Science.gov

Sample records for anaerobic respiration isolation

  1. Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium

    PubMed Central

    Ye, Qi; Roh, Yul; Carroll, Susan L.; Blair, Benjamin; Zhou, Jizhong; Zhang, Chuanlun L.; Fields, Matthew W.

    2004-01-01

    Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as electron acceptors, and yeast extract and lactate could serve as electron donors. Growth during iron reduction occurred over the pH range of 7.5 to 11.0 (optimum, pH 9.5), a sodium chloride range of 0 to 80 g/liter (optimum, 20 g/liter), and a temperature range of 4 to 45°C (optimum, approximately 35°C), and iron precipitates were formed. QYMF was a strict anaerobe that could be grown in the presence of borax, and the cells were straight rods that produced endospores. Sodium chloride and yeast extract stimulated growth. Phylogenetic analysis of the SSU rRNA gene indicated that the bacterium was a low-G+C gram-positive microorganism and had 96 and 92% nucleotide identity with Alkaliphilus transvaalensis and Alkaliphilus crotonatoxidans, respectively. The major phospholipid fatty acids were 14:1, 16:1ω7c, and 16:0, which were different from those of other alkaliphiles but similar to those of reported iron-reducing bacteria. The results demonstrated that the isolate might represent a novel metal-reducing alkaliphilic species. The name Alkaliphilus metalliredigens sp. nov. is proposed. The isolation and activity of metal-reducing bacteria from borax-contaminated leachate ponds suggest that bioremediation of metal-contaminated alkaline environments may be feasible and have implications for alkaline anaerobic respiration. PMID:15345448

  2. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake.

    PubMed

    Sorokin, Dimitry Y; Kublanov, Ilya V; Yakimov, Mikhail M; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S

    2016-06-01

    Anaerobic enrichments with acetate as electron donor and carbon source, and elemental sulfur as electron acceptor at 4 M NaCl using anaerobic sediments and brines from several hypersaline lakes in Kulunda Steppe (Altai, Russia) resulted in isolation in pure culture of four strains of obligately anaerobic haloarchae growing exclusively by sulfur respiration. Such metabolism has not yet been demonstrated in any known species of Halobacteria, and in the whole archaeal kingdom, acetate oxidation with sulfur as acceptor was not previously demonstrated. The four isolates had nearly identical 16S rRNA gene sequences and formed a novel genus-level branch within the family Halobacteriaceae. The strains had a restricted substrate range limited to acetate and pyruvate as electron donors and elemental sulfur as electron acceptor. In contrast to aerobic haloarchaea, the biomass of anaerobic isolates completely lacked the typical red pigments. Growth with acetate+sulfur was observed between 3-5 M NaCl and at a pH range from 6.7 to 8.0. The membrane core lipids were dominated by archaeols. On the basis of distinct physiological and phylogenetic data, the sulfur-respiring isolates represent a novel species of a new genus in the family Halobacteriaceae, for which the name Halanaeroarchaeaum sulfurireducens gen. nov., sp. nov. is proposed. The type strain of the type species is HSR2T (=JCM 30661T=UNIQEM U935T).

  3. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake.

    PubMed

    Sorokin, Dimitry Y; Kublanov, Ilya V; Yakimov, Mikhail M; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S

    2016-06-01

    Anaerobic enrichments with acetate as electron donor and carbon source, and elemental sulfur as electron acceptor at 4 M NaCl using anaerobic sediments and brines from several hypersaline lakes in Kulunda Steppe (Altai, Russia) resulted in isolation in pure culture of four strains of obligately anaerobic haloarchae growing exclusively by sulfur respiration. Such metabolism has not yet been demonstrated in any known species of Halobacteria, and in the whole archaeal kingdom, acetate oxidation with sulfur as acceptor was not previously demonstrated. The four isolates had nearly identical 16S rRNA gene sequences and formed a novel genus-level branch within the family Halobacteriaceae. The strains had a restricted substrate range limited to acetate and pyruvate as electron donors and elemental sulfur as electron acceptor. In contrast to aerobic haloarchaea, the biomass of anaerobic isolates completely lacked the typical red pigments. Growth with acetate+sulfur was observed between 3-5 M NaCl and at a pH range from 6.7 to 8.0. The membrane core lipids were dominated by archaeols. On the basis of distinct physiological and phylogenetic data, the sulfur-respiring isolates represent a novel species of a new genus in the family Halobacteriaceae, for which the name Halanaeroarchaeaum sulfurireducens gen. nov., sp. nov. is proposed. The type strain of the type species is HSR2T (=JCM 30661T=UNIQEM U935T). PMID:27031647

  4. Isolation, growth, and metabolism of an obligately anaerobic, selenate- respiring bacterium, strain SES-3

    USGS Publications Warehouse

    Oremland, R.S.; Blum, J.S.; Culbertson, C.W.; Visscher, P.T.; Miller, L.G.; Dowdle, P.; Strohmaier, F.E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate- grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m- chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.

  5. Isolation, Growth, and Metabolism of an Obligately Anaerobic, Selenate-Respiring Bacterium, Strain SES-3

    PubMed Central

    Oremland, Ronald S.; Blum, Jodi Switzer; Culbertson, Charles W.; Visscher, Pieter T.; Miller, Laurence G.; Dowdle, Phillip; Strohmaier, Frances E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate-grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m-chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions. Images PMID:16349362

  6. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings.

    PubMed

    Maltman, Chris; Piercey-Normore, Michele D; Yurkov, Vladimir

    2015-09-01

    The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans.

  7. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings.

    PubMed

    Maltman, Chris; Piercey-Normore, Michele D; Yurkov, Vladimir

    2015-09-01

    The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans. PMID:26254805

  8. Molecular AND logic gate based on bacterial anaerobic respiration.

    PubMed

    Arugula, Mary Anitha; Shroff, Namita; Katz, Evgeny; He, Zhen

    2012-10-21

    Enzyme coding genes that integrate information for anaerobic respiration in Shewanella oneidensis MR-1 were used as input for constructing an AND logic gate. The absence of one or both genes inhibited electrochemically-controlled anaerobic respiration, while wild type bacteria were capable of accepting electrons from an electrode for DMSO reduction.

  9. Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans

    SciTech Connect

    Pronk, J.T.; Liem, K.; Bos, P.; Kuenen, J.G. )

    1991-07-01

    Formate-grown cells of the obligately chemolithoautotrophic acidophile Thiobacillus ferrooxidans were capable of formate- and elemental sulfur-dependent reduction of ferric iron under anaerovic conditions. Under aerobic conditions, both oxygen and ferric iron could be simultaneously used as electron acceptors. To investigate whether anaerobic ferric iron respiration by T. ferrooxidans is an energy-transducing process, uptake of amino acids was studied. Glycine uptake by starved cells did not occur in the absence of an electron donor, neither under aerobic conditions nor under anaerobic conditions. Uptake of glycine could be driven by formate- and ferrous iron-dependent oxygen uptake. Under anaerobic conditions, ferric iron respiration with the electron donors formate and elemental sulfur could energize glycine uptake. Glycine uptake was inhibited by the uncoupler 2,4-dinitrophenol. The results indicate that anaerobic ferric iron respiration can contribute to the energy budget of T. ferrooxidans.

  10. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  11. Anaerobic respiration of Escherichia coli in the mouse intestine.

    PubMed

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  12. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters

    PubMed Central

    Smith, Bryan JK; Boothe, Melissa A; Fiddler, Brice A; Lozano, Tania M; Rahi, Russel K; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 × 107 copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 × 104 copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 × 107 copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile. PMID:26508873

  13. [Anaerobic humus respiration by Shewanella cinica D14T].

    PubMed

    Xu, Zhi-cheng; Hong, Yi-guo; Luo, Wei; Chen, Xing-juan; Sun, Guo-ping; Xu, Mei-ying; Guo, Jun; Cen, Ying-hua

    2006-12-01

    Experimental results suggested Shewanella cinica D14T is capable of humus respiration utilizing various organic acids and some important environmental pollutants (e.g., toluene. etc) as electron donors and AQS or AQDS as a sole terminal electron acceptor under anaerobic condition. The dissimilatory reduction of 1mmol/L AQDS can couple to the production of enough ATP to support cell growth about 60 generations; The oxidization of electron donors was coupled to the reduction of humus, as reduced humus increased corresponding with increasing of electron donor; The typical inhibitors such as Cu2+ which inhibited Fe-S center, Stigmatellin which was methyl-naphthoquinone model, Dicumarol which inhibited oxidized methyl-naphthoquinone transform to reduced one, Metyrapone which was specific inhibitor for P450 enzyme blocked the humus respiration seriously. These were powerful evidences for humus-respiration by D14.

  14. Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata

    SciTech Connect

    Schultz, J.E.; Weaver, P.F.

    1982-01-01

    Rhodospirillum rubrum and Rhodopseudomonas capsulata were able to grow anaerobically in the dark either by a strict mixed-acid fermentation of sugars or, in the presence of an appropriate electron acceptor, by an energy-linked anaerobic respiration. Both species fermented fructose without the addition of accessory oxidants, but required the initial presence of bicarbonate before fermentative growth could begin. Major products of R. rubrum fermentation were succinate, acetate, propionate, formate, hydrogen, and carbon dioxide; R. capsulata produced major amounts of lactate, acetate, succinate, hydrogen, and carbon dioxide. R. rubrum and R. capsulata were also capable of growing strictly through anaerobic, respiratory mechanisms. Nonfermentable substrates, such as succinate, malate, or acetate, supported growth only in the presence of an electron acceptor such as dimethyl sulfoxide or trimethylamine oxide. Carbon dioxide and succinate plus dimethyl sulfoxide were produced during growth of R. rubrum and R. capsulata on succinate plus dimethyl sulfoxides. Molar growth yields from cultures grown anaerobically in the dark on fructose plus dimethyl sulfoxide were 3.8 to 4.6 times higher than values obtained from growth on fructose alone and were 56 to 6o% of thevalues obtained from aerobic, respiratory growth with fructose. Likewise, molar growth yields from anaerobic, respiratory growth conditions with succinate plus dimethyl sulfoxide were 51 to 54% of the values obtained from aerobic, respiratory growth with succinate. The data indicate that dimethyl sulfoxide or trimethylamine oxide as a terminal oxidant is approximately 33 to 41% as efficient as O/sub 2/ in conserving energy through electron transport-linked respiration.

  15. Fermentation and Anaerobic Respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata

    PubMed Central

    Schultz, J. E.; Weaver, P. F.

    1982-01-01

    Rhodospirillum rubrum and Rhodopseudomonas capsulata were able to grow anaerobically in the dark either by a strict mixed-acid fermentation of sugars or, in the presence of an appropriate electron acceptor, by an energy-linked anaerobic respiration. Both species fermented fructose without the addition of accessory oxidants, but required the initial presence of bicarbonate before fermentative growth could begin. Major products of R. rubrum fermentation were succinate, acetate, propionate, formate, hydrogen, and carbon dioxide; R. capsulata produced major amounts of lactate, acetate, succinate, hydrogen, and carbon dioxide. R. rubrum and R. capsulata were also capable of growing strictly through anaerobic, respiratory mechanisms. Nonfermentable substrates, such as succinate, malate, or acetate, supported growth only in the presence of an electron acceptor such as dimethyl sulfoxide or trimethylamine oxide. Carbon dioxide and dimethyl sulfide were produced during growth of R. rubrum and R. capsulata on succinate plus dimethyl sulfoxide. Molar growth yields from cultures grown anaerobically in the dark on fructose plus dimethyl sulfoxide were 3.8 to 4.6 times higher than values obtained from growth on fructose alone and were 56 to 60% of the values obtained from aerobic, respiratory growth with fructose. Likewise, molar growth yields from anaerobic, respiratory growth conditions with succinate plus dimethyl sulfoxide were 51 to 54% of the values obtained from aerobic, respiratory growth with succinate. The data indicate that dimethyl sulfoxide or trimethylamine oxide as a terminal oxidant is approximately 33 to 41% as efficient as O2 in conserving energy through electron transport-linked respiration. PMID:6798016

  16. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    PubMed

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents.

  17. Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic

    USGS Publications Warehouse

    Baesman, S.M.; Stolz, J.F.; Kulp, T.R.; Oremland, R.S.

    2009-01-01

    Mono Lake sediment slurries incubated with lactate and tellurite [Te(IV)] turned progressively black with time because of the precipitation of elemental tellurium [Te(0)]. An enrichment culture was established from these slurries that demonstrated Te(IV)-dependent growth. The enrichment was purified by picking isolated black colonies from lactate/Te(IV) agar plates, followed by repeated streaking and picking. The isolate, strain MLTeJB, grew in aqueous Te(IV)-medium if provided with a small amount of sterile solid phase material (e.g., agar plug; glass beads). Strain MLTeJB grew at high concentrations of Te(IV) (~8 mM) by oxidizing lactate to acetate plus formate, while reducing Te(IV) to Te(0). Other electron acceptors that were found to sustain growth were tellurate, selenate, selenite, arsenate, nitrate, nitrite, fumarate and oxygen. Notably, growth on arsenate, nitrate, nitrite and fumarate did not result in the accumulation of formate, implying that in these cases lactate was oxidized to acetate plus CO2. Strain MLTeJB is a low G + C Gram positive motile rod with pH, sodium, and temperature growth optima at 8.5-9.0, 0.5-1.5 M, and 40??C, respectively. The epithet Bacillus beveridgei strain MLTeJBT is proposed. ?? 2009 Springer.

  18. Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate

    USGS Publications Warehouse

    Switzer, Blum J.; Stolz, J.F.; Oren, A.; Oremland, R.S.

    2001-01-01

    We isolated an obligately anaerobic halophilic bacterium from the Dead Sea that grew by respiration of selenate. The isolate, designated strain DSSe-1, was a gram-negative, non-motile rod. It oxidized glycerol or glucose to acetate+CO2 with concomitant reduction of selenate to selenite plus elemental selenium. Other electron acceptors that supported anaerobic growth on glycerol were nitrate and trimethylamine-N-oxide; nitrite, arsenate, fumarate, dimethylsulfoxide, thiosulfate, elemental sulfur, sulfite or sulfate could not serve as electron acceptors. Growth on glycerol in the presence of nitrate occurred over a salinity range from 100 to 240 g/l, with an optimum at 210 g/l. Analysis of the 16S rRNA gene sequence suggests that strain DSSe-1 belongs to the order Halanaerobiales, an order of halophilic anaerobes with a fermentative or homoacetogenic metabolism, in which anaerobic respiratory metabolism has never been documented. The highest 16S rRNA sequence similarity (90%) was found with Acetohalobium arabaticum (X89077). On the basis of physiological properties as well as the relatively low homology of 16S rRNA from strain DSSe-1 with known genera, classification in a new genus within the order Halanaerobiales, family Halobacteroidaceae is warranted. We propose the name Selenihalanaerobacter shriftii. Type strain is strain DSSe-1 (ATCC accession number BAA-73).

  19. The respiration pattern as an indicator of the anaerobic threshold.

    PubMed

    Mirmohamadsadeghi, Leila; Vesin, Jean-Marc; Lemay, Mathieu; Deriaz, Olivier

    2015-08-01

    The anaerobic threshold (AT) is a good index of personal endurance but needs a laboratory setting to be determined. It is important to develop easy AT field measurements techniques in order to rapidly adapt training programs. In the present study, it is postulated that the variability of the respiratory parameters decreases with exercise intensity (especially at the AT level). The aim of this work was to assess, on healthy trained subjects, the putative relationships between the variability of some respiration parameters and the AT. The heart rate and respiratory variables (volume, rate) were measured during an incremental exercise performed on a treadmill by healthy moderately trained subjects. Results show a decrease in the variance of 1/tidal volume with the intensity of exercise. Consequently, the cumulated variance (sum of the variance measured at each level of the exercise) follows an exponential relationship with respect to the intensity to reach eventually a plateau. The amplitude of this plateau is closely related to the AT (r=-0.8). It is concluded that the AT is related to the variability of the respiration.

  20. The respiration pattern as an indicator of the anaerobic threshold.

    PubMed

    Mirmohamadsadeghi, Leila; Vesin, Jean-Marc; Lemay, Mathieu; Deriaz, Olivier

    2015-08-01

    The anaerobic threshold (AT) is a good index of personal endurance but needs a laboratory setting to be determined. It is important to develop easy AT field measurements techniques in order to rapidly adapt training programs. In the present study, it is postulated that the variability of the respiratory parameters decreases with exercise intensity (especially at the AT level). The aim of this work was to assess, on healthy trained subjects, the putative relationships between the variability of some respiration parameters and the AT. The heart rate and respiratory variables (volume, rate) were measured during an incremental exercise performed on a treadmill by healthy moderately trained subjects. Results show a decrease in the variance of 1/tidal volume with the intensity of exercise. Consequently, the cumulated variance (sum of the variance measured at each level of the exercise) follows an exponential relationship with respect to the intensity to reach eventually a plateau. The amplitude of this plateau is closely related to the AT (r=-0.8). It is concluded that the AT is related to the variability of the respiration. PMID:26736320

  1. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis.

    PubMed

    Yoon, Sang Sun; Hennigan, Robert F; Hilliard, George M; Ochsner, Urs A; Parvatiyar, Kislay; Kamani, Moneesha C; Allen, Holly L; DeKievit, Teresa R; Gardner, Paul R; Schwab, Ute; Rowe, John J; Iglewski, Barbara H; McDermott, Timothy R; Mason, Ronald P; Wozniak, Daniel J; Hancock, Robert E W; Parsek, Matthew R; Noah, Terry L; Boucher, Richard C; Hassett, Daniel J

    2002-10-01

    Recent data indicate that cystic fibrosis (CF) airway mucus is anaerobic. This suggests that Pseudomonas aeruginosa infection in CF reflects biofilm formation and persistence in an anaerobic environment. P. aeruginosa formed robust anaerobic biofilms, the viability of which requires rhl quorum sensing and nitric oxide (NO) reductase to modulate or prevent accumulation of toxic NO, a byproduct of anaerobic respiration. Proteomic analyses identified an outer membrane protein, OprF, that was upregulated approximately 40-fold under anaerobic versus aerobic conditions. Further, OprF exists in CF mucus, and CF patients raise antisera to OprF. An oprF mutant formed poor anaerobic biofilms, due, in part, to defects in anaerobic respiration. Thus, future investigations of CF pathogenesis and therapy should include a better understanding of anaerobic metabolism and biofilm development by P. aeruginosa.

  2. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism.

    PubMed

    Grein, Fabian; Ramos, Ana Raquel; Venceslau, Sofia S; Pereira, Inês A C

    2013-02-01

    Behind the versatile nature of prokaryotic energy metabolism is a set of redox proteins having a highly modular character. It has become increasingly recognized that a limited number of redox modules or building blocks appear grouped in different arrangements, giving rise to different proteins and functionalities. This modularity most likely reveals a common and ancient origin for these redox modules, and is obviously reflected in similar energy conservation mechanisms. The dissimilation of sulfur compounds was probably one of the earliest biological strategies used by primitive organisms to obtain energy. Here, we review some of the redox proteins involved in dissimilatory sulfur metabolism, focusing on sulfate reducing organisms, and highlight links between these proteins and others involved in different processes of anaerobic respiration. Noteworthy are links to the complex iron-sulfur molybdoenzyme family, and heterodisulfide reductases of methanogenic archaea. We discuss how chemiosmotic and electron bifurcation/confurcation may be involved in energy conservation during sulfate reduction, and how introduction of an additional module, multiheme cytochromes c, opens an alternative bioenergetic strategy that seems to increase metabolic versatility. Finally, we highlight new families of heterodisulfide reductase-related proteins from non-methanogenic organisms, which indicate a widespread distribution for these protein modules and may indicate a more general involvement of thiol/disulfide conversions in energy metabolism. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. PMID:22982583

  3. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism.

    PubMed

    Grein, Fabian; Ramos, Ana Raquel; Venceslau, Sofia S; Pereira, Inês A C

    2013-02-01

    Behind the versatile nature of prokaryotic energy metabolism is a set of redox proteins having a highly modular character. It has become increasingly recognized that a limited number of redox modules or building blocks appear grouped in different arrangements, giving rise to different proteins and functionalities. This modularity most likely reveals a common and ancient origin for these redox modules, and is obviously reflected in similar energy conservation mechanisms. The dissimilation of sulfur compounds was probably one of the earliest biological strategies used by primitive organisms to obtain energy. Here, we review some of the redox proteins involved in dissimilatory sulfur metabolism, focusing on sulfate reducing organisms, and highlight links between these proteins and others involved in different processes of anaerobic respiration. Noteworthy are links to the complex iron-sulfur molybdoenzyme family, and heterodisulfide reductases of methanogenic archaea. We discuss how chemiosmotic and electron bifurcation/confurcation may be involved in energy conservation during sulfate reduction, and how introduction of an additional module, multiheme cytochromes c, opens an alternative bioenergetic strategy that seems to increase metabolic versatility. Finally, we highlight new families of heterodisulfide reductase-related proteins from non-methanogenic organisms, which indicate a widespread distribution for these protein modules and may indicate a more general involvement of thiol/disulfide conversions in energy metabolism. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

  4. Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration.

    PubMed

    Hemsley, Claudia M; Luo, Jamie X; Andreae, Clio A; Butler, Clive S; Soyer, Orkun S; Titball, Richard W

    2014-10-01

    Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, β-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro.

  5. Influence of the molybdenum cofactor biosynthesis on anaerobic respiration, biofilm formation and motility in Burkholderia thailandensis.

    PubMed

    Andreae, Clio A; Titball, Richard W; Butler, Clive S

    2014-01-01

    Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis.

  6. Anaerobic respiration: In vitro efficacy of Nitazoxanide against mitochondriate Acanthamoeba castellanii of the T4 genotype.

    PubMed

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Farooq, Maria; Khan, Naveed Ahmed

    2015-10-01

    Acanthamoeba is an opportunistic protist pathogen that is responsible for serious human and animal infection. Being one of the most frequently isolated protists from the environment, it is likely that it readily encounters microaerophilic environments. For respiration under anaerobic or low oxygen conditions in several amitochondriate protists, decarboxylation of pyruvate is catalyzed by pyruvate ferredoxin oxidoreductase instead of pyruvate dehydrogenase. In support, Nitazoxanide, an inhibitor of pyruvate ferredoxin oxidoreductase, is effective and non-mutagenic clinically against a range of amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The overall aim of the present study was to determine in vitro efficacy of Nitazoxanide against Acanthamoeba castellanii. At micromolar concentrations, the findings revealed that Nitazoxanide neither affected A. castellanii growth or viability nor amoeba-mediated host cell monolayer damage in vitro or extracellular proteolytic activities. Similarly, microaerophilic conditions alone had no significant effects. In contrast, microaerophilic conditions together with Nitazoxanide showed amoebicidal effects and inhibited A. castellanii-mediated host cell monolayer damage as well as extracellular proteases. Using encystation assays, it was observed that Nitazoxanide inhibited trophozoite transformation into cysts both under aerophilic and microaerophilic conditions. Furthermore, pre-treatment of cysts with Nitazoxanide inhibited A. castellanii excystation. These findings are important in the identification of potential targets that could be useful against parasite-specific respiration as well as to understand the basic biology of the life cycle of Acanthamoeba.

  7. Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Kim, Hwa Young; Kim, Hye Jin; Yoon, Sang Sun

    2016-03-01

    The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions.

  8. Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Kim, Hwa Young; Kim, Hye Jin; Yoon, Sang Sun

    2016-03-01

    The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions. PMID:26718467

  9. Siderophores are not involved in Fe(III) solubilization during anaerobic Fe(III) respiration by Shewanella oneidensis MR-1.

    PubMed

    Fennessey, Christine M; Jones, Morris E; Taillefert, Martial; DiChristina, Thomas J

    2010-04-01

    Shewanella oneidensis MR-1 respires a wide range of anaerobic electron acceptors, including sparingly soluble Fe(III) oxides. In the present study, S. oneidensis was found to produce Fe(III)-solubilizing organic ligands during anaerobic Fe(III) oxide respiration, a respiratory strategy postulated to destabilize Fe(III) and produce more readily reducible soluble organic Fe(III). In-frame gene deletion mutagenesis, siderophore detection assays, and voltammetric techniques were combined to determine (i) if the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration were synthesized via siderophore biosynthesis systems and (ii) if the Fe(III)-siderophore reductase was required for respiration of soluble organic Fe(III) as an anaerobic electron acceptor. Genes predicted to encode the siderophore (hydroxamate) biosynthesis system (SO3030 to SO3032), the Fe(III)-hydroxamate receptor (SO3033), and the Fe(III)-hydroxamate reductase (SO3034) were identified in the S. oneidensis genome, and corresponding in-frame gene deletion mutants were constructed. DeltaSO3031 was unable to synthesize siderophores or produce soluble organic Fe(III) during aerobic respiration yet retained the ability to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. DeltaSO3034 retained the ability to synthesize siderophores during aerobic respiration and to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. These findings indicate that the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration are not synthesized via the hydroxamate biosynthesis system and that the Fe(III)-hydroxamate reductase is not essential for respiration of Fe(III)-citrate or Fe(III)-nitrilotriacetic acid (NTA) as an anaerobic electron acceptor.

  10. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration.

    PubMed

    Yoon, Mi Young; Lee, Kang-Mu; Park, Yongjin; Yoon, Sang Sun

    2011-01-18

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO(2) (-)) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.

  11. Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae.

    PubMed

    Lee, Kang-Mu; Park, Yongjin; Bari, Wasimul; Yoon, Mi Young; Go, Junhyeok; Kim, Sang Cheol; Lee, Hyung-Il; Yoon, Sang Sun

    2012-11-16

    Vibrio cholerae is a gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2',7'-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor.

  12. The regulatory role of ferric uptake regulator (Fur) during anaerobic respiration of Shewanella piezotolerans WP3.

    PubMed

    Yang, Xin-Wei; He, Ying; Xu, Jun; Xiao, Xiang; Wang, Feng-Ping

    2013-01-01

    Ferric uptake regulator (Fur) is a global regulator that controls bacterial iron homeostasis. In this study, a fur deletion mutant of the deep-sea bacterium Shewanella piezotolerans WP3 was constructed. Physiological studies revealed that the growth rate of this mutant under aerobic conditions was only slightly lower than that of wild type (WT), but severe growth defects were observed under anaerobic conditions when different electron acceptors (EAs) were provided. Comparative transcriptomic analysis demonstrated that Fur is involved not only in classical iron homeostasis but also in anaerobic respiration. Fur exerted pleiotropic effects on the regulation of anaerobic respiration by controlling anaerobic electron transport, the heme biosynthesis system, and the cytochrome c maturation system. Biochemical assays demonstrated that levels of c-type cytochromes were lower in the fur mutant, consistent with the transcriptional profiling. Transcriptomic analysis and electrophoretic mobility shift assays revealed a primary regulation network for Fur in WP3. These results suggest that Fur may act as a sensor for anoxic conditions to trigger and influence the anaerobic respiratory system.

  13. Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum.

    PubMed

    Takeno, Seiki; Ohnishi, Junko; Komatsu, Tomoha; Masaki, Tatsuya; Sen, Kikuo; Ikeda, Masato

    2007-07-01

    Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O(2)), while no visible colonies were formed in the absence of O(2). However, in the presence of nitrate (NO3-), the organism exhibited limited growth anaerobically with production of nitrite (NO2-), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using L-lysine- and L-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.

  14. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration.

    PubMed

    Richter, Katrin; Schicklberger, Marcus; Gescher, Johannes

    2012-02-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions.

  15. Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration

    PubMed Central

    Richter, Katrin; Schicklberger, Marcus

    2012-01-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions. PMID:22179232

  16. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration.

    PubMed

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lin; Dong, Yangyang; Reed, Samantha; Chen, Jingrong; Culley, Dave; Kennedy, David; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H; Fredrickson, James K; Tiedje, James M; Romine, Margaret; Zhou, Jizhong

    2010-07-01

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well-studied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  17. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration

    SciTech Connect

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lianming; Dong, Yangyang; Reed, Samantha B.; Chen, Jingrong; Culley, David E.; Kennedy, David W.; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H.; Fredrickson, Jim K.; Tiedje, James M.; Romine, Margaret F.; Zhou, Jizhong

    2010-06-24

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the wellstudied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  18. Impacts of Shewanella oneidensis c‐type cytochromes on aerobic and anaerobic respiration

    PubMed Central

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lin; Dong, Yangyang; Reed, Samantha; Chen, Jingrong; Culley, Dave; Kennedy, David; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H.; Fredrickson, James K.; Tiedje, James M.; Romine, Margaret; Zhou, Jizhong

    2010-01-01

    Summary Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c‐type cytochromes. To investigate the involvement of c‐type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr ‐1, 36 in‐frame deletion mutants, among possible 41 predicted, c‐type cytochrome genes were obtained. The potential involvement of each individual c‐type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well‐studied c‐type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr ‐1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c‐type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis. PMID:21255343

  19. Aerobically respiring prokaryotic strains exhibit a broader temperature–pH–salinity space for cell division than anaerobically respiring and fermentative strains

    PubMed Central

    Harrison, Jesse P.; Dobinson, Luke; Freeman, Kenneth; McKenzie, Ross; Wyllie, Dale; Nixon, Sophie L.; Cockell, Charles S.

    2015-01-01

    Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division. PMID:26354829

  20. Aerobically respiring prokaryotic strains exhibit a broader temperature-pH-salinity space for cell division than anaerobically respiring and fermentative strains.

    PubMed

    Harrison, Jesse P; Dobinson, Luke; Freeman, Kenneth; McKenzie, Ross; Wyllie, Dale; Nixon, Sophie L; Cockell, Charles S

    2015-09-01

    Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division. PMID:26354829

  1. Aerobically respiring prokaryotic strains exhibit a broader temperature-pH-salinity space for cell division than anaerobically respiring and fermentative strains.

    PubMed

    Harrison, Jesse P; Dobinson, Luke; Freeman, Kenneth; McKenzie, Ross; Wyllie, Dale; Nixon, Sophie L; Cockell, Charles S

    2015-09-01

    Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division.

  2. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU.

    PubMed

    Laue, H; Denger, K; Cook, A M

    1997-05-01

    Organosulfonates are important natural and man-made compounds, but until recently (T. J. Lie, T. Pitta, E. R. Leadbetter, W. Godchaux III, and J. R. Leadbetter. Arch. Microbiol. 166:204-210, 1996), they were not believed to be dissimilated under anoxic conditions. We also chose to test whether alkane- and arenesulfonates could serve as electron sinks in respiratory metabolism. We generated 60 anoxic enrichment cultures in mineral salts medium which included several potential electron donors and a single organic sulfonate as an electron sink, and we used material from anaerobic digestors in communal sewage works as inocula. None of the four aromatic sulfonates, the three unsubstituted alkanesulfonates, or the N-sulfonate tested gave positive enrichment cultures requiring both the electron donor and electron sink for growth. Nine cultures utilizing the natural products taurine, cysteate, or isethionate were considered positive for growth, and all formed sulfide. Two clearly different pure cultures were examined. Putative Desulfovibrio sp. strain RZACYSA, with lactate as the electron donor, utilized sulfate, aminomethanesulfonate, taurine, isethionate, and cysteate, converting the latter to ammonia, acetate, and sulfide. Strain RZATAU was identified by 16S rDNA analysis as Bilophila wadsworthia. In the presence of, e.g., formate as the electron donor, it utilized, e.g., cysteate and isethionate and converted taurine quantitatively to cell material and products identified as ammonia, acetate, and sulfide. Sulfite and thiosulfate, but not sulfate, were utilized as electron sinks, as was nitrate, when lactate was provided as the electron donor and carbon source. A growth requirement for 1,4-naphthoquinone indicates a menaquinone electron carrier, and the presence of cytochrome c supports the presence of an electron transport chain. Pyruvate-dependent disappearance of taurine from cell extracts, as well as formation of alanine and release of ammonia and acetate, was

  3. Gene expression profiling of Corynebacterium glutamicum during Anaerobic nitrate respiration: induction of the SOS response for cell survival.

    PubMed

    Nishimura, Taku; Teramoto, Haruhiko; Inui, Masayuki; Yukawa, Hideaki

    2011-03-01

    The gene expression profile of Corynebacterium glutamicum under anaerobic nitrate respiration revealed marked differences in the expression levels of a number of genes involved in a variety of cellular functions, including carbon metabolism and respiratory electron transport chain, compared to the profile under aerobic conditions using DNA microarrays. Many SOS genes were upregulated by the shift from aerobic to anaerobic nitrate respiration. An elongated cell morphology, similar to that induced by the DivS-mediated suppression of cell division upon cell exposure to the DNA-damaging reagent mitomycin C, was observed in cells subjected to anaerobic nitrate respiration. None of these transcriptional and morphological differences were observed in a recA mutant strain lacking a functional RecA regulator of the SOS response. The recA mutant cells additionally showed significantly reduced viability compared to wild-type cells similarly grown under anaerobic nitrate respiration. These results suggest a role for the RecA-mediated SOS response in the ability of cells to survive any DNA damage that may result from anaerobic nitrate respiration in C. glutamicum.

  4. Periplasmic Nitrate Reductase (NapABC Enzyme) Supports Anaerobic Respiration by Escherichia coli K-12

    PubMed Central

    Stewart, Valley; Lu, Yiran; Darwin, Andrew J.

    2002-01-01

    Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of Φ(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that Φ(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme. PMID:11844760

  5. Microbial metal reduction by members of the genus Shewanella: novel strategies for anaerobic respiration

    SciTech Connect

    Dichristina, Thomas; Bates, David J.; Burns, Justin L.; Dale, Jason R.; Payne, Amanda N.

    2006-01-01

    Metal-reducing members of the genus Shewanella are important components of the microbial community residing in redox-stratified freshwater and marine environments. Metal-reducing gram-negative bacteria such as Shewanella, however, are presented with a unique physiological challenge: they are required to respire anaerobically on terminal electron acceptors which are either highly insoluble (Fe(III)- and Mn(IV)-oxides) and reduced to soluble end-products or highly soluble (U(VI) and Tc(VII)) and reduced to insoluble end-products. To overcome physiological problems associated with metal solubility, metal-respiring Shewanella are postulated to employ a variety of novel respiratory strategies not found in other gram-negative bacteria which respire on soluble electron acceptors such as O2, NO3 and SO4. The following chapter highlights the latest findings on the molecular mechanism of Fe(III), U(VI) and Tc(VII) reduction by Shewanella, with particular emphasis on electron transport chain physiology.

  6. Anaerobic respiration using a complete oxidative TCA cycle drives multicellular swarming in Proteus mirabilis.

    PubMed

    Alteri, Christopher J; Himpsl, Stephanie D; Engstrom, Michael D; Mobley, Harry L T

    2012-10-30

    Proteus mirabilis rapidly migrates across surfaces using a periodic developmental process of differentiation alternating between short swimmer cells and elongated hyperflagellated swarmer cells. To undergo this vigorous flagellum-mediated motility, bacteria must generate a substantial proton gradient across their cytoplasmic membranes by using available energy pathways. We sought to identify the link between energy pathways and swarming differentiation by examining the behavior of defined central metabolism mutants. Mutations in the tricarboxylic acid (TCA) cycle (fumC and sdhB mutants) caused altered patterns of swarming periodicity, suggesting an aerobic pathway. Surprisingly, the wild-type strain swarmed on agar containing sodium azide, which poisons aerobic respiration; the fumC TCA cycle mutant, however, was unable to swarm on azide. To identify other contributing energy pathways, we screened transposon mutants for loss of swarming on sodium azide and found insertions in the following genes that involved fumarate metabolism or respiration: hybB, encoding hydrogenase; fumC, encoding fumarase; argH, encoding argininosuccinate lyase (generates fumarate); and a quinone hydroxylase gene. These findings validated the screen and suggested involvement of anaerobic electron transport chain components. Abnormal swarming periodicity of fumC and sdhB mutants was associated with the excretion of reduced acidic fermentation end products. Bacteria lacking SdhB were rescued to wild-type pH and periodicity by providing fumarate, independent of carbon source but dependent on oxygen, while fumC mutants were rescued by glycerol, independent of fumarate only under anaerobic conditions. These findings link multicellular swarming patterns with fumarate metabolism and membrane electron transport using a previously unappreciated configuration of both aerobic and anaerobic respiratory chain components. Bacterial locomotion and the existence of microbes were the first scientific

  7. Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1.

    PubMed

    Charania, M A; Brockman, K L; Zhang, Y; Banerjee, A; Pinchuk, G E; Fredrickson, J K; Beliaev, A S; Saffarini, D A

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  8. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K. L.; Zhang, Y.; Banerjee, A.; Pinchuk, Grigoriy E.; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  9. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K.; Zhang, Yang; Banerjee, A.; Pinchuk, Grigoriy; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, S. oneidensis MR-1 uses the cAMP receptor protein, CRP, for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an E. coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, DMSO, or Fe(III), whereas the deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III), and to a lesser extent with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and the cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagella biosynthesis, and electron transport, were differentially expressed in the cyaC mutant, but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration, and may contribute to additional signaling pathways independent of CRP.

  10. Isolation and Cr(VI) reduction characteristics of quinone respiration in Mangrovibacter plantisponsor strain CR1.

    PubMed

    Lian, Jing; Li, Zifu; Xu, Zhifang; Guo, Jianbo; Hu, Zhenzhen; Guo, Yankai; Li, Min; Yang, Jingliang

    2016-07-01

    A Cr(VI)-reducing Mangrovibacter plantisponsor strain, CR1, was isolated from tannery effluent sludge and had quinone respiration characteristics. Its chromate (CrO4 (2-) ) resistance, quinone respiration characteristics, and Cr(VI) reduction efficiencies were evaluated in detail. Strain CR1 exhibited a high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 32 mM in LB medium, and its quinone respiration could occur when an electron donor and strain CR1 both existed in the reaction system. Cr(VI) reduction by strain CR1 was significantly enhanced by a factor of 0.4-4.3 with five different quinone compounds: anthraquinone-2,7-disulfonate, anthraquinone-1-sulfonate, anthraquinone-2-sulfonate (AQS), anthraquinone-2,6-disulfonate, and anthraquinone-1,5-disulfonate. AQS was the best electron shuttle among them, and the greatest enhancement to the Cr(VI) bio-reduction was achieved with 0.96 mM AQS. The correlation between the reaction constant k (mg Cr(VI) g(-1) dry cell weight H(-1) ) and thermodynamic temperature T (K) was expressed as an Arrhenius equation lnk=-7662.9/T+27.931(R2=0.9486); the activation energy Ea was 63.71 kJ mol(-1) , and the pre-exponential factor A was 1.35 × 10(12)  mg Cr(VI) g(-1) dry cell weight H(-1) . During the Cr(VI) reduction process, the pH tended to become neutral, and the oxidation-reduction potential decreased to -440 mV. The efficient reduction of Cr(VI) mediated by a quinone respiration strain shows potential for the rapid anaerobic removal of Cr(VI).

  11. Cholera toxin production during anaerobic trimethylamine N-oxide respiration is mediated by stringent response in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Park, Yongjin; Yoon, Mi Young; Bari, Wasimul; Go, Junhyeok; Min, Kyung Bae; Raskin, David M; Lee, Kang-Mu; Yoon, Sang Sun

    2014-05-01

    As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae.

  12. The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in Escherichia coli.

    PubMed

    Zhang, Yiliang; Xiao, Minfeng; Horiyama, Tsukasa; Zhang, Yinfeng; Li, Xuechen; Nishino, Kunihiko; Yan, Aixin

    2011-07-29

    Drug efflux represents an important protection mechanism in bacteria to withstand antibiotics and environmental toxic substances. Efflux genes constitute 6-18% of all transporters in bacterial genomes, yet the expression and functions of only a handful of them have been studied. Among the 20 efflux genes encoded in the Escherichia coli K-12 genome, only the AcrAB-TolC system is constitutively expressed. The expression, activities, and physiological functions of the remaining efflux genes are poorly understood. In this study we identified a dramatic up-regulation of an additional efflux pump, MdtEF, under the anaerobic growth condition of E. coli, which is independent of antibiotic exposure. We found that expression of MdtEF is up-regulated more than 20-fold under anaerobic conditions by the global transcription factor ArcA, resulting in increased efflux activity and enhanced drug tolerance in anaerobically grown E. coli. Cells lacking mdtEF display a significantly decreased survival rate under the condition of anaerobic respiration of nitrate. Deletion of the genes responsible for the biosynthesis of indole, tnaAB, or replacing nitrate with fumarate as the terminal electron acceptor during the anaerobic respiration restores the decreased survival of ΔmdtEF cells. Moreover, ΔmdtEF cells are susceptible to indole nitrosative derivatives, a class of toxic byproducts formed and accumulated within E. coli when the bacterium respires nitrate under anaerobic conditions. Taken together, we conclude that the multidrug efflux pump MdtEF is up-regulated during the anaerobic physiology of E. coli to protect the bacterium from nitrosative damage through expelling the nitrosyl indole derivatives out of the cells.

  13. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri.

    PubMed

    Septer, Alecia N; Bose, Jeffrey L; Dunn, Anne K; Stabb, Eric V

    2010-05-01

    Vibrio fischeri induces both anaerobic respiration and bioluminescence during symbiotic infection. In many bacteria, the oxygen-sensitive regulator FNR activates anaerobic respiration, and a preliminary study using the light-generating lux genes from V. fischeri MJ1 cloned in Escherichia coli suggested that FNR stimulates bioluminescence. To test for FNR-mediated regulation of bioluminescence and anaerobic respiration in V. fischeri, we generated fnr mutants of V. fischeri strains MJ1 and ES114. In both strains, FNR was required for normal fumarate- and nitrate-dependent respiration. However, contrary to the report in transgenic E. coli, FNR mediated the repression of lux. ArcA represses bioluminescence, and P(arcA)-lacZ reporters showed reduced expression in fnr mutants, suggesting a possible indirect effect of FNR on bioluminescence via arcA. Finally, the fnr mutant of ES114 was not impaired in colonization of its host squid, Euprymna scolopes. This study extends the characterization of FNR to the Vibrionaceae and underscores the importance of studying lux regulation in its native background.

  14. The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals

    NASA Astrophysics Data System (ADS)

    Salome, Kathleen R.; Green, Stefan J.; Beazley, Melanie J.; Webb, Samuel M.; Kostka, Joel E.; Taillefert, Martial

    2013-04-01

    Although bioreduction of uranyl ions (U(VI)) and biomineralization of U(VI)-phosphate minerals are both able to immobilize uranium in contaminated sediments, the competition between these processes and the role of anaerobic respiration in the biomineralization of U(VI)-phosphate minerals has yet to be investigated. In this study, contaminated sediments incubated anaerobically in static microcosms at pH 5.5 and 7.0 were amended with the organophosphate glycerol-2-phosphate (G2P) as sole phosphorus and external carbon source and iron oxides, sulfate, or nitrate as terminal electron acceptors to determine the most favorable geochemical conditions to these two processes. While sulfate reduction was not observed even in the presence of G2P at both pHs, iron reduction was more significant at circumneutral pH irrespective of the addition of G2P. In turn, nitrate reduction was stimulated by G2P at both pH 5.5 and 7.0, suggesting nitrate-reducing bacteria provided the main source of inorganic phosphate in these sediments. U(VI) was rapidly removed from solution in all treatments but was not reduced as determined by X-ray absorption near edge structure (XANES) spectroscopy. Simultaneously, wet chemical extractions and extended X-ray absorption fine structure (EXAFS) spectroscopy of these sediments indicated the presence of U-P species in reactors amended with G2P at both pHs. The rapid removal of dissolved U(VI), the simultaneous production of inorganic phosphate, and the existence of U-P species in the solid phase indicate that uranium was precipitated as U(VI)-phosphate minerals in sediments amended with G2P. Thus, under reducing conditions and in the presence of G2P, bioreduction of U(VI) was outcompeted by the biomineralization of U(VI)-phosphate minerals and U(VI) sorption at both pHs.

