in pediatric oncology patients.

    PubMed

    Monsonís Cabedo, Manuel; Rives Solá, Susana; Noguera-Julian, Antoni; Urrea Ayala, Mireia; Cruz Martinez, Ofelia; Gené Giralt, Amadeu

    2017-01-01

    The routine use of a single aerobic bottle for blood culture in pediatric patients has become commonplace, as anaerobic bacteria are not frequently involved in clinically significant infections. The aim of this study was to assess the usefulness of routinely performing anaerobic blood cultures in pediatric oncology patients. Prospective study was conducted on pediatric (<18 years) patients affected with febrile syndrome after receiving chemotherapy for hematological or solid malignancies. Samples were inoculated into pediatric aerobic and standard anaerobic bottles (BacT/Alert automatic system). Strains were considered clinically significant, or deemed as contaminants, depending on isolation circumstances and clinical criteria. A total of 876 blood cultures from 228 patients were processed during the 21-month study period (January 2014 to September 2015). Baseline diagnosis included 143 solid tumors and 67/18 cases of leukemia/lymphoma. Bacterial growth was detected in 90 (10.2%) blood cultures for 95 different isolates, of which 62 (7.1%)/63 isolates were considered clinically significant. Among the latter, 38 (60.3%) microorganisms grew in both aerobic and anaerobic bottles, 18 (28.6%) only in aerobic bottles, and 7 (11.1%) only in anaerobic bottles. Gram-negative bacilli (33; 52.4%), mainly from the Enterobacteriaceae family, were the most frequently isolated microorganisms. Overall, only 3 out of 90 isolates (3.3%) were strict anaerobes (Propionibacterium acnes), and all of them were deemed contaminants. Strict anaerobes did not cause significant infections in febrile pediatric oncology patients, and anaerobic blood culture bottles offered no additional advantages over aerobic media. Our results suggest that routine blood cultures should be solely processed in aerobic media in this group of patients. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  3. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater.

    PubMed

    Key, Katherine C; Sublette, Kerry L; Duncan, Kathleen; Mackay, Douglas M; Scow, Kate M; Ogles, Dora

    2013-01-01

    Although the anaerobic biodegradation of methyl tert -butyl ether (MTBE) and tert -butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13 C 5 -MTBE, 13 C 1 -MTBE (only methoxy carbon labeled), or 13 C 4 -TBA. 13 C-DNA and 12 C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert -butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13 C-labeled MTBE and TBA in situ and the 13 C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13 C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix , were only detected in the clone libraries where MTBE and TBA were fully labeled with 13 C, suggesting that they were involved in processing carbon from the tert -butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13 C. It is likely that members of this genus were secondary degraders cross-feeding on 13 C-labeled metabolites such as acetate.

  4. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater

    PubMed Central

    Key, Katherine C.; Sublette, Kerry L.; Duncan, Kathleen; Mackay, Douglas M.; Scow, Kate M.; Ogles, Dora

    2014-01-01

    Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate. PMID:25525320

  5. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms.

    PubMed

    Park, Ho-Won; Choi, Kyu-Duck; Shin, Il-Shik

    2013-01-01

    The antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish root was investigated against oral microorganisms: 6 strains of facultative anaerobic bacteria, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Staphylococcus aureus, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans; one strain of yeast, Candida albicans, and 3 strains of anaerobic bacteria, Fusobacterium nucleatum, Prevotella nigrescens, and Clostridium perfringens. The ITCs extracted from horseradish root showed antimicrobial activity against all oral microorganisms by the paper disk method. The minimum bactericidal concentration (MBC) of the ITCs extracted from horseradish root ranged from 1.25 to 5.00 mg/ml against 6 strains of facultative anaerobic bacteria and one strain of yeast, and 4.17 to 16.67 mg/ml against 3 strains of anaerobic bacteria. The ITCs extracted from horseradish root showed the strongest antimicrobial activity, with a MBC of 1.25 mg/ml, against C. albicans among facultative microorganisms, and 4.17 mg/ml against F. nucleatum among anaerobic bacteria. These results suggest that the ITCs extracted from horseradish root may be a candidate for use as an antimicrobial agent against oral microorganisms.

  6. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor.

    PubMed

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. The effect of anaerobic digestion and storage on indicator microorganisms in swine and dairy manure.

    PubMed

    Costa, Annamaria; Gusmara, Claudia; Gardoni, Davide; Zaninelli, Mauro; Tambone, Fulvia; Sala, Vittorio; Guarino, Marcella

    2017-11-01

    The aim of this experimental study was to evaluate the influence of anaerobic digestion and storage on indicator microorganisms in swine and dairy excreta. Samples were collected every 90 days for 15 months at eight farms, four pig, and four dairy farms, four of them having a biogas plant. Moreover, to evaluate storage effects on samples, 20 l of manure and slurry taken at each farm (digested manure only in farms with a biogas plant) were stored in a controlled climatic chamber at 18 °C, for 6 months. The bacterial load and the chemical-physical characteristics of excreta were evaluated at each sampling time, stored slurry, and manure were sampled and analyzed every 2 months. A high variability of the concentration of bacteria in the different excreta types was observed during the experiment, mainly depending on the type and time of treatment. No sample revealed either the presence of Escherichia coli O157:H7 or of Salmonella, usually linked to the temporary rearing of infected animals in facilities. Anaerobic digestion and storage affected in a significant way the reduction of indicator bacteria like lactobacilli, coliforms, and streptococci. Anaerobic digestion lowered coliforms in pig slurry (- 2.80 log, P < 0.05), streptococci in dairy manure (- 2.44 log, P < 0.001) and in pig slurry (- 1.43 log, P < 0.05), and lactobacilli in pig slurry (- 3.03 log, P < 0.05). Storage lowered coliforms and the other indicators counts, in particular in fresh wastes, while clostridia did not show a reduction in concentration.

  8. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    PubMed Central

    Callaghan, Amy V.

    2013-01-01

    Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM). The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria (SRB) via “reverse methanogenesis” and is catalyzed by a homolog of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and SRB, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, “intra-aerobic” pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appear to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase). Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an “intra-aerobic” denitrification pathway similar to that described for ‘Methylomirabilis oxyfera.’ PMID:23717304

  9. Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor.

    PubMed

    Roest, Kees; Altinbas, Mahmut; Paulo, Paula L; Heilig, H G H J; Akkermans, Antoon D L; Smidt, Hauke; de Vos, Willem M; Stams, Alfons J M

    2005-10-01

    To gain insight into the microorganisms involved in direct and indirect methane formation from methanol in a laboratory-scale thermophilic (55 degrees C) methanogenic bioreactor, reactor sludge was disrupted and serial dilutions were incubated in specific growth media containing methanol and possible intermediates of methanol degradation as substrates. With methanol, growth was observed up to a dilution of 10(8). However, when Methanothermobacter thermoautotrophicus strain Z245 was added for H2 removal, growth was observed up to a 10(10)-fold dilution. With H2/CO2 and acetate, growth was observed up to dilutions of 10(9) and 10(4), respectively. Dominant microorganisms in the different dilutions were identified by 16S rRNA-gene diversity and sequence analysis. Furthermore, dilution polymerase chain reaction (PCR) revealed a similar relative abundance of Archaea and Bacteria in all investigated samples, except in enrichment with acetate, which contained 100 times less archaeal DNA than bacterial DNA. The most abundant bacteria in the culture with methanol and strain Z245 were most closely related to Moorella glycerini. Thermodesulfovibrio relatives were found with high sequence similarity in the H2/CO2 enrichment, but also in the original laboratory-scale bioreactor sludge. Methanothermobacter thermoautotrophicus strains were the most abundant hydrogenotrophic archaea in the H2/CO2 enrichment. The dominant methanol-utilizing methanogen, which was present in the 10(8)-dilution, was most closely related to Methanomethylovorans hollandica. Compared to direct methanogenesis, results of this study indicate that syntrophic, interspecies hydrogen transfer-dependent methanol conversion is equally important in the thermophilic bioreactor, confirming previous findings with labeled substrates and specific inhibitors.

  10. Anaerobic benzene degradation by bacteria

    PubMed Central

    Vogt, Carsten; Kleinsteuber, Sabine; Richnow, Hans‐Hermann

    2011-01-01

    Summary Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen‐dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene‐degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the ‘key players’ of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation. PMID:21450012

  11. A Review of the Anaerobic Digestion of Fruit and Vegetable Waste.

    PubMed

    Ji, Chao; Kong, Chui-Xue; Mei, Zi-Li; Li, Jiang

    2017-11-01

    Fruit and vegetable waste is an ever-growing global question. Anaerobic digestion techniques have been developed that facilitate turning such waste into possible sources for energy and fertilizer, simultaneously helping to reduce environmental pollution. However, various problems are encountered in applying these techniques. The purpose of this study is to review local and overseas studies, which focus on the use of anaerobic digestion to dispose fruit and vegetable wastes, discuss the acidification problems and solutions in applying anaerobic digestion for fruit and vegetable wastes and investigate the reactor design (comparing single phase with two phase) and the thermal pre-treatment for processing raw wastes. Furthermore, it analyses the dominant microorganisms involved at different stages of digestion and suggests a focus for future studies.

  12. In situ identification of the synthrophic protein fermentative Coprothermobacter spp. involved in the thermophilic anaerobic digestion process.

    PubMed

    Gagliano, Maria Cristina; Braguglia, Camilla Maria; Rossetti, Simona

    2014-09-01

    Thermophilic bacteria have recently attracted great attention because of their potential application in improving different biochemical processes such as anaerobic digestion of various substrates, wastewater treatment or hydrogen production. In this study we report on the design of a specific 16S rRNA-targeted oligonucleotide probe for detecting members of Coprothermobacter genus characterized by a strong protease activity to degrade proteins and peptides. The newly designed CTH485 probe and helper probes hCTH429 and hCTH439 were optimized for use in fluorescence in situ hybridization (FISH) on thermophilic anaerobic sludge samples. In situ probing revealed that thermo-adaptive mechanisms shaping the 16S rRNA gene may affect the identification of thermophilic microorganisms. The novel developed FISH probe extends the possibility to study the widespread thermophilic syntrophic interaction of Coprothermobacter spp. with hydrogenotrophic methanogenic archaea, whose establishment is a great benefit for the whole anaerobic system. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. The effects of rare earth elements on an anaerobic hydrogen producing microorganism

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; St Jeor, J. D.; Reed, D. W.

    2016-12-01

    Rapid growth of new energy technologies and consumer electronics is leading to increased fluxes of rare earth elements (REE), during the phases of resource extraction, product usage, recycling, and disposal. However, little is known about the impacts of these increased REE fluxes on environmental ecosystems, whether natural or engineered (e.g., biological waste treatment systems). We have been evaluating the effects of europium and yttrium on hydrogen production by an anaerobic fermenting microorganism, Sporacetigenium mesophilum, originally isolated from an anaerobic digester at a wastewater treatment plant.1 Europium and yttrium are important components of phosphors used in fluorescent lighting, and are expected to be recycled in larger quantities in the future. Also tested was the compound tributyl phosphate (TBP), a widely used complexing agent in lanthanide and actinide separations. TBP and related compounds may be used in recycling processes for REE. S. mesophilumcultures were amended with Eu at 100 ppb, 1 ppm and 10 ppm and hydrogen production was measured. While the lowest Eu concentration had minimal effect on hydrogen production compared to the no Eu control, the two higher Eu amendment levels appeared to enhance hydrogen production. TBP at 0.1 g/L completely inhibited hydrogen production. Measurements of aqueous Eu concentrations indicated that >85% of the added Eu remained soluble at all three of the Eu addition levels tested. Experiments to ascertain whether enhancement (or inhibition) occurs at even higher Eu concentrations are underway, as are corresponding experiments with yttrium. This work contributes to the assessment of the potential impacts of increased REE recycling and processing on ecosystems, and supports decision making with respect to disposal of wastewaters generated during these industrial practices. 1Chen, S., Song, L. and X. Dong. Int J. Syst. Evol. Microbiol. 56, 721-725, doi: 10.1099/ijs.0.63686-0 (2006).

  14. Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

    PubMed

    Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes

    2009-07-01

    Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

  15. Production of Volatile Derivatives of Metal(loid)s by Microflora Involved in Anaerobic Digestion of Sewage Sludge

    PubMed Central

    Michalke, K.; Wickenheiser, E. B.; Mehring, M.; Hirner, A. V.; Hensel, R.

    2000-01-01

    Gases released from anaerobic wastewater treatment facilities contain considerable amounts of volatile methyl and hydride derivatives of metals and metalloids, such as arsine (AsH3), monomethylarsine, dimethylarsine, trimethylarsine, trimethylbismuth (TMBi), elemental mercury (Hg0), trimethylstibine, dimethyltellurium, and tetramethyltin. Most of these compounds could be shown to be produced by pure cultures of microorganisms which are representatives of the anaerobic sewage sludge microflora, i.e., methanogenic archaea (Methanobacterium formicicum, Methanosarcina barkeri, Methanobacterium thermoautotrophicum), sulfate-reducing bacteria (Desulfovibrio vulgaris, D. gigas), and a peptolytic bacterium (Clostridium collagenovorans). Additionally, dimethylselenium and dimethyldiselenium could be detected in the headspace of most of the pure cultures. This is the first report of the production of TMBi, stibine, monomethylstibine, and dimethylstibine by a pure culture of M. formicicum. PMID:10877769

  16. The fate of chlorinated aliphatics in anaerobic treatment under transient loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Y.C.

    1993-01-01

    A CSTR with dispersed-growth anaerobic bacteria that simultaneously remove COD and chlorinated aliphatics was used. Seven chlorinated aliphatics (methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, 1,1-dichloroethylene, trichloroethylene, and tetrachloroethylene) were biotransformed into lower-chlorinated compounds by anaerobic treatment, utilizing propionic acid (HPr) or acetic acid (HAc). The microorganisms supplied with HAc grew and were sustained at higher BSS concentrations (4,500 to 11,000 mg/L) than those with HPr (2,000 to 5,000 mg/L). The anaerobic treatment process has a considerable potential for acclimation to and biotransformation of toxic chlorinated aliphatics. For providing a safe operation range, the maximum loading rates of the chlorinated aliphaticsmore » are defined as the observed daily injection of those compounds which resulted in 50% activity of the biomass. Based on the reactor volume, the maximum chlorinated compound loading rates to the microorganisms metabolizing HPr were from 0.4 to 90 mg/L-day, while the rates ranged from 0.6 to 190 mg/L-day for the microorganisms metabolizing HAc. When based on biomass, the maximum loading rates of the microorganisms metabolizing HPr were from 0.2 to 26 mg/g cell-day, while rates for the microorganisms metabolizing HAc ranged from 0.1 to 19 mg/g cell-day. Anaerobic microorganisms have higher resistance to chlorinated aliphatic alkenes than alkanes, and can biotransform about 0.04 to 68 pound chlorinated aliphatics while simultaneously metabolizing 1,000 pounds COD. Therefore, within the safe operation range, the anaerobic process can stabilize organic pollution at a high rate while still biotransforming chlorinated aliphatics.« less

  17. Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus▿†

    PubMed Central

    Holmes, Dawn E.; Risso, Carla; Smith, Jessica A.; Lovley, Derek R.

    2011-01-01

    Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]benzene to [14C]carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism, and [14C]benzoate was produced from [14C]benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not upregulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- than in benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much-needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms. PMID:21742914

  18. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane

    PubMed Central

    Wegener, Gunter; Krukenberg, Viola; Ruff, S. Emil; Kellermann, Matthias Y.; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine) could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1–7‰ of archaeal 16S rRNA gene amplicons). In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1–9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results support a functioning of AOM

  19. The effect of the source of microorganisms on adaptation of hydrolytic consortia dedicated to anaerobic digestion of maize silage.

    PubMed

    Poszytek, Krzysztof; Pyzik, Adam; Sobczak, Adam; Lipinski, Leszek; Sklodowska, Aleksandra; Drewniak, Lukasz

    2017-08-01

    The main aim of this study was to evaluate the effect of the source of microorganisms on the selection of hydrolytic consortia dedicated to anaerobic digestion of maize silage. The selection process was investigated based on the analysis of changes in the hydrolytic activity and the diversity of microbial communities derived from (i) a hydrolyzer of a commercial agricultural biogas plant, (ii) cattle slurry and (iii) raw sewage sludge, during a series of 10 passages. Following the selection process, the adapted consortia were thoroughly analyzed for their ability to utilize maize silage and augmentation of anaerobic digestion communities. The results of selection of the consortia showed that every subsequent passage of each consortium leads to their adaptation to degradation of maize silage, which was manifested by the increased hydrolytic activity of the adapted consortia. Biodiversity analysis (based on the 16S rDNA amplicon sequencing) confirmed the changes microbial community of each consortium, and showed that after the last (10th) passage all microbial communities were dominated by the representatives of Lactobacillaceae, Prevotellaceae, Veillonellaceae. The results of the functional analyses showed that the adapted consortia improved the efficiency of maize silage degradation, as indicated by the increase in the concentration of glucose and volatile fatty acids (VFAs), as well as the soluble chemical oxygen demand (sCOD). Moreover, bioaugmentation of anaerobic digestion communities by the adapted hydrolytic consortia increased biogas yield by 10-29%, depending on the origin of the community. The obtained results also indicate that substrate input (not community origin) was the driving force responsible for the changes in the community structure of hydrolytic consortia dedicated to anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    NASA Astrophysics Data System (ADS)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  1. Some unique features of alkaliphilic anaerobes

    NASA Astrophysics Data System (ADS)

    Roof, Erin; Pikuta, Elena; Otto, Christopher; Williams, George; Hoover, Richard

    2013-09-01

    This article explores two topics involving the examination of four strains of alkaliphilic anaerobes. The first topic was dedicated to detection of the ability of microorganisms to metabolize alternative chirality substrates. Two saccharolytic anaerobic bacteria were chosen for the first experiment: Anaerovirgula multivorans strain SCAT, which is gram positive and spore-forming; and Spirochaeta dissipatitropha, strain ASpC2T, which is gram negative. It was found that both checked sugarlytics were able to use L-ribose and L-arabinose, as growth substrates. The second part was concerned of study a chemolithotrophy in two halo-alkaliphilic sulfate reducing bacteria: Desulfonatornum thiodismutans strain MLF1T and Desulfonatronum lacustre strain Z-7951T. The experiments with lithotrophs had demonstrated that strain MLF1T was capable to grow without any organic source of carbon, while strain Z-7951T had required at least 2 mM sodium acetate for growth. Anaerobic technique was used for preparation of the growth media and maintenance of these bacterial cultures. Standard methods for Gram, spore, and flagella staining were applied for characterization of cytomorphology. In this article, the results of the experiments performed on cytological, physiological, and biochemical levels are presented and discussed.

  2. Periodontopathic microorganisms in peripheric blood after scaling and root planing.

    PubMed

    Lafaurie, Gloria Inés; Mayorga-Fayad, Isabel; Torres, María Fernanda; Castillo, Diana Marcela; Aya, Maria Rosario; Barón, Alexandra; Hurtado, Paola Andrea

    2007-10-01

    The objective of this study was to evaluate the frequency of periodontopathic and other subgingival anaerobic and facultative bacteria in the bloodstream following scaling and root planing (SRP). Forty-two patients with severe generalized chronic periodontitis (GChP) and generalized aggressive periodontitis (GAgP) were included in the study. Four samples of peripheric blood were drawn from the cubital vein at different times: Pre-treatment: immediately before the SRP procedure (T1), immediately after treatment (T2), 15 min. post-treatment (T3) and 30 min. post-treatment (T4). In order to identify the presence of microorganisms in blood, subcultures were conducted under anaerobic conditions. 80.9% of the patients presented positive cultures after SRP and it occurred more frequently immediately after treatment; however, 19% of the patients still had microorganisms in the bloodstream 30 min. after the procedure. The periodontopathic microorganisms more frequently identified were Porphyromonas gingivalis and Micromonas micros. Campylobacter spp., Eikenella corrodens, Tannerella forsythensis, Fusobacterium spp. and Prevotella intermedia were isolated less often. Actinomyces spp. were also found frequently during bacteraemia after SRP. SRP induced bacteraemia associated with anaerobic bacteria, especially in patients with periodontal disease.

  3. Identification of anaerobic selenate-respiring bacteria from aquatic sediments.

    PubMed

    Narasingarao, Priya; Häggblom, Max M

    2007-06-01

    The diversity population of microorganisms with the capability to use selenate as a terminal electron acceptor, reducing it to selenite and elemental selenium by the process known as dissimilatory selenate reduction, is largely unknown. The overall objective of this study was to gain an in-depth understanding of anaerobic biotransformation of selenium in the environment, particularly anaerobic respiration, and to characterize the microorganisms catalyzing this process. Here, we demonstrate the isolation and characterization of four novel anaerobic dissimilatory selenate-respiring bacteria enriched from a variety of sources, including sediments from three different water bodies in Chennai, India, and a tidal estuary in New Jersey. Strains S5 and S7 from India, strain KM from the Meadowlands, NJ, and strain pn1, categorized as a laboratory contaminant, were all phylogenetically distinct, belonging to various phyla in the bacterial domain. The 16S rRNA gene sequence shows that strain S5 constitutes a new genus belonging to Chrysiogenetes, while strain S7 belongs to the Deferribacteres, with greater than 98% 16S rRNA gene similarity to Geovibrio ferrireducens. Strain KM is related to Malonomonas rubra, Pelobacter acidigallici, and Desulfuromusa spp., with 96 to 97% 16S rRNA gene similarity. Strain pn1 is 99% similar to Pseudomonas stutzeri. Strains S5, S7, and KM are obligately anaerobic selenate-respiring microorganisms, while strain pn1 is facultatively anaerobic. Besides respiring selenate, all these strains also respire nitrate.

  4. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    PubMed

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m 2 /day) and 26 mg N/L/day (43 mg N/m 2 /day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  5. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism

    USGS Publications Warehouse

    Lovley, D.R.; Stolz, J.F.; Nord, G.L.; Phillips, E.J.P.

    1987-01-01

    The potential contribution of microbial metabolism to the magnetization of sediments has only recently been recognized. In the presence of oxygen, magnetotactic bacteria can form intracellular chains of magnetite while using oxygen or nitrate as the terminal electron acceptor for metabolism1. The production of ultrafine-grained magnetite by magnetotactic bacteria in surficial aerobic sediments may contribute significantly to the natural remanent magnetism of sediments2-4. However, recent studies on iron reduction in anaerobic sediments suggested that bacteria can also generate magnetite in the absence of oxygen5. We report here on a sediment organism, designated GS-15, which produces copious quantities of ultrafine-grained magnetite under anaerobic conditions. GS-15 is not magnetotactic, but reduces amorphic ferric oxide to extracellular magnetite during the reduction of ferric iron as the terminal electron acceptor for organic matter oxidation. This novel metabolism may be the mechanism for the formation of ultrafine-grained magnetite in anaerobic sediments, and couldaccount for the accumulation of magnetite in ancient iron formations and hydrocarbon deposits. ?? 1987 Nature Publishing Group.

  6. Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.

    PubMed

    Grübel, Klaudiusz; Machnicka, Alicja

    2009-12-01

    Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.

  7. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.

    PubMed

    Rabus, Ralf; Boll, Matthias; Heider, Johann; Meckenstock, Rainer U; Buckel, Wolfgang; Einsle, Oliver; Ermler, Ulrich; Golding, Bernard T; Gunsalus, Robert P; Kroneck, Peter M H; Krüger, Martin; Lueders, Tillmann; Martins, Berta M; Musat, Florin; Richnow, Hans H; Schink, Bernhard; Seifert, Jana; Szaleniec, Maciej; Treude, Tina; Ullmann, G Matthias; Vogt, Carsten; von Bergen, Martin; Wilkes, Heinz

    2016-01-01

    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and

  8. Flow cytometry and conventional enumeration of microorganisms in ships' ballast water and marine samples.

    PubMed

    Joachimsthal, Eva L; Ivanov, Volodymyr; Tay, Joo-Hwa; Tay, Stephen T-L

    2003-03-01

    Conventional methods for bacteriological testing of water quality take long periods of time to complete. This makes them inappropriate for a shipping industry that is attempting to comply with the International Maritime Organization's anticipated regulations for ballast water discharge. Flow cytometry for the analysis of marine and ship's ballast water is a comparatively fast and accurate method. Compared to a 5% standard error for flow cytometry analysis the standard methods of culturing and epifluorescence analysis have errors of 2-58% and 10-30%, respectively. Also, unlike culturing methods, flow cytometry is capable of detecting both non-viable and viable but non-culturable microorganisms which can still pose health risks. The great variability in both cell concentrations and microbial content for the samples tested is an indication of the difficulties facing microbial monitoring programmes. The concentration of microorganisms in the ballast tank was generally lower than in local seawater. The proportion of aerobic, microaerophilic, and facultative anaerobic microorganisms present appeared to be influenced by conditions in the ballast tank. The gradual creation of anaerobic conditions in a ballast tank could lead to the accumulation of facultative anaerobic microorganisms, which might represent a potential source of pathogenic species.

  9. Biological contamination of Mars. I. Survival of terrestrial microorganisms in simulated Martian environments.

    PubMed

    Scher, S; Packer, E; Sagan, C

    1964-01-01

    It has been postulated that the accidental introduction of terrestrial microorganisms to other planets during the course of space exploration might impede or bias the detection of organic matter and possible indigenous organisms, and thereby confuse subsequent studies of extraterrestrial life. To assess the likelihood of biological contamination of Mars, we have applied the principle of natural selection on a laboratory scale. Terrestrial microorganisms were collected from a variety of environments, including regions of high alkalinity, low mean daily temperature, and low annual rainfall. The air-dried soils were then subjected to a simulated Martian environment involving 12-hour freeze-thaw cycles from about -60 degrees C to about +20 degrees C; atmospheres of 95 per cent nitrogen, 5 percent carbon dioxide and low moisture content: < or = 0.1 atm pressure; and a total ultraviolet dose at 2537 angstrom of 10(9) erg cm-2. In some experiments, organic supplements were provided. Survivors were scored on supplemented agar. Preliminary results indicate a wide variety of survivors, even when no organic supplements were introduced. Survivors included obligate and facultative anaerobic spore-formers and non-spore-forming facultative anaerobic bacteria. Diurnal freezing and thawing was continued for six months. There was no significant loss of viability after the first freeze-thaw cycle. An extensive literature survey shows that survival of terrestrial microorganisms under individual simulated Martian conditions has been known for decades. The present investigation shows the absence of pronounced synergistic effects inhibiting survival. The probable existence of organic matter and moisture on Mars, at least in restricted locales and times, makes it especially likely that terrestrial microorganisms can also reproduce on Mars. The demonstration that all samples of terrestrial soil tested contain a population of microorganisms which survive in simulated Martian environments

  10. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review.

    PubMed

    Hung, Chun-Hsiung; Chang, Yi-Tang; Chang, Yu-Jie

    2011-09-01

    Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    PubMed Central

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

  12. Microbial ecology of anaerobic digesters: the key players of anaerobiosis.

    PubMed

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.

  13. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  14. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface

    PubMed Central

    Ueno, Akio; Shimizu, Satoru; Tamamura, Shuji; Okuyama, Hidetoshi; Naganuma, Takeshi; Kaneko, Katsuhiko

    2016-01-01

    Decomposition of humic substances (HSs) is a slow and cryptic but non-negligible component of carbon cycling in sediments. Aerobic decomposition of HSs by microorganisms in the surface environment has been well documented; however, the mechanism of anaerobic microbial decomposition of HSs is not completely understood. Moreover, no microorganisms capable of anaerobic decomposition of HSs have been isolated. Here, we report the anaerobic decomposition of humic acids (HAs) by the anaerobic bacterium Clostridium sp. HSAI-1 isolated from the deep terrestrial subsurface. The use of 14C-labelled polycatechol as an HA analogue demonstrated that the bacterium decomposed this substance up to 7.4% over 14 days. The decomposition of commercial and natural HAs by the bacterium yielded lower molecular mass fractions, as determined using high-performance size-exclusion chromatography. Fourier transform infrared spectroscopy revealed the removal of carboxyl groups and polysaccharide-related substances, as well as the generation of aliphatic components, amide and aromatic groups. Therefore, our results suggest that Clostridium sp. HSAI-1 anaerobically decomposes and transforms HSs. This study improves our understanding of the anaerobic decomposition of HSs in the hidden carbon cycling in the Earth’s subsurface. PMID:26743007

  15. A Review of Anaerobic Infections of the Oral Cavity in Egypt

    DTIC Science & Technology

    1987-01-01

    of Anaerobic Epidemiological studies have demonstrated a strong positive correlation between oral microorgan- Infections of the Oral Cavity isms and... oral cavity ". Reports published on the gingivitis were reported by the Greek scientist Xen- various aspects of these conditions have confirmed ophen...THE ORAL CAVITY cable to anaerobic synergistic infections. In other words, anaerobic infections have generally been con- Mucous membranes of the

  16. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    PubMed

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  17. Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms

    USGS Publications Warehouse

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    1999-01-01

    Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.

  18. Anaerobic bacteria commonly colonize the lower airways of intubated ICU patients.

    PubMed

    Agvald-Ohman, C; Wernerman, J; Nord, C E; Edlund, C

    2003-05-01

    To investigate respiratory tract colonization by aerobic and anaerobic bacteria in mechanically ventilated patients. Bacterial colonization of the stomach and the respiratory tract was qualitatively and quantitatively analyzed over time in 41 consecutive mechanically ventilated patients in a Swedish intensive care unit (ICU), with special emphasis on elucidation of the role of anaerobic bacteria in the lower respiratory tract. Samples were taken from the oropharynx, gastric juice, subglottic space and trachea within 24 h (median 14 h) of intubation, and then every third day until day 18 and every fifth day until day 33. The patients were often heavily colonized with microorganisms not considered to belong to a healthy normal oropharyngeal and gastric flora on admission to the ICU. A majority harbored enterococci, coagulase-negative staphylococci and Candida spp. in at least one site on day 1. Anaerobic bacteria, mainly peptostreptococci and Prevotella spp., were isolated from subglottic and/or tracheal secretions in 59% of the patients. Different routes of tracheal colonization for different groups of microorganisms were found. Primary or concomitant colonization of the oropharynx with staphylococci, enterococci, enterobacteria and Candida was often seen, while Pseudomonas spp., other non-fermenting Gram-negative rods and several anaerobic species often primarily colonized the trachea, indicating exogenous or direct gastrointestinal routes of colonization. Mechanically ventilated patients were heavily colonized in their lower airways by potential pathogenic microorganisms, including a high load of anaerobic bacteria. Different routes of colonization were shown for different species.

  19. Molecular characterization of anaerobic sulfur-oxidizing microbial communities in up-flow anaerobic sludge blanket reactor treating municipal sewage.

    PubMed

    Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi

    2014-11-01

    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill.

    PubMed

    Zhou, Weili; Imai, Tsuyoshi; Ukita, Masao; Li, Fusheng; Yuasa, Akira

    2007-01-01

    Serious inhibition was found in the regular up-flow anaerobic sludge blanket (UASB) reactor in treating the evaporator condensate from a sulfite pulp mill, which contained high strength sulfur compounds. After applying the direct limited aeration in the UASB, the inhibition was alleviated gradually and the activity of the microorganisms was recovered. The COD removal rate increased from 40% to 80% at the organic loading rate of 8kgCODm(-3)d(-1) and a hydraulic retention time of 12h. Limited aeration caused no oxygen inhibition to the anaerobic microorganisms but instigated sulfide oxidization and H(2)S removal, which was beneficial to the methanogens. The experiment confirmed the feasibility of applying limited aeration in the anaerobic reactor to alleviate the sulfide inhibition. It also proved that the anaerobic system was actually aerotolerant. SEM observation showed that the predominant microorganisms partly changed from rod-shaped methanogens to cocci after the UASB reactor was aerated.

  1. Using contaminated plants involved in phytoremediation for anaerobic digestion.

    PubMed

    Cao, Zewei; Wang, Shengxiao; Wang, Ting; Chang, Zhizhou; Shen, Zhenguo; Chen, Yahua

    2015-01-01

    This study investigated the anaerobic digestion capability of five plants and the effects of copper (Cu) and S,S'-ethylenediaminedisuccinic acid (EDDS, a chelator widely used in chelant-assisted phytoremediation) on biogas production to determine a feasible disposal method for plants used in remediation. The results showed that in addition to Phytolacca americana L., plants such as Zea mays L., Brassica napus L., Elsholtzia splendens Nakai ex F. Maekawa, and Oenothera biennis L. performed well in biogas production. Among these, O. biennis required the shortest period to finish anaerobic digestion. Compared to normal plants with low Cu content, the plants used in remediation with increased Cu levels (100 mg kg(-1)) not only promoted anaerobic digestion and required a shorter anaerobic digestion time, but also increased the methane content in biogas. When the Cu content in plants increased to 500, 1000, and 5000 mg kg(-1), the cumulative biogas production decreased by 12.3%, 14.6%, and 41.2%, respectively. Studies also found that EDDS conspicuously restrained biogas production from anaerobic digestion. The results suggest that anaerobic digestion has great potential for the disposal of contaminated plants and may provide a solution for the resource utilization of plants used in remediation.

  2. Factors involved in anaerobic growth of Saccharomyces cerevisiae.

    PubMed

    Ishtar Snoek, I S; Yde Steensma, H

    2007-01-01

    Life in the absence of molecular oxygen requires several adaptations. Traditionally, the switch from respiratory metabolism to fermentation has attracted much attention in Saccharomyces cerevisiae, as this is the basis for the use of this yeast in the production of alcohol and in baking. It has also been clear that under anaerobic conditions the yeast is not able to synthesize sterols and unsaturated fatty acids and that for anaerobic growth these have to be added to the media. More recently it has been found that many more factors play a role. Several other biosynthetic reactions also require molecular oxygen and the yeast must have alternatives for these. In addition, the composition of the cell wall and cell membrane show major differences when aerobic and anaerobic cells are compared. All these changes are reflected by the observation that the transcription of more than 500 genes changes significantly between aerobically and anaerobically growing cultures. In this review we will give an overview of the factors that play a role in the survival in the absence of molecular oxygen. Copyright (c) 2007 John Wiley & Sons, Ltd.

  3. Carbon Dioxide Corrosion and Acetate: A Hypothesis on the Influence of Microorganisms

    DTIC Science & Technology

    2008-11-01

    thermocatalytic degradation of kero- gen,5 oxidation of suitable acid precursors," "and the pyrolytic destruction of kerogen or oil components.*IS... oil industry. Both chemical compounds can be produced and consumed by microorganisms during the anaerobic biodegradation of organic matter- including...hydrocarbons. We contend that the principles governing anaerobic biodegration activity can be extrapolated to above ground oil production facilities

  4. ANAEROBIC SOIL DISINFESTATION IN MICROCOSMS OF TWO SANDY SOILS.

    PubMed

    Stremińska, M A; Runia, W T; Termorshuizen, A J; Feil, H; Van Der Wurff, A W G

    2014-01-01

    In recent years, anaerobic soil disinfestation (ASD) has been proposed as an alternative control method of soil-borne plant pathogens. It involves adding a labile carbon source, irrigating the soil to stimulate decomposition of organic material and then covering the soil with air-tight plastic to limit gas exchange. During the ASD process, soil microorganisms switch from aerobic to anaerobic metabolism. As a result, by-products of anaerobic metabolism are released into the soil environment such as various organic acids and gases. These by-products are reported to have a negative effect on survival of soil-borne plant pathogens. However, the efficacy of ASD to reduce soil-borne pathogens in practice may vary significantly. Therefore, we studied the efficacy of the ASD process in two different soils. In addition, it was investigated whether a pre-treatment with an anaerobic bacterial inoculum prior to ASD affected the efficacy of the process. Two sandy soils (dune sand and glacial sand) were inoculated in 2 L soil microcosms. We tested the efficacy of ASD treatment against the potato cyst nematode Globodera pallida. For each soil, three treatments were used: control treatment (no Herbie addition, aerobic incubation), ASD 1 (organic substrate addition, anaerobic incubation) and ASD 2 (organic substrate and anaerobic bacterial inoculum addition, anaerobic incubation). Soil microcosms were incubated in the dark at 20°C for two weeks. We observed that anaerobic soil disinfestation treatments were highly effective against Potato Cyst Nematode (PCN), with pathogen being eradicated totally in all but one ASD treatment (glacial sand ASD2) within two weeks. The relative abundance of Firmicutes (spore-forming bacteria, often fermentative) in total bacteria increased significantly in ASD treated soils. Numbers of these bacteria correlated positively with increased concentrations of acetic and butyric acids in soil water phase in ASD treatments.

  5. Relating Anaerobic Digestion Microbial Community and Process Function.

    PubMed

    Venkiteshwaran, Kaushik; Bocher, Benjamin; Maki, James; Zitomer, Daniel

    2015-01-01

    Anaerobic digestion (AD) involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1) hydrolysis rate, (2) direct interspecies electron transfer to methanogens, (3) community structure-function relationships of methanogens, (4) methanogenesis via acetate oxidation, and (5) bioaugmentation to study community-activity relationships or improve engineered bioprocesses.

  6. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation.

    PubMed

    Diender, Martijn; Stams, Alfons J M; Sousa, Diana Z

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  7. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation

    PubMed Central

    Diender, Martijn; Stams, Alfons J. M.; Sousa, Diana Z.

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved. PMID:26635746

  8. Soft-tissue abscess involving Actinomyces odontolyticus and two Prevotella species in an intravenous drug abuser.

    PubMed

    Sofianou, D; Avgoustinakis, E; Dilopoulou, A; Pournaras, S; Tsirakidis, G; Tsakris, A

    2004-03-01

    Skin and soft-tissue infections in intravenous users comprise a variety of microorganisms and anaerobic bacteria are frequently involved in these suppurative infections. A case of subcutaneous abscess into anterior femoral muscles involving Actinomyces odontolyticus and two Prevotella species (Prevotella buccae and Prevotella melaninogenica) in an intravenous drug abuser is presented. This combination of microorganisms has not previously been described in soft-tissue infections. The patient volunteering that he licked his hypodermic needle prior to cocaine injection supports that the implicating bacteria originated from the oral cavity. Eventually, the patient recovered and at a 6-month follow-up a gradual improvement of his subcutaneous infection was noticed.

  9. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik's Cube of Clinical Microbiology?

    PubMed

    Gajdács, Márió; Spengler, Gabriella; Urbán, Edit

    2017-11-07

    Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria.

  10. Early Discrimination Of Microorganisms Involved In Ventilator Associated Pneumonia Using Qualitative Volatile Fingerprints

    NASA Astrophysics Data System (ADS)

    Planas, Neus; Kendall, Catherine; Barr, Hugh; Magan, Naresh

    2009-05-01

    This study has examined the use of an electronic nose for the detection of volatile organic compounds produced by different microorganisms responsible for ventilator-associated pneumonia (VAP), an important disease among patients who require mechanical ventilation. Based on the analysis of the volatile organic compounds, electronic nose technology is being evaluated for the early detection and identification of many diseases. It has been shown that effective discrimination of two bacteria (Enterobacter cloacae and Klebsiella pneumoniae) and yeast (Candida albicans), could be obtained after 24 h and filamentous fungus (Aspergillus fumigatus) after 72 h. Discrimination between blank samples and those with as initial concentration of 102 CFU ml-1 was shown with 24 h incubation for bacteria and 48 h for fungi. Effective discrimination between all the species was achieved 72 h after incubation. Initial studies with mixtures of microorganisms involved in VAP suggest that complex interactions between species occur which influences the ability to differentiate dominant species using volatile production patterns. A nutrient agar base medium was found to be optimum for early discrimination between two microorganisms (Klebsiella pneumoniae and Candida albicans).

  11. Anaerobes in Industrial- and Environmental Biotechnology.

    PubMed

    Hatti-Kaul, Rajni; Mattiasson, Bo

    Anaerobic microorganisms present in diverse ecological niches employ alternative strategies for energy conservation in the absence of oxygen which enables them to play a key role in maintaining the global cycles of carbon, nitrogen, and sulfur, and the breakdown of persistent compounds. Thereby they become useful tools in industrial and environmental biotechnology. Although anaerobes have been relatively neglected in comparison to their aerobic counterparts, with increasing knowledge about their diversity and metabolic potential and the development of genetic tools and process technologies to utilize them, we now see a rapid expansion of their applications in the society. This chapter summarizes some of the developments in the use of anaerobes as tools for biomass valorization, in production of energy carriers and chemicals, wastewater treatment, and the strong potential in soil remediation. The ability of several autotrophic anaerobes to reduce carbon dioxide is attracting growing attention as a means for developing a platform for conversion of waste gases to chemicals, materials, and biofuels.

  12. A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications.

    PubMed

    Leng, Ling; Yang, Peixian; Singh, Shubham; Zhuang, Huichuan; Xu, Linji; Chen, Wen-Hsing; Dolfing, Jan; Li, Dong; Zhang, Yan; Zeng, Huiping; Chu, Wei; Lee, Po-Heng

    2018-01-01

    The exploration of the energetics of anaerobic digestion systems can reveal how microorganisms cooperate efficiently for cell growth and methane production, especially under low-substrate conditions. The establishment of a thermodynamically interdependent partnership, called anaerobic syntrophy, allows unfavorable reactions to proceed. Interspecies electron transfer and the concentrations of electron carriers are crucial for maintaining this mutualistic activity. This critical review summarizes the functional microorganisms and syntroph partners, particularly in the metabolic pathways and energy conservation of syntrophs. The kinetics and thermodynamics of propionate degradation to methane, reversibility of the acetate oxidation process, and estimation of microbial growth are summarized. The various routes of interspecies electron transfer, reverse electron transfer, and Poly-β-hydroxyalkanoate formation in the syntrophic community are also reviewed. Finally, promising and critical directions of future research are proposed. Fundamental insight in the activities and interactions involved in AD systems could serve as a guidance for engineered systems optimization and upgrade. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology?

    PubMed Central

    Gajdács, Márió; Spengler, Gabriella; Urbán, Edit

    2017-01-01

    Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria. PMID:29112122

  14. Problematic effects of antibiotics on anaerobic treatment of swine wastewater.

    PubMed

    Cheng, D L; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Kumar, S Mathava; Du, B; Wei, Q; Wei, D

    2018-05-04

    Swine wastewaters with high levels of organic pollutants and antibiotics have become serious environmental concerns. Anaerobic technology is a feasible option for swine wastewater treatment due to its advantage in low costs and bioenergy production. However, antibiotics in swine wastewater have problematic effects on micro-organisms, and the stability and performance of anaerobic processes. Thus, this paper critically reviews impacts of antibiotics on pH, COD removal efficiencies, biogas and methane productions as well as the accumulation of volatile fatty acids (VFAs) in the anaerobic processes. Meanwhile, impacts on the structure of bacteria and methanogens in anaerobic processes are also discussed comprehensively. Furthermore, to better understand the effect of antibiotics on anaerobic processes, detailed information about antimicrobial mechanisms of antibiotics and microbial functions in anaerobic processes is also summarized. Future research on deeper knowledge of the effect of antibiotics on anaerobic processes are suggested to reduce their adverse environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Metatranscriptome of an Anaerobic Benzene-Degrading, Nitrate-Reducing Enrichment Culture Reveals Involvement of Carboxylation in Benzene Ring Activation

    PubMed Central

    Luo, Fei; Gitiafroz, Roya; Devine, Cheryl E.; Gong, Yunchen; Hug, Laura A.; Raskin, Lutgarde

    2014-01-01

    The enzymes involved in the initial steps of anaerobic benzene catabolism are not known. To try to elucidate this critical step, a metatranscriptomic analysis was conducted to compare the genes transcribed during the metabolism of benzene and benzoate by an anaerobic benzene-degrading, nitrate-reducing enrichment culture. RNA was extracted from the mixed culture and sequenced without prior mRNA enrichment, allowing simultaneous examination of the active community composition and the differential gene expression between the two treatments. Ribosomal and mRNA sequences attributed to a member of the family Peptococcaceae from the order Clostridiales were essentially only detected in the benzene-amended culture samples, implicating this group in the initial catabolism of benzene. Genes similar to each of two subunits of a proposed benzene-carboxylating enzyme were transcribed when the culture was amended with benzene. Anaerobic benzoate degradation genes from strict anaerobes were transcribed only when the culture was amended with benzene. Genes for other benzoate catabolic enzymes and for nitrate respiration were transcribed in both samples, with those attributed to an Azoarcus species being most abundant. These findings indicate that the mineralization of benzene starts with its activation by a strict anaerobe belonging to the Peptococcaceae, involving a carboxylation step to form benzoate. These data confirm the previously hypothesized syntrophic association between a benzene-degrading Peptococcaceae strain and a benzoate-degrading denitrifying Azoarcus strain for the complete catabolism of benzene with nitrate as the terminal electron acceptor. PMID:24795366

  16. Comparative Analysis of Performance and Microbial Characteristics Between High-Solid and Low-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions.

    PubMed

    Lu, Qin; Yi, Jing; Yang, Dianhai

    2016-01-01

    High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 high-throughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.

  17. Comparing culture and molecular methods for the identification of microorganisms involved in necrotizing soft tissue infections.

    PubMed

    Rudkjøbing, Vibeke Børsholt; Thomsen, Trine Rolighed; Xu, Yijuan; Melton-Kreft, Rachael; Ahmed, Azad; Eickhardt, Steffen; Bjarnsholt, Thomas; Poulsen, Steen Seier; Nielsen, Per Halkjær; Earl, Joshua P; Ehrlich, Garth D; Moser, Claus

    2016-11-08

    Necrotizing soft tissue infections (NSTIs) are a group of infections affecting all soft tissues. NSTI involves necrosis of the afflicted tissue and is potentially life threatening due to major and rapid destruction of tissue, which often leads to septic shock and organ failure. The gold standard for identification of pathogens is culture; however molecular methods for identification of microorganisms may provide a more rapid result and may be able to identify additional microorganisms that are not detected by culture. In this study, tissue samples (n = 20) obtained after debridement of 10 patients with NSTI were analyzed by standard culture, fluorescence in situ hybridization (FISH) and multiple molecular methods. The molecular methods included analysis of microbial diversity by 1) direct 16S and D2LSU rRNA gene Microseq 2) construction of near full-length 16S rRNA gene clone libraries with subsequent Sanger sequencing for most samples, 3) the Ibis T5000 biosensor and 4) 454-based pyrosequencing. Furthermore, quantitative PCR (qPCR) was used to verify and determine the relative abundance of Streptococcus pyogenes in samples. For 70 % of the surgical samples it was possible to identify microorganisms by culture. Some samples did not result in growth (presumably due to administration of antimicrobial therapy prior to sampling). The molecular methods identified microorganisms in 90 % of the samples, and frequently detected additional microorganisms when compared to culture. Although the molecular methods generally gave concordant results, our results indicate that Microseq may misidentify or overlook microorganisms that can be detected by other molecular methods. Half of the patients were found to be infected with S. pyogenes, but several atypical findings were also made including infection by a) Acinetobacter baumannii, b) Streptococcus pneumoniae, and c) fungi, mycoplasma and Fusobacterium necrophorum. The study emphasizes that many pathogens can be involved

  18. Effect of domestication on microorganism diversity and anaerobic digestion of food waste.

    PubMed

    Bi, S J; Hong, X J; Wang, G X; Li, Y; Gao, Y M; Yan, L; Wang, Y J; Wang, W D

    2016-08-19

    To accomplish the rapid start-up and stable operation of biogas digesters, an efficient inoculum is required. To obtain such an inoculum for food waste anaerobic digestion, we domesticated dairy manure anaerobic digestion residue by adding food waste every day. After 36 days, the pH and biogas yield stabilized signifying the completion of domestication. During domestication, the microbial communities in the inocula were investigated by constructing 16S rDNA clone libraries. We evaluated the effect of the domesticated inoculum by testing batch food waste anaerobic digestion with a non-domesticated inoculum as a control. The pH and methane yield of the digestion systems were determined as measurement indices. Domestication changed the composition and proportion of bacteria and archaea in the inocula. Of the bacteria, Clostridia (49.3%), Bacteroidales (19.5%), and Anaerolinaceae (8.1%) species were dominant in the seed sludge; Anaerolinaceae (49.0%), Clostridia (28.4%), and Bacteroidales (9.1%), in domestication sludge. Methanosaeta was the dominant genus in both of the seed (94.3%) and domestication (74.3%) sludge. However, the diversity of methanogenic archaea was higher in the domestication than in seed sludge. Methanoculleus, which was absent from the seed sludge, appeared in the domestication sludge (21.7%). When the domesticated inoculum was used, the digestion system worked stably (organic loading rate: 20 gVS/L; methane yield: 292.2 ± 9.8 mL/gVS; VS = volatile solids), whereas the digestion system inoculated with seed sludge failed to generate biogas. The results indicate that inoculum domestication ensures efficient and stable anaerobic digestion by enriching the methanogenic strains.

  19. The Impact of Temperature on Anaerobic Biological Perchlorate Treatment

    EPA Science Inventory

    A 20-month pilot-scale study was conducted to examine the impact of temperature on the performance of an anaerobic biological contactor used to treat perchlorate-contaminated water. The contactor was successfully acclimated with indigenous micro-organisms. Influent temperatures...

  20. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    PubMed Central

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-01-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS. PMID:27725704

  1. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    NASA Astrophysics Data System (ADS)

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  2. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools.

    PubMed

    Mamo, Gashaw

    Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these

  3. Modeling microbial diversity in anaerobic digestion through an extended ADM1 model.

    PubMed

    Ramirez, Ivan; Volcke, Eveline I P; Rajinikanth, Rajagopal; Steyer, Jean-Philippe

    2009-06-01

    The anaerobic digestion process comprises a whole network of sequential and parallel reactions, of both biochemical and physicochemical nature. Mathematical models, aiming at understanding and optimization of the anaerobic digestion process, describe these reactions in a structured way, the IWA Anaerobic Digestion Model No. 1 (ADM1) being the most well established example. While these models distinguish between different microorganisms involved in different reactions, to our knowledge they all neglect species diversity between organisms with the same function, i.e. performing the same reaction. Nevertheless, available experimental evidence suggests that the structure and properties of a microbial community may be influenced by process operation and on their turn also determine the reactor functioning. In order to adequately describe these phenomena, mathematical models need to consider the underlying microbial diversity. This is demonstrated in this contribution by extending the ADM1 to describe microbial diversity between organisms of the same functional group. The resulting model has been compared with the traditional ADM1 in describing experimental data of a pilot-scale hybrid Upflow Anaerobic Sludge Filter Bed (UASFB) reactor, as well as in a more detailed simulation study. The presented model is further shown useful in assessing the relationship between reactor performance and microbial community structure in mesophilic CSTRs seeded with slaughterhouse wastewater when facing increasing levels of ammonia.