  15. Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance.

    PubMed

    Du, Huamao; Lo, Tat-Ming; Sitompul, Johnner; Chang, Matthew Wook

    2012-08-10

    Despite extensive use of silver nanoparticles for antimicrobial applications, cellular mechanisms underlying microbial response to silver nanoparticles remain to be further elucidated at the systems level. Here, we report systems-level response of Escherichia coli to silver nanoparticles using transcriptome-based biochemical and phenotype assays. Notably, we provided the evidence that anaerobic respiration is induced upon exposure to silver nanoparticles. Further we showed that anaerobic respiration-related regulators and enzymes play an important role in E. coli resistance to silver nanoparticles. In particular, our results suggest that arcA is essential for resistance against silver NPs and the deletion of fnr, fdnH and narH significantly increases the resistance. We envision that this study offers novel insights into modes of antimicrobial action of silver nanoparticles, and cellular mechanisms contributing to the development of microbial resistance to silver nanoparticles.

  16. Comparative Genomics Analysis and Phenotypic Characterization of Shewanella putrefaciens W3-18-1: Anaerobic Respiration, Bacterial Microcompartments, and Lateral Flagella

    SciTech Connect

    Qiu, D.; Tu, Q.; He, Zhili; Zhou, Jizhong

    2010-05-17

    Respiratory versatility and psychrophily are the hallmarks of Shewanella. The ability to utilize a wide range of electron acceptors for respiration is due to the large number of c-type cytochrome genes present in the genome of Shewanella strains. More recently the dissimilatory metal reduction of Shewanella species has been extensively and intensively studied for potential applications in the bioremediation of radioactive wastes of groundwater and subsurface environments. Multiple Shewanella genome sequences are now available in the public databases (Fredrickson et al., 2008). Most of the sequenced Shewanella strains were isolated from marine environments and this genus was believed to be of marine origin (Hau and Gralnick, 2007). However, the well-characterized model strain, S. oneidensis MR-1, was isolated from the freshwater lake sediment of Lake Oneida, New York (Myers and Nealson, 1988) and similar bacteria have also been isolated from other freshwater environments (Venkateswaran et al., 1999). Here we comparatively analyzed the genome sequence and physiological characteristics of S. putrefaciens W3-18-1 and S. oneidensis MR-1, isolated from the marine and freshwater lake sediments, respectively. The anaerobic respirations, carbon source utilization, and cell motility have been experimentally investigated. Large scale horizontal gene transfers have been revealed and the genetic divergence between these two strains was considered to be critical to the bacterial adaptation to specific habitats, freshwater or marine sediments.

  17. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1.

    PubMed

    Hunt, Kristopher A; Flynn, Jeffrey M; Naranjo, Belén; Shikhare, Indraneel D; Gralnick, Jeffrey A

    2010-07-01

    It is well established that respiratory organisms use proton motive force to produce ATP via F-type ATP synthase aerobically and that this process may reverse during anaerobiosis to produce proton motive force. Here, we show that Shewanella oneidensis strain MR-1, a nonfermentative, facultative anaerobe known to respire exogenous electron acceptors, generates ATP primarily from substrate-level phosphorylation under anaerobic conditions. Mutant strains lacking ackA (SO2915) and pta (SO2916), genes required for acetate production and a significant portion of substrate-level ATP produced anaerobically, were tested for growth. These mutant strains were unable to grow anaerobically with lactate and fumarate as the electron acceptor, consistent with substrate-level phosphorylation yielding a significant amount of ATP. Mutant strains lacking ackA and pta were also shown to grow slowly using N-acetylglucosamine as the carbon source and fumarate as the electron acceptor, consistent with some ATP generation deriving from the Entner-Doudoroff pathway with this substrate. A deletion strain lacking the sole F-type ATP synthase (SO4746 to SO4754) demonstrated enhanced growth on N-acetylglucosamine and a minor defect with lactate under anaerobic conditions. ATP synthase mutants grown anaerobically on lactate while expressing proteorhodopsin, a light-dependent proton pump, exhibited restored growth when exposed to light, consistent with a proton-pumping role for ATP synthase under anaerobic conditions. Although S. oneidensis requires external electron acceptors to balance redox reactions and is not fermentative, we find that substrate-level phosphorylation is its primary anaerobic energy conservation strategy. Phenotypic characterization of an ackA deletion in Shewanella sp. strain MR-4 and genomic analysis of other sequenced strains suggest that this strategy is a common feature of Shewanella.

  18. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    PubMed

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  19. Isolation of Clostridium tetani from anaerobic empyema.

    PubMed

    Mayall, B C; Snashall, E A; Peel, M M

    1998-11-01

    We report the isolation of Clostridium tetani (along with Fusobacterium mortiferum) from empyema pus. The patient, a 68 year old retired farmer from rural NSW, had recently undergone cholecystectomy, had heart failure and developed an empyema. He improved after drainage of the empyema and penicillin therapy, but died suddenly during convalescence.

  20. Genotypic diversity of anaerobic isolates from bloodstream infections.

    PubMed

    Simmon, Keith E; Mirrett, Stanley; Reller, L Barth; Petti, Cathy A

    2008-05-01

    Accurate species determination for anaerobes from blood culture bottles has become increasingly important with the reemergence of anaerobic bacteremia and prevalence of multiple-drug-resistant microorganisms. Our knowledge of the taxonomical diversity of anaerobes that cause bloodstream infections is extremely limited, because identification historically has relied on conventional methods. Over a 5-year period, we profiled anaerobic bacteremia at a large tertiary care hospital with 16S rRNA gene sequencing to gain a better understanding of the taxonomical diversity of the bacteria. Of 316 isolates, 16S rRNA gene sequencing and phylogenetic analysis identified 316 (100%) to the genus or taxonomical group level and 289 (91%) to the species level. Conventional methods identified 279 (88%) to the genus level and 208 (66%) to the species level; 75 (24%) were misidentified at the species level, and 33 (10%) results were inconclusive. High intragenus variability was observed for Bacteroides and Clostridium species, and high intraspecies variability was observed for Bacteroides thetaiotaomicron and Fusobacterium nucleatum. Sequence-based identification has potential benefits in comparison to conventional methods, because it more accurately characterizes anaerobes within taxonomically related clusters and thereby may enable better correlation with specific clinical syndromes and antibiotic resistance patterns.

  1. Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1.

    PubMed

    Arai, Hiroyuki; Roh, Jung Hyeob; Kaplan, Samuel

    2008-01-01

    Rhodobacter sphaeroides 2.4.1 is a facultative photosynthetic anaerobe that grows by anoxygenic photosynthesis under anaerobic-light conditions. Changes in energy generation pathways under photosynthetic and aerobic respiratory conditions are primarily controlled by oxygen tensions. In this study, we performed time series microarray analyses to investigate transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration. Major changes in gene expression profiles occurred in the initial 15 min after the shift from anaerobic-light to aerobic-dark conditions, with changes continuing to occur up to 4 hours postshift. Those genes whose expression levels changed significantly during the time series were grouped into three major classes by clustering analysis. Class I contained genes, such as that for the aa3 cytochrome oxidase, whose expression levels increased after the shift. Class II contained genes, such as those for the photosynthetic apparatus and Calvin cycle enzymes, whose expression levels decreased after the shift. Class III contained genes whose expression levels temporarily increased during the time series. Many genes for metabolism and transport of carbohydrates or lipids were significantly induced early during the transition, suggesting that those endogenous compounds were initially utilized as carbon sources. Oxidation of those compounds might also be required for maintenance of redox homeostasis after exposure to oxygen. Genes for the repair of protein and sulfur groups and uptake of ferric iron were temporarily upregulated soon after the shift, suggesting they were involved in a response to oxidative stress. The flagellar-biosynthesis genes were expressed in a hierarchical manner at 15 to 60 min after the shift. Numerous transporters were induced at various time points, suggesting that the cellular composition went through significant changes during the transition from anaerobic photosynthesis to aerobic respiration

  2. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat.

    PubMed

    Lin, Xueju; Handley, Kim M; Gilbert, Jack A; Kostka, Joel E

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  3. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    SciTech Connect

    Lin, Xueju; Handley, Kim M.; Gilbert, Jack A.; Kostka, Joel E.

    2015-05-22

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  4. Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments.

    PubMed

    Molongoski, J J; Klug, M J

    1976-01-01

    Strict anaerobic culture techniques were used to quantitatively and qualitatively evaluate the anaerobic heterotrophic bacteria present at the sediment-water interface of hyperutrophic Wintergreen Lake (Augusta, Mich.). Anaerobic plate counts remained constant from March through December, 1973, ranging from 2.4 X 10(6) to 5.7 X 10(6) organisms/g (dry weight) of sediment. The isolatable bacteria represented a small percentage of the total microbial community, which was shown by direct microscopic counts to be 2.0 X 10'' organisms/g (dry weight) of sediment during June and July. Bacteria of the genus Clostridium dominated the isolates obtained, accounting for 71.8% of the 960 isolates examined. A single species, Clostridium bifermentens, comprised 47.7% of the total. Additional bacterial groups and the percentage in which they were isolated included: Streptococcus sp. (10.8%), unidentified curved rods (9.5%y, gram-positive nonsporing rods (5.6%), and motile gram-negative rods (1.9%). Temperature growth studies demonstrated the ability of all the isolates to grow at in situ sediment temperatures. Gas-liqid radiochromatography was used to determine the soluble metabolic end products from [U-14C]glucose and a U-14C-labeled amino acid mixture by representative sedimentary clostridial isolates and by natural sediment microbial communities. At in situ temperatures the natural sediment microflora produced soluble fermentative end products characteristic of those elaborated by the clostridial isolates tested. These results are considered strong presumptive evidence that clostridia are actively metabolizing in the sediments of Wintergreen Lake.

  5. Production of Submicron-Sized Elemental Selenium Spheres by Anaerobic Bacteria that Respire Oxyanions of Selenium

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Herbel, M. J.; Switzer Blum, J.; Oscarson, R.

    2002-12-01

    Since the phenomenon of dissimilatory selenate reduction (DSeR) was first reported in (Macy et al., 1989; Oremland et al., 1989) at least 13 phylogenetically and physiologically diverse species of prokaryotes have been isolated from both the Bacterial and Archaeal domains that are capable of growth via DSeR. These microbes link the oxidation of various electron donors (e.g, lactate, acetate, hydrogen) to the terminal electron acceptors selenate, or in some cases selenite. The reduction product is amorphous, elemental selenium [Se(0)] that accumulates in large quantities in the medium as a bright orange-red precipitate. It was not clear to us how this precipitate was first formed on the cell surface. We first noted the accumulation of sub-micron sized spheres of Se(0) on the surface of Bacillus selenitireducens (Switzer Blum et al., 1998) grown on selenite. Here we report that this phenomenon occurs in at least 3 other species, including another haloalkaliphile B. arsenicoselenatis, the moderate halophile Selenihalanaerobacter shriftii, and the fresh water isolate Sulfurosprillum barnseii. Cell suspensions of all four species examined by scanning electron microscopy were noted to form spheres of Se(0) on their surfaces that sometimes accumulated in clusters. In general, the diameter of these spheres uniformly ranged in size between 100 - 200 nm. These results imply that most, if not all species of prokaryotes that respire via DSeR form these spheres. Although Se(0) spheres have not been as yet looked for as in anoxic sediments via imaging techniques, we would predict that they occur therein. Moreover, the emerging field of nanotechnology could find some application for uniformly-sized spheres of these dimensions because Se(0) is both a semiconductor and photoconductor. Macy et al. 1989, FEMS Microbiol. Lett. 61: 195 - 198. Oremland et al., 1989. Appl. Environ. Microbiol. 55: 2333 - 2343. Switzer Blum et al., 1998. Arch. Microbiol. 171: 19 - 30.

  6. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    PubMed Central

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-01-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly. Images PMID:2202258

  7. Positive regulation of the Shewanella oneidensis OmpS38, a major porin facilitating anaerobic respiration, by Crp and Fur.

    PubMed

    Gao, Tong; Ju, Lili; Yin, Jianhua; Gao, Haichun

    2015-09-18

    Major porins are among the most abundant proteins embedded in the outer membrane (OM) of Gram-negative bacteria, playing crucial roles in maintenance of membrane structural integrity and OM permeability. Although many OM proteins (especially c-type cytochromes) in Shewanella oneidensis, a research model for respiratory versatility, have been extensively studied, physiological significance of major porins remains largely unexplored. In this study, we show that OmpS38 and OmpA are two major porins, neither of which is responsive to changes in osmolarity or contributes to the intrinsic resistance to β-lactam antibiotics. However, OmpS38 but not OmpA is largely involved in respiration of non-oxygen electron acceptors. We then provide evidence that expression of ompS38 is transcribed from two promoters, the major of which is favored under anaerobic conditions while the other appears constitutive. The major promoter is under the direct control of Crp, the master regulator dictating respiration. As a result, the increase in the level of OmpS38 correlates with an elevated activity in Crp under anaerobic conditions. In addition, we show that the activity of the major promoter is also affected by Fur, presumably indirectly, the transcription factor for iron-dependent gene expression.

  8. [Effects of D-arginine on polyamine content and anaerobic respiration metabolism of cucumber seedling roots under hypoxia stress].

    PubMed

    Li, Jing; Hu, Xiao-hui; Guo, Shi-rong; Jia, Yong-xia; Du, Chang-xia

    2007-02-01

    By the method of solution culture, this paper studied the effects of D-arginine on the seedling roots polyamine content and anaerobic respiration metabolism of two cucumber ( Cucumis Sativus L. ) cultivars Zhongnong No. 8 and Lübachun No. 4 differed in hypoxia tolerance. The results showed that under hypoxia stress, the putrescine (Put), spermidine (Spd) and spermine (Spm) contents in the seedling roots of test cultivars increased significantly, and anaerobic respiration accelerated. The ethanol fermentation activity was higher in the seedling roots of hypoxia-tolerant cultivar Lübachun No. 4 than in those of hypoxia-sensitive cultivar Zhongnong No. 8, while lactate fermentation activity had an opposite trend. Comparing with treatment hypoxia, hypoxia plus D -arginine decreased the Put, Spd and Spm contents in roots significantly, enhanced the activities of alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) and the contents of ethanol and lactate, and inhibited plant growth. Exogenous Put application lessened the effects of D-arginine. Higher level of polyamines in roots could have great benefits for cucumber seedlings to improve their resistance to hypoxia stress.

  9. Isolation of an aerobic vinyl chloride oxidizer from anaerobic groundwater.

    PubMed

    Fullerton, Heather; Rogers, Rebecca; Freedman, David L; Zinder, Stephen H

    2014-11-01

    Vinyl chloride (VC) is a known human carcinogen and common groundwater contaminant. Reductive dechlorination of VC to non-toxic ethene under anaerobic conditions has been demonstrated at numerous hazardous waste sites. However, VC disappearance without stoichiometric production of ethene has also been observed at some sites and in microcosms. In this study we identify an organism responsible for this observation in presumably anaerobic microcosms and conclude that oxygen was not detectable based on a lack of color change from added resazurin. This organism, a Mycobacterium sp. closely related to known VC oxidizing strains, was present in high numbers in 16S rRNA gene clone libraries from a groundwater microcosm. Although the oxidation/reduction indicator resazurin remained in the clear reduced state in these studies, these results suggest inadvertent oxygen contamination occurred. This study helps to elucidate the dynamic behavior of chlorinated ethenes in contaminated groundwater, through the isolation of a strictly aerobic organism that may be responsible for at least some disappearance of VC without the concomitant production of ethene in groundwater considered anaerobic.

  10. The contribution of genes required for anaerobic respiration to the virulence of Salmonella enterica serovar Gallinarum for chickens.

    PubMed

    Paiva, J B; Penha Filho, R A C; Pereira, E A; Lemos, M V F; Barrow, P A; Lovell, M A; Berchieri, A

    2009-10-01

    Salmonella enterica serovar Gallinarum (SG) is an intracellular pathogen of chickens. To survive, to invade and to multiply in the intestinal tract and intracellularly it depends on its ability to produce energy in anaerobic conditions. The fumarate reductase (frdABCD), dimethyl sulfoxide (DMSO)-trimethylamine N-oxide (TMAO) reductase (dmsABC), and nitrate reductase (narGHIJ) operons in Salmonella Typhimurium (STM) encode enzymes involved in anaerobic respiration to the electron acceptors fumarate, DMSO, TMAO, and nitrate, respectively. They are regulated in response to nitrate and oxygen availability and changes in cell growth rate. In this study mortality rates of chickens challenged with mutants of Salmonella Gallinarum, which were defective in utilising anaerobic electron acceptors, were assessed in comparison to group of bird challenged with wild strain. The greatest degree of attenuation was observed with mutations affecting nitrate reductase (napA, narG) with additional attenuations induced by a mutation affecting fumarate reductase (frdA) and a double mutant (dmsA torC) affecting DMSO and TMAO reductase.

  11. Changes in respiration of mitochondria isolated from cotyledons of ethylene-treated pea seedlings.

    PubMed

    Duncan, I; Spencer, M

    1987-01-01

    Treatment of intact, germinating pea (Pisum sativum L. cv. Homesteader) seedlings with ethylene enhanced the cyanide-resistant respiration of mitochondria isolated from the cotyledons. The level of enhancement depended on the concentration of ethylene. Thus, exposure to 0.9 μl·l(-1) of ethylene in air for days 4-6 of germination had little effect on cyanide-resistant respiration, while exposure to 130 μl·l(-1) increased it from 10 to 50 nmol O2·min(-1)·(mg protein)(-1). The length of exposure to ethylene also affected the degree of enhancement. According to some literature data, lipoxygenase (EC 1.13.11.12) activity can be mistaken for cyanide-resistant respiration, but in our preparations of purified pea mitochondria ethylene had no effect on lipoxygenase activity, nor did the gas disrupt the outer mitochondrial membrane. Bahr and Bonner plots of respiration in the presence of salicylhydroxamic acid (SHAM) indicated that ethylene did not affect respiration proceeding via the cytochrome pathway. Thus, increases in total respiration in mitochondria from cotyledons of ethylene-treated pea seedlings reflect increases in cyanide-resistant respiration.

  12. Dissimilatory Reduction of Elemental Selenium to Selenide in Sediments and Anaerobic Cultures of Selenium Respiring Bacteria

    NASA Astrophysics Data System (ADS)

    Herbel, M. J.; Switzer-Blum, J.; Oremland, R. S.

    2001-12-01

    Selenium contaminated environments often contain elemental Se (Se0) in their sediments that originates from dissimilatory reduction of Se oxyanions. The forms of Se in sedimentary rocks similarly contain high proportions of Se0, but much of the Se is also in the form of metal selenides, Se-2. It is not clear if the occurrence of these selenides is due to microbial reduction of Se0, or some other biological or chemical process. In this investigation we examined the possibility that bacterial respiratory reduction of Se0 to Se-2 could explain the presence of the latter species in sedimentary rocks. We conducted incubations of anoxic sediment slurries amended with different forms of Se0. High levels of Se0 (mM) were added to San Francisco Bay sediments in order to enhance the detection of soluble HSe-, which was precipitated with Cu2+ then redissolved and quantified by ICP-MS. Concentrations of HSe- were highest in live samples amended with red amorphous Se0 formed by either microbial reduction of Se+4 ("biogenic Se0") or by chemical oxidation of H2Se(g) ("chem. Se0"); very little HSe- was formed in those amended with black crystalline Se0, indicating the general lack of reactivity of this allotrope. Controls poisoned with 10% formalin did not produce HSe- from additions of chem. Se0. Reduction of both forms of red amorphous Se0 to HSe- occurred vigorously in growing cultures of Bacillus selenitireducens, an anaerobic halophile previously isolated from sediments of Mono Lake, CA. Up to 73% and 68% of red amorphous, biogenic Se0 or chem. Se0, respectively, was reduced to HSe- during growth of B. selenitireducens, (incubation time ~ 200 hrs): oxidation of lactate to acetate as well as cell density increases indicated that a dissimilatory reduction pathway was likely. Reduction was most enhanced when cells were previously grown on elemental sulfur or Se+4. In contrast to the growth experiments, washed cell suspensions of B. selenitireducens exhibited no HSe- production

  13. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor.

    PubMed

    Jones, Morris E; Fennessey, Christine M; DiChristina, Thomas J; Taillefert, Martial

    2010-04-01

    Recent voltammetric analyses indicate that Shewanella putrefaciens strain 200 produces soluble organic-Fe(III) complexes during anaerobic respiration of sparingly soluble Fe(III) oxides. Results of the present study expand the range of Shewanella species capable of producing soluble organic-Fe(III) complexes to include Shewanella oneidensis MR-1. Soluble organic-Fe(III) was produced by S. oneidensis cultures incubated anaerobically with Fe(III) oxides, or with Fe(III) oxides and the alternate electron acceptor fumarate, but not in the presence of O(2), nitrate or trimethylamine-N-oxide. Chemical mutagenesis procedures were combined with a novel MicroElectrode Screening Array (MESA) to identify four (designated Sol) mutants with impaired ability to produce soluble organic-Fe(III) during anaerobic respiration of Fe(III) oxides. Two of the Sol mutants were deficient in anaerobic growth on both soluble Fe(III)-citrate and Fe(III) oxide, yet retained the ability to grow on a suite of seven alternate electron acceptors. The rates of soluble organic-Fe(III) production were proportional to the rates of iron reduction by the S. oneidensis wild-type and Sol mutant strains, and all four Sol mutants retained wild-type siderophore production capability. Results of this study indicate that the production of soluble organic-Fe(III) may be an important intermediate step in the anaerobic respiration of both soluble and sparingly soluble forms of Fe(III) by S. oneidensis.

  14. Molecular characterization and biological response to respiration inhibitors of Pyricularia isolates from ctenanthe and rice plants.

    PubMed

    Paplomatas, Epaminondas J; Pappas, Athanasios C; Syranidou, Elene

    2005-07-01

    The molecular profile and the biological response of isolates of Pyricularia oryzae Cavara obtained from ctenanthe to two strobilurins (azoxystrobin, kresoxim-methyl) and the phenylpyridinamine fungicide fluazinam were characterized, and compared with isolates from rice plants. Five different isozymes (alpha-esterase, lactate, malate, isocitrate and sorbitol dehydrogenases) and five random decamer primers for RAPD-PCR were used to generate molecular markers. Using unweighted pair-group with arithmetic average analysis, ctenanthe isolates were found to form a separate group distinct from that of the rice isolates for both sets of markers. Amplified polymorphic sequences of mitochondrial cytochrome b that were digested with Fnu4HI or StyI revealed no differences among Pyricularia isolates at amino acid positions 143 or 129 which confer resistance to strobilurins in several fungi. In absence of the alternative respiration inhibitor salicylhydroxamic acid (SHAM) the three fungicides showed inferior and variable efficacy, with a trend toward the rice isolate being less sensitive. The addition of SHAM enhanced the effectiveness of all fungicides against isolates regardless of their origin. Appressorium formation was the most vulnerable target of action of the respiration inhibitors and azoxystrobin the most effective. This is the first report of a comparison between the molecular profiles and sensitivities to respiration inhibitors for Pyricularia oryzae isolates from a non-gramineous host and from rice. PMID:15739234

  15. Molecular characterization and biological response to respiration inhibitors of Pyricularia isolates from ctenanthe and rice plants.

    PubMed

    Paplomatas, Epaminondas J; Pappas, Athanasios C; Syranidou, Elene

    2005-07-01

    The molecular profile and the biological response of isolates of Pyricularia oryzae Cavara obtained from ctenanthe to two strobilurins (azoxystrobin, kresoxim-methyl) and the phenylpyridinamine fungicide fluazinam were characterized, and compared with isolates from rice plants. Five different isozymes (alpha-esterase, lactate, malate, isocitrate and sorbitol dehydrogenases) and five random decamer primers for RAPD-PCR were used to generate molecular markers. Using unweighted pair-group with arithmetic average analysis, ctenanthe isolates were found to form a separate group distinct from that of the rice isolates for both sets of markers. Amplified polymorphic sequences of mitochondrial cytochrome b that were digested with Fnu4HI or StyI revealed no differences among Pyricularia isolates at amino acid positions 143 or 129 which confer resistance to strobilurins in several fungi. In absence of the alternative respiration inhibitor salicylhydroxamic acid (SHAM) the three fungicides showed inferior and variable efficacy, with a trend toward the rice isolate being less sensitive. The addition of SHAM enhanced the effectiveness of all fungicides against isolates regardless of their origin. Appressorium formation was the most vulnerable target of action of the respiration inhibitors and azoxystrobin the most effective. This is the first report of a comparison between the molecular profiles and sensitivities to respiration inhibitors for Pyricularia oryzae isolates from a non-gramineous host and from rice.

  16. [2, 4, 6-Trichlorophenol Mineralization Promoted by Anaerobic Reductive Dechlorination of Acclimated Sludge and Extracellular Respiration Dechlorination Pathway].

    PubMed

    Song, Jia-xiu; Li, Ling; Sheng, Fan-fan; Guo, Cui-xiang; Zhang, Yong-ming; Li, Zu-yuan; Wang, Tian-li

    2015-10-01

    In anaerobic conditions, the acclimation of activated sludge was studied with sodium lactate as the electron donor and 2,4,6-trichlorophenol as the electron acceptor. Metabolic characteristics of dechlorination were the focus of this study. The result showed highly efficient dechlorination on 2, 4, 6-trichlorophenol that the conversion rate reached to 100% in 9 - 24 h when initial concentrations of sodium lactate and 2,4, 6-trichlorophenol were 20 mmol x L(-1) and 40 - 80 μmol x L(-1), respectively. The intermediate product 2,4-dichlorophenol was found in low concentration (< 4.22 μmol x L(-1)). And 4-chlorophenol and phenol were the main products. Ortho chlorophenol (2, 4, 6-trichlorophenol, 2, 4-dichlorophenol) can be converted rapidly by acclimated sludge, while the further conversion of 4-chlorophenol and phenol was limited. The residues of anaerobic metabolism were degraded by aerobic sludge, among which 4-chlorophenol (initial concentration of 33 mol x L(-1)) removal rate was up to 100% under aerobic conditions. The acclimated bacteria can rapidly transfer Fe(III) and humus (AQDS) into reductive Fe(II) and AQH2DS which indicated that the dissimilatory iron reducing bacteria was enriched in the acclimated sludge. The electron mediator [Fe(III) and AQDS] significantly accelerated the dechlorination rate. The acclimated sludge could perform extracellular respiration dechlorination with electron mediators.

  17. Germination of Echinochloa crus-galli (Barnyard Grass) Seeds under Anaerobic Conditions : Respiration and Response to Metabolic Inhibitors.

    PubMed

    Kennedy, R A; Rumpho, M E; Vanderzee, D

    1983-07-01

    Echinochloa crus-galli L. Beauv., a rice-field weed, can germinate and grow for extended periods of time in an anaerobic environment. Compared to pea, which does not germinate under anaerobiosis, the evolution of CO(2) in Echinochloa and rice is lower and the peak rate of CO(2) evolution is delayed when germinated without oxygen. The plants studied also differ with respect to their respiration ratio ([CO(2)] N(2)/[CO(2)] air) and metabolism used during the early stages of germination. Echinochloa does not increase its glycolytic rate under anaerobiosis, whereas pentose phosphate pathway activity appears to increase during the first 40 to 50 hours of germination.Based on its response to metabolic inhibitors (NaF, dinitrophenol, and malonate), anaerobic metabolism in Echinochloa proceeds primarily through glycolysis, with partial operation of the tricarboxylic acid cycle and little or no oxidative phosphorylation. Also, Echinochloa is sensitive to CN during aerobic germination, whereas rice appears to be able to shift to CN-insensitive electron transport. Finally, the effectiveness of cyanide and azide on inhibiting germination of Echinochloa in N(2), but not CO, suggests that cytochrome oxidase is not used to reoxidize pyridine nucleotides in the absence of oxygen. The possible existence of an alternate electron acceptor is discussed.

  18. [2, 4, 6-Trichlorophenol Mineralization Promoted by Anaerobic Reductive Dechlorination of Acclimated Sludge and Extracellular Respiration Dechlorination Pathway].

    PubMed

    Song, Jia-xiu; Li, Ling; Sheng, Fan-fan; Guo, Cui-xiang; Zhang, Yong-ming; Li, Zu-yuan; Wang, Tian-li

    2015-10-01

    In anaerobic conditions, the acclimation of activated sludge was studied with sodium lactate as the electron donor and 2,4,6-trichlorophenol as the electron acceptor. Metabolic characteristics of dechlorination were the focus of this study. The result showed highly efficient dechlorination on 2, 4, 6-trichlorophenol that the conversion rate reached to 100% in 9 - 24 h when initial concentrations of sodium lactate and 2,4, 6-trichlorophenol were 20 mmol x L(-1) and 40 - 80 μmol x L(-1), respectively. The intermediate product 2,4-dichlorophenol was found in low concentration (< 4.22 μmol x L(-1)). And 4-chlorophenol and phenol were the main products. Ortho chlorophenol (2, 4, 6-trichlorophenol, 2, 4-dichlorophenol) can be converted rapidly by acclimated sludge, while the further conversion of 4-chlorophenol and phenol was limited. The residues of anaerobic metabolism were degraded by aerobic sludge, among which 4-chlorophenol (initial concentration of 33 mol x L(-1)) removal rate was up to 100% under aerobic conditions. The acclimated bacteria can rapidly transfer Fe(III) and humus (AQDS) into reductive Fe(II) and AQH2DS which indicated that the dissimilatory iron reducing bacteria was enriched in the acclimated sludge. The electron mediator [Fe(III) and AQDS] significantly accelerated the dechlorination rate. The acclimated sludge could perform extracellular respiration dechlorination with electron mediators. PMID:26841610

  19. Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria

    SciTech Connect

    Puranam, Kasturi L.; Wu, Guanghong; Strittmatter, Warren J.; Burke, James R. . E-mail: james.burke@duke.edu

    2006-03-10

    Huntington's disease results from expansion of the polyglutamine (PolyQ) domain in the huntingtin protein. Although the cellular mechanism by which pathologic-length PolyQ protein causes neurodegeneration is unclear, mitochondria appear central in pathogenesis. We demonstrate in isolated mitochondria that pathologic-length PolyQ protein directly inhibits ADP-dependent (state 3) mitochondrial respiration. Inhibition of mitochondrial respiration by PolyQ protein is not due to reduction in the activities of electron transport chain complexes, mitochondrial ATP synthase, or the adenine nucleotide translocase. We show that pathologic-length PolyQ protein increases the production of reactive oxygen species in isolated mitochondria. Impairment of state 3 mitochondrial respiration by PolyQ protein is reversed by addition of the antioxidants N-acetyl-L-cysteine or cytochrome c. We propose a model in which pathologic-length PolyQ protein directly inhibits mitochondrial function by inducing oxidative stress.

  20. Isolation and Molecular Characterization of As(V) Respiration / As Resistance Bacteria From Arsenic-Contaminated Groundwater in Blackfoot Disease Region in Taiwan

    NASA Astrophysics Data System (ADS)

    Wei, C.; Hsiao, S.; Liu, C.; Liao, C.; Chang, F.; Liao, V. H.

    2006-12-01

    Arsenic concerns range from local to international. The contamination of groundwater with arsenic is a major concern to public health in many countries. Arsenic problems in groundwater in Taiwan were first recognized during the 1960s and then Taiwan becomes the classic area for the study of Blackfoot disease and a number of other typical health problems including cancers. However, both the biogeochemistry of the groundwater and the mineral sources of arsenic in Taiwan are poorly defined at present. Increasing evidence suggest that the biogeochemical cycle of arsenic is significant dependent on microbial transformations which affect the distribution and the mobility of arsenic species in the environment. Known arsenic transforming bacteria possess diverse mechanisms for either oxidizing As(III) or reducing As(V), including energy generation and detoxification. To date, although a number of phylogenetically diverse As(V)-reducing bacteria have been isolated, studies on molecular basis of As(V) respiration are limited. In this study, the isolation and molecular characterization of relationship between As(V) respiration and As resistance were investigated. Forty-nine strains were isolated in the presence of 10 mM As(V) under anaerobic condition from arsenic-contaminated groundwater in Blackfoot disease region in Taiwan. ArrA and ArsR were used as marker genes for As(V) respiration and As resistance, respectively, by means of PCR. Of these isolated strains, one designed as L6510 was selected for further investigation because it appears to contain both ArrA and ArsR genes. Moreover, L6510 was able to grow under aerobic and anaerobic conditions. Resistance tests showed that L6510 was able to resist the high concentrations of As(V) and As(III) when grown in LB medium. Together, L6510 might possess both As(V) respiration and As resistance pathways. Further investigations including As(V) respiration, phylogenetic analysis, growth characteristics, and transposon mutagenesis

  1. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  2. Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outermembrane proteins.

    PubMed

    Phillips, Nancy J; Steichen, Christopher T; Schilling, Birgit; Post, Deborah M B; Niles, Richard K; Bair, Thomas B; Falsetta, Megan L; Apicella, Michael A; Gibson, Bradford W

    2012-01-01

    Neisseria gonorrhoeae, the causative agent of gonorrhea, can form biofilms in vitro and in vivo. In biofilms, the organism is more resistant to antibiotic treatment and can serve as a reservoir for chronic infection. We have used stable isotope labeling by amino acids in cell culture (SILAC) to compare protein expression in biofilm and planktonic organisms. Two parallel populations of N. gonorrhoeae strain 1291, which is an arginine auxotroph, were grown for 48 h in continuous-flow chambers over glass, one supplemented with (13)C(6)-arginine for planktonic organisms and the other with unlabeled arginine for biofilm growth. The biofilm and planktonic cells were harvested and lysed separately, and fractionated into three sequential protein extracts. Corresponding heavy (H) planktonic and light (L) biofilm protein extracts were mixed and separated by 1D SDS-PAGE gels, and samples were extensively analyzed by liquid chromatography-mass spectrometry. Overall, 757 proteins were identified, and 152 unique proteins met a 1.5-fold cutoff threshold for differential expression with p-values <0.05. Comparing biofilm to planktonic organisms, this set included 73 upregulated and 54 downregulated proteins. Nearly a third of the upregulated proteins were involved in energy metabolism, with cell envelope proteins making up the next largest group. Of the downregulated proteins, the largest groups were involved in protein synthesis and energy metabolism. These proteomics results were compared with our previously reported results from transcriptional profiling of gonococcal biofilms using microarrays. Nitrite reductase and cytochrome c peroxidase, key enzymes required for anaerobic growth, were detected as highly upregulated in both the proteomic and transcriptomic datasets. These and other protein expression changes observed in the present study were consistent with a shift to anaerobic respiration in gonococcal biofilms, although changes in membrane proteins not explicitly related

  3. Reductive Dechlorination of Carbon Tetrachloride by Tetrachloroethene and Trichloroethene Respiring Anaerobic Mixed Cultures

    NASA Astrophysics Data System (ADS)

    Vickstrom, K. E.; Azizian, M.; Semprini, L.

    2015-12-01

    Carbon tetrachloride (CT) is a toxic and recalcitrant groundwater contaminant with the potential to form a broad range of transformation products. Of the possible biochemical pathways through which CT can be degraded, reductive dehalogenation to less chlorinated compounds and mineralization to carbon dioxide (CO2) appear to be the most frequently utilized pathways by anaerobic organisms. Results will be presented from batch experiments of CT degradation by the Evanite (EV), Victoria Strain (VS) and Point Mugu (PM) anaerobic dechlorinating cultures. The cultures are grown in chemostats and are capable of transforming tetrachloroethene (PCE) or trichloroethene (TCE) to ethene by halorespiration via reductive dehalogenase enzymes. For the batch CT transformation tests, the cells along with supernatant were harvested from chemostats fed PCE or TCE, but never CT. The batch reactors were initially fed 0.0085 mM CT and an excess of formate (EV and VS) or lactate (PM) as electron donor. Transformation of CT was 100% with about 20% converted to chloroform (CF) and undetected products. Multiple additions of CT showed a slowing of pseudo first-order CT transformation rates across all cultures. Batch reactors were then established and fed 0.085 mM CT with an excess of electron donor in order to better quantify the reductive pathway. CT was transformed to CF and dichloromethane (DCM), with trace amounts of chloromethane (CM) detected. Between 60-90% of the mass added to the system was accounted for, showing that the majority of the carbon tetrachloride present is being reductively dehalogenated. Results from batch reactors that were poisoned using sodium azide, and from reactors not provided electron donor will be presented to distinguish between biotic and abiotic reactions. Furthermore, results from reactors prepared with acetylene (a potent, reversible inhibitor of reductive dehalogenases (1)) will be presented as a means of identifying the enzymes involved in the

  4. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota.

    PubMed

    Ravcheev, Dmitry A; Thiele, Ines

    2014-01-01

    Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities.

  5. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota.

    PubMed

    Ravcheev, Dmitry A; Thiele, Ines

    2014-01-01

    Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities. PMID:25538694

  6. Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis.

    PubMed

    Gao, Haichun; Wang, Xiaohu; Yang, Zamin K; Chen, Jingrong; Liang, Yili; Chen, Haijiang; Palzkill, Timothy; Zhou, Jizhong

    2010-12-28

    In the genome of Shewanella oneidensis, genes encoding the global regulators ArcA, Crp, and EtrA have been identified. All these proteins deviate from their counterparts in E. coli significantly in terms of functionality and regulon. It is worth investigating the involvement and relationship of these global regulators in aerobic and anaerobic respiration in S. oneidensis. In this study, the impact of the transcriptional factors ArcA, Crp, and EtrA on aerobic and anaerobic respiration in S. oneidensis were assessed. While all these proteins appeared to be functional in vivo, the importance of individual proteins in these two major biological processes differed. The ArcA transcriptional factor was critical in aerobic respiration while the Crp protein was indispensible in anaerobic respiration. Using a newly developed reporter system, it was found that expression of arcA and etrA was not influenced by growth conditions but transcription of crp was induced by removal of oxygen. An analysis of the impact of each protein on transcription of the others revealed that Crp expression was independent of the other factors whereas ArcA repressed both etrA and its own transcription while EtrA also repressed arcA transcription. Transcriptional levels of arcA in the wild type, crp, and etrA strains under either aerobic or anaerobic conditions were further validated by quantitative immunoblotting with a polyclonal antibody against ArcA. This extensive survey demonstrated that all these three global regulators are functional in S. oneidensis. In addition, the reporter system constructed in this study will facilitate in vivo transcriptional analysis of targeted promoters.

  7. Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis

    SciTech Connect

    Gao, Haichun; Wang, Xiaohu; Chen, Jingrong; Liang, Yili; Chen, Haijiang; Palzkill, Timothy; Zhou, Jizhong

    2010-01-01

    In the genome of Shewanella oneidensis, genes encoding the global regulators ArcA, Crp, and EtrA have been identified. All these proteins deviate from their counterparts in E. coli significantly in terms of functionality and regulon. It is worth investigating the involvement and relationship of these global regulators in aerobic and anaerobic respiration in S. oneidensis. In this study, the impact of the transcriptional factors ArcA, Crp, and EtrA on aerobic and anaerobic respiration in S. oneidensis were assessed. While all these proteins appeared to be functional in vivo, the importance of individual proteins in these two major biological processes differed. The ArcA transcriptional factor was critical in aerobic respiration while the Crp protein was indispensible in anaerobic respiration. Using a newly developed reporter system, it was found that expression of arcA and etrA was not influenced by growth conditions but transcription of crp was induced by removal of oxygen. An analysis of the impact of each protein on transcription of the others revealed that Crp expression was independent of the other factors whereas ArcA repressed both etrA and its own transcription while EtrA also repressed arcA transcription. Transcriptional levels of arcA in the wild type, crp, and etrA strains under either aerobic or anaerobic conditions were further validated by quantitative immunoblotting with a polyclonal antibody against ArcA. This extensive survey demonstrated that all these three global regulators are functional in S. oneidensis. In addition, the reporter system constructed in this study will facilitate in vivo transcriptional analysis of targeted promoters.

  8. Isolation and characterisation of non-anaerobic butanol-producing symbiotic system TSH06.

    PubMed

    Wang, Genyu; Wu, Pengfei; Liu, Ya; Mi, Shuo; Mai, Shuai; Gu, Chunkai; Wang, Gehua; Liu, Hongjuan; Zhang, Jianan; Børresen, Børre Tore; Mellemsæther, Evy; Kotlar, Hans Kristian

    2015-10-01

    Butanol-producing microorganisms are all obligate anaerobes. In this study, a unique symbiotic system TSH06 was isolated to be capable of producing butanol under non-anaerobic condition. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S ribosomal RNA (rRNA) revealed that two strains coexist in TSH06. The two strains were identical to Clostridium acetobutylicum and Bacillus cereus, respectively. They were isolated individually and named as C. acetobutylicum TSH1 and B. cereus TSH2. C. acetobutylicum TSH1 is a butanol-producing, obligate anaerobic strain. Facultative anaerobic B. cereus TSH2 did not possess the ability of butanol production; however, it offered C. acetobutylicum TSH1 the viability under non-anaerobic condition. Moreover, B. cereus TSH2 enhanced butanol yield and speed of fermentation. TSH06 produced 12.97 g/L butanol and 15.39 g/L total solvent under non-anaerobic condition, which is 25 and 24 %, respectively, higher than those of C. acetobutylicum TSH1. In addition, TSH06 produced butanol faster under non-anaerobic condition than under anaerobic condition. Butanol accounted for more than 80 % of total solvent, which is higher than the known report. TSH06 was stable during passage. In all, TSH06 is a promising candidate for industrialisation of biobutanol with high yield, high butanol proportion, easy-handling and time-saving system. These results demonstrated the potential advantage of symbiosis. This study also provides a promising strategy for butanol fermentation. PMID:26272091

  9. Isolation and characterisation of non-anaerobic butanol-producing symbiotic system TSH06.

    PubMed

    Wang, Genyu; Wu, Pengfei; Liu, Ya; Mi, Shuo; Mai, Shuai; Gu, Chunkai; Wang, Gehua; Liu, Hongjuan; Zhang, Jianan; Børresen, Børre Tore; Mellemsæther, Evy; Kotlar, Hans Kristian

    2015-10-01

    Butanol-producing microorganisms are all obligate anaerobes. In this study, a unique symbiotic system TSH06 was isolated to be capable of producing butanol under non-anaerobic condition. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S ribosomal RNA (rRNA) revealed that two strains coexist in TSH06. The two strains were identical to Clostridium acetobutylicum and Bacillus cereus, respectively. They were isolated individually and named as C. acetobutylicum TSH1 and B. cereus TSH2. C. acetobutylicum TSH1 is a butanol-producing, obligate anaerobic strain. Facultative anaerobic B. cereus TSH2 did not possess the ability of butanol production; however, it offered C. acetobutylicum TSH1 the viability under non-anaerobic condition. Moreover, B. cereus TSH2 enhanced butanol yield and speed of fermentation. TSH06 produced 12.97 g/L butanol and 15.39 g/L total solvent under non-anaerobic condition, which is 25 and 24 %, respectively, higher than those of C. acetobutylicum TSH1. In addition, TSH06 produced butanol faster under non-anaerobic condition than under anaerobic condition. Butanol accounted for more than 80 % of total solvent, which is higher than the known report. TSH06 was stable during passage. In all, TSH06 is a promising candidate for industrialisation of biobutanol with high yield, high butanol proportion, easy-handling and time-saving system. These results demonstrated the potential advantage of symbiosis. This study also provides a promising strategy for butanol fermentation.

  10. Anaerobic respiration in engineered Escherichia coli with an internal electron acceptor to produce fuel ethanol.

    PubMed

    Peterson, Joy Doran; Ingram, Lonnie O

    2008-03-01

    Environmental concerns and unease with U.S. dependence on foreign oil have renewed interest in converting biomass into fuel ethanol. The volume of plant matter available makes lignocellulose conversion to ethanol desirable, although no one isolated organism has been shown to break bonds in lignocellulose and efficiently metabolize resulting sugars into one product. This work reviews directed engineering coupled with metabolic evolution resulting in microbial biocatalysts that produce up to 45 g L(-1) ethanol in 48 hours in a simple mineral salts medium and that convert various compounds of lignocellulosic materials to ethanol. Mutations contributing to ethanologenesis are discussed along with adding enzymatic capabilities to existing biocatalysts in order to decrease the commercial enzymes required to reduce plant matter into fermentable sugars.

  11. Differences in nitric oxide steady states between arginine, hypoxanthine, uracil auxotrophs (AHU) and non-AHU strains of Neisseria gonorrhoeae during anaerobic respiration in the presence of nitrite.

    PubMed

    Barth, Kenneth; Clark, Virginia L

    2008-08-01

    Neisseria gonorrhoeae can grow by anaerobic respiration using nitrite as an alternative electron acceptor. Under these growth conditions, N. gonorrhoeae produces and degrades nitric oxide (NO), an important host defense molecule. Laboratory strain F62 has been shown to establish and maintain a NO steady-state level that is a function of the nitrite reductase/NO reductase ratio and is independent of cell number. The nitrite reductase activities (122-197 nmol NO2 reduced x min(-1) x OD600(-1)) and NO reductase activities (88-155 nmol NO reduced x min(-1) x OD600(-1)) in a variety of gonococcal clinical isolates were similar to the specific activities seen in F62 (241 nmol NO2 reduced x min(-1) x OD600(-1) and 88 nmol NO reduced x min(-1) x OD600(-1), respectively). In seven gonococcal strains, the NO steady-state levels established in the presence of nitrite were similar to that of F62 (801-2121 nmol x L-1 NO), while six of the strains, identified as arginine, hypoxanthine, and uracil auxotrophs (AHU), that cause asymptomatic infection in men had either two- to threefold (373-579 nmol x L-1 NO) or about 100-fold (13-24 nmol x L-1 NO) lower NO steady-state concentrations. All tested strains in the presence of a NO donor, 2,2'-(hydroxynitrosohydrazono)bis-ethanimine/NO, quickly lowered and maintained NO levels in the noninflammatory range of NO (<300 nmol x L-1). The generation of a NO steady-state concentration was directly affected by alterations in respiratory control in both F62 and an AHU strain, although differences in membrane function are suspected to be responsible for NO steady-state level differences in AHU strains.

  12. Fermentative characteristics and fibrolytic activities of anaerobic gut fungi isolated from wild and domestic ruminants.

    PubMed

    Paul, Shyam S; Kamra, Devki N; Sastry, Vadali R B

    2010-08-01

    Fermentative characteristics and fibrolytic enzyme activities of anaerobic gut fungi from wild (17 isolates) and domestic ruminants (15 isolates) were examined. In a medium containing 0.5% wheat straw and 0.02% cellobiose as energy source, activities of carboxymethyl cellulase (CMCase), avicelase, xylanase, acetyl esterase and protease produced by the fungal isolates were investigated. Average activity of CMCase (17.4 vs. 8.25 mIU ml(-1)), acetyl esterase (134 vs. 57 mIU ml(-1)) and protease (4400 vs. 1683 mIU ml(-1)) were significantly higher in isolates from wild ruminants than those from domestic ruminants. Xylanase and avicelase activities were comparable. When compared irrespective of source, fungal isolates having monocentric growth pattern produced more fibrolytic enzymes than isolates having polycentric growth pattern. CMCase, xylanase, avicelase activities were highest in Neocallimastix isolates. Acetyl esterase activity was highest in Piromyces and Neocallimastix isolates. Protease activity was highest in Piromyces isolates followed closely by Neocallimastix isolates. Between isolates from wild and domestic ruminants few differences were observed in pattern of carbohydrate utilisation and end products of fermentation. Inter-strain differences in the end product formation were apparent. All of the isolates produced acetate, lactate and formate; only a few isolates produced succinate. For isolation of superior fibrolytic isolates of anaerobic fungi, greater emphasis should be given to the screening of enzyme activities of isolates of genera Neocallimastix and Piromyces.

  13. Isolation, culture characteristics, and identification of anaerobic bacteria from the chicken cecum.

    PubMed

    Salanitro, J P; Fairchilds, I G; Zgornicki, Y D

    1974-04-01

    Studies on the anaerobic cecal microflora of the 5-week-old chicken were made to determine a suitable roll-tube medium for enumeration and isolation of the bacterial population, to determine effects of medium components on recovery of total anaerobes, and to identify the predominant bacterial groups. The total number of microorganisms in cecal contents determined by direct microscope cell counts varied (among six samples) from 3.83 x 10(10) to 7.64 x 10(10) per g. Comparison of different nonselective media indicated that 60% of the direct microscope count could be recovered with a rumen fluid medium (M98-5) and 45% with medium 10. Deletion of rumen fluid from M98-5 reduced the total anaerobic count by half. Colony counts were lower if chicken cecal extract was substituted for rumen fluid in M98-5. Supplementing medium 10 with liver, chicken fecal, or cecal extracts improved recovery of anaerobes slightly. Prereduced blood agar media were inferior to M98-5. At least 11 groups of bacteria were isolated from high dilutions (10(-9)) of cecal material. Data on morphology and physiological and fermentation characteristics of 90% of the 298 isolated strains indicated that these bacteria represented species of anaerobic gram-negative cocci, facultatively anaerobic cocci and streptococci, Peptostreptococcus, Propionibacterium, Eubacterium, Bacteroides, and Clostridium. The growth of many of these strains was enhanced by rumen fluid, yeast extract, and cecal extract additions to basal media. These studies indicate that some of the more numerous anaerobic bacteria present in chicken cecal digesta can be isolated and cultured when media and methods that have been developed for ruminal bacteria are employed.

  14. Properties of anaerobic fungi isolated from several habitats: complexity of phenotypes.

    PubMed

    Zelená, Viera; Birošová, Lucia; Olejníková, Petra; Polák, Martin; Lakatoš, Boris; Varečka, Ľudovít

    2016-01-01

    Isolates of anaerobic fungi from rumen, animal faeces and compost displayed morphological similarity with known anaerobic fungi. According to their ITS sequences, species were related to Neocallimastix and Piromyces. Rumen fungi tolerated exposure to an aerobic atmosphere for at least four days. Under anaerobic conditions, they could grow on both, defined or complex substrates. Growth in liquid media was monitored by the continuous measurement of metabolic gases (O2, CO2, H2, CO, H2S, CH4). Monitored metabolism was complex, showed that both CO2 and H2 were produced and subsequently consumed by yet unknown metabolic pathway(s). CO and H2S were evolved similarly, but not identically with the generation of CO2 and H2 suggesting their connection with energetic metabolism. Anaerobic fungi from snail faeces and compost produced concentrations of H2S, H2, CO near the lower limit of detection. The rumen isolates produced cellulases and xylanases with similar pH and temperature optima. Proteolytic enzymes were secreted as well. Activities of some enzymes of the main catabolic pathways were found in cell-free homogenates of mycelia. The results indicate the presence of the pentose cycle, the glyoxylate cycle and an incomplete citrate cycle in these fungi. Differences between isolates indicate phenotypic variability between anaerobic fungi.

  15. Isolation, characterization, and ecology of sulfur-respiring crenarchaea inhabiting acid-sulfate-chloride-containing geothermal springs in Yellowstone National Park.

    PubMed

    Boyd, Eric S; Jackson, Robert A; Encarnacion, Gem; Zahn, James A; Beard, Trevor; Leavitt, William D; Pi, Yundan; Zhang, Chuanlun L; Pearson, Ann; Geesey, Gill G

    2007-10-01

    Elemental sulfur (S(0)) is associated with many geochemically diverse hot springs, yet little is known about the phylogeny, physiology, and ecology of the organisms involved in its cycling. Here we report the isolation, characterization, and ecology of two novel, S(0)-reducing Crenarchaea from an acid geothermal spring referred to as Dragon Spring. Isolate 18U65 grows optimally at 70 to 72 degrees C and at pH 2.5 to 3.0, while isolate 18D70 grows optimally at 81 degrees C and pH 3.0. Both isolates are chemoorganotrophs, dependent on complex peptide-containing carbon sources, S(0), and anaerobic conditions for respiration-dependent growth. Glycerol dialkyl glycerol tetraethers (GDGTs) containing four to six cyclopentyl rings were present in the lipid fraction of isolates 18U65 and 18D70. Physiological characterization suggests that the isolates are adapted to the physicochemical conditions of Dragon Spring and can utilize the natural organic matter in the spring as a carbon and energy source. Quantitative PCR analysis of 16S rRNA genes associated with the S(0) flocs recovered from several acid geothermal springs using isolate-specific primers indicates that these two populations together represent 17 to 37% of the floc-associated DNA. The physiological characteristics of isolates 18U65 and 18D70 are consistent with their potential widespread distribution and putative role in the cycling of sulfur in acid geothermal springs throughout the Yellowstone National Park geothermal complex. Based on phenotypic and genetic characterization, the designations Caldisphaera draconis sp. nov. and Acidilobus sulfurireducens sp. nov. are proposed for isolates 18U65 and 18D70, respectively.

  16. Isolation, Characterization, and Ecology of Sulfur-Respiring Crenarchaea Inhabiting Acid-Sulfate-Chloride-Containing Geothermal Springs in Yellowstone National Park▿ †

    PubMed Central

    Boyd, Eric S.; Jackson, Robert A.; Encarnacion, Gem; Zahn, James A.; Beard, Trevor; Leavitt, William D.; Pi, Yundan; Zhang, Chuanlun L.; Pearson, Ann; Geesey, Gill G.

    2007-01-01

    Elemental sulfur (S0) is associated with many geochemically diverse hot springs, yet little is known about the phylogeny, physiology, and ecology of the organisms involved in its cycling. Here we report the isolation, characterization, and ecology of two novel, S0-reducing Crenarchaea from an acid geothermal spring referred to as Dragon Spring. Isolate 18U65 grows optimally at 70 to 72°C and at pH 2.5 to 3.0, while isolate 18D70 grows optimally at 81°C and pH 3.0. Both isolates are chemoorganotrophs, dependent on complex peptide-containing carbon sources, S0, and anaerobic conditions for respiration-dependent growth. Glycerol dialkyl glycerol tetraethers (GDGTs) containing four to six cyclopentyl rings were present in the lipid fraction of isolates 18U65 and 18D70. Physiological characterization suggests that the isolates are adapted to the physicochemical conditions of Dragon Spring and can utilize the natural organic matter in the spring as a carbon and energy source. Quantitative PCR analysis of 16S rRNA genes associated with the S0 flocs recovered from several acid geothermal springs using isolate-specific primers indicates that these two populations together represent 17 to 37% of the floc-associated DNA. The physiological characteristics of isolates 18U65 and 18D70 are consistent with their potential widespread distribution and putative role in the cycling of sulfur in acid geothermal springs throughout the Yellowstone National Park geothermal complex. Based on phenotypic and genetic characterization, the designations Caldisphaera draconis sp. nov. and Acidilobus sulfurireducens sp. nov. are proposed for isolates 18U65 and 18D70, respectively. PMID:17720836

  17. Anaerobic respiration and antioxidant responses of Corythucha ciliata (Say) adults to heat-induced oxidative stress under laboratory and field conditions.

    PubMed

    Ju, Rui-Ting; Wei, He-Ping; Wang, Feng; Zhou, Xu-Hui; Li, Bo

    2014-03-01

    High temperature often induces oxidative stress and antioxidant response in insects. This phenomenon has been well documented under controlled laboratory conditions, but whether it happens under fluctuating field conditions is largely unknown. In this study, we used an invasive lace bug (Corythucha ciliata) as a model species to compare the effects of controlled thermal treatments (2 h at 33-43 °C with 2 °C intervals in the laboratory) and naturally fluctuating thermal conditions (08:00-14:00 at 2-h intervals (29.7-37.2 °C) on a hot summer day in a field in Shanghai, China) on lipid peroxidation (malondialdehyde (MDA) was the marker) and anaerobic respiration (lactate dehydrogenase (LDH) was the marker), as well as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione reductase (GR). The results show that MDA concentration increased significantly in response to heat stresses with similar trend in the laboratory and field. LDH activities did not significantly vary across temperatures in the laboratory-exposed individuals, but they significantly increased by rising temperature in the field. The activities or concentrations of SOD, CAT, GSH, and GR all significantly increased with increasing temperature in the two populations. These findings indicate that high temperature induces oxidative stress, resulting in high anaerobic respiration and antioxidant defenses in C. ciliata under both the laboratory and field conditions, which likely provide a defense mechanism against oxidative damage due to the accumulation of ROS.

  18. Clinically significant anaerobic bacteria isolated from patients in a South African academic hospital: antimicrobial susceptibility testing.

    PubMed

    Naidoo, S; Perovic, O; Richards, G A; Duse, A G

    2011-09-27

    BACKGROUND. Increasing resistance to some antimicrobial agents among anaerobic bacteria has made susceptibility patterns less predictable. METHOD. This was a prospective study of the susceptibility data of anaerobic organisms isolated from clinical specimens from patients with suspected anaerobic infections from June 2005 until February 2007. Specimens were submitted to the microbiology laboratory at Charlotte Maxeke Johannesburg Academic Hospital, where microscopy, culture and susceptibility testing were performed the using E test® strip minimum inhibitory concentration method. Results were interpreted with reference to Clinical and Laboratory Standards Institute guidelines for amoxicillin-clavulanate, clindamycin, metronidazole, penicillin, ertapenem, cefoxitin, ceftriaxone, chloramphenicol and piperacillin-tazobactam. RESULTS. One hundred and eighty anaerobic isolates were submitted from 165 patients. The most active antimicrobial agents were chloramphenicol (100% susceptible), ertapenem (97.2%), piperacillin-tazobactam (99.4%) and amoxicillin-clavulanic acid (96.7%). Less active were metronidazole (89.4%), cefoxitin (85%), clindamycin (81.7%), ceftriaxone (68.3%) and penicillin (33.3%). CONCLUSION. Susceptibility testing should be performed periodically to identify emerging trends in resistance and to modify empirical treatment of anaerobic infections.

  19. Isolation and Characterization of an Enterobacter cloacae Strain That Reduces Hexavalent Chromium under Anaerobic Conditions

    PubMed Central

    Wang, Pi-Chao; Mori, Tsukasa; Komori, Kohya; Sasatsu, Masanori; Toda, Kiyoshi; Ohtake, Hisao

    1989-01-01

    An Enterobacter cloacae strain (HO1) capable of reducing hexavalent chromium (chromate) was isolated from activated sludge. This bacterium was resistant to chromate under both aerobic and anaerobic conditions. Only the anaerobic culture of the E. cloacae isolate showed chromate reduction. In the anaerobic culture, yellow turned white with chromate and the turbidity increased as the reduction proceeded, suggesting that insoluble chromium hydroxide was formed. E. cloacae is likely to utilize toxic chromate as an electron acceptor anaerobically because (i) the anaerobic growth of E. cloacae HO1 accompanied the decrease of toxic chromate in culture medium, (ii) the chromate-reducing activity was rapidly inhibited by oxygen, and (iii) the reduction occurred more rapidly in glycerol- or acetate-grown cells than in glucose-grown cells. The chromate reduction in E. cloacae HO1 was observed at pH 6.0 to 8.5 (optimum pH, 7.0) and at 10 to 40°C (optimum, 30°C). PMID:16347962

  20. [Isolation and characterization of a facultative anaerobic aniline-degrading bacterium].

    PubMed

    Zeng, Guo-Qu; Ren, Sui-Zhou; Cao, Wei; Hu, Jin-Cai; Lin, Lu-Jing; Sun, Guo-Ping

    2006-08-01

    An aniline-degrading bacterium (designated strain AN29) was isolated from dyeing wastewater process (anaerobic baffled reactor, ABR) with the capability of utilizing aniline as sole carbon source and nitrogen source. It was identified as Pseudomonas sp. based upon the phenotypic properties and a partial analysis of the 16S rDNA. The strain could degrade aniline under the aerobic and anaerobic conditions, the optimal initial pH 6.5 - 8.0, a temperature of 37 degrees C, and initial aniline concentrations of 500 - 2 000 mg/L with maximum concentration of 4 000 mg/L respectively.

  1. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil.

    PubMed

    Tonomura, Mimori; Ehara, Ayaka; Suzuki, Haruo; Amachi, Seigo

    2015-01-01

    Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified. PMID:25977440

  2. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil

    PubMed Central

    Tonomura, Mimori; Ehara, Ayaka; Suzuki, Haruo

    2015-01-01

    Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified. PMID:25977440

  3. Respiration and respiratory enzyme activity in aerobic and anaerobic cultures of the marine denitrifying bacterium, Pseudomonas perfectomarinus

    NASA Astrophysics Data System (ADS)

    Packard, T. T.; Garfield, P. C.; Martinez, R.

    1983-03-01

    Oxygen consumption, nitrate reduction, respiratory electron transport activity, and nitrate reductase activity were measured in aerobic and anaerobic cultures of the marine bacterium, Pseudomonas perfectomarinus. The respiratory electron transport activity was closely correlated with oxygen consumption ( r = 0.98) in aerobic cultures and nearly as well correlated with nitrate reductase activity ( r = 0.91) and nitrate reduction ( r = 0.85) in anaerobic cultures. It was also well correlated with biomass in both aerobic ( r = 0.99) and anaerobic ( r = 0.94) cultures supporting the use of tetrazolium reduction as an index of living biomass. Time courses of nitrate and nitrate in the anaerobic cultures demonstrated that at nitrate concentrations above 1 mM, denitrification proceeds stepwise. Time courses of pH in anaerobic cultures revealed a rise from 7 to 8.5 during nitrite reduction indicating net proton utilization. This proton utilization is predicted by the stoichiometry of denitrification. Although the experiments were not under 'simulated in situ' conditions, the results are relevant to studies of denitrification, to bacterial ATP production, and to the respiratory activity of marine plankton in the ocean.

  4. Isolation of Chlamydomonas reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement.

    PubMed

    Massoz, Simon; Larosa, Véronique; Horrion, Bastien; Matagne, René F; Remacle, Claire; Cardol, Pierre

    2015-12-10

    The unicellular green alga Chlamydomonas reinhardtii is a model organism for studying energetic metabolism. Most mitochondrial respiratory-deficient mutants characterized to date have been isolated on the basis of their reduced ability to grow in heterotrophic conditions. Mitochondrial deficiencies are usually partly compensated by adjustment of photosynthetic activity and more particularly by transition to state 2. In this work, we explored the opportunity to select mutants impaired in respiration and/or altered in dark metabolism by measuring maximum photosynthetic efficiency by chlorophyll fluorescence analyses (FV/FM). Out of about 2900 hygromycin-resistant insertional mutants generated from wild type or from a mutant strain deficient in state transitions (stt7 strain), 22 were found to grow slowly in heterotrophic conditions and 8 of them also showed a lower FV/FM value. Several disrupted coding sequences were identified, including genes coding for three different subunits of respiratory-chain complex I (NUO9, NUOA9, NUOP4) or for isocitrate lyase (ICL1). Overall, the comparison of respiratory mutants obtained in wild-type or stt7 genetic backgrounds indicated that the FV/FM value can be used to isolate mutants severely impaired in dark metabolism.

  5. A comparison of media used in vitro to isolate non-sporing Gram-negative anaerobes from blood.

    PubMed

    Forgan-Smith, W R; Darrell, J H

    1974-04-01

    Five anaerobic media were compared in a model blood culture system for their ability to recover small inocula of Gram-negative non-sporing anaerobes. Dehydrated cooked meat medium was the least effective; USP thioglycollate medium was the most effective isolation medium and is recommended for routine use. Freshly prepared cooked meat medium has the advantage of allowing prolonged survival of strains.

  6. Isolation of Strain MLTeJB From Mono Lake, California, a Dissimilatory Tellurite Respiring Prokaryote.

    NASA Astrophysics Data System (ADS)

    Baesman, S. M.; Oremland, R. S.

    2007-12-01

    Previous investigations on the dissimilatory reduction of Te-oxyanions have been constrained by the inhibtory effects of circa 1.0 mM concentrations of either Te(IV) or Te(VI) upon growth of established cultures. Therefore we initiated new enrichments using anoxic Mono Lake mud supplemented with 10 mM Te(IV) as the electron acceptor and lactate as the electron donor. Sediments turned black with time owing to the formation of Te(0), microscopic examination of which confirmed the presence of both shards, rosettes, and nanospheres of Te(0). The enrichment was subcultured several times in liquid medium and then streaked onto solid medium and incubated in an anaerobic chamber. Isolated black colonies were re-streaked several times, and thence inoculated into liquid medium. However, growth in liquid medium required the presence of a small amount of solid phase, which included a plug of either agar, phytagel, or glass beads. Growth resulted in oxidation of lactate to acetate, formate and CO2 with the reduction of Te(IV) to Te(0). The isolate, strain MLTeJB was a non-motile rod that stained Gram positive, and formed copious exogenous deposits of Te(0) nano-shards and rosettes. Further details on the physiology of this organism will be presented.

  7. An analysis of the control of phosphorylation-coupled respiration in isolated plant mitochondria.

    PubMed

    Padovan, A C; Dry, I B; Wiskich, J T

    1989-07-01

    The control of phosphorylation-coupled respiration in isolated turnip (Brassica rapa) mitochondria was investigated according to the principles of metabolic control analysis as developed by H. Kacser and J. A. Burns ([1973] Symp Soc Exp Biol 32: 65-104) and R. Heinrich and T. A. Rapoport ([1974] Eur J Biochem 42: 97-105). Inhibitor titration studies were used to determine quantitatively the amount of control exerted by four individual processes-cytochrome bc(1), cytochrome oxidase, H(+)-ATPase, and the adenine nucleotide carrier-on respiratory flux under ADP-excess (state 3) and ADP-limited (state 4) conditions with a range of respiratory substrates. Under state 3 conditions control strength was found to be distributed between cytochrome oxidase, cytochrome bc(1), and H(+)-ATPase in decreasing order of importance. The adenine nucleotide carrier exerted no control on respiratory flux under these conditions. Control strength at each step was found to vary with different substrates and with the respiratory flux as altered by ADP supply, i.e. virtually zero control strength at cytochrome oxidase and cytochrome bc(1) under state 4 conditions.

  8. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013.

    PubMed

    Novak, Anita; Rubic, Zana; Dogas, Varja; Goic-Barisic, Ivana; Radic, Marina; Tonkic, Marija

    2015-02-01

    Anaerobic bacteria play a significant role in many endogenous polymicrobial infections. Since antimicrobial resistance among anaerobes has increased worldwide, it is useful to provide local susceptibility data to guide empirical therapy. The present study reports recent data on the susceptibility of clinically relevant anaerobes in a University Hospital Centre (UHC) Split, Croatia. A total of 63 Gram-negative and 59 Gram-positive anaerobic clinical isolates from various body sites were consecutively collected from January to December 2013. Antimicrobial susceptibility testing was performed using standardized methods and interpreted using EUCAST criteria. Patient's clinical and demographic data were recorded by clinical microbiologist. Among 35 isolates of Bacteroides spp., 97.1% were resistant to penicillin (PCN), 5.7% to amoxicillin/clavulanic acid (AMC), 8.6% to piperacillin/tazobactam (TZP), 29.0% to clindamycin (CLI) and 2.9% to metronidazole (MZ). Percentages of susceptible strains to imipenem (IPM), meropenem (MEM) and ertapenem (ETP) were 94.3. Resistance of other Gram-negative bacilli was 76.0% to PCN, 8.0% to AMC, 12.0% to TZP, 28.0% to CLI and 8% to MZ. All other Gram-negative strains were fully susceptible to MEM and ETP, while 96.0% were susceptible to IPM. Clostridium spp. isolates were 100% susceptible to all tested antibiotics except to CLI (two of four tested isolates were resistant). Propionibacterium spp. showed resistance to CLI in 4.3%, while 100% were resistant to MZ. Among other Gram-positive bacilli, 18.2% were resistant to PCN, 9.1% to CLI and 54.5% to MZ, while 81.8% of isolates were susceptible to carbapenems. Gram-positive cocci were 100% susceptible to all tested antimicrobials except to MZ, where 28.6% of resistant strains were recorded. Abdomen was the most common source of isolates (82.5%). The most prevalent types of infection were abscess (22.1%), sepsis (14.8%), appendicitis (13.9%) and peritonitis (6.6%). Twenty four patients (19

  9. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013.

    PubMed

    Novak, Anita; Rubic, Zana; Dogas, Varja; Goic-Barisic, Ivana; Radic, Marina; Tonkic, Marija

    2015-02-01

    Anaerobic bacteria play a significant role in many endogenous polymicrobial infections. Since antimicrobial resistance among anaerobes has increased worldwide, it is useful to provide local susceptibility data to guide empirical therapy. The present study reports recent data on the susceptibility of clinically relevant anaerobes in a University Hospital Centre (UHC) Split, Croatia. A total of 63 Gram-negative and 59 Gram-positive anaerobic clinical isolates from various body sites were consecutively collected from January to December 2013. Antimicrobial susceptibility testing was performed using standardized methods and interpreted using EUCAST criteria. Patient's clinical and demographic data were recorded by clinical microbiologist. Among 35 isolates of Bacteroides spp., 97.1% were resistant to penicillin (PCN), 5.7% to amoxicillin/clavulanic acid (AMC), 8.6% to piperacillin/tazobactam (TZP), 29.0% to clindamycin (CLI) and 2.9% to metronidazole (MZ). Percentages of susceptible strains to imipenem (IPM), meropenem (MEM) and ertapenem (ETP) were 94.3. Resistance of other Gram-negative bacilli was 76.0% to PCN, 8.0% to AMC, 12.0% to TZP, 28.0% to CLI and 8% to MZ. All other Gram-negative strains were fully susceptible to MEM and ETP, while 96.0% were susceptible to IPM. Clostridium spp. isolates were 100% susceptible to all tested antibiotics except to CLI (two of four tested isolates were resistant). Propionibacterium spp. showed resistance to CLI in 4.3%, while 100% were resistant to MZ. Among other Gram-positive bacilli, 18.2% were resistant to PCN, 9.1% to CLI and 54.5% to MZ, while 81.8% of isolates were susceptible to carbapenems. Gram-positive cocci were 100% susceptible to all tested antimicrobials except to MZ, where 28.6% of resistant strains were recorded. Abdomen was the most common source of isolates (82.5%). The most prevalent types of infection were abscess (22.1%), sepsis (14.8%), appendicitis (13.9%) and peritonitis (6.6%). Twenty four patients (19

  10. Faropenem, a new oral penem: antibacterial activity against selected anaerobic and fastidious periodontal isolates.

    PubMed

    Milazzo, I; Blandino, G; Caccamo, F; Musumeci, R; Nicoletti, G; Speciale, A

    2003-03-01

    The in vitro activity of faropenem, an oral penem, was compared with those of penicillin, co-amoxiclav, cefoxitin, clindamycin, erythromycin and metronidazole against 106 isolates of anaerobic pathogens involved in systemic infections. The organisms tested comprised Porphyromonas gingivalis (29), Prevotella spp. (eight), Prevotella melaninogenica (seven), Prevotella intermedia (five), Actinomyces spp. (25), Fusobacterium nucleatum (14), Peptostreptococcus spp. (11), Bacteroides ureolyticus (five) and Bacteroides forsythus (two). The antimicrobial properties of faropenem were investigated by studying MICs, MBCs, time-kill kinetics and post-antibiotic effect (PAE). Faropenem was highly active against all the anaerobes tested (MIC(90) < or = 0.5 mg/L) and was bactericidal against both beta-lactamase-positive and -negative anaerobes, with a maximum bactericidal effect at 10 x MIC at between 12 and 24 h. In addition, faropenem had an in vitro PAE on all the tested isolates and this was not influenced by beta-lactamase production. Faropenem may be useful for treating infections caused by periodontal bacteria or oral flora. PMID:12615878

  11. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production.

    PubMed

    Haitjema, Charles H; Solomon, Kevin V; Henske, John K; Theodorou, Michael K; O'Malley, Michelle A

    2014-08-01

    Anaerobic gut fungi are an early branching family of fungi that are commonly found in the digestive tract of ruminants and monogastric herbivores. It is becoming increasingly clear that they are the primary colonizers of ingested plant biomass, and that they significantly contribute to the decomposition of plant biomass into fermentable sugars. As such, anaerobic fungi harbor a rich reservoir of undiscovered cellulolytic enzymes and enzyme complexes that can potentially transform the conversion of lignocellulose into bioenergy products. Despite their unique evolutionary history and cellulolytic activity, few species have been isolated and studied in great detail. As a result, their life cycle, cellular physiology, genetics, and cellulolytic metabolism remain poorly understood compared to aerobic fungi. To help address this limitation, this review briefly summarizes the current body of knowledge pertaining to anaerobic fungal biology, and describes progress made in the isolation, cultivation, molecular characterization, and long-term preservation of these microbes. We also discuss recent cellulase- and cellulosome-discovery efforts from gut fungi, and how these interesting, non-model microbes could be further adapted for biotechnology applications.

  12. Draft Genome Sequence of Geobacter sp. Strain OR-1, an Arsenate-Respiring Bacterium Isolated from Japanese Paddy Soil

    PubMed Central

    Ehara, Ayaka; Suzuki, Haruo

    2015-01-01

    Here, we report a draft genome sequence of Geobacter sp. strain OR-1, an arsenate-respiring bacterium isolated from Japanese paddy soil. It contained two distinct arsenic islands, one including genes for a respiratory arsenate reductase (Arr) as well as for arsenic resistance (arsD-arsA-acr3-arsR-arrA-arrB) and the second containing only genes for arsenic resistance. PMID:25635012

  13. Draft Genome Sequence of Geobacter sp. Strain OR-1, an Arsenate-Respiring Bacterium Isolated from Japanese Paddy Soil.

    PubMed

    Ehara, Ayaka; Suzuki, Haruo; Amachi, Seigo

    2015-01-01

    Here, we report a draft genome sequence of Geobacter sp. strain OR-1, an arsenate-respiring bacterium isolated from Japanese paddy soil. It contained two distinct arsenic islands, one including genes for a respiratory arsenate reductase (Arr) as well as for arsenic resistance (arsD-arsA-acr3-arsR-arrA-arrB) and the second containing only genes for arsenic resistance. PMID:25635012

  14. Isolation of Anaerobic Bacteria from Human Gingiva and Mouse Cecum by Means of a Simplified Glove Box Procedure1

    PubMed Central

    Aranki, Alexander; Syed, Salam A.; Kenney, Ernest B.; Freter, Rolf

    1969-01-01

    An anaerobic glove box constructed of clear flexible vinyl plastic is described. It is sufficiently inexpensive and simple in operation to be used not only in research but also in a clinical laboratory by technicians without special training. Conventional bacteriological techniques may be used inside the glove box for culturing and transferring anaerobic bacteria. The box may be heated to 37 C and thus serve as an anaerobic incubator as well, permitting inspection of cultures at any time. Media may be prepared and agar plates may be poured on the laboratory bench in the conventional manner. An overlay of trace amounts of palladium black catalyst over plated agar media reduces the medium to an oxidation-reduction (O-R) potential of - 300 mv within 2 days after introduction into the glove box. In spite of its greater simplicity, the system matched or excelled the roll tube method with respect to all parameters tested, including O-R potential obtainable in the media, O2 concentration in the gas phase, and efficiency in isolating anaerobic bacteria from the mouse cecum. Comparative studies indicate that the conventional anaerobic jar method was inadequate for the isolation of strict anaerobes from human gingival specimens and from the mouse cecum. This was due to the exposure of specimens and media to air during plating on the open laboratory bench. Anaerobic jars were adequate for maintaining the proper conditions for growth of anaerobic bacteria once these had been established in the glove box. Images PMID:4890748

  15. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid

    SciTech Connect

    Shelton, D.R.; Tiedje, J.M.

    1984-10-01

    A methanogenic consortium able to use 3-chlorobenzoic acid as its sole energy and carbon source was enriched from anaerobic sewage sludge. Seven bacteria were isolated from the consortium in mono- or coculture. They included: one dechlorinating bacterium, one benzoate-oxidizing bacterium, two butyrate-oxidizing bacteria, two H/sub 2/-consuming methanogens (methanospirillum hungatei PM-1 and Methanobacterium sp. strain PM-2), and a sulfate-reducing bacterium (Desulfovibrio sp.). The dechlorinating bacterium was a gram-negative, obligate anaerobe with a unique collar surrounding the cell. A medium containing rumen fluid supported minimal growth; pyruvate was the only substrate found to increase growth. The bacterium had a generation time of 4 to 5 days. 3-Chlorobenzoate was dechlorinated stoichiometrically to benzoate, which accumulated in the medium; the rate of dechlorination was ca. 0.1 pmol bacterium/sup -1/ day/sup -1/. The benzoate-oxidizing bacterium was a gram-negative, obligate anaerobe and could only be grown as a syntroph. Benzoate was the only substrate observed to support growth, and, when grown in coculture with M. hungatei, it was fermented to acetate and CH/sub 4/. One butyrate-oxidizing bacterium was a gram-negative, non-sporeforming, obligate anaerobe; the other was a gram-positive, sporeforming, obligate anaerobe. Both could only be grown as syntrophs. The substrates observed to support growth of both bacteria were butyrate, 2-DL-methylbutyrate, valerate, and caproate; isobutyrate supported growth of only the sporeforming bacterium. Fermentation products were acetate and CH/sub 4/ or acetate, propionate, and CH/sub 4/ when grown in coculture with M. hungatei. A mutualism among at least the dechlorinating, benzoate-oxidizing, and methane-forming members was apparently required for utilization of the 3-chlorobenzoate substrate. 21 references, 8 figures, 2 tables.

  16. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis.

    PubMed

    Schwalb, Carsten; Chapman, Stephen K; Reid, Graeme A

    2003-08-12

    The tetraheme c-type cytochrome, CymA, from Shewanella oneidensis MR-1 has previously been shown to be required for respiration with Fe(III), nitrate, and fumarate [Myers, C. R., and Myers, J. M. (1997) J. Bacteriol. 179, 1143-1152]. It is located in the cytoplasmic membrane where the bulk of the protein is exposed to the periplasm, enabling it to transfer electrons to a series of redox partners. We have expressed and purified a soluble derivative of CymA (CymA(sol)) that lacks the N-terminal membrane anchor. We show here, by direct measurements of electron transfer between the purified proteins, that CymA(sol) efficiently reduces S. oneidensis fumarate reductase. This indicates that no further proteins are required for electron transfer between the quinone pool and fumarate if we assume direct reduction of CymA by quinols. By expressing CymA(sol) in a mutant lacking CymA, we have shown that this soluble form of the protein can complement the defect in fumarate respiration. We also demonstrate that CymA is essential for growth with DMSO (dimethyl sulfoxide) and for reduction of nitrite, implicating CymA in at least five different electron transfer pathways in Shewanella.

  17. Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments.

    PubMed

    Florentino, Anna P; Brienza, Claudio; Stams, Alfons J M; Sánchez-Andrea, Irene

    2016-03-01

    A novel acidotolerant and moderately thermophilic sulfur-reducing bacterium was isolated from sediments of the Tinto River (Spain), an extremely acidic environment. Strain TR1T stained Gram-negative, and was obligately anaerobic, non-spore-forming and motile. Cells were short rods (1.5-2 × 0.5-0.7 μm), appearing singly or in pairs. Strain TR1T was catalase-negative and slightly oxidase-positive. Urease activity and indole formation were absent, but gelatin hydrolysis was present. Growth was observed at 20-52 °C with an optimum close to 50 °C, and a pH range of 3-7 with optimum between pH 6 and 6.5. Yeast extract was essential for growth, but extra vitamins were not required. In the presence of sulfur, strain TR1T grew with acetate, formate, lactate, pyruvate, stearate, arginine and H2/CO2. All substrates were completely oxidized and H2S and CO2 were the only metabolic products detected. Besides elemental sulfur, thiosulfate was used as an electron acceptor. The isolate also grew by disproportionation of elemental sulfur. The predominant cellular fatty acids were saturated components: C16 : 0, anteiso-C17 : 0 and C18 : 0. The only quinone component detected was menaquinone MK-7(H2). The G+C content of the genomic DNA was 34 mol%. The isolate is affiliated to the genus Desulfurella of the class Deltaproteobacteria, sharing 97 % 16S rRNA gene sequence similarity with the four species described in the genus Desulfurella. Considering the distinct physiological and phylogenetic characteristics, strain TR1T represents a novel species within the genus Desulfurella, for which the name Desulfurella amilsii sp. nov. is proposed. The type strain is TR1T ( = DSM 29984T = JCM 30680T). PMID:26704766

  18. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.

    PubMed

    Taillefert, Martial; Beckler, Jordon S; Carey, Elizabeth; Burns, Justin L; Fennessey, Christine M; DiChristina, Thomas J

    2007-11-01

    The mechanism of Fe(III) reduction was investigated using voltammetric techniques in anaerobic incubations of Shewanella putrefaciens strain 200 supplemented with Fe(III) citrate or a suite of Fe(III) oxides as terminal electron acceptor. Results indicate that organic complexes of Fe(III) are produced during the reduction of Fe(III) at rates that correlate with the reactivity of the Fe(III) phase and bacterial cell density. Anaerobic Fe(III) solubilization activity is detected with either Fe(III) oxides or Fe(III) citrate, suggesting that the organic ligand produced is strong enough to destabilize Fe(III) from soluble or solid Fe(III) substrates. Results also demonstrate that Fe(III) oxide dissolution is not controlled by the intrinsic chemical reactivity of the Fe(III) oxides. Instead, the chemical reaction between the endogenous organic ligand is only affected by the number of reactive surface sites available to S. putrefaciens. This report describes the first application of voltammetric techniques to demonstrate production of soluble organic-Fe(III) complexes by any Fe(III)-reducing microorganism and is the first report of a Fe(III)-solubilizing ligand generated by a metal-reducing member of the genus Shewanella.

  19. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism.

    PubMed

    Weigel, W A; Demuth, D R; Torres-Escobar, A; Juárez-Rodríguez, M D

    2015-10-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment.

  20. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism

    PubMed Central

    Weigel, WA; Demuth, DR; Torres-Escobar, A; Juárez-Rodríguez, MD

    2015-01-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment. PMID:25923132

  1. Anaerobic High-Throughput Cultivation Method for Isolation of Thermophiles Using Biomass-Derived Substrates

    SciTech Connect

    Hamilton-Brehm, Scott; Vishnivetskaya, Tatiana A; Allman, Steve L; Mielenz, Jonathan R; Elkins, James G

    2012-01-01

    Flow cytometry (FCM) techniques have been developed for sorting mesophilic organisms, but the difficulty increases if the target microbes are thermophilic anaerobes. We demonstrate a reliable, high-throughput method of screening thermophilic anaerobic organisms using FCM and 96-well plates for growth on biomass-relevant substrates. The method was tested using the cellulolytic thermophiles Clostridium ther- mocellum (Topt = 55 C), Caldicellulosiruptor obsidiansis (Topt = 78 C) and the fermentative hyperthermo- philes, Pyrococcus furiosus (Topt = 100 C) and Thermotoga maritima (Topt = 80 C). Multi-well plates were incubated at various temperatures for approximately 72 120 h and then tested for growth. Positive growth resulting from single cells sorted into individual wells containing an anaerobic medium was verified by OD600. Depending on the growth substrate, up to 80 % of the wells contained viable cultures, which could be transferred to fresh media. This method was used to isolate thermophilic microbes from Rabbit Creek, Yellowstone National Park (YNP), Wyoming. Substrates for enrichment cultures including crystalline cellulose (Avicel), xylan (from Birchwood), pretreated switchgrass and Populus were used to cultivate organisms that may be of interest to lignocellulosic biofuel production.

  2. [Isolation, Identification and Characteristic Analysis of an Oil-producing Chlorella sp. Tolerant to High-strength Anaerobic Digestion Effluent].

    PubMed

    Yang, Chuang; Wang, Wen-guo; Ma, Dan-wei; Tang, Xiao-yu; Hu, Qi-chun

    2015-07-01

    A Chlorella strain tolerant to high-strength anaerobic digestion effluent was isolated from the anaerobic digestion effluent with a long-term exposure to air. The strain was identified as a Chlorella by morphological and molecular biological methods, and named Chlorella sp. BWY-1, The anaerobic digestion effluent used in this study was from a biogas plant with the raw materials of swine wastewater after solid-liquid separation. The Chlorella regularis (FACHB-729) was used as the control strain. The comparative study showed that Chlorella sp, BWY-Ihad relatively higher growth rate, biomass accumulation capacity and pollutants removal rate in BG11. and different concentrations of anaerobic digestion effluent. Chlorella sp. BWY-1 had the highest growth rate and biomass productivity (324.40 mg.L-1) in BG11, but its lipid productivity and lipid content increased with the increase of anaerobic digestion effluent concentration, In undiluted anaerobic digestion effluent, the lipid productivity and lipid content of Chlorella sp. BWY-1 were up to 44. 43% and 108. 70 mg.L-1, respectively. Those results showed that the isolated algal strain bad some potential applications in livestock wastewater treatment and bioenergy production, it could be combined with a solid-liquid separation, anaerobic fermentation and other techniques for processing livestock wastewater and producing biodiesel.

  3. Relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet.

    PubMed

    Lionetti, L; Iossa, S; Brand, M D; Liverini, G

    1996-05-24

    We studied the relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet. We conceptually divided the system into blocks of reactions that produced or consumed mitochondrial membrane potential and then measured the kinetic response of these blocks of reactions to this potential using NAD-linked and FAD-linked substrates. We show that decreased respiration rate with an NAD-linked substrate is accounted for by decreased kinetic response of the substrate oxidation pathway to the potential. No variation in the kinetic response of the above blocks of reactions to the potential was found using an FAD-linked substrate. These results indicate that FAD-linked and NAD-linked pathways are differently affected in rats fed an energy dense diet.

  4. A comparison of media used in vitro to isolate non-sporing Gram-negative anaerobes from blood.

    PubMed

    Forgan-Smith, W R; Darrell, J H

    1974-04-01

    Five anaerobic media were compared in a model blood culture system for their ability to recover small inocula of Gram-negative non-sporing anaerobes. Dehydrated cooked meat medium was the least effective; USP thioglycollate medium was the most effective isolation medium and is recommended for routine use. Freshly prepared cooked meat medium has the advantage of allowing prolonged survival of strains. PMID:4850178

  5. Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar typhimurium LT2.