  4. Anaerobic Halo-Alkaliphilic Baterial Community of Athalassic, Hypersaline Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Ng, Joseph D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The microorganisms of soda Mono Lake and other similar athalassic hypersaline alkaline soda lakes are of significance to Astrobiology. The microorganisms of these regimes represent the best known terrestrial analogs for microbial life that might have inhabited the hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters during the late Noachian and early Hesperian epochs (3.6 - 4.2 Gya) of ancient Mars. We have investigated the anaerobic microbiota of soda Mono Lake in northern California. In this paper we discuss the astrobiological significance of these ecosystems and describe several interesting features of two novel new species of anaerobic halo-alkaliphilic bacteria (Spirochaeta americana, sp. nov. and Desulfonatronum paiuteum, sp. nov) that we have isolated from Mono Lake.

  5. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  6. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reducesmore » the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was

  7. Effect of phosphorus addition on the reductive transformation of pentachlorophenol (PCP) and iron reduction with microorganism involvement.

    PubMed

    Wang, Yongkui; Liu, Xianli; Huang, Jiexun; Xiao, Wensheng; Zhang, Jiaquan; Yin, Chunqin

    2017-10-01

    The transformation of phosphorus added to the soil environment has been proven to be influenced by the Fe biochemical process, which thereby may affect the transformation of organic chlorinated contaminants. However, the amount of related literatures regarding this topic is limited. This study aimed to determine the effects of phosphorus addition on pentachlorophenol (PCP) anaerobic transformation, iron reduction, and paddy soil microbial community structure. Results showed that the transformation of phosphorus, iron, and PCP were closely related to the microorganisms. Moreover, phosphorus addition significantly influenced PCP transformation and iron reduction, which promoted and inhibited these processes at low and high concentrations, respectively. Both the maximum reaction rate of PCP transformation and the maximum Fe(II) amount produced were obtained at 1 mmol/L phosphorus concentration. Among the various phosphorus species, dissolved P and NaOH-P considerably changed, whereas only slight changes were observed for the remaining phosphorus species. Microbial community structure analysis demonstrated that adding low concentration of phosphorus promoted the growth of Clostridium bowmanii, Clostridium hungatei, and Clostridium intestinale and Pseudomonas veronii. By contrast, high-concentration phosphorus inhibited growth of these microorganisms, similar to the curves of PCP transformation and iron reduction. These observations indicated that Clostridium and P. veronii, especially Clostridium, played a vital role in the transformation of related substances in the system. All these findings may serve as a reference for the complicated reactions among the multiple components of soils.

  8. The cultivation of the mushroom Agaricus bisporus (Champignon): micro-organisms and preservability.

    PubMed

    Zicari, Giuseppe; Rivetti, Daniela; Soardo, Vincenzo; Cerrato, Elena; Panata, Marisa

    2011-01-01

    Cultivation of Agaricus bisporus mushrooms requires the use of substrates that are potentially dangerous from the microbiological point of view, such as chicken and horse manure. Microorganisms can pose risks to consumers and workers, and generate lower profits. Packaging of fresh mushrooms with impermeable films is used to extend their shelf life but creates anaerobic and humidity conditions that could favour the growth of microorganisms such as Listeria monocytogenes and Clostridium botulinum. This paper examines some alternatives for packaging fresh mushrooms and the resulting potential microbiological hazards.

  9. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  10. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE PAGES

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; ...

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  11. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria.

    PubMed

    Lu, Zhong; Rong, Kaifeng; Li, Ju; Yang, Hao; Chen, Rong

    2013-06-01

    Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.

  12. Anaerobic utilization of essential oils by denitrifying bacteria.

    PubMed

    Harder, J; Heyen, U; Probian, C; Foss, S

    2000-01-01

    Plant volatile organic compounds are a major carbon source in nature. We studied the degradability of these substances by anaerobic microorganisms in enrichment cultures with representative essential oils as organic substrates and nitrate as electron acceptor. Lemon and pine needle oil supported microbial growth in the presence of pure oil, whereas parsley seed, camphor, sage, fennel, and mint oil supported growth only when the essential oils were dissolved in an overlying phase of 2,2,4,4,6,8,8-heptamethylnonane. Thyme oil did not support denitrification. Analyses of the microbially degraded oils revealed the disappearance of monoterpenes, of several monoterpenoids, and of methoxy-propenyl-benzenes, including apiole and myristicin. Most-probable-number determinations for denitrifying communities in sewage sludge and forest soil yielded 10(6) to 10(7) monoterpene-utilizing cells ml(-1), representing 0.7 to 100% of the total cultivable nitrate-reducing microorganisms. The utilization of essential oils together with the common occurrence of this metabolic trait are indications for an environmentally important, but currently unexplored anaerobic turnover of plant volatile organic compounds in soil.

  13. [Anaerobic bacteria isolated from patients with suspected anaerobic infections].

    PubMed

    Ercis, Serpil; Tunçkanat, Ferda; Hasçelik, Gülşen

    2005-10-01

    The study involved 394 clinical samples sent to the Clinical Microbiology Laboratory of Hacettepe University Adult Hospital between January 1997 and May 2004 for anaerobic cultivation. Since multiple cultures from the same clinical samples of the same patient were excluded, the study was carried on 367 samples. The anaerobic cultures were performed in anaerobic jar using AnaeroGen kits (Oxoid, Basingstoke, U.K.) or GENbox (bioMérieux, Lyon, France). The isolates were identified by both classical methods and "BBL Crystal System" (Becton Dickinson, U.S.A.). While no growth was detected in 120 (32.7%) of the clinical samples studied, in 144 samples (39.2%) only aerobes, in 28 (7.6%) only anaerobes and in 75 (20.5%) of the samples both aerobes and anaerobes were isolated. The number of the anaerobic isolates was 217 from 103 samples with anaerobic growth. Of these 103 samples 15 showed single bacterial growth whereas in 88 samples multiple bacterial isolates were detected. Anaerobic isolates consisted of 92 Gram negative bacilli (Bacteroides spp. 50, Prevotella spp. 14, Porphyromonas spp. 10, Fusobacterium spp. 7, Tisierella spp. 2, unidentified 9), 57 Gram positive bacilli (Clostridium spp.17, Propionibacterium spp. 16, Lactobacillus spp. 8, Actinomyces spp. 5, Eubacterium spp. 2, Bifidobacterium adolescentis 1, Mobiluncus mulieris 1, unidentified nonspore forming rods 7), 61 Gram positive cocci (anaerobic cocci 44, microaerophilic cocci 17), and 7 Gram negative cocci (Veillonella spp.). In conclusion, in the samples studied with prediagnosis of anaerobic infection, Bacteroides spp. (23%) were the most common bacteria followed by anaerobic Gram positive cocci (20.3%) and Clostridium spp (7.8%).

  14. Anaerobic prosthetic joint infection.

    PubMed

    Shah, Neel B; Tande, Aaron J; Patel, Robin; Berbari, Elie F

    2015-12-01

    In an effort to improve mobility and alleviate pain from degenerative and connective tissue joint disease, an increasing number of individuals are undergoing prosthetic joint replacement in the United States. Joint replacement is a highly effective intervention, resulting in improved quality of life and increased independence [1]. By 2030, it is predicted that approximately 4 million total hip and knee arthroplasties will be performed yearly in the United States [2]. One of the major complications associated with this procedure is prosthetic joint infection (PJI), occurring at a rate of 1-2% [3-7]. In 2011, the Musculoskeletal Infectious Society created a unifying definition for prosthetic joint infection [8]. The following year, the Infectious Disease Society of America published practice guidelines that focused on the diagnosis and management of PJI. These guidelines focused on the management of commonly encountered organisms associated with PJI, including staphylococci, streptococci and select aerobic Gram-negative bacteria. However, with the exception of Propionibacterium acnes, management of other anaerobic organisms was not addressed in these guidelines [1]. Although making up approximately 3-6% of PJI [9,10], anaerobic microorganisms cause devastating complications, and similar to the more common organisms associated with PJI, these bacteria also result in significant morbidity, poor outcomes and increased health-care costs. Data on diagnosis and management of anaerobic PJI is mostly derived from case reports, along with a few cohort studies [3]. There is a paucity of published data outlining factors associated with risks, diagnosis and management of anaerobic PJI. We therefore reviewed available literature on anaerobic PJI by systematically searching the PubMed database, and collected data from secondary searches to determine information on pathogenesis, demographic data, clinical features, diagnosis and management. We focused our search on five commonly

  15. Anaerobic infections in surgical wards: a two year study

    PubMed Central

    Ananth-Shenoy, Padmaja; Vishwanath, Shashidhar; Targain, Ryumzook; Shetty, Seema; Sunil-Rodrigues, Gabriel; Mukhopadhyay, Chiranjay; Chawla, Kiran

    2016-01-01

    Background and Objectives: Anaerobic bacteria are recognized as important pathogens in surgical infections. However, they are the most overlooked microorganisms by the clinic and the laboratory because of the tedious culture techniques with longer turn-around times. The study was aimed to analyze the frequency of anaerobic bacterial surgical infections and their predisposing factors. Materials and Methods: A retrospective study was conducted over a period of two years including patients with surgical infections. The specimens were processed by Gram staining, aerobic and anaerobic culture. The anaerobic bacteria were isolated using standard procedures. The predisposing factors and clinical presentation were studied in these patients. Results: A total of 261 specimens were received from patients with diverse infections from surgical wards. Ninety-one anaerobes were isolated from 64 (24.5%) surgical patients with a predominance of Gram-negative bacilli (37.4%). Anaerobic bacteria as monomicrobial isolates were seen in 21.9% isolates. Anaerobic bacterial isolation along with aerobic bacteria was seen in 71.9% of patients and polymicrobial anaerobic growth was detected in 6.3% of patients. Diabetes mellitus (28, 43.8%) was found to be the most frequent predisposing factor. Bacteroides fragilis group (20.9%) were the most frequent anaerobic Gram-negative bacilli followed by Prevotella spp. (12.1%). Peptostreptococcus anaerobius was the predominant anaerobic cocci isolated (14.3%). Necrotizing fascitis (34.4%) was the most common clinical presentation with anaerobic etiology followed by deep seated abscesses (23.4%). Conclusion: Anaerobic bacteria were isolated from a significant proportion of surgical infections. To avoid therapeutic failures, anaerobic bacteria in surgical infections need to be recognized by surgeons and laboratorians. PMID:27928485

  16. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).

    PubMed

    Finneran, K T; Lovley, D R

    2001-05-01

    The potential for anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) was investigated in laboratory incubations of sediments from a petroleum-contaminated aquifer and in aquatic sediments. The addition of humic substances (HS) stimulated the anaerobic degradation of MTBE in aquifer sediments in which Fe(III) was available as an electron acceptor. This is attributed to the fact that HS and other extracellular quinones can stimulate the activity of Fe(III)-reducing microorganisms by acting as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. MTBE was not degraded in aquifer sediments without Fe(III) and HS. [14C]-MTBE added to aquatic sediments adapted for anaerobic MTBE degradation was converted to 14CO2 in the presence or absence of HS or the HS analog, anthraquione-2,6-disulfonate. Unamended aquatic sediments produced 14CH4 as well as 14CO2 from [14C]-MTBE. The aquatic sediments also rapidly consumed TBA under anaerobic conditions and converted [14C]-TBA to 14CH4 and 14CO2. An adaptation period of ca. 250-300 days was required prior to the most rapid anaerobic MTBE degradation in both sediment types, whereas TBA was metabolized in the aquatic sediments without a lag. These results demonstrate that, under the appropriate conditions, MTBE and TBA can be degraded in the absence of oxygen. This suggests that it may be possible to design strategies for the anaerobic remediation of MTBE in petroleum-contaminated subsurface environments.

  17. Anaerobic digestion for sustainable development: a natural approach.

    PubMed

    Gljzen, H J

    2002-01-01

    After the discovery of methane gas by Alessandro Volta in 1776, it took about 100 years before anaerobic processes for the treatment of wastewater and sludges were introduced. The development of high rate anaerobic digesters for the treatment of sewage and industrial wastewater took until the nineteen-seventies and for solid waste even till the nineteen-eighties. All digesters have in common that they apply natural anaerobic consortia of microorganisms for degradation and transformation processes. In view of this, it could be rewarding to evaluate the efficiency of natural ecosystems for their possible application. Examples of high rate anaerobic natural systems include the forestomach of ruminants and the hindgut of certain insects, such as termites and cockroaches. These 'natural reactors' exhibit volumetric methane production rates as high as 35 l/l.d. The development of anaerobic reactors based on such natural anaerobic systems could produce eco-technologies for the effective management of a wide variety of solid wastes and industrial wastewater. Important limitations of anaerobic treatment of domestic sewage relate to the absence of nutrient and pathogen removal. A combination of anaerobic pre-treatment followed by photosynthetic posttreatment is proposed for the effective recovery of energy and nutrients from sewage. This eco-technology approach is based on the recognition that the main nutrient assimilating capacity is housed in photosynthetic plants. The proposed anaerobic-photosynthetic process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions. a natural systems approach towards waste management could generate affordable eco-technologies for effective treatment and resource recovery.

  18. Methods of ammonia removal in anaerobic digestion: a review.

    PubMed

    Krakat, Niclas; Demirel, Burak; Anjum, Reshma; Dietz, Donna

    2017-10-01

    The anaerobic digestion of substrates with high ammonia content has always been a bottleneck in the methanisation process of biomasses. Since microbial communities in anaerobic digesters are sensitive to free ammonia at certain conditions, the digestion of nitrogen-rich substrates such as livestock wastes may result in inhibition/toxicity eventually leading to process failures, unless appropriate engineering precautions are taken. There are many different options reported in literature to remove ammonia from anaerobic digesters to achieve a safe and stable process so that along with high methane yields, a good quality of effluents can also be obtained. Conventional techniques to remove ammonia include physical/chemical methods, immobilization and adaptation of microorganisms, while novel methods include ultrasonication, microwave, hollow fiber membranes and microbial fuel cell applications. This paper discusses conventional and novel methods of ammonia removal from anaerobic digesters using nitrogen-rich substrates, with particular focus on recent literature available about this topic.

  19. Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems.

    PubMed

    Jonczyk, Patrick; Takenberg, Meike; Hartwig, Steffen; Beutel, Sascha; Berger, Ralf G; Scheper, Thomas

    2013-09-20

    Technical scale (≥5l) cultivations of shear stress sensitive microorganisms are often difficult to perform, as common bioreactors are usually designed to maximize the oxygen input into the culture medium. This is achieved by mechanical stirrers, causing high shear stress. Examples for shear stress sensitive microorganisms, for which no specific cultivation systems exist, are many anaerobic bacteria and fungi, such as basidiomycetes. In this work a disposable bag bioreactor developed for cultivation of mammalian cells was investigated to evaluate its potential to cultivate shear stress sensitive anaerobic Eubacterium ramulus and shear stress sensitive basidiomycetes Flammulina velutipes and Pleurotus sapidus. All cultivations were compared with conventional stainless steel stirred tank reactors (STR) cultivations. Good growth of all investigated microorganisms cultivated in the bag reactor was found. E. ramulus showed growth rates of μ=0.56 h⁻¹ (bag) and μ=0.53 h⁻¹ (STR). Differences concerning morphology, enzymatic activities and growth in fungal cultivations were observed. In the bag reactor growth in form of small, independent pellets was observed while STR cultivations showed intense aggregation. F. velutipes reached higher biomass concentrations (21.2 g l⁻¹ DCW vs. 16.8 g l⁻¹ DCW) and up to 2-fold higher peptidolytic activities in comparison to cell cultivation in stirred tank reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Toward a Mechanistic Understanding of Anaerobic Nitrate-Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification

    PubMed Central

    Carlson, Hans K.; Clark, Iain C.; Melnyk, Ryan A.; Coates, John D.

    2011-01-01

    The anaerobic oxidation of Fe(II) by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate-dependent iron oxidation. We suggest that anaerobic iron-oxidizing microorganisms likely exist along a continuum including: (1) bacteria that inadvertently oxidize Fe(II) by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g., denitrification) and suffer from toxicity or energetic penalty, (2) Fe(II) tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and (3) bacteria that efficiently accept electrons from Fe(II) to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed. PMID:22363331

  1. Anaerobic methanotrophic communities thrive in deep submarine permafrost.

    PubMed

    Winkel, Matthias; Mitzscherling, Julia; Overduin, Pier P; Horn, Fabian; Winterfeld, Maria; Rijkers, Ruud; Grigoriev, Mikhail N; Knoblauch, Christian; Mangelsdorf, Kai; Wagner, Dirk; Liebner, Susanne

    2018-01-22

    Thawing submarine permafrost is a source of methane to the subsurface biosphere. Methane oxidation in submarine permafrost sediments has been proposed, but the responsible microorganisms remain uncharacterized. We analyzed archaeal communities and identified distinct anaerobic methanotrophic assemblages of marine and terrestrial origin (ANME-2a/b, ANME-2d) both in frozen and completely thawed submarine permafrost sediments. Besides archaea potentially involved in anaerobic oxidation of methane (AOM) we found a large diversity of archaea mainly belonging to Bathyarchaeota, Thaumarchaeota, and Euryarchaeota. Methane concentrations and δ 13 C-methane signatures distinguish horizons of potential AOM coupled either to sulfate reduction in a sulfate-methane transition zone (SMTZ) or to the reduction of other electron acceptors, such as iron, manganese or nitrate. Analysis of functional marker genes (mcrA) and fluorescence in situ hybridization (FISH) corroborate potential activity of AOM communities in submarine permafrost sediments at low temperatures. Modeled potential AOM consumes 72-100% of submarine permafrost methane and up to 1.2 Tg of carbon per year for the total expected area of submarine permafrost. This is comparable with AOM habitats such as cold seeps. We thus propose that AOM is active where submarine permafrost thaws, which should be included in global methane budgets.

  2. Anaerobic Microbial Transformation of Aromatic Hydrocarbons and Mixtures of Aromatic Hydrocarbons and Halogenated Solvents.

    DTIC Science & Technology

    1992-08-25

    High initial concentrations of these compounds may be toxic or inhibitory to the microflora, especially if the microorganisms have not been exposed to...these compounds before. Slow acclimation of the microflora to lower concentrations of these compounds , that occur at the outskirts of contamination...acceptors such as nitrate or sulfate may impair the capability of the microorganisms to degrade these compounds , although anaerobic respiration -- in theory

  3. Anaerobic Microbial Transformation of Aromatic Hydrocarbons and Mixtures of Aromatic Hydrocarbons and Halogenated Solvents

    DTIC Science & Technology

    1992-08-25

    concentrations of these compounds may be toxic or Inhibitory to the microflora, especially if the microorganisms have not been exposed to these compounds before...Slow acclimation of the microflora to lower concentrations of these compounds , that occur at the outskirts of contamination plumes, gradually...sulfate may impair the capability of the microorganisms to degrade these compounds , although anaerobic respiration -- in theory -- is more favorable

  4. Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.

    PubMed

    Ni, Bing-Jie; Batstone, Damien; Zhao, Bai-Hang; Yu, Han-Qing

    2015-08-04

    Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.

  5. Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs.

    PubMed

    Siniscalchi, Luciene Alves Batista; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto Lemos; de Araújo, Juliana Calabria

    2017-07-01

    Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.

  6. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters

    PubMed Central

    Alvarado, Alejandra; Montañez-Hernández, Lilia E.; Palacio-Molina, Sandra L.; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P.; Balagurusamy, Nagamani

    2014-01-01

    Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process. PMID:25429286

  7. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters.

    PubMed

    Alvarado, Alejandra; Montañez-Hernández, Lilia E; Palacio-Molina, Sandra L; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P; Balagurusamy, Nagamani

    2014-01-01

    Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.

  8. Anaerobic Thermophiles

    PubMed Central

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has

  9. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    PubMed

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  10. Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus

    PubMed Central

    Holmes, Dawn E; Risso, Carla; Smith, Jessica A; Lovley, Derek R

    2012-01-01

    Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (>80° C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as having a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA (coenzyme A) reductase (BCR) found in all strictly anaerobic bacteria, but has instead genes coding for a bzd-type ATP-consuming class I BCR, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for phenol carboxylation proceeding through a phenylphosphate intermediate were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative reverse transcriptase polymerase chain reaction demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates vs growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism are highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets. PMID:21776029

  11. Estimation of Anaerobic Debromination Rate Constants of PBDE Pathways Using an Anaerobic Dehalogenation Model.

    PubMed

    Karakas, Filiz; Imamoglu, Ipek

    2017-04-01

    This study aims to estimate anaerobic debromination rate constants (k m ) of PBDE pathways using previously reported laboratory soil data. k m values of pathways are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model. Debromination activities published in the literature in terms of bromine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The range of estimated k m values is between 0.0003 and 0.0241 d -1 . The median and maximum of k m values are found to be comparable to the few available biologically confirmed rate constants published in the literature. The estimated k m values can be used as input to numerical fate and transport models for a better and more detailed investigation of the fate of individual PBDEs in contaminated sediments. Various remediation scenarios such as monitored natural attenuation or bioremediation with bioaugmentation can be handled in a more quantitative manner with the help of k m estimated in this study.

  12. Upflow anaerobic sludge blanket reactor--a review.

    PubMed

    Bal, A S; Dhagat, N N

    2001-04-01

    Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and

  13. Role of cosubstrate and bioaccessibility played in the enhanced anaerobic biodegradation of organochlorine pesticides (OCPs) in a paddy soil by nitrate and methyl-β-cyclodextrin amendments.

    PubMed

    Ye, Mao; Sun, Mingming; Ni, Ni; Chen, Yinwen; Liu, Zongtang; Gu, Chengang; Bian, Yongrong; Hu, Feng; Li, Huixin; Kengara, Fredrick Orori; Jiang, Xin

    2014-01-01

    The present study was conducted to investigate the anaerobic biodegradation potential of biostimulation by nitrate (KNO3) and methyl-β-cyclodextrin (MCD) addition on an aged organochlorine pesticide (OCP)-contaminated paddy soil. After 180 days of incubation, total OCP biodegradation was highest in soil receiving the addition of nitrate and MCD simultaneously and then followed by nitrate addition, MCD addition, and control. The highest biodegradation of chlordanes, hexachlorocyclohexanes, endosulfans, and total OCPs was 74.3, 63.5, 51.2, and 65.1%, respectively. Meanwhile, MCD addition significantly increased OCP bioaccessibility (p < 0.05) evaluated by Tenax TA extraction and a three-compartment model method. Moreover, the addition of nitrate and MCD also obtained the highest values of soil microbial activities, including soil microbial biomass carbon and nitrogen, ATP production, denitrifying bacteria count, and nitrate reductase activity. Such similar trend between OCP biodegradation and soil-denitrifying activities suggests a close relationship between OCP biodegradation and N cycling and the indirect/direct involvement of soil microorganisms, especially denitrifying microorganisms in the anaerobic biodegradation of OCPs.

  14. Anaerobic digestion of cattail by rumen cultures.

    PubMed

    Hu, Zhen-Hu; Yu, Han-Qing

    2006-01-01

    The anaerobic digestion of aquatic plants could serve the dual roles for producing renewable energy and reducing waste. In this study, the anaerobic digestion of cattail (Typha latifolia linn), a lignocellulosic aquatic plant, by rumen microorganisms in batch cultures was investigated. At a substrate level of 12.4 g/l volatile solids (VS) and pH 6.7, maximum VS conversion of 66% was achieved within an incubation time of 125 h. However, a decrease in pH from 6.7 to 5.8 resulted in a marked reduction in VS conversion. The total volatile fatty acids (VFAs) yield was about 0.56 g/g VS digested. Acetate and propionate were the major aqueous fermentation products, while butyrate, i-butyrate and valerate were also formed in smaller quantities. Biogas that was produced was composed of carbon dioxide, methane and hydrogen. A modified Gompertz equation was developed to describe substrate consumption and product formation. The hydrolysis of insoluble components was the rate-limiting step in the anaerobic digestion of cattail.

  15. Research on Anaerobic Digestion: Optimization and Scalability of Mixed High-strength Food Processing Wastes for Renewable Biogas Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhongtang; Hitzhusen, Fredrick

    2012-12-27

    This research project developed and improved anaerobic digestion technologies, created a comprehensive Inventory of Ohio Biomass and a database of microorganisms of anaerobic digesters, and advanced knowledge and understanding of the underpinning microbiology of the anaerobic digestion process. The results and finding of this research project may be useful for future development and implementation of anaerobic digesters, especially at livestock farms. Policy makers and investors may also find the information on the biomass availability in Ohio and valuation of energy projects useful in policy making and making of investment decisions. The public may benefit from the information on biogas asmore » an energy source and the potential impact of anaerobic digester projects on their neighborhoods.« less

  16. Biofilm formation and granule properties in anaerobic digestion at high salinity.

    PubMed

    Gagliano, M C; Ismail, S B; Stams, A J M; Plugge, C M; Temmink, H; Van Lier, J B

    2017-09-15

    For the anaerobic biological treatment of saline wastewater, Anaerobic Digestion (AD) is currently a possibility, even though elevated salt concentrations can be a major obstacle. Anaerobic consortia and especially methanogenic archaea are very sensitive to fluctuations in salinity. When working with Upflow Sludge Blanket Reactor (UASB) technology, in which the microorganisms are aggregated and retained in the system as a granular biofilm, high sodium concentration negatively affects aggregation and consequently process performances. In this research, we analysed the structure of the biofilm and granules formed during the anaerobic treatment of high salinity (at 10 and 20 g/L of sodium) synthetic wastewater at lab scale. The acclimated inoculum was able to accomplish high rates of organics removal at all the salinity levels tested. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses identified the acetoclastic Methanosaeta harundinacea as the key player involved acetate degradation and microbial attachment/granulation. When additional calcium (1 g/L) was added to overcome the negative effect of sodium on microbial aggregation, during the biofilm formation process microbial attachment and acetate degradation decreased. The same result was observed on granules formation: while calcium had a positive effect on granules strength when added to UASB reactors, Methanosaeta filaments were not present and the degradation of the partially acidified substrate was negatively influenced. This research demonstrated the possibility to get granulation at high salinity, bringing to the forefront the importance of a selection towards Methanosaeta cells growing in filamentous form to obtain strong and healthy granules. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Anaerobic biodegradation of aromatic compounds.

    PubMed

    Jothimani, P; Kalaichelvan, G; Bhaskaran, A; Selvaseelan, D Augustine; Ramasamy, K

    2003-09-01

    Many aromatic compounds and their monomers are existing in nature. Besides they are introduced into the environment by human activity. The conversion of these aromatic compounds is mainly an aerobic process because of the involvement of molecular oxygen in ring fission and as an electron acceptor. Recent literatures indicated that ring fission of monomers and obligomers mainly occurs in anaerobic environments through anaerobic respiration with nitrate, sulphate, carbon dioxide or carbonate as electron acceptors. These anaerobic processes will help to work out the better situation for bioremediation of contaminated environments. While there are plenty of efforts to reduce the release of these chemicals to the environment, already contaminated sites need to be remediated not only to restore the sites but to prevent the leachates spreading to nearby environment. Basically microorganisms are better candidates for breakdown of these compounds because of their wider catalytic mechanisms and the ability to act even in the absence of oxygen. These microbes can be grouped based on their energy mechanisms. Normally, the aerobic counterparts employ the enzymes like mono-and-dioxygenases. The end product is basically catechol, which further may be metabolised to CO2 by means of quinones reductases cycles. In the absense of reductases compounds, the reduced catechols tend to become oxidised to form many quinone compounds. The quinone products are more recalcitrant and lead to other aesthetic problems like colour in water, unpleasant odour, etc. On the contrary, in the reducing environment this process is prevented and in a cascade of pathways, the cleaved products are converted to acetyl co-A to be integrated into other central metabolite paths. The central metabolite of anaerobic degradation is invariably co-A thio-esters of benzoic acid or hydroxy benzoic acid. The benzene ring undergoes various substitution and addition reactions to form chloro-, nitro-, methyl- compounds

  18. Evolution of microorganisms in thermophilic-dry anaerobic digestion.

    PubMed

    Montero, B; Garcia-Morales, J L; Sales, D; Solera, R

    2008-05-01

    Microbial population dynamics were studied during the start-up and stabilization periods in thermophilic-dry anaerobic digestion at lab-scale. The experimental protocol was defined to quantify Eubacteria and Archaea using Fluorescent in situ hybridization (FISH) in a continuously stirred tank reactor (CSTR), without recycling solids. The reactor was subjected to a programme of steady-state operation over a range of the retention times from 40 to 25 days, with an organic loading rate between 4.42 and 7.50 kg volatile solid/m3/day. Changes in microbial concentrations were linked to traditional performance parameters such as biogas production and VS removal. The relations of Eubacteria:Archaea and H2-utilising methanogens:acetate-utilising methanogens were 88:12 and 11:1, respectively, during start-up stage. Hydrogenotrophic methanogens, although important in the initial phase of the reactor start-up, were displaced by acetoclastic methanogens at steady-state, thus their relation were 7:32, respectively. The methane yield coefficient, the methane content in the biogas and VS removal were stabilized around 0.30 LCH4/gCOD, 50% and 80%, respectively. Methanogenic population correlated well with performance measurements.

  19. Effects of 17β-estradiol on typical greenhouse gas emissions in aquatic anaerobic ecosystem.

    PubMed

    Ruan, Aidong; Liu, Chenxiao; Zhao, Ying; Zong, Fengjiao; Jiang, Shaopeng; Yu, Zhongbo

    2015-01-01

    Anaerobic microecosystems designed with different concentrations of 17β-estradiol (17β-E2) (0.0-10,000.0 ng/L) were simulated in this study. The influence of different concentrations of 17β-E2 on the emissions of typical greenhouse gases (CH4 and CO2) in simulated anaerobic microecosystems is analyzed to primarily explore the relationship between 17β-E2 and such emissions in aquatic anaerobic ecosystems. The results showed that 17β-E2 could promote or significantly stimulate aquatic anaerobic micro-organisms' production of CH4. The degree and the promotion time of CH4 production were both enhanced with the increase of 17β-E2 concentration. Furthermore, under higher concentration of 17β-E2 (≥500.0 ng/L), the increasing tendency of aquatic anaerobic microbial populations' activity and the function of methanogenic activity under corresponding experimental conditions had a synchronous relationship.

  20. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments

    PubMed Central

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W.; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8–98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in

  1. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments.

    PubMed

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8-98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in

  2. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor.

    PubMed

    Chen, Xueming; Guo, Jianhua; Shi, Ying; Hu, Shihu; Yuan, Zhiguo; Ni, Bing-Jie

    2014-08-19

    Nitrogen removal by using the synergy of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) microorganisms in a membrane biofilm reactor (MBfR) has previously been demonstrated experimentally. In this work, a mathematical model is developed to describe the simultaneous anaerobic methane and ammonium oxidation by DAMO and Anammox microorganisms in an MBfR for the first time. In this model, DAMO archaea convert nitrate, both externally fed and/or produced by Anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly remove the nitrite fed/produced, with ammonium and methane as the electron donor, respectively. The model is successfully calibrated and validated using the long-term (over 400 days) dynamic experimental data from the MBfR, as well as two independent batch tests at different operational stages of the MBfR. The model satisfactorily describes the methane oxidation and nitrogen conversion data from the system. Modeling results show the concentration gradients of methane and nitrogen would cause stratification of the biofilm, where Anammox bacteria mainly grow in the biofilm layer close to the bulk liquid and DAMO organisms attach close to the membrane surface. The low surface methane loadings result in a low fraction of DAMO microorganisms, but the high surface methane loadings would lead to overgrowth of DAMO bacteria, which would compete with Anammox for nitrite and decrease the fraction of Anammox bacteria. The results suggest an optimal methane supply under the given condition should be applied not only to benefit the nitrogen removal but also to avoid potential methane emissions.

  3. Biofouling of contaminated ground-water recovery wells: Characterization of microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, S.W.; Lange, C.R.; Lesold, E.A.

    1997-11-01

    The taxonomy and physiology of microorganisms isolated from contaminated ground-water recovery wells prone to biofouling are characterized for an industrial site in Rochester, New York. Principal aquifer contaminants include acetone, cyclohexane, dichloroethane, dichloromethane, 1,4-dioxane, isopropanol, methanol, and toluene. These contaminants represent a significant fraction (up to 95%) of the total organic carbon in the ground water. Ground-water samples from 12 recovery wells were used to isolate, quantify, and identify aerobic and anaerobic bacterial populations. Samples from selected wells were also characterized geochemically to assess redox conditions and availability of essential and trace nutrients. Dominant bacteria, listed in order of descendingmore » numbers, including sulfate-reducers (Desulfovibrio desulfuricans), anaerobic heterotrophs (Actinomyces, Bacteriodes, Bacillus, Agrobacterium), aerobic heterotrophs (Pseudomonas, Flavobacterium, Nocardia, Citrobacter), iron-oxidizers (Gallionella ferruginea, Crenothrix polyspora), iron-reducers (Shewanella), and sulfur-oxidizers (Thiobacillus ferrooxidans). Fungi were also recovered in low numbers. Both aerobic and anaerobic heterotrophs were able to utilize all principal contaminants as sole carbon and energy sources except 1,4-dioxane. The prevalence of heterotrophic bacteria and their ability to use the available anthropogenic carbon suggests that aerobic and anaerobic heterotrophs contribute to the biofouling of wells at this site, in addition to the often cited fouling due to iron-oxidizing bacteria and sulfate-reducing bacteria.« less

  4. Clinical evaluation of the Vitek ANI card for identification of anaerobic bacteria.

    PubMed Central

    Schreckenberger, P C; Celig, D M; Janda, W M

    1988-01-01

    An evaluation of the Vitek Anaerobe Identification (ANI) card was performed with 341 bacterial isolates, including 313 clinical isolates and 28 stock strains of anaerobic microorganisms. Identifications obtained with the ANI card were compared with those determined by conventional methods. The card identified 73.2% of 149 anaerobic gram-negative bacilli, 63.6% of 44 Clostridium spp., 65.8% of 38 anaerobic nonsporeforming gram-positive bacilli, and 69.1% of 110 anaerobic cocci, with no further testing required. When genus-level identifications were included, 83.9% of the anaerobic gram-negative bacilli, 70.5% of Clostridium spp., 73.7% of the anaerobic nonsporeforming gram-positive bacilli, and 73.6% of the anaerobic cocci were identified. Nineteen isolates (5.6%) produced identifications of good confidence but marginal separation or questionable biotype, in which the correct identification was listed with one or two other possible choices and extra tests were required and suggested. A total of 28 (8.2%) were not identified and 29 isolates (8.5%) were misidentified by the ANI card. Among the commonly isolated clinically significant anaerobes, the ANI card identified 100% of 55 Bacteroides fragilis and 100% of 8 Clostridium perfringens. Use of supplemental tests and expansion of the data base to include additional strains of organisms that are difficult to separate even with conventional methods may improve the accuracy of the ANI card as a method for identification of anaerobic bacteria in the clinical laboratory. PMID:3343321

  5. Inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhao; Dang, Yan; Li, Caihua

    2015-09-15

    Highlights: • High NH{sub 4}{sup +}–N concentrations inhibit anaerobic treatment of leachate. • Inhibitory effect of NH{sub 4}{sup +}–N concentrations on anaerobic granular sludge is reversible. • High NH{sub 4}{sup +}–N concentrations inhibit bioactivities of microorganisms instead of survival. - Abstract: Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH{sub 4}{sup +}–N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by bothmore » static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH{sub 4}{sup +}–N concentration increasing to 1000 mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH{sub 4}{sup +}–N concentration rising to 1000 mg/L, without any rebounding during 30 days of operation. Decreasing NH{sub 4}{sup +}–N concentration to 500 mg/L in influent, the COD removal efficiency recovered to about 85% after 26 days. 1000 mg/L of NH{sub 4}{sup +}–N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH{sub 4}{sup +}–N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency.« less

  6. Bubble Shuttle: A newly discovered transport mechanism, which transfers microorganisms from the sediment into the water column

    NASA Astrophysics Data System (ADS)

    Schmale, O.; Stolle, C.; Leifer, I.; Schneider von Deimling, J.; Kiesslich, K.; Krause, S.; Frahm, A.; Treude, T.

    2013-12-01

    The diversity and abundance of methanotrophic microorganisms is well studied in the aquatic environment, indicating their importance in biogeochemical cycling of methane in the sediment and the water column. However, whether methanotrophs are distinct populations in these habitats or are exchanged between benthic and pelagic environments, remains an open question. Therefore, field studies were conducted at the 'Rostocker Seep' site (Coal Oil Point seep area, California, USA) to test our hypothesis that methane-oxidizing microorganisms can be transported by gas bubbles from the sediment into the water column. The natural methane emanating location 'Rostocker Seep' showed a strong surface water oversaturation in methane with respect to the atmospheric equilibrium. Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was the newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the bubble surface rim. Bubble Catcher experiments were carried out directly above a natural bubble release spot and on a reference site at which artificially released gas bubbles were caught, which had no contact with the sediment. CARD-FISH analyzes showed that aerobic methane oxidizing bacteria were transported by gas bubbles from the sediment into the water column. In contrast anaerobic methanotrophs were not detected in the bubble catcher. Further results indicate that this newly discovered Bubble Shuttle transport mechanism might influence the distribution pattern of methanotrophic microorganisms in the water column and even at the air-sea interface. Methane seep areas are often characterized

  7. Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate.

    PubMed

    Shi, Yue; Zhao, Xiu-Tao; Cao, Peng; Hu, Yinyin; Zhang, Liang; Jia, Yan; Lu, Zeqi

    2009-09-01

    In order to treat the kitchen wastes and produce hydrogen, anaerobic fermentation technology was used in this experiment. The results showed that the fermentation type changed from mixed acid fermentation to ethanol fermentation in a continuous stirred tank reactor (CSTR) 22 days after start-up. The maximum efficiency of hydrogen bio-production in the CSTR was 4.77 LH(2)/(L reactor d) under the following conditions: organic loading rate (OLR) of 32-50 kg COD/(m(3) d), oxidation reduction potential (ORP) of -450 to -400 mV, influent pH value of 5.0-6.0, effluent pH value of 4.0-4.5, influent alkalinity of 300-600 mg/l, temperature of 35 +/- 1 degrees C and hydraulic retention time (HRT) of 7 h. An artificial neural network (ANN) model was established, and each parameter influencing the performance of the reactor was compared using the method of partitioning connection weights (PCW). The results showed that OLR, pH, ORP and alkalinity could influence the fermentation characteristics and hydrogen yield of the anaerobic activated sludge; with an influence hierarchy: OLR > pH values > ORP > alkalinity. An economic analysis showed that the cost of producing hydrogen in this experiment was less than the cost of electrolysis of water.

  8. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  9. Environmental and taxonomic bacterial diversity of anaerobic uranium(IV) bio-oxidation.

    PubMed

    Weber, Karrie A; Thrash, J Cameron; Van Trump, J Ian; Achenbach, Laurie A; Coates, John D

    2011-07-01

    Microorganisms in diverse terrestrial surface and subsurface environments can anaerobically catalyze the oxidative dissolution of uraninite. While a limited quantity (∼5 to 12 μmol liter(-1)) of uranium is oxidatively dissolved in pure culture studies, the metabolism is coupled to electron transport, providing the potential of uraninite to support indigenous microbial populations and to solubilize uranium.

  10. Mesophilic, Circumneutral Anaerobic Iron Oxidation as a Remediation Mechanism for Radionuclides, Nitrate and Perchlorate

    NASA Astrophysics Data System (ADS)

    Bose, S.; Thrash, J. C.; Coates, J. D.

    2008-12-01

    Iron oxidation is a novel anaerobic metabolism where microorganisms obtain reducing equivalents from the oxidization of Fe(II) and assimilate carbon from organic carbon compounds or CO2. Recent evidence indicates that in combination with the activity of dissimilatory Fe(III)-reducing bacteria, anaerobic microbial Fe(II) oxidation can also contribute to the global iron redox cycle. Studies have also proved that Fe(II)- oxidation is ubiquitous in diverse environments and produce a broad range of insoluble iron forms as end products. These biogenic Fe(III)-oxides and mixed valence Fe minerals have a very high adsorption capacity of heavy metals and radionuclides. Adsorption and immobilization by these biogenic Fe phases produced at circumneutral pH, is now considered a very effective mode of remediation of radionuclides like Uranium, especially under variable redox conditions. By coupling soluble and insoluble Fe(II) oxidation with nitrate and perchlorate as terminal electron acceptors in-situ, anaerobic Fe-oxidation can also be used for environmental cleanup of Fe through Fe-mineral precipitation, as well as nitrate and perchlorate through reduction. Coupling of Fe as the sole electron and energy source to the reduction of perchlorate or nitrate boosts the metabolism without building up biomass hence also taking care of biofouling. To understand the mechanisms by which microorganisms can grow at circumneutral pH by mesophilic, anaerobic iron oxidation and the ability of microorganisms to reduce nitrate and perchlorate coupled to iron oxidation recent work in our lab involved the physiological characterization of Dechlorospirillum strain VDY which was capable of anaerobic iron-oxidation with either nitrate or perchlorate serving as terminal electron acceptor. Under non-growth conditions, VDY oxidized 3mM Fe(II) coupled to nitrate reduction, and 2mM Fe(II) coupled to perchlorate reduction, in 24 hours. It contained a copy of the RuBisCO cbbM subunit gene which was

  11. The Impact of Temperature on the Performance of Anaerobic Biological Treatment of Perchlorate in Drinking Water

    EPA Science Inventory

    A 20 month pilot-scale study was conducted to examine the impact of temperature on the performance of an anaerobic biological contactor used to treat perchlorate-contaminated water. The contactor was successfully acclimated with indigenous microorganisms. Influent temperatures ...

  12. [Isolation and identification of electrochemically active microorganism from micro-aerobic environment].

    PubMed

    Wu, Song; Xiao, Yong; Zheng, Zhi-Yong; Zheng, Yue; Yang, Zhao-Hui; Zhao, Feng

    2014-10-01

    Extracellular electron transfer of electrochemically active microorganism plays vital role in biogeochemical cycling of metals and carbon and in biosynthesis of bioenergy. Compared to anaerobic anode, micro-aerobic anode captures more energy from microbial fuel cell. However, most of previous researches focused on functioning bacteria in anaerobic anode, functioning bacteria in micro-aerobic anode was rarely studied. Herein, we used the traditional aerobic screening technology to isolate functioning bacteria from a micro-aerobic anode. Three pure cultures Aeromonas sp. WS-XY2, Citrobacter sp. WS-XY3 and Bacterium strain WS-XY4 were obtained. WS-XY2 and WS-XY3 were belonged to Proteobacteria, whereas WS-XY4 was possibly a new species. Cyclic voltammetry and chronoamperometry analysis demonstrated all of them showed the electrochemical activity by direct extracellular electron transfer, and micro-aerobic anode could select bacteria that have similar electrochemical activity to proliferate on the anode. We further conclude that functioning bacteria in micro-aerobic anode are more efficient than that of anaerobic anode may be the reason that micro-aerobic anode has better performance than anaerobic anode. Therefore, a thorough study of functioning bacteria in micro-aerobic anode will significantly promote the energy recovery from microbial fuel cell.

  13. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics

    PubMed Central

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-01-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of 13C-labeled CO2 and CH4 were detected immediately following incubation with [U-13C]acetate, indicating high turnover rate of acetate. The identified 13C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways. PMID:27128991

  14. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics.

    PubMed

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-10-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of (13)C-labeled CO2 and CH4 were detected immediately following incubation with [U-(13)C]acetate, indicating high turnover rate of acetate. The identified (13)C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways.

  15. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea

    PubMed Central

    Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is

  16. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  17. Compact liquid nitrogen storage system yielding high recoveries of gram-negative anaerobes.

    PubMed Central

    Gilmour, M N; Turner, G; Berman, R G; Krenzer, A K

    1978-01-01

    A simple and compact system suitable for the preservation of fragile gram negative anaerobes and other bacteria in liquid N2 has been developed. Polypropylene straws used as specimen containers can be used easily within glove bags of anaerobic chambers, and their small size greatly increases the number of cultures which can be stored. Ancillary equipment and methods developed are described. The overall system was tested, using Streptococcus mutans, Fusobacterium nucleatum, and Selenomonas sputigena. Various basal suspending fluids and cryoprotective supplements were studied. With fast rates of freezing and thawing, survival recoveries of the test microorganisms ranged from 80 to 100 percent of the input colony-forming units in a complex medium broth base without cryoprotective agent addition, and they consistently were 100 percent when 0.4 mM polyvinylpyrrolidine was used. Overall, cryoprotection by polyvinyl pyrrolidine was superior to that from glycerol or dimethyl sulfoxide, the latter yielding recoveries similar to or less than those obtained with no cryoprotectant additive. All microorganisms were recoverable after storage for 1 year. PMID:623475

  18. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  19. Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community.

    PubMed

    Tale, V P; Maki, J S; Zitomer, D H

    2015-03-01

    Adding beneficial microorganisms to anaerobic digesters for improved performance (i.e. bioaugmentation) has been shown to decrease recovery time after organic overload or toxicity upset. Compared to strictly anaerobic cultures, adding aerotolerant methanogenic cultures may be more practical since they exhibit higher methanogenic activity and can be easily dried and stored in ambient air for future shipping and use. In this study, anaerobic digesters were bioaugmented with both anaerobic and aerated, methanogenic propionate enrichment cultures after a transient organic overload. Digesters bioaugmented with anaerobic and moderately aerated cultures recovered 25 and 100 days before non-bioaugmented digesters, respectively. Increased methane production due to bioaugmentation continued a long time, with 50-120% increases 6 to 12 SRTs (60-120 days) after overload. In contrast to the anaerobic enrichment, the aerated enrichments were more effective as bioaugmentation cultures, resulting in faster recovery of upset digester methane and COD removal rates. Sixty days after overload, the bioaugmented digester archaeal community was not shifted, but was restored to one similar to the pre-overload community. In contrast, non-bioaugmented digester archaeal communities before and after overload were significantly different. Organisms most similar to Methanospirillum hungatei had higher relative abundance in well-operating, undisturbed and bioaugmented digesters, whereas organisms similar to Methanolinea tarda were more abundant in upset, non-bioaugmented digesters. Bioaugmentation is a beneficial approach to increase digester recovery rate after transient organic overload events. Moderately aerated, methanogenic propionate enrichment cultures were more beneficial augments than a strictly anaerobic enrichment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2013-01-01

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications. PMID:24048207

  1. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy.

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2013-09-17

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications.

  2. Aged refuse enhances anaerobic digestion of waste activated sludge.

    PubMed

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi

    2017-10-15

    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    PubMed

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  4. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumantri, Indro; Purwanto,; Budiyono

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and highmore » efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.« less

  5. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    NASA Astrophysics Data System (ADS)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  6. [Effect of microorganisms and seasonal factors on the isotope composition of organic carbon from Black Sea suspensions].

    PubMed

    Ivanov, M V; Lein, A Iu; Miller, Iu M; Iusunov, S K; Pimenov, N V; Wehrli, B; Rusanov, I I; Zehnder, A

    2000-01-01

    The isotopic composition of particulate organic carbon (POC) from the Black Sea deep-water zone was studied during a Russian-Swiss expedition in May 1998. POC from the upper part of the hydrogen sulfide zone (the C-layer) was found to be considerably enriched with the 12C isotope, as compared to the POC of the oxycline and anaerobic zone. In the C-layer waters, the concurrent presence of dissolved oxygen and hydrogen sulfide and an increased rate of dark CO2 fixation were recorded, suggesting that the change in the POC isotopic composition occurs at the expense of newly formed isotopically light organic matter of the biomass of autotrophic bacteria involved in the sulfur cycle. In the anaerobic waters below the C-layer, the organic matter of the biomass of autotrophs is consumed by the community of heterotrophic microorganisms; this results in weighting of the POC isotopic composition. Analysis of the data obtained and data available in the literature allows an inference to be made about the considerable seasonable variability of the POC delta 13C value, which depends on the ratio of terrigenic and planktonogenic components in the particulate organic matter.

  7. Attack on Lignified Grass Cell Walls by a Facultatively Anaerobic Bacterium

    PubMed Central

    Akin, Danny E.

    1980-01-01

    A filamentous, facultatively anaerobic microorganism that attacked lignified tissue in forage grasses was isolated from rumen fluid with a Bermuda grass-containing anaerobic medium in roll tubes. The microbe, designated 7-1, demonstrated various colony and cellular morphologies under different growth conditions. Scanning electron microscopy revealed that 7-1 attacked lignified cell walls in aerobic and anaerobic culture. 7-1 predominately degraded tissues reacting positively for lignin with the chlorine-sulfite stain (i.e., sclerenchyma in leaf blades and parenchyma in stems) rather than the more resistant acid phloroglucinol-positive tissues (i.e., lignified vascular tissue and sclerenchyma ring in stems), although the latter tissues were occasionally attacked. Turbidimetric tests showed that 7-1 in anaerobic culture grew optimally at 39°C at a pH of 7.4 to 8.0. Tests for growth on plant cell wall carbohydrates showed that 7-1 grew on xylan and pectin slowly in aerobic cultures but not with pectin and only slightly with xylan in anaerobic culture. 7-1 was noncellulolytic as shown by filter paper tests. The microbe used the phenolic acids sinapic, ferulic, and p-coumaric acids as substrates for growth; the more highly methoxylated acids were used more effectively. Images PMID:16345651

  8. Influence of porosity and composition of supports on the methanogenic biofilm characteristics developed in a fixed bed anaerobic reactor.