    PubMed

    Burns, Justin L; DiChristina, Thomas J

    2009-08-01

    Shewanella oneidensis MR-1, a facultatively anaerobic gammaproteobacterium, respires a variety of anaerobic terminal electron acceptors, including the inorganic sulfur compounds sulfite (SO3(2-)), thiosulfate (S2O3(2-)), tetrathionate (S4O6(2-)), and elemental sulfur (S(0)). The molecular mechanism of anaerobic respiration of inorganic sulfur compounds by S. oneidensis, however, is poorly understood. In the present study, we identified a three-gene cluster in the S. oneidensis genome whose translated products displayed 59 to 73% amino acid similarity to the products of phsABC, a gene cluster required for S(0) and S2O3(2-) respiration by Salmonella enterica serovar Typhimurium LT2. Homologs of phsA (annotated as psrA) were identified in the genomes of Shewanella strains that reduce S(0) and S2O3(2-) yet were missing from the genomes of Shewanella strains unable to reduce these electron acceptors. A new suicide vector was constructed and used to generate a markerless, in-frame deletion of psrA, the gene encoding the putative thiosulfate reductase. The psrA deletion mutant (PSRA1) retained expression of downstream genes psrB and psrC but was unable to respire S(0) or S2O3(2-) as the terminal electron acceptor. Based on these results, we postulate that PsrA functions as the main subunit of the S. oneidensis S2O3(2-) terminal reductase whose end products (sulfide [HS-] or SO3(2-)) participate in an intraspecies sulfur cycle that drives S(0) respiration.

  6. The contribution of aerobic and anaerobic respiration to intestinal colonization and virulence for Salmonella typhimurium in the chicken.

    PubMed

    Barrow, Paul Andrew; Berchieri, Angelo; Freitas Neto, Oliveiro Caetano de; Lovell, Margaret

    2015-10-01

    The basic mechanism whereby Salmonella serovars colonize the chicken intestine remains poorly understood. Previous studies have indicated that proton-translocating proteins utilizing oxygen as terminal electron acceptor do not appear to be of major importance in the gut of the newly hatched chicken and consequently they would be even less significant during intestinal colonization of more mature chickens where the complex gut microflora would trap most of the oxygen in the lumen. Consequently, alternative electron acceptors may be more significant or, in their absence, substrate-level phosphorylation may also be important to Salmonella serovars in this environment. To investigate this we constructed mutants of Salmonella enterica serovar Typhimurium defective in various aspects of oxidative or substrate-level phosphorylation to assess their role in colonization of the chicken intestine, assessed through faecal shedding, and virulence. Mutations affecting use of oxygen or alternative electron acceptors did not eliminate faecal shedding. By contrast mutations in either pta (phosphotransacetylase) or ackA (acetate kinase) abolished shedding. The pta but not the ackA mutation also abolished systemic virulence for chickens. An additional ldhA (lactate dehydrogenase) mutant also showed poor colonizing ability. We hypothesise that substrate-level phosphorylation may be more important than respiration using oxygen or alternative electron acceptors for colonization of the chicken caeca.

  7. The contribution of aerobic and anaerobic respiration to intestinal colonization and virulence for Salmonella typhimurium in the chicken.

    PubMed

    Barrow, Paul Andrew; Berchieri, Angelo; Freitas Neto, Oliveiro Caetano de; Lovell, Margaret

    2015-10-01

    The basic mechanism whereby Salmonella serovars colonize the chicken intestine remains poorly understood. Previous studies have indicated that proton-translocating proteins utilizing oxygen as terminal electron acceptor do not appear to be of major importance in the gut of the newly hatched chicken and consequently they would be even less significant during intestinal colonization of more mature chickens where the complex gut microflora would trap most of the oxygen in the lumen. Consequently, alternative electron acceptors may be more significant or, in their absence, substrate-level phosphorylation may also be important to Salmonella serovars in this environment. To investigate this we constructed mutants of Salmonella enterica serovar Typhimurium defective in various aspects of oxidative or substrate-level phosphorylation to assess their role in colonization of the chicken intestine, assessed through faecal shedding, and virulence. Mutations affecting use of oxygen or alternative electron acceptors did not eliminate faecal shedding. By contrast mutations in either pta (phosphotransacetylase) or ackA (acetate kinase) abolished shedding. The pta but not the ackA mutation also abolished systemic virulence for chickens. An additional ldhA (lactate dehydrogenase) mutant also showed poor colonizing ability. We hypothesise that substrate-level phosphorylation may be more important than respiration using oxygen or alternative electron acceptors for colonization of the chicken caeca. PMID:26443064

  8. Effects of the anaerobic respiration of Shewanella oneidensis MR-1 on the stability of extracellular U(VI) nanofibers.

    PubMed

    Jiang, Shenghua; Hur, Hor-Gil

    2013-01-01

    Uranium (VI) is considered to be one of the most widely dispersed and problematic environmental contaminants, due in large part to its high solubility and great mobility in natural aquatic systems. We previously reported that under anaerobic conditions, Shewanella oneidensis MR-1 grown in medium containing uranyl acetate rapidly accumulated long, extracellular, ultrafine U(VI) nanofibers composed of polycrystalline chains of discrete meta-schoepite (UO(3)·2H2O) nanocrystallites. Wild-type MR-1 finally transformed the uranium (VI) nanofibers to uranium (IV) nanoparticles via further reduction. In order to investigate the influence of the respiratory chain in the uranium transformation process, a series of mutant strains lacking a periplasmic cytochrome MtrA, outer membrane (OM) cytochrome MtrC and OmcA, a tetraheme cytochrome CymA anchored to the cytoplasmic membrane, and a trans-OM protein MtrB, were tested in this study. Although all the mutants produced U(VI) nanofibers like the wild type, the transformation rates from U(VI) nanofibers to U(IV) nanoparticles varied; in particular, the mutant with deletion in tetraheme cytochrome CymA stably maintained the uranium (VI) nanofibers, suggesting that the respiratory chain of S. oneidensis MR-1 is probably involved in the stability of extracellular U(VI) nanofibers, which might be easily treated via the physical processes of filtration or flocculation for the remediation of uranium contamination in sediments and aquifers, as well as the recovery of uranium in manufacturing processes.

  9. ANAEROBIC RESISTANCE TO HIGH LEVELS OF CADMIUM AND OTHER TOXIC METALS IN A FACULTATIVE ANAEROBE ISOLATED FROM PRISTINE SALT MARSH SEDIMENTS

    SciTech Connect

    SHARMA,P.K.; VAIRAVAMURTHY,A.; KIELECZAWA,J.

    1999-06-20

    The authors have isolated many Cd (II) resistant bacterial strains from relatively pristine sediments collected from salt marshes in Shelter Island, New York. Detailed studies are being performed on one isolate, strain Cd-1. Strain Cd-1 is metabolically diverse, halotolerant, Gram-negative, facultative anaerobe. It can resist high amounts of Cd (II), Cr (VI), As (V), Se (IV), Co (II), Pb (II), or Zn (II) under defined anaerobic conditions. With pyruvate as the energy source, Cd-1 can grow well at examined Cd (II) concentrations ranging up to 15 mM. It can resist Cd (II) with or without marine level NaCl concentration, under acidic or neutral conditions. It can resist Cd (II) under aerobic conditions as well. These features are novel for a heavy metal resistant bacterium.

  10. Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity.

    PubMed

    Riessen, S; Antranikian, G

    2001-12-01

    Several thermophilic anaerobic bacteria with keratinolytic activity growing at temperatures between 50 degrees C and 90 degrees C were isolated from samples collected on the island of São Miguel in the Azores (Portugal). On the basis of morphological, physiological, and 16S rDNA studies, the isolate 2KXI was identified as a new species of the genus Thermoanaerobacter, designated Thermoanaerobacter keratinophilus. This strain, which grows optimally at 70 degrees C, pH 7.0, and 0.5% NaCl, is the first member of the genus Thermoanaerobacter that has been described for its ability to degrade native keratin. Around 70% of native wool was solubilized after 10 days of incubation under anaerobic conditions. The strain was shown to possess intracellular and extracellular proteases optimally active at 60 degrees C, pH 7.0, and 85 degrees C, pH 8.0, respectively. Keratin hydrolysis was demonstrated in vitro using a sodium dodecyl sulfate gel containing feather meal. The extracellular protease responsible for breaking down keratin fibers was purified to homogeneity in only one step by applying hydroxyapatite column chromatography. The enzyme belongs to the serine-type proteases and has a molecular mass of 135 kDa.

  11. Anaerobic respiration sustains mitochondrial membrane potential in a prolyl hydroxylase pathway-activated cancer cell line in a hypoxic microenvironment.

    PubMed

    Takahashi, Eiji; Sato, Michihiko

    2014-02-15

    To elucidate how tumor cells produce energy in oxygen-depleted microenvironments, we studied the possibility of mitochondrial electron transport without oxygen. We produced well-controlled oxygen gradients (ΔO2) in monolayer-cultured cells. We then visualized oxygen levels and mitochondrial membrane potential (ΔΦm) in individual cells by using the red shift of green fluorescent protein (GFP) fluorescence and a cationic fluorescent dye, respectively. In this two-dimensional tissue model, ΔΦm was abolished in cells >500 μm from the oxygen source [the anoxic front (AF)], indicating limitations in diffusional oxygen delivery. This result perfectly matched GFP-determined ΔO2. In cells pretreated with dimethyloxaloylglycine (DMOG), a prolyl hydroxylase domain-containing protein (PHD) inhibitor, the AF was expanded to 1,500-2,000 μm from the source. In these cells, tissue ΔO2 was substantially decreased, indicating that PHD pathway activation suppressed mitochondrial respiration. The expansion of the AF and the reduction of ΔO2 were much more prominent in a cancer cell line (Hep3B) than in the equivalent fibroblast-like cell line (COS-7). Hence, the results indicate that PHD pathway-activated cells can sustain ΔΦm, despite significantly decreased electron flux to complex IV. Complex II inhibition abolished the effect of DMOG in expanding the AF, although tissue ΔO2 remained shallow. Separate experiments demonstrated that complex II plays a substantial role in sustaining ΔΦm in DMOG-pretreated Hep3B cells with complex III inhibition. From these results, we conclude that PHD pathway activation can sustain ΔΦm in an otherwise anoxic microenvironment by decreasing tissue ΔO2 while activating oxygen-independent electron transport in mitochondria.

  12. Decrease in anaerobe-related bacteraemias and increase in Bacteroides species isolation rate from 1998 to 2007: a retrospective study.

    PubMed

    Lazarovitch, Tsilia; Freimann, Sarit; Shapira, Galina; Blank, Helena

    2010-06-01

    Conflicting data have accumulated in recent years regarding the incidence of anaerobic bacteraemias. The aim of this study was to determine the prevalence of bacteraemias due to anaerobic bacteria and evaluate the importance of anaerobic blood cultures in a university hospital in Israel. A retrospective survey which focused on anaerobic blood culture bottles was performed on blood cultures received in our laboratory during the decade from January 1998 to December 2007. Anaerobic-related bacteraemias decreased during that period, whereas a significant increase was observed in Bacteroides species isolated from the blood cultures (from 18% during 1998-2002 to 43% during 2003-2007). Comparison of the medical records of 54 patients with Bacteroides-related bacteraemia during the two end periods (1998-1999 and 2006-2007) revealed a marked increase in complex underlying diseases. Hypertension and diabetes mellitus type II were found in 29% of the patients in 1998-1999 and increased to 43-45% of the patients in 2006-2007. Ischemic heart disease also increased from 14% of the patients in 1998-1999 to 43% in 2006-2007. We conclude that although positive anaerobic blood cultures account for a small percentage of positive blood samples, the growing involvement of Bacteroides species-related bacteraemias together with an increase in complex underlying diseases in these patients emphasize the importance of anaerobic blood cultures, particularly in patients with co-morbidities.

  13. Phocaeicola abscessus gen. nov., sp. nov., an anaerobic bacterium isolated from a human brain abscess sample.

    PubMed

    Al Masalma, Mouhamad; Raoult, Didier; Roux, Véronique

    2009-09-01

    A strictly anaerobic bacterial strain, 7401987T, was isolated from a human brain abscess sample. Cells were Gram-negative, non-spore-forming, coccoid to rod-shaped and motile by flagella in a lophotrichous arrangement. The isolate was asaccharolytic and the major cellular fatty acids were anteiso-C15:0 (28.2%), C16:0 (18.0%), iso-C15:0 (12.3%) and iso-C17:0 3-OH (11.7%). 16S rRNA gene sequence comparisons showed that the isolate was distantly related to members of the genera Bacteroides (<83.6% similarity), Parabacteroides (<79.9% similarity), Tannerella (<79.8% similarity), Dysgonomonas (<79.6% similarity), Porphyromonas (<79.3% similarity) and Prevotella (<78.9% similarity). The low 16S rRNA gene sequence similarity values and physiological and biochemical characteristics differentiated strain 7401987T from all known species and indicate that our isolate represents a novel species in a new genus within the phylum Bacteroidetes. The name Phocaeicola abscessus gen. nov., sp. nov. is proposed; the type strain of Phocaeicola abscessus is 7401987T (=CCUG 55929T=CSUR P22T=DSM 21584T). PMID:19620382

  14. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    PubMed

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-01

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells.

  15. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi.

    PubMed

    Löffler, Frank E; Yan, Jun; Ritalahti, Kirsti M; Adrian, Lorenz; Edwards, Elizabeth A; Konstantinidis, Konstantinos T; Müller, Jochen A; Fullerton, Heather; Zinder, Stephen H; Spormann, Alfred M

    2013-02-01

    Six obligately anaerobic bacterial isolates (195(T), CBDB1, BAV1, VS, FL2 and GT) with strictly organohalide-respiring metabolisms were obtained from chlorinated solvent-contaminated aquifers, contaminated and uncontaminated river sediments or anoxic digester sludge. Cells were non-motile with a disc-shaped morphology, 0.3-1 µm in diameter and 0.1-0.2 µm thick, and characteristic indentations on opposite flat sides of the cell. Growth occurred in completely synthetic, reduced medium amended with a haloorganic electron acceptor (mostly chlorinated but also some brominated compounds), hydrogen as electron donor, acetate as carbon source, and vitamins. No other growth-supporting redox couples were identified. Aqueous hydrogen consumption threshold concentrations were <1 nM. Growth ceased when vitamin B(12) was omitted from the medium. Addition of sterile cell-free supernatant of Dehalococcoides-containing enrichment cultures enhanced dechlorination and growth of strains 195 and FL2, suggesting the existence of so-far unidentified stimulants. Dechlorination occurred between pH 6.5 and 8.0 and over a temperature range of 15-35 °C, with an optimum growth temperature between 25 and 30 °C. The major phospholipid fatty acids were 14 : 0 (15.7 mol%), br15 : 0 (6.2 mol%), 16 : 0 (22.7 mol%), 10-methyl 16 : 0 (25.8 mol%) and 18 : 0 (16.6 mol%). Unusual furan fatty acids including 9-(5-pentyl-2-furyl)-nonanoate and 8-(5-hexyl-2-furyl)-octanoate were detected in strains FL2, BAV1 and GT, but not in strains 195(T) and CBDB1. The 16S rRNA gene sequences of the six isolates shared more than 98 % identity, and phylogenetic analysis revealed an affiliation with the phylum Chloroflexi and more than 10 % sequence divergence from other described isolates. The genome sizes and G+C contents ranged from 1.34 to 1.47 Mbp and 47 to 48.9 mol% G+C, respectively. Based on 16S rRNA gene sequence comparisons, genome-wide average nucleotide identity and phenotypic

  16. Thermophilic, anaerobic bacteria isolated from a deep borehole in granite in Sweden.

    PubMed

    Szewzyk, U; Szewzyk, R; Stenström, T A

    1994-03-01

    A borehole drilled to a total depth of 6779 m in granitic rock in Gravberg, Sweden, was sampled and examined for the presence of anaerobic, thermophilic, fermenting bacteria and sulfate-reducing bacteria. Growth in enrichment cultures was obtained only from water samples collected from a specific sampling depth in the borehole (3500 m). The hole was cased down to a depth of 5278 m and open to the formation below that level. All the water below 2000 m in depth standing in the borehole at the time of sampling must have entered at the 5278-m level or below, during a prior pumping operation. A strong salinity stratification certifies that no major amount of vertical mixing had taken place. The depth from which bacteria could be enriched was that of a pronounced local minimum of salinity. Pure cultures of thermophilic, anaerobic, fermenting bacteria were obtained with the following substrates: glucose, starch, xylan, ethanol, and lactate. The morphology and physiology of the glucose- and starch-degrading strains indicate a relationship to Thermoanaerobacter and Thermoanaerobium species. All but one of the newly isolated strains differ however from those by lacking acetate as a fermentation product. The glucose-degrading strain Gluc1 is phylogenetically related to Clostridium thermohydrosulfuricum, with an evolutionary distance based upon rRNA sequence comparisons of 3%. No sulfate-reducing or methanogenic bacteria were found.

  17. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions.

    PubMed

    Newsome, Laura; Morris, Katherine; Lloyd, Jonathan R

    2015-01-01

    Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions. PMID:26132209

  18. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions

    PubMed Central

    Newsome, Laura; Morris, Katherine; Lloyd, Jonathan. R.

    2015-01-01

    Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions. PMID:26132209

  19. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions.

    PubMed

    Newsome, Laura; Morris, Katherine; Lloyd, Jonathan R

    2015-01-01

    Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions.

  20. Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: Toward a microbial resource management approach.

    PubMed

    Kinet, R; Destain, J; Hiligsmann, S; Thonart, P; Delhalle, L; Taminiau, B; Daube, G; Delvigne, F

    2015-01-01

    A cellulolytic consortium was isolated from a composting plant in order to boost the initial hydrolysis step encountered in anaerobic digestion. Improvement of the cellulose degradation, as well as biogas production, was observed for the cultures inoculated with the exogenous consortium. Metagenomics analyses pointed out a weak richness (related to the number of OTUs) of the exogenous consortium induced by the selective pressure (cellulose as sole carbon source) met during the initial isolation steps. Main microbial strains determined were strictly anaerobic and belong to the Clostridia class. During cellulose anaerobic degradation, pH drop induced a strong modification of the microbial population. Despite the fact that richness and evenness were very weak, the exogenous consortium was able to adapt and to maintain the cellulolytic degradation potential. This important result point out the fact that simplified microbial communities could be used in order to increase the robustness of mixed cultures involved in environmental biotechnology. PMID:25879181

  1. Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: Toward a microbial resource management approach.

    PubMed

    Kinet, R; Destain, J; Hiligsmann, S; Thonart, P; Delhalle, L; Taminiau, B; Daube, G; Delvigne, F

    2015-01-01

    A cellulolytic consortium was isolated from a composting plant in order to boost the initial hydrolysis step encountered in anaerobic digestion. Improvement of the cellulose degradation, as well as biogas production, was observed for the cultures inoculated with the exogenous consortium. Metagenomics analyses pointed out a weak richness (related to the number of OTUs) of the exogenous consortium induced by the selective pressure (cellulose as sole carbon source) met during the initial isolation steps. Main microbial strains determined were strictly anaerobic and belong to the Clostridia class. During cellulose anaerobic degradation, pH drop induced a strong modification of the microbial population. Despite the fact that richness and evenness were very weak, the exogenous consortium was able to adapt and to maintain the cellulolytic degradation potential. This important result point out the fact that simplified microbial communities could be used in order to increase the robustness of mixed cultures involved in environmental biotechnology.

  2. Sequence and Genetic Characterization of etrA, an fnr Analog that Regulates Anaerobic Respiration in Shewanella putrefaciens MR-1

    NASA Technical Reports Server (NTRS)

    Saffarini, Daad A.; Nelson, Kenneth H.

    1993-01-01

    An electron transport regulatory gene, etrA, has been isolated and characterized from the obligate respiratory bacterium Shewanella putrefaciens MR-l. The deduced amino acid sequence of etrA (EtrA) shows a high degree of identity to both the Fnr of Escherichia coli (73.6%) and the analogous protein (ANR) of Pseudomonas aeruginosa (50.8%). The four active cysteine residues of Fnr are conserved in EtrA, and the amino acid sequence of the DNA-binding domains of the two proteins are identical. Further, S.putrefaciens etrA is able to complement an fnr mutant of E.coli. In contrast to fnr, there is no recognizable Fnr box upstream of the etrA sequence. Gene replacement etr.A mutants of MR-1 were deficient in growth on nitrite, thiosulfate, sulfite, trimethylamine-N-oxide, dimethyl sulfoxide, Fe(III), and fumarate, suggesting that EtrA is involved in the regulation of the corresponding reductase genes. However, the mutants were all positive for reduction of and growth on nitrate and Mn(IV), indicating that EtrA is not involved in the regulation of these two systems. Southern blots of S.putrefaciens DNA with use of etrA as a probe revealed the expected etrA bands and a second set of hybridization signals whose genetic and functional properties remain to be determined.

  3. Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge.

    PubMed

    Kotay, Shireen Meher; Das, Debabrata

    2007-04-01

    Bacillus coagulans strain IIT-BT S1 isolated from anaerobically digested activated sewage sludge was investigated for its ability to produce H(2) from glucose-based medium under the influence of different environmental parameters. At mid-exponential phase of cell growth, H(2) production initiated and reached maximum production rate in the stationary phase. The maximal H(2) yield (2.28 mol H(2)/molglucose) was recorded at an initial glucose concentration of 2% (w/v), pH 6.5, temperature 37 degrees C, inoculum volume of 10% (v/v) and inoculum age of 14 h. Cell growth rate and rate of hydrogen production decreased when glucose concentration was elevated above 2% w/v, indicating substrate inhibition. The ability of the organism to utilize various carbon sources for H(2) fermentation was also determined.

  4. Clostridium amazonense sp. nov. an obliqately anaerobic bacterium isolated from a remote Amazonian community in Peru

    PubMed Central

    O’Neal, Lindsey; Obregón-Tito, Alexandra J.; Tito, Raul Y.; Ozga, Andrew T.; Polo, Susan I.; Lewis, Cecil M.; Lawson, Paul A.

    2015-01-01

    A strictly anaerobic Gram-stain positive, spore-forming, rod-shaped bacterium designated NE08VT, was isolated from a fecal sample of an individual residing in a remote Amazonian community in Peru. Phylogenetic analysis based on the 16S rRNA gene sequence showed the organism belonged to the genus Clostridium and is most closely related to Clostridium vulturis (97.4% sequence similarity) and was further characterized using biochemical and chemotaxonomic methods. The major cellular fatty acids were anteiso C13:0 and C16:0 with a genomic DNA G + C content of 31.6 mol%. Fermentation products during growth on glucose were acetate and butyrate. Based on phylogenetic, phenotypic and chemotaxonomic information, strain NE08V was identified as representing a novel species of the genus Clostridium, for which the name Clostridium amazonense sp. nov. is proposed. The type strain is NE08VT (DSM 23598T = CCUG 59712T). PMID:26123611

  5. Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, Caldanaerobacter yonseiensis, Isolated from a Geothermal Hot Stream

    PubMed Central

    Lee, Sang-Jae; Lee, Yong-Jik; Park, Gun-Seok; Kim, Byoung-Chan; Lee, Sang Jun; Shin, Jae-Ho

    2013-01-01

    Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms. PMID:24201201

  6. Rapid isolation of a facultative anaerobic electrochemically active bacterium capable of oxidizing acetate for electrogenesis and azo dyes reduction.

    PubMed

    Shen, Nan; Yuan, Shi-Jie; Wu, Chao; Cheng, Yuan-Yuan; Song, Xiang-Ning; Li, Wen-Wei; Tong, Zhong-Hua; Yu, Han-Qing

    2014-05-01

    In this study, 27 strains of electrochemically active bacteria (EAB) were rapidly isolated and their capabilities of extracellular electron transfer were identified using a photometric method based on WO3 nanoclusters. These strains caused color change of WO3 from white to blue in a 24-well agar plate within 40 h. Most of the isolated EAB strains belonged to the genera of Aeromonas and Shewanella. One isolate, Pantoea agglomerans S5-44, was identified as an EAB that can utilize acetate as the carbon source to produce electricity and reduce azo dyes under anaerobic conditions. The results confirmed the capability of P. agglomerans S5-44 for extracellular electron transfer. The isolation of this acetate-utilizing, facultative EBA reveals the metabolic diversity of environmental bacteria. Such strains have great potential for environmental applications, especially at interfaces of aerobic and anaerobic environments, where acetate is the main available carbon source.

  7. Spirochaeta americana sp. nov.: A New Haloalkaliphilic, Obligately Anaerobic Spirochete Isolated from Soda Mono Lake, California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel obligately anaerobic, mesophilic, haloalkaliphilic spirochete, strain ASpG1, was isolated from sediments of the alkaline, hypersaline Mono Lake in California, U.S.A. The gram-negative cells are motile and spirochete-shaped with sizes of 0.22 x 10-15 micron. Growth was observed over the temperature range of 10 C to 44 C (optimum 37 C), NaCl concentration range of greater than 1 - 12 % (wt/vol) (optimum 3%), and pH range 7.5 - 10.5 (optimum pH 9.5). The novel isolate is strictly alkaliphilic, requires high concentrations of carbonate in the medium, and is capable of utilizing D-glucose, fructose, maltose, sucrose, starch, and D-mannitol. Main end products of glucose fermentation are: H2, acetate, ethanol, and formate. Strain AspG1 is resistant to kanamycin, but sensitive to chloramphenicol, gentamycin and tetracycline. The G+C content of its DNA is 58.5 mol%. On the basis of its physiological and molecular properties, the isolate appears to be a novel species among the genus Spirochaeta; and the name Spirochaeta americana sp. nov., is proposed for the taxon (type strain ASpG1(sup T) = ATCC BAA_392(sup T) = DSMZ 14872(sup T)).

  8. The identification of gram-negative anaerobic bacilli isolated from clinical infections.

    PubMed Central

    Duerden, B. I.

    1980-01-01

    Gram-negative anaerobic bacilli isolated from specimens submitted to the routine diagnostic bacteriology laboratory and regarded as significant pathogens were identified by conventional bacteriological tests; 399 strains isolated from 356 specimens submitted from 332 patients were studied and most were readily identified by the results of a combined set of morphological, biochemical, tolerance and antibiotic disk resistance tests; B. fragilis has particular pathogenic potential and was the commonest species isolated, accounting for greater than 50% of strains. The next commonest was B. asaccharolyticus with 55 strains, and 16 other species or groups were represented by smaller numbers. Many (68%) were from infections related to the gastro-intestinal tract, but there were significant numbers from infections of the male and female genito-urinary tracts, the head, neck and central nervous system and from a variety of soft tissue infections. Most infections were mixed, and a pure culture of a Bacteroides sp. was obtained from only 26% of infections; two or more strains of Bacteroides were recovered from 55 infections. The specific identification of Bacteroides may help the bacteriologist to judge the significance of laboratory findings, influence the patient's management and prognosis and help determine the source of infection. PMID:6987300

  9. A quantitative bioassay to measure the rate of respiration of isolated rat tooth pulp tissue.

    PubMed

    Levine, L S; Marcus, F; de Kooker, M

    1987-01-01

    The formation of carbon dioxide, expressed as milligrammes of carbon dioxide per gramme wet weight, was used to determine the rate of succinate-induced respiration in rat incisal dental pulp, after incubation in a phosphate buffer. Seven experimental parameters: (a) physical nature of the tissue; (b) mass of the rat; (c) pre-incubation time; (d) incubation time; (e) substrate concentration; (f) effect of pH; and (g) effects of technique on pH, were analysed; pH was a critical determinant for success with this assay.

  10. Thermosipho activus sp. nov., a thermophilic, anaerobic, hydrolytic bacterium isolated from a deep-sea sample.

    PubMed

    Podosokorskaya, Olga A; Bonch-Osmolovskaya, Elizaveta A; Godfroy, Anne; Gavrilov, Sergey N; Beskorovaynaya, Daria A; Sokolova, Tatyana G; Kolganova, Tatyana V; Toshchakov, Stepan V; Kublanov, Ilya V

    2014-09-01

    A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain Rift-s3(T), was isolated from a deep-sea sample containing Riftia pachyptila sheath from Guaymas Basin, Gulf of California. Cells of the novel isolate were rods, 0.3-0.8 µm in width and 1.5-10 µm in length, surrounded by a sheath-like structure (toga). Strain Rift-s3(T) grew at temperatures ranging from 44 to 75 °C, at pH 5.5 to 8.0, and with NaCl concentrations of 3 to 60 g l(-1). Under optimum conditions (65 °C, pH 6.0, NaCl 25 g l(-1)), the doubling time was 30 min. The isolate was able to ferment mono-, oligo- and polysaccharides including cellulose, chitin, xylan and pectin, and proteins including β-keratins, casein and gelatin. Acetate, hydrogen and carbon dioxide were the main products of glucose fermentation. The G+C content of the DNA was 30 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed the affiliation of strain Rift-s3(T) with the genus Thermosipho, with Thermosipho atlanticus Ob7(T) as the closest relative (96.5 % 16S rRNA gene sequence similarity). Based on the phylogenetic analysis and physiological properties of the novel isolate we propose a novel species of the genus Thermosipho, Thermosipho activus sp. nov., with Rift-s3(T) ( = DSM 26467(T) = VKM B-2803(T)) as the type strain. PMID:24994778

  11. Diversity of culturable psychrophilic and psychrotrophic anaerobic bacteria isolated from beef abattoirs and their environments.

    PubMed

    Moschonas, G; Bolton, D J; McDowell, D A; Sheridan, J J

    2011-07-01

    This study identified 431 psychrophilic or psychrotrophic isolates from commercial Irish beef abattoir environments and "blown packs" of vacuum-packed beef, using PCR and 16S rRNA sequencing, and estimated their intraspecies genetic diversity using restriction fragment length polymorphism (RFLP) analysis and spacer region PCR (SR-PCR). Twenty-five species were identified in the 431 isolates, with the most frequently recovered species being Clostridium gasigenes (n=315), Clostridium estertheticum (n=17), and a potentially novel species designated strain TC1 (n=52). These species were previously found to be associated with a particular type of spoilage known as blown-pack spoilage (BPS), which occurs in chilled-stored (i.e., -1.5°C to 4°C) vacuum-packaged meat within 2 to 4 weeks and involves the production of large volumes of gas. Overall, the study demonstrates the considerable and not previously reported diversity of the anaerobic microflora in abattoirs and the presence of a wide range of organisms capable of causing BPS at chilled temperatures. PMID:21498765

  12. Effects of hypothermic hypoxia on anaerobic energy metabolism in isolated anuran livers.

    PubMed

    Fedorow, C A; Churchill, T A; Kneteman, N M

    1998-12-01

    Many lower vertebrates (reptilian and amphibian species) are capable of surviving natural episodes of hypoxia and hypothermia. It is by specific metabolic adaptations that anurans are able to tolerate prolonged exposure to harsh environmental stresses. In this study, it was hypothesized that livers from an aquatic frog would possess an inherent metabolic ability to sustain high levels of ATP in an isolated organ system, providing insight into a metabolic system that is well-adapted for low temperature in vitro organ storage. Frogs of the species, R. pipiens were acclimated at 20 degrees C and at 5 degrees C. Livers were preserved using a clinical preservation solution after flushing. Livers from 20 degrees C-acclimated frogs were stored at 20 degrees C and 5 degrees C and livers from 5 degrees C-acclimated frogs were stored at 5 degrees C. The results indicated that hepatic adenylate status was maintained for 96 h during 5 degrees C storage, but not longer than 4-10 h during 20 degrees C storage. In livers from 5 degrees C-acclimated animals subjected to 5 degrees C storage, ATP was maintained at 100% throughout the 96-h period. Warm acclimation (20 degrees C) and 20 degrees C storage resulted in poorer maintenance of ATP; energy charge values dropped to 0.50 within 2 h and by 24 h, only 24% of control ATP remained. Lactate levels remained less than 25 mumol/g dry weight in all 5 degrees C-stored livers; 20 degrees C-stored livers exhibited greater accumulation of this anaerobic endproduct (lactate reached 45-50 mumol/g by 10 h). The data imply that hepatic adenylate status is largely dependent on exposure to hypothermic hypoxia and although small amounts of ATP were accounted for by anaerobic glycolysis, there must have been either a substantial reduction in cellular energy-utilization or an efficient use of low oxygen tensions.

  13. Arsenic, Anaerobes, and Autotrophy.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.

    2008-12-01

    That microbes have resistance to the toxic arsenic oxyanions arsenite [As(III)] and arsenate [As(V)] has been recognized for some time. More recently it was shown that certain prokaryotes can demonstrate As- dependent growth by conserving the energy gained from the aerobic oxidation of As(III) to As(V), or from the reduction of As(V) to As(III) under anaerobic conditions. During the course of our field studies of two alkaline, hypersaline soda lakes (Mono Lake and Searles Lake, CA) we have discovered several new anaerobic chemo- and photo-autotrophic bacteria that can center their energy gain around the redox reactions between As(III) and As(V). Alkalilimnicola ehrlichii, isolated from the water column of Mono Lake is a nitrate-respiring, As(III)-oxidizing chemoautotroph of the gamma-proteobacteria that has a highly flexible metabolism. It can function either as a facultative anaerobe or as a chemo-autotroph, or as a heterotroph (Hoeft et al., 2007). In contrast, strain MLMS-1 of the delta-proteobacteria was also isolated from Mono Lake, but to date is the first example of an obligate As(V)-respirer that is also an obligate chemo-autotroph, gaining its energy via the oxidation of sulfide to sulfate (Hoeft et al., 2004). Strain SLAS-1, isolated from salt-saturated Searles Lake is a member of the Halananerobiales, and can either grow as a heterotroph (lactate e-donor) or chemo- autotroph (sulfide e-donor) while respiring As(V). The fact that it can achieve this feat at salt-saturation (~ 340 g/L) makes it a true extremophile (Oremland et. al., 2005). Finally, strain PHS-1 isolated from a hot spring on Paoha island in Mono Lake is the first example of a photosynthetic bacterium of the gamma- proteobacteria able to link its growth to As(III)-dependent anoxygenic photosynthesis (Kulp et al., 2008). These novel microbes give us new insights into the evolution of arsenic-based metabolism and their role in the biogeochemical cycling of this toxic element. Hoeft, S.E., et

  14. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration

    USGS Publications Warehouse

    Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.

    1989-01-01

    Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl− in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3−, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.

  15. Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov.

    SciTech Connect

    Youhong Li; Wiegel, J.; Mandelco, L.

    1993-07-01

    Alkaliphilic, moderately thermophilic anaerobic bacteria able to grow above pH 10.5 and 55{degrees}C were isolated from various sewage plants in the United States. The strains were motile with two to six peritrichous flagella and formed round to slightly oval terminal spores in terminally distended and slightly enlarged cells. Sporulated cells remained motile. The pH range for growth was between 7.0 and 11.1, with an optimum of around 10.1. At pH 10.1 the temperature range for growth was between 30 and 63{degrees}C, with an optimum of 56{degrees}C. The shortest observed doubling time (glucose) was around 16 min at 56{degrees}C and pH 10.1. No dissimilatory sulfate reduction was detected. The organism utilized glucose, fructose, sucrose, maltose, and pyruvate but required yeast extract or tryptone for growth. Optimal NaCl concentrations for growth were between 50 and 200 mM. The guanine-plus-cytosine content was 30.0 {+-} 0.10 mol%. On the basis of unique properties and 16S rRNA analysis, the strains are placed in a new species, Clostridium paradoxum, referring to the unusual retainment of motility by sporulated cells. Strain JW-YL-7 (DSM 7308) is designated as the type strain.

  16. Pectinatus brassicae sp. nov., a Gram-negative, anaerobic bacterium isolated from salty wastewater.

    PubMed

    Zhang, Wen-wu; Fang, Ming-xu; Tan, Hai-qin; Zhang, Xin-qi; Wu, Min; Zhu, Xu-fen

    2012-09-01

    A novel Gram-negative, non-spore-forming, strictly anaerobic, heterotrophic bacterium, strain TY(T), was isolated from salty pickle wastewater. Cells were rod-shaped with comb-like flagella, slightly curved and very variable in length. Optimal growth occurred at 28 °C and pH 6.5. Cells were resistant to up to 50 g NaCl l(-1). Strain TY(T) produced acid from glycerol, sucrose, glucose, fructose and mannitol. The main fermentation products from glucose were acetic and propionic acids. Tests for acid phosphatase and naphthol-AS-BI-phosphohydrolase activities were positive. The major fatty acids were C(14 : 0) DMA (18.7 %), C(15 : 0) (15.4 %), anteiso-C(18 : 1) (15.2 %), C(11 : 0) (13.3 %) and summed feature 5 (C(17 : 1)ω7c and/or C(17 : 2)) (11.0 %). The DNA G+C content was 35.9 mol%. 16S rRNA gene sequence-based phylogenetic analysis indicated that strain TY(T) represented a novel species of the genus Pectinatus (sequence similarity to other members of the genus ranged from 93.2 to 94.8 %). Based on its phenotypic, genotypic and phylogenetic characteristics, strain TY(T) is proposed to represent a novel species, named Pectinatus brassicae sp. nov. (type strain TY(T) = JCM 17499(T) = DSM 24661(T)).

  17. Conversion of Daidzein and Genistein by an Anaerobic Bacterium Newly Isolated from the Mouse Intestine▿

    PubMed Central

    Matthies, Anastasia; Clavel, Thomas; Gütschow, Michael; Engst, Wolfram; Haller, Dirk; Blaut, Michael; Braune, Annett

    2008-01-01

    The metabolism of isoflavones by gut bacteria plays a key role in the availability and bioactivation of these compounds in the intestine. Daidzein and genistein are the most common dietary soy isoflavones. While daidzein conversion yielding equol has been known for some time, the corresponding formation of 5-hydroxy-equol from genistein has not been reported previously. We isolated a strictly anaerobic bacterium (Mt1B8) from the mouse intestine which converted daidzein via dihydrodaidzein to equol as well as genistein via dihydrogenistein to 5-hydroxy-equol. Strain Mt1B8 was a gram-positive, rod-shaped bacterium identified as a member of the Coriobacteriaceae. Strain Mt1B8 also transformed dihydrodaidzein and dihydrogenistein to equol and 5-hydroxy-equol, respectively. The conversion of daidzein, genistein, dihydrodaidzein, and dihydrogenistein in the stationary growth phase depended on preincubation with the corresponding isoflavonoid, indicating enzyme induction. Moreover, dihydrogenistein was transformed even more rapidly in the stationary phase when strain Mt1B8 was grown on either genistein or daidzein. Growing the cells on daidzein also enabled conversion of genistein. This suggests that the same enzymes are involved in the conversion of the two isoflavones. PMID:18539813

  18. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract.

    PubMed Central

    Rafil, F; Franklin, W; Heflich, R H; Cerniglia, C E

    1991-01-01

    Human intestinal microbial flora were screened for their abilities to reduce nitroaromatic compounds by growing them on brain heart infusion agar plates containing 1-nitropyrene. Bacteria metabolizing 1-nitropyrene, detected by the appearance of clear zones around the colonies, were identified as Clostridium leptum, Clostridium paraputrificum, Clostridium clostridiiforme, another Clostridium sp., and a Eubacterium sp. These bacteria produced aromatic amines from nitroaromatic compounds, as shown by thin-layer chromatography, high-pressure liquid chromatography, and biochemical tests. Incubation of three of these bacteria with 1-nitropyrene, 1,3-dinitropyrene, and 1,6-dinitropyrene inactivated the direct-acting mutagenicity associated with these compounds. Menadione and o-iodosobenzoic acid inhibited nitroreductase activity in all of the isolates, indicating the involvement of sulfhydryl groups in the active site of the enzyme. The optimum pH for nitroreductase activity was 8.0. Only the Clostridium sp. required added flavin adenine dinucleotide for nitroreductase activity. The nitroreductases were constitutive and extracellular. An activity stain for the detection of nitroreductase on anaerobic native polyacrylamide gels was developed. This activity stain revealed only one isozyme in each bacterium but showed that the nitroreductases from different bacteria had distinct electrophoretic mobilities. Images PMID:2059053

  19. Pectinatus brassicae sp. nov., a Gram-negative, anaerobic bacterium isolated from salty wastewater.

    PubMed

    Zhang, Wen-wu; Fang, Ming-xu; Tan, Hai-qin; Zhang, Xin-qi; Wu, Min; Zhu, Xu-fen

    2012-09-01

    A novel Gram-negative, non-spore-forming, strictly anaerobic, heterotrophic bacterium, strain TY(T), was isolated from salty pickle wastewater. Cells were rod-shaped with comb-like flagella, slightly curved and very variable in length. Optimal growth occurred at 28 °C and pH 6.5. Cells were resistant to up to 50 g NaCl l(-1). Strain TY(T) produced acid from glycerol, sucrose, glucose, fructose and mannitol. The main fermentation products from glucose were acetic and propionic acids. Tests for acid phosphatase and naphthol-AS-BI-phosphohydrolase activities were positive. The major fatty acids were C(14 : 0) DMA (18.7 %), C(15 : 0) (15.4 %), anteiso-C(18 : 1) (15.2 %), C(11 : 0) (13.3 %) and summed feature 5 (C(17 : 1)ω7c and/or C(17 : 2)) (11.0 %). The DNA G+C content was 35.9 mol%. 16S rRNA gene sequence-based phylogenetic analysis indicated that strain TY(T) represented a novel species of the genus Pectinatus (sequence similarity to other members of the genus ranged from 93.2 to 94.8 %). Based on its phenotypic, genotypic and phylogenetic characteristics, strain TY(T) is proposed to represent a novel species, named Pectinatus brassicae sp. nov. (type strain TY(T) = JCM 17499(T) = DSM 24661(T)). PMID:22058316

  20. Intestinal microflora in rats: isolation and characterization of strictly anaerobic bacteria requiring long-chain fatty acids.

    PubMed Central

    Morotomi, M; Kawai, Y; Mutai, M

    1976-01-01

    Three strains of strictly anaerobic bacteria, isolated from the cecal contents of rats, have strict requirements for long-chain fatty acids. The effect of exogenous fatty acids on the growth and fatty acid composition of the bacteria was examined. Biohydrogenation of linoleic acid into octadecenoic acid was observed. These observations suggest that long-chain fatty acids in the intestine are factors in controlling the localization and the population levels of indigenous bacteria in vivo in rats. PMID:1267446

  1. A Simple, Semiselective Medium for Anaerobic Isolation of Anginosus Group Streptococci from Patients with Chronic Lung Disease

    PubMed Central

    Waite, Richard D.; Wareham, David W.; Gardiner, Samuel

    2012-01-01

    The anaerobic isolation of anginosus group streptococci (AGS) from respiratory specimens containing diverse microbiota using a semiselective blood agar medium incorporating nalidixic acid and sulfamethazine (NAS) is described. AGS were detected in 60% of tested sputa from patients with cystic fibrosis, chronic obstructive pulmonary disease, and bronchiectasis. This demonstrates NAS to be a diagnostic tool for detecting AGS within the complex microbial communities associated with chronic lung disorders. PMID:22238446

  2. Availability of Fe(III) for Anaerobic Respiration across an Age Gradient of Drained Thaw Lake Basins in the Arctic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Lipson, D.; Raab, T. K.; Bozzolo, F.; Emerson, C.; Hale, I.; Mauritz, M.; Miller, K.

    2010-12-01

    Our previous work demonstrated that Fe(III) reduction is an important respiratory pathway in a drained thaw lake basin (DTLB) of the Arctic coastal plain in northern Alaska (Lipson et al. 2010). When Fe(III) is available in anoxic environments that otherwise lack electron acceptors, it can act as a terminal electron acceptor, allowing anaerobic respiration to occur in favor of methanogenesis. Therefore, Fe(III) availability could be a key control over CO2 and CH4 emission from such ecosystems. Our previous work focused on a DTLB of medium age (50-300 years old). As DTLB’s age, the organic layer thickens, eventually to the point where the underlying mineral layers are buried completely in permafrost. The mineral layers are likely to be the source for the majority of Fe available for redox transformations by soil microbes. We therefore hypothesized that older basins with permanently frozen mineral layers would have lower Fe(III) availability than younger basins with active layers that include mineral material. To test this hypothesis we studied a gradient that comprised four DTLB, including young (<50 y), medium (50-300 y), old (300-2000 y) and ancient (2000-5500 y). We compared extractable Fe minerals in depth profiles from each DTLB, soluble Fe species in soil pore water, and other properties of soils and soil water. As expected, the youngest DTLB had the thinnest organic layer, a shallow mineral layer, and hence the largest total amount of HCl-extractable Fe(III) in the upper 25 cm. The medium DTLB had the lowest amounts of extractable Fe(III), while the old and ancient basins had intermediate amounts of extractable Fe(III). The amount of total Fe(III) present was related to the amount of mineral material found in the profile; the larger amounts in the old and ancient site relative to the medium site could be explained by cryoturbation, a process which mixes organic and mineral layers in older gelisols. S and Mn followed the same trends, but were orders of

  3. Isolation and Genomic Characterization of 'Desulfuromonas soudanensis WTL', a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine.

    PubMed

    Badalamenti, Jonathan P; Summers, Zarath M; Chan, Chi Ho; Gralnick, Jeffrey A; Bond, Daniel R

    2016-01-01

    Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, 'Desulfuromonas soudanensis' strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that 'D. soudanensis' releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. 'D. soudanensis' contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of 'D. soudanensis' underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats. PMID:27445996

  4. Expression of Genes Involved in Iron and Sulfur Respiration in a Novel Thermophilic Crenarchaeon Isolated from Acid-Sulfate-Chloride Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Kozubal, M.; Macur, R.; Inskeep, W. P.

    2007-12-01

    Acidic geothermal springs within Yellowstone National Park (YNP) provide an excellent opportunity to study microbial populations and their relationship with geochemical processes such as redox cycling and biomineralization of iron. Fourteen acid-sulfate-chloride (ASC) and acid-sulfate (AS) geothermal springs located in (YNP) have been extensively characterized for aqueous chemistry, solid phase mineral deposition and microbial diversity and distribution. The oxidation of Fe(II) with oxygen as an electron acceptor is exergonic under these conditions, consequently, Fe(II) may be an important electron donor driving primary production in ASC and AS habitats, and products of biomineralization (e.g. Fe[III]-oxides of varying crystallinity and structure, as well as jarosite in some cases) are common in the outflow channels of these environments. Recently, we isolated a novel Metallosphaera-like microorganism (Metallosphaera strain MK1) from an ASC spring in Norris Geyser Basin, YNP. Clone libraries (16S rRNA gene) from multiple sites suggest that microorganisms closely related to strain MK1 (between 98-100 percent similarity) dominate many spring locations between 55-80 C. The in situ abiotic oxidation rate of Fe(II) has been shown to be very slow in these systems and Metallosphaera strain MK1 has been directly implicated in biotic Fe(II) oxidation. Metallosphaera strain MK1 has been submitted for full genome sequencing and is yielding gene sequences related to the terminal oxidases SOXABC and SOXM super-complex. In addition, sequences from a recently characterized terminal oxidase FOX complex involved in Fe(II) and pyrite oxidation from Sulfolobus metallicus have been found in Metallosphaera strain MK1. A protein complex analogous to Metallosphaera sedula has been identified in strain MK1 and this complex has also been expressed in cells grown on pyrite and Fe(II). Other sequences identified in Metallosphaera strain MK1 that are involved in respiration are the TQO

  5. Isolation and Characterization of Xylan-Degrading Strains of Butyrivibrio fibrisolvens from a Napier Grass-Fed Anaerobic Digester †

    PubMed Central

    Sewell, G. W.; Aldrich, H. C.; Williams, D.; Mannarelli, B.; Wilkie, A.; Hespell, R. B.; Smith, P. H.; Ingram, L. O.

    1988-01-01

    Six new xylanolytic bacterial strains have been isolated from a Napier grass-fed anaerobic digester. These strains were identified as Butyrivibrio fibrisolvens and were similar in many respects to ruminal isolates described previously. The new isolates exhibited a high degree of DNA homology with several ruminal strains of B. fibrisolvens. Xylan or xylose was required to induce the production of enzymes for xylan degradation, xylanase and xylosidase. Production of these enzymes was repressed in the presence of glucose. Xylanase activity was predominantly extracellular, while that of xylosidases was cell associated. The new isolates of B. fibrisolvens grew well in defined medium containing xylan as the sole carbon source and did not produce obvious slime or capsular layers. These strains may be useful for future genetic investigations. Images PMID:16347622

  6. Isolation and characterization of xylan-degrading strains of Butyrivibrio fibrisolvens from a napier grass-fed anaerobic digester

    SciTech Connect

    Sewell, G.W.; Aldrich, H.C.; Williams, D.; Mannarelli, B.; Wilkie, A.; Hespell, R.B.; Smith, P.H.; Ingram, L.O.

    1988-05-01

    Six new xylanolytic bacterial strains have been isolated from a Napier grass-fed anaerobic digester. These strains were identified as Butyrivibrio fibrisolvens and were similar in many respects to ruminal isolates described previously. The new isolates exhibited a high degree of DNA homology with several ruminal strains of B. fibrisolvens. Xylan or xylose was required to induce the production of enzymes for xylan degradation, xylanase and xylosidase. Production of these was repressed in the presence of glucose. Xylanase activity was predominantly extracellular, while that of xylosidases was cell associated. The new isolates of B. fibrisolvens grew well in defined medium containing xylan as the sole carbon source and did not produce obvious slime or capsular layers. These strains may be useful for future genetic investigations.

  7. Proteiniclasticum ruminis gen. nov., sp. nov., a strictly anaerobic proteolytic bacterium isolated from yak rumen.

    PubMed

    Zhang, Kegui; Song, Lei; Dong, Xiuzhu

    2010-09-01

    Two strictly anaerobic, proteolytic bacterial strains, designated strain D3RC-2(T) and D3RC-3r, were isolated from a cellulose-degrading mixed culture enriched from yak rumen content. The strains were Gram-stain negative and non-spore-forming with cell sizes of 0.5-0.8 x 0.6-2.0 mum. The temperature range for growth was 24-46 degrees C (optimum 38-39 degrees C) and the pH range was between 5.6 and 8.7 (optimum 7.0-7.3). Both strains used soya peptone, tryptone, l-phenylalanine, l-leucine, l-methionine, l-serine, l-valine, l-threonine and l-histidine as carbon and nitrogen sources, but did not use any of the saccharides tested. The major fermentation products from PY medium were acetate, propionate and iso-butyrate. The DNA G+C contents of strains D3RC-2(T) and D3RC-3r were 41.0+/-0.1 mol% and 41.3+/-0.1 mol% (HPLC), respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two strains represented a new phyletic sublineage within the family Clostridiaceae, with <93.8 % 16S rRNA gene sequence similarity to recognized species. On the basis of the phenotypic, genotypic and physiological evidence, strains D3RC-2(T) and D3RC-3r are proposed as representing a novel species of a new genus, for which the name Proteiniclasticum ruminis gen. nov., sp. nov. is proposed. The type strain of the type species is D3RC-2(T) (=AS 1.5057(T)=JCM 14817(T)).

  8. Caldicoprobacter algeriensis sp. nov. a new thermophilic anaerobic, xylanolytic bacterium isolated from an Algerian hot spring.

    PubMed

    Bouanane-Darenfed, Amel; Fardeau, Marie-Laure; Grégoire, Patrick; Joseph, Manon; Kebbouche-Gana, Salima; Benayad, Tahar; Hacene, Hocine; Cayol, Jean-Luc; Ollivier, Bernard

    2011-03-01

    A thermophilic anaerobic bacterium (strain TH7C1(T)) was isolated from the hydrothermal hot spring of Guelma in the northeast of Algeria. Strain TH7C1(T) stained Gram-positive, was a non-motile rod appearing singly, in pairs, or as long chains (0.7-1 × 2-6 μm(2)). Spores were never observed. It grew at temperatures between 55 and 75°C (optimum 65°C) and at pH between 6.2 and 8.3 (optimum 6.9). It did not require NaCl for growth, but tolerated it up to 5 g l(-1). Strain TH7C1(T) is an obligatory heterotroph fermenting sugars including glucose, galactose, lactose, raffinose, fructose, ribose, xylose, arabinose, maltose, mannitol, cellobiose, mannose, melibiose, saccharose, but also xylan, and pyruvate. Fermentation of sugars only occurred in the presence of yeast extract (0.1%). The end-products from glucose fermentation were acetate, lactate, ethanol, CO(2), and H(2). Nitrate, nitrite, thiosulfate, elemental sulfur, sulfate, and sulfite were not used as electron acceptors. The G+C content of the genomic DNA was 44.7 mol% (HPLC techniques). Phylogenetic analysis of the small-subunit ribosomal RNA (rRNA) gene sequence indicated that strain TH7C1(T) was affiliated to Firmicutes, order Clostridiales, family Caldicoprobacteraceae, with Caldicoprobacter oshimai (98.5%) being its closest relative. Based on phenotypic, phylogenetic, and genetic characteristics, strain TH7C1(T) is proposed as a novel species of genus Caldicoprobacter, Caldicoprobacter algeriensis, sp. nov. (strain TH7C1(T) = DSM 22661(T) = JCM 16184(T)).

  9. Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring.

    PubMed

    Díaz-Cárdenas, C; López, G; Patel, B K C; Baena, S

    2010-04-01

    A mesophilic, strictly anaerobic, slightly halophilic bacterium, designated strain USBA 82(T), was isolated from a terrestrial saline spring in the Colombian Andes. The non-spore-forming curved rods (5-7 x 1.3 microm) with pointed or rounded ends, stained Gram-negative and were motile by means of laterally inserted flagella. The strain grew optimally at 30 degrees C (growth range 20-40 degrees C), pH 7.3 (growth range pH 5.5-8.5) and 2 % (w/v) NaCl (growth range 0.1-7 % NaCl). The strain fermented peptides, amino acids and a few organic acids, but growth was not observed on carbohydrates, alcohols or fatty acids. The strain reduced thiosulfate and sulfur to sulfide. Sulfate, sulfite, nitrate and nitrite were not used as electron acceptors. On peptone alone, acetate, succinate, propionate and traces of ethanol were formed, but in the presence of thiosulfate, acetate and succinate were formed. The G+C content of the chromosomal DNA was 52 mol% (T(m)). 16S rRNA gene sequence analysis indicated that strain USBA 82(T) was affiliated to Dethiosulfovibrio peptidovorans within the phylum Synergistetes with a similarity value of approximately 93 %. Based on the differences between the new strain and the type species of the genus Dethiosulfovibrio, we suggest that strain USBA 82(T) represents a novel species of the genus for which the name Dethiosulfovibrio salsuginis sp. nov. is proposed. The type strain is USBA 82(T) (=DSM 21565(T)=KCTC 5659(T)). PMID:19661517

  10. Exercise at anaerobic threshold intensity and insulin secretion by isolated pancreatic islets of rats

    PubMed Central

    de Oliveira, Camila Aparecida Machado; Paiva, Mauricio Ferreira; Mota, Clécia Alencar Soares; Ribeiro, Carla; de Almeida Leme, José Alexandre Curiacos; Luciano, Eliete

    2010-01-01

    To evaluate the effect of acute exercise and exercise training at the anaerobic threshold (AT) intensity on aerobic conditioning and insulin secretion by pancreatic islets, adult male Wistar rats were submitted to the lactate minimum test (LMT) for AT determination. Half of the animals were submitted to swimming exercise training (trained), 1 h/day, 5 days/week during 8 weeks, with an overload equivalent to the AT. The other half was kept sedentary. At the end of the experimental period, the rats were submitted to an oral glucose tolerance test and to another LMT. Then, the animals were sacrificed at rest or immediately after 20 minutes of swimming exercise at the AT intensity for pancreatic islets isolation. At the end of the experiment mean workload (% bw) at AT was higher and blood lactate concentration (mmol/L) was lower in the trained than in the control group. Rats trained at the AT intensity showed no alteration in the areas under blood glucose and insulin during OGTT test. Islet insulin content of trained rats was higher than in the sedentary rats while islet glucose uptake did not differ among the groups. The static insulin secretion in response to the high glucose concentration (16.7 mM) of the sedentary group at rest was lower than the sedentary group submitted to the acute exercise and the inverse was observed in relation to the trained groups. Physical training at the AT intensity improved the aerobic condition and altered insulin secretory pattern by pancreatic islets. PMID:21099318

  11. Evidence for an anaerobic syntrophic benzoate degradation threshold and isolation of the syntrophic benzoate degrader

    SciTech Connect

    Hopkins, B.T.; McInerney, M.J.; Warikoo, V.

    1995-02-01

    An anaerobic, motile, gram-negative, rod-shaped, syntrophic. benzoate-degrading bacterium, strain SB. was isolated in pure culture with crotonate as the energy source. Benzoate was degraded only in association with an H{sub 2}-using bacterium. The kinetics of benzoate degradation by cell suspensions of strain SB in coculture with Desulfovibrio strain G-11 was studied by using progress curve analysis. The coculture degraded benzoate to a threshold concentration of 214 nM to 6.5 {mu}M, with no further benzoate degradation observed even after extended incubation times. The value of the threshold depended on the amount of benzoate added and, consequently, the amount of acetate produced. The addition of sodium acetate. but not that of sodium chloride, affected the threshold value; higher acetate concentrations resulted in higher threshold values for benzoate. When a cell suspension that had reached a threshold benzoate concentration was reamended with benzoate, benzoate was used without a lag. The hydrogen partial pressure was very low and formate was not detected in cell suspensions that had degraded benzoate to a threshold value. The Gibbs free energy change calculations showed that the degradation of benzoate was favorable when the threshold was reached. These studies showed that the threshold for benzoate degradation was not caused by nutritional limitations. the loss of metabolic activity, or inhibition by hydrogen or formate. The data are consistent with a thermodynamic explanation for the existence of a threshold, but a kinetic explanation based on acetate inhibition may also account for the existence of a threshold.

  12. Pigmentiphaga litoralis sp. nov., a facultatively anaerobic bacterium isolated from a tidal flat sediment.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; Huang, Ke; Tang, Shu-Kun; Cao, Yao; Shi, Jin-Xiao; Xiao, Huai-Dong; Cui, Xiao-Long; Li, Wen-Jun

    2009-03-01

    A novel Gram-negative, facultatively anaerobic, non-sporulating, non-motile, catalase- and oxidase-positive, rod-shaped bacterium (strain JSM 061001(T)) was isolated from a tidal flat in the South China Sea, China. Growth occurred with 0-5 % (w/v) NaCl [optimum, 0.5-1 % (w/v) NaCl], at pH 5.0-10.0 (optimum, pH 7.0) and at 4-35 degrees C (optimum, 25-30 degrees C). The major cellular fatty acids were C(16 : 0), cyclo C(17 : 0), C(18 : 1)omega7c and C(16 : 1). Strain JSM 061001(T) contained ubiquinone Q-8 as the predominant respiratory quinone, and phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid as the polar lipids. The genomic DNA G+C content was 65.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 061001(T) belongs to the family Alcaligenaceae and was related most closely to the type strains of the two recognized species of the genus Pigmentiphaga. The three strains formed a robust cluster in the neighbour-joining, maximum-parsimony and maximum-likelihood phylogenetic trees. Levels of DNA-DNA relatedness between strain JSM 061001(T) and the type strains of Pigmentiphaga daeguensis and Pigmentiphaga kullae were 15.8 and 10.5 %, respectively. The combination of phylogenetic analysis, DNA-DNA hybridization data, phenotypic characteristics and chemotaxonomic differences supported the view that strain JSM 061001(T) represents a novel species of the genus Pigmentiphaga, for which the name Pigmentiphaga litoralis sp. nov. is proposed. The type strain is JSM 061001(T) (=CCTCC AA207034(T)=KCTC 22165(T)).

  13. Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring.

    PubMed

    Díaz-Cárdenas, C; López, G; Patel, B K C; Baena, S

    2010-04-01

    A mesophilic, strictly anaerobic, slightly halophilic bacterium, designated strain USBA 82(T), was isolated from a terrestrial saline spring in the Colombian Andes. The non-spore-forming curved rods (5-7 x 1.3 microm) with pointed or rounded ends, stained Gram-negative and were motile by means of laterally inserted flagella. The strain grew optimally at 30 degrees C (growth range 20-40 degrees C), pH 7.3 (growth range pH 5.5-8.5) and 2 % (w/v) NaCl (growth range 0.1-7 % NaCl). The strain fermented peptides, amino acids and a few organic acids, but growth was not observed on carbohydrates, alcohols or fatty acids. The strain reduced thiosulfate and sulfur to sulfide. Sulfate, sulfite, nitrate and nitrite were not used as electron acceptors. On peptone alone, acetate, succinate, propionate and traces of ethanol were formed, but in the presence of thiosulfate, acetate and succinate were formed. The G+C content of the chromosomal DNA was 52 mol% (T(m)). 16S rRNA gene sequence analysis indicated that strain USBA 82(T) was affiliated to Dethiosulfovibrio peptidovorans within the phylum Synergistetes with a similarity value of approximately 93 %. Based on the differences between the new strain and the type species of the genus Dethiosulfovibrio, we suggest that strain USBA 82(T) represents a novel species of the genus for which the name Dethiosulfovibrio salsuginis sp. nov. is proposed. The type strain is USBA 82(T) (=DSM 21565(T)=KCTC 5659(T)).

  14. Isolation and Characterization of Haloanaerobacter chitinovorans gen. nov., sp. nov., a Halophilic, Anaerobic, Chitinolytic Bacterium from a Solar Saltern

    PubMed Central

    Liaw, Hungming J.; Mah, Robert A.

    1992-01-01

    Two halophilic anaerobic bacteria, one of which had chitinolytic activity, were isolated from a solar saltern in southern California. These organisms were long, gram-negative, motile, flexible rods. The biochemical and physiological characteristics of these bacteria were very similar but were different from the characteristics of other haloanaerobic bacteria. Both grew at salt concentrations ranging from 0.5 to 5 M and at temperatures ranging from 23 to 50°C. They were sensitive to chloramphenicol but resistant to penicillin, carbenicillin, d-cycloserine, streptomycin, and tetracycline. An analysis of DNAs and whole-cell proteins showed that they were closely related taxonomically and distinguishable from other halophilic anaerobic bacteria. They exhibited 92.3 to 100% DNA homology as determined by DNA-DNA hybridization. The guanine-plus-cytosine contents of their DNAs were 34.8±1 mol%. The two isolates, strains W5C8 and W3C1, differed from other halophilic anaerobic bacteria sufficiently to support establishment of a new genus and species, Haloanaerobacter chitinovorans. Strain W5C8 exhibited chitinolytic activity and is designated the type strain. Two chitin-induced extracellular proteins with molecular weights of 38 × 103 and 40 × 103 were detected in strain W5C8. Images PMID:16348626

  15. Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production.

    PubMed

    Yu, Lei; Li, Wen-Wei; Lam, Michael Hon-Wah; Yu, Han-Qing; Wu, Chao

    2012-07-01

    A facultative anaerobic bacteria strain GS-4-08, isolated from an anaerobic sequence batch reactor for synthetic dye wastewater treatment, was investigated for azo-dye decolorization. This bacterium was identified as a member of Klebsiella oxytoca based on Gram staining, morphology characterization and 16S rRNA gene analysis. It exhibited a good capacity of simultaneous decolorization and hydrogen production in the presence of electron donor. The hydrogen production was less affected even at a high Methyl Orange (MO) concentration of 0.5 mM, indicating a superior tolerability of this strain to MO. This efficient bio-hydrogen production from electron donor can not only avoid bacterial inhibition due to accumulation of volatile fatty acids during MO decolorization, but also can recover considerable energy from dye wastewater.

  16. Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites.

    PubMed

    Thong-On, Arunee; Suzuki, Katsuyuki; Noda, Satoko; Inoue, Jun-ichi; Kajiwara, Susumu; Ohkuma, Moriya

    2012-01-01

    Recycling of the nitrogenous waste uric acid (UA) of wood-feeding termites by their gut bacteria is one of the significant aspects of symbiosis for the conservation of nitrogen sources. Diverse anaerobic UA-degrading bacteria comprising 16 species were isolated from the gut of eight termite species, and were assigned to Clostridia, Enterobacteriaceae, and low G+C Gram-positive cocci. UA-degrading Clostridia had never been isolated from termite guts. UA-degrading ability was sporadically distributed among phylogenetically various culturable anaerobic bacteria from termite guts. A strain of Clostridium sp., which was commonly isolated from three termite species and represented a probable new species in cluster XIVa of clostridia, utilized UA as a nitrogen source but not as a sole carbon and energy source. This feature is in clear contrast to that of well-studied purinolytic clostridia or previously isolated UA degraders from termite guts, which also utilize UA as a sole carbon and energy source. Ammonia is the major nitrogenous product of UA degradation. Various purines stimulated the growth of this strain when added to an otherwise growth-limiting, nitrogen poor medium. The bacterial species involved the recycling of UA nitrogen in the gut microbial community of termites are more diverse in terms of both taxonomy and nutritional physiology than previously recognized. PMID:22791052

  17. Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites.

    PubMed

    Thong-On, Arunee; Suzuki, Katsuyuki; Noda, Satoko; Inoue, Jun-ichi; Kajiwara, Susumu; Ohkuma, Moriya

    2012-01-01

    Recycling of the nitrogenous waste uric acid (UA) of wood-feeding termites by their gut bacteria is one of the significant aspects of symbiosis for the conservation of nitrogen sources. Diverse anaerobic UA-degrading bacteria comprising 16 species were isolated from the gut of eight termite species, and were assigned to Clostridia, Enterobacteriaceae, and low G+C Gram-positive cocci. UA-degrading Clostridia had never been isolated from termite guts. UA-degrading ability was sporadically distributed among phylogenetically various culturable anaerobic bacteria from termite guts. A strain of Clostridium sp., which was commonly isolated from three termite species and represented a probable new species in cluster XIVa of clostridia, utilized UA as a nitrogen source but not as a sole carbon and energy source. This feature is in clear contrast to that of well-studied purinolytic clostridia or previously isolated UA degraders from termite guts, which also utilize UA as a sole carbon and energy source. Ammonia is the major nitrogenous product of UA degradation. Various purines stimulated the growth of this strain when added to an otherwise growth-limiting, nitrogen poor medium. The bacterial species involved the recycling of UA nitrogen in the gut microbial community of termites are more diverse in terms of both taxonomy and nutritional physiology than previously recognized.

  18. Isolation of a Rhizobium phaseoli cytochrome mutant with enhanced respiration and symbiotic nitrogen fixation.

    PubMed Central

    Soberón, M; Williams, H D; Poole, R K; Escamilla, E

    1989-01-01

    Cultured cells of a Rhizobium phaseoli wild-type strain (CE2) possess b-type and c-type cytochromes and two terminal oxidases: cytochromes o and aa3. Cytochrome aa3 was partially expressed when CE2 cells were grown on minimal medium, during symbiosis, and in well-aerated liquid cultures in a complex medium (PY2). Two cytochrome mutants of R. phaseoli were obtained and characterized. A Tn5-mob-induced mutant, CFN4201, expressed diminished amounts of b-type and c-type cytochromes, showed an enhanced expression of cytochrome oxidases, and had reduced levels of N,N,N',N'-tetramethyl-p-phenylenediamine, succinate, and NADH oxidase activities. Nodules formed by this strain had no N2 fixation activity. The other mutant, CFN4205, which was isolated by nitrosoguanidine mutagenesis, had reduced levels of cytochrome o and higher succinate oxidase activity but similar NADH and N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activities when compared with the wild-type strain. Strain CFN4205 expressed a fourfold-higher cytochrome aa3 content when cultured on minimal and complex media and had twofold-higher cytochrome aa3 levels during symbiosis when compared with the wild-type strain. Nodules formed by strain CFN4205 fixed 33% more N2 than did nodules formed by the wild-type strain, as judged by the total nitrogen content found in plants nodulated by these strains. Finally, low-temperature photodissociation spectra of whole cells from strains CE2 and CFN4205 reveal cytochromes o and aa3. Both cytochromes react with O2 at -180 degrees C to give a light-insensitive compound. These experiments identify cytochromes o and aa3 as functional terminal oxidases in R. phaseoli. PMID:2644201

  19. Suigetsumonas clinomigrationis gen. et sp. nov., a Novel Facultative Anaerobic Nanoflagellate Isolated from the Meromictic Lake Suigetsu, Japan.

    PubMed

    Okamura, Takahiko; Kondo, Ryuji

    2015-09-01

    A novel facultative anaerobic bacterivorous nanoflagellate was isolated from the water just below the permanent oxic-anoxic interface of the meromictic Lake Suigetsu, Japan. We characterized the isolate using light and transmission electron microscopy and molecular phylogenetic analyses inferred from 18S rDNA sequences. The phylogenetic analyses showed that the isolate belonged to class Placididea (stramenopiles). The isolate showed key ultrastructural features of the Placididea, such as flagellar hairs with two unequal terminal filaments, microtubular root 2 changing in shape from an arced to an acute-angled shape, and a lack of an x-fiber in root 2. However, the isolate had a single helix in the flagellar transition region, which is a double helix in the two known placidid nanoflagellates Placidia cafeteriopsis and Wobblia lunata. Moreover, the isolate had different intracellular features compared with these two genera, such as the arrangement of basal bodies, the components of the flagellar apparatus, the number of mitochondria, and the absence (or presence) of paranuclear bodies. The 18S rDNA sequence was also phylogenetically distant from the clades of the known Placididae W. lunata and P. cafeteriopsis. Consequently, the newly isolated nanoflagellate was described as Suigetsumonas clinomigrationis gen. et sp. nov. PMID:26202992

  20. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    PubMed

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  1. Clostridium punense sp. nov., an obligate anaerobe isolated from healthy human faeces.

    PubMed

    Lanjekar, Vikram Bholanath; Marathe, Nachiket Prakash; Shouche, Yogesh Shreepad; Ranade, Dilip Ramchandra

    2015-12-01

    An obligately anaerobic, rod-shaped (0.5-1.0 × 2.0-10.0 μm), Gram-stain-positive bacterium, occurring mainly singly or in pairs, and designated BLPYG-8T, was isolated from faeces of a healthy human volunteer aged 56 years. Cells were non-motile. Oval, terminal spores were formed that swell the cells. The strain was affiliated with the genus Clostridium sensu stricto (Clostridium rRNA cluster I) as revealed by 16S rRNA gene sequence analysis. Strain BLPYG-8T showed 97.3 to 97.4 % 16S rRNA gene sequence similarity with Clostridium sulfidigenes DSM 18982T, Clostridium subterminale DSM 6970T and Clostridium thiosulfatireducens DSM 13105T. DNA-DNA hybridization and phenotypic analysis showed that the strain was distinct from its closest relatives, C. sulfidigenes DSM 18982T, C. subterminale DSM 6970T, C. thiosulfatireducens DSM 13105T with 54.2, 53.9 and 53.3 % DNA-DNA relatedness, respectively. Strain BLPYG-8T grew in PYG broth at temperatures between 20 and 40 °C (optimum 37 °C). The strain utilized a range of amino acids as well as carbohydrates as a source of carbon and energy. Glucose fermentation resulted in the formation of volatile fatty acids mainly acetic acid, n-butyric acid and organic acids such as succinic and lactic acid. The DNA G+C content of strain BLPYG-8T was 44.1 mol%. The major fatty acids (>10 %) were C14 : 0, iso-C15 : 0, C16 : 1ω7c and C16 : 0. Phylogenetic analysis and specific phenotypic characteristics and/or DNA G+C content differentiated the strain from its closest relatives. On the basis of these data, strain BLPYG-8T represents a novel species of the genus Clostridium, for which the name Clostridium punense sp. nov. is proposed. The type strain is BLPYG-8T ( = DSM 28650T = CCUG 64195T = MCC 2737T).

  2. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    PubMed

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  3. Thermanaeromonas burensis sp. nov., a thermophilic anaerobe isolated from a subterranean clay environment.

    PubMed

    Gam, Zouhaier Ben Ali; Daumas, Sylvie; Casalot, Laurence; Bartoli-Joseph, Manon; Necib, Sophia; Linard, Yannick; Labat, Marc

    2016-01-01

    A strictly anaerobic, thermophilic and halotolerant strain, designated IA106T, was isolated from the seepage water collected in a metal biocorrosion test at a depth of 490 m, in a 130-160 m thick, subterranean Callovo-Oxfordian clay formation (158-152 million years old) in northern France. This geological formation has been selected as the potential host rock for the French high-level nuclear waste repository. Cells of strain IA106T stained Gram-positive and were non-motile, spore-forming, straight rods (0.5 × 2-6 μm). The five major fatty acids were C16 : 0 (15.9 %), C18 : 0 (15.4 %), iso-C17 : 1 I and/or anteiso-C17 : 1 B(14.8 %), iso-C17 : 0 (14.7 %) and iso-C15 : 0 (13.0 %). Growth was observed at temperatures ranging from 55 to 70 °C and at pH 5.5-9. The salinity range for growth was 0-20 g NaCl 1- 1. Yeast extract was required for growth. Strain IA106T was able to grow on lactate and various sugars in the presence of thiosulfate as electron acceptor. Sulfate, sulfite, elemental sulfur, fumarate, nitrate and nitrite were not reduced. The DNA G+C content was 60.2 mol%. 16S rRNA gene sequence analysis indicated that strain IA106T belonged to the family Thermoanaerobacteraceae, class Clostridia, phylum Firmicutes, and was most closely related to Thermanaeromonas toyohensis DSM 14490T (95.16 % 16S rRNA gene sequence similarity). On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain IA106T represents a novel species of the genus Thermanaeromonas, for which the name Thermanaeromonas burensis sp. nov. is proposed. The type strain is IA106T ( = DSM 26576T = JCM 18718T). PMID:26541283

  4. Oceanirhabdus sediminicola gen. nov., sp. nov., an anaerobic bacterium isolated from sea sediment.

    PubMed

    Pi, Ruo-Xi; Zhang, Wen-Wu; Fang, Ming-Xu; Zhang, Yan-Zhou; Li, Tian-Tian; Wu, Min; Zhu, Xu-Fen

    2013-11-01

    A novel anaerobic bacterium, designated NH-JN4(T) was isolated from a sediment sample collected in the South China Sea. Cells were Gram-stain-positive, spore-forming, peritrichous and rod-shaped (0.5-1.2×2.2-7 µm). The temperature and pH ranges for growth were 22-42 °C and pH 6.0-8.5. Optimal growth occurred at 34-38 °C and pH 6.5-7.0. The NaCl concentration range for growth was 0.5-6 % (w/v) with an optimum of 2.5 %. Catalase and oxidase were not produced. Substrates which could be utilized were peptone, tryptone, yeast extract, beef extract and glycine. Main fermentation products from PYG medium were formate, acetate, butyrate and ethanol. Strain NH-JN4(T) could utilize sodium sulfite as an electron acceptor. No respiratory quinone was detected. The predominant fatty acids were anteiso-C15 : 0, C16 : 0, iso-C15 : 0, anteiso-C17 : 0 and C16 : 0 DMA. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and glycolipids. The DNA G+C content was 35.8 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain NH-JN4(T) was a member of family Clostridiaceae, and was most closely related to Clostridium limosum ATCC 25620(T), Clostridium proteolyticum DSM 3090(T), Clostridium histolyticum ATCC 19401(T) and Clostridium tepidiprofundi SG 508(T), showing 94.0, 93.0, 92.9 and 92.3 % sequence similarity, respectively. On the basis of phenotypic, genotypic and chemotaxonomic properties, strain NH-JN4(T) represents a novel species of a new genus in the family Clostridiaceae, for which the name Oceanirhabdus sediminicola gen. nov., sp. nov. is proposed. The type strain of the type species is NH-JN4(T) ( = JCM 18501(T) = CCTCC AB 2013103(T) = KCTC 15322(T)).

  5. Butyricimonas phoceensis sp. nov., a new anaerobic species isolated from the human gut microbiota of a French morbidly obese patient.

    PubMed

    Togo, A H; Diop, A; Dubourg, G; Nguyen, T T; Andrieu, C; Caputo, A; Couderc, C; Fournier, P-E; Maraninchi, M; Valero, R; Raoult, D; Million, M

    2016-11-01

    Butyricimonas phoceensis strain AT9 (= CSUR 1981 = DSM 100664) was isolated from a stool sample from a morbidly obese French patient living in Marseille using the culturomics approach. The genome of this Gram-negative-staining, anaerobic and non-spore forming rod bacillus is 4 736 949 bp long and contains 3947 protein-coding genes. Genomic analysis identified 173 genes as ORFans (4.5%) and 1650 orthologous proteins (42%) not shared with the closest phylogenetic species, Butyricimonas virosa. Its major fatty acid was the branched acid iso-C15:0 (62.3%). PMID:27668083

  6. High rate of non-susceptibility to metronidazole and clindamycin in anaerobic isolates: Data from a clinical laboratory from Karachi, Pakistan.

    PubMed

    Sheikh, Sadia Omer; Jabeen, Kauser; Qaiser, Saba; Ahsan, Syed Tanwir; Khan, Erum; Zafar, Afia

    2015-06-01

    Due to increasing resistance amongst anaerobic pathogens periodic surveillance of resistance has been recommended in regional/local settings. Anaerobic antimicrobial susceptibility testing is not routinely performed in many laboratories in Pakistan, hence absence of local data may lead to inappropriate empirical therapy in serious cases. 121 clinically significant anaerobic strains (26/121; 21% bacteremic isolates) were isolated and saved from 2010 to 2011. Susceptibility testing against metronidazole, clindamycin, co-amoxiclav, meropenem, piperacillin/tazobactam, linezolid and gatifloxacin was performed by determining minimum inhibitory concentrations (MICs). A high proportion of non-susceptible strains to metronidazole (10% of 121 isolates) and clindamycin (12% of 121 isolates) was seen, most noticeable in Bacteroides fragilis. Three Bacteroides species strains were non-susceptible to both metronidazole and clindamycin. One strain of Clostridium species was fully resistant to metronidazole and had intermediate resistance to clindamycin. No resistance to any of the other tested antibiotics was seen. Resistance to metronidazole was higher in bacteremic vs. non bacteremic isolates (p = value 0.07). In our setting where there is a high usage of empirical metronidazole and clindamycin for the treatment of serious anaerobic infections clinicians should be aware of increased resistance to these agents. Periodic surveillance of resistance to anti-anaerobic drugs especially metronidazole and clindamycin should be performed to generate antibiogram and guide appropriate empiric therapy.

  7. Interactions of Cd and Cu in anaerobic estuarine sediments. 2: Bioavailability, body burdens and respiration effects as related to geochemical partitioning

    SciTech Connect

    Rule, J.H.; Alden, R.W. III

    1996-04-01

    The relationship between Cd and Cu distribution in sediment geochemical fractions and their bioavailability was studied. A fine-sandy textured estuarine sediment was treated with all combinations of 0, 2.5, and 5 mg/kg Cd and 0, 12, and 25 mg/kg Cu using the chloride salts of each metal. Grass shrimp (Palaemonetes pugio), blue mussel (Mytilus edulis), and hard clam (Mercenaria mercenaria) were exposed to the treated sediments in aquaria with 20 ppt artificial seawater for 14 d. Sediments were sequentially extracted before and after organism exposure to determine the exchangeable, easily reducible, organic-sulfide, moderately reducible, and acid extractable phases. Low mortalities were observed for all organism types and none were attributable to any of the treatments. The Cd and Cu concentrations in the easily reducible and organic-sulfide phases were found to be significantly related to the bioavailability of these metals. The most highly significant relationship was established between Cd in the easily reducible phase and body burden of Cd in the blue mussel. Notable interactions were found between Cd and Cu in some of the geochemical phases, body burdens, and respiration rates. Metal uptake, respiration, and interactions were highly dependent on the test species. A significant correlation was found between increased body burden and depressed respiration for Cd but not for Cu. Multiple regression models are used to describe these relationships. It appears that the interactive responses in the organisms are driven primarily by the sediment geochemical effects and mediated by individual organism processes. These results underscore the necessity of multicomponent (multielement) studies in assessing the fate and effects of toxic elements in the environment.

  8. Glycosaminoglycan-depolymerizing enzymes produced by anaerobic bacteria isolated from the human mouth.

    PubMed

    Tipler, L S; Embery, G

    1985-01-01

    A number of obligately anaerobic bacteria, some implicated in periodontal disease, were screened for their ability to produce enzymes capable of degrading hyaluronic acid and chondroitin-4-sulphate. Two screening methods were used following anaerobic incubation at 37 degrees C for 7 days. One involved incorporating the respective substrates and bovine-serum albumin into agar plates and, after incubation, flooding the plates with 2 M acetic acid. Clear zones were produced around colonies which produced enzymes capable of depolymerizing the substrates. The second was a sensitive spectrophotometric procedure based on the ability of certain bacteria to produce eliminase enzymes, which degrade the substrates to unsaturated products having a characteristic u.v. absorption at 232 nm. Strains of Bacteroides gingivalis and Bacteroides melaninogenicus degraded both substrates whereas Bacteroides asaccharolyticus degraded neither substrate by either method. Some bacteria gave negative results with the plate method whereas the more sensitive spectrophotometric assay proved positive. The number of anaerobic bacteria capable of degrading hyaluronic acid and chondroitin-4-sulphate in vitro may therefore have been underestimated in previous studies.

  9. Carnobacterium Pleistocaenium sp. nov.: A Novel Psychrotolerant, Facultative Anaerobe Isolated from Permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2004-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTRIT1(sup T), was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells with sizes 0.6-0.7 x 0.9-1.5 micrometers were observed. Growth occurred within the pH range 6.5-9.5 and optimum at pH 7.3-7.5. The temperature range of the new isolate was 0-28 C and optimum growth occurred at 24 C. The novel isolate requires NaCl (growth absent at 0 %) and growth was observed between 0 and 5% NaCl with optimum at 0.5% (w/v). The new isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were: acetate, ethanol and CO2. Strain FTRl was sensitive to ampicillin, tetracycline, chloramphenicol, rifampin, kanamycin, and gentamycin. The 16S rDNA sequence analysis showed 99.8% similarity of strain FTR1 with Carnobacterium alterfunditum, but the DNA-DNA hybridization between them demonstrated 39 plus or minus 5% homology. On the basis of genotypic and phenotypic characteristics, it is proposed that the strain FTR1(sup T) (= ATCC BAA-754(sup T) = JSM 12174(sup T) is assigned to the new species of the genus Carnobacterium with proposed name Carnobacterium pleistocaenium sp. nov.

  10. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2005-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTR1T, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0.6-0.7 x 0.9-1.5 microm. Growth occurred within the pH range 6.5-9.5 with optimum growth at pH 7.3-7.5. The temperature range for growth of the novel isolate was 0-28 degrees C and optimum growth occurred at 24 degrees C. The novel isolate does not require NaCl; growth was observed between 0 and 5 % NaCl with optimum growth at 0.5 % (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTR1T was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16S rRNA gene sequence analysis showed 99.8 % similarity between strain FTR1T and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39+/-1.5 % relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTR1T (=ATCC BAA-754T=JCM 12174T=CIP 108033T) be assigned to the novel species Carnobacterium pleistocenium sp. nov.

  11. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pilkuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2005-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTRl, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0(raised dot)6-0(raised dot)7 x 0(raised dot)9-1(raised dot)5 microns. Growth occurred within the pH range 6(raised dot)5-9(raised dot)5 with optimum growth at pH 7(raised dot)3-7(raised dot)5. The temperature range for growth of the novel isolate was 0-28 C and optimum growth occurred at 24 C. The novel isolate does not require NaCl; growth was observed between 0 and 5% NaCl with optimum growth at 0(raised dot)5% (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTRl was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16s rRNA gene sequence analysis showed 99(raised dot)8% similarity between strain FTR1 and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39 plus or minus 1(raised dot)5% relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTRl (= ATCC BAA-754T= JCM 12174T=CIP 108033) be assigned to the novel species Carnobacterium pleistocenium sp. nov.

  12. Thermostilla marina gen. nov., sp. nov., a thermophilic, facultatively anaerobic planctomycete isolated from a shallow submarine hydrothermal vent.

    PubMed

    Slobodkina, Galina B; Panteleeva, Angela N; Beskorovaynaya, Darya A; Bonch-Osmolovskaya, Elizaveta A; Slobodkin, Alexander I

    2016-02-01

    A novel thermophilic planctomycete (strain SVX8T) was isolated from a shallow submarine hydrothermal vent, Vulcano Island, Italy. The temperature range for growth was 30-68 °C, with an optimum at 55 °C. The pH range for growth was 5.0-9.0, with an optimum at pH 7.0-8.0. Growth was observed at NaCl concentrations ranging from 0.8 to 4.5 % (w/v) with an optimum at 2.5-3.5 % (w/v). The isolate grew anaerobically using a number of mono-, di- and polysaccharides as electron donors and nitrate or elemental sulfur as electron acceptors or by fermentation. Nitrate was reduced to nitrite; sulfur was reduced to sulfide. Strain SVX8T did not grow at atmospheric concentration of oxygen but grew microaerobically (up to 2 % oxygen in the gas phase). The G+C content of the DNA of strain SVX8T was 58.5 mol%. Based on phylogenetic position and phenotypic features, the new isolate is considered to represent a novel species belonging to a new genus in the order Planctomycetales, for which the name Thermostilla marina gen. nov., sp. nov. is proposed. The type strain of Thermostilla marina is SVX8T ( = JCM 19992T = VKM B-2881T). Strain SVX8T is the first thermophilic planctomycete isolated from a marine environment. PMID:26559645

  13. Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastro-intestinal tract

    SciTech Connect

    Van Passel, Mark W.J.; Kant, Ravi; Palva, Airi; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Davenport, Karen W.; Sims, David; Detter, J. Chris; Han, Cliff; Larimer, Frank W; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Ovchinnikova, Galina; Richardson, Paul; De Vos, Willem M.; Smidt, Hauke; Zoetendal, Erwin G.

    2011-01-01

    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastro-intestinal tract.

  14. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park

    SciTech Connect

    Hamilton-Brehm, Scott; Elkins, James G; Phelps, Tommy Joe; Keller, Martin; Carroll, Sue L; Allman, Steve L; Podar, Mircea; Mosher, Jennifer J; Vishnivetskaya, Tatiana A

    2010-01-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY, USA. The isolate was a non-motile, non-spore forming, Gram-positive rod approximately 2 m long by 0.2 m wide and grew at temperatures between 55-85oC with the optimum at 78oC. The pH range for growth was 6.0-8.0 with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rates at 0.75 hr-1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbital, carboxymethylcellulose and casein. Yeast extract stimulated growth and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2 although lactate and ethanol were produced in 5 l batch fermentations. The G+C content of the DNA was 35 mol% and sequence analysis of the small subunit ribosomal RNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47T is the type stain (ATCC = ____, JCM = ____).