    PubMed

    Picanço, A P; Vallero, M V; Gianotti, E P; Zaiat, M; Blundi, C E

    2001-01-01

    This paper reports on the influence of the material porosity on the anaerobic biomass adhesion on four different inert matrices: polyurethane foam, PVC, refractory brick and special ceramic. The biofilm development was performed in a fixed-bed anaerobic reactor containing all the support materials and fed with a synthetic wastewater containing protein, lipids and carbohydrates. The data obtained from microscopic analysis and kinetic assays indicated that the material porosity has a crucial importance in the retention of the anaerobic biomass. The polyurethane foam particles and the special ceramic were found to present better retentive properties than the PVC and the refractory brick. The large specific surface area, directly related to material porosity, is fundamental to provide a large amount of attached biomass. However, different supports can provide specific conditions for the adherence of distinct microorganism types. The microbiological exams revealed a distinction in the support colonization. A predominance of methanogenic archaeas resembling Methanosaeta was observed both in the refractory brick and the special ceramic. Methanosarcina-like microorganisms were predominant in the PVC and the polyurethane foam matrices.

  9. Enzymes involved in a novel anaerobic cyclohexane carboxylic acid degradation pathway.

    PubMed

    Kung, Johannes W; Meier, Anne-Katrin; Mergelsberg, Mario; Boll, Matthias

    2014-10-01

    The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Enzymes Involved in a Novel Anaerobic Cyclohexane Carboxylic Acid Degradation Pathway

    PubMed Central

    Kung, Johannes W.; Meier, Anne-Katrin; Mergelsberg, Mario

    2014-01-01

    The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. PMID:25112478

  11. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater.

    PubMed

    Roest, Kees; Heilig, Hans G H J; Smidt, Hauke; de Vos, Willem M; Stams, Alfons J M; Akkermans, Antoon D L

    2005-03-01

    To get insight into the microbial community of an Upflow Anaerobic Sludge Blanket reactor treating paper mill wastewater, conventional microbiological methods were combined with 16S rRNA gene analyses. Particular attention was paid to microorganisms able to degrade propionate or butyrate in the presence or absence of sulphate. Serial enrichment dilutions allowed estimating the number of microorganisms per ml sludge that could use butyrate with or without sulphate (10(5)), propionate without sulphate (10(6)), or propionate and sulphate (10(8)). Quantitative RNA dot-blot hybridisation indicated that Archaea were two-times more abundant in the microbial community of anaerobic sludge than Bacteria. The microbial community composition was further characterised by 16S rRNA-gene-targeted Denaturing Gradient Gel Electrophoresis (DGGE) fingerprinting, and via cloning and sequencing of dominant amplicons from the bacterial and archaeal patterns. Most of the nearly full length (approximately 1.45 kb) bacterial 16S rRNA gene sequences showed less than 97% similarity to sequences present in public databases, in contrast to the archaeal clones (approximately. 1.3 kb) that were highly similar to known sequences. While Methanosaeta was found as the most abundant genus, also Crenarchaeote-relatives were identified. The microbial community was relatively stable over a period of 3 years (samples taken in July 1999, May 2001, March 2002 and June 2002) as indicated by the high similarity index calculated from DGGE profiles (81.9+/-2.7% for Bacteria and 75.1+/-3.1% for Archaea). 16S rRNA gene sequence analysis indicated the presence of unknown and yet uncultured microorganisms, but also showed that known sulphate-reducing bacteria and syntrophic fatty acid-oxidising microorganisms dominated the enrichments.

  12. [Municipal biowaste thermal-hydrolysis and ASBR anaerobic digestion].

    PubMed

    Hou, Hua-hua; Wang, Wei; Hu, Song; Xu, Yi-xian

    2010-02-01

    Thermal-hydrolysis can remarkably improve the solid organics dissolving efficiency of urban biomass waste, and anaerobic sequencing batch reactor (ASBR) was used to improve the efficiency of urban biomass waste anaerobic digestion. The optimum thermal-hydrolysis temperature and holding time was 175 degrees C and 60 min, the volatile suspended solid (VSS) dissolving ratio of kitchen waste, fruit-and-vegetable waste and sludge were 31.3%, 31.9% and 49.7%, respectively. Two ASBR and one continuous-flow stirred tank reactor (CSTR) were started at hydraulic retention time (HRT) = 20 d, COD organic loading rate (OLR) = 3.2-3.6 kg/(m3 x d). The biogas production volumes were 5656 mL/d(A1), 6335 mL/d(A2) and 3 103 mL/d(CSTR), respectively; VSS degradation ratios were 45.3% (A1), 50.87% (A2), 20.81% (CSTR), and the total COD (TCOD) removal rates were 88.1% (A1), 90% (A2), 72.6% (CSTR). In ASBR, organic solid and anaerobic microorganism were remained in the reactor during settling period. When HRT was 20 d, the solid retention time (SRT) was over 130 d, which made ASBR higher efficiency than CSTR.

  13. The Relative Abundance and Transcriptional Activity of Marine Sponge-Associated Microorganisms Emphasizing Groups Involved in Sulfur Cycle.

    PubMed

    Jensen, Sigmund; Fortunato, Sofia A V; Hoffmann, Friederike; Hoem, Solveig; Rapp, Hans Tore; Øvreås, Lise; Torsvik, Vigdis L

    2017-04-01

    During the last decades, our knowledge about the activity of sponge-associated microorganisms and their contribution to biogeochemical cycling has gradually increased. Functional groups involved in carbon and nitrogen metabolism are well documented, whereas knowledge about microorganisms involved in the sulfur cycle is still limited. Both sulfate reduction and sulfide oxidation has been detected in the cold water sponge Geodia barretti from Korsfjord in Norway, and with specimens from this site, the present study aims to identify extant versus active sponge-associated microbiota with focus on sulfur metabolism. Comparative analysis of small subunit ribosomal RNA (16S rRNA) gene (DNA) and transcript (complementary DNA (cDNA)) libraries revealed profound differences. The transcript library was predominated by Chloroflexi despite their low abundance in the gene library. An opposite result was found for Acidobacteria. Proteobacteria were detected in both libraries with representatives of the Alpha- and Gammaproteobacteria related to clades with presumably thiotrophic bacteria from sponges and other marine invertebrates. Sequences that clustered with sponge-associated Deltaproteobacteria were remotely related to cultivated sulfate-reducing bacteria. The microbes involved in sulfur cycling were identified by the functional gene aprA (adenosine-5'-phosphosulfate reductase) and its transcript. Of the aprA sequences (DNA and cDNA), 87 % affiliated with sulfur-oxidizing bacteria. They clustered with Alphaproteobacteria and with clades of deep-branching Gammaproteobacteria. The remaining sequences clustered with sulfate-reducing Archaea of the phylum Euryarchaeota. These results indicate an active role of yet uncharacterized Bacteria and Archaea in the sponge's sulfur cycle.

  14. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms

    NASA Technical Reports Server (NTRS)

    Jackson, B. E.; Bhupathiraju, V. K.; Tanner, R. S.; Woese, C. R.; McInerney, M. J.

    1999-01-01

    Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 +/- 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the delta-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus.

  15. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  16. Endocarditis caused by anaerobic bacteria.

    PubMed

    Kestler, M; Muñoz, P; Marín, M; Goenaga, M A; Idígoras Viedma, P; de Alarcón, A; Lepe, J A; Sousa Regueiro, D; Bravo-Ferrer, J M; Pajarón, M; Costas, C; García-López, M V; Hidalgo-Tenorio, C; Moreno, M; Bouza, E

    2017-10-01

    Infective endocarditis (IE) caused by anaerobic bacteria is a rare and poorly characterized disease. Most data reported in the literature are from case reports [1-3]. Therefore, we assessed the situation of anaerobic IE (AIE) in Spain using the database of the Spanish Collaboration on Endocarditis (GAMES). We performed a prospective study from 2008 to 2016 in 26 Spanish centers. We included 2491 consecutive cases of definite IE (Duke criteria). Anaerobic bacteria caused 22 cases (0.9%) of definite IE. Median age was 66 years (IQR, 56-73), and 19 (86.4%) patients were men. Most patients (14 [63.6%]) had prosthetic valve IE and all episodes were left-sided: aortic valves, 12 (54.5%); and mitral valves, 8 (36.4%). The most common pathogens were Propionibacterium acnes (14 [63.6%]), Lactobacillus spp (3 [13.63%]), and Clostridium spp. (2 [9.0%]), and the infection was mainly odontogenic. Fifteen of the 22 patients (68.2%) underwent cardiac surgery. Mortality was 18.2% during admission and 5.5% after 1 year of follow-up. When patients with AIE were compared with the rest of the cohort, we found that although those with AIE had a similar age and Charlson comorbidity index, they were more likely to have community-acquired IE (86.4% vs. 60.9%, p = 0.01), have undergone cardiac surgery (68.2% vs 48.7% p = 0.06), and have had lower mortality rates during admission (18.2% vs. 27.3%). IE due to anaerobic bacteria is an uncommon disease that affects mainly prosthetic valves and frequently requires surgery. Otherwise, there are no major differences between AIE and IE caused by other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Genes Involved in Anaerobic Metabolism of Phenol in the Bacterium Thauera aromatica

    PubMed Central

    Breinig, Sabine; Schiltz, Emile; Fuchs, Georg

    2000-01-01

    Genes involved in the anaerobic metabolism of phenol in the denitrifying bacterium Thauera aromatica have been studied. The first two committed steps in this metabolism appear to be phosphorylation of phenol to phenylphosphate by an unknown phosphoryl donor (“phenylphosphate synthase”) and subsequent carboxylation of phenylphosphate to 4-hydroxybenzoate under release of phosphate (“phenylphosphate carboxylase”). Both enzyme activities are strictly phenol induced. Two-dimensional gel electrophoresis allowed identification of several phenol-induced proteins. Based on N-terminal and internal amino acid sequences of such proteins, degenerate oligonucleotides were designed to identify the corresponding genes. A chromosomal DNA segment of about 14 kbp was sequenced which contained 10 genes transcribed in the same direction. These are organized in two adjacent gene clusters and include the genes coding for five identified phenol-induced proteins. Comparison with sequences in the databases revealed the following similarities: the gene products of two open reading frames (ORFs) are each similar to either the central part and N-terminal part of phosphoenolpyruvate synthases. We propose that these ORFs are components of the phenylphosphate synthase system. Three ORFs showed similarity to the ubiD gene product, 3-octaprenyl-4-hydroxybenzoate carboxy lyase; UbiD catalyzes the decarboxylation of a 4-hydroxybenzoate analogue in ubiquinone biosynthesis. Another ORF was similar to the ubiX gene product, an isoenzyme of UbiD. We propose that (some of) these four proteins are involved in the carboxylation of phenylphosphate. A 700-bp PCR product derived from one of these ORFs cross-hybridized with DNA from different Thauera and Azoarcus strains, even from those which have not been reported to grow with phenol. One ORF showed similarity to the mutT gene product, and three ORFs showed no strong similarities to sequences in the databases. Upstream of the first gene cluster, an

  18. Spatial and Temporal Changes in the Microbial Community in an Anaerobic Swine Waste Treatment Lagoon

    USDA-ARS?s Scientific Manuscript database

    Swine slurry is stored in pits beneath confinement buildings or in adjacent lagoons. This slurry is a valuable resource for crop fertilization and soil conditioning, but may also be a source of unpleasant odors. Microorganisms are crucial to all of the important processes that occur in anaerobic sto...

  19. Influence of seasonal changes on the microbial community in an anaerobic swine waste treatment lagoon

    USDA-ARS?s Scientific Manuscript database

    Swine slurry is stored in pits beneath confinement buildings or in adjacent lagoons. This slurry is a valuable resource for crop fertilization and soil conditioning, but may also be a source of unpleasant odors. Microorganisms are crucial to all of the important processes that occur in anaerobic sto...

  20. Inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant.

    PubMed

    Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi

    2015-09-01

    Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH4(+)-N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH4(+)-N concentration increasing to 1000mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH4(+)-N concentration rising to 1000mg/L, without any rebounding during 30days of operation. Decreasing NH4(+)-N concentration to 500mg/L in influent, the COD removal efficiency recovered to about 85% after 26days. 1000mg/L of NH4(+)-N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH4(+)-N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Aerobic and anaerobic bacteria in tonsils of children with recurrent tonsillitis.

    PubMed

    Brook, I; Yocum, P; Friedman, E M

    1981-01-01

    Tonsils were obtained from 50 children suffering from recurrent tonsillitis. Patients' ages ranged from 2.5 to 17 years (mean 6 years); 29 were males and 21 females. The tonsils were sectioned in half after heat searing of the surface and the core material was cultured for aerobic and anaerobic microorganisms. Mixed aerobic and anaerobic flora was obtained in all patients, yielding an average of 7.8 isolates (4.1 anaerobes and 3.7 aerobes) per specimen. There were 207 anaerobes isolated. The predominant isolates were 101 Bacteroides sp (including 10 B fragilis group, and 47 B melaninogenicus group), 29 Fusobacterium sp, 34 Gram-positive anaerobic cocci (25 Peptococcus sp and 9 Peptostreptococcus sp) and 16 Veillonella sp. There were 185 aerobic isolates. The predominant isolates were 41 alpha-hemolytic streptococci, 24 Staphylococcus aureus, 19 beta-hemolytic streptococci (11 group A, 4 group B, and 2 each group C and F), 14 Haemophilus sp (including 12 H influenzae type B) and 5 H parainfluenzae. Beta-lactamase production was noted in 56 isolates recovered from 37 tonsils. These were all isolates of S aureus (24) and B fragilis (10), 15 of 47 B melaninogenicus (32%), 5 of the 12 B oralis (42%), and 2 of 12 H influenzae type B (17%). Our findings indicate the polymicrobial aerobic and anaerobic nature of deep tonsillar flora in children with recurrent tonsillitis, and demonstrate the presence of many beta-lactamase-producing organisms in 74% of the patients.

  2. Shifts in indigenous microbial communities during the anaerobic degradation of pentachlorophenol in upland and paddy soils from southern China.

    PubMed

    Chen, Yating; Tao, Liang; Wu, Ke; Wang, Yongkui

    2016-11-01

    Pentachlorophenol (PCP) is a common persistent pesticide in soil that has generated a significant environmental problem worldwide. Therefore, anaerobic degradation of PCP by the soil indigenous microbial community has gained increasing attention. However, little information is available concerning the functional microorganisms and the potential shifts in the microbial community associated with PCP degradation. In this study, we conducted a set of experiments to determine which components of the indigenous microbial community were capable of degrading PCP in soils of two land use types (upland and paddy soils) in southern China. Our results showed that the PCP degradation rate was significantly higher in paddy soils than that in upland soils. 16S ribosomal RNA (rRNA) high-throughput sequencing revealed significant differences in microbial taxonomic composition between the soil with PCP and blank (soil without PCP) with Acinetobacter, Clostridium, Coprococcus, Oxobacter, and Sedimentibacter dominating the PCP-affected communities. Acinetobacter was also apparently enriched in the paddy soils with PCP (up to 52.2 %) indicated this genus is likely to play an important role in PCP degradation. Additionally, the Fe(III)-reducing bacteria Clostridium may also be involved in PCP degradation. Our data further revealed hitherto unknown metabolisms of potential PCP degradation by microorganisms including Coprococcus, Oxobacter, and Ruminiclostridium. Overall, these findings indicated that land use types may affect the PCP anaerobic degradation rate via the activities of indigenous bacterial populations and extend our knowledge of the bacterial populations responsible for PCP degradation.

  3. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    PubMed Central

    Jetten, Mike S. M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called “prokaryotic organelle” analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya. PMID:22933561

  4. Biomining: metal recovery from ores with microorganisms.

    PubMed

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.

  5. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater.

    PubMed

    Huang, Xiao; Dong, Wenyi; Wang, Hongjie; Jiang, Shilong

    2017-10-01

    This study aimed to present an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater. The average COD, NH 4 + -N, TN, and TP removal efficiency were 91.81%, 96.26%, 83.73% and 94.49%, respectively. Temperature plunge and C/N decrease have a certain impact on the modified process. Characteristics of microbial community, function microorganism, and correlation of microbial community with environmental variables in five compartments were carried out by Illumina Miseq high-throughput sequencing. The differences of microbial community were observed and Blastocatella, Flavobacterium and Pseudomonas were the dominant genus. Nitrosomonas and Nitrospira occupied a dominant position in AOB and NOB, respectively. Rhodospirillaceae and Rhodocyclaceae owned a considerable proportion in phosphorus removal bacteria. DO and COD played significant roles on affecting the microbial components. The A-MAO process in this study demonstrated a high potential for nutrient removal from municipal wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Microbiology and management of joint and bone infections due to anaerobic bacteria.

    PubMed

    Brook, Itzhak

    2008-03-01

    To describes the microbiology, diagnosis, and management of septic arthritis and osteomyelitis due to anaerobic bacteria. The predominant anaerobes in arthritis are anaerobic Gram-negative bacilli (AGNB) including the Bacteroides fragilis group, Fusobacterium spp., Peptostreptococcus spp., and Propionibacterium acnes. Infection with P. acnes is associated with a prosthetic joint, previous surgery, and trauma. B. fragilis group is associated with distant infection, Clostridium spp. with trauma, and Fusobacterium spp. with oropharyngeal infection. Most cases of anaerobic arthritis, in contrast to anaerobic osteomyelitis, involved a single isolate, and most cases are secondary to hematogenous spread. The predominant anaerobes in osteomyelitis are Bacteroides, Peptostreptococcus, Fusobacterium, and Clostridium spp. as well as P. acnes. Conditions predisposing to bone infections are vascular disease, bites, contiguous infection, peripheral neuropathy, hematogenous spread, and trauma. Pigmented Prevotella and Porphyromonas spp. are mostly isolated in skull and bite infections, members of the B. fragilis group in hand and feet infections, and Fusobacterium spp. in skull, bite, and hematogenous long bone infections. Many patients with osteomyelitis due to anaerobic bacteria have evidence of an anaerobic infection elsewhere in the body that is the source of the organisms involved in the osteomyelitis. Treatment of arthritis and osteomyelitis involving anaerobic bacteria includes symptomatic therapy, immobilization in some cases, adequate drainage of purulent material, and antibiotic therapy effective against these organisms. Anaerobic bacteria can cause septic arthritis and osteomyelitis. Correct diagnosis and appropriate therapy are important contributor to successful outcome.

  7. GiFRD encodes a protein involved in anaerobic growth in the arbuscular mycorrhizal fungus Glomus intraradices.

    PubMed

    Sędzielewska, Kinga A; Vetter, Katja; Bode, Rüdiger; Baronian, Keith; Watzke, Roland; Kunze, Gotthard

    2012-04-01

    Fumarate reductase is a protein involved in the maintenance of redox balance during oxygen deficiency. This enzyme irreversibly catalyzes the reduction of fumarate to succinate and requires flavin cofactors as electron donors. Two examples are the soluble mitochondrial and the cytosolic fumarate reductases of Saccharomyces cerevisiae encoded by the OSM1 and FRDS1 genes, respectively. This work reports the identification and characterization of the gene encoding cytosolic fumarate reductase enzyme in the arbuscular mycorrhizal fungus, Glomus intraradices and the establishment of its physiological role. Using a yeast expression system, we demonstrate that G. intraradices GiFRD encodes a protein that has fumarate reductase activity which can functionally substitute for the S. cerevisiae fumarate reductases. Additionally, we showed that GiFRD transformants are not affected by presence of salt in medium, indicating that the presence of this gene has no effect on yeast behavior under osmotic stress. The fact that GiFRD expression and enzymatic activity was present only in asymbiotic stage confirmed existence of at least one anaerobic metabolic pathway in this phase of fungus life cycle. This suggests that the AMF behave as facultative anaerobes in the asymbiotic stage. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH.

    PubMed

    Hwang, Moon H; Jang, Nam J; Hyun, Seung H; Kim, In S

    2004-08-05

    Hydrogen was produced by an ethanol-acetate fermentation at pH of 5.0 +/- 0.2 and HRT of 3 days. The yield of hydrogen was 100-200 ml g Glu(-1) with a hydrogen content of 25-40%. This fluctuation in the hydrogen yield was attributed to the formation of propionate and the activity of hydrogen utilizing methanogens. The change in the operational pH for the inhibition of this methanogenic activity induced a change in the main fermentation pathway. In this study, the main products were butyrate, ethanol and propionate, in the pH ranges 4.0-4.5, 4.5-5.0 and 5.0-6.0, respectively. However, the activity of all the microorganisms was inhibited below pH 4.0. Therefore, pH 4.0 was regarded as the operational limit for the anaerobic bio-hydrogen production process. These results indicate that the pH plays an important role in determining the type of anaerobic fermentation pathway in anaerobic bio-hydrogen processes.

  9. Anaerobic soil disinfestation and soil borne pest management

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD; also referred to as Biological Soil Disinfestation (BSD)) is a pre-plant soil treatment method developed to control plant disease and manage yield decline in many crop production systems. The practice involves induction of anaerobic soil conditions by increasing m...

  10. Effects of coffee processing residues on anaerobic microorganisms and corresponding digestion performance.

    PubMed

    Rojas-Sossa, Juan Pablo; Murillo-Roos, Mariana; Uribe, Lidieth; Uribe-Lorio, Lorena; Marsh, Terence; Larsen, Niels; Chen, Rui; Miranda, Alberto; Solís, Kattia; Rodriguez, Werner; Kirk, Dana; Liao, Wei

    2017-12-01

    The objective of this study was to delineate the effects of different coffee processing residues on the anaerobic microbes and corresponding digestion performance. The results elucidated that mucilage-rich feed enhanced the accumulation of methanogens, which consequently led to better digestion performance of biogas production. Fifty percent more methane and up to 3 times more net energy (heat and electricity) output were achieved by the digestion of the mucilage-rich feed (M3). The microbial community and statistical analyses further elucidated that different residues in the feed had significant impact on microbial distribution and correspondingly influenced the digestion performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals

    USGS Publications Warehouse

    Lovley, D.R.; Giovannoni, S.J.; White, D.C.; Champine, J.E.; Phillips, E.J.P.; Gorby, Y.A.; Goodwin, S.

    1993-01-01

    The gram-negative metal-reducing microorganism, previously known as strain GS-15, was further characterized. This strict anaerobe oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. Furthermore, acetate is also oxidized with the reduction of Mn(IV), U(VI), and nitrate. In whole cell suspensions, the c-type cytochrome(s) of this organism was oxidized by physiological electron acceptors and also by gold, silver, mercury, and chromate. Menaquinone was recovered in concentrations comparable to those previously found in gram-negative sulfate reducers. Profiles of the phospholipid ester-linked fatty acids indicated that both the anaerobic desaturase and the branched pathways for fatty acid biosynthesis were operative. The organism contained three lipopolysaccharide hydroxy fatty acids which have not been previously reported in microorganisms, but have been observed in anaerobic freshwater sediments. The 16S rRNA sequence indicated that this organism belongs in the delta proteobacteria. Its closest known relative is Desulfuromonas acetoxidans. The name Geobacter metallireducens is proposed.

  12. Can anaerobes be acid fast? A novel, clinically relevant acid fast anaerobe.

    PubMed

    Navas, Maria E; Jump, Robin; Canaday, David H; Wnek, Maria D; SenGupta, Dhruba J; McQuiston, John R; Bell, Melissa

    2016-08-01

    Anaerobic acid fast bacilli (AFB) have not been previously reported in clinical microbiology. This is the second case report of a novel anaerobic AFB causing disease in humans. An anaerobic AFB was isolated from an abdominal wall abscess in a 64-year-old Caucasian diabetic male, who underwent distal pancreatectomy and splenectomy for resection of a pancreatic neuroendocrine tumour. The isolated bacteria were gram-variable and acid-fast, consisting of small irregular rods. The 16S rRNA gene sequence analysis showed that the isolate is a novel organism described in the literature only once before. The organism was studied at the CDC (Centers for Disease Control and Prevention) by the same group that worked with the isolates from the previous report; their findings suggest that the strain belongs to the suborder Corynebacterineae. This is the fifth reported case of an anaerobic AFB involved in clinical disease; its microbiological features and 16S RNA sequence are identical to previously reported cases. Clinical disease with this organism seems to be associated with recent history of surgery and abscess formation in deep soft tissues. Acquisition from surgical material is uncertain but seems unlikely.

  13. Overcoming the anaerobic hurdle in phenotypic microarrays: Generation andvisualization of growth curve data for Desulfovibrio vulgaris Hildenborough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borglin, Sharon E; Joyner, Dominique; Jacobsen, Janet

    2008-10-04

    Growing anaerobic microorganisms in phenotypic microarrays (PM) and 96-well microtiter plates is an emerging technology that allows high throughput survey of the growth and physiology and/or phenotype of cultivable microorganisms. For non-model bacteria, a method for phenotypic analysis is invaluable, not only to serve as a starting point for further evaluation, but also to provide a broad understanding of the physiology of an uncharacterized wild-type organism or the physiology/phenotype of a newly created mutant of that organism. Given recent advances in genetic characterization and targeted mutations to elucidate genetic networks and metabolic pathways, high-throughput methods for determining phenotypic differences aremore » essential. Here we outline challenges presented in studying the physiology and phenotype of a sulfate reducing anaerobic delta proteobacterium, Desulfovibrio vulgaris Hildenborough. Modifications of the commercially available OmniLog(TM) system (Hayward, CA) for experimental setup, and configuration, as well as considerations in PM data analysis are presented. Also highlighted here is data viewing software that enables users to view and compare multiple PM data sets. The PM method promises to be a valuable strategy in our systems biology approach to D. vulgaris studies and is readily applicable to other anaerobic and aerobic bacteria.« less

  14. Fate of Trace Metals in Anaerobic Digestion.

    PubMed

    Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L

    2015-01-01

    A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.

  15. Activation of inoculum microorganism from dairy cattle feces

    NASA Astrophysics Data System (ADS)

    Ayuningtyas, Widya D.; Ridwan, Roni; Joni, I. M.; Marlina, E. T.; Harlia, Ellin

    2018-02-01

    Coal produces Coal Bed Methane (CBM) which is formed both biogenically and thermogenically. Lignite is not utilized optimally because it has low heat content and productivity time limit that decreases CBM production. In order to utilize lignite waste, adding inoculum consortium microorganism from dairy cattle waste as starter for biogas process can be a solution. This study aimed to produce inoculum consortium microorganism as biogas starter from dairy cattle feces through in vitro activation process by Theoudorou modification method. The research used complete randomized design with 3 replications. The treatments were blank (R0), 100% concentrate (R1), 70% concentrate+30% grass (R2), 70% grass+30% concentrate (R3) and 100% grass (R4). All treatments were added by buffer solution and feces with ratio of 2:1 into 100 ml serum injection bottle with anaerobic conditions. The parameters observed were gas production, pH and gas kinetics (orskov's equation) for 2, 4, 6, 8, 10, 12, 24 and 48 hours. The results showed that the treatment had significant effect (P <0.05) on the observed parameters. The highest total gas production was for R2 and R3 treatments with total production of 91.17 ml and 101.17 ml, pH (6.62 and 6.57), maximum gas production (94.03 and 97.62 ml), speed of gas production (0.066 and 0.084 ml/hour). There is not a significant difference for both the treatments. The source of inoculum consortium microorganisms for biogas starter selected based on the observed parameters and potential availability of proteolytic and fibrocytic microorganisms is R2 (70% concentrate +30% grass).

  16. Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review.

    PubMed

    Dubé, Charles-David; Guiot, Serge R

    2015-01-01

    Direct interspecies electrons transfer (DIET) is a syntrophic metabolism in which free electrons flow from one cell to another without being shuttled by reduced molecules such as molecular hydrogen or formate. As more and more microorganisms show a capacity for electron exchange, either to export or import them, it becomes obvious that DIET is a syntrophic metabolism that is much more present in nature than previously thought. This article reviews literature related to DIET, specifically in reference to anaerobic digestion. Anaerobic granular sludge, a biofilm, is a specialized microenvironment where syntrophic bacterial and archaeal organisms grow together in close proximity. Exoelectrogenic bacteria degrading organic substrates or intermediates need an electron sink and electrotrophic methanogens represent perfect partners to assimilate those electrons and produce methane. The granule extracellular polymeric substances by making the biofilm matrix more conductive, play a role as electrons carrier in DIET.

  17. Enhancement of anaerobic methanogenesis at a short hydraulic retention time via bioelectrochemical enrichment of hydrogenotrophic methanogens.

    PubMed

    Li, Yang; Zhang, Yaobin; Liu, Yiwen; Zhao, Zhiqiang; Zhao, Zisheng; Liu, Sitong; Zhao, Huimin; Quan, Xie

    2016-10-01

    Anaerobic digestion (AD) is an important energy strategy for converting organic waste to CH4. A major factor limiting the practical applicability of AD is the relatively long hydraulic retention time (HRT) which declines the treatment efficiency of digesters. A coupling process of anaerobic digestion and 'electromethanogenesis' was proposed to enhance anaerobic digestion at a short HRT in this study. Microorganisms analysis indicated that the electric-biological reactor enriched hydrogenotrophic methanogens in both cathodic biofilm and suspended sludge, helping achieve the high organic removal (71.0% vs 42.3% [control reactor]) and CH4 production (248.5mL/h vs 51.3mL/h), while the additional electric input was only accounted for 25.6% of the energy income from the increased CH4 production. This study demonstrated that a bioelectrochemical enhanced anaerobic reactor could improve the CH4 production and organic removal at a short HRT, providing an economically feasible scheme to treat wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Humus-reducing microorganisms and their valuable contribution in environmental processes.

    PubMed

    Martinez, Claudia M; Alvarez, Luis H; Celis, Lourdes B; Cervantes, Francisco J

    2013-12-01

    Humus constitutes a very abundant class of organic compounds that are chemically heterogeneous and widely distributed in terrestrial and aquatic environments. Evidence accumulated during the last decades indicating that humic substances play relevant roles on the transport, fate, and redox conversion of organic and inorganic compounds both in chemically and microbially driven reactions. The present review underlines the contribution of humus-reducing microorganisms in relevant environmental processes such as biodegradation of recalcitrant pollutants and mitigation of greenhouse gases emission in anoxic ecosystems, redox conversion of industrial contaminants in anaerobic wastewater treatment systems, and on the microbial production of nanocatalysts and alternative energy sources.

  19. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.

    PubMed

    Zeldes, Benjamin M; Keller, Matthew W; Loder, Andrew J; Straub, Christopher T; Adams, Michael W W; Kelly, Robert M

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  20. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    PubMed Central

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  1. Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers.

    PubMed

    Cui, Jinli; Du, Jingjing; Tian, Haixia; Chan, Tingshan; Jing, Chuanyong

    2018-04-01

    Microorganisms play a key role in the redox transformation of arsenic (As) in aquifers. In this study, the impact of indigenous bacteria, especially the prevailing nitrate respirers, on arsenite (As(III)) oxidation was explored during groundwater filtration using granular TiO 2 and subsequent spent TiO 2 anaerobic landfill. X-ray absorption near edge structure spectroscopy analysis showed As(III) oxidation (46% in 10 days) in the presence of nitrate in the simulated anaerobic landfills. Meanwhile, iron (Fe) species on the spent TiO 2 were dominated by amorphous ferric arsenate, ferrihydrite and goethite. The Fe phase showed no change during the anaerobic landfill incubation. Batch incubation experiments implied that the indigenous bacteria completely oxidized As(III) to arsenate (As(V)) in 10 days using nitrate as the terminal electron acceptor under anaerobic conditions. The bacterial community analysis indicated that various kinds of microbial species exist in groundwater matrix. Phylogenetic tree analysis revealed that Proteobacteria was the dominant phylum, with Hydrogenophaga (34%), Limnohabitans (16%), and Simplicispira (7%) as the major bacterial genera. The nitrate respirers especially from the Hydrogenophaga genus anaerobically oxidized As(III) using nitrate as an electron acceptor instead of oxygen. Our study implied that microbes can facilitate the groundwater As oxidation using nitrate on the adsorptive media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria.

    PubMed

    Čater, Maša; Fanedl, Lijana; Malovrh, Špela; Marinšek Logar, Romana

    2015-06-01

    Lignocellulosic substrates are widely available but not easily applied in biogas production due to their poor anaerobic degradation. The effect of bioaugmentation by anaerobic hydrolytic bacteria on biogas production was determined by the biochemical methane potential assay. Microbial biomass from full scale upflow anaerobic sludge blanket reactor treating brewery wastewater was a source of active microorganisms and brewery spent grain a model lignocellulosic substrate. Ruminococcus flavefaciens 007C, Pseudobutyrivibrio xylanivorans Mz5(T), Fibrobacter succinogenes S85 and Clostridium cellulovorans as pure and mixed cultures were used to enhance the lignocellulose degradation and elevate the biogas production. P. xylanivorans Mz5(T) was the most successful in elevating methane production (+17.8%), followed by the coculture of P. xylanivorans Mz5(T) and F. succinogenes S85 (+6.9%) and the coculture of C. cellulovorans and F. succinogenes S85 (+4.9%). Changes in microbial community structure were detected by fingerprinting techniques. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The anaerobic digestion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited rangemore » of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.« less

  4. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    PubMed Central

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  5. Anaerobic

    MedlinePlus

    ... oxygen." The term has many uses in medicine. Anaerobic bacteria are germs that can survive and grow where ... Infections like tetanus and gangrene are caused by anaerobic bacteria. Anaerobic infections typically cause abscesses (buildups of pus), ...

  6. [Effect of the interaction of microorganisms and iron oxides on arsenic releasing into groundwater in Chinese Loess].

    PubMed

    Xie, Yun-Yun; Chen, Tian-Hu; Zhou, Yue-Fei; Xie, Qiao-Qin

    2013-10-01

    A large part of groundwater in the Chinese Loess Plateau area is characterized by high arsenic concentration. Anaerobic bacteria have been considered to play key roles in promoting arsenic releasing from loess to groundwater. However, this hypothesis remains unconfirmed. Based on modeling experiments, this study investigated the speciation of arsenic in loess, and then determined the release rates and quantities of arsenic with the mediation of anaerobic bacteria. The results showed that arsenic contents in loess were between 23 mg.kg-1 and 30 mg.kg-1. No obvious arsenic content difference among loess samples was observed. The ratios for specific adsorbed, iron oxides co-precipitated and silicate co-precipitated arsenic were 37.76% , 36. 15% and 25. 69% , respectively. Indigenous microorganisms, dissimilatory iron reducing bacteria (DIRB) and sulfate reducing bacteria (SRB) could all promote the release of arsenic from loess. Organic matters highly affected the release rates. More than 100 mg.L-1 sodium lactate was required for all bacterial experiments to facilitate obvious arsenic release. Considering the redox condition in loess, the contribution of SRB to arsenic release in loess area was less feasible than that of DIRB and indigenous microorganisms.

  7. Comparison of spot esculin hydrolysis with the PathoTec strip test for rapid differentiation of anaerobic bacteria.

    PubMed Central

    Qadri, S M; Johnson, S; Smith, J C; Zubairi, S; Gillum, R L

    1981-01-01

    The ability of several anaerobic bacteria to hydrolyze esculin to esculetin is used by clinical microbiologists and taxonomists in the differentiation and identification of both gram-positive and gram-negative microorganisms. Conventional methods used for determining esculin hydrolysis by anaerobic bacteria require 24 to 48 h for completion. In this paper we evaluate two procedures which yield rapid results. A total of 738 anaerobic bacteria were used in this study. A total of 99% of the esculin-hydrolyzing anaerobic bacteria gave positive results with the spot test in 1 h, whereas the other test method, the PathoTec strip test (General Diagnostics, Morris Plains, N.J.), required 4 h for 96% of the strains tested to yield positive reactions. Both tests showed a 100% specificity when compared with the standard broth test and are easy to perform, accurate, and economical. The spot test is superior to the PathoTec strip test in yielding results more rapidly. PMID:7016896

  8. A Genomic Analysis of Anaerobic Aromatic Degradation

    DTIC Science & Technology

    2004-07-26

    bacterium Rhodopseudomonas palustris . Nature Biotech. 22: 55-61. Harrison, F. H. and C. S. Harwood. Identification of a fatty acid ß-oxidation operon...from Rhodopseudomonas palustris that is involved in the latter stages of anaerobic benzoate degradation. Submitted. b. Papers presented at meetings. (MS...in preparation). Samanta, S. K. and C. S. Harwood. 2002. The anaerobic degradation of 3-chlorobenzoate by Rhodopseudomonas palustris strain RCB100

  9. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem.

    PubMed

    Lu, Xia; Liu, Yurong; Johs, Alexander; Zhao, Linduo; Wang, Tieshan; Yang, Ziming; Lin, Hui; Elias, Dwayne A; Pierce, Eric M; Liang, Liyuan; Barkay, Tamar; Gu, Baohua

    2016-04-19

    Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 μM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments.

  10. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria

    PubMed Central

    Geva-Zatorsky, Naama; Alvarez, David; Hudak, Jason E.; Reading, Nicola C.; Erturk-Hasdemir, Deniz; Dasgupta, Suryasarathi; von Andrian, Ulrich H.; Kasper, Dennis L.

    2015-01-01

    The intestine is densely populated by anaerobic commensal bacteria. These microorganisms shape immune system development, but our understanding of host–commensal interactions is hampered by a lack of tools for studying the anaerobic intestinal environment. We applied metabolic oligosaccharide engineering and bioorthogonal click-chemistry to label various commensal anaerobes, including Bacteroides fragilis, a common and immunologically important commensal. We studied the dissemination of B. fragilis following acute peritonitis, and characterized the interactions of the intact microbe and its polysaccharide components in myeloid and B cell lineages. The distribution and colonization of labeled B. fragilis along the intestine can be assessed, as well as niche competition following coadministration of multiple species of the microbiota. Nine additional anaerobic commensals (both gram-negative and gram-positive) from three phyla common in the gut—Bacteroidetes, Firmicutes, and Proteobacteria—and five families and one aerobic pathogen (Staphylococcus aureus) were also fluorescently labeled. This strategy permits visualization of the anaerobic microbial niche by various methods, including intravital two-photon microscopy and non-invasive whole-body imaging, and an approach to study microbial colonization and host–microbe interactions in real-time. PMID:26280120

  11. [Acclimatization and characteristics of microbial community in sulphate-dependent anaerobic methane oxidation].

    PubMed

    Xi, Jing-Ru; Liu, Su-Qin; Li, Lin; Liu, Jun-Xin

    2014-12-01

    The greenhouse effect of methane is 26 times worse than that of carbon dioxide, and wastewater containing high concentrations of sulfate is harmful to water, soil and plants. Therefore, anaerobic oxidation of methane driven by sulfate is one of the effective ways for methane reduction. In this paper, with sulfate as the electron accepter, a microbial consortium capable of oxidating methane under anaerobic condition was cultured. The diversity and characteristics of bacterial and archaeal community were investigated by PCR-DGGE, and phylogenetic analysis of the dominant microorganisms was also carried out. The DGGE fingerprints showed that microbial community structure changed distinctly, and the abundance of methane-oxidizing archea and sulfate-reducing bacteria increased in the acclimatization system added sulfate. After acclimatization, the bacterial diversity increased, while archaea diversity decreased slightly. The representative bands in the DGGE profiles were excised and sequenced. Results indicated that the dominant species in the acclimatization system were Spirochaetes, Desulfuromonadales, Methanosarcinales, Methanosaeta. Methane converted into carbon dioxide while sulfate transformed into hydrogen sulfide and sulfur in the process of anaerobic methane oxidation accompanied by sulphate reduction.

  12. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    PubMed Central

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  13. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  14. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types ofmore » systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.« less

  15. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  16. Degradation of azo dyes by environmental microorganisms and helminths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingthom Chung; Stevens, S.E. Jr.

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number ofmore » anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.« less

  17. Fluorescent antibody detection of microorganisms in terrestrial environments

    NASA Technical Reports Server (NTRS)

    Schmidt, E. L.

    1972-01-01

    The fluorescent antibody technique and its use in direct microscopic examination of the soil is discussed. Feasibility analyses were made to determine if the method could be used to simultaneously observe and recognize microorganisms in the soil. Some data indicate this may be possible. Data are also given on two related problems involving the interaction of soil microorganisms with plant roots to form symbiotic structures. One was concerned with the developmental ecology and biology of the root nodule of alder and the second was concerned with the ectotrophic mycorrhizal structure on forest trees, especially pines. In both, the fluorescent antibody detection of the microbial symbiont both as a free living form in soil, and as a root inhabiting form in the higher plant was emphasized. A third aspect of the research involved the detection of autotrophic ammonia oxidizing microorganisms in soil.

  18. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge.

    PubMed

    Tapia-Rodriguez, Aida; Luna-Velasco, Antonia; Field, Jim A; Sierra-Alvarez, Reyes

    2010-04-01

    Uranium has been responsible for extensive contamination of groundwater due to releases from mill tailings and other uranium processing waste. Past evidence has confirmed that certain bacteria can enzymatically reduce soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) under anaerobic conditions in the presence of appropriate electron donors. This paper focuses on the evaluation of anaerobic granular sludge as a source of inoculum for the bioremediation of uranium in water. Batch experiments were performed with several methanogenic anaerobic granular sludge samples and different electron donors. Abiotic controls consisting of heat-killed inoculum and non-inoculated treatments confirmed the biological removal process. In this study, unadapted anaerobic granular sludge immediately reduced U(VI), suggesting an intrinsic capacity of the sludge to support this process. The high biodiversity of anaerobic granular sludge most likely accounts for the presence of specific microorganisms capable of reducing U(VI). Oxidation by O(2) was shown to resolubilize the uranium. This observation combined with X-ray diffraction evidence of uraninite confirmed that the removal during anaerobic treatment was due to reductive precipitation. The anaerobic removal activity could be sustained after several respikes of U(VI). The U(VI) removal was feasible without addition of electron donors, indicating that the decay of endogenous biomass substrates was contributing electron equivalents to the process. Addition of electron donors, such as H(2) stimulated the removal of U(VI) to varying degrees. The stimulation was greater in sludge samples with lower endogenous substrate levels. The present work reveals the potential application of anaerobic granular sludge for continuous bioremediation schemes to treat uranium-contaminated water. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation.

    PubMed

    Alkorta, Itziar; Epelde, Lur; Garbisu, Carlos

    2017-10-16

    Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system.

    PubMed

    Kim, Youngjin; Chekli, Laura; Shim, Wang-Geun; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2016-06-01

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulfate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulfate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice.

    PubMed

    Akamatsu, Akira; Shimamoto, Ko; Kawano, Yoji

    2016-08-01

    Rice is one of the most important food crops, feeding about half population in the world. Rice pathogens cause enormous damage to rice production worldwide. In plant immunity research, considerable progress has recently been made in our understanding of the molecular mechanisms underlying microbe-associated molecular pattern (MAMP)-triggered immunity. Using genome sequencing and molecular techniques, a number of new MAMPs and their receptors have been identified in the past two decades. Notably, the mechanisms for chitin perception via the lysine motif (LysM) domain-containing receptor OsCERK1, as well as the mechanisms for bacterial MAMP (e.g. flg22, elf18) perception via the leucine-rich repeat (LRR) domain-containing receptors FLS2 and EFR, have been clarified in rice and Arabidopsis, respectively. In chitin signaling in rice, two direct substrates of OsCERK1, Rac/ROP GTPase guanine nucleotide exchange factor OsRacGEF1 and receptor-like cytoplasmic kinase OsRLCK185, have been identified as components of the OsCERK1 complex and are rapidly phosphorylated by OsCERK1 in response to chitin. Interestingly, OsCERK1 also participates in symbiosis with arbuscular mycorrhizal fungi (AMF) in rice and plays a role in the recognition of short-chitin molecules (CO4/5), which are symbiotic signatures included in AMF germinated spore exudates and induced by synthetic strigolactone. Thus, OsCERK1 contributes to both immunity and symbiotic responses. In this review, we describe recent studies on pathways involved in rice immunity and symbiotic signaling triggered by interactions with microorganisms. In addition, we describe recent advances in genetic engineering by using plant immune receptors and symbiotic microorganisms to enhance disease resistance of rice.

  2. Kinetic study of anaerobic digestion of fruit-processing wastewater in immobilized-cell bioreactors.

    PubMed

    Borja, R; Banks, C J

    1994-08-01

    The kinetics of the anaerobic digestion of a fruit-processing wastewater [chemical oxygen demand (COD) = 5.1 g/l] were investigated. Laboratory experiments were carried out in bioreactors containing supports of different chemical composition and features, namely bentonite and zeolite (aluminum silicates), sepiolite and saponite (magnesium silicates) and polyurethane foam, to which the microorganisms responsible for the process adhered. The influence of the support medium on the kinetics was compared with a control digester with suspended biomass. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constant, K0, was determined for each of the experimental reactors. The average values obtained were: 0.080 h-1 (bentonite); 0.103 h-1 (zeolite); 0.180 h-1 (sepiolite); 0.198 h-1 (saponite); 0.131 h-1 (polyurethane); and 0.037 h-1 (control). The results indicate that the support used to immobilize the micro-organisms had a marked influence on the digestion process; the results were significant at the 95% confidence level. Methanogenic activity increased linearly with COD, with the saponite and sepiolite supports showing the highest values. The yield coefficient of methane was 270 ml of methane (under standard temperature and pressure conditions)/g of COD. The average elimination of COD was 89.5%.

  3. A Long-Term Cultivation of an Anaerobic Methane-Oxidizing Microbial Community from Deep-Sea Methane-Seep Sediment Using a Continuous-Flow Bioreactor

    PubMed Central

    Aoki, Masataka; Ehara, Masayuki; Saito, Yumi; Yoshioka, Hideyoshi; Miyazaki, Masayuki; Saito, Yayoi; Miyashita, Ai; Kawakami, Shuji; Yamaguchi, Takashi; Ohashi, Akiyoshi; Nunoura, Takuro; Takai, Ken; Imachi, Hiroyuki

    2014-01-01

    Anaerobic oxidation of methane (AOM) in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS) bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME)-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms. PMID:25141130

  4. Inhibitory effect of high phenol concentration in treating coal gasification wastewater in anaerobic biofilter.

    PubMed

    Li, Yajie; Tabassum, Salma; Chu, Chunfeng; Zhang, Zhenjia

    2018-02-01

    In this paper, the inhibition of methanogens by phenol in coal gasification wastewater (CGW) was investigated by both anaerobic toxicity tests and a lab-scale anaerobic biofilter reactor (AF). The anaerobic toxicity tests indicated that keeping the phenol concentration in the influent under 280mg/L could maintain the methanogenic activity. In the AF treating CGW, the result showed that adding glucose solution as co-substrate could be beneficial for the quick start-up of the reactor. The effluent chemical oxygen demand (COD) and total phenol reached 1200 and 100mg/L, respectively, and the methane production rate was 175mLCH 4 /gCOD/day. However, if the concentration of phenol was increased, the inhibition of anaerobic micro-organisms was irreversible. The threshold of total phenol for AF operation was 200-250mg/L. The extracellular polymeric substances (EPS) and particle size distribution of anaerobic granular sludge in the different stages were also examined, and the results indicated that the influence of toxicity in the system was more serious than its effect on flocculation of EPS. Moreover, the proportion of small size anaerobic granular sludge gradually increased from 10.2% to 34.6%. The results of high through-put sequencing indicated that the abundance of the Chloroflexi and Planctomycetes was inhibited by the toxicity of the CGW, and some shifts in the microbial community were observed at different stages. Copyright © 2017. Published by Elsevier B.V.

  5. Microorganism immobilization

    DOEpatents

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  6. Sequential ethanol fermentation and anaerobic digestion increases bioenergy yields from duckweed.

    PubMed

    Calicioglu, O; Brennan, R A

    2018-06-01

    The potential for improving bioenergy yields from duckweed, a fast-growing, simple, floating aquatic plant, was evaluated by subjecting the dried biomass directly to anaerobic digestion, or sequentially to ethanol fermentation and then anaerobic digestion, after evaporating ethanol from the fermentation broth. Bioethanol yields of 0.41 ± 0.03 g/g and 0.50 ± 0.01 g/g (glucose) were achieved for duckweed harvested from the Penn State Living-Filter (Lemna obscura) and Eco-Machine™ (Lemna minor/japonica and Wolffia columbiana), respectively. The highest biomethane yield, 390 ± 0.1 ml CH 4 /g volatile solids added, was achieved in a reactor containing fermented duckweed from the Living-Filter at a substrate-to-inoculum (S/I) ratio (i.e., duckweed to microorganism ratio) of 1.0. This value was 51.2% higher than the biomethane yield of a replicate reactor with raw (non-fermented) duckweed. The combined bioethanol-biomethane process yielded 70.4% more bioenergy from duckweed, than if anaerobic digestion had been run alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Anaerobic degradation of increased phenol concentrations in batch assays.

    PubMed

    Wirth, Benjamin; Krebs, Maria; Andert, Janet

    2015-12-01

    Phenol is a wastewater contaminant depicting an environmental hazard. It can be found in effluents from various industrial processes and becomes even more common as a waste by-product of biomass-based bioenergy concepts. Because of its toxicity to anaerobic microorganisms, it can be recalcitrant during biogas production and anaerobic wastewater treatment. This study tested increased phenol loads (100 to 5000 mg L(-1)) as the sole carbon source in a semi-continuous mesophilic anaerobic adaption experiment using an unadapted microbial community from a standard biogas plant. Phenol was completely degraded at starting concentrations of up to 2000 mg L(-1). At 5000 mg L(-1), complete inhibition of the anaerobic community was observed. Lag times were reduced down to less than a day treating 2000 mg L(-1) after 16 weeks of adaption to gradually increased phenol concentrations. Specific degradation rates increased consecutively up to 7.02 mg gVS (-1) day(-1) at 2000 mg L(-1). This concentration was completely degraded within less than 12 days. The microbial community composition was assessed using 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) analysis. In the bacterial community, no clear shift was visible. Clostridia were with the highest relative abundance of 27 %, the most prominent bacterial class. T-RFs representing Clostridia, Anaerolinaceae, Flavobacteria, and Bacteroidea appeared at similar relative abundance level throughout the experiment. The archaeal community, however, changed from a Methanosarcinales-dominated community (57%) to a community with a nearly even distribution of Methanobacteriales (21%) and Methanosarcinales (34%) with increasing starting phenol concentration.

  8. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.