  15. Gelidivirgula Patagoniensis Gen. Nov., Sp. Nov., A Novel Psychrotolerant, Sporeforming Anaerobe Isolated from Magellanic Penguin Guano in Patagonia, Chile

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul

    2003-01-01

    A novel obligately anaerobic, psychrotrophic bacterium, strain PPP2(sup T), was isolated from guano of the Magellanic penguin (Spheniscus magellanicus) in Patagonia, Chile. The Gram-positive, sporeforming, straight rods with sizes 0.6-0.9 x 3.0-5.0 microns, are motile by peritrichous flagella. Growth was observed to occur within the pH range 6.0-9.5 (optimum pH x), and temperature range 2-28 C (optimum 20 C). The novel isolate does not require NaCl for growth, but is halotolerant and growth was observed between 0 and 7 % NaCl (w/v) with optimum at 0.5 % (w/v). The new isolate is a catalase negative chemoorganohetherotroph with fermentative metabolism and uses as substrates: peptone, Bacto-tryptone, Casamino acids, and yeast extract. The major metabolic products are: acetate, butyrate, ethanol, and hydrogen is a minor gas product.. Strain PPP2 was sensitive to ampicillin, tetracycline, chloramphenicol, rifampin, kanamycin, and gentamycin. The G+C content of the DNA is 43.6 mol%. On the basis of 16S rDNA gene sequences and phenotypic characteristics, it is proposed that the strain PPP2(sup T) (= ATCC BAA-755(sup T) = JSM ...(sup T)) is assigned to the new genus Gelidivirgula gen. nov., as a representative of the new species, Gelidivirgula patagonensis sp. nov.

  16. Caldicellulosiruptor obsidiansis sp. nov., an Anaerobic, Extremely Thermophilic, Cellulolytic Bacterium Isolated from Obsidian Pool, Yellowstone National Park▿

    PubMed Central

    Hamilton-Brehm, Scott D.; Mosher, Jennifer J.; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J.; Keller, Martin; Elkins, James G.

    2010-01-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 μm long by 0.2 μm wide and grew at temperatures between 55 and 85°C, with the optimum at 78°C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h−1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073). PMID:20023107

  17. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park.

    PubMed

    Hamilton-Brehm, Scott D; Mosher, Jennifer J; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J; Keller, Martin; Elkins, James G

    2010-02-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47(T), was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 microm long by 0.2 microm wide and grew at temperatures between 55 and 85 degrees C, with the optimum at 78 degrees C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h(-1). The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47(T) was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47(T) within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073). PMID:20023107

  18. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park.

    PubMed

    Hamilton-Brehm, Scott D; Mosher, Jennifer J; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J; Keller, Martin; Elkins, James G

    2010-02-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47(T), was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 microm long by 0.2 microm wide and grew at temperatures between 55 and 85 degrees C, with the optimum at 78 degrees C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h(-1). The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47(T) was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47(T) within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).

  19. Isolation and Characterization of a New Methanobacterium formicicum KOR-1 from an Anaerobic Digester Using Pig Slurry

    PubMed Central

    Battumur, Urantulkhuur; Yoon, Young-Man; Kim, Chang-Hyun

    2016-01-01

    A new methanogen was isolated from an anaerobic digester using pig slurry in South Korea. Only one strain, designated KOR-1, was characterized in detail. Cells of KOR-1 were straight or crooked rods, non-motile, 5 to 15 μm long and 0.7 μm wide. They stained Gram-positive and produced methane from H2+CO2 and formate. Strain KOR-1 grew optimally at 38°C. The optimum pH for growth was 7.0. The strain grew at 0.5% to 3.0% NaCl, with optimum growth at 2.5% NaCl. The G+C content of genomic DNA of strain KOR-1 was 41 mol%. The strain tolerated ampicillin, penicillin G, kanamycin and streptomycin but tetracycline inhibited cell growth. A large fragment of the 16S rRNA gene (~1,350 bp) was obtained from the isolate and sequenced. Comparison of 16S rRNA genes revealed that strain KOR–1 is related to Methanobacterium formicicum (98%, sequence similarity), Methanobacterium bryantii (95%) and Methanobacterium ivanovii (93%). Phylogenetic analysis of the deduced mcrA gene sequences confirmed the closest relative as based on mcrA gene sequence analysis was Methanobacterium formicicum strain (97% nucleic acid sequence identity). On the basis of physiological and phylogenetic characteristics, strain KOR-1 is proposed as a new strain within the genus Methanobacterium, Methanobacterium formicicum KOR-1. PMID:26949961

  20. Isolation and Characterization of Anaerobic Ethylbenzene Dehydrogenase, a Novel Mo-Fe-S Enzyme

    PubMed Central

    Johnson, Hope A.; Pelletier, Dale A.; Spormann, Alfred M.

    2001-01-01

    The first step in anaerobic ethylbenzene mineralization in denitrifying Azoarcus sp. strain EB1 is the oxidation of ethylbenzene to (S)-(−)-1-phenylethanol. Ethylbenzene dehydrogenase, which catalyzes this reaction, is a unique enzyme in that it mediates the stereoselective hydroxylation of an aromatic hydrocarbon in the absence of molecular oxygen. We purified ethylbenzene dehydrogenase to apparent homogeneity and showed that the enzyme is a heterotrimer (αβγ) with subunit masses of 100 kDa (α), 35 kDa (β), and 25 kDa (γ). Purified ethylbenzene dehydrogenase contains approximately 0.5 mol of molybdenum, 16 mol of iron, and 15 mol of acid-labile sulfur per mol of holoenzyme, as well as a molydopterin cofactor. In addition to ethylbenzene, purified ethylbenzene dehydrogenase was found to oxidize 4-fluoro-ethylbenzene and the nonaromatic hydrocarbons 3-methyl-2-pentene and ethylidenecyclohexane. Sequencing of the encoding genes revealed that ebdA encodes the α subunit, a 974-amino-acid polypeptide containing a molybdopterin-binding domain. The ebdB gene encodes the β subunit, a 352-amino-acid polypeptide with several 4Fe-4S binding domains. The ebdC gene encodes the γ subunit, a 214-amino-acid polypeptide that is a potential membrane anchor subunit. Sequence analysis and biochemical data suggest that ethylbenzene dehydrogenase is a novel member of the dimethyl sulfoxide reductase family of molybdopterin-containing enzymes. PMID:11443088

  1. Isolation and Characterization of an Anaerobic, Cellulolytic Bacterium, Clostridium cellulovorans sp. nov

    PubMed Central

    Sleat, Robert; Mah, Robert A.; Robinson, Ralph

    1984-01-01

    A new anaerobic, mesophilic, spore-forming cellulolytic bacterium is described. Cellulose is cleared within 24 to 48 h around colonies formed in cellulose agar roll tubes. Cells stain gram negative and are nonmotile rods which form oblong spores either centrally or subterminally in a clostridial swelling. Colonies are irregular with an opaque edge and a center devoid of both vegetative cells and spores. Cellulose, xylan, pectin, cellobiose, glucose, maltose, galactose, sucrose, lactose, and mannose serve as substrates for growth. H2, CO2, acetate, butyrate, formate, and lactate are produced during fermentation of cellulose or cellobiose. The temperature and pH for optimum growth are 37°C and 7.0, respectively. The DNA composition is 26 to 27 mol% guanine plus cytosine. This bacterium resembles “Clostridium lochheadii” in morphological and some biochemical characteristics but is not identical to it. The name Clostridium cellulovorans sp. nov. is proposed. The type strain is 743B (ATCC 35296). Images PMID:16346602

  2. Effects of temperature on complexes I and II mediated respiration, ROS generation and oxidative stress status in isolated gill mitochondria of the mud crab Scylla serrata.

    PubMed

    Paital, Biswaranjan; Chainy, G B N

    2014-04-01

    Effects of fluctuations in habitat temperature (18-30°) on mitochondrial respiratory behavior and oxidative metabolic responses in the euryhaline ectotherm Scylla serrata are not fully understood. In the present study, effects of different temperatures ranging from 12 to 40°C on glutamate and succinate mediated mitochondrial respiration, respiratory control ratio (RCR), ATP generation rate, ratio for the utilization of phosphate molecules per atomic oxygen consumption (P/O), levels of lipid peroxidation and H2O2 in isolated gill mitochondria of S. serrata are reported. The pattern of variation in the studied parameters was similar for the two substrates at different temperatures. The values recorded for RCR (≥3) and P/O ratio (1.4-2.7) at the temperature range of 15-25°C were within the normal range reported for other animals (3-10 for RCR and 1.5-3 for P/O). Values for P/O ratio, ATP generation rate and RCR were highest at 18°C when compared to the other assay temperatures. However, at low and high extreme temperatures, i.e. at 12 and 40°C, states III and IV respiration rates were not clearly distinguishable from each other indicating that mitochondria were completely uncoupled. Positive correlations were noticed between temperature and the levels of both lipid peroxidation and H2O2. It is inferred that fluctuations on either side of ambient habitat temperature may adversely influence mitochondrial respiration and oxidative metabolism in S. serrata. The results provide baseline data to understand the impacts of acute changes in temperature on ectotherms inhabiting estuarine or marine environments.

  3. Spirochaeta Americana Sp. Nov., A new Haloalkaliphilic, Obligately Anaerobic Spirochete Isolated from Soda Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel obligately anaerobic, mesophilic, haloalkaliphilic spirochete, strain ASpG1(sup T), was isolated from sediments of the alkaline, hypersaline Mono Lake in California, U.S.A. The Gram-negative cells are motile and spirochete-shaped with sizes of 0.2 - 0.22 X 8-15 microns. Growth was observed over the following ranges: temperature 10 C to 44 C; optimum +37 C; NaCl concentration 2 - 12 % (w/v); optimum NaCl3 % and pH 8 - 10.5; optimum pH 9.5. The novel isolate is strictly alkaliphilic, requires high concentrations of carbonate in the medium, and is capable of utilizing D-glucose, fructose, maltose, sucrose, starch, and D-mannitol. The main end products of glucose fermentation are: H2, acetate, ethanol, and formate. Strain ASpG(sup T) is resistant to kanamycin, and rifampin, but sensitive to chloramphenicol, gentamycin and tetracycline. The G+C content of its DNA is 58.5 mol%, genome size is 2.98 x l0(exp 9) Daltons, Tm of the genomic DNA is 68 +/- 2 C, and DNA-DNA hybridization with the most closely related species, Spirocheta alkalica Strain Z-7491(sup T), exhibited 48.7% homology. On the basis of its physiological and molecular properties, the isolate appears to be a novel species of the genus Spirochaeta; and the name Spirochaeta americana sp. nov., is proposed for the taxon (type strain ASpG1(sup T) = ATCC BAA-392(sup T) = DSMZ 14872(sup T)).

  4. Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Pikuta, E. V.; Hoover, R. B.; Bej, A. K.; Marsic, D.; Detkova, E. N.; Whitman, W. B.; Krader, P.

    2003-01-01

    A novel extremely haloalkaliphilic, strictly anaerobic, acetogenic bacterium strain APO was isolated from sediments of the athalassic, meromictic, alkaline Mono Lake in California. The Gram-positive, spore-forming, slightly curved rods with sizes 0.55- 0.7x1.7-3.0 microns were motile by a single laterally attached flagellum. Strain APO was mesophilic (range 10-48 C, optimum of 37 C); halophilic (NaCl range 1-20% (w/v) with optimum of 3-5% (w/v), and alkaliphilic (pH range 8.0-10.5, optimum 9.5). The novel isolate required sodium ions in the medium. Strain APO was an organotroph with a fermentative type of metabolism and used the substrates peptone, bacto-tryptone, casamino acid, yeast extract, L-serine, L-lysine, L-histidine, L-arginine, and pyruvate. The new isolate performed the Stickland reaction with the following amino acid pairs: proline + alanine, glycine + alanine, and tryptophan + valine. The main end product of growth was acetate. High activity of CO dehydrogenase and hydrogenase indicated the presence of a homoacetogenic, non-cycling acetyl-coA pathway. Strain APO was resistant to kanamycin but sensitive to chloramphenicol, tetracycline, and gentamycin. The G+C content of the genomic DNA was 44.4 mol% (by HPLC method). The sequence of the 16s rRNA gene of strain APO possessed 98.2% similarity with the sequence from Tindullia magadiensis Z-7934, but the DNA-DNA hybridization value between these organisms was only 55%. On the basis of these physiological and molecular properties, strain APO is proposed to be a novel species of the genus Tindallia with the name Tindallia californiensis sp. nov., (type strain APO = ATCC BAA-393 - DSM 14871).

  5. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge.

    PubMed

    Nor, Muhamad Hanif Md; Mubarak, Mohd Fahmi Muhammad; Elmi, Hassan Sh Abdirahman; Ibrahim, Norahim; Wahab, Mohd Firdaus Abdul; Ibrahim, Zaharah

    2015-08-01

    A double-chambered membrane microbial fuel cell (MFC) was constructed to investigate the potential use of natural microflora anaerobic palm oil mill effluent (POME) sludge and pure culture bacteria isolated from anaerobic POME sludge as inoculum for electricity generation. Sterilized final discharge POME was used as the substrate with no addition of nutrients. MFC operation using natural microflora anaerobic POME sludge showed a maximum power density and current density of 85.11mW/m(2) and 91.12mA/m(2) respectively. Bacterial identification using 16S rRNA analysis of the pure culture isolated from the biofilm on the anode MFC was identified as Pseudomonas aeruginosa strain ZH1. The electricity generated in MFC using P. aeruginosa strain ZH1 showed maximum power density and current density of 451.26mW/m(2) and 654.90mA/m(2) respectively which were five times higher in power density and seven times higher in current density compared to that of MFC using anaerobic POME sludge.

  6. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge.

    PubMed

    Nor, Muhamad Hanif Md; Mubarak, Mohd Fahmi Muhammad; Elmi, Hassan Sh Abdirahman; Ibrahim, Norahim; Wahab, Mohd Firdaus Abdul; Ibrahim, Zaharah

    2015-08-01

    A double-chambered membrane microbial fuel cell (MFC) was constructed to investigate the potential use of natural microflora anaerobic palm oil mill effluent (POME) sludge and pure culture bacteria isolated from anaerobic POME sludge as inoculum for electricity generation. Sterilized final discharge POME was used as the substrate with no addition of nutrients. MFC operation using natural microflora anaerobic POME sludge showed a maximum power density and current density of 85.11mW/m(2) and 91.12mA/m(2) respectively. Bacterial identification using 16S rRNA analysis of the pure culture isolated from the biofilm on the anode MFC was identified as Pseudomonas aeruginosa strain ZH1. The electricity generated in MFC using P. aeruginosa strain ZH1 showed maximum power density and current density of 451.26mW/m(2) and 654.90mA/m(2) respectively which were five times higher in power density and seven times higher in current density compared to that of MFC using anaerobic POME sludge. PMID:25799955

  7. Light-enhanced dark respiration in leaves, isolated cells and protoplasts of various types of C4 plants.

    PubMed

    Parys, Eugeniusz; Jastrzebski, Hubert

    2006-04-01

    The rate of respiratory CO2 evolution from the leaves of Zea mays, Panicum miliaceum, and Panicum maximum, representing NADP-ME, NAD-ME, and PEP-CK types of C4 plants, respectively, was increased by approximately two to four times after a period of photosynthesis. This light-enhanced dark respiration (LEDR) was a function of net photosynthetic rate specific to plant species, and was depressed by 1% O2. When malate, aspartate, oxaloacetate or glycine solution at 50 mM concentration was introduced into the leaves instead of water, the rate of LEDR was enhanced, far less in Z. mays (by 10-25%) than in P. miliaceum (by 25-35%) or P. maximum (by 40-75%). The enhancement of LEDR under glycine was relatively stable over a period of 1 h, whereas the remaining metabolites caused its decrease following a transient increase. The metabolites reduced the net photosynthesis rate in the two Panicum species, but not in Z. mays, where this process was stimulated by glycine. The bundle sheath cells from P. miliaceum exhibited a higher rate of LEDR than those of Z. mays and P. maximum. Glycine had no effect on the respiration rate of the cells, but malate increased in cells of Z. mays and P. miliaceum by about 50% and 30%, respectively. With the exception of aspartate, which stimulated both the O2 evolution and O2 uptake in P. maximum, the remaining metabolites reduced photosynthetic O2 evolution from bundle sheath cells in Panicun species. The net O2 exchange in illuminated cells of Z. mays did not respond to CO2 or metabolites. Leaf mesophyll protoplasts of Z. mays and P. miliaceum, and bundle sheath protoplasts of Z. mays, which are unable to fix CO2 photosynthetically, also produced LEDR, but the mesophyll protoplasts, compared with bundle sheath protoplasts, required twice the time of illumination to obtain the maximal rate. The results suggest that the substrates for LEDR in C4 plants are generated during a period of illumination not only via the Calvin cycle reactions, but

  8. Laboratory identification of anaerobic bacteria isolated on Clostridium difficile selective medium.

    PubMed

    Rodriguez, Cristina; Warszawski, Nathalie; Korsak, Nicolas; Taminiau, Bernard; Van Broeck, Johan; Delmée, Michel; Daube, Georges

    2016-06-01

    Despite increasing interest in the bacterium, the methodology for Clostridium difficile recovery has not yet been standardized. Cycloserine-cefoxitin fructose taurocholate (CCFT) has historically been the most used medium for C. difficile isolation from human, animal, environmental, and food samples, and presumptive identification is usually based on colony morphologies. However, CCFT is not totally selective. This study describes the recovery of 24 bacteria species belonging to 10 different genera other than C. difficile, present in the environment and foods of a retirement establishment that were not inhibited in the C. difficile selective medium. These findings provide insight for further environmental and food studies as well as for the isolation of C. difficile on supplemented CCFT.

  9. Bacterial respiration of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  10. Anaerobic thermophilic culture

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

  11. Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul

    2003-01-01

    A novel, obligately anaerobic, mesophilic, haloalkaliphilic spirochaete, strain ASpG1(T), was isolated from sediments of the alkaline, hypersaline Mono Lake in California, USA. Cells of the Gram-negative strain were motile and spirochaete-shaped with sizes of 0.2-0.22 x 8-18 microm. Growth of the strain was observed between 10 and 44 degrees C (optimum 37 degrees C), in 2-12% (w/v) NaCl (optimum 3% NaCl) and between pH 8 and 10.5 (optimum pH 9.5). The novel strain was strictly alkaliphilic, required high concentrations of carbonates in the medium and was capable of utilizing D-glucose, fructose, maltose, sucrose, starch and D-mannitol. End products of glucose fermentation were H2, acetate, ethanol and formate. Strain ASpG(T) was resistant to kanamycin and rifampicin, but sensitive to gentamicin, tetracycline and chloramphenicol. The G + C content of its DNA was 58.5 mol%. DNA-DNA hybridization analysis of strain ASpG1(T) with its most closely related species, Spirochaeta alkalica Z-7491(T), revealed a hybridization value of only 48.7%. On the basis of its physiological and molecular properties, strain ASpG1(T) appears to represent a novel species of the genus Spirochaeta, for which the name Spirochaeta americana is proposed (type strain ASpG1(T) =ATCC BAA-392(T) = DSM 14872(T)).

  12. Isolation and characterization of Keratinibaculum paraultunense gen. nov., sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity.

    PubMed

    Huang, Yan; Sun, Yingjie; Ma, Shichun; Chen, Lu; Zhang, Hui; Deng, Yu

    2013-08-01

    A novel thermophilic, anaerobic, keratinolytic bacterium designated KD-1 was isolated from grassy marshland. Strain KD-1 was a spore-forming rod with a Gram-positive type cell wall, but stained Gram-negative. The temperature, pH, and NaCl concentration range necessary for growth was 30-65 °C (optimum 55 °C), 6.0-10.5 (optimum 8.0-8.5), and 0-6% (optimum 0.2%) (w/v), respectively. Strain KD-1 possessed extracellular keratinase, and the optimum activity of the crude enzyme was pH 8.5 and 70 °C. The enzyme was identified as a thermostable serine-type protease. The strain was sensitive to rifampin, chloramphenicol, kanamycin, and tetracycline and was resistant to erythromycin, neomycin, penicillin, and streptomycin. The main cellular fatty acid was predominantly C15:0 iso (64%), and the G+C content was 28 mol%. Morphological and physiological characterization, together with phylogenetic analysis based on 16S rRNA gene sequencing identified KD-1 as a new species of a novel genus of Clostridiaceae with 95.3%, 93.8% 16S rRNA gene sequence similarity to Clostridium ultunense BS(T) (DSM 10521(T)) and Tepidimicrobium xylanilyticum PML14(T) (= JCM 15035(T)), respectively. We propose the name Keratinibaculum paraultunense gen. nov., sp. nov., with KD-1 (=JCM 18769(T) =DSM 26752(T)) as the type strain. PMID:23710623

  13. Streptohalobacillus salinus gen. nov., sp. nov., a moderately halophilic, Gram-positive, facultative anaerobe isolated from subsurface saline soil.

    PubMed

    Wang, Xiaowei; Xue, Yanfen; Ma, Yanhe

    2011-05-01

    A Gram-stain-positive, rod-shaped, non-sporulating, motile and moderately halophilic bacterium, designated strain H96B60(T), was isolated from a saline soil sample of the Qaidam basin, China. The strain was facultatively anaerobic. Major end products formed from glucose fermentation were acetate, ethanol and lactic acid. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The isoprenoid quinone component was menaquinone-6 (MK-6). The predominant cellular fatty acids were C(16: 0), anteiso-C(13 : 0) and anteiso-C(15 : 0). The genomic DNA G+C content of strain H96B60(T) was 36.2 mol%. Phylogenetic analysis based on comparative 16S rRNA gene sequences indicated that strain H96B60(T) represented a novel phyletic lineage within the family Bacillaceae and was related most closely to Halolactibacillus species (96.1-96.4 % similarity). Based on the phenotypic, chemotaxonomic and phylogenetic data presented, strain H96B60(T) is considered to represent a novel species of a new genus, for which the name Streptohalobacillus salinus gen. nov., sp. nov. is proposed. The type strain of Streptohalobacillus salinus is H96B60(T) ( = DSM 22440(T)  = CGMCC 1.7733(T)).

  14. Isolation and characterization of Keratinibaculum paraultunense gen. nov., sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity.

    PubMed

    Huang, Yan; Sun, Yingjie; Ma, Shichun; Chen, Lu; Zhang, Hui; Deng, Yu

    2013-08-01

    A novel thermophilic, anaerobic, keratinolytic bacterium designated KD-1 was isolated from grassy marshland. Strain KD-1 was a spore-forming rod with a Gram-positive type cell wall, but stained Gram-negative. The temperature, pH, and NaCl concentration range necessary for growth was 30-65 °C (optimum 55 °C), 6.0-10.5 (optimum 8.0-8.5), and 0-6% (optimum 0.2%) (w/v), respectively. Strain KD-1 possessed extracellular keratinase, and the optimum activity of the crude enzyme was pH 8.5 and 70 °C. The enzyme was identified as a thermostable serine-type protease. The strain was sensitive to rifampin, chloramphenicol, kanamycin, and tetracycline and was resistant to erythromycin, neomycin, penicillin, and streptomycin. The main cellular fatty acid was predominantly C15:0 iso (64%), and the G+C content was 28 mol%. Morphological and physiological characterization, together with phylogenetic analysis based on 16S rRNA gene sequencing identified KD-1 as a new species of a novel genus of Clostridiaceae with 95.3%, 93.8% 16S rRNA gene sequence similarity to Clostridium ultunense BS(T) (DSM 10521(T)) and Tepidimicrobium xylanilyticum PML14(T) (= JCM 15035(T)), respectively. We propose the name Keratinibaculum paraultunense gen. nov., sp. nov., with KD-1 (=JCM 18769(T) =DSM 26752(T)) as the type strain.

  15. Exilispira thermophila gen. nov., sp. nov., an anaerobic, thermophilic spirochaete isolated from a deep-sea hydrothermal vent chimney.

    PubMed

    Imachi, Hiroyuki; Sakai, Sanae; Hirayama, Hisako; Nakagawa, Satoshi; Nunoura, Takuro; Takai, Ken; Horikoshi, Koki

    2008-10-01

    A novel thermophilic, anaerobic bacterium, strain RASEN(T), was isolated from a deep-sea hydrothermal vent chimney sample collected in the Iheya North field, Okinawa Trough, Japan, at a water depth of 982 m. The cells were motile, Gram-negative and helical with hooked ends, 0.23-0.28x15-27 microm in size with an approximate wavelength of 1.1-1.5 microm. Growth of the strain was observed at 37-60 degrees C (optimum 50 degrees C), in 2.5-3.5 % (w/v) NaCl (optimum 2.5-3 % NaCl) and at pH 6.0-7.5 (optimum pH 7.0). The strain grew on yeast extract only of the substrates examined in this study. The G+C content of the genomic DNA was 27.1 mol%. Major fatty acids for the strain were C(16 : 0), C(18 : 1)(Delta9) trans, C(18 : 0) and C(18 : 1)(Delta9) cis. Based on comparative 16S rRNA gene sequence analysis, strain RASEN(T) formed a deeply branching lineage within the phylum Spirochaetes and had only low levels of sequence similarity with other species of the phylum (range of similarity 72.1-80.6 %). Hence, we propose the name Exilispira thermophila gen. nov., sp. nov. The type strain of Exilispira thermophila is strain RASEN(T) (=JCM 14728(T) =NBRC 103205(T) =KCTC 5595(T)).

  16. Ruthenibacterium lactatiformans gen. nov., sp. nov., an anaerobic, lactate-producing member of the family Ruminococcaceae isolated from human faeces.

    PubMed

    Shkoporov, Andrei N; Chaplin, Andrei V; Shcherbakova, Victoria A; Suzina, Natalia E; Kafarskaia, Lyudmila I; Bozhenko, Vladimir K; Efimov, Boris A

    2016-08-01

    Two novel strains of Gram-stain-negative, rod-shaped, obligately anaerobic, non-spore-forming, non-motile bacteria were isolated from the faeces of healthy human subjects. The strains, designated as 585-1T and 668, were characterized by mesophilic fermentative metabolism, production of d-lactic acid, succinic acid and acetic acid as end products of d-glucose fermentation, prevalence of C18 : 1ω9, C18 : 1ω9 aldehyde, C16 : 0 and C16 : 1ω7c fatty acids, presence of glycine, glutamic acid, lysine, alanine and aspartic acid in the petidoglycan peptide moiety and lack of respiratory quinones. Whole genome sequencing revealed the DNA G+C content was 56.4-56.6 mol%. The complete 16S rRNA gene sequences of the two strains shared 91.7/91.6 % similarity with Anaerofilum pentosovorans FaeT, 91.3/91.2 % with Gemmiger formicilis ATCC 27749T and 88.9/88.8 % with Faecalibacterium prausnitzii ATCC 27768T. On the basis of chemotaxonomic and genomic properties it was concluded that the strains represent a novel species in a new genus within the family Ruminococcaceae, for which the name Ruthenibacterium lactatiformans gen. nov., sp. nov. is proposed. The type strain of Ruthenibacterium lactatiformans is 585-1T (=DSM 100348T=VKM B-2901T). PMID:27154556

  17. Characterization of Heterologously Expressed Acetyl Xylan Esterase1 Isolated from the Anaerobic Rumen Fungus Neocallimastix frontalis PMA02

    PubMed Central

    Kwon, Mi; Song, Jaeyong; Park, Hong-Seog; Park, Hyunjin; Chang, Jongsoo

    2016-01-01

    Acetyl xylan esterase (AXE), which hydrolyzes the ester linkages of the naturally acetylated xylan and thus known to have an important role for hemicellulose degradation, was isolated from the anaerobic rumen fungus Neocallimastix frontatlis PMA02, heterologously expressed in Escherichi coli (E.coli) and characterized. The full-length cDNA encoding NfAXE1 was 1,494 bp, of which 978 bp constituted an open reading frame. The estimated molecular weight of NfAXE1 was 36.5 kDa with 326 amino acid residues, and the calculated isoelectric point was 4.54. The secondary protein structure was predicted to consist of nine α-helixes and 12 β-strands. The enzyme expressed in E.coli had the highest activity at 40°C and pH 8. The purified recombinant NfAXE1 had a specific activity of 100.1 U/mg when p-nitrophenyl acetate (p-NA) was used as a substrate at 40°C, optimum temperature. The amount of liberated acetic acids were the highest and the lowest when p-NA and acetylated birchwood xylan were used as substrates, respectively. The amount of xylose released from acetylated birchwod xylan was increased by 1.4 fold when NfAXE1 was mixed with xylanase in a reaction cocktail, implying a synergistic effect of NfAXE1 with xylanase on hemicellulose degradation. PMID:27383808

  18. Ruthenibacterium lactatiformans gen. nov., sp. nov., an anaerobic, lactate-producing member of the family Ruminococcaceae isolated from human faeces.

    PubMed

    Shkoporov, Andrei N; Chaplin, Andrei V; Shcherbakova, Victoria A; Suzina, Natalia E; Kafarskaia, Lyudmila I; Bozhenko, Vladimir K; Efimov, Boris A

    2016-08-01

    Two novel strains of Gram-stain-negative, rod-shaped, obligately anaerobic, non-spore-forming, non-motile bacteria were isolated from the faeces of healthy human subjects. The strains, designated as 585-1T and 668, were characterized by mesophilic fermentative metabolism, production of d-lactic acid, succinic acid and acetic acid as end products of d-glucose fermentation, prevalence of C18 : 1ω9, C18 : 1ω9 aldehyde, C16 : 0 and C16 : 1ω7c fatty acids, presence of glycine, glutamic acid, lysine, alanine and aspartic acid in the petidoglycan peptide moiety and lack of respiratory quinones. Whole genome sequencing revealed the DNA G+C content was 56.4-56.6 mol%. The complete 16S rRNA gene sequences of the two strains shared 91.7/91.6 % similarity with Anaerofilum pentosovorans FaeT, 91.3/91.2 % with Gemmiger formicilis ATCC 27749T and 88.9/88.8 % with Faecalibacterium prausnitzii ATCC 27768T. On the basis of chemotaxonomic and genomic properties it was concluded that the strains represent a novel species in a new genus within the family Ruminococcaceae, for which the name Ruthenibacterium lactatiformans gen. nov., sp. nov. is proposed. The type strain of Ruthenibacterium lactatiformans is 585-1T (=DSM 100348T=VKM B-2901T).

  19. Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester.

    PubMed

    Ben Hania, Wajdi; Godbane, Ramzi; Postec, Anne; Hamdi, Moktar; Ollivier, Bernard; Fardeau, Marie-Laure

    2012-06-01

    Strain SulfLac1(T), a thermophilic, anaerobic and slightly halophilic, rod-shaped bacterium with a sheath-like outer structure (toga), was isolated from a whey digester in Tunisia. The strain's non-motile cells measured 3-30×1 µm and appeared singly, in pairs or as long chains. The novel strain reduced thiosulfate and elemental sulfur, but not sulfate or sulfite, into sulfide. It grew at 37-65 °C (optimum 55 °C), at pH 6.5-7.9 (optimum pH 6.9) and with 0.2-3 % (w/v) NaCl (optimum 0.5 %). The G+C content of the strain's genomic DNA was 33.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SulfLac1(T) was most closely related to Petrotoga mobilis (91.4 % sequence similarity). Based on phenotypic, phylogenetic and chemotaxonomic evidence, strain SulfLac1(T) represents a novel species of a new genus within the order Thermotogales, for which the name Defluviitoga tunisiensis gen. nov., sp. nov. is proposed. The type strain of the type species is SulfLac1(T) ( = DSM 23805(T) = JCM 17210(T)).

  20. Trichococcus Patagoniensis sp. nov., a Facultative Anaerobe that grows at -5 C, Isolated from Penguin Guano in Chilean Patagonia

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Krader, Paul E.; Tang, Jane

    2006-01-01

    A novel, extremely psychrotolerant, facultative anaerobe, strain PmagGl(sup T), was isolated from guano of Magellanic penguins (Spheniscus magellanicus) collected in Chilean Patagonia. Gram-variable, motile cocci with a diameter of 1.3-2.0 micrometers were observed singularly or in pairs, short chains and irregular conglomerates. Growth occurred within the pH range 6.0-10.0, with optimum growth at pH 8.5. The temperature range for growth of the novel isolate was from -5 to 35 C, with optimum growth at 28-30 C. Strain PmagG1(sup T) did not require NaCl, as growth was observed in the presence of 0-6.5% NaCl with optimum growth at 0.5% (w/v). Strain PmagGl(sup T) was a catalase-negative chemo-organoheterotroph that used sugars and some organic acids as substrates. The metabolic end products were lactate, formate, acetate, ethanol and Con. Strain PmagG1(sup T) was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. The G+C content of its genomic DNA was 45.8 mol%. 16S rRNA gene sequence analysis showed 100 % similarity of strain PmagG1(sup T) with Trichococcus collinsii ATCC BAA-296(sup T), but DNA-DNA hybridization between them demonstrated relatedness values of less than 45 plus or minus 1%. Another phylogenetically closely related species, Trichococcus pasteurii, showed 99.85 % similarity by 16s rRNA sequencing and DNA-DNA hybridization showed relatedness values of 47 plus or minus 1.5%. Based on genotypic and phenotypic characteristics, the novel species Trichococcus patagoniensis sp. nov. is proposed, with strain PmagG1(sup T) (=ATCC BAA-756(sup T)=JCM 12176(sup T)=CIP 108035(sup T)) as the type strain.

  1. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extremely thermophilic, high ethanol-yielding bacterium isolated from household waste.

    PubMed

    Tomás, Ana Faria; Karakashev, Dimitar; Angelidaki, Irini

    2013-07-01

    An extremely thermophilic, xylanolytic, spore-forming and strictly anaerobic bacterium, strain DTU01(T), was isolated from a continuously stirred tank reactor fed with xylose and household waste. Cells stained Gram-negative and were rod-shaped (0.5-2 µm in length). Spores were terminal with a diameter of approximately 0.5 µm. Optimal growth occurred at 70 °C and pH 7, with a maximum growth rate of 0.1 h(-1). DNA G+C content was 34.2 mol%. Strain DTU01(T) could ferment arabinose, cellobiose, fructose, galactose, glucose, lactose, mannitol, mannose, melibiose, pectin, starch, sucrose, xylan, yeast extract and xylose, but not cellulose, Avicel, inositol, inulin, glycerol, rhamnose, acetate, lactate, ethanol, butanol or peptone. Ethanol was the major fermentation product and a maximum yield of 1.39 mol ethanol per mol xylose was achieved when sulfite was added to the cultivation medium. Thiosulfate, but not sulfate, nitrate or nitrite, could be used as electron acceptor. On the basis of 16S rRNA gene sequence similarity, strain DTU01(T) was shown to be closely related to Thermoanaerobacter mathranii A3(T), Thermoanaerobacter italicus Ab9(T) and Thermoanaerobacter thermocopriae JT3-3(T), with 98-99 % similarity. Despite this, the physiological and phylogenetic differences (DNA G+C content, substrate utilization, electron acceptors, phylogenetic distance and isolation site) allow for the proposal of strain DTU01(T) as a representative of a novel species within the genus Thermoanaerobacter, for which the name Thermoanaerobacter pentosaceus sp. nov. is proposed, with the type strain DTU01(T) ( = DSM 25963(T) = KCTC 4529(T) = VKM B-2752(T) = CECT 8142(T)).

  2. Thermotoga profunda sp. nov. and Thermotoga caldifontis sp. nov., anaerobic thermophilic bacteria isolated from terrestrial hot springs.

    PubMed

    Mori, Koji; Yamazoe, Atsushi; Hosoyama, Akira; Ohji, Shoko; Fujita, Nobuyuki; Ishibashi, Jun-ichiro; Kimura, Hiroyuki; Suzuki, Ken-ichiro

    2014-06-01

    Two thermophilic, strictly anaerobic, Gram-negative bacteria, designated strains AZM34c06(T) and AZM44c09(T), were isolated from terrestrial hot springs in Japan. The optimum growth conditions for strain AZM34c06(T) were 60 °C, pH 7.4 and 0% additional NaCl, and those for strain AZM44c09(T) were 70 °C, pH 7.4 and 0% additional NaCl. Complete genome sequencing was performed for both strains, revealing genome sizes of 2.19 Mbp (AZM34c06(T)) and 2.01 Mbp (AZM44c09(T)). Phylogenetic analyses based on 16S rRNA gene sequences and the concatenated predicted amino acid sequences of 33 ribosomal proteins showed that both strains belonged to the genus Thermotoga. The closest relatives of strains AZM34c06(T) and AZM44c09(T) were the type strains of Thermotoga lettingae (96.0% similarity based on the 16S rRNA gene and 84.1% similarity based on ribosomal proteins) and Thermotoga hypogea (98.6 and 92.7% similarity), respectively. Using blast, the average nucleotide identity was 70.4-70.5% when comparing strain AZM34c06(T) and T. lettingae TMO(T) and 76.6% when comparing strain AZM44c09(T) and T. hypogea NBRC 106472(T). Both values are far below the 95% threshold value for species delineation. In view of these data, we propose the inclusion of the two isolates in the genus Thermotoga within two novel species, Thermotoga profunda sp. nov. (type strain AZM34c06(T) = NBRC 106115(T) = DSM 23275(T)) and Thermotoga caldifontis sp. nov. (type strain AZM44c09(T) = NBRC 106116(T) = DSM 23272(T)).

  3. Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium.

    PubMed

    Teunissen, M J; Op den Camp, H J; Orpin, C G; Huis in 't Veld, J H; Vogels, G D

    1991-06-01

    Anaerobic fungi were isolated from rumen fluid of a domestic sheep (Ovis aries; a ruminant) and from faeces of five non-ruminants: African elephant (Loxodonta africana), black rhinoceros (Diceros bicornis), Indian rhinoceros (Rhinoceros unicornis), Indian elephant (Elephas maximus) and mara (Dolichotis patagonum). The anaerobic fungus isolated from the sheep was a Neocallimastix species and the isolates from non-ruminants were all species similar to Piromyces spp. A defined medium is described which supported growth of all the isolates, and was used to examine growth characteristics of the different strains. For each fungus the lipid phosphate content was determined after growth on cellobiose and the resulting values were used to estimate fungal biomass after growth on solid substrates. The ability of isolates from ruminants and non-ruminants to digest both wheat straw and cellulose was comparable. More than 90% and 60%, respectively, of filter paper cellulose and wheat straw were digested by most strains within 60-78 h. Growth of two fungi, isolated from rumen fluid of a sheep (Neocallimastix strain N1) and from faeces of an Indian rhinoceros (Piromyces strain R1), on cellobiose was studied in detail. Fungal growth yields on cellobiose were 64.1 g (mol substrate)-1 for N1 and 34.2 g mol-1 for R1. The major fermentation products of both strains were formate, lactate, acetate, ethanol and hydrogen. PMID:1919514

  4. The potential of bacteria isolated from ruminal contents of seaweed-eating North Ronaldsay sheep to hydrolyse seaweed components and produce methane by anaerobic digestion in vitro.

    PubMed

    Williams, Allan G; Withers, Susan; Sutherland, Alastair D

    2013-01-01

    The production of methane biofuel from seaweeds is limited by the hydrolysis of polysaccharides. The rumen microbiota of seaweed-eating North Ronaldsay sheep was studied for polysaccharidic bacterial isolates degrading brown-seaweed polysaccharides. Only nine isolates out of 65 utilized >90% of the polysaccharide they were isolated on. The nine isolates (eight Prevotella spp. and one Clostridium butyricum) utilized whole Laminaria hyperborea extract and a range of seaweed polysaccharides, including alginate (seven out of nine isolates), laminarin and carboxymethylcellulose (eight out of nine isolates); while two out of nine isolates additionally hydrolysed fucoidan to some extent. Crude enzyme extracts from three of the isolates studied further had diverse glycosidases and polysaccharidase activities; particularly against laminarin and alginate (two isolates were shown to have alginate lyase activity) and notably fucoidan and carageenan (one isolate). In serial culture rumen microbiota hydrolysed a range of seaweed polysaccharides (fucoidan to a notably lesser degree) and homogenates of L. hyperborea, mixed Fucus spp. and Ascophyllum nodosum to produce methane and acetate. The rumen microbiota and isolates represent potential adjunct organisms or enzymes which may improve hydrolysis of seaweed components and thus improve the efficiency of seaweed anaerobic digestion for methane biofuel production. PMID:23170956

  5. In vitro efficacy of cefovecin against anaerobic bacteria isolated from subgingival plaque of dogs and cats with periodontal disease.

    PubMed

    Khazandi, Manouchehr; Bird, Philip S; Owens, Jane; Wilson, Gary; Meyer, James N; Trott, Darren J

    2014-08-01

    Periodontal disease is a common disease of dogs and cats often requiring antimicrobial treatment as an adjunct to mechanical debridement. However, correct compliance with oral antimicrobial therapy in companion animals is often difficult. Cefovecin is a recently introduced veterinary cephalosporin that has demonstrated prolonged concentrations in extracellular fluid, allowing for dosing intervals of up to 14 days. Subgingival samples were collected from the oral cavity of 29 dogs and eight cats exhibiting grade 2 or grade 3 periodontal disease. Samples were cultivated on Wilkin Chalgrens agar and incubated in an anaerobic chamber for seven days. Selected anaerobic bacteria were isolated and identified to species level using 16S rRNA gene sequence analysis. Minimum inhibitory concentrations were determined for cefovecin and six additional antimicrobials using the agar dilution methodology recommended by the Clinical and Laboratory Standards Institute. The 65 clinical isolates were identified as Porphyromonas gulae (n = 45), Porphyromonas crevioricanis (n = 12), Porphyromonas macacae (n = 1), Porphyromonas cangingivalis (n = 1) Fusobacterium nucleatum (n = 2), Fusobacterium russii (n = 1) and Solobacterium moorei (n = 3). This is the first report of S. moorei being isolated from companion animals with periodontal disease. All isolates were highly susceptible to cefovecin, with a MIC90 of ≤0.125 μg/ml. Conversely, different resistance rates to ampicillin, amoxicillin and erythromycin between isolates were detected. Cefovecin is thus shown to be effective in vitro against anaerobic bacteria isolated from dogs and cats with periodontal disease. PMID:24930431

  6. Mesoporous silica nanoparticles inhibit cellular respiration.

    PubMed

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  7. A novel multienzyme complex from a newly isolated facultative anaerobic bacterium, Paenibacillus sp. TW1.

    PubMed

    Tachaapaikoon, C; Kyu, K L; Pason, P; Ratanakhanockchai, K

    2012-06-01

    A multienzyme complex from newly isolated Paenibacillus sp. TW1 was purified from pellet-bound enzyme preparations by elution with 0.25% sucrose and 1.0% triethylamine (TEA), ultrafiltration and Sephacryl S-400 gel filtration chromatography. The purified multienzyme complex showed a single protein band on non-denaturing polyacrylamide gel electrophoresis (native-PAGE). The high molecular mass of the purified multienzyme complex was approximately 1,950 kDa. The complex consisted of xylanase and cellulase activities as the major and minor enzyme subunits, respectively. The complex appeared as at least 18 protein bands on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and as 15 xylanases and 6 cellulases on zymograms. The purified multienzyme complex contained xylanase, α-L-arabinofuranosidase, carboxymethyl cellulase (CMCase), avicelase and cellobiohydrolase. The complex could effectively hydrolyze corn hulls, corncobs and sugarcane bagasse. These results indicate that the multienzyme complex that is produced by this bacterium is a large, novel xylanolytic-cellulolytic enzyme complex.