    1986-02-28

    The present invention relates to a method of solubilizing lead, in the form of lead oxide, found in industrial wastes, before these wastes are dumped into the environment. The lead is solubilized by dissolving the lead oxide in the wastes through contact with an anaerobic bacterial culture containing the bacterium ATCC No. 53464. The solubilized lead can then be removed from the wastes by chemical separation. It could also be removed by extending the contact period with the bacterial culture. As the culture grows, the solubilized lead is removed from the wastes by bioaccumulation by the microorganism or by immobilization by a polymer-like material produced by the microorganism. At this point, the lead is then removed from the wastes when the waste material is separated from the bacterial culture. If desired, the bacterial culture could be digested at this point to yield relatively pure lead for further industrial use.

  9. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, P.L.; Keller, J.; Blackall, L.L.

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigationsmore » have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.« less

  10. Microorganisms meet solid minerals: interactions and biotechnological applications.

    PubMed

    Ng, Daphne H P; Kumar, Amit; Cao, Bin

    2016-08-01

    In natural and engineered environments, microorganisms often co-exist and interact with various minerals or mineral-containing solids. Microorganism-mineral interactions contribute significantly to environmental processes, including biogeochemical cycles in natural ecosystems and biodeterioration of materials in engineered environments. In this mini-review, we provide a summary of several key mechanisms involved in microorganism-mineral interactions, including the following: (i) solid minerals serve as substrata for biofilm development; (ii) solid minerals serve as an electron source or sink for microbial respiration; (iii) solid minerals provide microorganisms with macro or micronutrients for cell growth; and (iv) (semi)conductive solid minerals serve as extracellular electron conduits facilitating cell-to-cell interactions. We also highlight recent developments in harnessing microbe-mineral interactions for biotechnological applications.

  11. Organic loading rate and food-to-microorganism ratio shape prokaryotic diversity in a demo-scale up-flow anaerobic sludge blanket reactor treating domestic wastewater.

    PubMed

    Cardinali-Rezende, Juliana; Araújo, Juliana C; Almeida, Paulo G S; Chernicharo, Carlos A L; Sanz, José L; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2013-12-01

    We investigated the microbial community in an up-flow anaerobic sludge blanket (UASB) reactor treating domestic wastewater (DW) during two different periods of organic loading rate (OLR) and food-to-microorganism (F/M) ratio. 16S rDNA clone libraries were generated, and quantitative real-time PCR (qPCR) analyses were performed. Fluctuations in the OLR and F/M ratio affected the abundance and the composition of the UASB prokaryotic community, mainly at the species level, as well as the performance of the UASB reactor. The qPCR analysis suggested that there was a decrease in the bacterial cell number during the rainy season, when the OLR and F/M ratio were lower. However, the bacterial diversity was higher during this time, suggesting that the community degraded more diversified substrates. The diversity and the abundance of the archaeal community were higher when the F/M ratio was lower. Shifts in the methanogenic community composition might have influenced the route of methane production, with methane produced by acetotrophic methanogens (dry season), and by hydrogenotrophic, methylotrophic and acetotrophic methanogens (rainy season). This study revealed higher levels of bacterial diversity, metabolic specialization and chemical oxygen demand removal efficiency of the DW UASB reactor during the rainy season.

  12. Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage.

    PubMed

    Weiss, S; Zankel, A; Lebuhn, M; Petrak, S; Somitsch, W; Guebitz, G M

    2011-03-01

    The colonisation of activated zeolites (i.e. clinoptilolites) as carriers for microorganisms involved in the biogas process was investigated. Zeolite particle sizes of 1.0-2.5mm were introduced to anaerobic laboratory batch-cultures and to continuously operated bioreactors during biogas production from grass silage. Incubation over 5-84 days led to the colonisation of zeolite surfaces in small batch-cultures (500 ml) and even in larger scaled and flow-through disturbed bioreactors (28 l). Morphological insights were obtained by using scanning electron microscopy (SEM). Single strand conformation polymorphism (SSCP) analysis based on amplification of bacterial and archaeal 16S rRNA fragments demonstrated structurally distinct populations preferring zeolite as operational environment. via sequence analysis conspicuous bands from SSCP patterns were identified. Populations immobilised on zeolite (e.g. Ruminofilibacter xylanolyticum) showed pronounced hydrolytic enzyme activity (xylanase) shortly after re-incubation in sterilised sludge on model substrate. In addition, the presence of methanogenic archaea on zeolite particles was demonstrated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, Caldanaerobacter yonseiensis, Isolated from a Geothermal Hot Stream

    PubMed Central

    Lee, Sang-Jae; Lee, Yong-Jik; Park, Gun-Seok; Kim, Byoung-Chan; Lee, Sang Jun; Shin, Jae-Ho

    2013-01-01

    Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms. PMID:24201201

  14. Anaerobic utilization of phosphite/phosphine as a sole source of phosphorus: implication to growth in the Jovian environment.

    PubMed

    Foster, T L; Winans, L

    1977-01-01

    The objective of the investigation was to isolate anaerobic micro-organisms which had the ability to utilize inorganic phosphorus in forms other than phosphate. The first part of this investigation was to isolate from Cape Canaveral soil micro-organisms capable of utilizing phosphite as their phosphorus source under anaerobic conditions. In an attempt to demonstrate this ability, a medium was prepared which contained hypophosphite as the phosphorus source. This was inoculated with soil samples, and growth was subcultured at least four times. To verify that these isolates could use hypophosphite, they were inoculated into defined hypophosphite medium, and samples were removed periodically and killed with formalin. Growth was determined by turbidity measurements and the sample was then filtered. The filtrate was separated by chromatography and the total amounts of hypophosphite, phosphate and phosphate in the filtrate were measured. By this procedure it appeared that the hypophosphite level began decreasing after 14 hr of incubation suggesting utilization of the hypophosphite under anaerobic conditions. The third part of this investigation used labeled (32P) hypophosphite in a defined medium; the cells were then lysed and the metabolic compounds separated by the use of paper chromatography and autoradiograms, demonstrating the presence of 32P in intermediate metabolic compounds. Similar investigations are now being performed with phosphine as the phosphorus source.

  15. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    PubMed Central

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  16. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine.

    PubMed

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2014-12-24

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases.

  17. Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter.

    PubMed

    Cassarini, Chiara; Rene, Eldon R; Bhattarai, Susma; Esposito, Giovanni; Lens, Piet N L

    2017-09-01

    Microorganisms from an anaerobic methane oxidizing sediment were enriched with methane gas as the substrate in a biotrickling filter (BTF) using thiosulfate as electron acceptor for 213days. Thiosulfate disproportionation to sulfate and sulfide were the dominating sulfur conversion process in the BTF and the sulfide production rate was 0.5mmoll -1 day -1 . A specific group of sulfate reducing bacteria (SRB), belonging to the Desulforsarcina/Desulfococcus group, was enriched in the BTF. The BTF biomass showed maximum sulfate reduction rate (0.38mmoll -1 day -1 ) with methane as sole electron donor, measured in the absence of thiosulfate in the BTF. Therefore, a BTF fed with thiosulfate as electron acceptor can be used to enrich SRB of the DSS group and activate the inoculum for anaerobic oxidation of methane coupled to sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter.

    PubMed

    Gannoun, H; Bouallagui, H; Okbi, A; Sayadi, S; Hamdi, M

    2009-10-15

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 degrees C) and thermophilic (55 degrees C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6g COD/Ld in mesophilic conditions and at OLRs from 0.9 to 9 g COD/Ld in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/Ld in mesophilic conditions, while the highest OLRs i.e. 9 g COD/Ld led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/Ld. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.

  19. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions.

    PubMed

    Rodríguez, Elisa; Lopes, Alexandre; Fdz-Polanco, María; Stams, Alfons J M; García-Encina, Pedro A

    2012-03-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focused on the competitive and syntrophic interactions between the different microbial groups at varying influent substrate to sulfate ratios of 8, 4, and 2 and anaerobic or micro-aerobic conditions. Acetogens detected along the anaerobic phases at substrate to sulfate ratios of 8 and 4 seemed to be mainly involved in the fermentation of glucose and betaine, but they were substituted by other sugar or betaine degraders after oxygen application. Typical fatty acid degraders that grow in syntrophy with methanogens were not detected during the entire reactor run. Likely, sugar and betaine degraders outnumbered them in the DGGE analysis. The detected sulfate-reducing bacteria (SRB) belonged to the hydrogen-utilizing Desulfovibrio. The introduction of oxygen led to the formation of elemental sulfur (S(0)) and probably other sulfur compounds by sulfide-oxidizing bacteria (γ-Proteobacteria). It is likely that the sulfur intermediates produced from sulfide oxidation were used by SRB and other microorganisms as electron acceptors, as was supported by the detection of the sulfur respiring Wolinella succinogenes. Within the Archaea population, members of Methanomethylovorans and Methanosaeta were detected throughout the entire reactor operation. Hydrogenotrophic methanogens mainly belonging to the genus Methanobacterium were detected at the highest substrate to sulfate ratio but rapidly disappeared by increasing the sulfate concentration.

  20. Effects and fate of TiO2 nanoparticles in the anaerobic treatment of wastewater and waste sludge.

    PubMed

    Cervantes-Avilés, Pabel; Ida, Junichi; Toda, Tatsuki; Cuevas-Rodríguez, Germán

    2018-05-29

    The increasing use of TiO 2 nanoparticles (NPs) in customer products has also increased the concerns about their effects in the environment. Anaerobic digestion is a process probably exposed to high concentrations of TiO 2 NPs due to its application for wastewater and waste sludge treatment. In this work, it was studied the anaerobic digestion performance and the extracellular polymeric substances (EPS) production in presence of TiO 2 NPs, as well as the fate of TiO 2 NPs in anaerobic reactors. Results showed that methane production enhanced an average of 14.9% in presence TiO 2 NPs, which is considered a positive effect. A strong affinity between TiO 2 NPs and EPS was found, especially for proteins (PRO) and polysaccharides (PS) in the loosely and tightly bound EPS layers of microorganisms (LB-EPS and TB-EPS). Ti quantification indicated that 92% of the TiO 2 NPs are removed by anaerobic sludge, while 8% remain in the treated effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem

    DOE PAGES

    Lu, Xia; Liu, Yurong; Johs, Alexander; ...

    2016-03-28

    Two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems are microbial methylation and demethylation. Though mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjensis Bem. Here we report, for the first time, that the strain G. bemidjensis Bem can methylate inorganic Hg and degrade MeHg concurrently under anoxic conditions. Our results suggest that G. bemidjensis cells utilize a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) asmore » the major reaction product, possibly due to the presence of homologs encoding both organo-mercurial lyase (MerB) and mercuric reductase (MerA) in this organism. In addition, the cells can mediate multiple reactions including Hg/MeHg sorption, Hg reduction and oxidation, resulting in both time and concentration dependent Hg species transformations. Moderate concentrations (10 500 M) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of methylation and demethylation among anaerobic bacteria and suggest that mer-mediated demethylation may play a role in the net balance of MeHg production in anoxic water and sediments.« less

  2. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    PubMed

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Role of various microorganisms on Tc behavior in sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignolet, L.; Auvray, F.; Fonsny, K.

    1989-11-01

    Marine bacteria (Moraxella sp., Planococcus sp. and a mixed population of anaerobes) from a coastal sediment were found to concentrate Tc. Maximum concentration of this element occurred during the stationary phase of growth of the bacteria, at low redox potential. A metabolic process seems responsible for Tc concentration by bacteria, in which it binds to high molecular weight cellular constituents. Polysaccharidic polymers, which were visualized around the bacterial cells with the scanning electron microscope, might bind Tc, but direct experimental evidence in favor of this hypothesis was not yet obtained. The role of sedimentary bacteria in the behavior of Tcmore » in the marine environment is briefly discussed. The action of sulfate-reducing microorganisms is considered.« less

  4. Early photosynthetic microorganisms and environmental evolution

    NASA Technical Reports Server (NTRS)

    Golubic, S.

    1980-01-01

    Microfossils which are preserved as shrivelled kerogenous residues provide little information about cellular organization and almost none about the metabolic properties of the organisms. The distinction between prokaryotic vs eukaryotic, and phototrophic vs chemo- and organotrophic fossil microorganisms rests entirely on morphological comparisons with recent counterparts. The residual nature of the microbial fossil record promotes the conclusion that it must be biased toward (a) most abundant organisms, (b) those most resistant to degradation, and (c) those inhabiting environments with high preservation potential e.g., stromatolites. These criteria support the cyanophyte identity of most Precambrian microbial fossils on the following grounds: (1) as primary producers they dominate prokaryotic communities in modern extreme environments, e.g., intertidal zone; (2) several morphological counterparts of modern cyanophytes and microbial fossils have been established based on structure, cell division patterns and degradation sequences. The impact of anaerobic and oxygenic microbial photosynthesis on the evolution of Precambrian environments is discussed.

  5. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria.

    PubMed

    Kartal, Boran; Geerts, Wim; Jetten, Mike S M

    2011-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite under anoxic conditions. The anammox process is currently used to remove ammonium from wastewater and contributes significantly to the loss of fixed nitrogen from the oceans. In this chapter, we focus on the ecophysiology of anammox bacteria and describe new methodologies to grow these microorganisms. Now, it is possible to enrich anammox bacteria up to 95% with a membrane bioreactor that removes forces of selection for fast settling aggregates and facilitates the growth of planktonic cells. The biomass from this system has a high anaerobic ammonium oxidation rate (50 fmol NH(4)(+) · cell(-1) day(-1)) and is suitable for many ecophysiological and molecular experiments. A high throughput Percoll density gradient centrifugation protocol may be applied on this biomass for further enrichment (>99.5%) of anammox bacteria. Furthermore, we provide an up-to-date list of commonly used primers and introduce protocols for quantification and detection of functional genes of anammox bacteria in their natural environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments.

    PubMed

    Hoshino, T; Inagaki, F

    2017-05-01

    Carbon monoxide (CO) is the simplest oxocarbon generated by the decomposition of organic compounds, and it is expected to be in marine sediments in substantial amounts. However, the availability of CO in the deep subseafloor sedimentary biosphere is largely unknown even though anaerobic oxidation of CO is a thermodynamically favourable reaction that possibly occurs with sulphate reduction, methanogenesis, acetogenesis and hydrogenesis. In this study, we surveyed for the first time the distribution of the CO dehydrogenase gene (cooS), which encodes the catalytic beta subunit of anaerobic CO dehydrogenase (CODH), in subseafloor sediment-core samples from the eastern flank of the Juan de Fuca Ridge, Mars-Ursa Basin, Kumano Basin, and off the Shimokita Peninsula, Japan, during Integrated Ocean Drilling Program (IODP) Expeditions 301, 308 and 315 and the D/V Chikyu shakedown cruise CK06-06, respectively. Our results show the occurrence of diverse cooS genes from the seafloor down to about 390 m below the seafloor, suggesting that microbial communities have metabolic functions to utilize CO in anoxic microbial ecosystems beneath the ocean floor, and that the microbial community potentially responsible for anaerobic CO oxidation differs in accordance with possible energy-yielding metabolic reactions in the deep subseafloor sedimentary biosphere. Little is known about the microbial community associated with carbon monoxide (CO) in the deep subseafloor. This study is the first survey of a functional gene encoding anaerobic carbon monoxide dehydrogenase (CODH). The widespread occurrence of previously undiscovered CO dehydrogenase genes (cooS) suggests that diverse micro-organisms are capable of anaerobic oxidation of CO in the deep subseafloor sedimentary biosphere. © 2017 The Society for Applied Microbiology.

  7. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    PubMed

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge.

    PubMed

    Duan, Xu; Wang, Xiao; Xie, Jing; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-11-15

    Most of the reported studies on anaerobic fermentation of sludge focused on the influences of operating conditions, pretreatment methods, and its characteristics, and little attention was paid to those of persistent organic pollutants (POPs) which widespreadly appeared in sludge. In this study, the effect of nonylphenol, a typical POPs in waste activated sludge (WAS), on anaerobic fermentation for volatile fatty acids (VFAs) accumulation was investigated. The concentration of VFAs during WAS anaerobic fermentation was found to be affected positively from 2856 mg COD/L in the control (without NP) to 5620 mg COD/L with NP of 200 mg/kg dry sludge. Mechanism exploration exhibited that the main reason for the enhanced VFAs accumulation in the presence of NP was that more acetic acid was generated during the acidification of WAS, which was increased by almost three times (3790 versus 1310 mg COD/L). In WAS fermentation systems, the abundance of anaerobic functional microorganisms was advantageous to the accumulation of acetic acid. Further investigation by the pure acetogen revealed that both the viability and activity of Proteiniphilum acetatigenes were improved by NP during anaerobic fermentation, resulting in more production of acetic acid and showing good agreement with that in the real WAS fermentation systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Effect of NaOH-treatment on dry-thermophilic anaerobic digestion of Spartina alterniflora].

    PubMed

    Chen, Guang-Yin; Zheng, Zheng; Chang, Zhi-Zhou; Ye, Xiao-Mei; Luo, Yan

    2011-07-01

    In order to improve the biotransformation rate of lignocellulosic materials, sodium hydroxide (NaOH) was widely used to pretreat lignocellulosic materials. Effect of NaOH-treatment on dry-thermophilic anaerobic digestion of Spartina alternflora was studied by batch model under the temperature of 55 degrees C +/- 1 degrees C, at the initial total solid loading (TSL) of 20%. The results indicated that biogas production was inhibited by NaOH-treatment and improved by NaOH-treatment with water washed. The cumulative biogas yield of control (CK), NaOH-treated and NaOH-treated with water washed (NaOH + water) were 268.35 mL/g, 205.76 mL/g and 299.97 mL/g, respectively. The methane content of CK and NaOH + water treatments kept stable while fluctuation of NaOH-treated treatment during anaerobic digestion process was observed. Compared with CK and NaOH + water treatments, methane content of NaOH-treated treatment was improved by 5.30%. The content of hemi-cellulose and cellulose of S. alternifora decreased while content of lignin of S. alterniflora increased after 51-day anaerobic digestion. The crystallinity of cellulose of S. alterniflora increased after NaOH-treatment which was consistent to the result of FTIR. The lignocellulosic structure was destroyed and the biodegradability of S. alterniflora was increased by NaOH pretreatment. However, the amount of Na+ was taken into the anaerobic system, besides the high Na+ content in the plant itself which inhibited the anaerobic microorganisms. Therefore, NaOH-treatment is considered to be unsuitable for the anaerobic digestion of S. alterniflora.

  10. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives.

    PubMed

    Nzila, Alexis

    2018-05-07

    The biodegradation of low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) (LWM-PAHs and HMW-PAHs, respectively) has been studied extensively under aerobic conditions. Molecular O 2 plays 2 critical roles in this biodegradation process. O 2 activates the aromatic rings through hydroxylation prior to ring opening and serves as a terminal electron acceptor (TEA). However, several microorganisms have devised ways of activating aromatic rings, leading to ring opening (and thus biodegradation) when TEAs other than O 2 are used (under anoxic conditions). These microorganisms belong to the sulfate-, nitrate-, and metal-ion-reducing bacteria and the methanogens. Although the anaerobic biodegradation of monocyclic aromatic hydrocarbons and LWM-PAH naphthalene have been studied, little information is available about the biodegradation of HMW-PAHs. This manuscript reviews studies of the anaerobic biodegradation of HMW-PAHs and identifies gaps that limit both our understanding and the efficiency of this biodegradation process. Strategies that can be employed to overcome these limitations are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Antifungal and antibacterial activity of marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-03-01

    In order to explore marine microorganisms with pharmaceutical potential, marine bacteria, collected from different coastal areas of the Moroccan Atlantic Ocean, were previously isolated from seawater, sediment, marine invertebrates and seaweeds. The antimicrobial activities of these microorganisms were investigated against the pathogens involved in human pathologies. Whole cultures of 34 marine microorganisms were screened for antimicrobial activities using the method of agar diffusion against three Gram-positive bacteria, two Gram-negative bacteria, and against yeast. The results showed that among the 34 isolates studied, 28 (82%) strains have antimicrobial activity against at least one pathogen studied, 11 (32%) strains have antifungal activity and 24 (76%) strains are active against Gram-positive bacteria, while 21 (62%) strains are active against Gram-negative bacteria. Among isolates having antimicrobial activity, 14 were identified and were assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms can produce antibiotic substance; therefore, these marine microorganisms were expected to be potential resources of natural antibiotic products. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. A mathematical model for the interactive behavior of sulfate-reducing bacteria and methanogens during anaerobic digestion.

    PubMed

    Ahammad, S Ziauddin; Gomes, James; Sreekrishnan, T R

    2011-09-01

    Anaerobic degradation of waste involves different classes of microorganisms, and there are different types of interactions among them for substrates, terminal electron acceptors, and so on. A mathematical model is developed based on the mass balance of different substrates, products, and microbes present in the system to study the interaction between methanogens and sulfate-reducing bacteria (SRB). The performance of major microbial consortia present in the system, such as propionate-utilizing acetogens, butyrate-utilizing acetogens, acetoclastic methanogens, hydrogen-utilizing methanogens, and SRB were considered and analyzed in the model. Different substrates consumed and products formed during the process also were considered in the model. The experimental observations and model predictions showed very good prediction capabilities of the model. Model prediction was validated statistically. It was observed that the model-predicted values matched the experimental data very closely, with an average error of 3.9%.

  13. Enrichment and activity of methanotrophic microorganisms from municipal wastewater sludge.

    PubMed

    Siniscalchi, Luciene Alves Batista; Vale, Isabel Campante; Dell'Isola, Jéssica; Chernicharo, Carlos Augusto; Calabria Araujo, Juliana

    2015-01-01

    In this study, methanotrophic microorganisms were enriched from a municipal wastewater sludge taken from an Upflow Anaerobic Sludge Blanket reactor. The enrichment was performed in a sequencing batch reactor (SBR) with an autotrophic medium containing nitrite and nitrate. The microbial community composition of the inoculum and of the enrichment culture after 100 days of SBR operation was investigated and compared with the help of data obtained from 454 pyrosequencing analyses. The nitrite and nitrate removal efficiencies were 68% and 53%, respectively, probably due to heterotrophic denitrification. Archaeal cells of the anaerobic methanotrophic Archaic (ANME)-I and ANME-II groups were detected by polymerase chain reaction throughout the whole cultivation period. Pyrosequencing analysis showed that community composition was different among the two samples analysed. The dominant phyla found in the inoculum were Synergistestes, Firmicutes and Euryarchaeota, while Planctomycetes, Verrucomicrobia, Chloroflexi and Proteobacteria prevailed in the enriched biomass. The cultivation conditions decreased Methanobacterium abundance from 8% to 1%, and enriched for methanotrophic bacteria such as Methylocaldum, Methylocistis and Methylosinus. Sequences of Methylocaldum sp. accounted for 2.5% of the total reads. The presence and high predominance of Verrucomicrobia in the enriched biomass suggested that other unknown methanotrophic species related to that phylum might also have occurred in the reactor. Anaerobic methane oxidation activity was measured for both samples, and showed that the activity of the enrichment culture was nearly three times higher than the activity of the inoculum. Taken together, these results showed that the inoculum type and cultivation conditions were properly suited for methanotrophic enrichment.

  14. Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM (ywiD).

    PubMed

    Marino, M; Ramos, H C; Hoffmann, T; Glaser, P; Jahn, D

    2001-12-01

    Bacillus subtilis grows under anaerobic conditions utilizing nitrate ammonification and various fermentative processes. The two-component regulatory system ResDE and the redox regulator Fnr are the currently known parts of the regulatory system for anaerobic adaptation. Mutation of the open reading frame ywiD located upstream of the respiratory nitrate reductase operon narGHJI resulted in elimination of the contribution of nitrite dissimilation to anaerobic nitrate respiratory growth. Significantly reduced nitrite reductase (NasDE) activity was detected, while respiratory nitrate reductase activity was unchanged. Anaerobic induction of nasDE expression was found to be significantly dependent on intact ywiD, while anaerobic narGHJI expression was ywiD independent. Anaerobic transcription of hmp, encoding a flavohemoglobin-like protein, and of the fermentative operons lctEP and alsSD, responsible for lactate and acetoin formation, was partially dependent on ywiD. Expression of pta, encoding phosphotransacetylase involved in fermentative acetate formation, was not influenced by ywiD. Transcription of the ywiD gene was anaerobically induced by the redox regulator Fnr via the conserved Fnr-box (TGTGA-6N-TCACT) centered 40.5 bp upstream of the transcriptional start site. Anaerobic induction of ywiD by resDE was found to be indirect via resDE-dependent activation of fnr. The ywiD gene is subject to autorepression and nitrite repression. These results suggest a ResDE --> Fnr --> YwiD regulatory cascade for the modulation of genes involved in the anaerobic metabolism of B. subtilis. Therefore, ywiD was renamed arfM for anaerobic respiration and fermentation modulator.

  15. Polar Marine Microorganisms and Climate Change.

    PubMed

    Verde, C; Giordano, D; Bellas, C M; di Prisco, G; Anesio, A M

    2016-01-01

    The large diversity of marine microorganisms harboured by oceans plays an important role in planet sustainability by driving globally important biogeochemical cycles; all primary and most secondary production in the oceans is performed by microorganisms. The largest part of the planet is covered by cold environments; consequently, cold-adapted microorganisms have crucial functional roles in globally important environmental processes and biogeochemical cycles cold-adapted extremophiles are a remarkable model to shed light on the molecular basis of survival at low temperature. The indigenous populations of Antarctic and Arctic microorganisms are endowed with genetic and physiological traits that allow them to live and effectively compete at the temperatures prevailing in polar regions. Some genes, e.g. glycosyltransferases and glycosylsynthetases involved in the architecture of the cell wall, may have been acquired/retained during evolution of polar strains or lost in tropical strains. This present work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors. © 2016 Elsevier Ltd All rights reserved.

  16. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors.

    PubMed

    Ishigaki, Tomonori; Sugano, Wataru; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2004-01-01

    Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites.

  17. The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems.

    PubMed

    Quezada, Maribel; Buitrón, Germán; Moreno-Andrade, Iván; Moreno, Gloria; López-Marín, Luz M

    2007-01-01

    The use of fatty acid methyl esters (FAME) as biomarkers to identify groups of microorganisms was studied. A database was constructed using previously published results that identify FAME biomarkers for aerobic, anaerobic and facultatively aerobic bacteria. FAME profiles obtained from pure cultures were utilized to confirm the predicted presence of biomarkers. Principal component analysis demonstrated that the FAME profiles can be used to determine the incidence of these bacterial groups. The presence of aerobic, anaerobic and facultatively aerobic bacteria in the communities, in four bioreactors being used to treat different wastewaters, was investigated by applying FAME biomarkers.

  18. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in

  19. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  20. Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates.

    PubMed

    Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

    2015-01-01

    In many publications, primary fermentation is described as a limiting step in the anaerobic digestion of fibre-rich biomass [Eastman JA, Ferguson JF. Solubilization of particulacte carbon during the anaerobic digeston. J WPCF. 1981;53:352-366; Noike T, Endo G, Chang J, Yaguchi J, Matsumoto J. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng. 1985;27:1482-1489; Arntz HJ, Stoppok E, Buchholz K. Anaerobic hydroysis of beet pulp-discontiniuous experiments. Biotechnol Lett. 1985;7:113-118]. The microorganisms of the primary fermentation process differ widely from the methanogenic microorganisms [Pohland FG, Ghosh S. Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environ Lett. 1971;1:255-266]. To optimize the biogas process, a separation in two phases is suggested by many authors [Fox P, Pohland GK. Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Water Environ Res. 1994;66:716-724; Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580]. To carry out the examination, a two-phase laboratory-scale biogas plant was established, with a physical phase separation. In previous studies, the regulation of the pH-value during the acid formation was usually carried out by the addition of sodium hydroxide [Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580; Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K. Production of hydrogen and methane from organic solid wastes by phase separation of anaerobic process. Bioresour Technol. 2007;98:1861-1865; Zoetemeyer RJ, van den Heuvel JC, Cohen A. pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 1982;16:303-311]. A new technology

  1. Growth of the Facultative Anaerobes from Antarctica, Alaska, and Patagonia at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    Psychotolerance, as an adaptation for surviving in extreme environments, is widespread among mesophilic microorganisms. Physico-chemical factors such as pressure, red-ox potential, pH and salinity could significantly alter the features of ecosystems by providing liquid water at subzero temperatures. Furthermore, organisms can respond to temperature changes by several known mechanisms, including changing the conformation capacities of constitutional proteins or by the synthesis of mucopolysaccharides around the cell wall and membrane. Such protective mechanisms make it possible for cells to not only passively survive low temperatures in a state of anabiosis, but also to be capable of actively metabolizing substrates and reproducing normally. The physiological and biochemical characteristics of the species, as well as genetics, could be remarkably changed due to adaptation and surviving in extreme environments. The cold shock genes of some of the studied strains of psychotolerant facultative anaerobes were reported previously. In this paper we present experimental data for psychotolerant, non spore-forming, facultative anaerobes isolated from geographically different cold regions of our planet. We show the growth response on changing from anaerobic conditions to aerobic with cultivation at low temperatures.

  2. Growth-promoting Properties of Different Solid Nutrient Media Evaluated with Stressed and Unstressed Micro-organisms: Prestudy for the Validation of a Rapid Sterility Test.

    PubMed

    Gray, Jennifer Claire; Staerk, Alexandra; Berchtold, Manfred; Hecker, Werner; Neuhaus, Gunther; Wirth, Andreas

    2010-01-01

    Currently, sterility testing in the pharmaceutical industry-a mandatory release test for all sterile drug products-takes an incubation time of at least 14 days and is based on liquid media according to the pharmacopoeias. The search is on for a rapid sterility test to reduce this rather long time frame. For this we have chosen the Millipore Milliflex Rapid Microbiology Detection System, which is based on solid nutrient media. As a prerequisite for the validation of this rapid sterility test, a solid nutrient medium promoting the growth of stressed and unstressed micro-organisms replacing tryptic soy broth and fluid thioglycollate medium from the traditional sterility test had to be found. For this a wide variety of appropriate nutrient media were evaluated. After a prestudy with 10 different nutrient agar media, tryptic soy agar, Center for Disease Control (CDC) anaerobic blood agar, Schaedler blood agar, and Difco brewer anaerobic agar were tested in detail using a range of 22 micro-organisms (7 ATCC strains and 15 production site-specific strains). These strains were inoculated in their unstressed and in a stressed state. Stress was evoked by heat treatment and nutrient starvation in the case of the sporulating bacteria. This stress effect-resulting in deceleration in growth-was experimentally confirmed based on growth curve analysis. It was statistically evaluated which media and which incubation temperatures are best suitable. The resulting data showed that Schaedler blood agar has the best growth-promoting properties among the agars tested and is going to be used in the rapid sterility test with the incubation temperatures 20-25 °C for aerobes, 30-35 °C for aerobes, and also 30-35 °C for anaerobic micro-organisms.

  3. New insights into the role of phosphate-free lipids in anaerobic environments

    NASA Astrophysics Data System (ADS)

    Schubotz, F.; De Santiago Torio, A.; Kuehl, J.; Grant, C.; Rahn-Lee, L.; Arkin, A. P.; Deutschbauer, A. M.; Summons, R. E.; Bosak, T.

    2016-02-01

    Recent investigations have revealed an abundance of phosphate-free glycolipids and aminolipids, classically assigned to oxygenic phototrophs, in anoxic environments where anaerobic microorganisms prevail. Phosphorus-free lipids in oxic environments are thought to indicate an adaptation to phosphorus limitation, but their significance in anoxic environments is unclear, because these environments are not typically thought of as phosphorus-limited. We hypothesize that glycolipids and aminolipids play an overlooked and potentially integral role in anaerobic bacteria from marine and terrestrial environments and test this hypothesis in environmentally relevant model anaerobic deltaproteobacteria. None of the investigated strains of the sulfate-reducing genus Desulfovibrio synthesize glycolipids under normal growth conditions or during nitrogen limitation. However, when growing in phosphate-limited conditions, all investigated organisms undergo a nearly complete replacement of phospholipids by glycolipids. Some phosphate-starved organisms, such as D. fructosivorans, are also able to synthesize betaine lipids. Analyses of mutants of Desulfovibrio alaskensis G20 identify genes responsible for the biosynthesis of aminolipids (Dde_3661) and glycolipids (Dde_3613). Fitness experiments using tagged transposon mutant libraries of G20 identify these two genes and 90 other genes important for fitness of this organism during phosphate limitation. These experiments identify for the first time betaine lipids and glycolipids in sulfate-reducing bacteria and demonstrate the importance of these non-phosphorus lipids as substitute lipids in obligate anaerobes. These findings suggest that phosphorus availability limits microbial growth and activity in a more widespread range of environments than previously thought.

  4. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate

    USGS Publications Warehouse

    Loftin, Keith A.; Henny, Cynthia; Adams, Craig D.; Surampali, Rao; Mormile, Melanie R.

    2005-01-01

    Antibiotics are used to maintain healthy livestock and to promote weight gain in concentrated animal feed operations. Antibiotics rarely are metabolized completely by livestock and, thus, are often present in livestock waste and in waste-treatment lagoons. The introduction of antibiotics into anaerobic lagoons commonly used for swine waste treatment has the potential for negative impacts on lagoon performance, which relies on a consortium of microbes ranging from fermentative microorganisms to methanogens. To address this concern, the effects of eight common veterinary antibiotics on anaerobic activity were studied. Anaerobic microcosms, prepared from freshly collected lagoon slurries, were amended with individual antibiotics at 10 mg/L for the initial screening study and at 1, 5, and 25 mg/L for the dose-response study. Monitored metabolic indicators included hydrogen, methane, and volatile fatty acid concentrations as well as chemical oxygen demand. The selected antibiotics significantly inhibited methane production relative to unamended controls, thus indicating that antibiotics at concentrations commonly found in swine lagoons can negatively impact anaerobic metabolism. Additionally, historical antibiotic usage seems to be a potential factor in affecting methane production. Specifically, less inhibition of methane production was noted in samples taken from the lagoon with a history of multiple-antibiotic use.

  5. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen.

    PubMed

    Edwards, Joan E; Kingston-Smith, Alison H; Jimenez, Hugo R; Huws, Sharon A; Skøt, Kirsten P; Griffith, Gareth W; McEwan, Neil R; Theodorou, Michael K

    2008-12-01

    Anaerobic fungi (Neocallimastigales) are active degraders of fibrous plant material in the rumen. However, only limited information is available relating to how quickly they colonize ingested feed particles. The aim of this study was to determine the dynamics of initial colonization of forage by anaerobic fungi in the rumen and the impact of different postsampling wash procedures used to remove loosely associated microorganisms. Neocallimastigales-specific molecular techniques were optimized to ensure maximal coverage before application to assess the population size (quantitative PCR) and composition (automated ribosomal intergenic spacer analysis) of the colonizing anaerobic fungi. Colonization of perennial ryegrass (PRG) was evident within 5 min, with no consistent effect of time or wash procedure on fungal population composition. Wash procedure had no effect on population size unlike time, which had a significant effect. Colonizing fungal population size continued to increase over the incubation period after an initial lag of c. 4 min. This dynamic differs from that reported previously for rumen bacteria, where substantial colonization of PRG occurred within 5 min. The observed delay in colonization of plant material by anaerobic fungi is suggested to be primarily mediated by the time taken for fungal zoospores to locate, attach and encyst on plant material.

  6. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate.

    PubMed

    Loftin, Keith A; Henny, Cynthia; Adams, Craig D; Surampali, Rao; Mormile, Melanie R

    2005-04-01

    Antibiotics are used to maintain healthy livestock and to promote weight gain in concentrated animal feed operations. Antibiotics rarely are metabolized completely by livestock and, thus, are often present in livestock waste and in waste-treatment lagoons. The introduction of antibiotics into anaerobic lagoons commonly used for swine waste treatment has the potential for negative impacts on lagoon performance, which relies on a consortium of microbes ranging from fermentative microorganisms to methanogens. To address this concern, the effects of eight common veterinary antibiotics on anaerobic activity were studied. Anaerobic microcosms, prepared from freshly collected lagoon slurries, were amended with individual antibiotics at 10 mg/L for the initial screening study and at 1, 5, and 25 mg/L for the dose-response study. Monitored metabolic indicators included hydrogen, methane, and volatile fatty acid concentrations as well as chemical oxygen demand. The selected antibiotics significantly inhibited methane production relative to unamended controls, thus indicating that antibiotics at concentrations commonly found in swine lagoons can negatively impact anaerobic metabolism. Additionally, historical antibiotic usage seems to be a potential factor in affecting methane production. Specifically, less inhibition of methane production was noted in samples taken from the lagoon with a history of multiple-antibiotic use.

  7. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors.

    PubMed

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-06-01

    This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Comparison of aerobic and anaerobic [3H]leucine incorporation assays for determining pollution-induced bacterial community tolerance in copper-polluted, irrigated soils.

    PubMed

    Aaen, Karoline Nolsø; Holm, Peter E; Priemé, Anders; Hung, Ngoc Ngo; Brandt, Kristian Koefoed

    2011-03-01

    Pollution-induced community tolerance (PICT) constitutes a sensitive and ecologically relevant impact parameter in ecotoxicology. We report the development and application of a novel anaerobic [(3) H]leucine incorporation assay and its comparison with the conventional aerobic [(3) H]leucine incorporation assay for PICT detection in soil bacterial communities. Selection of bacterial communities was performed over 42 d in bulk soil microcosms (no plants) and in rice (Oryza sativa) rhizosphere soil mesocosms. The following experimental treatments were imposed using a full factorial design: two soil types, two soil water regimes, and four Cu application rates (0, 30, 120, or 280 µg g(-1)). Bacterial communities in bulk soil microcosms exhibited similar Cu tolerance patterns when assessed by aerobic and anaerobic PICT assays, whereas aerobic microorganisms tended to be more strongly selected for Cu tolerance than anaerobic microorganisms in rhizosphere soil. Despite similar levels of water-extractable Cu, bacterial Cu tolerance was significantly higher in acid sulfate soil than in alluvial soil. Copper amendment selected for significant PICT development in soils subjected to alternate wetting and drying, but not in continuously flooded soils. Our results demonstrate that soil bacterial communities subjected to alternate wetting and drying may be more affected by Cu than bacterial communities subjected to continuous flooding. We conclude that the parallel use of anaerobic and aerobic [(3) H]leucine PICT assays constitutes a valuable improvement over existing procedures for PICT detection in irrigated soils and other redox gradient environments such as sediments and wetlands. Copyright © 2010 SETAC.

  9. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion.

    PubMed

    Siles, J A; Brekelmans, J; Martín, M A; Chica, A F; Martín, A

    2010-12-01

    The effect of increasing concentrations of ammonia and sulphate on thermophilic anaerobic digestion (52 degrees C) was studied at laboratory-scale. The substrate consisted of a synthetic solution supplemented with ammonia and sodium sulphate. In terms of biogas production, the results showed that the C/N and C/SO(4)(2-) thresholds were 4.40 and 1.60, respectively, corresponding to 620 mg FA (free ammonia)/L and 1400 mg SO(4)(2-)/L. No reduction in biogas production was observed until reaching the above concentration of sulphate in the sulphate toxicity test. However, when the concentration of ammonia was increased to 620 mg FA/L in the ammonia toxicity test, a gradual decrease of 21% was observed for the biogas. In order to characterise each set of experiments kinetically, a biogas production first-order kinetic model was used to fit the experimental data. The proposed model accurately predicted the behaviour of the microorganisms affecting the thermophilic anaerobic digestion, allowing its evolution to be predicted. 2010 Elsevier Ltd. All rights reserved.

  10. Enhanced Biogas Production from Nanoscale Zero Valent Iron-Amended Anaerobic Bioreactors

    PubMed Central

    Carpenter, Alexis Wells; Laughton, Stephanie N.; Wiesner, Mark R.

    2015-01-01

    Abstract Addition of nanoscale zero valent iron (NZVI) to anaerobic batch reactors to enhance methanogenic activity is described. Two NZVI systems were tested: a commercially available NZVI (cNZVI) slurry and a freshly synthesized NZVI (sNZVI) suspension that was prepared immediately before addition to the reactors. In both systems, the addition of NZVI increased pH and decreased oxidation/reduction potential compared with unamended control reactors. Biodegradation of a model brewery wastewater was enhanced as indicated by an increase in chemical oxygen demand removal with both sNZVI and cNZVI amendments at all concentrations tested (1.25–5.0 g Fe/L). Methane production increased for all NZVI-amended bioreactors, with a maximum increase of 28% achieved on the addition of 2.5 and 5.0 g/L cNZVI. Addition of bulk zero-valent iron resulted in only a 5% increase in methane, indicating the advantage of using the nanoscale particles. NZVI amendments further improved produced biogas by decreasing the amount of CO2 released from the bioreactor by approximately 58%. Overall, addition of cNZVI proved more beneficial than the sNZVI at equal iron concentrations, due to decreased colloidal stability and larger effective particle size of sNZVI. Although some have reported cytotoxicity of NZVI to anaerobic microorganisms, work presented here suggests that NZVI of a certain particle size and reactivity can serve as an amendment to anaerobic digesters to enhance degradation and increase the value of the produced biogas, yielding a more energy-efficient anaerobic method for wastewater treatment. PMID:26339183

  11. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    PubMed

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for

  12. Apparatus and process for determining the susceptibility of microorganisms to antibiotics

    NASA Technical Reports Server (NTRS)

    Gibson, Sandra F. (Inventor); Fadler, Norman L. (Inventor)

    1976-01-01

    A process for determining the susceptibility of microorganisms to antibiotics involves introducing a diluted specimen into discrete quantities of a selective culture medium which favors a specific microorganism in that the microorganism is sustained by the medium and when so sustained will change the optical characteristics of the medium. Only the specific microorganism will alter the optical characteristics. Some of the discrete quantities are blended with known antibiotics, while at least one is not. If the specimen contains the microorganisms favored by the selective medium, the optical characteristics of the discrete quantity of pure selective medium, that is the one without antibiotics, will change. If the antibiotics in any of the other discrete quantities are ineffective against the favored microorganisms, the optical characteristics of those quantities will likewise change. No change in the optical characteristics of a discrete quantity indicates that the favored microorganism is susceptible to the antibiotic in the quantity.

  13. Anaerobic biodegradation of diesel fuel-contaminated wastewater in a fluidized bed reactor.

    PubMed

    Cuenca, M Alvarez; Vezuli, J; Lohi, A; Upreti, S R

    2006-06-01

    Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.

  14. Continuous removal of ore floatation reagents by an anaerobic-aerobic biological filter.

    PubMed

    Cheng, Huang; Lin, Hai; Huo, Hanxin; Dong, Yingbo; Xue, Qiuyu; Cao, Lixia

    2012-06-01

    A laboratory scale up-flow anaerobic-aerobic biological filter was constructed to treat synthetic ore floatation wastewater. Volcanic stone was applied as packing media for aerobic section. Biodegradation of some common ore floatation reagents as potassium ethyl xanthate dithiophosphate and turpentine were evaluated. An average COD reduction rate of 88.7% for potassium ethyl xanthate by the biofilter was obtained at HRT of 6h, air water flow ratio of 10:1 and pH of 7. Its effluent COD concentration varied between 17 and 43 mg/L. Xanthates and dithiophosphate were found to be easily biodegradable, whereas turpentine was not favorable for microorganism to digest. The performance of the reactor fluctuated slightly within the temperature range of 10-35 °C. Operation of the biofilter was sensitive to influent pH values. A neutral to weak basic influent was preferred for biofilter to maintain an efficient operation. Anaerobic treatment was able to enhance the biodegradability of influents significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Anaerobic orbital cellulitis: a clinical and experimental study.

    PubMed Central

    Jedrzynski, M S; Bullock, J D; McGuire, T W; Elder, B L; Bullock, J D

    1991-01-01

    In this article we have reviewed the clinical and bacteriologic aspects of anaerobic orbital cellulitis and have presented six patients to illustrate these points. Physicians who treat patients with orbital cellulitis should have a high index of suspicion for possible instances involving anaerobes, so that appropriate management can be started early. To investigate this problem further, we created an animal model of anaerobic orbital cellulitis. This model may be useful in future studies of the pathogenesis and treatment of this serious and often devastating disease. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 PMID:1808813

  16. An integrative perspective of the anaerobic threshold.

    PubMed

    Sales, Marcelo Magalhães; Sousa, Caio Victor; da Silva Aguiar, Samuel; Knechtle, Beat; Nikolaidis, Pantelis Theodoros; Alves, Polissandro Mortoza; Simões, Herbert Gustavo

    2017-12-14

    The concept of anaerobic threshold (AT) was introduced during the nineteen sixties. Since then, several methods to identify the anaerobic threshold (AT) have been studied and suggested as novel 'thresholds' based upon the variable used for its detection (i.e. lactate threshold, ventilatory threshold, glucose threshold). These different techniques have brought some confusion about how we should name this parameter, for instance, anaerobic threshold or the physiological measure used (i.e. lactate, ventilation). On the other hand, the modernization of scientific methods and apparatus to detect AT, as well as the body of literature formed in the past decades, could provide a more cohesive understanding over the AT and the multiple physiological systems involved. Thus, the purpose of this review was to provide an integrative perspective of the methods to determine AT. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Enzymes involved in the anaerobic degradation of ortho-phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01.

    PubMed

    Junghare, Madan; Spiteller, Dieter; Schink, Bernhard

    2016-09-01

    The pathway of anaerobic degradation of o-phthalate was studied in the nitrate-reducing bacterium Azoarcus sp. strain PA01. Differential two-dimensional protein gel profiling allowed the identification of specifically induced proteins in o-phthalate-grown compared to benzoate-grown cells. The genes encoding o-phthalate-induced proteins were found in a 9.9 kb gene cluster in the genome of Azoarcus sp. strain PA01. The o-phthalate-induced gene cluster codes for proteins homologous to a dicarboxylic acid transporter, putative CoA-transferases and a UbiD-like decarboxylase that were assigned to be specifically involved in the initial steps of anaerobic o-phthalate degradation. We propose that o-phthalate is first activated to o-phthalyl-CoA by a putative succinyl-CoA-dependent succinyl-CoA:o-phthalate CoA-transferase, and o-phthalyl-CoA is subsequently decarboxylated to benzoyl-CoA by a putative o-phthalyl-CoA decarboxylase. Results from in vitro enzyme assays with cell-free extracts of o-phthalate-grown cells demonstrated the formation of o-phthalyl-CoA from o-phthalate and succinyl-CoA as CoA donor, and its subsequent decarboxylation to benzoyl-CoA. The putative succinyl-CoA:o-phthalate CoA-transferase showed high substrate specificity for o-phthalate and did not accept isophthalate, terephthalate or 3-fluoro-o-phthalate whereas the putative o-phthalyl-CoA decarboxylase converted fluoro-o-phthalyl-CoA to fluoro-benzoyl-CoA. No decarboxylase activity was observed with isophthalyl-CoA or terephthalyl-CoA. Both enzyme activities were oxygen-insensitive and inducible only after growth with o-phthalate. Further degradation of benzoyl-CoA proceeds analogous to the well-established anaerobic benzoyl-CoA degradation pathway of nitrate-reducing bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Anaerobic bacteria growth in the presence of cathelicidin LL-37 and selected ceragenins delivered as magnetic nanoparticles cargo.

    PubMed

    Durnaś, Bonita; Piktel, Ewelina; Wątek, Marzena; Wollny, Tomasz; Góźdź, Stanisław; Smok-Kalwat, Jolanta; Niemirowicz, Katarzyna; Savage, Paul B; Bucki, Robert

    2017-07-26

    Cationic antibacterial peptides (CAPs) and synthetic molecules mimicking the amphiphilic structure of CAPs, such as ceragenins, are promising compounds for the development of new antimicrobials. We tested the in vitro activity of ceragenins CSA-13 and CSA-131 against several anaerobic bacteria including Bacteroides spp. and Clostridium difficile. We compared results to the activity of cathelicidin LL-37, metronidazole and nanosystems developed by attachment of CSA-13 and CSA-131 to magnetic nanoparticles (MNPs). The antibacterial effect was tested using killing assay and modified CLSI broth microdilution assay. Ceragenins CSA-13 and CSA-131 displayed stronger bactericidal activity than LL-37 or metronidazole against all of the tested bacterial strains. Additionally CSA-131 revealed an enhanced ability to prevent the formation of Bacteroides fragilis and Propionibacterium acnes biofilms. These data confirmed that ceragenins display antimicrobial activity against a broad range of microorganisms including anaerobic bacteria and deserve further investigations as compounds serving to develop new treatment against anaerobic and mixed infections.

  19. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3.

    PubMed

    Bhattarai, Susma; Cassarini, Chiara; Gonzalez-Gil, Graciela; Egger, Matthias; Slomp, Caroline P; Zhang, Yu; Esposito, Giovanni; Lens, Piet N L

    2017-10-01

    The microbial community inhabiting the shallow sulfate-methane transition zone in coastal sediments from marine Lake Grevelingen (The Netherlands) was characterized, and the ability of the microorganisms to carry out anaerobic oxidation of methane coupled to sulfate reduction was assessed in activity tests. In vitro activity tests of the sediment with methane and sulfate demonstrated sulfide production coupled to the simultaneous consumption of sulfate and methane at approximately equimolar ratios over a period of 150 days. The maximum sulfate reduction rate was 5 μmol sulfate per gram dry weight per day during the incubation period. Diverse archaeal and bacterial clades were retrieved from the sediment with the majority of them clustered with Euryarchaeota, Thaumarcheota, Bacteroidetes, and Proteobacteria. The 16S rRNA gene sequence analysis showed that the sediment from marine Lake Grevelingen contained anaerobic methanotrophic Archaea (ANME) and methanogens as archaeal clades with a role in the methane cycling. ANME at the studied site mainly belong to the ANME-3 clade. This study provides one of the few reports for the presence of ANME-3 in a shallow coastal sediment. Sulfate-reducing bacteria from Desulfobulbus clades were found among the sulfate reducers, however, with very low relative abundance. Desulfobulbus has previously been commonly found associated with ANME, whereas in our study, ANME-3 and Desulfobulbus were not observed simultaneously in clusters, suggesting the possibility of independent AOM by ANME-3.

  20. Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes.

    PubMed

    Reyes, M; Borrás, L; Seco, A; Ferrer, J

    2015-01-01

    Eight different phenotypes were studied in an activated sludge process (AeR) and anaerobic digester (AnD) in a full-scale wastewater treatment plant by means of fluorescent in situ hybridization (FISH) and automated FISH quantification software. The phenotypes were ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, phosphate-accumulating organisms (PAO), glycogen-accumulating organisms (GAO), sulphate-reducing bacteria (SRB), methanotrophic bacteria and methanogenic archaea. Some findings were unexpected: (a) Presence of PAO, GAO and denitrifiers in the AeR possibly due to unexpected environmental conditions caused by oxygen deficiencies or its ability to survive aerobically; (b) presence of SRB in the AeR due to high sulphate content of wastewater intake and possibly also due to digested sludge being recycled back into the primary clarifier; (c) presence of methanogenic archaea in the AeR, which can be explained by the recirculation of digested sludge and its ability to survive periods of high oxygen levels; (d) presence of denitrifying bacteria in the AnD which cannot be fully explained because the nitrate level in the AnD was not measured. However, other authors reported the existence of denitrifiers in environments where nitrate or oxygen was not present suggesting that denitrifiers can survive in nitrate-free anaerobic environments by carrying out low-level fermentation; (e) the results of this paper are relevant because of the focus on the identification of nearly all the significant bacterial and archaeal groups of microorganisms with a known phenotype involved in the biological wastewater treatment.

  1. Identification of key micro-organisms involved in Douchi fermentation by statistical analysis and their use in an experimental fermentation.

    PubMed

    Chen, C; Xiang, J Y; Hu, W; Xie, Y B; Wang, T J; Cui, J W; Xu, Y; Liu, Z; Xiang, H; Xie, Q

    2015-11-01

    To screen and identify safe micro-organisms used during Douchi fermentation, and verify the feasibility of producing high-quality Douchi using these identified micro-organisms. PCR-denaturing gradient gel electrophoresis (DGGE) and automatic amino-acid analyser were used to investigate the microbial diversity and free amino acids (FAAs) content of 10 commercial Douchi samples. The correlations between microbial communities and FAAs were analysed by statistical analysis. Ten strains with significant positive correlation were identified. Then an experiment on Douchi fermentation by identified strains was carried out, and the nutritional composition in Douchi was analysed. Results showed that FAAs and relative content of isoflavone aglycones in verification Douchi samples were generally higher than those in commercial Douchi samples. Our study indicated that fungi, yeasts, Bacillus and lactic acid bacteria were the key players in Douchi fermentation, and with identified probiotic micro-organisms participating in fermentation, a higher quality Douchi product was produced. This is the first report to analyse and confirm the key micro-organisms during Douchi fermentation by statistical analysis. This work proves fermentation micro-organisms to be the key influencing factor of Douchi quality, and demonstrates the feasibility of fermenting Douchi using identified starter micro-organisms. © 2015 The Society for Applied Microbiology.

  2. Problems Caused by Microbes and Treatment Strategies Anaerobic Hydrocarbon Biodegradation and Biocorrosion: A Case Study

    NASA Astrophysics Data System (ADS)

    Suflita, Joseph M.; Duncan, Kathleen E.

    The anaerobic biodegradation of petroleum hydrocarbons is important for the intrinsic remediation of spilt fuels (Gieg and Suflita, 2005), for the conversion of hydrocarbons to clean burning natural gas (Gieg et al., 2008; Jones et al., 2008) and for the fundamental cycling of carbon on the planet (Caldwell et al., 2008). However, the same process has also been implicated in a host of difficult problems including reservoir souring (Jack and Westlake, 1995), oil viscosity alteration (Head et al., 2003), compromised equipment performance and microbiologically influenced corrosion (Duncan et al., 2009). Herein, we will focus on the role of anaerobic microbial communities in catalysing biocorrosion activities in oilfield facilities. Biocorrosion is a costly problem that remains relatively poorly understood. Understanding of the underlying mechanisms requires reliable information on the carbon and energy sources supporting biofilm microorganisms capable of catalysing such activities.

  3. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire

    USGS Publications Warehouse

    Caccavo, F.; Blakemore, R.P.; Lovley, D.R.

    1992-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.

  4. Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents.

    PubMed

    Lawhon, S D; Taylor, A; Fajt, V R

    2013-11-01

    Clinical specimens from dogs, cats, and horses were examined for the presence of obligate anaerobic bacteria. Of 4,018 specimens cultured, 368 yielded 606 isolates of obligate anaerobic bacteria (248 from dogs, 50 from cats, and 308 from horses). There were 100 specimens from 94 animals from which only anaerobes were isolated (25 dogs, 8 cats, and 61 horses). The most common sites tested were abdominal fluid (dogs and cats) and intestinal contents (horses). The most common microorganism isolated from dogs, cats, and horses was Clostridium perfringens (75, 13, and101 isolates, respectively). The MICs of amoxicillin with clavulanate, ampicillin, chloramphenicol, metronidazole, and penicillin were determined using a gradient endpoint method for anaerobes. Isolates collected at necropsy were not tested for antimicrobial susceptibility unless so requested by the clinician. There were 1/145 isolates tested that were resistant to amoxicillin-clavulanate (resistance breakpoint ≥ 16/8 μg/ml), 7/77 isolates tested were resistant to ampicillin (resistance breakpoint ≥ 2 μg/ml), 4/242 isolates tested were resistant to chloramphenicol (resistance breakpoint ≥ 32 μg/ml), 12/158 isolates tested were resistant to clindamycin (resistance breakpoint ≥ 8 μg/ml), 10/247 isolates tested were resistant to metronidazole (resistance breakpoint ≥ 32 μg/ml), and 54/243 isolates tested were resistant to penicillin (resistance breakpoint ≥ 2 μg/ml). These data suggest that anaerobes are generally susceptible to antimicrobial drugs in vitro.

  5. Structure of a cellulose degrading bacterial community during anaerobic digestion.

    PubMed

    O'Sullivan, Cathryn A; Burrell, Paul C; Clarke, William P; Blackall, Linda L

    2005-12-30

    It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells. Copyright 2005 Wiley Periodicals, Inc

  6. Natural inactivation of Escherichia coli in anaerobic and reduced groundwater.

    PubMed

    Lisle, J T

    2016-06-01

    Inactivation rates of Escherichia coli in groundwater have most often been determined in aerobic and oxidized systems. This study examined E. coli inactivation rates in anaerobic and extremely reduced groundwater systems that have been identified as recharge zones. Groundwater from six artesian wells was diverted to above-ground, flow-through mesocosms that contained laboratory grown E. coli in diffusion chambers. All groundwater was anaerobic and extremely reduced (ORP < -300 mV). Cells were plated onto mTEC agar during 21-day incubation periods. All data fit a bi-phasic inactivation model, with >95% of the E. coli population being inactivated <11·0 h (mean k = 0·488 ±0·188 h(-1) ). The groundwater geochemical conditions enhanced the inactivation of E. coli to rates approx. 21-fold greater than previously published inactivation rate in groundwater (mean k = 0·023 ± 0·030 h(-1) ). Also, mTEC agar inhibits E. coli growth following exposure to anaerobic and reduced groundwater. Aquifer recharge zones with geochemical characteristics observed in this study complement above-ground engineered processes (e.g. filtration, disinfection), while increasing the overall indicator micro-organism log-reduction rate of a facility. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  7. Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste*

    PubMed Central

    Wu, Man-Chang; Sun, Ke-Wei; Zhang, Yong

    2006-01-01

    A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 °C to 20 °C suddenly; 2 h time is needed for temperature decrease and recovery. Under the conditions of 8.0 g/(L·d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 °C) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation; (3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay; hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation; (4) the thermophilic microorganisms were highly resilient to temperature fluctuation. PMID:16502503

  8. Micronutrient component changes in the biogas slurry treated by a pilot solar-heated anaerobic reactor

    NASA Astrophysics Data System (ADS)

    Yang, Z. Y.; Xu, Y. B.; Li, P. F.; Wang, Y. J.; Sun, J.; Zhang, Y. P.

    2017-06-01

    A solar-heated anaerobic reactor system was applied to decompose livestock wastewater, in which cattle manure and chopped straw were mixed (CODCr 15,000∼25,000 mg·l-1), the commercial microorganisms were added to ambient acidification (about 32°C) and the acclimated sludge was inoculated. Then, the experiments were carried out on wastewater anaerobic degradation and biogas production at 40∼42°C, as fed every 10 days till stable running. The results showed that NH3-N and PO4 3- of the biogas slurry were 441 mg·l-1 and 65.0 mg·l-1 on the 35th day, respectively. The concentration of K was up to 350 mg·l-1 in the biogas slurry, rather higher than that of Mg and Fe, which indicated that the available K could contribute more in the agricultural irrigation. Total amino acids were up to 23.7 mg·l-1 after anaerobic digestion, in which Lys, Thr, Ala and Arg were prominent in the biogas slurry. These amino acids could be beneficial to seed soaking, feed adding and apply as foliar fertilizer. The major volatile organic compounds were detected in the biogas slurry, including toluene, m-cresol (up to 0.036% in the process of ambient acidification) and triethylsilane, which could be reduced to scarcely influence on agricultural application after anaerobic digestion.

  9. Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets.

    PubMed

    Nixon, Sophie L; Cockell, Charles S

    2015-03-01

    The delivery of extraterrestrial organics to early Earth provided a potentially important source of carbon and energy for microbial life. Optically active organic compounds of extraterrestrial origin exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. Although D-enantiomers of proteinogenic amino acids are known to inhibit aerobic microorganisms, the role of concentrated nonproteinogenic meteoritic D-amino acids on anaerobic metabolisms relevant to early Earth and other anoxic planets such as Mars is unknown. Here, we test the inhibitory effect of D-enantiomers of two nonproteinogenic amino acids common to carbonaceous chondrites, norvaline and α-aminobutyric acid, on microbial iron reduction. Three pure strains (Geobacter bemidjiensis, Geobacter metallireducens, Geopsychrobacter electrodiphilus) and an iron-reducing enrichment culture were grown in the presence of 10 mM D-enantiomers of both amino acids. Further tests were conducted to assess the inhibitory effect of these D-amino acids at 1 and 0.1 mM. The presence of 10 mM D-norvaline and D-α-aminobutyric acid inhibited microbial iron reduction by all pure strains and the enrichment. G. bemidjiensis was not inhibited by either amino acid at 0.1 mM, but D-α-aminobutyric acid still inhibited at 1 mM. Calculations using published meteorite accumulation rates to the martian surface indicate D-α-aminobutyric acid may have reached inhibitory concentrations in little over 1000 years during peak infall. These data show that, on a young anoxic planet, the use of one enantiomer over another may render the nonbiological enantiomer an environmental toxin. Processes that generate racemic amino acids in the environment, such as meteoritic infall or impact synthesis, would have been toxic processes and could have been a selection pressure for the evolution of early racemases.

  10. Micro-Organ Device

    NASA Technical Reports Server (NTRS)

    Sun, Wei (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Holtorf, Heidi L. (Inventor); Leslie, Julia (Inventor); Culbertson, Christopher (Inventor); Gonda, Steve R. (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  11. Micro-organ device

    NASA Technical Reports Server (NTRS)

    von Gustedt-Gonda, legal representative, Iris (Inventor); Holtorf, Heidi L. (Inventor); Gonda, Steve R. (Inventor); Leslie, Julia (Inventor); Chang, Robert C. (Inventor); Sun, Wei (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  12. Microbial deterioration of vacuum-packaged chilled beef cuts and techniques for microbiota detection and characterization: a review.

    PubMed

    Hernández-Macedo, Maria Lucila; Barancelli, Giovana Verginia; Contreras-Castillo, Carmen Josefina

    2011-01-01

    Gas production from microbial deterioration in vacuum-packs of chilled meat leads to pack distension, which is commonly referred as blown pack. This phenomenon is attributed to some psychrophilic and psychrotrophic Clostridium species, as well as Enterobacteria. The ability of these microorganisms to grow at refrigeration temperatures makes the control by the meat industry a challenge. This type of deterioration has been reported in many countries including some plants in the Midwestern and Southeastern regions of Brazil. In addition to causing economic losses, spoilage negatively impacts the commercial product brand, thereby impairing the meat industry. In the case of strict anaerobes species they are difficult to grow and isolate using culture methods in conventional microbiology laboratories. Furthermore, conventional culture methods are sometimes not capable of distinguishing species or genera. DNA-based molecular methods are alternative strategies for detecting viable and non-cultivable microorganisms and strict anaerobic microorganisms that are difficult to cultivate. Here, we review the microorganisms and mechanisms involved in the deterioration of vacuum-packaged chilled meat and address the use of molecular methods for detecting specific strict anaerobic microorganisms and microbial communities in meat samples.

  13. [Studies on anaerobic infection in oro-maxillary region--rapid diagnosis by gas-liquid chromatography and antibiotic susceptibilities of anaerobic bacteria].

    PubMed

    Tanaka, J I

    1989-08-01

    Subject material for this study was pus collected from patients with purulent inflammation in the oro-maxillary region. Direct gas-liquid chromatography (GLC) analysis was made, bacterial isolation and identification were carried out, and comparisons were made with results from GLC analysis and anaerobic isolates in a PYG medium. In addition, antibiotic susceptibilities of anaerobic bacteria were examined. Results 1. Anaerobic bacteria were isolated from 85 of 100 cases of obstructive abscesses. Of the 85, 49 were cases of mixed infection involving both anaerobic and aerobic bacteria; and 64 cases were involved with more than 2 species of anaerobic bacteria. Of the 184 strains of anaerobic isolates, 53 were Bacteroides sp. and 51 were Peptostreptococcus sp. The 2 groups accounted for more than half of the isolates. 2. Group A, in which no VFA was detected, accounted for 17 out of 100 cases. Group B, in which acetic acid was detected, accounted for 20 cases; and Group C, in which butyric acid was detected, accounted for 20 cases; and Group D, in which iso-valeric acid was detected, accounted for 8 cases. Direct GLC analysis revealed iso-caproic and caproic acids in the 35 cases constituting Group E. 3. Whereas the percentage of anaerobic bacteria was 64.7% in Group A and 60% in Group B, significantly higher percentages were noted in Group C (95%), Group D (100%) and Group E (100%). The following species were isolated as major member in the groups; Group A--Streptococcus intermedius, Group B--Peptostreptococcus micros, Group C--Fusobacterium nucleatum, Group D--Bacteroides gingivalis, and Group E--Peptostreptococcus anaerobius. 4. In all cases, the sum of VFA produced in the PYG medium by anaerobic isolates was classified into Group A' to E'. Ratios of agreement between VFA as revealed by direct GLC and VFA as revealed by PYG.GLC were as follows: Group A-A'; 47.1%, Group B-B' and C-C'; 45%, Group D-D'; 87.5%, and Group E-E'; 62.9%. 5. In Group B, no propionic acid

  14. Short communication: Labeling Listeria with anaerobic fluorescent protein for food safety studies.

    PubMed

    Landete, José M; Peirotén, Ángela; Medina, Margarita; Arqués, Juan L

    2017-01-01

    Many food safety-related studies require the tracking of inoculated food-borne pathogens to monitor their fate in food complex environments. In the current study, we demonstrate the potential of plasmids containing the fluorescence protein gene evoglow-Pp1 (Evocatal, Dusseldorf, Germany) as a real-time reporter system for Listeria strains. This anaerobic fluorescent protein provides an easily detectable phenotype of microorganisms for food safety studies. This work is the first to report a reliable method to identify fluorescently labeled Listeria strains in food ecosystems. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Study of Transport Characteristics of Motile Microorganisms Using Micro-Scale Devices

    NASA Astrophysics Data System (ADS)

    Parashar, R.; Scheibe, T. D.; Plymale, A.; Hu, D.; Kelly, R.; Frederick, J. M.; Yang, X.; Sund, N. L.

    2016-12-01

    Accurate numerical models of microbial transport are needed to support design and evaluation of bioremediation implementations. A sequence of micro-scale experiments using advanced microfluidics and imaging techniques was conducted to quantify the movement patterns of individual microbes and their interactions with solid surfaces in unobstructed medium and simple pore geometries. The set of bacteria studied encompasses strictly anaerobic, facultatively anaerobic, fermentative, and facultatively autotrophic species, with capacities to reduce a range of metals and radionuclides, as well as nitrate, using a variety of electron donors, including acetate, lactate, carbohydrates, and molecular hydrogen. Motion of motile microorganisms recorded over time provides results that can be analyzed to determine the character and several statistical attributes of microbial motion. Individual tracks on the order of several seconds to a few minutes in duration are characterized to provide information on 1) the length (distance in microns) of microbial runs, 2) velocity distributions along individual trajectories, and 3) the angle between the directions of sequential runs. Analysis of the microbial trajectories elucidates parameters related to dynamics of their motion. Comparison of these parameters with those of a classical Brownian motion yields crucial information on selection of appropriate model to account for microbial motility in relevant applications.

  16. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    NASA Astrophysics Data System (ADS)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  17. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred withoutmore » raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.« less

  18. Inferring microbial interactions in thermophilic and mesophilic anaerobic digestion of hog waste.

    PubMed

    Shaw, Grace Tzun-Wen; Liu, An-Chi; Weng, Chieh-Yin; Chou, Chu-Yang; Wang, Daryi

    2017-01-01

    Anaerobic digestion (AnD) is a microbiological process that converts organic waste materials into biogas. Because of its high methane content, biogas is a combustible energy source and serves as an important environmental technology commonly used in the management of animal waste generated on large animal farms. Much work has been done on hardware design and process engineering for the generation of biogas. However, little is known about the complexity of the microbiology in this process. In particular, how microbes interact in the digester and eventually breakdown and convert organic matter into biogas is still regarded as a "black box." We used 16S rRNA sequencing as a tool to study the microbial community in laboratory hog waste digesters under tightly controlled conditions, and systematically unraveled the distinct interaction networks of two microbial communities from mesophilic (MAnD) and thermophilic anaerobic digestion (TAnD). Under thermophilic conditions, the well-known association between hydrogen-producing bacteria, e.g., Ruminococcaceae and Prevotellaceae, and hydrotrophic methanogens, Methanomicrobiaceae, was reverse engineered by their interactive topological niches. The inferred interaction network provides a sketch enabling the determination of microbial interactive relationships that conventional strategy of finding differential taxa was hard to achieve. This research is still in its infancy, but it can help to depict the dynamics of microbial ecosystems and to lay the groundwork for understanding how microorganisms cohabit in the anaerobic digester.

  19. Mechanism of H2S Oxidation by the Dissimilatory Perchlorate-Reducing Microorganism Azospira suillum PS.

    PubMed

    Mehta-Kolte, Misha G; Loutey, Dana; Wang, Ouwei; Youngblut, Matthew D; Hubbard, Christopher G; Wetmore, Kelly M; Conrad, Mark E; Coates, John D

    2017-02-21

    The genetic and biochemical basis of perchlorate-dependent H 2 S oxidation (PSOX) was investigated in the dissimilatory perchlorate-reducing microorganism (DPRM) Azospira suillum PS (PS). Previously, it was shown that all known DPRMs innately oxidize H 2 S, producing elemental sulfur (S o ). Although the process involving PSOX is thermodynamically favorable ( ΔG °' = -206 kJ ⋅ mol -1 H 2 S), the underlying biochemical and genetic mechanisms are currently unknown. Interestingly, H 2 S is preferentially utilized over physiological electron donors such as lactate or acetate although no growth benefit is obtained from the metabolism. Here, we determined that PSOX is due to a combination of enzymatic and abiotic interactions involving reactive intermediates of perchlorate respiration. Using various approaches, including barcode analysis by sequencing (Bar-seq), transcriptome sequencing (RNA-seq), and proteomics, along with targeted mutagenesis and biochemical characterization, we identified all facets of PSOX in PS. In support of our proposed model, deletion of identified upregulated PS genes traditionally known to be involved in sulfur redox cycling (e.g., Sox, sulfide:quinone reductase [SQR]) showed no defect in PSOX activity. Proteomic analysis revealed differential abundances of a variety of stress response metal efflux pumps and divalent heavy-metal transporter proteins, suggesting a general toxicity response. Furthermore, in vitro biochemical studies demonstrated direct PSOX mediated by purified perchlorate reductase (PcrAB) in the absence of other electron transfer proteins. The results of these studies support a model in which H 2 S oxidation is mediated by electron transport chain short-circuiting in the periplasmic space where the PcrAB directly oxidizes H 2 S to S o The biogenically formed reactive intermediates (ClO 2 - and O 2 ) subsequently react with additional H 2 S, producing polysulfide and S o as end products. IMPORTANCE Inorganic sulfur

  20. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions.

    PubMed

    Jensen, T R; Lastra Milone, T; Petersen, G; Andersen, H R

    2017-04-01

    Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h experiment with intermittent aeration (3 h:3 h) in a period of 24 h followed by a subsequent anaerobic period of 24 h in a cycle of 48 h which was repeated five times during the experiment. The anaerobic reactors were kept under strict anaerobic conditions in the same period (240 h). Two methods for calculating hydrolysis rates based on soluble chemical oxygen demand were compared. Two-way analysis of variance with the Bonferroni post-test was performed in order to register any significant difference between reactors with intermittent aeration and strictly anaerobic conditions respectively. The experiment demonstrated a statistically significant difference in favor of the reactors with intermittent aeration showing a tendency towards accelerated anaerobic hydrolysis rates due to application of intermittent aeration. The conclusion of the work is thus that intermittent aeration applied in the activated return sludge process can improve the treatment capacity further in full scale applications.

  1. Anaerobic biodegradation of halogenated and nonhalogenated N-, s-, and o-heterocyclic compounds in aquifer slurries

    USGS Publications Warehouse

    Adrian, Neal R.; Suflita, Joseph M.

    1994-01-01

    The fate of several halogenated and nonhalogenated heterocyclic compounds in anoxic aquifer slurries was investigated Substrate depletion and methane formation were monitored in serum bottle incubations by HPLC and GC, respectively Pyridine, pyrimidine, thiophene, and furan were not mineralized following an 11-month incubation, but the corresponding carboxylated or oxygenated compounds were That is, >74% of the theoretically expected amount of methane was recovered from nicotinic acid, uracil, or 2-furoic acid Chlorinated derivatives, like 2 chloro- or 6-chloronicotinic acid, as well as 4 chloro- and 5-chlorouracil resisted mineralization However, 5-bromouracil was reductively dehalogenated to stoichiometric amounts of uracil, whereas 2-chloropyrimidine was metabolized to a more polar unidentified compound that resisted further anaerobic biodegradation Microorganisms acclimated to 5-bromouracil were unable to transform 4 chloro or 5 chlorouracil These findings illustrate how the structure of heterocyclic contaminants influences their susceptibility to anaerobic decay

  2. The diagnosis of microorganism involved in infective endocarditis (IE) by polymerase chain reaction (PCR) and real-time PCR: A systematic review.

    PubMed

    Faraji, Reza; Behjati-Ardakani, Mostafa; Moshtaghioun, Seyed Mohammad; Kalantar, Seyed Mehdi; Namayandeh, Seyedeh Mahdieh; Soltani, Mohammadhossien; Emami, Mahmood; Zandi, Hengameh; Firoozabadi, Ali Dehghani; Kazeminasab, Mahmood; Ahmadi, Nastaran; Sarebanhassanabadi, Mohammadtaghi

    2018-02-01

    Broad-range bacterial rDNA polymerase chain reaction (PCR) followed by sequencing may be identified as the etiology of infective endocarditis (IE) from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery. Copyright © 2017. Published by Elsevier Taiwan.

  3. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  4. Characterization and Detection of a Widely Distributed Gene Cluster That Predicts Anaerobic Choline Utilization by Human Gut Bacteria

    PubMed Central

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A.; Marks, Jonathan A.; Haiser, Henry J.; Turnbaugh, Peter J.

    2015-01-01

    ABSTRACT Elucidation of the molecular mechanisms underlying the human gut microbiota’s effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. PMID:25873372

  5. Enhancement options for the utilisation of nitrogen rich animal by-products in anaerobic digestion.

    PubMed

    Resch, Christoph; Wörl, Alexander; Waltenberger, Reinhold; Braun, Rudolf; Kirchmayr, Roland

    2011-02-01

    This study focuses on the enhancement of an Austrian anaerobic digestion plant at a slaughterhouse site which exclusively uses animal by-products as substrate. High ammonia concentrations from protein degradation cause severe inhibitions of anaerobic microorganisms. For improving the current situation the COD:TKN ratio is widened by (a) ammonia stripping directly out of the process and (b) addition of a C source to the substrate. Different OLR and HRT were tested in continuous experiments to simulate new operating conditions. The results show that the addition of carbon cannot improve fermentation capacity. The reduction of ammonia boosts the degradation: After reduction of TKN from 7.5 to 4.0 g kg(-1) the initially high VFA concentration decreased and the COD degradation was improved by 55.5%. Hence, the implementation of the new N reduction process facilitates either the increase of the OLR by 61% or the reduction of the HRT by 25%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Production of γ-aminobutyric acid by microorganisms from different food sources.

    PubMed

    Hudec, Jozef; Kobida, Ľubomír; Čanigová, Margita; Lacko-Bartošová, Magdaléna; Ložek, Otto; Chlebo, Peter; Mrázová, Jana; Ducsay, Ladislav; Bystrická, Judita

    2015-04-01

    γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used. © 2014 Society of Chemical Industry.

  7. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    NASA Astrophysics Data System (ADS)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  8. Anaerobic fermentation of biogas liquid pretreated maize straw by rumen microorganisms in vitro.

    PubMed

    Jin, Wenyao; Xu, Xiaochen; Gao, Yang; Yang, Fenglin; Wang, Gang

    2014-02-01

    This study intended to investigate the effect of pretreatment of maize straw with biogas liquid on followed fermentation by rumen microorganisms in vitro. The multiple effects including treated time, temperature and dosage of biogas liquid in pretreatment on the followed fermentation performance were analyzed by orthogonal array. The optimum conditions of pretreatment were 9days, 25°C and 50% (v/w) dosage of biogas liquid, which were indicated by the corresponding crystallinity index, dry matter digestibility (DMD) and acetate limiting-step concentration were 57.5%, 73.76% and 1756mg/L, respectively. The ordering sequence of the influential factors for pretreatment was treated time > temperature > dosage of biogas liquid. The results of fermentation showed that the maize straw pretreated by biogas liquid was an efficient and economic pretreatment method of maize straw. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Synergistic interface behavior of strontium adsorption using mixed microorganisms.

    PubMed

    Hu, Wenyuan; Dong, Faqin; Yang, Guangmin; Peng, Xin; Huang, Xiaojun; Liu, Mingxue; Zhang, Jing

    2017-08-10

    The proper handling of low-level radioactive waste is crucial to promote the sustainable development of nuclear power. Research into the mechanism for interactions between bacterium and radionuclides is the starting point for achieving successful remediation of radionuclides with microorganisms. Using Sr(II) as a simulation radionuclide and the mixed microorganisms of Saccharomyces cerevisiae and Bacillus subtilis as the biological adsorbent, this study investigates behavior at the interface between Sr(II) and the microorganisms as well as the mechanisms governing that behavior. The results show that the optimal ratio of mixed microorganisms is S. cerevisiae 2.0 g L -1 to B. subtilis 0.05 g L -1 , and the optimal pH is about 6.3. Sr(II) biosorption onto the mixed microorganisms is spontaneous and endothermic in nature. The kinetics and the equilibrium isotherm data of the biosorption process can be described with pseudo-second-order equation and the Langmuir isotherm equation, respectively. The key interaction between the biological adsorbent and Sr(II) involves shared electronic pairs arising from chemical reactions via bond complexation or electronic exchange, and spectral and energy spectrum analysis show that functional groups (e.g., hydroxyl, carboxyl, amino, amide) at the interface between the radionuclide and the mixed microorganisms are the main active sites of the interface reactions.

  10. [Anaerobic Gram-negative bacilli involved in the etiopathogeny of the abscesses of superficial fascial spaces of the face and neck].

    PubMed

    Băncescu, Gabriela; Băncescu, A; Dumitriu, Silvia; Skaug, N

    2008-01-01

    The aim of this study was to isolate and identify at species level the strains of anaerobic Gram-negative bacilli (GNB) from pus samples collected in patients with abscesses of fascial spaces of the face and neck. Microscopy of Gram-stained smears and cultures were performed in each specimen. The strictly anaerobic GNB strains were identified using the conventional methods of diagnosis and the Rapid ID 32 A system. In addition, the other strains isolated in association with these bacteria were identified at least to genus level. The 28 anaerobic GNB isolates belonged to: Fusobacterium nucleatum and different species of Prevotella (4 species) and Bacteroides (3 species). The anaerobic GBN strains were recovered--either alone or in association with other migroorganisms--in more than half of all investigated samples and represented about 40% of all isolates. The most frequently isolated species were P> melaninogenica and B. ureolyticus.

  11. How sulphate-reducing microorganisms cope with stress: Lessons from systems biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; He, Q.; Hemme, C.L.

    2011-04-01

    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is importantmore » for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.« less

  12. Proton motive force, energy recycling by end product excretion, and metabolic uncoupling during anaerobic growth of Pseudomonas mendocina.

    PubMed Central

    Verdoni, N; Aon, M A; Lebeault, J M; Thomas, D

    1990-01-01

    Batch cultures of Pseudomonas mendocina, grown in rich medium with glucose excess, showed metabolic differences dependent upon whether the growth conditions were aerobic or anaerobic, with or without added electron acceptor. Under anaerobic conditions in the absence of nitrate, P. mendocina reached the stationary phase of growth after 2 or 3 days, followed by a stationary phase of 4 to 5 days. Under these conditions, a mixed-type fermentative metabolism (formic, lactic, and acetic acids) appeared. A fivefold-higher specific rate of glucose consumption and eightfold-higher production of organic acids, compared with aerobic cultures, were shown by this microorganism growing anaerobically in the absence of exogenous electron acceptors. The gradients of organic acid produced by P. mendocina under these conditions reached a maximum (lactate, 180 mV; formate, 150 mV; acetate, 215 mV) between days 2 and 3 of culture. The proton motive force (delta p) decreased during growth from -254 to -71 mV. The intracellular pH remained alkaline during the culture, reaching a steady-state value of 7.9. The gradients of organic acids apparently contributed to the generation of a delta p, which, according to the Energy Recycling Model (P. A. M. Michels, J. P. J. Michels, J. Boonstra, and W. N. Konings, FEMS Microbiol. Lett. 5:357-364, 1979), would produce an average energy gain of 1 or 1.5 mol of ATP equivalents per mol of glucose consumed with H+/ATP stoichiometry of 3 or 2, respectively. Low YATP and Yglucose values were observed, suggesting that an uncoupled metabolism exists; i.e., ATP produced by catabolic processes is not directly used for biomass synthesis. This metabolic uncoupling could be induced at least in part by organic acids and the ATP wastage could be induced by a membrane-bound ATPase involved in intracellular pH regulation. PMID:2254245

  13. Co-occurrence of anaerobic bacteria in colorectal carcinomas.

    PubMed

    Warren, René L; Freeman, Douglas J; Pleasance, Stephen; Watson, Peter; Moore, Richard A; Cochrane, Kyla; Allen-Vercoe, Emma; Holt, Robert A

    2013-05-15

    Numerous cancers have been linked to microorganisms. Given that colorectal cancer is a leading cause of cancer deaths and the colon is continuously exposed to a high diversity of microbes, the relationship between gut mucosal microbiome and colorectal cancer needs to be explored. Metagenomic studies have shown an association between Fusobacterium species and colorectal carcinoma. Here, we have extended these studies with deeper sequencing of a much larger number (n = 130) of colorectal carcinoma and matched normal control tissues. We analyzed these data using co-occurrence networks in order to identify microbe-microbe and host-microbe associations specific to tumors. We confirmed tumor over-representation of Fusobacterium species and observed significant co-occurrence within individual tumors of Fusobacterium, Leptotrichia and Campylobacter species. This polymicrobial signature was associated with over-expression of numerous host genes, including the gene encoding the pro-inflammatory chemokine Interleukin-8. The tumor-associated bacteria we have identified are all Gram-negative anaerobes, recognized previously as constituents of the oral microbiome, which are capable of causing infection. We isolated a novel strain of Campylobacter showae from a colorectal tumor specimen. This strain is substantially diverged from a previously sequenced oral Campylobacter showae isolate, carries potential virulence genes, and aggregates with a previously isolated tumor strain of Fusobacterium nucleatum. A polymicrobial signature of Gram-negative anaerobic bacteria is associated with colorectal carcinoma tissue.

  14. Toxicity of nonylphenol diethoxylate in lab-scale anaerobic digesters.

    PubMed

    Bozkurt, Hande; Sanin, F Dilek

    2014-06-01

    Nonylphenol compounds have high commercial, industrial and domestic uses owing to their surface active properties. In addition to their toxic, carcinogenic and persistent characteristics; they have drawn the attention of scientists lately due to their endocrine disrupting properties. Their widespread use and disposal cause them to enter wastewater treatment systems at high concentrations. Since they are highly persistent and hydrophobic, they accumulate mostly on sludge. In this study using Anaerobic Toxicity Assay (ATA) tests, the toxicity of a model nonylphenol compound, nonylphenol diethoxylate (NP2EO), for anaerobic digestion of sludge was determined. The test bottles were dosed with NP2EO in acetone, with concentrations ranging from 1 mg L(-1) to 30 mg L(-1). During the tests, gas productions and compositions in terms of methane and carbon dioxide were monitored. To be able to judge about the fate, the target compounds were extracted from water and sludge and analyzed using GC/MS. The sludge samples used for assembling the reactors were found to contain NP and NP1EO but no NP2EO. After the assay was completed, all the NP2EO spiked into the live reactors was found to disappear. The increase seen in NP1EO and NP and further accumulation of NP in the system, indicated the conversion of NP2EO to these metabolites. On the other hand, no conversion was observed in abiotic reactors. Inhibition of NP2EO for anaerobic microorganisms was not observed throughout the tests considering the biogas production of the test reactors in comparison to the control reactors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. High-Level Antimicrobial Efficacy of Representative Mediterranean Natural Plant Extracts against Oral Microorganisms

    PubMed Central

    Cecere, Manuel; Skaltsounis, Alexios Leandros; Argyropoulou, Aikaterini; Hellwig, Elmar; Aligiannis, Nektarios

    2014-01-01

    Nature is an unexplored reservoir of novel phytopharmaceuticals. Since biofilm-related oral diseases often correlate with antibiotic resistance, plant-derived antimicrobial agents could enhance existing treatment options. Therefore, the rationale of the present report was to examine the antimicrobial impact of Mediterranean natural extracts on oral microorganisms. Five different extracts from Olea europaea, mastic gum, and Inula viscosa were tested against ten bacteria and one Candida albicans strain. The extraction protocols were conducted according to established experimental procedures. Two antimicrobial assays—the minimum inhibitory concentration (MIC) assay and the minimum bactericidal concentration (MBC) assay—were applied. The screened extracts were found to be active against each of the tested microorganisms. O. europaea presented MIC and MBC ranges of 0.07–10.00 mg mL−1 and 0.60–10.00 mg mL−1, respectively. The mean MBC values for mastic gum and I. viscosa were 0.07–10.00 mg mL−1 and 0.15–10.00 mg mL−1, respectively. Extracts were less effective against C. albicans and exerted bactericidal effects at a concentration range of 0.07–5.00 mg mL−1 on strict anaerobic bacteria (Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Parvimonas micra). Ethyl acetate I. viscosa extract and total mastic extract showed considerable antimicrobial activity against oral microorganisms and could therefore be considered as alternative natural anti-infectious agents. PMID:25054150

  16. Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Sun, Han; Shen, Qiuting; Li, Xiang; Chen, Hong

    2015-04-15

    Adding alkyl polyglucose (APG) into an anaerobic treatment system of waste activated sludge (WAS) was reported to remarkably improve the production of short-chain fatty acids (SCFAs), especially propionic acid via simultaneously accelerating solubilization and hydrolysis, enhancing acidification, inhibiting methanogenesis and balancing carbon to nitrogen (C/N) ratio of substrate. Not only the production of SCFAs, especially propionic acid, was significantly improved by APG, but also the feasible operation time was shortened. The SCFAs yield at 0.3 g APG per gram of total suspended solids (TSS) within 4 d was 2988 ± 60 mg chemical oxygen demand (COD) per liter, much higher than that those from sole WAS or sole WAS plus sole APG. The corresponding yield of propionic acid was 1312 ± 25 mg COD/L, 7.9-fold of sole WAS. Mechanism investigation showed that during anaerobic treatment of WAS in the presence of APG both the solubilization and hydrolysis were accelerated and the acidification was enhanced, while the methanogenesis was inhibited. Moreover, the activities of key enzymes involved in WAS hydrolysis and acidification were improved through the adjustment of C/N ratio of substrates with APG. The abundance of microorganisms responsible for organic compounds hydrolysis and SCFAs production was also observed to be greatly enhanced with APG via 454 high-throughput pyrosequencing analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Conversion of sulfur compounds and microbial community in anaerobic treatment of fish and pork waste.

    PubMed

    He, Ruo; Yao, Xing-Zhi; Chen, Min; Ma, Ruo-Chan; Li, Hua-Jun; Wang, Chen; Ding, Shen-Hua

    2018-06-01

    Volatile sulfur compounds (VSCs) are not only the main source of malodor in anaerobic treatment of organic waste, but also pose a threat to human health. In this study, VSCs production and microbial community was investigated during the anaerobic degradation of fish and pork waste. The results showed that after the operation of 245 days, 94.5% and 76.2% of sulfur compounds in the fish and pork waste was converted into VSCs. Among the detected VSCs including H 2 S, carbon disulfide, methanethiol, ethanethiol, dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide, methanethiol was the major component with the maximum concentration of 4.54% and 3.28% in the fish and pork waste, respectively. The conversion of sulfur compounds including total sulfur, SO 4 2- -S, S 2- , methionine and cysteine followed the first-order kinetics. Miseq sequencing analysis showed that Acinetobacter, Clostridium, Proteus, Thiobacillus, Hyphomicrobium and Pseudomonas were the main known sulfur-metabolizing microorganisms in the fish and pork waste. The C/N value had most significant influence on the microbial community in the fish and pork waste. A main conversion of sulfur compounds with CH 3 SH as the key intermediate was firstly hypothesized during the anaerobic degradation of fish and pork waste. These findings are helpful to understand the conversion of sulfur compounds and to develop techniques to control ordor pollution in the anaerobic treatment of organic waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Application of Novel Amino-Functionalized NZVI@SiO2 Nanoparticles to Enhance Anaerobic Granular Sludge Removal of 2,4,6-Trichlorophenol.

    PubMed

    Guan, Zeyu; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Shu, Yajie

    2015-01-01

    A novel amino-functionalized silica-coated nanoscale zerovalent iron (NZVI@SiO2-NH2) was successfully synthesized by using one-step liquid-phase method with the surface functionalization of nanoscale zerovalent iron (NZVI) to enhance degradation of chlorinated organic contaminants from anaerobic microbial system. NZVI@SiO2-NH2 nanoparticles were synthesized under optimal conditions with the uniform core-shell structure (80-100 nm), high loading of amino functionality (~0.9 wt%), and relatively large specific surface area (126.3 m(2)/g). The result demonstrated that well-dispersed NZVI@SiO2-NH2 nanoparticle with nFe(0)-core and amino-functional silicon shell can effectively remove 2,4,6-trichlorophenol (2,4,6-TCP) in the neutral condition, much higher than that of NZVI. Besides, the surface-modified nanoparticles (NZVI@SiO2-NH2) in anaerobic granule sludge system also showed a positive effect to promote anaerobic biodechlorination system. More than 94.6% of 2,4,6-TCP was removed from the combined NZVI@SiO2-NH2-anaerobic granular sludge system during the anaerobic dechlorination processes. Moreover, adding the appropriate concentration of NZVI@SiO2-NH2 in anaerobic granular sludge treatment system can decrease the toxicity of 2,4,6-TCP to anaerobic microorganisms and improved the cumulative amount of methane production and electron transport system activity. The results from this study clearly demonstrated that the NZVI@SiO2-NH2/anaerobic granular sludge system could become an effective and promising technology for the removal of chlorophenols in industrial wastewater.

  19. Application of Novel Amino-Functionalized NZVI@SiO2 Nanoparticles to Enhance Anaerobic Granular Sludge Removal of 2,4,6-Trichlorophenol

    PubMed Central

    Guan, Zeyu; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Shu, Yajie

    2015-01-01

    A novel amino-functionalized silica-coated nanoscale zerovalent iron (NZVI@SiO2-NH2) was successfully synthesized by using one-step liquid-phase method with the surface functionalization of nanoscale zerovalent iron (NZVI) to enhance degradation of chlorinated organic contaminants from anaerobic microbial system. NZVI@SiO2-NH2 nanoparticles were synthesized under optimal conditions with the uniform core-shell structure (80–100 nm), high loading of amino functionality (~0.9 wt%), and relatively large specific surface area (126.3 m2/g). The result demonstrated that well-dispersed NZVI@SiO2-NH2 nanoparticle with nFe0-core and amino-functional silicon shell can effectively remove 2,4,6-trichlorophenol (2,4,6-TCP) in the neutral condition, much higher than that of NZVI. Besides, the surface-modified nanoparticles (NZVI@SiO2-NH2) in anaerobic granule sludge system also showed a positive effect to promote anaerobic biodechlorination system. More than 94.6% of 2,4,6-TCP was removed from the combined NZVI@SiO2-NH2-anaerobic granular sludge system during the anaerobic dechlorination processes. Moreover, adding the appropriate concentration of NZVI@SiO2-NH2 in anaerobic granular sludge treatment system can decrease the toxicity of 2,4,6-TCP to anaerobic microorganisms and improved the cumulative amount of methane production and electron transport system activity. The results from this study clearly demonstrated that the NZVI@SiO2-NH2/anaerobic granular sludge system could become an effective and promising technology for the removal of chlorophenols in industrial wastewater. PMID:26060427

  20. Integrated Anaerobic-Aerobic Biodegradation of Multiple Contaminants Including Chlorinated Ethylenes, Benzene, Toluene, and Dichloromethane.

    PubMed

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Complete bioremediation of soils containing multiple volatile organic compounds (VOCs) remains a challenge. To explore the possibility of complete bioremediation through integrated anaerobic-aerobic biodegradation, laboratory feasibility tests followed by alternate anaerobic-aerobic and aerobic-anaerobic biodegradation tests were performed. Chlorinated ethylenes, including tetrachloroethylene (PCE), trichloroethylene (TCE), cis -dichloroethylene ( cis -DCE), and vinyl chloride (VC), and dichloromethane (DCM) were used for anaerobic biodegradation, whereas benzene, toluene, and DCM were used for aerobic biodegradation tests. Microbial communities involved in the biodegradation tests were analyzed to characterize the major bacteria that may contribute to biodegradation. The results demonstrated that integrated anaerobic-aerobic biodegradation was capable of completely degrading the seven VOCs with initial concentration of each VOC less than 30 mg/L. Benzene and toluene were degraded within 8 days, and DCM was degraded within 20 to 27 days under aerobic conditions when initial oxygen concentrations in the headspaces of test bottles were set to 5.3% and 21.0%. Dehalococcoides sp., generally considered sensitive to oxygen, survived aerobic conditions for 28 days and was activated during the subsequent anaerobic biodegradation. However, degradation of cis -DCE was suppressed after oxygen exposure for more than 201 days, suggesting the loss of viability of Dehalococcoides sp., as they are the only known anaerobic bacteria that can completely biodegrade chlorinated ethylenes to ethylene. Anaerobic degradation of DCM following previous aerobic degradation was complete, and yet-unknown microbes may be involved in the process. The findings may provide a scientific and practical basis for the complete bioremediation of multiple contaminants in situ and a subject for further exploration.

  1. Amixicile, a novel strategy for targeting oral anaerobic pathogens.

    PubMed

    Hutcherson, Justin A; Sinclair, Kathryn M; Belvin, Benjamin R; Gui, Qin; Hoffman, Paul S; Lewis, Janina P

    2017-09-05

    The oral microflora is composed of both health-promoting as well as disease-initiating bacteria. Many of the disease-initiating bacteria are anaerobic and include organisms such as Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Tannerella forsythia. Here we investigated a novel therapeutic, amixicile, that targets pyruvate:ferredoxin oxidoreductase (PFOR), a major metabolic enzyme involved in energy generation through oxidative decarboxylation of pyruvate. PFOR is present in these anaerobic pathogenic bacteria and thus we hypothesized that amixicile would effectively inhibit their growth. In general, PFOR is present in all obligate anaerobic bacteria, while oral commensal aerobes, including aerotolerant ones, such as Streptococcus gordonii, use pyruvate dehydrogenase to decarboxylate pyruvate. Accordingly, we observed that growth of the PFOR-containing anaerobic periodontal pathogens, grown in both monospecies as well as multispecies broth cultures was inhibited in a dose-dependent manner while that of S. gordonii was unaffected. Furthermore, we also show that amixicile is effective against these pathogens grown as monospecies and multispecies biofilms. Finally, amixicile is the first selective therapeutic agent active against bacteria internalized by host cells. Together, the results show that amixicile is an effective inhibitor of oral anaerobic bacteria and as such, is a good candidate for treatment of periodontal diseases.

  2. Influence of Nutrient Impregnated into Zeolite Addition on Anaerobic Digestion of Palm Oil Mill Effluent (POME)

    NASA Astrophysics Data System (ADS)

    Mellyanawaty, M.; Chusna, F. M. A.; Sudibyo, H.; Nurjanah, N.; Budhijanto, W.

    2018-03-01

    Palm oil mill effluent (POME) was wastewater generated from palm oil milling activities which was brownish liquid, acidic with pH 3-4, and contained soluble materials which were hazardous to the environment. It was characterized by high organic loading (COD 40,000–60,000 mg/L). According to its characteristics, POME was identified as a potential source to generate renewable energy through anaerobic digestion. In other words, a combination of wastewater treatment and renewable energy production would be an additional advantage to the palm oil industries. Methanogenesis was the rate limiting step in anaerobic digestion. In the conventional anaerobic digester, it required large reactors and long retention time. The addition of microbial immobilization media was to improve anaerobic reactor performance in term of higher organic removal and methane production. Additionally, better performance could lead to reduction of reactor volume and shorter retention time in high rate anaerobic digester. The loading of essential microorganism nutrient into the media might increase the affinity of bacteria to attach and grow on the media surface. Activating or inhibition effects of natural and modified zeolite addition in anaerobic digestion of POME was studied in batch reactors using erlenmeyer of 1,000 mL at COD concentrations of about 8,000 mg/L. Zeolite was impregnated with nickel and magnesium at concentrations of 0.0561 mg Ni/g zeolite and 0.0108 mg Mg/g zeolite. The effect of the different zeolite addition was determined by the measurement of soluble COD (sCOD), Volatile Fatty Acids (VFAs) and biogas production. Greater effect of modified zeolite was observed in zeolite impregnated with nickel with a 54% increase of biogas production. Meanwhile, the modified zeolite impregnated with magnesium had no positive impact to the methanogenic bacteria activities.

  3. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    DOE PAGES

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...

    2014-09-22

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less

  4. Response of Selected Microorganisms to Experimental Planetary Environments

    NASA Technical Reports Server (NTRS)

    Foster, T. L.; Winans, L., Jr.

    1977-01-01

    Results of studies in anaerobic phosphorus metabolism are presented. Specific topics discussed include: (1) anaerobic utilization of PH3; (2) reduction of phosphate or phosphite; (3) isolation of organisms which utilize phosphite or phosphate anaerobically as a final hydrogen acceptor; and (4) the toxicity of PH3 to the organisms. Techniques of anaerobic microbiology associated with space hardware were also studied. These include: (1) the Brewer anaerobe jar/GasPak system; (2) a new procedure to grow aerobes and anaerobes simultaneously; (3) a culture medium to differentiate oblagate from facultative anaerobes; and (4) a procedure to quantitate O2 sensitivity of anaerobes.

  5. Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose.

    PubMed

    Panagiotou, Gianni; Christakopoulos, Paul; Grotkjaer, Thomas; Olsson, Lisbeth

    2006-09-01

    Dissimilatory nitrate reduction metabolism, of the natural xylose-fermenting fungus Fusarium oxysporum, was used as a strategy to achieve anaerobic growth and ethanol production from xylose. Beneficial alterations of the redox fluxes and thereby of the xylose metabolism were obtained by taking advantage of the regeneration of the cofactor NAD(+) during the denitrification process. In batch cultivations, nitrate sustained growth under anaerobic conditions (1.21 g L(-1) biomass) and simultaneously a maximum yield of 0.55 moles of ethanol per mole of xylose was achieved, whereas substitution of nitrate with ammonium limited the growth significantly (0.15 g L(-1) biomass). Using nitrate, the maximum acetate yield was 0.21 moles per mole of xylose and no xylitol excretion was observed. Furthermore, the network structure in the central carbon metabolism of F. oxysporum was characterized in steady state. F. oxysporum grew anaerobically on [1-(13)C] labelled glucose and unlabelled xylose in chemostat cultivation with nitrate as nitrogen source. The use of labelled substrate allowed the precise determination of the glucose and xylose contribution to the carbon fluxes in the central metabolism of this poorly described microorganism. It was demonstrated that dissimilatory nitrate reduction allows F. oxysporum to exhibit typical respiratory metabolic behaviour with a highly active TCA cycle and a large demand for NADPH.

  6. Reduction of bromate to bromide coupled to acetate oxidation by anaerobic mixed microbial cultures.

    PubMed

    van Ginkel, C G; van Haperen, A M; van der Togt, B

    2005-01-01

    Bromate, a weakly mutagenic oxidizing agent, exists in surface waters. The biodegradation of bromate was investigated by assessing the ability of mixed cultures of micro-organisms for utilization of bromate as electron acceptor and acetate as electron donor. Reduction of bromate was only observed at relatively low concentrations (<3.0 mM) in the absence of molecular oxygen. Under these conditions bromate was reduced stoichiometrically to bromide. Unadapted sludge from an activated sludge treatment plant and a digester reduced bromate without lag period at a constant rate. Using an enrichment culture adapted to bromate, it was demonstrated that bromate was a terminal electron acceptor for anaerobic growth. Approximately 50% of the acetate was utilized for growth with bromate by the enrichment culture. A doubling of 20 h was estimated from a logarithmic growth curve. Other electron acceptors, like perchlorate, chlorate and nitrate, were not reduced or at negligible rates by bromate-utilizing microorganisms.