  8. The isolation and characterization of new C. thermocellum strains and the evaluation of multiple anaerobic digestion systems

    NASA Astrophysics Data System (ADS)

    Lv, Wen

    The overall objective of my research was to improve the efficiencies of bioconversions that produce renewable energy from lignocellulosic biomass. To this end, my studies addressed issues important to two promising strategies: consolidated bioprocessing (CBP) and anaerobic digestion (AD). CBP achieves saccharolytic enzyme production, hydrolysis, and fermentation in a single step and is considered to be the most cost-effective model. Anaerobic bacteria that can be used in CBP are highly desirable. To that end, two thermophilic and cellulolytic bacterial strains were isolated and characterized (Chapter 3). Based on 16S rRNA gene sequence analysis, both strains CS7 and CS8 are closely related to Clostridium thermocellum ATCC 27405. However, they had significantly higher specific cellulase activities and ethanol/acetate ratios than C. thermocellum ATCC 27405. As a result, CS7 and CS8 are two new highly cellulolytic and ethanologenic C. thermocellum strains, with application potentials in research and development of CBP. As some of the most promising AD processes, two temperature-phased AD (TPAD) systems, in comparison with a thermophilic single-stage AD (TSAD) system and a mesophilic two-stage AD (MTAD) system, were studied in treating high-strength dairy cattle manure. The TPAD systems, with the thermophilic digesters acidified (AT-TPAD, Chapter 4) or operated at neutral pH (NT-TPAD, Chapter 5), were optimized at the thermophilic temperature of 50°C and a volume ratio between the thermophilic and the mesophilic digesters of 1:2. Despite similar methane productions, the NT-TPAD system achieved significantly higher volatile solid (VS) removal than the AT-TPAD system and needed no external pH adjustments (Chapter 6). At the same overall OLR, the TSAD system achieved the highest performance, followed by the NT-TPAD and the MTAD systems (Chapter 7). Each digester harbored distinct yet dynamic microbial populations, some of which were significantly correlated or associated

  9. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.

    PubMed

    Koskinen, Perttu E P; Beck, Steinar R; Orlygsson, Jóhann; Puhakka, Jaakko A

    2008-11-01

    Microbial fermentations are potential producers of sustainable energy carriers. In this study, ethanol and hydrogen production was studied by two thermophilic bacteria (strain AK15 and AK17) isolated from geothermal springs in Iceland. Strain AK15 was affiliated with Clostridium uzonii (98.8%), while AK17 was affiliated with Thermoanaerobacterium aciditolerans (99.2%) based on the 16S rRNA gene sequence analysis. Both strains fermented a wide variety of sugar residues typically found in lignocellulosic materials, and some polysaccharides. In the batch cultivations, strain AK17 produced ethanol from glucose and xylose fermentations of up to 1.6 mol-EtOH/mol-glucose (80% of the theoretical maximum) and 1.1 mol-EtOH/mol-xylose (66%), respectively. The hydrogen yields by AK17 were up to 1.2 mol-H2/ mol-glucose (30% of the theoretical maximum) and 1.0 mol-H2/mol-xylose (30%). The strain AK15 produced hydrogen as the main fermentation product from glucose (up to 1.9 mol-H2/mol-glucose [48%]) and xylose (1.1 mol-H2/mol-xylose [33%]). The strain AK17 tolerated exogenously added ethanol up to 4% (v/v). The ethanol and hydrogen production performance from glucose by a co-culture of the strains AK15 and AK17 was studied in a continuous-flow bioreactor at 60 degrees C. Stable and continuous ethanol and hydrogen co-production was achieved with ethanol yield of 1.35 mol-EtOH/mol-glucose, and with the hydrogen production rate of 6.1 mmol/h/L (H2 yield of 0.80 mol-H2/mol-glucose). PCR-DGGE analysis revealed that the AK17 became the dominant bacterium in the bioreactor. In conclusion, strain AK17 is a promising strain for the co-production of ethanol and hydrogen with a wide substrate utilization spectrum, relatively high ethanol tolerance, and ethanol yields among the highest reported for thermoanaerobes.

  10. Desulfitibacter alkalitolerans gen. nov., sp. nov., an anaerobic, alkalitolerant, sulfite-reducing bacterium isolated from a district heating plant.

    PubMed

    Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2006-12-01

    A novel alkalitolerant, anaerobic bacterium, designated strain sk.kt5(T), was isolated from a metal coupon retrieved from a corrosion-monitoring reactor of a Danish district heating plant (Skanderborg, Jutland). The cells of strain sk.kt5(T) were motile, rod-shaped (0.4-0.6 x 2.5-9.6 microm), stained Gram-positive and formed endospores. Strain sk.kt5(T) grew at pH 7.6-10.5 (with optimum growth at pH 8.0-9.5), at temperatures in the range 23-44 degrees C (with optimum growth at 35-37 degrees C), at NaCl concentrations in the range 0-5 % (w/v) (with optimum growth at 0-0.5 %) and required yeast extract for growth. Only a limited number of substrates were utilized as electron donors, including betaine, formate, lactate, methanol, choline and pyruvate. Elemental sulfur, sulfite, thiosulfate, nitrate and nitrite, but not sulfate or Fe(III) citrate, were used as electron acceptors. The G+C content of the DNA was 41.6 mol%. Phylogenetic analyses of the sequence data for the dsrAB genes [encoding the major subunits of dissimilatory (bi)sulfite reductase] and the 16S rRNA gene placed strain sk.kt5(T) within a novel lineage in the class Clostridia of the phylum Firmicutes. Taken together, the physiological and genotypic data suggest that strain sk.kt5(T) represents a novel species within a novel genus, for which the name Desulfitibacter alkalitolerans gen. nov., sp. nov. is proposed. The type strain of Desulfitibacter alkalitolerans is sk.kt5(T) (=JCM 12761(T)=DSM 16504(T)).

  11. Spirochaeta Americana sp. Nov., A New Haloalkaliphilic, Obligately Anaerobic Spirochaete Isolated from Soda Mona Lake in California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul

    2003-01-01

    A novel, obligately anaerobic, mesophilic, haloalkaliphilic spirochaete, strain ASpG1(sup T), was isolated from sediments of the alkaline, hypersaline Mono Lake in California, USA. Cells of the Gram-negative strain were motile and spirochaete-shaped with sizes of 0.2-0.22 x 8-18 microns. Growth of the strain was observed between 10 and 44 C (optimum 37 C), in 2-12% (w/v) NaCl (optimum 3 % NaCl) and between pH 8 and 10.5 (optimum pH 9.5). The novel strain was strictly alkaliphilic, required high concentrations of carbonates in the medium and was capable of utilizing D-glucose, fructose, maltose, sucrose, starch and D-mannitol. End products of glucose fermentation were H2, acetate, ethanol and formate. Strain ASpG1(sup T) was resistant to kanamycin and rifampicin, but sensitive to gentamicin, tetracycline and chloramphenicol. The G + C content of its DNA was 58.5 mol%. DNA-DNA hybridization analysis of strain ASpG1(sup T) with its most closely related species, Spirochaeta alkalica Z-7491(sup T) revealed a hybridization value of only 48.7 %. On the basis of its physiological and molecular properties, strain ASpG1(sup T) appears to represent a novel species of the genus Spirochaeta, for which the name Spirochaeta americana is proposed (type strain ASpG1(sup T) = ATCC 13AA-392(sup T) = DSM 14872(sup T)).

  12. Cellulosibacter alkalithermophilus gen. nov., sp. nov., an anaerobic alkalithermophilic, cellulolytic-xylanolytic bacterium isolated from soil of a coconut garden.

    PubMed

    Watthanalamloet, Amornrat; Tachaapaikoon, Chakrit; Lee, Yun Sik; Kosugi, Akihiko; Mori, Yutaka; Tanasupawat, Somboon; Kyu, Khin Lay; Ratanakhanokchai, Khanok

    2012-10-01

    An obligately anaerobic, cellulolytic-xylanolytic bacterium, designated strain A6(T), was isolated from soil of a coconut garden in the Bangkuntien district of Bangkok, Thailand. The strain was Gram-stain positive, catalase-negative, endospore-forming, motile and rod-shaped with a cell size of 0.2-0.3×2.0-3.0 µm. Optimal growth of strain A6(T) occurred at pH(55 °C) 9.5, 55 °C. Strain A6(T) fermented various carbohydrates, and the end products from the fermentation of cellobiose were acetate, ethanol, propionate and a small amount of butyrate. The major cellular fatty acids were iso-C(14:0) 3-OH, iso-C(15:0), iso-C(16:0) and C(16:0). The cell-wall peptidoglycan contained meso-diaminopimelic acid. No respiratory quinones were detected. The DNA G+C content was 30.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain represented a new phyletic sublineage within the family Clostridiaceae, with <93.0% 16S rRNA gene sequence similarity to recognized species of this family. On the basis of phenotypic, genotypic and physiological evidence, strain A6(T) represents a novel species of a new genus, for which the name Cellulosibacter alkalithermophilus gen. nov., sp. nov. is proposed. The type strain of the type species is A6(T) ( = TISTR 1915(T) = KCTC 5874(T)).

  13. Pontibacillus litoralis sp. nov., a facultatively anaerobic bacterium isolated from a sea anemone, and emended description of the genus Pontibacillus.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; Yi, Lang-Bo; Li, Zhao-Yang; Wang, Yong-Xiao; Xiao, Huai-Dong; Chen, Qi-Hui; Cui, Xiao-Long; Li, Wen-Jun

    2010-03-01

    A facultatively anaerobic, moderately halophilic, Gram-positive, endospore-forming, motile, catalase- and oxidase-positive, rod-shaped bacterium, strain JSM 072002(T), was isolated from a sea anemone (Anthopleura xanthogrammica) collected from the South China Sea. Strain JSM 072002(T) was able to grow with 0.5-15 % (w/v) NaCl and at pH 6.0-10.0 and 15-50 degrees C; optimum growth was observed with 2-5 % (w/v) NaCl and at pH 7.5 and 35 degrees C. meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The major cellular fatty acids were iso-C(15 : 0) and anteiso-C(15 : 0). The predominant respiratory quinone was menaquinone 7 and the genomic DNA G+C content was 41.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 072002(T) should be assigned to the genus Pontibacillus and revealed relatively low 16S rRNA gene sequence similarities (<97 %) with the type strains of the three recognized Pontibacillus species (Pontibacillus chungwhensis BH030062(T), 96.8 %; Pontibacillus marinus KCTC 3917(T), 96.7 %; Pontibacillus halophilus JSM 076056(T), 96.0 %). The combination of phylogenetic analysis, DNA-DNA relatedness values, phenotypic characteristics and chemotaxonomic data supports the view that strain JSM 072002(T) represents a novel species of the genus Pontibacillus, for which the name Pontibacillus litoralis sp. nov. is proposed. The type strain is JSM 072002(T) (=DSM 21186(T)=KCTC 13237(T)). An emended description of the genus Pontibacillus is also presented.

  14. Comparative in vitro activity of faropenem and 11 other antimicrobial agents against 405 aerobic and anaerobic pathogens isolated from skin and soft tissue infections from animal and human bites.

    PubMed

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Warren, Yumi A; Tyrrell, Kerin L; Fernandez, Helen T

    2002-09-01

    Faropenem, a new oral beta-lactam agent with a penem structure, was very active against 405 aerobic and anaerobic bite isolates. It inhibited 232 of 236 (98%) aerobic isolates, including all Pasteurella spp. and Eikenella corrodens at < or = 0.25 mg/L, and 164/169 (97%) anaerobic isolates, at < or = 1 mg/L. The 10 isolates that required > or = 2 mg/L for inhibition were one strain each of Acinetobacter lwoffi, Corynebacterium minutissimum, Bacteroides ovatus, Lactobacillus delbrueckii and Peptostreptococcus tetradius, plus Corynebacterium 'aquaticum' (two strains) and Veillonella sp. (three strains). PMID:12205068

  15. Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG)

    PubMed Central

    Parkes, R John; Sellek, Gerard; Webster, Gordon; Martin, Derek; Anders, Erik; Weightman, Andrew J; Sass, Henrik

    2009-01-01

    Deep subseafloor sediments may contain depressurization-sensitive, anaerobic, piezophilic prokaryotes. To test this we developed the DeepIsoBUG system, which when coupled with the HYACINTH pressure-retaining drilling and core storage system and the PRESS core cutting and processing system, enables deep sediments to be handled without depressurization (up to 25 MPa) and anaerobic prokaryotic enrichments and isolation to be conducted up to 100 MPa. Here, we describe the system and its first use with subsurface gas hydrate sediments from the Indian Continental Shelf, Cascadia Margin and Gulf of Mexico. Generally, highest cell concentrations in enrichments occurred close to in situ pressures (14 MPa) in a variety of media, although growth continued up to at least 80 MPa. Predominant sequences in enrichments were Carnobacterium, Clostridium, Marinilactibacillus and Pseudomonas, plus Acetobacterium and Bacteroidetes in Indian samples, largely independent of media and pressures. Related 16S rRNA gene sequences for all of these Bacteria have been detected in deep, subsurface environments, although isolated strains were piezotolerant, being able to grow at atmospheric pressure. Only the Clostridium and Acetobacterium were obligate anaerobes. No Archaea were enriched. It may be that these sediment samples were not deep enough (total depth 1126–1527 m) to obtain obligate piezophiles. PMID:19694787

  16. Anoxybacillusgeothermalis sp. nov., a facultatively anaerobic, endospore-forming bacterium isolated from mineral deposits in a geothermal station.

    PubMed

    Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Jeanneret, Nicole; Palmieri, Fabio; Palmieri, Ilona; Roussel-Delif, Ludovic; Vieth-Hillebrand, Andrea; Vetter, Alexandra; Chain, Patrick S; Regenspurg, Simona; Junier, Pilar

    2016-08-01

    A novel endospore-forming bacterium designated strain GSsed3T was isolated from deposits clogging aboveground filters from the geothermal power platform of Groß Schönebeck in northern Germany. The novel isolate was Gram-staining-positive, facultatively anaerobic, catalase-positive and oxidase-positive. Optimum growth occurred at 60 °C, 0.5 % (w/v) NaCl and pH 7-8. Analysis of the 16S rRNA gene sequence similarity indicated that strain GSsed3T belonged to the genus Anoxybacillus, and showed 99.8 % sequence similarity to Anoxybacillus rupiensis R270T, 98.2 % similarity to Anoxybacillus tepidamans GS5-97T, 97.9 % similarity to Anoxybacillus voinovskiensis TH13T, 97.7 % similarity to Anoxybacillus caldiproteolyticus DSM 15730T and 97.6 % similarity to Anoxybacillus amylolyticus MR3CT. DNA-DNA hybridization (DDH) indicated only 16 % relatedness to Anoxybacillus rupiensis DSM 17127T. Furthermore, DDH estimation based on genomes analysis indicated only 19.9 % overall nucleotide similarity to Anoxybacillus amylolyticus DSM 15939T. The major respiratory menaquinone was MK-8. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unknown phosphoglycolipid and one unknown phospholipid. The predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0, C16 : 0, iso-C16 : 0 and anteiso-C17 : 0. The peptidoglycan type was A1γ meso-Dpm-direct. The genomic DNA G+C content of the strain was 46.9 mol%. The phenotypic, genotypic and chemotaxonomic characterization indicated that strain GSsed3T differs from related species of the genus. Therefore, strain GSsed3T is considered to be a representative of a novel species of the genus Anoxybacillus, for which the name Anoxybacillus geothermalis sp. nov. is proposed. The type strain of Anoxybacillus geothermalis is GSsed3T (=CCOS808T =ATCC BAA2555T). PMID:27126386

  17. Anaerovirgula multivorans gen. nov., sp. nov., a Novel Spore-Forming, Alkaliphilic Anaerobe Isolated from Owens Lake, California, USA

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Itoh, Takashi; Krader, Paul; Whitman, William B.; Hoover, Richard B.

    2006-01-01

    A novel, alkaliphilic, obligately anaerobic bacterium, strain SCAT, was isolated from mud sediments of a soda lake in California, USA. The rod-shaped cells were motile, Gram-positive, formed spores and were 0.4-0.5x2.5-5.0 micrometers in size. Growth occurred within the pH range 6.7-10.0 and was optimal at pH 8.5. The temperature range for growth was 10-45 degrees C, with optimal growth at 35 degrees C. NaCl was required for growth. Growth occurred at 0.5-9.0% (w/v) NaCl and was optimal at 1-2% (w/v). The novel isolate was a catalase-negative chemo-organoheterotroph that fermented sugars, proteolysis products, some organic and amino acids, glycerol, d-cellobiose and cellulose. It was also capable of growth by the Stickland reaction. Strain SCAT was sensitive to tetracycline, chloramphenicol, rifampicin and gentamicin, but it was resistant to ampicillin and kanamycin. The G+C content of the genomic DNA was 34.2 mol%. Major fatty acid components were C14:0, iso-C15:0, C16:1omega9c and C16:0. 16S rRNA gene sequence analysis of strain SCAT showed a similarity of approximately 97% with the type strains of Clostridium formicaceticum and Clostridium aceticum in clostridial cluster XI and a similarity of less than 94.2% to any other recognized Clostridium species and those of related genera in this cluster. Strain SCAT was clearly differentiated from C. formicaceticum and C. aceticum based on comparison of their phenotypic properties and fatty acid profiles, as well as low levels of DNA-DNA relatedness between strain SCAT and the type strains of these two species. Therefore, strain SCAT is considered to represent a novel species of a new genus, Anaerovirgula multivorans gen. nov., sp. nov., in clostridial cluster XI. The type strain is SCAT (=ATCC BAA-1084T=JCM 12857T=DSM 17722T=CIP 107910T).

  18. Clostridium swellfunianum sp. nov., a novel anaerobic bacterium isolated from the pit mud of Chinese Luzhou-flavor liquor production.

    PubMed

    Liu, Chaolan; Huang, Dan; Liu, Laiyan; Zhang, Jin; Deng, Yu; Chen, Ling; Zhang, Wenxue; Wu, Zhengyun; Fan, Ao; Lai, Dengyi; Dai, Lirong

    2014-10-01

    A novel Gram-positive, strictly anaerobic, spore-forming, rod-shaped bacterium, designated strain S11-3-10(T), was isolated from the pit mud used for Chinese Luzhou-flavor liquor production. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the strain formed a monophyletic clade with the closely related type strains of Clostridium cluster I and was most closely related to Clostridium amylolyticum JCM 14823(T) (94.38%). The temperature, pH, and NaCl range for growth was determined to be 20-45 °C (optimum 37 °C), 4.0-10.0 (optimum pH 7.3), and 0-3.0% (w/v), respectively. The strain was able to tolerate up to 7.5 % (v/v) ethanol. Yeast extract or peptone was found to be required for growth. Acids were found to be produced from glucose, mannose and trehalose. The major end products from glucose fermentation were identified as ethanol, acetate and hydrogen. The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unidentified phospholipids and polar lipids. The major fatty acids (>5%) were identified as iso-C(15:0), C(16:0), C(16:0)dma, C(14:0), anteiso-C(15:0) and iso-C(13:0). No respiratory quinone was detected. The diamino acid in the cell wall peptidoglycan was identified as meso-diaminopimelic acid and the whole-cell sugars were found to include galactose and glucose as major components. The DNA G+C content was determined to be 36.4 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic evidence, the isolate is considered to represent a novel species of the genus Clostridium for which the name Clostridium swellfunianum sp. nov. is proposed. The type strain is S11-3-10(T) (=DSM 27788(T) = JCM 19606(T) = CICC 10730(T)).

  19. Anoxybacillusgeothermalis sp. nov., a facultatively anaerobic, endospore-forming bacterium isolated from mineral deposits in a geothermal station.

    PubMed

    Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Jeanneret, Nicole; Palmieri, Fabio; Palmieri, Ilona; Roussel-Delif, Ludovic; Vieth-Hillebrand, Andrea; Vetter, Alexandra; Chain, Patrick S; Regenspurg, Simona; Junier, Pilar

    2016-08-01

    A novel endospore-forming bacterium designated strain GSsed3T was isolated from deposits clogging aboveground filters from the geothermal power platform of Groß Schönebeck in northern Germany. The novel isolate was Gram-staining-positive, facultatively anaerobic, catalase-positive and oxidase-positive. Optimum growth occurred at 60 °C, 0.5 % (w/v) NaCl and pH 7-8. Analysis of the 16S rRNA gene sequence similarity indicated that strain GSsed3T belonged to the genus Anoxybacillus, and showed 99.8 % sequence similarity to Anoxybacillus rupiensis R270T, 98.2 % similarity to Anoxybacillus tepidamans GS5-97T, 97.9 % similarity to Anoxybacillus voinovskiensis TH13T, 97.7 % similarity to Anoxybacillus caldiproteolyticus DSM 15730T and 97.6 % similarity to Anoxybacillus amylolyticus MR3CT. DNA-DNA hybridization (DDH) indicated only 16 % relatedness to Anoxybacillus rupiensis DSM 17127T. Furthermore, DDH estimation based on genomes analysis indicated only 19.9 % overall nucleotide similarity to Anoxybacillus amylolyticus DSM 15939T. The major respiratory menaquinone was MK-8. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unknown phosphoglycolipid and one unknown phospholipid. The predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0, C16 : 0, iso-C16 : 0 and anteiso-C17 : 0. The peptidoglycan type was A1γ meso-Dpm-direct. The genomic DNA G+C content of the strain was 46.9 mol%. The phenotypic, genotypic and chemotaxonomic characterization indicated that strain GSsed3T differs from related species of the genus. Therefore, strain GSsed3T is considered to be a representative of a novel species of the genus Anoxybacillus, for which the name Anoxybacillus geothermalis sp. nov. is proposed. The type strain of Anoxybacillus geothermalis is GSsed3T (=CCOS808T =ATCC BAA2555T).

  20. Isolation of an arsenate-respiring bacterium from a redox front in an arsenic-polluted aquifer in West Bengal, Bengal Basin.

    PubMed

    Osborne, Thomas H; McArthur, John M; Sikdar, Pradip K; Santini, Joanne M

    2015-04-01

    Natural pollution of groundwater by arsenic adversely affects the health of tens of millions of people worldwide, with the deltaic aquifers of SE Asia being particularly polluted. The pollution is caused primarily by, or as a side reaction of, the microbial reduction of sedimentary Fe(III)-oxyhydroxides, but the organism(s) responsible for As release have not been isolated. Here we report the first isolation of a dissimilatory arsenate reducer from sediments of the Bengal Basin in West Bengal. The bacterium, here designated WB3, respires soluble arsenate and couples its reduction to the oxidation of acetate; WB3 is therefore implicated in the process of arsenic pollution of groundwater, which is largely by arsenite. The bacterium WB3 is also capable of reducing dissolved Fe(III) citrate, solid Fe(III)-oxyhydroxide, and elemental sulfur, using acetate as the electron donor. It is a member of the Desulfuromonas genus and possesses a dissimilatory arsenate reductase that was identified using degenerate polymerase chain reaction primers. The sediment from which WB3 was isolated was brown, Pleistocene sand at a depth of 35.2 m below ground level (mbgl). This level was some 3 cm below the boundary between the brown sands and overlying reduced, gray, Holocene aquifer sands. The color boundary is interpreted to be a reduction front that releases As for resorption downflow, yielding a high load of labile As sorbed to the sediment at a depth of 35.8 mbgl and concentrations of As in groundwater that reach >1000 μg/L.

  1. Isolation and Genomic Characterization of ‘Desulfuromonas soudanensis WTL’, a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine

    PubMed Central

    Badalamenti, Jonathan P.; Summers, Zarath M.; Chan, Chi Ho; Gralnick, Jeffrey A.; Bond, Daniel R.

    2016-01-01

    Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, ‘Desulfuromonas soudanensis’ strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that ‘D. soudanensis’ releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. ‘D. soudanensis’ contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of ‘D. soudanensis’ underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats. PMID:27445996

  2. Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate.

    PubMed

    Lin, Jun; Zhang, Xingwang; Li, Zhongjian; Lei, Lecheng

    2010-01-01

    Pseudomonas sp. strain L1 capable of degrading the azo textile dye Reactive blue 13, was isolated from activated sludge in a sequencing batch reactor. A continuous two-stage anaerobic/aerobic biological fluidized bed system was used to decolorize and mineralize Reactive blue 13. The key factors affecting decolorization were investigated and the efficiency of degradation was also optimized. An overall color removal of 83.2% and COD removal of 90.7% was achieved at pH 7, a residence time of 70 h and a glucose concentration of 2 g/L, HRT=70 h and C(glucose)=2000 mg/L. Oxygen was contributing to blocking the azo bond cleavage. Consequently, decolorization occurred in the anaerobic reactor while partial mineralization was achieved in the aerobic reactor. A possible degradation pathway based on the analysis of intermediates and involving azoreduction, desulfonation, deamination and further oxidation reactions is presented.

  3. Waiting to inhale: HIF-1 modulates aerobic respiration.

    PubMed

    Boutin, Adam T; Johnson, Randall S

    2007-04-01

    The hypoxia-inducible factor HIF-1 is known to promote anaerobic respiration during low oxygen conditions (hypoxia). In this issue, Fukuda et al. (2007) expand the range of HIF-1's functions by showing that it modulates aerobic respiration as well.

  4. BACTERIAL RESPIRATION OF ARSENIC AND SELENIUM. (R826105)

    EPA Science Inventory

    Abstract

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichme...

  5. Anaerobic Biotransformation and Mobility of Pu and of Pu-EDTA

    SciTech Connect

    Xun, Luying

    2009-11-20

    The enhanced mobility of radionuclides by co-disposed chelating agent, ethylenediaminetetraacetate (EDTA), is likely to occur only under anaerobic conditions. Our extensive effort to enrich and isolate anaerobic EDTA-degrading bacteria has failed. Others has tried and also failed. To explain the lack of anaerobic biodegradation of EDTA, we proposed that EDTA has to be transported into the cells for metabolism. A failure of uptake may contribute to the lack of EDTA degradation under anaerobic conditions. We demonstrated that an aerobic EDTA-degrading bacterium strain BNC1 uses an ABC-type transporter system to uptake EDTA. The system has a periplasmic binding protein that bind EDTA and then interacts with membrane proteins to transport EDTA into the cell at the expense of ATP. The bind protein EppA binds only free EDTA with a Kd of 25 nM. The low Kd value indicates high affinity. However, the Kd value of Ni-EDTA is 2.4 x 10^(-10) nM, indicating much stronger stability. Since Ni and other trace metals are essential for anaerobic respiration, we conclude that the added EDTA sequestrates all trace metals and making anaerobic respiration impossible. Thus, the data explain the lack of anaerobic enrichment cultures for EDTA degradation. Although we did not obtain an EDTA degrading culture under anaerobic conditions, our finding may promote the use of certain metals that forms more stable metal-EDTA complexes than Pu(III)-EDTA to prevent the enhanced mobility. Further, our data explain why EDTA is the most dominant organic pollutant in surface waters, due to the lack of degradation of certain metal-EDTA complexes.

  6. Anaerobic bag culture method.

    PubMed

    Rosenblatt, J E; Stewart, P R

    1975-06-01

    In a new method of anaerobic culture, a transparent, gas-impermeable bag is used and the anaerobic environment is established with copper sulfate-saturated steel wool. An Alka-Seltzer tablet generates carbon dioxide. The agar plate surface can be inspected through the bag at any time without interrupting the anaerobic atmosphere or disturbing other specimens. Methylene blue indicator strips are completely reduced by 4 h after the bag is set up and have remained reduced for as long as 3 weeks. Growth of 16 different stock culture anaerobes was generally equivalent by the bag and GasPak jar methods. Yield and growth of anaerobic isolates also were equivalent with 7 of 10 clinical specimens; from the other 3 specimens, 13 isolates were recovered, 5 by both the bag and jar methods and the rest by one method or the other. No consistent differences were found between the anaerobic bag and GasPak jar methods in the yield of anaerobes from clinical specimens. Early growth (24 h of incubation) of anaerobes from one specimen was detected with the bag method. PMID:1100671

  7. Anaerobic bag culture method.

    PubMed Central

    Rosenblatt, J E; Stewart, P R

    1975-01-01

    In a new method of anaerobic culture, a transparent, gas-impermeable bag is used and the anaerobic environment is established with copper sulfate-saturated steel wool. An Alka-Seltzer tablet generates carbon dioxide. The agar plate surface can be inspected through the bag at any time without interrupting the anaerobic atmosphere or disturbing other specimens. Methylene blue indicator strips are completely reduced by 4 h after the bag is set up and have remained reduced for as long as 3 weeks. Growth of 16 different stock culture anaerobes was generally equivalent by the bag and GasPak jar methods. Yield and growth of anaerobic isolates also were equivalent with 7 of 10 clinical specimens; from the other 3 specimens, 13 isolates were recovered, 5 by both the bag and jar methods and the rest by one method or the other. No consistent differences were found between the anaerobic bag and GasPak jar methods in the yield of anaerobes from clinical specimens. Early growth (24 h of incubation) of anaerobes from one specimen was detected with the bag method. Images PMID:1100671

  8. Cyanide-insensitive Respiration in Pea Cotyledons.

    PubMed

    James, T W; Spencer, M S

    1979-09-01

    Mitochondria isolated by a zonal procedure from the cotyledons of germinating peas possessed a cyanide-resistant respiration. This respiration was virtually absent in mitochondria isolated during the first 24 hours of germination but thereafter increased gradually until the 6th or 7th day of seedling development. At this time between 15 and 20% of the succinate oxidation was not inhibited by cyanide. The activity of the cyanide-resistant respiration was also determined in the absence of cyanide. Relationships among mitochondrial structure, cyanide-resistant respiration, and seedling development are discussed.

  9. Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor.

    PubMed

    Patil, Yogita; Junghare, Madan; Pester, Michael; Müller, Nicolai; Schink, Bernhard

    2015-10-01

    A novel strictly anaerobic, mesophilic bacterium was enriched and isolated with gluconate as sole substrate from a methanogenic sludge collected from a biogas reactor. Cells of strain GluBS11T stained Gram-positive and were non-motile, straight rods, measuring 3.0-4.5 × 0.8-1.2 μm. The temperature range for growth was 15-37 °C, with optimal growth at 30 °C, the pH range was 6.5-8.5, with optimal growth at pH 7, and the generation time under optimal conditions was 60 min. API Rapid 32A reactions were positive for α-galactosidase, α-glucosidase and β-glucosidase and negative for catalase and oxidase. A broad variety of substrates was utilized, including gluconate, glucose, fructose, maltose, sucrose, lactose, galactose, melezitose, melibiose, mannitol, erythritol, glycerol and aesculin. Products of gluconate fermentation were ethanol, acetate, formate, H2 and CO2. Neither sulfate nor nitrate served as an electron acceptor. Predominant cellular fatty acids (>10 %) were C14 : 0, C16 : 0, C16 : 1ω7c/iso-C15 : 0 2-OH and C18 : 1ω7c. The DNA G+C content of strain GluBS11T was 44.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequence data revealed that strain GluBS11T is a member of subcluster XIVa within the order Clostridiales. The closest cultured relatives are Clostridium herbivorans (93.1 % similarity to the type strain), Clostridium populeti (93.3 %), Eubacterium uniforme (92.4 %) and Clostridium polysaccharolyticum (91.5 %). Based on this 16S rRNA gene sequence divergence (>6.5 %) as well as on chemotaxonomic and phenotypic differences from these taxa, strain GluBS11T is considered to represent a novel genus and species, for which the name Anaerobium acetethylicum gen. nov., sp. nov. is proposed. The type strain of Anaerobium acetethylicum is GluBS11T ( = LMG 28619T = KCTC 15450T = DSM 29698T). PMID:26297346

  10. Anoxybacter fermentans gen. nov., sp. nov., a piezophilic, thermophilic, anaerobic, fermentative bacterium isolated from a deep-sea hydrothermal vent.

    PubMed

    Zeng, Xiang; Zhang, Zhao; Li, Xi; Zhang, Xiaobo; Cao, Junwei; Jebbar, Mohamed; Alain, Karine; Shao, Zongze

    2015-02-01

    A novel piezophilic, thermophilic, anaerobic, fermentative bacterial strain, designated strain DY22613(T), was isolated from a deep-sea hydrothermal sulfide deposit at the East Pacific Rise (GPS position: 102.6° W 3.1° S). Cells of strain DY22613(T) were long, motile rods (10 to 20 µm in length and 0.5 µm in width) with peritrichous flagella and were Gram-stain-negative. Growth was recorded at 44-72 °C (optimum 60-62 °C) and at hydrostatic pressures of 0.1-55 MPa (optimum 20 MPa). The pH range for growth was from pH 5.0 to 9.0 with an optimum at pH 7.0. Growth was observed in the presence of 1 to 8 % (w/v) sea salts and 0.65 to 5.2 % (w/v) NaCl, with optimum salt concentrations at 3.5 % for sea salts and at 2.3 % for NaCl. Under optimal growth conditions, the shortest generation time observed was 27 min (60 °C, 20 MPa). Strain DY22613(T) was heterotrophic, able to utilize complex organic compounds, amino acids, sugars and organic acids including peptone, tryptone, beef extract, yeast extract, alanine, glutamine, methionine, phenylalanine, serine, threonine, fructose, fucose, galactose, gentiobiose, glucose, mannose, melibiose, palatinose, rhamnose, turanose, pyruvate, lactic acid, methyl ester, erythritol, galacturonic acid and glucosaminic acid. Strain DY22613(T) was able to reduce Fe(III) compounds, including Fe(III) oxyhydroxide (pH 7.0), amorphous iron(III) oxide (pH 9.0), goethite (α-FeOOH, pH 12.0), Fe(III) citrate and elementary sulfur. Products of fermentation were butyrate, acetate and hydrogen. Main cellular fatty acids were iso-C15 : 0, iso-C14 : 0 3-OH and C14 : 0. The genomic DNA G+C content of strain DY22613(T) was 36.7 mol%. Based on 16S rRNA gene sequence analysis, the strain forms a novel lineage within the class Clostridia and clusters with the order Haloanaerobiales (86.92 % 16S rRNA gene sequence similarity). The phylogenetic data suggest that the lineage represents at least a novel genus and species, for which the name Anoxybacter

  11. Isolation and Characterization of Microbes Mediating Thermodynamically Favorable Coupling of Anaerobic Oxidation of Methane and Metal Reduction

    NASA Astrophysics Data System (ADS)

    Glass, J. B.; Reed, B. C.; Sarode, N. D.; Kretz, C. B.; Bray, M. S.; DiChristina, T. J.; Stewart, F. J.; Fowle, D. A.; Crowe, S.

    2014-12-01

    Methane is the third most reduced environmentally relevant electron donor for microbial metabolisms after organic carbon and hydrogen. In anoxic ecosystems, the major sink for methane is anaerobic oxidation of methane (AOM) mediated by syntrophic microbial consortia that couple AOM to reduction of an oxidized electron acceptor to yield free energy. In marine sediments, AOM is generally coupled to reduction of sulfate despite an extremely small amount of free energy yield because sulfate is the most abundant electron acceptor in seawater. While AOM coupled to Fe(III) and Mn(IV) reduction (Fe- and Mn-AOM) is 10-30x more thermodynamically favorable than sulfate-AOM, and geochemical data suggests that it occurs in diverse environments, the microorganisms mediating Fe- and Mn-AOM remain unknown. Lake Matano, Indonesia is an ideal ecosystem to enrich for Fe- and Mn-AOM microbes because its anoxic ferruginous deep waters and sediments contain abundant Fe(III), Mn(IV) and methane, and extremely low sulfate and nitrate. Our research aims to isolate and characterize the microbes mediating Fe- and Mn-AOM from three layers of Lake Matano sediments through serial enrichment cultures in minimal media lacking nitrate and sulfate. 16S rRNA amplicon sequencing of sediment inoculum revealed the presence of the Fe(III)-reducing bacterium Geobacter (5-10% total microbial community in shallow sediment and 35-60% in deeper sediment) as well as 1-2% Euryarchaeota implicated in methane cycling, including ANME-1 and 2d and Methanosarcinales. After 90 days of primary enrichment, all three sediment layers showed high levels of Fe(III) reduction (60-90 μM Fe(II) d-1) in the presence of methane compared to no methane and heat-killed controls. Treatments with added Fe(III) as goethite contained higher abundances of Geobacter than the inoculum (60-80% in all layers), suggesting that Geobacter may be mediating Fe(III) reduction in these enrichments. Quantification of AOM rates is underway, and

  12. Anoxybacter fermentans gen. nov., sp. nov., a piezophilic, thermophilic, anaerobic, fermentative bacterium isolated from a deep-sea hydrothermal vent.

    PubMed

    Zeng, Xiang; Zhang, Zhao; Li, Xi; Zhang, Xiaobo; Cao, Junwei; Jebbar, Mohamed; Alain, Karine; Shao, Zongze

    2015-02-01

    A novel piezophilic, thermophilic, anaerobic, fermentative bacterial strain, designated strain DY22613(T), was isolated from a deep-sea hydrothermal sulfide deposit at the East Pacific Rise (GPS position: 102.6° W 3.1° S). Cells of strain DY22613(T) were long, motile rods (10 to 20 µm in length and 0.5 µm in width) with peritrichous flagella and were Gram-stain-negative. Growth was recorded at 44-72 °C (optimum 60-62 °C) and at hydrostatic pressures of 0.1-55 MPa (optimum 20 MPa). The pH range for growth was from pH 5.0 to 9.0 with an optimum at pH 7.0. Growth was observed in the presence of 1 to 8 % (w/v) sea salts and 0.65 to 5.2 % (w/v) NaCl, with optimum salt concentrations at 3.5 % for sea salts and at 2.3 % for NaCl. Under optimal growth conditions, the shortest generation time observed was 27 min (60 °C, 20 MPa). Strain DY22613(T) was heterotrophic, able to utilize complex organic compounds, amino acids, sugars and organic acids including peptone, tryptone, beef extract, yeast extract, alanine, glutamine, methionine, phenylalanine, serine, threonine, fructose, fucose, galactose, gentiobiose, glucose, mannose, melibiose, palatinose, rhamnose, turanose, pyruvate, lactic acid, methyl ester, erythritol, galacturonic acid and glucosaminic acid. Strain DY22613(T) was able to reduce Fe(III) compounds, including Fe(III) oxyhydroxide (pH 7.0), amorphous iron(III) oxide (pH 9.0), goethite (α-FeOOH, pH 12.0), Fe(III) citrate and elementary sulfur. Products of fermentation were butyrate, acetate and hydrogen. Main cellular fatty acids were iso-C15 : 0, iso-C14 : 0 3-OH and C14 : 0. The genomic DNA G+C content of strain DY22613(T) was 36.7 mol%. Based on 16S rRNA gene sequence analysis, the strain forms a novel lineage within the class Clostridia and clusters with the order Haloanaerobiales (86.92 % 16S rRNA gene sequence similarity). The phylogenetic data suggest that the lineage represents at least a novel genus and species, for which the name Anoxybacter

  13. Effect of feeding isolates of anaerobic fungus Neocallimastix sp. CF 17 on growth rate and fibre digestion in buffalo calves.

    PubMed

    Paul, Shyam S; Deb, Sitangshu M; Punia, Balbir S; Das, Kalyan S; Singh, Ghansham; Ashar, Manisha N; Kumar, Rajiv

    2011-06-01

    In this investigation, the effects of feeding encapsulated cells (rhizomycelia and zoospores) of a fibrolytic isolate from an anaerobic fungus (Neocallimastix sp. CF 17) on nutrient digestion, ruminal fermentation, microbial populations, enzyme profile and growth performance were evaluated in buffaloes. In three in vitro studies, the true digestibility of wheat straw was increased after addition of CF 17 to buffalo rumen fluid (p < 0.05). In Exp. 1, three groups of six buffaloes each (initial BW [body weight] 148 +/- 12.0 kg) were allotted to three dosing regimes: Group 1 received 200 ml of liquid culture of Neocallimastix sp. CF 17 (about 10(6) TFU [thallus-forming units]/ml); Group 2 received an encapsulated culture of the same fungi prepared from 200 ml liquid culture; Group 3: received 200 ml of autoclaved culture (Control). The supplementations were given weekly for four weeks (on days 1,7, 14 and 21). During the dosing period, the average daily gain of Group 2 was higher than in the Control group (444 g/d compared with 264 g/d; p < 0.05). Furthermore, the digestibility of organic matter increased in Group 1 and 2 compared with the Control (64.8, 64.0 and 60.4% respectively; p < 0.05), resulting in an increase in the total digestible nutrient (TDN) percent of ration (p < 0.05). But these effects disappeared post-dosing. There were also an increase in concentration of volatile fatty acids, trichloroacetic acid precipitable N and number of fibrolytic microbes in the rumen during the dosing period (p < 0.05), but these effects declined post-dosing. Results of Exp 2., where the encapsulated culture was applied at intervals of 4 d or 8 d for 120 d, showed that a shorter dosing frequency did not improve growth performance or feed intake. However, independent of the dosing frequency the growth rate of both groups fed the encapsulated culture were about 20% higher than in the Control group (p < 0.05). The present study showed that encapsulated fungi have a high

  14. The phylogeny of archaebacteria, including novel anaerobic thermoacidophiles in the light of RNA polymerase structure

    NASA Astrophysics Data System (ADS)

    Zillig, Wolfram; Schnabel, Ralf; Tu, Jenn; Stetter, Karl Otto

    1982-05-01

    DNA-dependent RNA polymerases of archaebacteria are distinct from those of eubacteria both in structure and in function. They show similarities to those of the eukaryotic cytoplasm. Extremely thermophilic anaerobic sulfur-respiring archaebacteria isolated from solfataric waters represent four different families, the Thermoproteaceae, the “stiff filaments”, the Desulfurococcaceae and the Thermococcaceae, of a novel order, Thermoproteales. Together with the Sulfolobales, they form the second branch of the urkingdom of the archaebacteria besides that of the methanogens and extreme halophiles. Thermoplasma appears isolated.

  15. Obligate anaerobes in clinical veterinary practice.

    PubMed Central

    Hirsh, D C; Biberstein, E L; Jang, S S

    1979-01-01

    Clinical specimens obtained from domestic animals were examined to determine the relative prevalence of obligate anaerobic bacteria and the species represented. Of 3,167 samples cultured anaerobically as well as aerobically, 2,234 were bacteriologically positive. Of these positive samples, 583 (26%) contained species of obligate anaerobic bacteria in a total of 641 isolates. Most positive samples contained anaerobes admixed with aerobic species, although 6% of such samples yielded pure cultures of obligate anaerobes. The most common sites from which anaerobes were isolated were abscesses (32% of abscesses cultured contained species of obligate anaerobes), peritoneal exudates (24%), and pleural effusions (20%). Bacteroides melaninogenicus, Bacteroides spp., Peptostreptococcus anaerobius, and Bacteroides ruminicola accounted in the aggregate for approximately 50% of all anaerobic isolates. Bacteroides fragilis accounted for 1% of all the isolates, and members of the genus Clostridium accounted for 8%. PMID:511987

  16. Draft Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum copahuensis Strain CINDEFI1 Isolated from the Geothermal Copahue System, Neuquén, Argentina

    PubMed Central

    Yaakop, Amira Suriaty; Chan, Chia Sing; Urbieta, M. Sofía; Ee, Robson; Tan-Guan-Sheng, Adrian; Donati, Edgardo R.

    2016-01-01

    Desulfotomaculum copahuensis strain CINDEFI1 is a novel spore-forming sulfate-reducing bacterium isolated from the Copahue volcano area, Argentina. Here, we present its draft genome in which we found genes related with the anaerobic respiration of sulfur compounds similar to those present in the Copahue environment. PMID:27540078

  17. Draft Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum copahuensis Strain CINDEFI1 Isolated from the Geothermal Copahue System, Neuquén, Argentina.

    PubMed

    Willis Poratti, Graciana; Yaakop, Amira Suriaty; Chan, Chia Sing; Urbieta, M Sofía; Chan, Kok-Gan; Ee, Robson; Tan-Guan-Sheng, Adrian; Goh, Kian Mau; Donati, Edgardo R

    2016-08-18

    Desulfotomaculum copahuensis strain CINDEFI1 is a novel spore-forming sulfate-reducing bacterium isolated from the Copahue volcano area, Argentina. Here, we present its draft genome in which we found genes related with the anaerobic respiration of sulfur compounds similar to those present in the Copahue environment.