  7. Microbial characteristics in anaerobic digestion process of food waste for methane production-A review.

    PubMed

    Wang, Pan; Wang, Hongtao; Qiu, Yinquan; Ren, Lianhai; Jiang, Bin

    2018-01-01

    Food waste (FW) is rich in starch, fat, protein and cellulose. It is easy to decay and brings environmental pollution and other social problems. FW shows a high potential to produce methane by anaerobic digestion (AD) due to its high organic content. However, many inhibitors, such as accumulation of ammonia and volatile fatty acids (VFAs), usually result in inefficient performances and even process failure. Microorganisms play an important role in the process of hydrolysis, acidogenesis, acetogenesis and methanogenesis. This review provided a critical summary of microbial characteristics to obtain connects of microbial community structure with operational conditions at various states of AD, such as mesophilic and thermophilic, wet and dry, success and failure, pretreated or not, lab-scale and full-scale. This article emphasizes that it is necessary to analyze changes and mechanisms of microbial communities in unbalanced system and seek efficiency dynamic succession rules of the dominant microorganisms. Copyright © 2017. Published by Elsevier Ltd.

  8. Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater.

    PubMed

    Greses, S; Zamorano-López, N; Borrás, L; Ferrer, J; Seco, A; Aguado, D

    2018-07-15

    Anaerobic digestion of indigenous Scenedesmus spp. microalgae was studied in continuous lab-scale anaerobic reactors at different temperatures (35 °C and 55 °C), and sludge retention time - SRT (50 and 70 days). Mesophilic digestion was performed in a continuous stirred-tank reactor (CSTR) and in an anaerobic membrane bioreactor (AnMBR). Mesophilic CSTR operated at 50 days SRT only achieved 11.9% of anaerobic biodegradability whereas in the AnMBR at 70 days SRT and 50 days HRT reached 39.5%, which is even higher than the biodegradability achieved in the thermophilic CSTR at 50 days SRT (30.4%). Microbial analysis revealed a high abundance of cellulose-degraders in both reactors, AnMBR (mainly composed of 9.4% Bacteroidetes, 10.1% Chloroflexi, 8.0% Firmicutes and 13.2% Thermotogae) and thermophilic CSTR (dominated by 23.8% Chloroflexi and 12.9% Firmicutes). However, higher microbial diversity was found in the AnMBR compared to the thermophilic CSTR which is related to the SRT. since high SRT promoted low growth-rate microorganisms, increasing the hydrolytic potential of the system. These results present the membrane technology as a promising approach to revalue microalgal biomass, suggesting that microalgae biodegradability and consequently the methane production could be improved operating at higher SRT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Oxidation of Structural Fe(II) in Biotite by Lithotrophic Fe(II)-oxidizing microorganisms

    NASA Astrophysics Data System (ADS)

    Shelobolina, E.; Blöthe, M.; Xu, H.; Konishi, H.; Roden, E.

    2008-12-01

    The potential for microbial involvement in the oxidation of Fe(II)-bearing phyllosilicates is an understudied aspect of soil/sediment Fe biogeochemistry. An important property of structural Fe in Fe-bearing smectites is their ability to undergo multiple redox cycles without being mobilized. An obvious choice of mineral substrate for enumeration/isolation of Fe(II)-oxidizing microorganisms would be reduced smectite. But reduced smectite is readily oxidized by air. That is why biotite was chosen as a substrate for this study. In contrast to smectite, biotite is more stable in the presence of air, but incapable of redox cycling. Once Fe(II) is oxidized, biotite is weathered to expendable 2:1 phyllosilicates or kaolinite. First, we evaluated the ability of a neutral-pH lithoautotrophic nitrate-reducing enrichment culture (MPI culture), recovered by Straub et al (Appl. Environ. Microbiol., 1996, 62:1458-1460) from a freshwater ditch, to oxidize two different specimens of biotite. The culture was capable of multiple transfers in anaerobic nitrate-containing biotite suspensions. The growth of MPI culture resulted in decrease of 0.5 N HCl-extractable Fe(II) content and simultaneous nitrate reduction. Cell yields were comparable to those observed for other neutral-pH lithoautotrophic Fe(II)-oxidizing bacteria. High resolution TEM examination revealed structural and chemical changes at the edges of oxidized biotite and formation of reddish amorphous precipitates dominated by Si and Fe. To further evaluate efficiency of biotite for recovery of oxygen- and nitrate-dependent Fe(II) oxidizing cultures microbial enumeration study was performed using subsoil from a site near Madison, WI. The soil is rich in Fe-bearing smectite and shows evidence of redoximorphic features. The enumeration of Fe(II) oxidizing organisms from this sediment showed 10-fold higher efficiency of biotite over soluble Fe(II) for recovery of Fe(II)-oxidizers. Isolation and identification of both aerobic and

  10. Simulation of anaerobic digestion processes using stochastic algorithm.

    PubMed

    Palanichamy, Jegathambal; Palani, Sundarambal

    2014-01-01

    The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.

  11. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution.

    PubMed

    Janusz, Grzegorz; Pawlik, Anna; Sulej, Justyna; Swiderska-Burek, Urszula; Jarosz-Wilkolazka, Anna; Paszczynski, Andrzej

    2017-11-01

    Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. © FEMS 2017.

  12. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution

    PubMed Central

    Pawlik, Anna; Sulej, Justyna; Świderska-Burek, Urszula; Jarosz-Wilkołazka, Anna; Paszczyński, Andrzej

    2017-01-01

    Abstract Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. PMID:29088355

  13. Lack of correlation of desiccation and radiation tolerance in microorganisms from diverse extreme environments tested under anoxic conditions

    PubMed Central

    Bohmeier, Maria; Perras, Alexandra K; Schwendner, Petra; Rabbow, Elke; Moissl-Eichinger, Christine; Cockell, Charles S; Vannier, Pauline; Marteinsson, Viggo T; Monaghan, Euan P; Ehrenfreund, Pascale; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Gaboyer, Frédéric; Westall, Frances; Cabezas, Patricia; Walter, Nicolas; Rettberg, Petra

    2018-01-01

    Abstract Four facultative anaerobic and two obligate anaerobic bacteria were isolated from extreme environments (deep subsurface halite mine, sulfidic anoxic spring, mineral-rich river) in the frame MASE (Mars Analogues for Space Exploration) project. The isolates were investigated under anoxic conditions for their survivability after desiccation up to 6 months and their tolerance to ionizing radiation up to 3000 Gy. The results indicated that tolerances to both stresses are strain-specific features. Yersinia intermedia MASE-LG-1 showed a high desiccation tolerance but its radiation tolerance was very low. The most radiation-tolerant strains were Buttiauxella sp. MASE-IM-9 and Halanaerobium sp. MASE-BB-1. In both cases, cultivable cells were detectable after an exposure to 3 kGy of ionizing radiation, but cells only survived desiccation for 90 and 30 days, respectively. Although a correlation between desiccation and ionizing radiation resistance has been hypothesized for some aerobic microorganisms, our data showed that there was no correlation between tolerance to desiccation and ionizing radiation, suggesting that the physiological basis of both forms of tolerances is not necessarily linked. In addition, these results indicated that facultative and obligate anaerobic organisms living in extreme environments possess varied species-specific tolerances to extremes. PMID:29474542

  14. High-efficiency treatment of PTA wastewater using a biogas jet assisted anaerobic fluidized bed reactor.

    PubMed

    Zhang, Wei; Feng, Yangyang; Chen, Yingwen; Li, Peiwen; Zhu, Shemin; Shen, Shubao

    2018-02-05

    In this paper, a new type of biogas jet assisted anaerobic fluidized bed reactor loaded with a polypropylene carrier has been proposed. There was a clear improvement in the fluidized state due to the biogas assisted input when the gas/water ratio was set at 1:3 with a suitable carrier loading of 60%. When the circulating water flow is 30 L/min assisted with biogas 10 L/min, the mixing time shortens from 26 to 18 s. The performance of anaerobic biodegradation on wastewater treatment was improved largely. The chemical oxygen demand (COD) and terepthallic acid removal efficiencies were at 85.4% and 84%, respectively, at hydraulic retention time of 20 h, even when the influent COD concentration was as high as 4224 mg/L. In addition, plenty of microorganisms, attached to the carriers and assumed to be the reason behind the organic biodegradation efficiency of the proposed system, were observed using scanning electron microscopy.

  15. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

    PubMed Central

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-01-01

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria. PMID:26555802

  16. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor.

    PubMed

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-10-15

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria.

  17. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  18. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron.

    PubMed

    Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo

    2014-04-01

    Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. [First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans/ Anaerobic Subcommittee of the Asociación Argentina de Microbiología].

    PubMed

    Legaria, María C; Bianchini, Hebe M; Castello, Liliana; Carloni, Graciela; Di Martino, Ana; Fernández Canigia, Liliana; Litterio, Mirta; Rollet, Raquel; Rossetti, Adelaida; Predari, Silvia C

    2011-01-01

    Through time, anaerobic bacteria have shown good susceptibility to clinically useful antianaerobic agents. Nevertheless, the antimicrobial resistance profile of most of the anaerobic species related to severe infections in humans has been modified in the last years and different kinds of resistance to the most active agents have emerged, making their effectiveness less predictable. With the aim of finding an answer and for the purpose of facilitating the detection of anaerobic antimicrobial resistance, the Anaerobic Subcommittee of the Asociación Argentina de Microbiología developed the First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans. This document resulted from the compatibilization of the Clinical and Laboratory Standards Institute recommendations, the international literature and the work and experience of the Subcommittee. The Consensus document provides a brief taxonomy review, and exposes why and when anaerobic antimicrobial susceptibility tests should be conducted, and which antimicrobial agents can be used according to the species involved. The recommendations on how to perform, read and interpret in vitro anaerobic antimicrobial susceptibility tests with each method are exposed. Finally, the antibiotic susceptibility profile, the classification of antibiotics according to their in vitro activities, the natural and acquired mechanisms of resistance, the emerging resistance and the regional antibiotic resistance profile of clinically relevant anaerobic species are shown.

  20. Diversity of eukaryotic microorganisms: computer-based resources, "The Handbook of Protoctista" and its "Glossary"

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Olendzenski, L.; Dolan, M.; MacIntyre, F.

    1996-01-01

    The kingdom Protoctista comprises some 30 phyla, including the eukaryotic anaerobes that permanently lack mitochondria, the Phylum Archaeprotista, with its three classes: (i) Archamoebae, e.g., Pelomyxa, Mastigina, (ii) Metamonada, e.g., Giardia, Pyrsonympha, and (iii) Parabasalia, e.g., Trichomonas, Calonympha, and the Phylum Microspora (Microsporidia), e.g., Vairimorpha. These and all algae, protozoa, labyrinthulids, "water molds" (oomycota, plasmodiophorans, hyphochytrids, chytrids, etc.) and other eukaryotes excluded from plants, animals and fungi are detailed in the Handbook of Protoctista. The Illustrated Glossary of Protoctista contains descriptions of the morphology and taxonomy of these microorganisms, including the many equivalent and homologous structures with different names. The Glossary has also been made into a Macintosh-compatible CD-ROM disk.

  1. Black-pigmented gram-negative anaerobes in endodontic infections.

    PubMed

    Haapasalo, M

    1993-03-01

    Necrotic dental root canal infections are polymicrobial infections dominated by anaerobic bacteria. The number of different species in one canal is usually low, approx. 4-7 species. The species isolated most frequently belong to the genera Prevotella, Porphyromonas, Fusobacterium, Peptostreptococcus, Eubacterium and Streptococcus. The frequency of isolation of black-pigmented Gram-negative anaerobes in endodontic infections varies from 25% to > 50%. Pr. intermedia is the most commonly found pigmented species, followed by Pr. denticola and two Porphyromonas species, P. gingivalis and P. endodontalis. Several studies have shown that P. gingivalis and P. endodontalis are closely related to the presence of acute symptoms in endodontic infections, whereas other black-pigmented Gram-negative anaerobes are not. However, several other species may also be involved in acute infections. Moreover, Porphyromonas species have occasionally been isolated from cases with no symptoms. Although Porphyromonas spp. are clearly related to symptoms at the beginning of therapy, they are not important for the prognosis of the treatment.

  2. The frequency and some characteristics of anaerobic bacteria isolated from various forms of bovine mastitis.

    PubMed

    Greeff, A S; Du Preez, J H; De Beer, M

    1983-03-01

    The prevalence of strictly anaerobic bacteria in the secretions from untreated cases of mastitis in lactating dairy cows was investigated. The study involved 147 Friesland cows in 12 highveld herds. All herds yielded cows with anaerobic udder infections. No anaerobic bacteria were recovered from cows with normal quarters or those with latent aerobic infections. Only anaerobes were present in 10% of so-called 'aseptic' mastitis cases. A variety of anaerobic organisms was isolated concurrently with facultative bacteria from 5,3% and 58,8% of cases classified as subclinical and clinical respectively. Peptococcus spp. was associated with Corynebacterium pyogenes and Bacteroides spp. with Staphylococcus aureus and/or Streptococcus agalactiae in 80% anaerobic udder infections. Gram positive anaerobic species were mostly sensitive to penicillin-G but all the Gram negative rods were resistant. In addition, all B. fragilis strains produced beta-lactamase. The ability to produce heparinase was demonstrated in one strain of Peptococcus indolicus and a Peptostreptococcus sp.

  3. Anaerobic Digestion and its Applications

    EPA Science Inventory

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  4. Anaerobic Biodegradation of Detergent Surfactants

    PubMed Central

    Merrettig-Bruns, Ute; Jelen, Erich

    2009-01-01

    Detergent surfactants can be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants).

  5. Inferring microbial interactions in thermophilic and mesophilic anaerobic digestion of hog waste

    PubMed Central

    Shaw, Grace Tzun-Wen; Liu, An-Chi; Weng, Chieh-Yin; Chou, Chu-Yang

    2017-01-01

    Anaerobic digestion (AnD) is a microbiological process that converts organic waste materials into biogas. Because of its high methane content, biogas is a combustible energy source and serves as an important environmental technology commonly used in the management of animal waste generated on large animal farms. Much work has been done on hardware design and process engineering for the generation of biogas. However, little is known about the complexity of the microbiology in this process. In particular, how microbes interact in the digester and eventually breakdown and convert organic matter into biogas is still regarded as a “black box.” We used 16S rRNA sequencing as a tool to study the microbial community in laboratory hog waste digesters under tightly controlled conditions, and systematically unraveled the distinct interaction networks of two microbial communities from mesophilic (MAnD) and thermophilic anaerobic digestion (TAnD). Under thermophilic conditions, the well-known association between hydrogen-producing bacteria, e.g., Ruminococcaceae and Prevotellaceae, and hydrotrophic methanogens, Methanomicrobiaceae, was reverse engineered by their interactive topological niches. The inferred interaction network provides a sketch enabling the determination of microbial interactive relationships that conventional strategy of finding differential taxa was hard to achieve. This research is still in its infancy, but it can help to depict the dynamics of microbial ecosystems and to lay the groundwork for understanding how microorganisms cohabit in the anaerobic digester. PMID:28732056

  6. The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms.

    PubMed

    Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger

    2012-11-01

    For several reasons, spacecraft are constructed in so-called clean rooms. Particles could affect the function of spacecraft instruments, and for missions under planetary protection limitations, the biological contamination has to be restricted as much as possible. The proper maintenance of clean rooms includes, for instance, constant control of humidity and temperature, air filtering, and cleaning (disinfection) of the surfaces. The combination of these conditions creates an artificial, extreme biotope for microbial survival specialists: spore formers, autotrophs, multi-resistant, facultative, or even strictly anaerobic microorganisms have been detected in clean room habitats. Based on a diversity study of European and South-American spacecraft assembly clean rooms, the European Space Agency (ESA) has initialized and funded the creation of a public library of microbial isolates. Isolates from three different European clean rooms, as well as from the final assembly and launch facility in Kourou (French Guiana), have been phylogenetically analyzed and were lyophilized for long-term storage at the German Culture Collection facilities in Brunswick, Germany (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen). The isolates were obtained by either following the standard protocol for the determination of bioburden on, and around, spacecraft or the use of alternative cultivation strategies. Currently, the database contains 298 bacterial strains. Fifty-nine strains are Gram-negative microorganisms, belonging to the α-, β- and γ-Proteobacteria. Representatives of the Gram-positive phyla Actinobacteria, Bacteroidetes/Chlorobi, and Firmicutes were subjected to the collection. Ninety-four isolates (21 different species) of the genus Bacillus were included in the ESA collection. This public collection of extremotolerant microbes, which are adapted to a complicated artificial biotope, provides a wonderful source for industry and research focused on

  7. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed Central

    2011-01-01

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

  8. [Microorganisms responsible of nosocomial infections in the Mexican Social Security Institute].

    PubMed

    Arias-Flores, Rafael; Rosado-Quiab, Ulises; Vargas-Valerio, Alfredo; Grajales-Muñiz, Concepción

    2016-01-01

    The prevention and control of the nosocomial infections involve the knowledge of the most frequent type of microorganism isolated. In Mexico there are not national statistics to identify the main microorganisms that cause a nosocomial infection. It was conducted an analysis of all the culture results of the nosocomial infections reported by the Sistema de Vigilancia Epidemiológica Hospitalaria (Epidemiological Surveillance System) of the Instituto Mexicano del Seguro Social during the year 2013. The most frequent and relevant microorganisms were reported. 48 377 results from cultures of nosocomial infections were studied. Of these 13 207 (27.3 %) were from 25 high specialty medical units and 35 170 (72.6 %) from 197 second level medical units. The most frequently isolated microorganism was Escherichia coli with 8192 results (16.9 %), followed by the group of Coagulase-negative Staphylococci with 6771 cultures (14 %) and Pseudomonas aeruginosa with 5275 results (19.9 %). Slight differences between levels of care and specialized hospitals were observed. This study identifies the Escherichia coli, the group of Coagulase-negative Staphylococci and the Pseudomonas aeruginosa as the main microorganisms to prevent.

  9. [Current clinical significance of anaerobic bacteremia].

    PubMed

    Jirsa, Roman; Marešová, Veronika; Brož, Zdeněk

    2010-10-01

    to estimate tje current clinical significance of anaerobic bacteremia in a group of Czech hospitals. this retrospective analysis comprised 8 444 anaerobic blood cultures in patients admitted to four Czech hospitals between 2004 and 2007. in 16 patients, blood cultures yielded significant anaerobic bacteria. Thus, anaerobic bacteremia accounted for less than 2 % of clinically significant bacteremia. Four patients (18 %) died but none of the deaths could be clearly attributable to anaerobic bacteria in the bloodstream. The most common comorbidities predisposing to anaerobic bacteremia and the most frequent sources of infection were similar to those reported by other authors. The majority of anaerobic bacteremia cases were due to gram-negative bacteria, followed by Clostridium perfringens and, surprisingly, Eubacterium spp. (particularly Eubacterium lentum). anaerobic bacteremia remains rare. The comparison of our data with those by other authors suggests that (despite the reported high mortality) the actual clinical significance of anaerobic bacteremia is rather controversial and that the anaerobic bacteremia might not correspond to more serious pathogenic role of the anaerobic bacteria as the source of infection.

  10. Children's Anthropomorphic and Anthropocentric Ideas about Micro-Organisms

    ERIC Educational Resources Information Center

    Byrne, Jenny; Grace, Marcus; Hanley, Pam

    2009-01-01

    Different views exist about whether anthropomorphic ideas assist or hinder learning in biology. This paper discusses the anthropomorphic and anthropocentric ideas children have about micro-organisms, and whether they affect their understanding. The research was carried out in primary and secondary schools in the South of England and involved 414…

  11. Detection and cultivation of indigenous microorganisms in Mesozoic claystone core samples from the Opalinus Clay Formation (Mont Terri Rock Laboratory)

    NASA Astrophysics Data System (ADS)

    Mauclaire, L.; McKenzie, J. A.; Schwyn, B.; Bossart, P.

    Although microorganisms have been isolated from various deep-subsurface environments, the persistence of microbial activity in claystones buried to great depths and on geological time scales has been poorly studied. The presence of in-situ microbial life in the Opalinus Clay Formation (Mesozoic claystone, 170 million years old) at the Mont Terri Rock Laboratory, Canton Jura, Switzerland was investigated. Opalinus Clay is a host rock candidate for a radioactive waste repository. Particle tracer tests demonstrated the uncontaminated nature of the cored samples, showing their suitability for microbiological investigations. To determine whether microorganisms are a consistent and characteristic component of the Opalinus Clay Formation, two approaches were used: (i) the cultivation of indigenous micoorganisms focusing mainly on the cultivation of sulfate-reducing bacteria, and (ii) the direct detection of molecular biomarkers of bacteria. The goal of the first set of experiments was to assess the presence of cultivable microorganisms within the Opalinus Clay Formation. After few months of incubation, the number of cell ranged from 0.1 to 2 × 10 3 cells ml -1 media. The microorganisms were actively growing as confirmed by the observation of dividing cells, and detection of traces of sulfide. To avoid cultivation bias, quantification of molecular biomarkers (phospholipid fatty acids) was used to assess the presence of autochthonous microorganisms. These molecules are good indicators of the presence of living cells. The Opalinus Clay contained on average 64 ng of PLFA g -1 dry claystone. The detected microbial community comprises mainly Gram-negative anaerobic bacteria as indicated by the ratio of iso/anteiso phospholipids (about 2) and the detection of large amount of β-hydroxy substituted fatty acids. The PLFA composition reveals the presence of specific functional groups of microorganisms in particular sulfate-reducing bacteria ( Desulfovibrio, Desulfobulbus, and

  12. Start-up, steady state performance and kinetic evaluation of a thermophilic integrated anaerobic-aerobic bioreactor (IAAB).

    PubMed

    Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

    2012-12-01

    Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Aerobic and anaerobic bacteriology of adenoids in children: a comparison between patients with chronic adenotonsillitis and adenoid hypertrophy.

    PubMed

    Brook, I

    1981-03-01

    Adenoids were obtained from 18 children with chronic adenotonsillitis (Group A) and from 12 others with adenoid hypertrophy (Group B). Patients' ages ranged from 20 months to 15 years (mean 6 years); 18 were males and 12 females. The adenoids were sectioned in half after heat searing of the surface, and the core material was cultured for aerobic and anaerobic microorganisms. Mixed aerobic and anaerobic flora were obtained from all patients, yielding an average of 7.8 isolates (4.6 anaerobes and 3.2 aerobes) per specimen. There were 97 anaerobes isolated. The predominant isolates in both groups were: Bacteroides sp. (including B. melaninogenicus and B. oralis), Fusobacterium sp., gram-positive anaerobic cocci, and Veillonella sp. There were 138 aerobic isolates. The predominant isolates in both groups were: alpha and gamma hemolytic streptococci, beta hemolytic streptococci (Group A, B, C, and F), S. aureus, S. pneumoniae, and Hemophilus sp. Hemophilus influenzae type B, and S. aureus were more frequently isolated in Group A. B. fragilis was only recovered in Group A. Beta lactamase production was noted in 27 isolates obtained from 18 patients. Fifteen of these patients belonged to Group A (83% of Group A), while 3 were members of Group B (25% of Group B). These bacteria were all isolates of S. aureus (11) and B. fragilis (2), 8 of 22 B. melaninogenicus group, 4 of 11 B. oralis, and two of 8 H. influenza type B. Our findings indicate the polymicrobial nature of deep adenoid flora and demonstrate the presence of many beta lactamase-producing organisms in children with recurrent adenotonsillitis.

  14. Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater.

    PubMed

    Patil, Sayali S; Kumar, Martin S; Ball, Andrew S

    2010-06-01

    Integrated biosystem is becoming a major aspect of wastewater management practice. Microbial communities in piggery wastewater sampled from anaerobic (thermophilic and mesophilic) and aerobic digesters (algal tanks) during waste remediation were analyzed by culture-independent techniques based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The use of Muyzer's 314F-GC, 518R bacterial primers, and archaeal A934F, 1309R primers followed by partial 16s rDNA sequence analysis of the main bands from DGGE revealed the presence of unknown and as yet uncultured microorganisms but also showed functional and ecologically significant denitrifying, acetogenic bacteria along with autotrophic, hydrogenotrophic, and acetoclastic methanogen archaea. Thermophilic digesters were dominated by gamma-Proteobacteria, Methanothermobacter sp., while mesophilic digesters showed dominance by Firmicutes, uncultured bacteria, Methanosarcina, and Methanoculleus genera. Under aerobic conditions within algal tanks, pH rose from 7.17 to 9.32, with a significant decrease in total ammonia nitrogen, chemical oxygen demand, and soluble phosphorus levels. PCR-DGGE proved a useful tool for investigating the dynamics of microbial community in the bio-processing of piggery wastewater. Knowledge of the microbial communities involved in digestion of piggery wastewater will allow optimization of integrated biosystem by removing the main pollutants like inorganic ammonium-nitrogen, phosphorus, and pathogens from intensive farming system.

  15. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    PubMed Central

    Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.; Welch, Susan A.; Nicora, Carrie D.; Hoyt, David W.; Wilson, Travis; Purvine, Samuel O.; Wolfe, Richard A.; Sharma, Shikha; Mouser, Paula J.; Cole, David R.; Lipton, Mary S.; Wrighton, Kelly C.

    2017-01-01

    ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the

  16. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.

    ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance ofHalanaerobiumstrains within thein situmicrobial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by aHalanaerobiumstrain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis ofHalanaerobiumisolate genomes and reconstructed genomes frommore » metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using aHalanaerobiumisolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentativeHalanaerobiumuses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCEAlthough thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction

  17. The quality of microorganism on coal bed methane processing with various livestock waste in laboratory scale

    NASA Astrophysics Data System (ADS)

    Marlina, E. T.; Kurnani, Tb. B. A.; Hidayati, Y. A.; Rahmah, K. N.; Joni, I. M.; Harlia, E.

    2018-02-01

    Coal-bed Methane (CBM) is a form of natural gas extracted from coal and has been developed as future energy source. Organic materials are required as nutrition source for methanogenic microbes. The addition of cattle waste in the formation of CBM on coal media can be utilized as organic materials as well as methanogenic microbe sources. This research covered study of total amount of anaerobic microbes, methane production, protozoa, fungi and endoparasites. Descriptive approach is conducted for this study. Media used for culturing methanogens is Nutrient Agar in powder form and Lactose Broth with the addition of rumen fluid. The technique for counting microbes is through Total Plate Count in anaerobic Hungate tube, methane was analyzed using Gas Chromatography (GC), while identification of protozoa, fungi and endoparasites based on its morphology is conducted before and after anaerobic fermentation process. Incubation period is 30 days. The results showed that growth of anaerobic microbes from dairy cattle waste i.e. biogas sludge is 3.57×103 CFU/ml and fresh feces is 3.38 × 104 CFU/ml, growth of anaerobic microbes from beef cattle waste i.e. biogas sludge is 7.0 × 105 CFU/ml; fresh feces is 7.5 x 104 CFU/ml; and rumen contents of about 1.33 × 108 CFU/ml. Methane production in dairy cattle waste in sludge and fresh feces amounted to 10.57% and 2.39%, respectively. Methane production in beef cattle waste in sludge accounted for 5.95%; in fresh feces it is about 0.41%; and rumen contents of 4.92%. Decreasing of protozoa during fermentation to 84.27%, dominated by Eimeria sp. Decreasing of fungi to 16%, dominated by A. Niger, A. Flavus, A. Fumigatus and Monilia sitophila. Decreasing of endoparasitic worms to 15%, dominated by Strongylus sp. and Fasciola sp. The growth of anaerobic microbes and methane production indicated that dairy cattle waste and beef cattle waste have potential as source of methanogenic microbes, meanwhile the decreasing amount of protozoa

  18. Reductive Dehalogenation of Brominated Phenolic Compounds by Microorganisms Associated with the Marine Sponge Aplysina aerophoba

    PubMed Central

    Ahn, Young-Beom; Rhee, Sung-Keun; Fennell, Donna E.; Kerkhof, Lee J.; Hentschel, Ute; Häggblom, Max M.

    2003-01-01

    Marine sponges are natural sources of brominated organic compounds, including bromoindoles, bromophenols, and bromopyrroles, that may comprise up to 12% of the sponge dry weight. Aplysina aerophoba sponges harbor large numbers of bacteria that can amount to 40% of the biomass of the animal. We postulated that there might be mechanisms for microbially mediated degradation of these halogenated chemicals within the sponges. The capability of anaerobic microorganisms associated with the marine sponge to transform haloaromatic compounds was tested under different electron-accepting conditions (i.e., denitrifying, sulfidogenic, and methanogenic). We observed dehalogenation activity of sponge-associated microorganisms with various haloaromatics. 2-Bromo-, 3-bromo-, 4-bromo-, 2,6-dibromo-, and 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoate were reductively debrominated under methanogenic and sulfidogenic conditions with no activity observed in the presence of nitrate. Monochlorinated phenols were not transformed over a period of 1 year. Debromination of 2,4,6-tribromophenol, and 2,6-dibromophenol to 2-bromophenol was more rapid than the debromination of the monobrominated phenols. Ampicillin and chloramphenicol inhibited activity, suggesting that dehalogenation was mediated by bacteria. Characterization of the debrominating methanogenic consortia by using terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis analysis indicated that different 16S ribosomal DNA (rDNA) phylotypes were enriched on the different halogenated substrates. Sponge-associated microorganisms enriched on organobromine compounds had distinct 16S rDNA TRFLP patterns and were most closely related to the δ subgroup of the proteobacteria. The presence of homologous reductive dehalogenase gene motifs in the sponge-associated microorganisms suggested that reductive dehalogenation might be coupled to dehalorespiration. PMID:12839794

  19. Stimulation of anaerobic biodegradation of DDT and its metabolites in a muck soil: laboratory microcosm and mesocosm studies.

    PubMed

    Gohil, Hiral; Ogram, Andrew; Thomas, John

    2014-09-01

    The aim of this study was to evaluate the impact of selected electron donors and electron acceptors on the anaerobic biodegradation of DDT and its major metabolites in a muck soil with a long history of exposure to the pesticide. Loss of DDT was measured in anaerobic microcosms supplemented with H2, lactate, and acetate. The greatest loss of DDT (approximately 87 %) was observed in microcosms amended with lactate and no additional electron acceptor compared to the no additional electron donor or acceptor sets. An increase in measureable concentrations of DDx was observed in un-amended microcosms. In larger scale mesocosms, significant increases in dissolved organic carbon (DOC) corresponded with low redox potentials. Increases in DOC corresponded with sharp increases in measured concentrations of DDx, followed by a decrease in measured DDT concentrations in lactate-amended mesocosms. Our studies indicate that sorbed DDx is released upon anaerobic incubation, and that indigenous microorganisms capable of DDx degradation respond to lactate additions. Both the potential for release of sorbed DDx and the potential for biodegradation of DDx should be considered during remediation of DDx-contaminated organic soils at low redox potentials.

  20. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  1. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  2. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    PubMed

    Lager, Anders Hedenbjörk

    2014-01-01

    Dental caries is a common disease all over the world, despite the fact that it can be both effectively prevented and treated. It is driven by acids produced by oral microorganisms as a consequence of their metabolism of dietary carbohydrates. Given enough acid challenge, eventually the tooth enamel barrier will be broken down, and the carious lesion will extend into underlying hard tissue, forming a macroscopic cavity in the dentine. In comparison to biofilm on enamel, a dentine carious lesion provides a vastly different environment for the residing microorganisms. The environment influences the types and numbers of microorganisms that can colonize the dentine caries lesion. The overall aims for this thesis are to enumerate and further study microorganisms found in established dentine caries lesions and also to illuminate how host-derived proteolytic enzymes might contribute to this degradation, not only to better understand the caries process in dentine but also to find incitements for new methods to influence the natural progression of caries lesions. In Paper I, the numbers of remaining viable microorganisms after completed excavation using two excavation methods were investigated. Samples of carious dentine tissue were collected before and after excavation and cultivated on different agar media in different atmospheres. Analysis was performed by counting the number of colony-forming units (CFUs). Key findings: The number of remaining microorganisms after excavation was low for both methods, but some microorganisms always remained in the cavity floors even when the cavities were judged as caries free using normal clinical criteria. In Paper II, the acid tolerant microbiota in established dentine caries lesions was investigated. Samples were taken as in Paper I, but on three levels (superficial, center of lesion, floor of lesion after completed excavation). The samples were cultivated in anaerobic conditions on solid pH-selective agar media of different acidity

  3. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment.

    PubMed

    Ghattas, Ann-Kathrin; Fischer, Ferdinand; Wick, Arne; Ternes, Thomas A

    2017-06-01

    Although strictly anaerobic conditions prevail in several environmental compartments, up to now, biodegradation studies with emerging organic contaminants (EOCs), such as pharmaceuticals and personal care products, have mainly focused on aerobic conditions. One of the reasons probably is the assumption that the aerobic degradation is more energetically favorable than degradation under strictly anaerobic conditions. Certain aerobically recalcitrant contaminants, however, are biodegraded under strictly anaerobic conditions and little is known about the organisms and enzymatic processes involved in their degradation. This review provides a comprehensive survey of characteristic anaerobic biotransformation reactions for a variety of well-studied, structurally rather simple contaminants (SMOCs) bearing one or a few different functional groups/structural moieties. Furthermore it summarizes anaerobic degradation studies of more complex contaminants with several functional groups (CMCs), in soil, sediment and wastewater treatment. While strictly anaerobic conditions are able to promote the transformation of several aerobically persistent contaminants, the variety of observed reactions is limited, with reductive dehalogenations and the cleavage of ether bonds being the most prevalent. Thus, it becomes clear that the transferability of degradation mechanisms deduced from culture studies of SMOCs to predict the degradation of CMCs, such as EOCs, in environmental matrices is hampered due the more complex chemical structure bearing different functional groups, different environmental conditions (e.g. matrix, redox, pH), the microbial community (e.g. adaptation, competition) and the low concentrations typical for EOCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment.

    PubMed

    Wu, Yuanyuan; Wang, Cuiping; Liu, Xiaoji; Ma, Hailing; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2016-07-01

    A novel method of two-phase anaerobic digestion where the acid reactor is operated at low pH 4.0 was proposed and investigated. A completely stirred tank acid reactor and an up-flow anaerobic sludge bed methane reactor were operated to examine the possibility of efficient degradation of lactate and to identify their optimal operating conditions. Lactate with an average concentration of 14.8g/L was the dominant fermentative product and Lactobacillus was the predominant microorganism in the acid reactor. The effluent from the acid reactor was efficiently degraded in the methane reactor and the average methane yield was 261.4ml/gCOD removed. Organisms of Methanosaeta were the predominant methanogen in granular sludge of methane reactor, however, after acclimation hydrogenotrophic methanogens enriched, which benefited for the conversion of lactate to acetate. The two-phase AD system exhibited a low hydraulic retention time of 3.56days and high methane yield of 348.5ml/g VS removed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Compost supplementation with nutrients and microorganisms in composting process.

    PubMed

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  6. Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste.

    PubMed

    Lim, J W; Chen, C-L; Ho, I J R; Wang, J-Y

    2013-11-01

    The objective of this work was to study the microbial community and reactor performance for the anaerobic co-digestion of brown water and food waste in single- and two-phase continuously stirred tank reactors (CSTRs). Bacterial and archaeal communities were analyzed after 150 days of reactor operation. As compared to single-phase CSTR, methane production in two-phase CSTR was found to be 23% higher. This was likely due to greater extent of solubilization and acidification observed in the latter. These findings could be attributed to the predominance of Firmicutes and greater bacterial diversity in two-phase CSTR, and the lack of Firmicutes in single-phase CSTR. Methanosaeta was predominant in both CSTRs and this correlated to low levels of acetate in their effluent. Insights gained from this study would enhance the understanding of microorganisms involved in co-digestion of brown water and food waste as well as the complex biochemical interactions promoting digester stability and performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Beneficial microorganisms [Chapter 14

    Treesearch

    Kim M. Wilkinson

    2009-01-01

    The web of life depends on microorganisms, a vast network of small and unseen allies that permeate the soil, water, and air of our planet. For people who work with plants, the greatest interest in microorganisms is in the complex communities that are part of the soil. Beneficial microorganisms are naturally occurring bacteria, fungi, and other microbes that play a...

  8. Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions†

    PubMed Central

    Jarling, René; Kühner, Simon; Basílio Janke, Eline; Gruner, Andrea; Drozdowska, Marta; Golding, Bernard T.; Rabus, Ralf; Wilkes, Heinz

    2015-01-01

    Anaerobic metabolism of hydrocarbons proceeds either via addition to fumarate or by hydroxylation in various microorganisms, e.g., sulfate-reducing or denitrifying bacteria, which are specialized in utilizing n-alkanes or alkylbenzenes as growth substrates. General pathways for carbon assimilation and energy gain have been elucidated for a limited number of possible substrates. In this work the metabolic activity of 11 bacterial strains during anaerobic growth with crude oil was investigated and compared with the metabolite patterns appearing during anaerobic growth with more than 40 different hydrocarbons supplied as binary mixtures. We show that the range of co-metabolically formed alkyl- and arylalkyl-succinates is much broader in n-alkane than in alkylbenzene utilizers. The structures and stereochemistry of these products are resolved. Furthermore, we demonstrate that anaerobic hydroxylation of alkylbenzenes does not only occur in denitrifiers but also in sulfate reducers. We propose that these processes play a role in detoxification under conditions of solvent stress. The thermophilic sulfate-reducing strain TD3 is shown to produce n-alkylsuccinates, which are suggested not to derive from terminal activation of n-alkanes, but rather to represent intermediates of a metabolic pathway short-cutting fumarate regeneration by reverse action of succinate synthase. The outcomes of this study provide a basis for geochemically tracing such processes in natural habitats and contribute to an improved understanding of microbial activity in hydrocarbon-rich anoxic environments. PMID:26441848

  9. Anti-Candida and anti-Cryptococcus antifungal produced by marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-12-01

    In order to search for antifungal from biological origin, we performed a screening of marine microorganisms isolated from seawater, seaweed, sediment and marine invertebrates collected from different coastal areas of the Moroccan Atlantic Ocean. The antifungal activities of these isolates were investigated against the pathogenic yeasts involved in medical mycology. Whole cultures of 34 marine microorganisms were screened for antifungal activities using the method of agar diffusion against four yeasts. The results showed that among the 34 isolates studied, 13 (38%) strains have antifungal activity against at least one out of four yeast species, 11 isolates have anti-Candida albicans CIP 48.72 activity, 12 isolates have anti-C. albicans CIP 884.65 activity, 13 isolates have anti-Cryptococcus neoformans activity and only 6 isolates are actives against Candida tropicalis R2 resistant to nystatin and amphotericin B. Nine isolates showed strong fungicidal activity. Fourteen microorganisms were identified and assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea, and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms could produce more antimicrobials; therefore these marine microorganisms were expected to be potential resources of natural products such as those we research: anti-Candida and anti-Cryptococcus fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories?

    PubMed

    Nagy, E; Boyanova, L; Justesen, U S

    2018-02-17

    There has been increased interest in the study of anaerobic bacteria that cause human infection during the past decade. Many new genera and species have been described using 16S rRNA gene sequencing of clinical isolates obtained from different infection sites with commercially available special culture media to support the growth of anaerobes. Several systems, such as anaerobic pouches, boxes, jars and chambers provide suitable anaerobic culture conditions to isolate even strict anaerobic bacteria successfully from clinical specimens. Beside the classical, time-consuming identification methods and automated biochemical tests, the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has revolutionized identification of even unusual and slow-growing anaerobes directly from culture plates, providing the possibility of providing timely information about anaerobic infections. The aim of this review article is to present methods for routine laboratories, which carry out anaerobic diagnostics on different levels. Relevant data from the literature mostly published during the last 7 years are encompassed and discussed. The review involves topics on the anaerobes that are members of the commensal microbiota and their role causing infection, the key requirements for collection and transport of specimens, processing of specimens in the laboratory, incubation techniques, identification and antimicrobial susceptibility testing of anaerobic bacteria. Advantages, drawbacks and specific benefits of the methods are highlighted. The present review aims to update and improve anaerobic microbiology in laboratories with optimal conditions as well as encourage its routine implementation in laboratories with restricted resources. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    PubMed Central

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  12. Short-term differential adaptation to anaerobic stress via genomic mutations by Escherichia coli strains K-12 and B lacking alcohol dehydrogenase

    PubMed Central

    Kim, Hyun Ju; Jeong, Haeyoung; Hwang, Seungwoo; Lee, Moo-Seung; Lee, Yong-Jik; Lee, Dong-Woo; Lee, Sang Jun

    2014-01-01

    Microbial adaptations often occur via genomic mutations under adverse environmental conditions. This study used Escherichia coli ΔadhE cells as a model system to investigate adaptation to anaerobic conditions, which we then compared with the adaptive mechanisms of two closely related E. coli strains, K-12 and B. In contrast to K-12 ΔadhE cells, the E. coli B ΔadhE cells exhibited significantly delayed adaptive growth under anaerobic conditions. Adaptation by the K-12 and B strains mainly employed anaerobic lactate fermentation to restore cellular growth. Several mutations were identified in the pta or pflB genes of adapted K-12 cells, but mostly in the pta gene of the B strains. However, the types of mutation in the adapted K-12 and B strains were similar. Cellular viability was affected directly by severe redox imbalance in B ΔadhE cells, which also impaired their ability to adapt to anaerobic conditions. This study demonstrates that closely related microorganisms may undergo different adaptations under the same set of adverse conditions, which might be associated with the specific metabolic characteristics of each strain. This study provides new insights into short-term microbial adaptation to stressful conditions, which may reflect dynamic microbial population changes in nature. PMID:25250024

  13. Short-term differential adaptation to anaerobic stress via genomic mutations by Escherichia coli strains K-12 and B lacking alcohol dehydrogenase.

    PubMed

    Kim, Hyun Ju; Jeong, Haeyoung; Hwang, Seungwoo; Lee, Moo-Seung; Lee, Yong-Jik; Lee, Dong-Woo; Lee, Sang Jun

    2014-01-01

    Microbial adaptations often occur via genomic mutations under adverse environmental conditions. This study used Escherichia coli ΔadhE cells as a model system to investigate adaptation to anaerobic conditions, which we then compared with the adaptive mechanisms of two closely related E. coli strains, K-12 and B. In contrast to K-12 ΔadhE cells, the E. coli B ΔadhE cells exhibited significantly delayed adaptive growth under anaerobic conditions. Adaptation by the K-12 and B strains mainly employed anaerobic lactate fermentation to restore cellular growth. Several mutations were identified in the pta or pflB genes of adapted K-12 cells, but mostly in the pta gene of the B strains. However, the types of mutation in the adapted K-12 and B strains were similar. Cellular viability was affected directly by severe redox imbalance in B ΔadhE cells, which also impaired their ability to adapt to anaerobic conditions. This study demonstrates that closely related microorganisms may undergo different adaptations under the same set of adverse conditions, which might be associated with the specific metabolic characteristics of each strain. This study provides new insights into short-term microbial adaptation to stressful conditions, which may reflect dynamic microbial population changes in nature.

  14. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    PubMed

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity. Copyright © 2016. Published by Elsevier B.V.

  15. Wingate Anaerobic Test peak power and anaerobic capacity classifications for men and women intercollegiate athletes.

    PubMed

    Zupan, Michael F; Arata, Alan W; Dawson, Letitia H; Wile, Alfred L; Payn, Tamara L; Hannon, Megan E

    2009-12-01

    The Wingate Anaerobic Test (WAnT) has been established as an effective tool in measuring both muscular power and anaerobic capacity in a 30-second time period; however, there are no published normative tables by which to compare WAnT performance in men and women intercollegiate athletics. The purpose of this study was to develop a classification system for anaerobic peak power and anaerobic capacity for men and women National Collegiate Athletic Association (NCAA) Division I college athletes using the WAnT. A total of 1,585 (1,374 men and 211 women) tests were conducted on athletes ranging from the ages of 18 to 25 years using the WAnT. Absolute and relative peak power and anaerobic capacity data were recorded. One-half standard deviations were used to set up a 7-tier classification system (poor to elite) for these assessments. These classifications can be used by athletes, coaches, and practitioners to evaluate anaerobic peak power and anaerobic capacity in their athletes.

  16. Retention and transport of an anaerobic trichloroethene dechlorinating microbial culture in anaerobic porous media.

    PubMed

    Zhang, Huixin; Ulrich, Ania C; Liu, Yang

    2015-06-01

    The influence of solution chemistry on microbial transport was examined using the strictly anaerobic trichloroethene (TCE) bioaugmentation culture KB-1(®). A column was employed to determine transport behaviors and deposition kinetics of three distinct functional species in KB-1(®), Dehalococcoides, Geobacter, and Methanomethylovorans, over a range of ionic strengths under a well-controlled anaerobic condition. A quantitative polymerase chain reaction (qPCR) was utilized to enumerate cell concentration and complementary techniques were implemented to evaluate cell surface electrokinetic potentials. Solution chemistry was found to positively affect the deposition rates, which was consistent with calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Retained microbial profiles showed spatially constant colloid deposition rate coefficients, in agreement with classical colloid filtration theory (CFT). It was interesting to note that the three KB-1(®) species displayed similar transport and retention behaviors under the defined experimental conditions despite their different cell electrokinetic properties. A deeper analysis of cell characteristics showed that factors, such as cell size and shape, concentration, and motility were involved in determining adhesion behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Modelling wastewater treatment in a submerged anaerobic membrane bioreactor.

    PubMed

    Spagni, Alessandro; Ferraris, Marco; Casu, Stefania

    2015-01-01

    Mathematical modelling has been widely applied to membrane bioreactor (MBRs) processes. However, to date, very few studies have reported on the application of the anaerobic digestion model N.1 (ADM1) to anaerobic membrane processes. The aim of this study was to evaluate the applicability of the ADM1 to a submerged anaerobic MBR (SAMBR) treating simulated industrial wastewater composed of cheese whey and sucrose. This study demonstrated that the biological processes involved in SAMBRs can be modelled by using the ADM1. Moreover, the results showed that very few modifications of the parameters describing the ADM1 were required to reasonably fit the experimental data. In particular, adaptation to the specific conditions of the coefficients describing the wastewater characterisation and the reduction of the hydrolysis rate of particulate carbohydrate (khyd,ch) from 0.25 d(-1) (as suggested by the ADM1 for high-rate mesophilic reactors) to 0.13 d(-1) were required to fit the experimental data.

  18. Microorganisms for producing organic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  19. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  20. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed Central

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-01-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  1. Microbiological analysis of infected root canals from symptomatic and asymptomatic teeth with periapical periodontitis and the antimicrobial susceptibility of some isolated anaerobic bacteria.

    PubMed

    Jacinto, R C; Gomes, B P F A; Ferraz, C C R; Zaia, A A; Filho, F J Souza

    2003-10-01

    The purpose of the present study was to investigate the correlation between the composition of the bacterial flora isolated from infected root canals of teeth with apical periodontitis with the presence of clinical signs and symptoms, and to test the antibiotic susceptibility of five anaerobic bacteria mostly commonly found in the root canals of symptomatic teeth against various substances using the E-test. Microbial samples were taken from 48 root canals, 29 symptomatic and 19 asymptomatic, using adequate techniques. A total of 218 cultivable isolates were recovered from 48 different microbial species and 19 different genera. Root canals from symptomatic teeth harbored more obligate anaerobes and a bigger number of bacterial species than the asymptomatic teeth. More than 70% of the bacterial isolates were strict anaerobes. Statistical analysis used a Pearson Chi-squared test or a one-sided Fisher's Exact test as appropriate. Suggested relationships were found between specific microorganisms, especially gram-negative anaerobes, and the presence of spontaneous or previous pain, tenderness to percussion, pain on palpation and swelling amoxicillin, amoxicillin + clavulanate and cephaclor were effective against all the strains tested. The lowest susceptibility rate was presented by Prevotella intermedia/nigrescens against Penicillin G. Our results suggested that specific bacteria are associated with endodontic symptoms of infected teeth with periapical periodontitis and the majority of the anaerobic bacterial species tested were susceptible to all antibiotics studied.

  2. Protein improvement in Gari by the use of pure cultures of microorganisms involved in the natural fermentation process.

    PubMed

    Ahaotu, I; Ogueke, C C; Owuamanam, C I; Ahaotu, N N; Nwosu, J N

    2011-10-15

    The ability of microorganisms involved in cassava mash fermentation to produce and improve protein value by these microorganisms during fermentation was studied. Standard microbiological procedures were used to isolate, identify and determine the numbers of the organisms. Alcaligenes faecalis, Lactobacillus plantarum, Bacillus subtilis, Leuconostoc cremoris, Aspergillus niger, A. tamari, Geotrichum candidum and Penicillium expansum were isolated and identified from cassava waste water while standard analytical methods were used to determine the ability of the isolates to produce linamarase and the proximate composition, pH and titrable acidity of the fermenting mash. The linamarase activity of the isolates ranged from 0.0416 to 0.2618 micromol mL(-1) nmol(-1). Bacillus subtilis, A. niger, A. tamari and P. expansum did not express any activity for the enzyme. Protein content of mash fermented with mixed fungal culture had the highest protein value (15.4 mg/g/dry matter) while the raw cassava had the least value (2.37 mg/g/dry matter). The naturally fermented sample had the least value for the fermented samples (3.2 mg/g/dry matter). Carbohydrate and fat contents of naturally fermented sample were higher than values obtained from the other fermented samples. Microbial numbers of the sample fermented with mixed bacterial culture was highest and got to their peak at 48 h (57 x 10(8) cfu g(-1)). pH decreased with increase in fermentation time with the mash fermented by the mixed culture of fungi having the lowest pH of 4.05 at the end of fermentation. Titrable acidity increased with increase in fermentation time with the highest value of 1.32% at 96 h of fermentation produced by the mixed culture of fungi. Thus fermentation with the pure cultures significantly increased the protein content of mash.

  3. A Simple and Low-Cost Procedure for Growing Geobacter sulfurreducens Cell Cultures and Biofilms in Bioelectrochemical Systems

    PubMed Central

    O’Brien, J. Patrick; Malvankar, Nikhil S.

    2017-01-01

    Anaerobic microorganisms play a central role in several environmental processes and regulate global biogeochemical cycling of nutrients and minerals. Many anaerobic microorganisms are important for the production of bioenergy and biofuels. However, the major hurdle in studying anaerobic microorganisms in the laboratory is the requirement for sophisticated and expensive gassing stations and glove boxes to create and maintain the anaerobic environment. This appendix presents a simple design for a gassing station that can be used readily by an inexperienced investigator for cultivation of anaerobic microorganisms. In addition, this appendix also details the low-cost assembly of bioelectrochemical systems and outlines a simplified procedure for cultivating and analyzing bacterial cell cultures and biofilms that produce electric current, using Geobacter sulfurreducens as a model organism. PMID:27858972

  4. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae

    PubMed Central

    2011-01-01

    Background Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. Results We determined that 198 chromosomal genes were differentially expressed (~10% of the genome) in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. Conclusions Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked. PMID:21251255

  5. Ruminal bioremediation of the high energy melting explosive (HMX) by sheep microorganisms.

    PubMed

    Eaton, Hillary L; Murty, Lia D; Duringer, Jennifer M; Craig, A Morrie

    2014-01-01

    The ability of ruminal microorganisms to degrade octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (high melting explosive, HMX) as consortia from whole rumen fluid (WRF), and individually as 23 commercially available ruminal strains, was compared under anaerobic conditions. Compound degradation was monitored by high-performance liquid chromatography, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for delineation of the metabolic pathway. In WRF, 30 μM HMX was degraded to 5 μM HMX within 24 h. Metabolites consistent with m/z 149, 193 and 229 were present throughout the incubation period. We propose that peaks with an m/z of 149 and 193 are arrived at through reduction of HMX to nitroso or hydroxylamino intermediates, then direct enzymatic ring cleavage to produce these HMX derivatives. Possible structures of m/z 229 are still being investigated and require further LC-MS/MS analysis. None of the 23 ruminal strains tested were able to degrade HMX as a pure culture when grown in either a low carbon or low nitrogen basal medium over 120 h. We conclude that microorganisms from the rumen, while sometimes capable as individuals in the bioremediation of other explosives, excel as a community in the case of HMX breakdown. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Anaerobic biodegradation of partially hydrolyzed polyacrylamide in long-term methanogenic enrichment cultures from production water of oil reservoirs.

    PubMed

    Hu, Hao; Liu, Jin-Feng; Li, Cai-Yun; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2018-06-01

    The increasing usage of partially hydrolyzed polyacrylamide (HPAM) in oilfields as a flooding agent to enhance oil recovery at so large quantities is an ecological hazard to the subsurface ecosystem due to persistence and inertness. Biodegradation of HPAM is a potentially promising strategy for dealing with this problem among many other methods available. To understand the responsible microorganisms and mechanism of HPAM biodegradation under anaerobic conditions, an enrichment culture from production waters of oil reservoirs were established with HPAM as the sole source of carbon and nitrogen incubated for over 328 days, and analyzed using both molecular microbiology and chemical characterization methods. Gel permeation chromatography, High-pressure liquid chromatography and Fourier-transformed infrared spectroscopy results indicated that, after 328 days of anaerobic incubation, some of the amide groups on HPAM were removed and released as ammonia/ammonium and carboxylic groups, while the carbon backbone of HPAM was converted to smaller polymeric fragments, including oligomers and various fatty acids. Based on these results, the biochemical process of anaerobic biodegradation of HPAM was proposed. The phylogenetic analysis of 16S rRNA gene sequences retrieved from the enrichments showed that Proteobacteria and Planctomycetes were the dominant bacteria in the culture with HPAM as the source of carbon and nitrogen, respectively. For archaea, Methanofollis was more abundant in the anaerobic enrichment. These results are helpful for understanding the process of HPAM biodegradation and provide significant insights to the fate of HPAM in subsurface environment and for possible bioremediation.

  7. Development of bioconcrete material using an enrichment culture of novel thermophilic anaerobic bacteria.

    PubMed

    Ghosh, P; Mandal, S; Pal, S; Bandyopadhyaya, G; Chattopadhyay, B D

    2006-04-01

    In the biosphere, bacteria can function as geo-chemical agents, promoting the dispersion, fractionation and/or concentration of materials. Microbial mineral precipitation is resulted from metabolic activities of microorganisms. Based on this biomineralogy concept, an attempt has been made to develop bioconcrete material incorporating of an enrichment culture of thermophilic and anaerobic bacteria within cement-sand mortar/concrete. The results showed a significant increase in compressive strength of both cement-sand mortar and concrete due to the development of filler material within the pores of cement sand matrix. Maximum strength was observed at concentration 10(5)cell/ml of water used in mortar/concrete. Addition of Escherichia coil or media composition on mortar showed no such improvement in strength.

  8. Human monocyte-derived dendritic cells exposed to microorganisms involved in hypersensitivity pneumonitis induce a Th1-polarized immune response.

    PubMed

    Bellanger, Anne-Pauline; Pallandre, Jean-René; Borg, Christophe; Loeffert, Sophie; Gbaguidi-Haore, Houssein; Millon, Laurence

    2013-08-01

    Hypersensitivity pneumonitis (HP) is an immunoallergic disease characterized by a prominent interstitial infiltrate composed predominantly of lymphocytes secreting inflammatory cytokines. Dendritic cells (DCs) are known to play a pivotal role in the lymphocytic response. However, their cross talk with microorganisms that cause HP has yet to be elucidated. This study aimed to investigate the initial interactions between human monocyte-derived DCs (MoDCs) and four microorganisms that are different in nature (Saccharopolyspora rectivirgula [actinomycetes], Mycobacterium immunogenum [mycobacteria], and Wallemia sebi and Eurotium amstelodami [filamentous fungi]) and are involved in HP. Our objectives were to determine the cross talk between MoDCs and HP-causative agents and to determine whether the resulting immune response varied according to the microbial extract tested. The phenotypic activation of MoDCs was measured by the increased expression of costimulatory molecules and levels of cytokines in supernatants. The functional activation of MoDCs was measured by the ability of MoDCs to induce lymphocytic proliferation and differentiation in a mixed lymphocytic reaction (MLR). E. amstelodami-exposed (EA) MoDCs expressed higher percentages of costimulatory molecules than did W. sebi-exposed (WS), S. rectivirgula-exposed (SR), or M. immunogenum-exposed (MI) MoDCs (P < 0.05, Wilcoxon signed-rank test). EA-MoDCs, WS-MoDCs, SR-MoDCs, and MI-MoDCs induced CD4(+) T cell proliferation and a Th1-polarized immune response. The present study provides evidence that, although differences were initially observed between MoDCs exposed to filamentous fungi and MoDCs exposed to bacteria, a Th1 response was ultimately promoted by DCs regardless of the microbial extract tested.

  9. Partitioning the metabolic scope: the importance of anaerobic metabolism and implications for the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis

    PubMed Central

    Ejbye-Ernst, Rasmus; Michaelsen, Thomas Y.; Tirsgaard, Bjørn; Wilson, Jonathan M.; Jensen, Lasse F.; Steffensen, John F.; Pertoldi, Cino; Aarestrup, Kim; Svendsen, Jon C.

    2016-01-01

    Ongoing climate change is predicted to affect the distribution and abundance of aquatic ectotherms owing to increasing constraints on organismal physiology, in particular involving the metabolic scope (MS) available for performance and fitness. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis prescribes MS as an overarching benchmark for fitness-related performance and assumes that any anaerobic contribution within the MS is insignificant. The MS is typically derived from respirometry by subtracting standard metabolic rate from the maximal metabolic rate; however, the methodology rarely accounts for anaerobic metabolism within the MS. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), this study tested for trade-offs (i) between aerobic and anaerobic components of locomotor performance; and (ii) between the corresponding components of the MS. Data collection involved measuring oxygen consumption rate at increasing swimming speeds, using the gait transition from steady to unsteady (burst-assisted) swimming to detect the onset of anaerobic metabolism. Results provided evidence of the locomotor performance trade-off, but only in S. aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic performance. Our results suggest that without accounting for anaerobic metabolism within the MS, studies involving the OCLTT hypothesis could overestimate the metabolic scope available for

  10. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production.

    PubMed

    Zheng, Xiong; Su, Yinglong; Li, Xiang; Xiao, Naidong; Wang, Dongbo; Chen, Yinguang

    2013-05-07

    Short-chain fatty acids (SCFAs) have been regarded as the excellent carbon source of wastewater biological nutrient removal, and sludge alkaline (pH 10) fermentation has been reported to achieve highly efficient SCFAs production. In this study, the underlying mechanisms for the improved SCFAs production at pH 10 were investigated by using 454 pyrosequencing and fluorescent in situ hybridization (FISH) to analyze the microbial community structures in sludge fermentation reactors. It was found that sludge fermentation at pH 10 increased the abundances of Pseudomonas sp. and Alcaligenes sp., which were able to excrete extracellular proteases and depolymerases, and thus enhanced the hydrolysis of insoluble sludge protein and polyhydroxyalkanoates (PHA). Meanwhile, the abundance of acid-producing bacteria (such as Clostridium sp.) in the reactor of pH 10 was also higher than that of uncontrolled pH, which benefited the acidification of soluble organic substrates. Further study indicated that sludge fermentation at pH 10 significantly decreased the number of methanogenic archaea, resulting in lower SCFAs consumption and lower methane production. Therefore, anaerobic sludge fermentation under alkaline conditions increased the abundances of bacteria involved in sludge hydrolysis and acidification, and decreased the abundance of methanogenic archaea, which favored the competition of bacteria over methanogens and resulted in the efficient production of SCFAs.

  11. Fate and Persistence of a Pathogenic NDM-1-Positive Escherichia coli Strain in Anaerobic and Aerobic Sludge Microcosms

    PubMed Central

    Mantilla-Calderon, David

    2017-01-01

    ABSTRACT The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding

  12. Fate and Persistence of a Pathogenic NDM-1-Positive Escherichia coli Strain in Anaerobic and Aerobic Sludge Microcosms.

    PubMed

    Mantilla-Calderon, David; Hong, Pei-Ying

    2017-07-01

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the

  13. Use of the Hungate anaerobic technique in the isolation of phloroglucinol-negative mutants of Coprococcus species.

    PubMed Central

    Thompson, L A; Gates, D M; Ingledew, W M; Jones, G A

    1976-01-01

    The Hungate anaerobic technique was used with a standard procedure for bacterial mutagenesis employing N-methyl-N-nitro-N'-nitrosoguanidine to obtain mutants of an obligate anaerobe. Three mutant strains were derived from a Coprococcus sp., strain Pe15, a rumen anaerobe capable of growing on phloroglucinol. The mutants did not grow on phloroglucinol but did degrade the compound in anaerobic washed-cell suspensions, producing the same end products in approximately the same proportions as the wild type. It was concluded that the mutants were blocked in a unique step or steps necessary for carbon skeleton or energy synthesis from phloroglucinol and not in formation of an enzyme involved in the pathway of phloroglucinol degradation. PMID:782358

  14. Use of the Hungate anaerobic technique in the isolation of phloroglucinol-negative mutants of Coprococcus species.

    PubMed

    Thompson, L A; Gates, D M; Ingledew, W M; Jones, G A

    1976-01-01

    The Hungate anaerobic technique was used with a standard procedure for bacterial mutagenesis employing N-methyl-N-nitro-N'-nitrosoguanidine to obtain mutants of an obligate anaerobe. Three mutant strains were derived from a Coprococcus sp., strain Pe15, a rumen anaerobe capable of growing on phloroglucinol. The mutants did not grow on phloroglucinol but did degrade the compound in anaerobic washed-cell suspensions, producing the same end products in approximately the same proportions as the wild type. It was concluded that the mutants were blocked in a unique step or steps necessary for carbon skeleton or energy synthesis from phloroglucinol and not in formation of an enzyme involved in the pathway of phloroglucinol degradation.

  15. Minerals and Microorganisms in Evaporite Environments

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Brigmon, R. L.

    2010-12-01

    Traditional analysis of evaporite environments have either focused on the geology or the halophilic organisms. It is relatively rare that the two have been combined and even rarer that both disciplines have been incorporated in comparing evaporite sites. The variation in evaporite environments does influence microbial ecology and fossilization processes as each site varies in pH, temperature, presence or absence springs, and spring chemistry. Understanding the evaporite environments is important for planetary scientists as they serve as analogs for evaluating extraterrestrial materials, including the potential for water and ultimately life. For example Mars lander, rover and orbital missions have identified the evaporite signatures of gypsum, carbonates and chlorides, all indicating that water existed at sometime in the planets geological history. Terrestrial evaporite sites all possess halophilic tolerant life. In some instances such as the Dead Sea, Israel, it is restricted to microbial life, but in other sites there are higher life forms. The microbes associated with these evaporite sites can produce biofilms as a method to develop their own microenvironments. Microorganisms can be observed colonizing specific ecological niches or gradients can be created by these environments. These gradients occur due the localized drying and weathering patterns that create different soil chemistry. The microorganisms in turn colonize specific areas more suitable to their specific metabolic needs. For example, under anaerobic conditions with sulfur and methane prevalent methanogenic and/or sulfur reducing microbial species may be observed. However, under similar chemistry environments with the exception of aerobic conditions sulfur oxidizer and/or methanotrophic microorganism may occur. Because of their conspicuous colored pigments purple sulfur bacteria are frequently observed in anoxic zones of lakes, sulfur springs, and stratified evaporite crusts. Some of these bacteria

  16. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    PubMed

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium.

  17. Isolation, characterization, and metabolism of microorganisms indigenous to subterranean oil-bearing formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadpour, A.

    This research develops information on the microflora indigenous to subterranean oil reservoirs, with special emphasis on its potential role in microbial enhanced oil recovery (MEOR). The following studies were performed: (a) to quantify and characterize the microbial species indigenous to several different oil-bearing formations, (b) to determine the ability of microbial isolates to utilize various carbons and nitrogen sources and identify by-products that may be useful in MEOR processes, (c) to determine whether sulfate-reducing bacteria are indigenous to petroleum reservoirs, (d) to determine whether ultramicrobacteria are indigenous to petroleum reservoirs, and (e) to determine the ability of indigenous microorganisms inmore » intact cores to grow with the addition of supplemental nutrients. Reservoir depth from which the 7 sample cores were obtained ranged from 805 ft to 14,596 ft., all seven cores containing viable microorganisms with ultramicrobacteria in two of the seven cores. No sulfate-reducing isolates were obtained. Results showed that the indigenous microflora of the oil reservoirs either as a pure or as a mixed microbial cultures can and will grow under anaerobic conditions and will produce substances useful in recovering oil. The cultures also colonized stratal materials to produce by-products of importance in MEOR. The addition of supplemental nitrate ions and orthophosphate ions to the injection water resulted in an increase in microbial numbers, the production of gases, and the production of acids in the effluent from the cores. These events were synchronized with release of the fine particles and the release of oil from the core. The results support the concept that microorganisms indigenous to oil-bearing formations valuable in enhancing oil recovery if properly supplied with supplemental nutrients. No adverse environmental effects will results from either using the supplemental nutrients or producing the microbial by-products.« less

  18. Study of the role of anaerobic metabolism in succinate production by Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Kaida, Kenichi; Hayakawa, Atsushi; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Fudou, Ryosuke; Matsui, Kazuhiko; Usuda, Yoshihiro; Sode, Koji

    2014-09-01

    Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5% yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions.

  19. ANAEROBIC TREATMENT OF SOIL WASH FLUIDS FROM A WOOD PRESERVING SITE

    EPA Science Inventory

    An integrated system has been developed to remediate sols contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil solvent washing and anaerobic biotreatment of the extract. Specif...

  20. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine

    PubMed Central

    E, Guoji; Wang, Jianing; Wang, Nian; Chen, Xiaoming; Mu, Yao; Li, Hao; Yang, Ye; Liu, Yichen; Wang, Yanxin

    2016-01-01

    ABSTRACT The tailings of the Shimen realgar mine have unique geochemical features. Arsenite oxidation is one of the major biogeochemical processes that occurs in the tailings. However, little is known about the functional and molecular aspects of the microbial community involved in arsenite oxidation. Here, we fully explored the functional and molecular features of the microbial communities from the tailings of the Shimen realgar mine. We collected six samples of tailings from sites A, B, C, D, E, and F. Microcosm assays indicated that all of the six sites contain both chemoautotrophic and heterotrophic arsenite-oxidizing microorganisms; their activities differed considerably from each other. The microbial arsenite-oxidizing activities show a positive correlation with soluble arsenic concentrations. The microbial communities of the six sites contain 40 phyla of bacteria and 2 phyla of archaea that show extremely high diversity. Soluble arsenic, sulfate, pH, and total organic carbon (TOC) are the key environmental factors that shape the microbial communities. We further identified 114 unique arsenite oxidase genes from the samples; all of them code for new or new-type arsenite oxidases. We also isolated 10 novel arsenite oxidizers from the samples, of which 4 are chemoautotrophic and 6 are heterotrophic. These data highlight the unique diversities of the arsenite-oxidizing microorganisms and their oxidase genes from the tailings of the Shimen realgar mine. To the best of our knowledge, this is the first report describing the functional and molecular features of microbial communities from the tailings of a realgar mine. IMPORTANCE This study focused on the functional and molecular characterizations of microbial communities from the tailings of the Shimen realgar mine. We fully explored, for the first time, the arsenite-oxidizing activities and the functional gene diversities of microorganisms from the tailings, as well as the correlation of the microbial activities

  1. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine.

    PubMed

    Zeng, Xian-Chun; E, Guoji; Wang, Jianing; Wang, Nian; Chen, Xiaoming; Mu, Yao; Li, Hao; Yang, Ye; Liu, Yichen; Wang, Yanxin

    2016-12-15

    The tailings of the Shimen realgar mine have unique geochemical features. Arsenite oxidation is one of the major biogeochemical processes that occurs in the tailings. However, little is known about the functional and molecular aspects of the microbial community involved in arsenite oxidation. Here, we fully explored the functional and molecular features of the microbial communities from the tailings of the Shimen realgar mine. We collected six samples of tailings from sites A, B, C, D, E, and F. Microcosm assays indicated that all of the six sites contain both chemoautotrophic and heterotrophic arsenite-oxidizing microorganisms; their activities differed considerably from each other. The microbial arsenite-oxidizing activities show a positive correlation with soluble arsenic concentrations. The microbial communities of the six sites contain 40 phyla of bacteria and 2 phyla of archaea that show extremely high diversity. Soluble arsenic, sulfate, pH, and total organic carbon (TOC) are the key environmental factors that shape the microbial communities. We further identified 114 unique arsenite oxidase genes from the samples; all of them code for new or new-type arsenite oxidases. We also isolated 10 novel arsenite oxidizers from the samples, of which 4 are chemoautotrophic and 6 are heterotrophic. These data highlight the unique diversities of the arsenite-oxidizing microorganisms and their oxidase genes from the tailings of the Shimen realgar mine. To the best of our knowledge, this is the first report describing the functional and molecular features of microbial communities from the tailings of a realgar mine. This study focused on the functional and molecular characterizations of microbial communities from the tailings of the Shimen realgar mine. We fully explored, for the first time, the arsenite-oxidizing activities and the functional gene diversities of microorganisms from the tailings, as well as the correlation of the microbial activities/diversities with

  2. Effectiveness of chitosan against wine-related microorganisms.

    PubMed

    Bağder Elmaci, Simel; Gülgör, Gökşen; Tokatli, Mehmet; Erten, Hüseyin; İşci, Asli; Özçelik, Filiz

    2015-03-01

    The antimicrobial action of chitosan against wine related microorganisms, including Lactobacillus plantarum, Saccharomyces cerevisiae, Oeonococcus oeni, Lactobacillus hilgardii, Brettanomyces bruxellensis, Hanseniaspora uvarum and Zygosaccharomyces bailii was examined in laboratory media. In order to assess the potential applicability of chitosan as a microbial control agent for wine, the effect of chitosan, applied individually and/or in combination with sulphur dioxide (SO2), on the growth of microorganisms involved in various stages of winemaking and on the fermentative performance of S. cerevisiae was investigated. Of the seven wine-related microorganisms studied, S. cerevisiae exhibited the strongest resistance to antimicrobial action of chitosan in laboratory media with a minimum inhibitory concentration (MIC) greater than 2 g/L. L. hilgardii, O. oeni and B. bruxellensis were the most susceptible to chitosan since they were completely inactivated by chitosan at 0.2 g/L. The MIC of chitosan for L. plantarum, H. uvarum and Z. bailii was 2, 0.4 and 0.4 g/L, respectively. In wine experiments, it was found that chitosan had a retarding effect on alcoholic fermentation without significantly altering the viability and the fermentative performance of S. cerevisiae. With regard to non-Saccharomyces yeasts (H. uvarum and Z. bailii) involved in winemaking, the early deaths of these yeasts in mixed cultures with S. cerevisiae were not probably due to the antimicrobial action of chitosan but rather due to ethanol produced by the yeasts. The complex interactions between chitosan and wine ingredients as well as microbial interactions during wine fermentation considerably affect the efficacy of chitosan. It was concluded that chitosan was worthy of further investigation as an alternative or complementary preservative to SO2 in wine industry.

  3. Seasonal Variation on Microbial Community and Methane Production during Anaerobic Digestion of Cattle Manure in Brazil.

    PubMed

    Resende, Juliana Alves; Godon, Jean-Jacques; Bonnafous, Anaïs; Arcuri, Pedro Braga; Silva, Vânia Lúcia; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2016-04-01

    Anaerobic digestion is an alternative method for the treatment of animal manure and wastewater. The anaerobic bioconversion of biomass requires a multi-step biological process, including microorganisms with distinct roles. The diversity and composition of microbial structure in pilot-scale anaerobic digestion operating at ambient temperature in Brazil were studied. Influence of the seasonal and temporal patterns on bacterial and archaeal communities were assessed by studying the variations in density, dynamic and diversity and structure. The average daily biogas produced in the summer and winter months was 18.7 and 16 L day(-1), respectively, and there was no difference in the average methane yield. Quantitative PCR analysis revealed that no differences in abundances and dynamics were found for bacterial communities and the total number of Archaea in different seasons. Analysis of bacterial clone libraries revealed a predominance of Firmicutes (54.5 %/summer and 46.7 %/winter) and Bacteroidetes (31.4 %/summer and 44.4 %/winter). Within the Archaea, the phylum Euryarchaeota was predominant in both digesters. Phylogenetic distribution showed changes in percentage between the phyla identified, but no alterations were recorded in the quality and amount of produced methane or community dynamics. The results may suggest that redundancy of microbial groups may have occurred, pointing to a more complex microbial community in the ecosystem related to this ambient temperature system.

  4. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material.

    PubMed

    Wei, Na; Finneran, Kevin T

    2011-04-01

    Anaerobic mineralization of tert-butyl alcohol (TBA) and methyl tert-butyl ether (MTBE) were studied in sediment incubations prepared with fuel-contaminated aquifer material. Microbial community compositions in all incubations were characterized by amplified ribosomal DNA restriction analysis (ARDRA). The aquifer material mineralized 42.3±9.9% of [U-(14)C]-TBA to 14CO2 without electron acceptor amendment. Fe(III), sulfate, and Fe(III) plus anthraquinone-2,6-disulfonate addition also promoted U-[14C]-TBA mineralization at levels similar to those of the unamended controls. Nitrate actually inhibited TBA mineralization relative to unamended controls. In contrast to TBA, [U-(14)C]-MTBE was not significantly mineralized in 400 days regardless of electron acceptor amendment. Microbial community analysis indicated that the abundance of one dominant clone group correlated closely with anaerobic TBA mineralization. The clone was phylogenetically distinct from known aerobic TBA-degrading microorganisms, Fe(III)- or sulfate-reducing bacteria. It was most closely associated with organisms belonging to the alphaproteobacteria. Microbial communities were different in MTBE and TBA amended incubations. Shannon indices and Simpson indices (statistical community comparison tools) both demonstrated that microbial community diversity decreased in incubations actively mineralizing TBA, with distinct "dominant" clones developing. These data contribute to our understanding of anaerobic microbial transformation of fuel oxygenates in contaminated aquifer material and the organisms that may catalyze the reactions.

  5. Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrices by its signature lipopolysacchride branched-long-chain hydroxy fatty acids

    USGS Publications Warehouse

    Ringleberg, D.B.; Townsend, G.T.; DeWeerd, K.A.; Suflita, J.M.; White, D.C.

    1994-01-01

    Desulfomonile tiedjei is a Gram-negative sulfate-reducing bacterium capable of catalyzing aryl reductive dehalogenation reactions. Since many toxic and persistent contaminants in the subsurface are halogenated aromatic compounds, the detection and enumeration of dehalogenating microorganisms in the environment may be a useful tool for planning and evaluating bioremediation efforts. In this study, we show that D. tiedjei contains unique lipopolysaccharide branched 3-hydroxy fatty acids, unknown as yet in other bacteria, and that it is possible to detect the bacterium in inoculated aquifer sediments based on these signature lipid biomarkers. The detection of D. tiedjeiand other dehalogenating microorganisms possessing similar cellular properties in environmental matrices may be possible by this technique. Additionally, the effect of such inoculation on dehalogenation activity is examined.

  6. 5-Nitroimidazole-derived Schiff bases and their copper(II) complexes exhibit potent antimicrobial activity against pathogenic anaerobic bacteria.

    PubMed

    Oliveira, Alexandre A; Oliveira, Ana P A; Franco, Lucas L; Ferencs, Micael O; Ferreira, João F G; Bachi, Sofia M P S; Speziali, Nivaldo L; Farias, Luiz M; Magalhães, Paula P; Beraldo, Heloisa

    2018-05-07

    In the present work a family of novel secnidazole-derived Schiff base compounds and their copper(II) complexes were synthesized. The antimicrobial activities of the compounds were evaluated against clinically important anaerobic bacterial strains. The compounds exhibited in vitro antibacterial activity against Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum pathogenic anaerobic bacteria. Upon coordination to copper(II) the antibacterial activity significantly increased in several cases. Some derivatives were even more active than the antimicrobial drugs secnidazole and metronidazole. Therefore, the compounds under study are suitable for in vivo evaluation and the microorganisms should be classified as susceptible to them. Electrochemical studies on the reduction of the nitro group revealed that the compounds show comparable reduction potentials, which are in the same range of the bio-reducible drugs secnidazole and benznidazole. The nitro group reduction potential is more favorable for the copper(II) complexes than for the starting ligands. Hence, the antimicrobial activities of the compounds under study might in part be related to intracellular bio-reduction activation. Considering the increasing resistance rates of anaerobic bacteria against a wide range of antimicrobial drugs, the present work constitutes an important contribution to the development of new antibacterial drug candidates.

  7. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.

    The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis

  8. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota

    DOE PAGES

    Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; ...

    2017-02-20

    The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis

  9. Livestock Anaerobic Digester Database

    EPA Pesticide Factsheets

    The Anaerobic Digester Database provides basic information about anaerobic digesters on livestock farms in the United States, organized in Excel spreadsheets. It includes projects that are under construction, operating, or shut down.

  10. Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process

    PubMed Central

    Shen, Li-Dong; He, Zhan-Fei; Zhu, Qun; Chen, Dong-Qing; Lou, Li-Ping; Xu, Xiang-Yang; Zheng, Ping; Hu, Bao-Lan

    2012-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo), which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process mediated by “Candidatus Methylomirabilis oxyfera.” M. oxyfera is affiliated with the “NC10” phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen gas and oxygen. In addition, the bacterial species has a unique ultrastructure that is distinct from that of other previously described microorganisms. M. oxyfera-like sequences have been recovered from different natural habitats, suggesting that the n-damo process potentially contributes to global carbon and nitrogen cycles. The n-damo process is a process that can reduce the greenhouse effect, as methane is more effective in heat-trapping than carbon dioxide. The n-damo process, which uses methane instead of organic matter to drive denitrification, is also an economical nitrogen removal process because methane is a relatively inexpensive electron donor. This mini-review summarizes the peculiar microbiology of M. oxyfera and discusses the potential ecological importance and engineering application of the n-damo process. PMID:22905032

  11. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    PubMed

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  12. Anaerobic Bacteria in Clinical Specimens - Frequent, But a Neglected Lot: A Five Year Experience at a Tertiary Care Hospital.

    PubMed

    Shenoy, Padmaja Ananth; Vishwanath, Shashidhar; Gawda, Ashwini; Shetty, Seema; Anegundi, Renuka; Varma, Muralidhar; Mukhopadhyay, Chiranjay; Chawla, Kiran

    2017-07-01

    Anaerobic bacteria which constitute a significant proportion of the normal microbiota also cause variety of infections involving various anatomic sites. Considering the tedious culture techniques with longer turnaround time, anaerobic cultures are usually neglected by clinicians and microbiologists. To study the frequency of isolation of different anaerobic bacteria from various clinical specimens. A retrospective study to analyse the frequency of isolation of different anaerobic bacteria, was conducted over a period of five years from 2011 to 2015 including various clinical specimens submitted to anaerobic division of Microbiology laboratory. Anaerobic bacteria were isolated and identified following standard bacteriological techniques. Pathogenic anaerobes (n=336) were isolated from 278 (12.48%) of overall 2227 specimens processed with an average yield of 1.2 isolates. Anaerobes were isolated as polymicrobial flora with or without aerobic bacterial pathogens in 159 (57.2%) patients. Anaerobic Gram-negative bacilli (140, 41.7%) were the predominant isolates. B. fragilis group (67, 19.9%) were the most commonly isolated anaerobic pathogens. Anaerobes were predominantly isolated from deep seated abscess (23.9%). Pathogenic anaerobes were isolated from various infection sites. Unless culture and susceptibility tests are performed as a routine, true magnitude of antimicrobial resistance among anaerobic pathogens will not be known. Knowledge of the distribution of these organisms may assist in the selection of appropriate empirical therapy for anaerobic infections.

  13. Detecting the presence of microorganisms

    NASA Technical Reports Server (NTRS)

    Wilkins, Judd R. (Inventor); Stoner, Glenn E. (Inventor)

    1977-01-01

    The presence of microorganisms in a sample is determined by culturing microorganisms in a growth medium which is in contact with a measuring electrode and a reference electrode and detecting a change in potential between the electrodes caused by the presence of the microorganisms in the medium with a high impedance potentiometer.

  14. Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.

    PubMed

    Gambelli, Lavinia; Guerrero-Cruz, Simon; Mesman, Rob J; Cremers, Geert; Jetten, Mike S M; Op den Camp, Huub J M; Kartal, Boran; Lueke, Claudia; van Niftrik, Laura

    2018-02-01

    Methane is a very potent greenhouse gas and can be oxidized aerobically or anaerobically through microbe-mediated processes, thus decreasing methane emissions in the atmosphere. Using a complementary array of methods, including phylogenetic analysis, physiological experiments, and light and electron microscopy techniques (including electron tomography), we investigated the community composition and ultrastructure of a continuous bioreactor enrichment culture, in which anaerobic oxidation of methane (AOM) was coupled to nitrate reduction. A membrane bioreactor was seeded with AOM biomass and continuously fed with excess methane. After 150 days, the bioreactor reached a daily consumption of 10 mmol nitrate · liter -1 · day -1 The biomass consisted of aggregates that were dominated by nitrate-dependent anaerobic methane-oxidizing " Candidatus Methanoperedens"-like archaea (40%) and nitrite-dependent anaerobic methane-oxidizing " Candidatus Methylomirabilis"-like bacteria (50%). The " Ca Methanoperedens" spp. were identified by fluorescence in situ hybridization and immunogold localization of the methyl-coenzyme M reductase (Mcr) enzyme, which was located in the cytoplasm. The " Ca Methanoperedens" sp. aggregates consisted of slightly irregular coccoid cells (∼1.5-μm diameter) which produced extruding tubular structures and putative cell-to-cell contacts among each other. " Ca Methylomirabilis" sp. bacteria exhibited the polygonal cell shape typical of this genus. In AOM archaea and bacteria, cytochrome c proteins were localized in the cytoplasm and periplasm, respectively, by cytochrome staining. Our results indicate that AOM bacteria and archaea might work closely together in the process of anaerobic methane oxidation, as the bacteria depend on the archaea for nitrite. Future studies will be aimed at elucidating the function of the cell-to-cell interactions in nitrate-dependent AOM. IMPORTANCE Microorganisms performing nitrate- and nitrite-dependent anaerobic

  15. Accumulation of metals by microorganisms — processes and importance for soil systems

    NASA Astrophysics Data System (ADS)

    Ledin, Maria

    2000-08-01

    Metal accumulation by solid substances can counteract metal mobilization in the environment if the solid substance is immobile. Microorganisms have a high surface area-to-volume ratio because of their small size and therefore provide a large contact area that can interact with metals in the surrounding environment. Microbial metal accumulation has received much attention in the last years due to the potential use of microorganisms for cleaning metal-polluted water. However, considerably less attention has been paid to the role of microorganisms for metal mobility in soil even though the same processes may occur there. Therefore, this paper highlights this area. The different accumulation processes that microorganisms perform are analyzed and their potential significance in soil systems is discussed. Different kinds of mechanisms can be involved in the accumulation of metals by microorganisms, e.g. adsorption, precipitation, complexation and active transport into the cell. Physicochemical parameters like pH and ionic composition, as well as biological factors are of importance for the magnitude of accumulation. Often large amounts of metals can be accumulated with varying specificity, and microorganisms may provide nucleation sites for mineral formation. Several studies of microbial metal accumulation have been made with different methods and aims. Most of these studies concern single-component systems with one organism at a time. Data from accumulation experiments with pure cultures of microorganisms have been used to model the overall metal retention in soil. A further development is experimental model systems using various solid soil components in salt medium. Microbial metal accumulation is difficult to study in situ, but some experimental methods have been applied as tools for studying real soil systems, e.g. litter bags buried in soil containing microorganisms, a method where discs with microorganisms have been put onto agar plates with soil extracts, and

  16. Characterization of wheat straw-degrading anaerobic alkali-tolerant mixed cultures from soda lake sediments by molecular and cultivation techniques

    PubMed Central

    Porsch, Katharina; Wirth, Balázs; Tóth, Erika M; Schattenberg, Florian; Nikolausz, Marcell

    2015-01-01

    Alkaline pretreatment has the potential to enhance the anaerobic digestion of lignocellulosic biomass to biogas. However, the elevated pH of the substrate may require alkalitolerant microbial communities for an effective digestion. Three mixed anaerobic lignocellulolytic cultures were enriched from sediments from two soda lakes with wheat straw as substrate under alkaline (pH 9) mesophilic (37°C) and thermophilic (55°C) conditions. The gas production of the three cultures ceased after 4 to 5 weeks, and the produced gas was composed of carbon dioxide and methane. The main liquid intermediates were acetate and propionate. The physiological behavior of the cultures was stable even after several transfers. The enrichment process was also followed by molecular fingerprinting (terminal restriction fragment length polymorphism) of the bacterial 16S rRNA gene and of the mcrA/mrtA functional gene for methanogens. The main shift in the microbial community composition occurred between the sediment samples and the first enrichment, whereas the structure was stable in the following transfers. The bacterial communities mainly consisted of Sphingobacteriales, Clostridiales and Spirochaeta, but differed at genus level. Methanothermobacter and Methanosarcina genera and the order Methanomicrobiales were predominant methanogenes in the obtained cultures. Additionally, single cellulolytic microorganisms were isolated from enrichment cultures and identified as members of the alkaliphilic or alkalitolerant genera. The results show that anaerobic alkaline habitats harbor diverse microbial communities, which can degrade lignocellulose effectively and are therefore a potential resource for improving anaerobic digestion. PMID:25737100

  17. Immobilization of microorganisms for detection by solid-phase immunoassays.

    PubMed Central

    Ibrahim, G F; Lyons, M J; Walker, R A; Fleet, G H

    1985-01-01

    Several cultures of gram-negative and gram-positive bacteria were successfully immobilized with titanous hydroxide. The immobilization efficiency for the microorganisms investigated in saline and broth media ranged from 80.2 to 99.9%. The immobilization of salmonellae was effective over a wide pH range. The presence of buffers, particularly phosphate buffer, drastically reduced the immobilization rate. However, buffers may be added to immunoassay systems after immobilization of microorganisms. The immobilization process involved only one step, i.e., shaking 100 microliter of culture with 50 microliter of titanous hydroxide suspension in polystyrene tubes for only 10 min. The immobilized cells were so tenaciously bound that vigorous agitation for 24 h did not result in cell dissociation. The nonspecific binding of 125I-labeled antibody from rabbits and 125I-labeled protein A by titanous hydroxide was inhibited in the presence of 2% gelatin and amounted to only 5.6 and 3.9%, respectively. We conclude that this immobilization procedure is a potentially powerful tool which could be utilized in solid-phase immunoassays concerned with the diagnosis of microorganisms. PMID:3900128

  18. Anaerobic psychrophiles from Alaska, Antarctica, and Patagonia: implications to possible life on Mars and Europa

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph D.

    2002-02-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 degree(s)C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of

  19. Anaerobic Psychrophiles from Alaska, Antarctica, and Patagonia: Implications to Possible Life on Mars and Europa

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph

    2002-01-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica

  20. Anaerobic Psychrophiles from Alaska, Antarctica, and Patagonia: Implications to Possible Life on Mars and Europa

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph; Six, N. Frank (Technical Monitor)

    2001-01-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryo-preserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 T. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica

  1. Anaerobic and Aerobic Performance of Elite Female and Male Snowboarders

    PubMed Central

    Żebrowska, Aleksandra; Żyła, Dorota; Kania, Damian; Langfort, Józef

    2012-01-01

    The physiological adaptation to training is specific to the muscle activity, dominant energy system involved, muscle groups trained, as well as intensity and volume of training. Despite increasing popularity of snowboarding only little scientific data is available on the physiological characteristics of female and male competitive snowboarders. Therefore, the purpose of this study was to compare the aerobic capacity and maximal anaerobic power of elite Polish snowboarders with untrained subjects. Ten snowboarders and ten aged matched students of Physical Education performed two exercise tests. First, a 30-second Wingate test was conducted and next, a cycle ergometer exercise test with graded intensity. In the first test, peak anaerobic power, the total work, relative peak power and relative mean power were measured. During the second test, relative maximal oxygen uptake and lactate threshold were evaluated. There were no significant differences in absolute and relative maximal oxygen uptake between snowboarders and the control group. Mean maximal oxygen uptake and lactate threshold were significantly higher in men than in women. Significant differences were found between trained men and women regarding maximal power and relative maximal power. The elite snowboarders demonstrated a high level of anaerobic power. The level of relative peak power in trained women correlated negatively with maximal oxygen uptake. In conclusion, our results seem to indicate that the demanding competition program of elite snowboarders provides a significant training stimulus mainly for anaerobic power with minor changes in anaerobic performance. PMID:23487498

  2. Quantitative microbiological study of human carious dentine by culture and real-time PCR: association of anaerobes with histopathological changes in chronic pulpitis.

    PubMed

    Martin, F Elizabeth; Nadkarni, Mangala A; Jacques, Nicholas A; Hunter, Neil

    2002-05-01

    The bacteria found in carious dentine were correlated with the tissue response of the dental pulps of 65 teeth extracted from patients with advanced caries and pulpitis. Standardized homogenates of carious dentine were plated onto selective and nonselective media under anaerobic and microaerophilic conditions. In addition, real-time PCR was used to quantify the recovery of anaerobic bacteria. Primers and fluorogenic probes were designed to detect the total anaerobic microbial load, the genera Prevotella and Fusobacterium, and the species Prevotella melaninogenica, Porphyromonas endodontalis, Porphyromonas gingivalis, and Micromonas (formerly Peptostreptococcus) micros. The pulpal pathology was categorized according to the cellular response and degenerative changes. Analysis of cultured bacteria showed a predominance of gram-positive microorganisms, particularly lactobacilli. Gram-negative bacteria were also present in significant numbers with Prevotella spp., the most numerous anaerobic group cultured. Real-time PCR analysis indicated a greater microbial load than that determined by colony counting. The total number of anaerobes detected was 41-fold greater by real-time PCR than by colony counting, while the numbers of Prevotella and Fusobacterium spp. detected were 82- and 2.4-fold greater by real-time PCR than by colony counting, respectively. Real-time PCR also identified M. micros, P. endodontalis, and P. gingivalis in 71, 60, and 52% of carious samples, respectively. Correlation matrices of the real-time PCR data revealed significant positive associations between M. micros and P. endodontalis detection and inflammatory degeneration of pulpal tissues. These anaerobes have been strongly implicated in endodontic infections that occur as sequelae to carious pulpitis. Accordingly, the data suggest that the presence of high levels of these bacteria in carious lesions may be indicative of irreversible pulpal pathology.

  3. Biological Activities of Heteropyxis natalensis Against Micro-Organisms Involved in Oral Infections

    PubMed Central

    Henley-Smith, Cynthia J.; Botha, Francien S.; Hussein, Ahmed A.; Nkomo, Mpumelelo; Meyer, Debra; Lall, Namrita

    2018-01-01

    The use of complementary and alternative medicine from plants in South Africa, as in the rest of the world, continues to increase. Heteropyxis natalensis, known as the Lavender tree, is indigenous to South Africa and is traditionally used for oral care. The ethanolic extract, of the leaves and twigs, of H. natalensis was investigated for antimicrobial activity against selected oral microorganisms. Actinomyces israelii was found to be the most sensitive oral microorganism to the extract, with a minimum inhibitory concentration (MIC) of 0.88 mg/ml and an MIC of 2.6 mg/ml against Streptococcus mutans. Five known compounds were identified from the ethanolic extract of H. natalensis. The compounds were identified as aurentiacin A (1), cardamomin (2), 5-hydroxy-7-methoxy-6-methylflavanone (3), quercetin (4) and 3,5,7-trihydroxyflavan (5). The MICs of the compounds 1 and 4 were found to be 0.06 mg/ml and 1 mg/ml, respectively, against A. israelii. The cytotoxicity, acute and sub-acute toxicity in pre-clinical studies were also determined for H. natalensis. The extract showed moderate cytotoxicity (35.56 ± 0.16 μg/ml) on human monocyte cells. The acute and sub-acute toxicity analysis of H. natalensis indicated the NOEL (no-observed-effect level) at 200 mg/kg. Interleukin-8 (IL-8) is a chemokine that stimulates the recruitment of leukocytes. A significant reduction of IL-8 production by macrophage cells was observed when exposed to the extract of H. natalensis. It is possible that H. natalensis can prevent excessive tissue damage in periodontal diseases through its reduction of inflammation. Enzymatic bioanalysis of lactic and acetic acid production from Streptococcus mutans and Lactobacillus paracasei was done. A reduction in the acid production from each bacterium was observed on exposure to the extract of H. natalensis. Consequently, this increased the pH, which could possibly reduce the demineralization of enamel which may help prevent the formation of dental caries

  4. Fossil Microorganisms in Archaean

    NASA Technical Reports Server (NTRS)

    Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.

    2006-01-01

    Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.

  5. Economic viability of anaerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs ofmore » an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.« less

  6. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07.

    PubMed

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-02-25

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis.

  7. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07

    PubMed Central

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  8. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism.

    PubMed Central

    Caccavo, F; Lonergan, D J; Lovley, D R; Davis, M; Stolz, J F; McInerney, M J

    1994-01-01

    A dissimilatory metal- and sulfur-reducing microorganism was isolated from surface sediments of a hydrocarbon-contaminated ditch in Norman, Okla. The isolate, which was designated strain PCA, was an obligately anaerobic, nonfermentative nonmotile, gram-negative rod. PCA grew in a defined medium with acetate as an electron donor and ferric PPi, ferric oxyhydroxide, ferric citrate, elemental sulfur, Co(III)-EDTA, fumarate, or malate as the sole electron acceptor. PCA also coupled the oxidation of hydrogen to the reduction of Fe(III) but did not reduce Fe(III) with sulfur, glucose, lactate, fumarate, propionate, butyrate, isobutyrate, isovalerate, succinate, yeast extract, phenol, benzoate, ethanol, propanol, or butanol as an electron donor. PCA did not reduce oxygen, Mn(IV), U(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PCA exhibited dithionite-reduced minus air-oxidized difference spectra which were characteristic of c-type cytochromes. Phylogenetic analysis of the 16S rRNA sequence placed PCA in the delta subgroup of the proteobacteria. Its closest known relative is Geobacter metallireducens. The ability to utilize either hydrogen or acetate as the sole electron donor for Fe(III) reduction makes strain PCA a unique addition to the relatively small group of respiratory metal-reducing microorganisms available in pure culture. A new species name, Geobacter sulfurreducens, is proposed. Images PMID:7527204

  9. Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline.

    PubMed

    Turker, Gokhan; Akyol, Çağrı; Ince, Orhan; Aydin, Sevcan; Ince, Bahar

    2018-01-01

    The way that antibiotic residues in manure follow is one of the greatest concerns due to its potential negative impacts on microbial communities, the release of metabolites and antibiotic resistant genes (ARGs) into the nature and the loss of energy recovery in anaerobic digestion (AD) systems. This study evaluated the link between different operating conditions, the biodegradation of oxytetracycline (OTC) and the formation of its metabolites and ARGs in anaerobic digesters treating cow manure. Microbial communities and ARGs were determined through the use of quantitative real-time PCR. The biodegradation of OTC and occurrence of metabolites were determined using UV-HPLC and LC/MS/MS respectively. The maximum quantity of resistance genes was also examined at the beginning of AD tests and concentration was in the order of: tetM >tetO. The numbers of ARGs were always higher at high volatile solids (VS) content and high mixing rate. The results of the investigation revealed that relationship between mixing rate and VS content plays a crucial role for elimination of ARGs, OTC and metabolites. This can be attributed to high abundance of microorganisms due to high VS content and their increased contact with elevated mixing rate. An increased interaction between microorganisms triggers the promotion of ARGs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Minimizing mixing intensity to improve the performance of rice straw anaerobic digestion via enhanced development of microbe-substrate aggregates.

    PubMed

    Kim, Moonkyung; Kim, Byung-Chul; Choi, Yongju; Nam, Kyoungphile

    2017-12-01

    The aim of this work was to study the effect of the differential development of microbe-substrate aggregates at different mixing intensities on the performance of anaerobic digestion of rice straw. Batch and semi-continuous reactors were operated for up to 50 and 300days, respectively, under different mixing intensities. In both batch and semi-continuous reactors, minimal mixing conditions exhibited maximum methane production and lignocellulose biodegradability, which both had strong correlations with the development of microbe-substrate aggregates. The results implied that the aggregated microorganisms on the particulate substrate played a key role in rice straw hydrolysis, determining the performance of anaerobic digestion. Increasing the mixing speed from 50 to 150rpm significantly reduced the methane production rate by disintegrating the microbe-substrate aggregates in the semi-continuous reactor. A temporary stress of high-speed mixing fundamentally affected the microbial communities, increasing the possibility of chronic reactor failure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers

    PubMed Central

    Lueders, Tillmann

    2017-01-01

    Abstract The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ. 13C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation. PMID:27810873

  12. Role of microorganisms for cycling of atmospheric constituents, emphasizing the greenhouse gas methane (Invited)

    NASA Astrophysics Data System (ADS)

    Conrad, R.

    2013-12-01

    Microorganisms have contributed significantly to the formation of the atmosphere and the habitability of Earth. Microbial methanogenesis probably helped overcoming the faint sun problem on young Earth. Later on, cyanobacterial photosynthesis produced oxygen and thus restricted the life zone of methanogenic microbial communities, which nowadays contribute only about 1% to total carbon cycle. Nevertheless, methanogenesis still dominates the budget of atmospheric methane and contributes significantly to the greenhouse effect. There are numerous habitats, which exchange methane with the atmosphere, and even more in which methane is intensively cycled albeit little emitted. Methane can be a byproduct of chemical reactions in plant leaves, or of aerobic methyl phosphonate consumption in ocean water. Most commonly, however, methane is a stoichiometric catabolic product in the degradation of organic matter by anaerobic microorganisms. The degradation is achieved by a complex microbial community consisting of various species of hydrolytic and fermentative Bacteria that produce hydrogen, carbon dioxide and acetate as major end products, and of methanogenic Archaea that eventually convert these compounds to methane and carbon dioxide. The composition of such methanogenic microbial communities, the rates and paths of methane formation, and the isotopic composition of the produced methane all exhibit quite some variability across the different habitats in which methane is produced from organic matter decomposition, such as flooded soils, lake sediments, peatlands, animal gut systems. The structure of the microbial communities often strongly affects their function. It is a challenging task to understand the environmental and biochemical basis of the interactions of abiotic factors and microorganisms shaping the structure and function of the microbial communities in the different methanogenic habitats.

  13. Biomass growth restriction in a packed bed reactor

    DOEpatents

    Griffith, William L.; Compere, Alicia L.

    1978-01-01

    When carrying out continuous biologically catalyzed reactions with anaerobic microorganisms attached to a support in an upflow packed bed column, growth of the microorganisms is restricted to prevent the microorganisms from plugging the column by limiting the availability of an essential nutrient and/or by the presence of predatory protozoa which consume the anaerobic microorganisms. A membrane disruptive detergent may be provided in the column to lyse dead microorganisms to make them available as nutrients for live microorganisms.

  14. Anaerobic metabolism and thermal tolerance: The importance of opine pathways on survival of a gastropod after cardiac dysfunction.

    PubMed

    Han, Guodong; Zhang, Shu; Dong, Yunwei

    2017-09-01

    Organisms on rocky shores are frequently exposed to high temperatures, which cause impairment of cardiac function and retard cellular oxygen delivery. However, some gastropods can survive at several degrees Celsius higher than their Arrhenius break temperature of cardiac function (ABT), indicating the importance of anaerobic metabolism for their thermal tolerance. We measured the global molecular responses to heat stress in limpet Cellana toreuma using 454 GS-FLX to investigate the variations of genes involved in anaerobic metabolism at high temperatures. Next, the gene expression levels of 4 anaerobic enzymes and activity of alanopine dehydrogenase (AlDH), which is involved in opine pathway, were measured in response to elevated temperature. A total of 19 heat shock proteins (HSPs) were determined using real-time PCR at different temperatures. At high temperatures, the extensive upregulation of HSP genes was an effective but energetically expensive form of protection to prevent thermal damage. The upregulation of hypoxia-inducible factor 1 alpha mRNA indicated the condition of cellular hypoxia and the high gene expression and enzyme activity of AlDH suggested that opine pathway was the main anaerobic pathway. These results implied that anaerobic metabolism was enhanced to provide energy in the face of thermal stress. Our findings highlight the ecological significance of the anaerobic metabolism of gastropods to thermal adaptation. For predicting the ecological impact of global warming on the distribution of gastropods, the role of anaerobic pathways should be evaluated. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  15. Anaerobic Bacteria in Clinical Specimens – Frequent, But a Neglected Lot: A Five Year Experience at a Tertiary Care Hospital

    PubMed Central

    Shenoy, Padmaja Ananth; Gawda, Ashwini; Shetty, Seema; Anegundi, Renuka; Varma, Muralidhar; Mukhopadhyay, Chiranjay; Chawla, Kiran

    2017-01-01

    Introduction Anaerobic bacteria which constitute a significant proportion of the normal microbiota also cause variety of infections involving various anatomic sites. Considering the tedious culture techniques with longer turnaround time, anaerobic cultures are usually neglected by clinicians and microbiologists. Aim To study the frequency of isolation of different anaerobic bacteria from various clinical specimens. Materials and Methods A retrospective study to analyse the frequency of isolation of different anaerobic bacteria, was conducted over a period of five years from 2011 to 2015 including various clinical specimens submitted to anaerobic division of Microbiology laboratory. Anaerobic bacteria were isolated and identified following standard bacteriological techniques. Results Pathogenic anaerobes (n=336) were isolated from 278 (12.48%) of overall 2227 specimens processed with an average yield of 1.2 isolates. Anaerobes were isolated as polymicrobial flora with or without aerobic bacterial pathogens in 159 (57.2%) patients. Anaerobic Gram-negative bacilli (140, 41.7%) were the predominant isolates. B. fragilis group (67, 19.9%) were the most commonly isolated anaerobic pathogens. Anaerobes were predominantly isolated from deep seated abscess (23.9%). Conclusion Pathogenic anaerobes were isolated from various infection sites. Unless culture and susceptibility tests are performed as a routine, true magnitude of antimicrobial resistance among anaerobic pathogens will not be known. Knowledge of the distribution of these organisms may assist in the selection of appropriate empirical therapy for anaerobic infections. PMID:28892897

  16. DEMONSTRATION BULLETIN: AOSTRA-SOILTECH ANAEROBIC THERMAL PROCESSOR: WIDE BEACH DEVELOPMENT SITE

    EPA Science Inventory

    The anaerobic thermal processor (ATP) was developed by UMATAC Industrial Processes under the sponsorship of the Alberta Oil Sands Technology and Research Authority (AOSTRA) and is licensed by SoilTech ATP Systems, Inc., a U.S. corporation. The ATP technology involves a physi...

  17. Pursuing the unlimited potential of microorganisms-progress and prospect of a fermentation company.

    PubMed

    Arisawa, Akira; Watanabe, Azuma

    2017-01-01

    Production of pharmaceuticals and chemicals using microbial functions has bestowed numerous benefits onto society. The Nobel Prize awarded to Professor Ōmura, Distinguished Emeritus Professor of Kitasato University, showed the world the importance of the discovery and practical application of microorganisms. Now, increasing attention is turned toward the future path of this field. As people involved in the microorganism industry, we will review the industrial activities thus far and consider the possible future developments in this field and its potential contribution to society.

  18. Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries.

    PubMed Central

    Bryant, F O; Hale, D D; Rogers, J E

    1991-01-01

    The reductive dechlorination of pentachlorophenol (PCP) was investigated in anaerobic sediments that contained nonadapted or 2,4- or 3,4-dichlorophenol (DCP)-adapted microbial communities. Adaptation of sediment communities increased the rate of conversion of 2,4- or 3,4-DCP to monochlorophenols (CPs) and eliminated the lag phase before dechlorination was observed. Both 2,4- and 3,4-DCP-adapted sediment communities dechlorinated the six DCP isomers to CPs. The specificity of chlorine removal from the DCP isomers indicated a preference for ortho-chlorine removal by 2,4-DCP-adapted sediment communities and for para-chlorine removal by 3,4-DCP-adapted sediment communities. Sediment slurries containing nonadapted microbial communities either did not dechlorinate PCP or did so following a lag phase of at least 40 days. Sediment communities adapted to dechlorinate 2,4- or 3,4-DCP dechlorinated PCP without an initial lag phase. The 2,4-DCP-adapted communities initially removed the ortho-chlorine from PCP, whereas the 3,4-DCP-adapted communities initially removed the para-chlorine from PCP. A 1:1 mixture of the adapted sediment communities also dechlorinated PCP without a lag phase. Dechlorination by the mixture was regiospecific, following a para greater than ortho greater than meta order of chlorine removal. Intermediate products of degradation, 2,3,5,6-tetrachlorophenol, 2,3,5-trichlorophenol, 3,5-DCP, 3-CP, and phenol, were identified by a combination of cochromatography (high-pressure liquid chromatography) with standards and gas chromatography-mass spectrometry. PMID:1768102

  19. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    DOE PAGES

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; ...

    2015-10-09

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments,more » and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.« less

  20. Biodeterioration Risk Threatens the 3100 Year Old Staircase of Hallstatt (Austria): Possible Involvement of Halophilic Microorganisms.

    PubMed

    Piñar, Guadalupe; Dalnodar, Dennis; Voitl, Christian; Reschreiter, Hans; Sterflinger, Katja

    2016-01-01

    The prosperity of Hallstatt (Salzkammergut region, Austria) is based on the richness of salt in the surrounding mountains and salt mining, which is documented as far back as 1500 years B.C. Substantial archaeological evidence of Bronze and Iron Age salt mining has been discovered, with a wooden staircase (1108 B.C.) being one of the most impressive and well preserved finds. However, after its discovery, fungal mycelia have been observed on the surface of the staircase, most probably due to airborne contamination after its find. As a basis for the further preservation of this valuable object, the active micro-flora was examined to investigate the presence of potentially biodegradative microorganisms. Most of the strains isolated from the staircase showed to be halotolerant and halophilic microorganisms, due to the saline environment of the mine. Results derived from culture-dependent assays revealed a high fungal diversity, including both halotolerant and halophilic fungi, the most dominant strains being members of the genus Phialosimplex (synonym: Aspergillus). Additionally, some typical cellulose degraders, namely Stachybotrys sp. and Cladosporium sp. were detected. Numerous bacterial strains were isolated and identified as members of 12 different genera, most of them being moderately halophilic species. The most dominant isolates affiliated with species of the genera Halovibrio and Marinococcus. Halophilic archaea were also isolated and identified as species of the genera Halococcus and Halorubrum. Molecular analyses complemented the cultivation assays, enabling the identification of some uncultivable archaea of the genera Halolamina, Haloplanus and Halobacterium. Results derived from fungi and bacteria supported those obtained by cultivation methods, exhibiting the same dominant members in the communities. The results clearly showed the presence of some cellulose degraders that may become active if the requirements for growth and the environmental conditions

  1. Micro-Organ Devices

    NASA Technical Reports Server (NTRS)

    Gonda, Steven R.; Leslie, Julia; Chang, Robert C.; Starly, Binil; Sun, Wei; Culbertson, Christopher; Holtorf, Heidi

    2009-01-01

    Micro-organ devices (MODs) are being developed to satisfy an emerging need for small, lightweight, reproducible, biological-experimentati on apparatuses that are amenable to automated operation and that imp ose minimal demands for resources (principally, power and fluids). I n simplest terms, a MOD is a microfluidic device containing a variety of microstructures and assemblies of cells, all designed to mimic a complex in vivo microenvironment by replicating one or more in vivo micro-organ structures, the architectures and composition of the extr acellular matrices in the organs of interest, and the in vivo fluid flows. In addition to microscopic flow channels, a MOD contains one or more micro-organ wells containing cells residing in microscopic e xtracellular matrices and/or scaffolds, the shapes and compositions o f which enable replication of the corresponding in vivo cell assembl ies and flows.

  2. Study on anaerobic treatment of wastewater containing hexavalent chromium*

    PubMed Central

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms. PMID:15909347

  3. Study on anaerobic treatment of wastewater containing hexavalent chromium.

    PubMed

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-06-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and COD(Cr) of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.

  4. Using natural biomass microorganisms for drinking water denitrification.

    PubMed

    Costa, Darleila Damasceno; Gomes, Anderson Albino; Fernandes, Mylena; Lopes da Costa Bortoluzzi, Roseli; Magalhães, Maria de Lourdes Borba; Skoronski, Everton

    2018-07-01

    Among the methods that are studied to eliminate nitrate from drinking water, biological denitrification is an attractive strategy. Although several studies report the use of denitrifying bacteria for nitrate removal, they usually involve the use of sewage sludge as biomass to obtain the microbiota. In the present study, denitrifying bacteria was isolated from bamboo, and variable parameters were controlled focusing on optimal bacterial performance followed by physicochemical analysis of water adequacy. In this way, bamboo was used as a source of denitrifying microorganisms, using either Immobilized Microorganisms (IM) or Suspended Microorganisms (SM) for nitrate removal. Denitrification parameters optimization was carried out by analysis of denitrification at different pH values, temperature, nitrate concentrations, carbon sources as well as different C/N ratios. In addition, operational stability and denitrification kinetics were evaluated. Microorganisms present in the biomass responsible for denitrification were identified as Proteus mirabilis. The denitrified water was submitted to physicochemical treatment such as coagulation and flocculation to adjust to the parameters of color and turbidity to drinking water standards. Denitrification using IM occurred with 73% efficiency in the absence of an external carbon source. The use of SM provided superior denitrification efficiency using ethanol (96.46%), glucose (98.58%) or glycerol (98.5%) as carbon source. The evaluation of the operational stability allowed 12 cycles of biomass reuse using the IM and 9 cycles using the SM. After physical-chemical treatment, only SM denitrified water remained within drinking water standards parameters of color and turbidity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Dissolved air flotation as a potential treatment process to remove Giardia cysts from anaerobically treated sewage.

    PubMed

    Santos, Priscila Ribeiro Dos; Daniel, Luiz Antonio

    2017-10-01

    Controlling Giardia cysts in sewage is an essential barrier for public health protection, reducing possible routes of protozoa transmission. The aim of this study was to evaluate the capability of dissolved air flotation (DAF), on a bench scale, to remove Giardia cysts from anaerobic effluent. Moreover, removals of indicator microorganisms and physical variables were also investigated. Flocculation conditions were studied, associating different flocculation times with different mean velocity gradients. DAF treatment achieved mean log removals in the range of 2.52-2.62 for Giardia cysts, depending on the flocculation condition. No statistical differences were observed among the flocculation conditions in terms of cyst removal. Low levels of turbidity and apparent color obtained from the treated effluent may indicate good treatment conditions for the DAF process in cyst removal. Indicator microorganisms were not able to predict the parasitological quality of the wastewater treated by flotation in terms of cyst concentrations. The DAF process provided an effective barrier to control cysts from sewage, which is an important parasite source.

  6. Paradoxical anaerobism in desert pupfish.

    PubMed

    Heuton, Matt; Ayala, Luis; Burg, Chris; Dayton, Kyle; McKenna, Ken; Morante, Aldo; Puentedura, Georgina; Urbina, Natasha; Hillyard, Stanley; Steinberg, Spencer; van Breukelen, Frank

    2015-12-01

    In order to estimate metabolic demands of desert pupfish for conservation purposes, we measured oxygen consumption in fish acclimated to the ecologically relevant temperatures of 28 or 33°C. For these experiments, we used fish derived from a refuge population of Devils Hole pupfish (Cyprinodon diabolis). Measurement of routine oxygen consumption (V̇O2,routine) revealed some 33°C-acclimated fish (10% of 295 assayed fish) periodically exhibited periods of no measurable oxygen consumption despite available ambient oxygen tensions that were above the critical PO2. We call this phenomenon paradoxical anaerobism. The longest observed continuous bout with no oxygen consumption was 149 min, although typical bouts were much shorter. Fish maintained normal posture and ventilation rate (>230 ventilations per minute) during paradoxical anaerobism. Fish rarely demonstrated a compensatory increase in oxygen use following a period of paradoxical anaerobism. In contrast, only one out of 262 sampled fish acclimated at 28°C spontaneously demonstrated paradoxical anaerobism. Muscle lactate concentration was not elevated during periods of paradoxical anaerobism. However, the amount of ethanol released by the 33°C-acclimated fish was 7.3 times greater than that released by the 28°C acclimation group, suggesting ethanol may be used as an alternative end product of anaerobic metabolism. Exposure to exogenous ethanol, in concentrations as low as 0.1%, produced periods of paradoxical anaerobism even in 28°C-acclimated fish. © 2015. Published by The Company of Biologists Ltd.

  7. Application of molecular techniques to evaluate the methanogenic archaea and anaerobic bacteria in the presence of oxygen with different COD:sulfate ratios in a UASB reactor.

    PubMed

    Hirasawa, Julia Sumiko; Sarti, Arnaldo; Del Aguila, Nora Katia Saavedra; Varesche, Maria Bernadete A

    2008-10-01

    In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0+/-0.7 mg O2 l(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO4(2-) ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO(4)(2-) ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%.

  8. Multicellular microorganisms: laboratory versus nature.

    PubMed

    Palková, Zdena

    2004-05-01

    Our present in-depth knowledge of the physiology and regulatory mechanisms of microorganisms has arisen from our ability to remove them from their natural, complex ecosystems into pure liquid cultures. These cultures are grown under optimized laboratory conditions and allow us to study microorganisms as individuals. However, microorganisms naturally grow in conditions that are far from optimal, which causes them to become organized into multicellular communities that are better protected against the harmful environment. Moreover, this multicellular existence allows individual cells to differentiate and acquire specific properties, such as forming resistant spores, which benefit the whole population. The relocation of natural microorganisms to the laboratory can result in their adaptation to these favourable conditions, which is accompanied by complex changes that include the repression of some protective mechanisms that are essential in nature. Laboratory microorganisms that have been cultured for long periods under optimized conditions might therefore differ markedly from those that exist in natural ecosystems.

  9. Estimation of rate constants of PCB dechlorination reactions using an anaerobic dehalogenation model.

    PubMed

    Karakas, Filiz; Imamoglu, Ipek

    2017-02-15

    This study aims to estimate anaerobic dechlorination rate constants (k m ) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway k m values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated k m values is between 0.0001-0.133d -1 , the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Predatory Microorganisms Would Help Reclaim Water

    NASA Technical Reports Server (NTRS)

    Benjaminson, Morris A.; Lehrer, Stanley

    1995-01-01

    Wastewater-reclamation systems of proposed type use predatory, nonpathogenic microorganisms to consume pathogenic microorganisms. Unlike some other wastewater-reclamation systems, these systems do not require use of toxic chemicals, intense heat, or ionizing radiation (conductivity rays or ultraviolet) to destroy microorganisms.

  11. Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration

    PubMed Central

    Park, Yongjin; Yoon, Sang Sun

    2011-01-01

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2 −) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process. PMID:21267455

  12. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  13. Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge.

    PubMed

    Ruiz-Espinoza, Juan E; Méndez-Contreras, Juan M; Alvarado-Lassman, Alejandro; Martínez-Delgadillo, Sergio A

    2012-01-01

    Treatment of poultry industry effluents produces wastewater sludge with high levels of organic compounds and pathogenic microorganisms. In this research, the thermal pre-treatment of poultry slaughterhouse sludge (PSS) was evaluated for low temperatures in combination with different exposure times as a pre-hydrolysis strategy to improve the anaerobic digestion process. Organic compounds solubilization and inactivation of pathogenic microorganisms were evaluated after treatment at 70, 80 or 90°C for 30, 60 or 90 min. The results showed that 90°C and 90 min were the most efficient conditions for solubilization of the organic compounds (10%). In addition, the bacteria populations and the more resistant structures, such as helminth eggs (HE), were completely inactivated. Finally, the thermal pre-treatment applied to the sludge increased methane yield by 52% and reduced hydraulic retention time (HRT) by 52%.

  14. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.

    PubMed

    Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-07-01

    The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A balanced microbiota efficiently produces methane in a novel high-rate horizontal anaerobic reactor for the treatment of swine wastewater.

    PubMed

    Duda, Rose Maria; da Silva Vantini, Juliana; Martins, Larissa Scattolin; de Mello Varani, Alessandro; Lemos, Manoel Victor Franco; Ferro, Maria Inês Tiraboschi; de Oliveira, Roberto Alves

    2015-12-01

    A novel combination of structurally simple, high-rate horizontal anaerobic reactors installed in series was used to treat swine wastewater. The reactors maintained stable pH, alkalinity, and volatile acid levels. Removed chemical oxygen demand (COD) represented 68% of the total, and the average specific methane production was 0.30L CH4 (g removed CODtot)(-1). In addition, next-generation sequencing and quantitative real-time PCR analyses were used to explore the methane-producing Archaea and microbial diversity. At least 94% of the sludge diversity belong to the Bacteria and Archaea, indicating a good balance of microorganisms. Among the Bacteria the Proteobacteria, Bacteroidetes and Firmicutes were the most prevalent phyla. Interestingly, up to 12% of the sludge diversity belongs to methane-producing orders, such as Methanosarcinales, Methanobacteriales and Methanomicrobiales. In summary, this system can efficiently produce methane and this is the first time that horizontal anaerobic reactors have been evaluated for the treatment of swine wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation.

    PubMed

    Cho, Kun-Ching; Fuller, Mark E; Hatzinger, Paul B; Chu, Kung-Hui

    2016-11-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled (15)N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the (15)N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via (13)C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The toxicity of selected gasoline components to glucose methanogenesis by aquifer microorganisms

    USGS Publications Warehouse

    Mormile, Melanie R.; Suflita, Joseph M.

    1996-01-01

    Six model hydrocarbons, representing various classes of chemicals found in gasoline, and methyl ethyl ketone, were assayed for their inhibitory effect on glucose methanogenesis in slurries prepared from aquifer sediments and ground water. Biogas (CH4and CO2) production was monitored with an automated pressure transducer system. Benzene, 1-methyl naphthalene, and methyltert-butyl ether (MTBE) were found to have no inhibitory influence on biogas production rates at concentrations up to 71·7 mg/L. Similarly, octane, cyclohexane, indan, and methyl ethyl ketone (MEK) were found to have only marginal negative effects on the rate of biogas production in aquifer slurries, at concentrations ranging from 51·7 to 72·1 mg/L. Thus, gasoline components had low apparent toxicities to microorganisms responsible for glucose methanogenesis in aquifier slurries. As the concentrations of the assayed hydrocarbons are about 100 times those typically reported after an aquifer has been contaminated with gasoline, it is unlikely that individual hydrocarbons will substantially impact anaerobic metabolic processes.

  18. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  19. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.

    PubMed

    Cho, H S; Moon, H S; Kim, M; Nam, K; Kim, J Y

    2011-03-01

    The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day(-1), whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day(-1). Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH(4)/g-VS day) compared to that of cellulose (13.5 mL CH(4)/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils

    PubMed Central

    Pajares, Silvia; Bohannan, Brendan J. M.

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  1. Metabolic regulation as a consequence of anaerobic 5-methylthioadenosine recycling in Rhodospirillum rubrum

    DOE PAGES

    North, Justin A.; Sriram, Jaya; Chourey, Karuna; ...

    2016-07-12

    Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence ofmore » sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. Lastly, these results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source.« less

  2. Metabolic regulation as a consequence of anaerobic 5-methylthioadenosine recycling in Rhodospirillum rubrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, Justin A.; Sriram, Jaya; Chourey, Karuna

    Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence ofmore » sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. Lastly, these results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source.« less

  3. Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum

    PubMed Central

    North, Justin A.; Sriram, Jaya; Chourey, Karuna; Ecker, Christopher D.; Sharma, Ritin; Wildenthal, John A.; Hettich, Robert L.

    2016-01-01

    ABSTRACT Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence of sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. These results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source. PMID:27406564

  4. Start-up and operation strategies on the liquefied food waste anaerobic digestion and a full-scale case application.

    PubMed

    Meng, Ying; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Akiber; Jaffar, Muhammad; Li, Xiujin

    2014-11-01

    Batch anaerobic digestion was employed to investigate the efficient start-up strategies for the liquefied food waste, and sequencing batch digestion was also performed to determine maximum influent organic loading rate (OLR) for efficient and stable operation. The results indicated that the start-up could be well improved using appropriate wastewater organic load and food-to-microorganism ratios (F/M). When digestion was initialized at low chemical oxygen demand (COD) concentration of 20.0 gCOD L(-1), the start-up would go well using lower F/M ratio of 0.5-0.7. The OLR 7.0 gCOD L(-1) day(-1) was recommended for operating the ASBR digestion, in which the COD conversion of 96.7 ± 0.53% and biomethane yield of 3.5 ± 0.2 L gCOD(-1) were achieved, respectively. The instability would occur when OLR was higher than 7.0 gCOD L(-1) day(-1), and this instability was not recoverable. Lipid was suggested to be removed before anaerobic digestion. The anaerobic digestion process in engineering project ran well, and good performance was achieved when the start-up and operational strategies from laboratory study were applied. For case application, stable digestion performance was achieved in a digester (850 m(3) volume) with biogas production of 1.0-3.8 m(3) m(-3) day(-1).

  5. Microbial pathway for anaerobic 5′-methylthioadenosine metabolism coupled to ethylene formation

    PubMed Central

    North, Justin A.; Miller, Anthony R.; Wildenthal, John A.; Young, Sarah J.; Tabita, F. Robert

    2017-01-01

    Numerous cellular processes involving S-adenosyl-l-methionine result in the formation of the toxic by-product, 5′-methylthioadenosine (MTA). To prevent inhibitory MTA accumulation and retain biologically available sulfur, most organisms possess the “universal” methionine salvage pathway (MSP). However, the universal MSP is inherently aerobic due to a requirement of molecular oxygen for one of the key enzymes. Here, we report the presence of an exclusively anaerobic MSP that couples MTA metabolism to ethylene formation in the phototrophic bacteria Rhodospirillum rubrum and Rhodopseudomonas palustris. In vivo metabolite analysis of gene deletion strains demonstrated that this anaerobic MSP functions via sequential action of MTA phosphorylase (MtnP), 5-(methylthio)ribose-1-phosphate isomerase (MtnA), and an annotated class II aldolase-like protein (Ald2) to form 2-(methylthio)acetaldehyde as an intermediate. 2-(Methylthio)acetaldehyde is reduced to 2-(methylthio)ethanol, which is further metabolized as a usable organic sulfur source, generating stoichiometric amounts of ethylene in the process. Ethylene induction experiments using 2-(methylthio)ethanol versus sulfate as sulfur sources further indicate anaerobic ethylene production from 2-(methylthio)ethanol requires protein synthesis and that this process is regulated. Finally, phylogenetic analysis reveals that the genes corresponding to these enzymes, and presumably the pathway, are widespread among anaerobic and facultatively anaerobic bacteria from soil and freshwater environments. These results not only establish the existence of a functional, exclusively anaerobic MSP, but they also suggest a possible route by which ethylene is produced by microbes in anoxic environments. PMID:29133429

  6. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1.

    PubMed

    Liang, Lei; Song, Xiaohui; Kong, Jing; Shen, Chenghui; Huang, Tongwang; Hu, Zhong

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0-20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.

  7. Microorganisms with Novel Dissimilatory (Bi)Sulfite Reductase Genes Are Widespread and Part of the Core Microbiota in Low-Sulfate Peatlands ▿ †

    PubMed Central

    Steger, Doris; Wentrup, Cecilia; Braunegger, Christina; Deevong, Pinsurang; Hofer, Manuel; Richter, Andreas; Baranyi, Christian; Pester, Michael; Wagner, Michael; Loy, Alexander

    2011-01-01

    Peatlands of the Lehstenbach catchment (Germany) house as-yet-unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic of microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a 6-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented “core” members (up to 1% to 1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparisons of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance of ∼1 to 400 km) identified that one Syntrophobacter-related and nine novel dsrAB lineages are widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-based DGGE data were not correlated with geographic distance but could be explained largely by soil pH and wetland type, implying that the distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by local environmental conditions. PMID:21169452

  8. Dynamics and genetic diversification of Escherichia coli during experimental adaptation to an anaerobic environment

    PubMed Central

    Finn, Thomas J.; Shewaramani, Sonal; Leahy, Sinead C.; Janssen, Peter H.

    2017-01-01

    fluctuating lineages. Two main strategies appeared to predominate during adaptation to the anaerobic environment: modification of energy generation pathways, and inactivation of non-essential functions. Fermentation pathways appeared to alter through selection for mutations in genes such as nadR, adhE, dcuS/R, and pflB. Mutations were frequently identified in genes for presumably dispensable functions such as toxin-antitoxin systems, prophages, virulence and amino acid transport. Adaptation of the fluctuating lineages to the anaerobic environments involved mutations affecting traits similar to those observed in the anaerobically evolved lineages. Discussion There appeared to be strong selective pressure for activities that conferred cell yield advantages during anaerobic growth, which include restoring activities that had previously been inactivated under long-term continuous aerobic evolution of the ancestor. PMID:28480139

  9. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  10. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  11. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  12. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  13. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  14. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers.

    PubMed

    Lueders, Tillmann

    2017-01-01

    The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ 13 C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. A cluster of bacterial genes for anaerobic benzene ring biodegradation

    PubMed Central

    Egland, Paul G.; Pelletier, Dale A.; Dispensa, Marilyn; Gibson, Jane; Harwood, Caroline S.

    1997-01-01

    A reductive benzoate pathway is the central conduit for the anaerobic biodegradation of aromatic pollutants and lignin monomers. Benzene ring reduction requires a large input of energy and this metabolic capability has, so far, been reported only in bacteria. To determine the molecular basis for this environmentally important process, we cloned and analyzed genes required for the anaerobic degradation of benzoate and related compounds from the phototrophic bacterium, Rhodopseudomonas palustris. A cluster of 24 genes was identified that includes twelve genes likely to be involved in anaerobic benzoate degradation and additional genes that convert the related compounds 4-hydroxybenzoate and cyclohexanecarboxylate to benzoyl-CoA. Genes encoding benzoyl-CoA reductase, a novel enzyme able to overcome the resonance stability of the aromatic ring, were identified by directed mutagenesis. The gene encoding the ring-cleavage enzyme, 2-ketocyclohexanecarboxyl-CoA hydrolase, was identified by assaying the enzymatic activity of the protein expressed in Escherichia coli. Physiological data and DNA sequence analyses indicate that the benzoate pathway consists of unusual enzymes for ring reduction and cleavage interposed among enzymes homologous to those catalyzing fatty acid degradation. The cloned genes should be useful as probes to identify benzoate degradation genes from other metabolically distinct groups of anaerobic bacteria, such as denitrifying bacteria and sulfate-reducing bacteria. PMID:9177244

  16. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Jun Wei; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Wang, Jing-Yuan, E-mail: jywang@ntu.edu.sg

    2013-04-15

    Highlights: ► Microaeration pretreatment was effective for brown water and food waste mixture. ► The added oxygen was consumed fully by facultative microorganisms. ► Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ► Microaeration pretreatment improved methane yield by 10–21%. ► Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little hasmore » been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O{sub 2}/L{sub R}-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when

  17. Wingate Anaerobic Test Peak Power and Anaerobic Capacity Classification for Men and Women Intercollegiate Athletes

    DTIC Science & Technology

    2009-12-01

    Dawson, LH, Wile , AL, Payn, TL, and Hannon, ME. Wingate Anaerobic Test peak power and anaerobic capacity classifications for men and women...139,2007. 6. Chromiah JA, Smedley, B, Carpenter, W, Brown , R, Koh, YS, Lamberth, JG, Joe, LA, Abadie, BR, and Altorfer, G. Effect of 10- week strength...Bnt J Sport Med 38: 784-789,2004. 8. Findley, BW, Brown , LE, and Whitehurst, M. Anaerobic power performance ofincumbent female firefrghters. J

  18. Dissimilatory Sb(V) reduction by microorganisms isolated from Sb-contaminated sediment

    NASA Astrophysics Data System (ADS)

    Dovick, M. A.; Kulp, T. R.

    2013-12-01

    this isolate exhibited Sb(V)-dependent heterotrophic growth. These results suggest that the endogenous microbial community from this Sb-contaminated site includes anaerobic microorganisms capable of obtaining energy for growth by oxidizing heterotrophic electron donors using Sb(V) as the terminal electron acceptor. Ongoing work includes identification of the isolated organism using 16S rDNA phylogenetic markers as well as an inventory of known functional genes (e.g., arrA) within this isolate that may more typically encode for As(V)-reduction. These results elucidate the potentially significant role of microbiological transformations in controlling the speciation of Sb in the environment, and may help to identify potential bioremediation strategies for Sb contaminated waters.

  19. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum.

    PubMed

    Lee, Sang-Hyun; Kim, Sooah; Kwon, Min-A; Jung, Young Hoon; Shin, Yong-An; Kim, Kyoung Heon

    2014-12-01

    Well-established metabolome sample preparation is a prerequisite for reliable metabolomic data. For metabolome sampling of a Gram-positive strict anaerobe, Clostridium acetobutylicum, fast filtration and metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v) at -20°C under anaerobic conditions has been commonly used. This anaerobic metabolite processing method is laborious and time-consuming since it is conducted in an anaerobic chamber. Also, there have not been any systematic method evaluation and development of metabolome sample preparation for strict anaerobes and Gram-positive bacteria. In this study, metabolome sampling and extraction methods were rigorously evaluated and optimized for C. acetobutylicum by using gas chromatography/time-of-flight mass spectrometry-based metabolomics, in which a total of 116 metabolites were identified. When comparing the atmospheric (i.e., in air) and anaerobic (i.e., in an anaerobic chamber) processing of metabolome sample preparation, there was no significant difference in the quality and quantity of the metabolomic data. For metabolite extraction, pure methanol at -20°C was a better solvent than acetonitrile/methanol/water (2:2:1, v/v/v) at -20°C that is frequently used for C. acetobutylicum, and metabolite profiles were significantly different depending on extraction solvents. This is the first evaluation of metabolite sample preparation under aerobic processing conditions for an anaerobe. This method could be applied conveniently, efficiently, and reliably to metabolome analysis for strict anaerobes in air. © 2014 Wiley Periodicals, Inc.

  20. Effect of Agitation on Acidogenesis Stage of Two-Stage Anaerobic Digestion of Palm Oil Mill Effluent (POME) into Biogas

    NASA Astrophysics Data System (ADS)

    Trisakti, B.; Irvan; Adipasah, H.; Taslim; Turmuzi, M.

    2017-03-01

    The acidogenesis stage in two-stage anaerobic digestion of palm oil mill effluent (POME) was studied in a continuous stirred tank reactor (CSTR). This research investigated the effect of agitation rate on the growth of microorganisms, the degradation of organic substances, and volatile fatty acids (VFA) production and composition. Initially, the suitable loading up was determined by varying the HRT 6.7, 5.0, and 4.0 days in a 2 L CSTR with agitation rate 50 rpm, pH 6.0 ± 0.2, at room temperature. Next, effect of agitation on the process was determined by varying agitation rate at 25, 50, 100, and 200 rpm. Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), chemical oxygen demand (COD), and volatile fatty acids (VFA) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce VFA. The highest growth of microorganisms was achieved at HRT 4.0 day with microorganism concentration was 20.62 mg VSS/L and COD reduction was 15.7%. The highest production of total VFA achieved was 5,766.61 mg/L mg/L at agitation rate 200 rpm, with concentration of acetic acid, propionic acid and butyric acid were 1,889.23; 1,161.43; and 2,725.95 mg/L, respectively. While degradation VS and COD were 16.61 and 38.79%.

  1. Microthrix parvicella and Gordona amarae in mesophilic and thermophilic anaerobic digestion systems.

    PubMed

    Marneri, Matina; Mamais, Daniel; Koutsiouki, Efi

    2009-04-14

    The scope of the study presented in this paper is to determine the fate of the filamentous bacteria Gordona amarae and Microthrix parvicella in anaerobic digestion operating under mesophilic and thermophilic conditions. In order to detect and quantify foaming bacteria in the anaerobic digesters, a fluorescent in situ hybridization (FISH) method was developed and applied. This paper presents the results of a laboratory-scale study that involved the operation of four lab-scale anaerobic digestion systems operating in the mesophilic (35 degrees C) and thermophilic (55 degrees C) temperature ranges at 20 days' detention time. According to the FISH counts of G. amarae and M. parvicella, it appears that thermophilic conditions resulted in a higher destruction of both filamentous bacteria, averaging approximately 97% and 94% for the single thermophilic digester and the dual thermophilic/mesophilic system, respectively. Within the context of this study, the overall performance of the four different anaerobic digestion systems was evaluated in terms of biogas production per mass of volatile solids destroyed, COD destruction, sludge dewaterability and foaming characteristics. The dual stage systems used in this study outperformed the single stage digesters.

  2. Gardnerella vaginalis and anaerobic bacteria in the etiology of bacterial (nonspecific) vaginosis.

    PubMed

    Spiegel, C A; Davick, P; Totten, P A; Chen, K C; Eschenbach, D A; Amsel, R; Holmes, K K

    1983-01-01

    G. vaginalis was originally described as the etiologic agent of bacterial vaginosis (nonspecific vaginitis) because it was recovered only from women with signs and symptoms of "bacterial vaginitis" and not from normal controls. Recent data have shown that G. vaginalis is present in normal women but at concentrations lower than the limit of sensitivity of the media formerly used. Detection of low concentrations of G. vaginalis in normal controls has been made possible by development of a selective and differential medium (HBT). Anaerobically performed studies of the vaginal flora have indicated that while lactobacilli predominate in the normal vagina with or without G. vaginalis, anaerobic bacteria including Bacteroides spp., Peptococcus spp., Eubacterium spp. and curved rods as well as G. vaginalis predominate in bacterial vaginosis. Anaerobic bacteria and G. vaginalis are decreased after appropriate therapy. After treatment with metronidazole, lactobacilli again predominate. Lactobacilli are less prevalent after treatment with ampicillin or amoxicillin. These data suggest that as in infections at other mucous membrane sites, bacterial vaginosis is a mixed infection involving a finite number of facultative and anaerobic species. The data also suggest an important role for facultative lactobacilli.

  3. Running-based Anaerobic Sprint Test as a Procedure to Evaluate Anaerobic Power.

    PubMed

    Andrade, V L; Zagatto, A M; Kalva-Filho, C A; Mendes, O C; Gobatto, C A; Campos, E Z; Papoti, M

    2015-12-01

    The aim of this study was to evaluate the use of the running anaerobic sprint test (RAST) as a predictor of anaerobic capacity, compare it to the maximal accumulated oxygen deficit (MAOD) and to compare the RAST's parameters with the parameters of 30-s all-out tethered running on a treadmill. 39 (17.0±1.4 years) soccer players participated in this study. The participants underwent an incremental test, 10 submaximal efforts [50-95% of velocity correspondent to VO(2MAX) (vVO(2MAX))] and one supramaximal effort at 110% of vVO(2MAX) for the determination of MAOD. Furthermore, the athletes performed the RAST. In the second stage the 30-s all-out tethered running was performed on a treadmill (30-s all-out), and compared with RAST. No significant correlation was observed between MAOD and RAST parameters. However, significant correlations were found between the power of the fifth effort (P5) of RAST with peak and mean power of 30-s all-out (r=0.73 and 0.50; p<0.05, respectively). In conclusion, the parameters from RAST do not have an association with MAOD, suggesting that this method should not be used to evaluate anaerobic capacity. Although the correlations between RAST parameters with 30-s all-out do reinforce the RAST as an evaluation method of anaerobic metabolism, such as anaerobic power. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Textiles for protection against microorganism

    NASA Astrophysics Data System (ADS)

    Sauperl, O.

    2016-04-01

    Concerning micro-organisms such as bacteria, viruses and fungi, there is a huge progress in the development of textile materials and procedures which should effectively protect against these various pathogens. In this sense there is especially problematic hospital environment, where it is necessary to take into account properly designed textile material which, when good selected and composed, act as a good barrier against transfer of micro-organisms through material mainly in its wet state. Respect to this it is necessary to be familiar with the rules regarding selection of the input material, the choice of proper yarn construction, the choice of the proper weaving mode, the rules regarding selection of antimicrobial-active compound suitable for (eco-friendly) treatment, and the choice of the most appropriate test method by which it is possible objectively to conclude on the reduction of selected microorganism. As is well known, fabrics are three-dimensional structures with void and non-void areas. Therefore, the physical-chemical properties of the textile material/fabric, the surface characteristics together with the shape of microorganism, and the carriers' characteristics contribute to control the transfer of microorganism through textile material. Therefore, careful planning of textile materials and treatment procedure with the compound which is able to reduce micro-organism satisfactory is particularly important, especially due to the fact that in hospital environment population with impaired immune system is mainly presented.

  5. Biodegradation and decolourization of anaerobically treated distillery spent wash by a novel bacterial consortium.

    PubMed

    Mohana, Sarayu; Desai, Chirayu; Madamwar, Datta

    2007-01-01

    The aim of this study was to isolate microorganisms capable of decolourizing and degrading anaerobically treated distillery spent wash. A bacterial consortium DMC comprising of three bacterial cultures was selected on the basis of rapid effluent decolourization and degradation, which exhibited 67 +/- 2% decolourization within 24 h and 51 +/- 2% chemical oxygen demand reduction within 72 h when incubated at 37 degrees C under static condition in effluent supplemented with 0.5% glucose, 0.1% KH(2)PO(4), 0.05% KCl and 0.05% MgSO(4) x 7H(2)O. Addition of organic or inorganic nitrogen sources did not support decolourization. The cultures were identified as Pseudomonas aeruginosa PAO1, Stenotrophomonas maltophila and Proteus mirabilis by the 16S rDNA analysis.

  6. Anaerobic accumulation of short-chain fatty acids from algae enhanced by damaging cell structure and promoting hydrolase activity.

    PubMed

    Feng, Leiyu; Chen, Yunzhi; Chen, Xutao; Duan, Xu; Xie, Jing; Chen, Yinguang

    2018-02-01

    Short-chain fatty acid (SCFAs) produced from harvested algae by anaerobic fermentation with uncontrolled pH was limited due to the solid cell structure of algae. This study, therefore, was undertaken to enhance the generation of SCFAs from algae by controlling the fermentation pH. pH influenced not only the total SCFAs production, but the percentage of individual SCFA. The maximal yield of SCFAs occurred at pH 10.0 and fermentation time of 6 d (3161 mg COD/L), which mainly contained acetic and iso-valeric acids and was nearly eight times that at uncontrolled pH (392 mg COD/L). Mechanism exploration revealed at alkaline pH, especially at pH 10.0, not only the cell structure of algae was damaged effectively, but also activities and relative quantification of hydrolases as well as the abundance of microorganisms responsible for organics hydrolysis and SCFAs production were improved. Also, the released microcystins from algae were removed efficiently during alkaline anaerobic fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Kinetic comparison of microbial assemblages for the anaerobic treatment of wastewater with high sulfate and heavy metal contents.

    PubMed

    Sinbuathong, Nusara; Sirirote, Pramote; Liengcharernsit, Winai; Khaodhiar, Sutha; Watts, Daniel J

    2009-01-01

    Mixed-microbial assemblages enriched from a septic tank, coastal sediment samples, the digester sludge of a brewery wastewater treatment plant and acidic sulfate soil samples were compared on the basis of growth rate, waste and sulfate reduction rate under sulfate reducing conditions at 30 degrees C. The specific growth rate of various cultures was in the range 0.0013-0.0022 hr(-1). Estimates of waste and sulfate reduction rate were obtained by fitting substrate depletion and sulfate reduction data with the Michaelis-Menten equation. The waste reduction rates were in the range 4x10(-8)-1x10(-7) I mg(-1) hr(-1) and generally increased in the presence of copper, likely by copper sulfide precipitation that reduced sulfide and copper toxicity and thus protected the anaerobic microbes. Anaerobic microorganisms from a brewery digester sludge were found to be the most appropriate culture for the treatment of wastewater with high sulfate and heavy metal content due to their growth rate, and waste and sulfate reduction rate.

  8. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    PubMed Central

    Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  9. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    PubMed

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  10. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition.

    PubMed

    Qian, Wenting; Peng, Yongzhen; Li, Xiyao; Zhang, Qiong; Ma, Bin

    2017-11-01

    The free ammonia (FA) inhibition on ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) under anaerobic condition was investigated in this study. The results indicated that NOB was more sensitive to the FA anaerobic treatment than AOB. The FA anaerobic inhibition on nitrifier gradually heightened with the increase of FA concentration. Accompanied with FA concentration increase from 0 to 16.82mgNH 3 -N·L -1 (the highest concentration adopted in this study), the activity of AOB reduced by 15.9%, while NOB decreased by 29.2%. After FA anaerobic treatment, nitrite was accumulated during nitrification. However, the nitrite accumulation disappeared on the sixth cycle of activity recovery tests with excessive aeration. Based on this result, a novel strategy for achieving nitritation is proposed, which involves recirculating a portion of the activated sludge through a side-line sludge treatment unit, where the sludge is subjected to treatment with FA under anaerobic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosey, F.E.

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors thatmore » efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.« less

  12. Performance of a zero valent iron-based anaerobic system in swine wastewater treatment.

    PubMed

    Wu, Donglei; Zheng, Shuangshuang; Ding, Aqiang; Sun, Guodong; Yang, Meiqing

    2015-04-09

    In this paper, short-term exposure experiments with different ZVI concentrations were conducted to research the effects of ZVI adding on the anaerobic system for treating swine wastewater. Increasing the ZVI dose had a stimulatory effect on COD removal and CH4 production possibly due to a higher corrosion-induced H2 and dissolved ferrous ions, which could stimulate the methanogenesis and thus the biodegradation. In addition, the abiotic corrosion reactions such as flocculation, adsorption and precipitation were inevitable to removal some suspended COD. However, high ZVI doses had a potential risk on microorganism due to the present of large numbers of solid iron species in sludge, which likely encapsulated the cells and even damaged the cellular structure. Taken as a whole, the most enhancing effect induced by ZVI was observed at the rZVI/VSS of 2.63, and the maximum efficiency of per ZVI adding occurred at the rZVI/VSS of 0.74. But the ZVI concentration of 50 g/L (the rZVI/VSS was 5.26) was proved too high to facilitate microorganism activity, considering the higher LDH leakage and lower intracellular ATP level than the only sludge system. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Mechanisms of hexavalent chromium resistance and removal by microorganisms.

    PubMed

    Joutey, Nezha Tahri; Sayel, Hanane; Bahafid, Wifak; El Ghachtouli, Naïma

    2015-01-01

    Chromium has been and is extensively used worldwide in multiple industrial processes and is routinely discharged to the environment from such processes. Therefore, this heavy metal is a potential threat to the environment and to public health, primarily because it is non-biodegradable and environmentally persistent. Chromium exists in several oxidation states, the most stable of which are trivalent Cr(Ill) and hexavalent Cr(VI) species. Each species possesses its own individual chemical characteristics and produces its own biological effects. For example, Cr (Ill) is an essential oligoelement for humans, whereas Cr(VI) is carcinogenic and mutagenic. Several chemical methods are used to remove Cr(VI) from contaminated sites. Each of these methods has advantages and disadvantages. Currently, bioremediation is often the preferred method to deal with Cr contaminated sites, because it is eco-friendly, cost-effective and is a "natural" technology. Many yeast, bacterial and fungal species have been assessed for their suitability to reduce or remove Cr(VI) contamination. The mechanisms by which these microorganisms resist and reduce Cr(VI) are variable and are species dependent. There are several Cr-resistance mechanisms that are displayed by microorganisms. These include active efflux of Cr compounds, metabolic reduction of Cr(VI) to Cr (ill), and either intercellular or extracellular prec1p1tation. Microbial Cr (VI) removal typically involves three stages: binding of chromium to the cell surface, translocation of chromium into the cell, and reduction of Cr(VI) to Cr (ill). Cr(VI) reduction by microorganisms may proceed on the cell surface, outside the cell, or intracellularly, either directly via chromate reductase enzymes, or indirectly via metabolite reduction of Cr(VI). The uptake of chromium ions is a biphasic process. The primary step is known as biosorption, a metabolic energyindependent process. Thereafter, bioaccumulation occurs, but is much slower, and is

  14. The Effect of Sedimentation Conditions of Frozen Deposits at the Kolyma Lowland on the Distribution of Methane and Microorganisms Activity

    NASA Astrophysics Data System (ADS)

    Oshurkova, V.; Kholodov, A. L.; Spektor, V.; Sherbakova, V.; Rivkina, E.

    2014-12-01

    Biogeochemical and microbiological investigations of methane distribution and origin in Northeastern Arctic permafrost sediments indicated that microbial methane production was observed in situ in thawed and permanently frozen deposits (Rivkina et al., 2007). To check the hypothesis about the correlation between permafrost ground type and quantity of methane, produced by microorganisms, the samples from deposits of thermokarst depression (alas), Yedoma and fluvial deposits of Kolyma floodplain for gas measurements and microbiological study were collected and the experiment with anaerobic incubation was conducted. Gas analysis indicated that alas and floodplain samples were characterized by high methane concentrations whereas Yedoma samples had only traces of methane. Two media with different substrates were prepared anaerobically for incubation. First medium contained sucrose as a substrate for hydrolytic microflora and the second one contained acetate as a substrate for methanogens. Two samples from alas, one sample from Yedoma and one from floodplain were placed in anaerobic bottles and media under gas mixture (N2, CO2 and H2) were added. The bottles were incubated for 2 weeks at room temperature. The results of the experiment showed that there was the increase of methane concentrations in the bottles with Yedoma and Floodplain samples to 52-60 and 67-90 %, respectively, from initial concentrations in contrast with Alas sample inoculated bottles. At the same time the concentration of methane in control bottles, which did not include substrates, increased to 15-19%. Current research is a part of NSF funded project "The Polaris".

  15. Inhibition of Anaerobic Biological Treatment: A Review

    NASA Astrophysics Data System (ADS)

    Hou, Li; Ji, Dandan; Zang, Lihua

    2018-01-01

    Anaerobic digestion is a method for treating living and industrial wastewater by anaerobic degradation of organic compounds, which can produce biogas (carbon dioxide and methane mixture) and microbial biomass. And biogas as a renewable resource, can replace the use of ore fuel. In the process of anaerobic digestion, the problems of low methane yield and unstable reaction process are often encountered, which limits the widespread use of this technology. Various inhibitors are the main limiting factors for anaerobic digestion. In this paper, the main factors limiting anaerobic digestion are reviewed, and the latest research progress is introduced.

  16. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi.

    PubMed

    Chmiel, James F; Aksamit, Timothy R; Chotirmall, Sanjay H; Dasenbrook, Elliott C; Elborn, J Stuart; LiPuma, John J; Ranganathan, Sarath C; Waters, Valerie J; Ratjen, Felix A

    2014-10-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy.

  17. Antibiotic Management of Lung Infections in Cystic Fibrosis. II. Nontuberculous Mycobacteria, Anaerobic Bacteria, and Fungi

    PubMed Central

    Aksamit, Timothy R.; Chotirmall, Sanjay H.; Dasenbrook, Elliott C.; Elborn, J. Stuart; LiPuma, John J.; Ranganathan, Sarath C.; Waters, Valerie J.; Ratjen, Felix A.

    2014-01-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy. PMID:25167882

  18. Monitoring Anaerobic TCE Degradation by Evanite Cultre in Column Packed with TCE-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Ko, J.; Han, K.; Ahn, G.; Park, S.; Kim, N.; Ahn, H.; Kim, Y.

    2011-12-01

    Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, dehalococcoides spp., but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we examined two different types (i.e., Natural attenuation and bioaugmentation) of biological remediation process in anaerobic column packed with TCE-contaminated soil. A TCE degradation by indigenous microorganisms was confirmed by monitoring TCE and the metabolites (c-DCE, VC, ETH). However, TCE was transformed and stoichiometry amount of c-DCE was produced, and VC and ETH was not detected. To test bioaugmentation of Evanite culture containing dehalococcoides spp., Evanite culture was injected into the column and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the column by measuring TCE and VC reductases. In the result, the TCE was completely degraded to ETH using hydrogen as electron donor generate by hydrogen-production fermentation from formate.

  19. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    PubMed

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.

  20. Effects of acute sleep deprivation and caffeine supplementation on anaerobic performance.

    PubMed

    Moore, Joss; McDonald, Ciaran; McIntyre, Alan; Carmody, Kevin; Donne, Bernard

    2018-01-01

    Athletes involved in team sports may be subject to varying degrees of sleep deprivation either before or after training and competition. Despite the belief among athletes and coaches of the importance of adequate sleep for ensuing performance, the effect of sleep loss on team-sport anaerobic performance remains unclear. There is conflicting evidence in the scientific literature as to the impact of acute sleep deprivation and caffeine supplementation on anaerobic performance indices. The purpose of this study is to investigate the effect of 24 hours of acute sleep deprivation on anaerobic performance and the effect of caffeine supplementation on anaerobic performance in the sleep deprived state. 11 club level games players (n=11, 25±4 yr, 178±7.5 cm, 80.2±10.4 kg, 15.1±5.6% body fat) participated in a repeated measures double-blinded placebo control trial. Following familiarisation, each participant returned for testing on three separate occasions. One of the testing sessions took place following a night of normal sleep and the other two sessions took place following 24 hours of sleep deprivation with supplementation of either placebo or 6 mg.kg- 1 of caffeine. During each testing session participants performed the vertical jump height, 20-m straight sprint, Illinois speed agility test and 5-m shuttle run. No significant differences were detected comparing non sleep deprived and sleep deprived interventions in any of the assessed outcome measures. There were also no significant differences observed in any of the outcome measures when comparing caffeine and placebo data in the sleep deprived state. In this cohort of athletes, a 24-h period of acute sleep deprivation did not have any significant impact on anaerobic performance. Caffeine also did not have any effect of on anaerobic performance in the sleep-deprived state.