  18. Draft Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum copahuensis Strain CINDEFI1 Isolated from the Geothermal Copahue System, Neuquén, Argentina.

    PubMed

    Willis Poratti, Graciana; Yaakop, Amira Suriaty; Chan, Chia Sing; Urbieta, M Sofía; Chan, Kok-Gan; Ee, Robson; Tan-Guan-Sheng, Adrian; Goh, Kian Mau; Donati, Edgardo R

    2016-01-01

    Desulfotomaculum copahuensis strain CINDEFI1 is a novel spore-forming sulfate-reducing bacterium isolated from the Copahue volcano area, Argentina. Here, we present its draft genome in which we found genes related with the anaerobic respiration of sulfur compounds similar to those present in the Copahue environment. PMID:27540078

  19. Isolation and characterization of a bacteriocin (Butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens.

    PubMed Central

    Kalmokoff, M L; Teather, R M

    1997-01-01

    Forty-nine isolates of Butyrivibrio fibrisolvens and a single isolate of Butyrivibrio crossotus were screened for the production of inhibitors by a deferred plating procedure. Twenty-five isolates produced factors which, to various degrees, inhibited the growth of the other Butyrivibrio isolates. None of the inhibitory activity was due to bacteriophages. The inhibitory products from 18 of the producing strains were sensitive to protease digestion. Differences in the ranges of activity among the Butyrivibrio isolates and protease sensitivity profiles suggest that a number of different inhibitory compounds are produced. These findings suggest that the production of bacteriocin-like inhibitors may be a widespread characteristic throughout the genus Butyrivibrio. The bacteriocin-like activity from one isolate, B. fibrisolvens AR10, was purified and confirmed to reside in a single peptide. Crude bacteriocin extracts were prepared by ammonium sulfate and methanol precipitation of spent culture supernatants, followed by dialysis and high-speed centrifugation. The active component was isolated from the semicrude extract by reverse-phase chromatography. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed that the peptide was purified to homogeneity, having an estimated molecular mass of approximately 4,000 Da. The N terminus of the peptide was blocked. A cyanogen bromide cleavage fragment of the native peptide yielded a sequence of 20 amino acids [(M)GIQLAPAXYQDIVNXVAAG]. No homology with previously reported bacteriocins was found. Butyrivibriocin AR10 represents the first bacteriocin isolated from a ruminal anaerobe. PMID:9023920

  20. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

  1. A fast and reliable procedure for spore collection from anaerobic fungi: Application for RNA uptake and long-term storage of isolates.

    PubMed

    Calkins, Shelby; Elledge, Nicole C; Hanafy, Radwa A; Elshahed, Mostafa S; Youssef, Noha

    2016-08-01

    Anaerobic gut fungi (AGF) represent a basal fungal lineage (phylum Neocallimastigomycota) that resides in the rumen and alimentary tracts of herbivores. The AGF reproduce asexually, with a life cycle that involves flagellated zoospores released from zoosporangia followed by encystment, germination and the subsequent development of rhizomycelia. A fast and reliable approach for AGF spore collection is critical not only for developmental biology studies, but also for molecular biological (e.g. AMT-transformation and RNAi) approaches. Here, we developed and optimized a simple and reliable procedure for the collection of viable, competent, and developmentally synchronized AGF spores under strict anaerobic conditions. The approach involves growing AGF on agar medium in serum bottles under anaerobic conditions, and flooding the observed aerial growth to promote spore release from sporangia into the flooding suspension. The released spores are gently collected using a wide bore sterile needle. Process optimization resulted in the recovery of up to 7×10(9) spores per serum bottle. Further, the released spores exhibited synchronized development from flagellated spores to encysted spores and finally to germinating spores within 90min from the onset of flooding. At the germinating spore stage, the obtained spores were competent, and readily uptook small interfering RNA (siRNA) oligonucleotides. Finally, using multiple monocentric and polycentric AGF isolates, we demonstrate that AGF grown on agar surface could retain viability for up to 16weeks at 39°C, and hence this solid surface growth procedure represents a simple, cryopreservative- and freezing temperature-free approach for AGF storage.

  2. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    PubMed

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications.

  3. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    PubMed

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications. PMID:26925616

  4. Genome sequence of Phaeobacter daeponensis type strain (DSM 23529T), a facultatively anaerobic bacterium isolated from marine sediment, and emendation of Phaeobacter daeponensis

    PubMed Central

    Dogs, Marco; Teshima, Hazuki; Petersen, Jörn; Fiebig, Anne; Chertkov, Olga; Dalingault, Hajnalka; Chen, Amy; Pati, Amrita; Goodwin, Lynne A.; Chain, Patrick; Detter, John C.; Ivanova, Natalia; Lapidus, Alla; Rohde, Manfred; Gronow, Sabine; Kyrpides, Nikos C.; Woyke, Tanja; Simon, Meinhard; Göker, Markus; Klenk, Hans-Peter; Brinkhoff, Thorsten

    2013-01-01

    TF-218T is the type strain of the species Phaeobacter daeponensis Yoon et al. 2007, a facultatively anaerobic Phaeobacter species isolated from tidal flats. Here we describe the draft genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. We analyzed the genome for genes involved in secondary metabolite production and its anaerobic lifestyle, which have also been described for its closest relative Phaeobacter caeruleus. The 4,642,596 bp long genome of strain TF-218T contains 4,310 protein-coding genes and 78 RNA genes including four rRNA operons and consists of five replicons: one chromosome and four extrachromosomal elements with sizes of 276 kb, 174 kb, 117 kb and 90 kb. Genome analysis showed that TF-218T possesses all of the genes for indigoidine biosynthesis, and on specific media the strain showed a blue pigmentation. We also found genes for dissimilatory nitrate reduction, gene-transfer agents, NRPS/ PKS genes and signaling systems homologous to the LuxR/I system. PMID:24501652

  5. Short inhalation exposures of the isolated and perfused rat lung to respirable dry particle aerosols; the detailed pharmacokinetics of budesonide, formoterol, and terbutaline.

    PubMed

    Ewing, Per; Eirefelt, Stefan J; Andersson, Paul; Blomgren, Anders; Ryrfeldt, Ake; Gerde, Per

    2008-06-01

    There is an increasing interest in using the lung as a route of entry for both local and systemic administration of drugs. However, because adequate technologies have been missing in the preclinical setting, few investigators have addressed the detailed disposition of drugs in the lung following short inhalation exposures to highly concentrated dry powder aerosols. New methods are needed to explore the disposition of drugs after short inhalation exposures, thus mimicking a future clinical use. Our aim was to study the pulmonary disposition of budesonide, formoterol, and terbutaline, which are clinically used for the treatment of bronchial asthma. Using the recently developed DustGun aerosol technology, we exposed by inhalation for approximately 1 min the isolated and perfused rat lung (IPL) to respirable dry particle aerosols of the three drugs at high concentrations. The typical aerosol concentration was 1 mug/mL, and the particle size distribution of the tested substances varied with a MMAD ranging from 2.3 to 5.3 mum. The IPL was perfused in single pass mode and repeated samples of the perfusate were taken for up to 80 min postexposure. The concentration of drug in perfusate and in lung extracts was measured using LC-MS/MS. The deposited dose was determined by adding the amounts of drug collected in perfusate to the amount extracted from the tissues at 80 min. Deposited amounts of budesonide, formoterol fumarate, and terbutaline sulphate were 23 +/- 17, 36 +/- 8, and 60 +/- 3.2 mug (mean +/- SD, n = 3), respectively. Retention in lung tissues at the end of the perfusion period expressed as fraction of deposited dose was 0.19 +/- 0.05, 0.19 +/- 0.06, and 0.04 +/- 0.01 (mean +/- SD, n = 3) for budesonide, formoterol, and terbutaline, respectively. Each short inhalation exposure to the highly concentrated aerosols consumed 1-3 mg powder. Hence, this system can be particularly useful for obtaining a detailed pharmacokinetic characterization of inhaled compounds in

  6. Respiration in spiders (Araneae).

    PubMed

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well. PMID:26820263

  7. Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii.

    PubMed Central

    Wanner, C; Soppa, J

    1999-01-01

    More than 40 nitrate respiration-deficient mutants of Haloferax volcanii belonging to three different phenotypic classes were isolated. All 15 mutants of the null phenotype were complemented with a genomic library of the wild type. Wild-type copies of mutated genes were recovered from complemented mutants using two different approaches. The DNA sequences of 13 isolated fragments were determined. Five fragments were found to overlap; therefore nine different genomic regions containing genes essential for nitrate respiration could be identified. Three genomic regions containing genes coding for subunits of ABC transporters were further characterized. In two cases, genes coding for an ATP-binding subunit and a permease subunit were clustered and overlapped by four nucleotides. The third gene for a permease subunit had no additional ABC transporter gene in proximity. One ABC transporter was found to be glucose specific. The mutant reveals that the ABC transporter solely mediates anaerobic glucose transport. Based on sequence similarity, the second ABC transporter is proposed to be molybdate specific, explaining its essential role in nitrate respiration. The third ABC transporter is proposed to be anion specific. Genome sequencing has shown that ABC transporters are widespread in Archaea. Nevertheless, this study represents only the second example of a functional characterization. PMID:10430572

  8. Tindallia Californiensis sp. nov.: A New Halo-Alkaliphilic Primary Anaerobe, Isolated from Meromictic soda Mono Lake in California and the Correction of Diagnosis for Genus Tindallia

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Marsic, Damien; Hoover, Richard B.; Kevbrin, Vadim; Whitman, William B.; Krader, Paul; Cleland, Dave; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel extremely halo-alkaliphilic, bacterium strain APO (sup T) was isolated from sediments of the athalassic, meromictic, soda Mono Lake in California. Gram positive, spore-forming, slightly curved rods with sizes 0.6-0.7x 2.5-4.0 micrometers which occur singly, in pairs or short curved chains. Cells, are motile by singular subcentral flagellum. Strain APO (sup T) is mesophilic: growth was observed over the temperature range of +10 C to +48 C (optimum +37 C), NaCl concentration range 1-20 %, wt/vol (optimum 3-5%, wt/vol) and pH range 8.0-11.0 (optimum pH 9.5). The novel isolate is strictly halo-alkaliphilic, requires sodium chloride in medium, obligately anaerobic and catalase-negative. Strain APO (sup T) is organo-heterotroph with fermentative type of metabolism, and uses as substrates: peptone, badotryptone, casamino acids, yeast extract, L-serine, L-lysine, L-histidine, L-arginine, and pyruvate. The main end products of growth on peptone medium were: lactate, acetate, propionate, and ethanol. Strain APO (sup T) is resistant to kanamycin, but sensitive to chloramphenicol, tetracycline, and gentamycin. The sum of G+C in DNA is 44.4 mol% (by HPLC method). On the bait of physiological and molecular properties, the isolate was considered as novel species of genus Tindallia; and the name Tindallia californiensis sp. nov., is proposed for new isolate (type strain APO (sup T) - ATCC BAA_393(sup T) = DSMZ 14871 (sup T)).

  9. Nosepiece respiration monitor

    NASA Technical Reports Server (NTRS)

    Lavery, A. L.; Long, L. E.; Rice, N. E.

    1968-01-01

    Comfortable, inexpensive nosepiece respiration monitor produces rapid response signals to most conventional high impedance medical signal conditioners. The monitor measures respiration in a manner that produces a large signal with minimum delay.

  10. Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target.

    PubMed

    Jen, Chang Jui; Chou, Chia-Hung; Hsu, Ping-Chi; Yu, Sian-Jhong; Chen, Wei-En; Lay, Jiunn-Jyi; Huang, Chieh-Chen; Wen, Fu-Shyan

    2007-04-01

    By using hydrogenase gene-targeted polymerase chain reaction (PCR) and reverse transcriptase PCR (RT-PCR), the predominant clostridial hydrogenase that may have contributed to biohydrogen production in an anaerobic semi-solid fermentation system has been monitored. The results revealed that a Clostridium pasteurianum-like hydrogenase gene sequence can be detected by both PCR and RT-PCR and suggested that the bacterial strain possessing this specific hydrogenase gene was dominant in hydrogenase activity and population. Whereas another Clostridium saccharobutylicum-like hydrogenase gene can be detected only by RT-PCR and suggest that the bacterial strain possessing this specific hydrogenase gene may be less dominant in population. In this study, hydrogenase gene-targeted fluorescence in situ hybridization (FISH) and flow cytometry analysis confirmed that only 6.6% of the total eubacterial cells in a hydrogen-producing culture were detected to express the C. saccharobutylicum-like hydrogenase, whereas the eubacteria that expressed the C. pasteurianum-like hydrogenase was 25.6%. A clostridial strain M1 possessing the identical nucleotide sequences of the C. saccharobutylicum-like hydrogenase gene was then isolated and identified as Clostridium butyricum based on 16S rRNA sequence. Comparing to the original inoculum with mixed microflora, either using C. butyricum M1 as the only inoculum or co-culturing with a Bacillus thermoamylovorans isolate will guarantee an effective and even better production of hydrogen from brewery yeast waste.

  11. Marinitoga okinawensis sp. nov., a novel thermophilic and anaerobic heterotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough.

    PubMed

    Nunoura, Takuro; Oida, Hanako; Miyazaki, Masayuki; Suzuki, Yohey; Takai, Ken; Horikoshi, Koki

    2007-03-01

    A novel thermophilic and sulfur-reducing heterotrophic bacterium, strain TFS10-5(T), was isolated from a deep-sea hydrothermal field in Yonaguni Knoll IV, Southern Okinawa Trough. Cells of strain TFS10-5(T) were motile rods, 1.5-5 microm in length and 0.5-0.8 microm in width. Strain TFS10-5(T) was an obligately anaerobic heterotroph and sulfur-reduction stimulated growth. Growth was observed between 30 and 70 degrees C (optimum at 55-60 degrees C), pH 5.0-7.4 (optimum at pH 5.5-5.8), 1.0-5.5 NaCl % (optimum at 3.0-3.5 %). The fatty acid content was C(16 : 0) (71.0 %), C(16 : 1) (6.0 %), C(18 : 0) (21.4 %) and C(18 : 1) (1.6 %). The G+C content of the genomic DNA was 28 mol%. 16S rRNA gene sequence analysis indicated that strain TFS10-5(T) belongs to the genus Marinitoga. Based on the physiological and phylogenetic features of the new isolate, strain TFS10-5(T) represents a novel species in the genus Marinitoga for which the name Marinitoga okinawensis sp. nov. is proposed. The type strain is TFS10-5(T) (=JCM 13303(T)=DSM 17373(T)).

  12. Aminobacterium thunnarium sp. nov., a mesophilic, amino acid-degrading bacterium isolated from an anaerobic sludge digester, pertaining to the phylum Synergistetes.

    PubMed

    Hamdi, Olfa; Ben Hania, Wajdi; Postec, Anne; Bouallagui, Hassib; Hamdi, Moktar; Bonin, Patricia; Ollivier, Bernard; Fardeau, Marie-Laure

    2015-02-01

    A new Gram-staining-positive, non-sporulating, mesophilic, amino acid-degrading anaerobic bacterium, designated strain OTA 102(T), was isolated from an anaerobic sequencing batch reactor treating wastewater from cooking tuna. The cells were curved rods (0.6-2.5×0.5 µm) and occurred singly or in pairs. The strain was motile by means of one lateral flagellum. Strain OTA 102(T) grew at temperatures between 30 and 45 °C (optimum 40 °C), between pH 6.0 and 8.4 (optimum pH 7.2) and NaCl concentrations between 1 and 5 % (optimum 2 %, w/v). Strain OTA 102(T) required yeast extract for growth. Serine, threonine, glycine, cysteine, citrate, fumarate, α-ketoglutarate and pyruvate were fermented. When co-cultured with Methanobacterium formicicum as the hydrogen scavenger, strain OTA 102(T) oxidized alanine, valine, leucine, isoleucine, aspartate, tyrosine, methionine, histidine and asparagine. The genomic DNA G+C content of strain OTA 102(T) was 41.7 mol%. The main fatty acid was iso-C15 : 0. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain OTA 102(T) was related to Aminobacterium colombiense and Aminobacterium mobile (95.5 and 95.2 % similarity, respectively), of the phylum Synergistetes. On the basis of phylogenetic, genetic and physiological characteristics, strain OTA 102(T) is proposed to represent a novel species of the genus Aminobacterium, Aminobacterium thunnarium sp. nov. The type strain is OTA 102(T) ( = DSM 27500(T) = JCM 19320(T)).

  13. Hungatella effluvii gen. nov., sp. nov., an obligately anaerobic bacterium isolated from an effluent treatment plant, and reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov.

    PubMed

    Kaur, Sukhpreet; Yawar, Mir; Kumar, P Anil; Suresh, K

    2014-03-01

    A Gram-stain-positive, rod-shaped, spore-forming and strictly anaerobic bacterium, designated UB-B.2(T), was isolated from an industrial effluent anaerobic digester sample. It grew optimally at 30 °C and pH 7.0. Comparative analysis of the 16S rRNA gene sequence confirmed that strain UB-B.2(T) was closely related to Clostridium hathewayi DSM 13479(T) (97.84% similarity), a member of rRNA gene cluster XIVa of the genus Clostridium, and formed a coherent cluster with other related members of the Blautia (Clostridium) coccoides rRNA group in phylogenetic analyses. The end products of glucose fermentation by strain UB-B.2(T) were acetate and propionate. The G+C content of the DNA was 51.4 mol%. Although strain UB-B.2(T) showed 97.8% 16S rRNA gene sequence identity to the type strain of C. hathewayi, it exhibited only 38.4% relatedness at the whole-genome level. It also showed differences from its closest phylogenetic relative, C. hathewayi DSM 13479(T), in phenotypic characteristics such as hydrolysis of aesculin, starch and urea and fermentation end products. Both strains showed phenotypic differences from the members of rRNA gene cluster XIVa of the genus Clostridium. Based on these differences, C. hathewayi DSM 13479(T) and strain UB-B.2(T) were identified as representatives of a new genus of the family Clostridiaceae. Thus, we propose the reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov., the type species of the new genus (type strain DSM 13479(T) = CCUG 43506(T) = MTCC 10951(T)). Strain UB-B.2(T) ( = MTCC 11101(T) = DSM 24995(T)) is assigned to the novel species Hungatella effluvii gen. nov., sp. nov as the type strain.

  14. Mucinivorans hirudinis gen. nov., sp. nov., an anaerobic, mucin-degrading bacterium isolated from the digestive tract of the medicinal leech Hirudo verbana

    PubMed Central

    Nelson, Michael C.; Bomar, Lindsey; Maltz, Michele

    2015-01-01

    Three anaerobic bacterial strains were isolated from the digestive tract of the medicinal leech Hirudo verbana, using mucin as the primary carbon and energy source. These strains, designated M3T, M4 and M6, were Gram-stain-negative, non-spore-forming and non-motile. Cells were elongated bacilli approximately 2.4 µm long and 0.6 µm wide. Growth only occurred anaerobically under mesophilic and neutral pH conditions. All three strains could utilize multiple simple and complex sugars as carbon sources, with glucose fermented to acid by-products. The DNA G+C contents of strains M3T, M4 and M6 were 44.9, 44.8 and 44.8 mol%, respectively. The major cellular fatty acid of strain M3T was iso-C15 : 0. Phylogenetic analysis of full-length 16S rRNA gene sequences revealed that the three strains shared >99 % similarity with each other and represent a new lineage within the family Rikenellaceae of the order Bacteroidales, phylum Bacteroidetes. The most closely related bacteria to strain M3T based on 16S rRNA gene sequences were Rikenella microfusus DSM 15922T (87.3 % similarity) and Alistipes finegoldii AHN 2437T (87.4 %). On the basis of phenotypic, genotypic and physiological evidence, strains M3T, M4 and M6 are proposed as representing a novel species of a new genus within the family Rikenellaceae, for which the name Mucinivorans hirudinis gen. nov., sp. nov. is proposed. The type strain of Mucinivorans hirudinis is M3T ( = ATCC BAA-2553T = DSM 27344T). PMID:25563920

  15. Methanospirillum stamsii sp. nov., a psychrotolerant, hydrogenotrophic, methanogenic archaeon isolated from an anaerobic expanded granular sludge bed bioreactor operated at low temperature.

    PubMed

    Parshina, Sofiya N; Ermakova, Anna V; Bomberg, Malin; Detkova, Ekaterina N

    2014-01-01

    A psychrotolerant hydrogenotrophic methanogen, strain Pt1, was isolated from a syntrophic propionate-oxidizing methanogenic consortium obtained from granulated biomass of a two-stage low-temperature (3-8 °C) anaerobic expanded granular sludge bed (EGSB) bioreactor, fed with a mixture of volatile fatty acids (VFAs) (acetate, propionate and butyrate). The strain was strictly anaerobic, and cells were curved rods, 0.4-0.5×7.5-25 µm, that sometimes formed wavy filaments from 25 to several hundred micrometres in length. Cells stained Gram-negative and were non-sporulating. They were gently motile by means of tufted flagella. The strain grew at 5-37 °C (optimum at 20-30 °C), at pH 6.0-10 (optimum 7.0-7.5) and with 0-0.3 M NaCl (optimum 0 M NaCl). Growth and methane production was found with H2/CO2 and very weak growth with formate. Acetate and yeast extract stimulated growth, but were not essential. The G+C content of the DNA of strain Pt1 was 40 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Pt1 was a member of the genus Methanospirillum and showed 97.5 % sequence similarity to Methanospirillum hungatei JF1(T) and 94 % sequence similarity to Methanospirillum lacunae Ki8-1(T). DNA-DNA hybridization of strain Pt1 with Methanospirillum hungatei JF1(T) revealed 39 % relatedness. On the basis of its phenotypic characteristics and phylogenetic position, strain Pt1 is a representative of a novel species of the genus Methanospirillum, for which the name Methanospirillum stamsii sp. nov. is proposed. The type strain is Pt1(T) ( = DSM 26304(T) = VKM B-2808(T)). PMID:24048867

  16. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    SciTech Connect

    Trebbau, G.; Fernandez, B.; Marin, A.

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  17. Draft Genome Sequence of Caloranaerobacter sp. TR13, an Anaerobic Thermophilic Bacterium Isolated from a Deep-Sea Hydrothermal Vent

    PubMed Central

    Xie, Yunbiao; Dong, Binbin; Liu, Qing; Chen, Xiaoyao

    2015-01-01

    Here, we report the draft 2,261,881-bp genome sequence of Caloranaerobacter sp. TR13, isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The sequence will be helpful for understanding the genetic and metabolic features, as well as potential biotechnological application in the genus Caloranaerobacter. PMID:26679595

  18. Draft Genome Sequence of Caloranaerobacter sp. TR13, an Anaerobic Thermophilic Bacterium Isolated from a Deep-Sea Hydrothermal Vent.

    PubMed

    Zhou, Meixian; Xie, Yunbiao; Dong, Binbin; Liu, Qing; Chen, Xiaoyao

    2015-01-01

    Here, we report the draft 2,261,881-bp genome sequence of Caloranaerobacter sp. TR13, isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The sequence will be helpful for understanding the genetic and metabolic features, as well as potential biotechnological application in the genus Caloranaerobacter. PMID:26679595

  19. Improved glycerol to ethanol conversion by E. coli using a metagenomic fragment isolated from an anaerobic reactor.

    PubMed

    Loaces, Inés; Rodríguez, Cecilia; Amarelle, Vanesa; Fabiano, Elena; Noya, Francisco

    2016-10-01

    Crude glycerol obtained as a by-product of biodiesel production is a reliable feedstock with the potential to be converted into reduced chemicals with high yields. It has been previously shown that ethanol is the primary product of glycerol fermentation by Escherichia coli. However, few efforts were made to enhance this conversion by means of the expression of heterologous genes with the potential to improve glycerol transport or metabolism. In this study, a fosmid-based metagenomic library constructed from an anaerobic reactor purge sludge was screened for genetic elements that promote the use and fermentation of crude glycerol by E. coli. One clone was selected based on its improved growth rate on this feedstock. The corresponding fosmid, named G1, was fully sequenced (41 kbp long) and the gene responsible for the observed phenotype was pinpointed by in vitro insertion mutagenesis. Ethanol production from both pure and crude glycerol was evaluated using the parental G1 clone harboring the ethanologenic plasmid pLOI297 or the industrial strain LY180 complemented with G1. In mineral salts media containing 50 % (v/v) pure glycerol, ethanol concentrations increased two-fold on average when G1 was present in the cells reaching up to 20 g/L after 24 h fermentation. Similar fermentation experiments were done using crude instead of pure glycerol. With an initial OD620 of 8.0, final ethanol concentrations after 24 h were much higher reaching 67 and 75 g/L with LY180 cells carrying the control fosmid or the G1 fosmid, respectively. This translates into a specific ethanol production rate of 0.39 g h(-1) OD(-1) L(-1).

  20. Improved glycerol to ethanol conversion by E. coli using a metagenomic fragment isolated from an anaerobic reactor.

    PubMed

    Loaces, Inés; Rodríguez, Cecilia; Amarelle, Vanesa; Fabiano, Elena; Noya, Francisco

    2016-10-01

    Crude glycerol obtained as a by-product of biodiesel production is a reliable feedstock with the potential to be converted into reduced chemicals with high yields. It has been previously shown that ethanol is the primary product of glycerol fermentation by Escherichia coli. However, few efforts were made to enhance this conversion by means of the expression of heterologous genes with the potential to improve glycerol transport or metabolism. In this study, a fosmid-based metagenomic library constructed from an anaerobic reactor purge sludge was screened for genetic elements that promote the use and fermentation of crude glycerol by E. coli. One clone was selected based on its improved growth rate on this feedstock. The corresponding fosmid, named G1, was fully sequenced (41 kbp long) and the gene responsible for the observed phenotype was pinpointed by in vitro insertion mutagenesis. Ethanol production from both pure and crude glycerol was evaluated using the parental G1 clone harboring the ethanologenic plasmid pLOI297 or the industrial strain LY180 complemented with G1. In mineral salts media containing 50 % (v/v) pure glycerol, ethanol concentrations increased two-fold on average when G1 was present in the cells reaching up to 20 g/L after 24 h fermentation. Similar fermentation experiments were done using crude instead of pure glycerol. With an initial OD620 of 8.0, final ethanol concentrations after 24 h were much higher reaching 67 and 75 g/L with LY180 cells carrying the control fosmid or the G1 fosmid, respectively. This translates into a specific ethanol production rate of 0.39 g h(-1) OD(-1) L(-1). PMID:27522660

  1. Changing anaerobic spectrum in suppurative lung disease: a case report.

    PubMed

    Beena, V K; Kumari, G R; Rao, P V; Murty, M V; Shivananda, P G

    1996-01-01

    A spectrum of three different anaerobes were isolated from a debilitated patient with suppurative lung disease, within a two-year period. Repeated isolation from three consecutive samples and symptomatic relief with metronidazole provide clinical evidence of anaerobic lung infection. This case emphasizes the importance of anaerobic culture in cases of protracted pulmonary suppurative disease. PMID:8822645

  2. Chemoautotrophic production and respiration in the hyporheic zone of a sonoran desert stream

    SciTech Connect

    Jones, J.B. Jr.; Holmes, R.M.; Fisher, S.G.; Grimm, N.B.

    1994-12-31

    Chemoautotrophic production and respiration (aerobic and anaerobic) were examined along flowpaths in three subsystems in Sycamore Creek, Arizona. Chemoautotrophic production was highest where surface waters enter parafluvial sediments (64 to 76 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}) and lowest in anoxic bank sediments (14 to 16 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). Aerobic respiration was considerable greater than chemoautotrophy in oxygenated hyporheic and parafluvial zones (2,400 to 4,900 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). In anoxic bank sediments, respiration was also much greater than chemoautotrophy, but was entirely anaerobic (i.e., methane production; 3,500 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). Weighting subsystems by areal extent, the largest proportion of aerobic respiration and chemoautotrophic production occurred in parafluvial sediments (64 to 76%), whereas anoxic bank sediments were most important for anaerobic respiration (94% of total anaerobic respiration). Overall, chemoautotrophic production was only 1.0 to 1.3% of respiration and methane production was only 5% of total sediment respiration.

  3. Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil.

    PubMed Central

    Janssen, P H; Schuhmann, A; Mörschel, E; Rainey, F A

    1997-01-01

    The use of dilution culture techniques to cultivate saccharolytic bacteria present in the anoxic soil of flooded rice microcosms allowed the isolation of three new strains of bacteria, typified by their small cell sizes, with culturable numbers estimated at between 1.2 x 10(5) and 7.3 x 10(5) cells per g of dry soil. The average cell volumes of all three strains were 0.03 to 0.04 microns3, and therefore they can be termed ultramicrobacteria or "dwarf cells." The small cell size is a stable characteristic, even when the organisms grow at high substrate concentrations, and thus is not a starvation response. All three strains have genomic DNA with a mol% G+C ratio of about 63, are gram negative, and are motile by means of a single flagellum. The three new isolates utilized only sugars and some sugar polymers as substrates for growth. The metabolism is strictly fermentative, but the new strains are oxygen tolerant. Sugars are metabolized to acetate, propionate, and succinate. Hydrogen production was not significant. In the presence of 0.2 atm of oxygen, the fermentation end products or ratios did not change. The phylogenetic analysis on the basis of 16S ribosomal DNA (rDNA) sequence comparisons indicates that the new isolates belong to a branch of the Verrucomicrobiales lineage and are closely related to a cloned 16S rDNA sequence (PAD7) recovered from rice paddy field soil from Japan. The isolation of these three strains belonging to the order Verrucomicrobiales from a model rice paddy system, in which rice was grown in soil from an Italian rice field, provides some information on the possible physiology and phenotype of the organism represented by the cloned 16S rDNA sequence PAD7. The new isolates also extend our knowledge on the phenotypic and phylogenetic depths of members of the order Verrucomicrobiales, to date acquired mainly from cloned 16S rDNA sequences from soils and other habitats. PMID:9097435

  4. Cyanide-insensitive Respiration in Pea Cotyledons 1

    PubMed Central

    James, Terrance W.; Spencer, Mary S.

    1979-01-01

    Mitochondria isolated by a zonal procedure from the cotyledons of germinating peas possessed a cyanide-resistant respiration. This respiration was virtually absent in mitochondria isolated during the first 24 hours of germination but thereafter increased gradually until the 6th or 7th day of seedling development. At this time between 15 and 20% of the succinate oxidation was not inhibited by cyanide. The activity of the cyanide-resistant respiration was also determined in the absence of cyanide. Relationships among mitochondrial structure, cyanide-resistant respiration, and seedling development are discussed. PMID:16660982

  5. Anaerobic Process.

    PubMed

    Yang, Qian; Ju, Mei-Ting; Li, Wei-Zun; Liu, Le; Wang, Yan-Nan; Chang, Chein-Chi

    2016-10-01

    A review of the literature published in 2015 on the focus of Anaerobic Process. It is divided into the following sections. Pretreatment Organic waste Multiple-stage co-digestion Process Methodology and Technology. PMID:27620085

  6. Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia.

    PubMed

    Ben Aissa, Fatma; Postec, Anne; Erauso, Gaël; Payri, Claude; Pelletier, Bernard; Hamdi, Moktar; Fardeau, Marie-Laure; Ollivier, Bernard

    2015-01-01

    A novel anaerobic, alkaliphilic, Gram-positive staining bacterium was isolated from a hydrothermal chimney in the Prony Bay, New Caledonia. This strain designated FatMR1(T) grew at temperatures from 20 to 55 °C (optimum 37 °C) and at pH between 7.5 and 10.5 (optimum 8.8-9). NaCl is not required for growth (optimum 0.2-0.5%), but is tolerated up to 3%. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite are not used as terminal electron acceptors. Strain FatMR1(T) fermented pyruvate, yeast extract, peptone and biotrypcase and used fructose as the only sugar. The main fermentation products from fructose and proteinaceous compounds (e.g. peptone and biotrypcase) were acetate, H2 and CO2. Crotonate was disproportionated to acetate and butyrate. The predominant cellular fatty acids were C14:0 and C16:0. The G + C content of the genomic DNA was 37.1 mol%. On the basis of phylogenetic, genetic, and physiological properties, strain FatMR1(T) (=DSM 25890(T), =JCM 18390(T)) belonging to the phylum Firmicutes, class Clostridia, order Clostridiales, is proposed as a novel species of the genus Alkaliphilus, A. hydrothermalis sp. nov. PMID:25319677

  7. Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia.

    PubMed

    Ben Aissa, Fatma; Postec, Anne; Erauso, Gaël; Payri, Claude; Pelletier, Bernard; Hamdi, Moktar; Fardeau, Marie-Laure; Ollivier, Bernard

    2015-01-01

    A novel anaerobic, alkaliphilic, Gram-positive staining bacterium was isolated from a hydrothermal chimney in the Prony Bay, New Caledonia. This strain designated FatMR1(T) grew at temperatures from 20 to 55 °C (optimum 37 °C) and at pH between 7.5 and 10.5 (optimum 8.8-9). NaCl is not required for growth (optimum 0.2-0.5%), but is tolerated up to 3%. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite are not used as terminal electron acceptors. Strain FatMR1(T) fermented pyruvate, yeast extract, peptone and biotrypcase and used fructose as the only sugar. The main fermentation products from fructose and proteinaceous compounds (e.g. peptone and biotrypcase) were acetate, H2 and CO2. Crotonate was disproportionated to acetate and butyrate. The predominant cellular fatty acids were C14:0 and C16:0. The G + C content of the genomic DNA was 37.1 mol%. On the basis of phylogenetic, genetic, and physiological properties, strain FatMR1(T) (=DSM 25890(T), =JCM 18390(T)) belonging to the phylum Firmicutes, class Clostridia, order Clostridiales, is proposed as a novel species of the genus Alkaliphilus, A. hydrothermalis sp. nov.

  8. Aminocella lysinolytica gen. nov., sp. nov., a L-lysine-degrading, strictly anaerobic bacterium in the class Clostridia isolated from a methanogenic reactor of cattle farms.

    PubMed

    Ueki, Atsuko; Shibuya, Toru; Kaku, Nobuo; Ueki, Katsuji

    2015-01-01

    A strictly anaerobic bacterial strain (WN037(T)) was isolated from a methanogenic reactor. Cells were Gram-positive rods. Strain WN037(T) was asaccharolytic. The strain fermented L-lysine in the presence of B-vitamin mixture or vitamin B12 and produced acetate and butyrate. L-arginine and casamino acids poorly supported the growth. Strain WN037(T) used neither other amino acids nor organic acids examined. The strain had C18:1 ω7c, C16:0 and C18:1 ω7c DMA as the predominant cellular fatty acids. The genomic DNA G + C content was 44.2 mol %. Phylogenetic analysis based on the 16S rRNA gene sequence placed strain WN037(T) in the family Eubacteriaceae in the class Clostridia. The closest relative was Eubacterium pyruvativorans (sequence similarity, 92.8 %). Based on the comprehensive analyses, the novel genus and species, Aminocella lysinolytica gen. nov., sp. nov. was proposed to accommodate the strain. The type strain is WN037(T) (= JCM 19863(T) = DSM 28287(T)).

  9. Physiologically anaerobic microorganisms of the deep subsurface

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  10. Isolation and characterization of two cDNA clones of anaerobically induced lactate dehydrogenase from barley roots

    SciTech Connect

    Hondred, D.; Hanson, A.D. )

    1990-05-01

    In barley roots during hypoxia, five lactate dehydrogenase (LDH) isozymes accumulate with a concomitant increase in enzyme activity ({approximately}20-fold). These isozymes are thought to be tetramers resulting from the random association of the products of two Ldh loci. To investigate this system, cDNA clones of LDH have been isolated from a {lambda}gt11 library using antiserum raised against barley LDH purified {approximately}3,000-fold and using nucleic acid probes synthesized by the polymerase chain reaction. Two cDNA clones were obtained (1,305 and 1,166 bp). The deduced amino acid sequences of the two barley LDHs are 96% identical to each other, and 50% and 40% identical to vertebrate and bacterial LDHs, respectively. Northern blots identified a single mRNA band ({approximately}1.5 kb) whose level rose 8-fold during hypoxia.

  11. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  12. Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California

    USGS Publications Warehouse

    Blum, Jodi Switzer; Kulp, Thomas R.; Han, Sukkyun; Lanoil, Brian; Saltikov, Chad W.; Stolz, John F.; Miller, Laurence G.; Oremland, Ronald S.

    2012-01-01

    A haloalkaliphilic sulfate-respiring bacterium, strain SLSR-1, was isolated from a lactate-fed stable enrichment culture originally obtained from the extreme environment of Searles Lake, California. The isolate proved capable of growth via sulfate-reduction over a broad range of salinities (125–330 g/L), although growth was slowest at salt-saturation. Strain SLSR-1 was also capable of growth via dissimilatory arsenate-reduction and displayed an even broader range of salinity tolerance (50–330 g/L) when grown under these conditions. Strain SLSR-1 could also grow via dissimilatory nitrate reduction to ammonia. Growth experiments in the presence of high borate concentrations indicated a greater sensitivity of sulfate-reduction than arsenate-respiration to this naturally abundant anion in Searles Lake. Strain SLSR-1 contained genes involved in both sulfate-reduction (dsrAB) and arsenate respiration (arrA). Amplicons of 16S rRNA gene sequences obtained from DNA extracted from Searles Lake sediment revealed the presence of close relatives of strain SLSR-1 as part of the flora of this ecosystem despite the fact that sulfate-reduction activity could not be detected in situ. We conclude that strain SLSR-1 can only achieve growth via arsenate-reduction under the current chemical conditions prevalent at Searles Lake. Strain SLSR-1 is a deltaproteobacterium in the family Desulfohalobiacea of anaerobic, haloalkaliphilic bacteria, for which we propose the name Desulfohalophilus alkaliarsenatis gen. nov., sp. nov.

  13. Anaerobic Biotransformation of High Concentrations of Chloroform by an Enrichment Culture and Two Bacterial Isolates ▿ †

    PubMed Central

    Shan, Huifeng; Kurtz, Harry D.; Mykytczuk, Nadia; Trevors, Jack T.; Freedman, David L.

    2010-01-01

    A fermentative enrichment culture (designated DHM-1) was developed that is capable of cometabolically biotransforming high concentrations of chloroform (CF) to nontoxic end products. Two Pantoea spp. were isolated from DHM-1 that also possess this dechlorination capability. Following acclimation to increasing levels of CF, corn syrup-grown DHM-1 was able to transform over 500 mg/liter CF in the presence of vitamin B12 (approximately 3% of CF on a molar basis) at a rate as high as 22 mg/liter/day in a mineral salts medium. CO, CO2, and organic acids were the predominant biodegradation products, suggesting that hydrolytic reactions predominate during CF transformation. DHM-1 was capable of growing on corn syrup in the presence of high concentrations of CF (as may be present near contaminant source zones in groundwater), which makes it a promising culture for bioaugmentation. Strains DHM-1B and DHM-1T transform CF at rates similar to that of the DHM-1 enrichment culture. The ability of these strains to grow in the presence of high concentrations of CF appears to be related to alteration of membrane fluidity or homeoviscous and homeophasic adaptation. PMID:20693443

  14. Diversity of anaerobic halophilic microorganisms

    NASA Astrophysics Data System (ADS)

    Oren, Aharon; Oremland, Roland S.

    2000-12-01

    Life in the presence of high salt concentrations is compatible with life in the absence of oxygen. Halophilic and halotolerant anaerobic prokaryotes are found both in the archaeal and in the bacterial domain, and they display a great metabolic diversity. Many of the representatives of the Halobacteriales (Archaea), which are generally considered aerobes, have the potential of anaerobic growth. Some can use alternative electron acceptors such as nitrate, fumarate, dimethylsulfoxide or trimethylamine-N-oxide Halobacterium salinarum can also grow fermentatively on L-arginine, and bacteriorhodopsin-containing cells may even grow anaerobically, energized by light. Obligatory anaerobic halophilic methanogenic Archaea also exist. The bacterial domain contains many anaerobic halophiles, including sulfate reducers. There is also a group of specialized obligatory anaerobic Bacteria, phylogenetically clustering in the low G + C branch of the Firmicutes. Most representatives of this group (order Haloanaerobiales, families Haloanaerobiaceae and Halobacteroidaceae) are fermentative, using a variety of carbohydrates and amino acids. One species combines the potential for anaerobic growth at high salt concentrations with a preference for high temperatures. Others are homoacetogens; Acetohalobium arabaticum can grow anaerobically as a chemolithotroph, producing acetate from hydrogen and CO2. The Haloanaerobiales accumulate high concentrations of K+ and Cl- in their cytoplasm, thereby showing a strategy of salt adaptation similar to that used by the Halobacteriales. Recently a new representative of the Haloanaerobiales was isolated from bottom sediments of the Dead Sea (strain DSSe1), which grows anaerobically by oxidation of glycerol to acetate and CO2 while reducing selenate to selenite and elementary selenium. Other electron acceptors supporting anaerobic growth of this strain are nitrate and trimethylamine-N-oxide. The versatility of life at high salt concentrations with respect

  15. Anaerobic treatment

    SciTech Connect

    Witt, E.R.; Humphrey, W.J.; Cave, J.P.

    1982-12-28

    This invention provides for the anaerobic treatment of acidic petrochemical wastes in an anaerobic filter at high loadings and high recycle rates. The effluent from the top of the filter passes into a gas-disengaging/solids-settling zone containing a quiescent body of the effluent liquid. The settled solids are withdrawn and recycled to the base of the filter together with fresh acidic waste and an inorganic alkaline material (preferably magnesium oxide or carbonate) to maintain a neutral pH. The liquid portion of the effluent is sent to an aerobic digester to remove the rest of the organic material, which is used to support the growth of bacteria and fed back to the anaerobic system.

  16. Role of Rhodobacter sp. Strain PS9, a Purple Non-Sulfur Photosynthetic Bacterium Isolated from an Anaerobic Swine Waste Lagoon, in Odor Remediation

    PubMed Central

    Do, Young S.; Schmidt, Thomas M.; Zahn, James A.; Boyd, Eric S.; de la Mora, Arlene; DiSpirito, Alan A.

    2003-01-01

    Temporal pigmentation changes resulting from the development of a purple color in anaerobic swine waste lagoons were investigated during a 4-year period. The major purple photosynthetic bacterium responsible for these color changes and the corresponding reductions in odor was isolated from nine photosynthetic lagoons. By using morphological, physiological, and phylogenetic characterization methods we identified the predominant photosynthetic bacterium as a new strain of Rhodobacter, designated Rhodobacter sp. strain PS9. Rhodobacter sp. strain PS9 is capable of photoorganotrophic growth on a variety of organic compounds, including all of the characteristic volatile organic compounds (VOC) responsible for the odor associated with swine production facilities (J. A. Zahn, A. A. DiSpirito, Y. S. Do, B. E. Brooks, E. E. Copper, and J. L. Hatfield, J. Environ. Qual. 30:624-634, 2001). The seasonal variations in airborne VOC emitted from waste lagoons showed that there was a 80 to 93% decrease in the concentration of VOC during a photosynthetic bloom. During the height of a bloom, the Rhodobacter sp. strain PS9 population accounted for 10% of the total community and up to 27% of the eubacterial community based on 16S ribosomal DNA signals. Additional observations based on seasonal variations in meteorological, biological, and chemical parameters suggested that the photosynthetic blooms of Rhodobacter sp. strain PS9 were correlated with lagoon water temperature and with the concentrations of sulfate and phosphate. In addition, the photosynthetic blooms of Rhodobacter sp. strain PS9 were inversely correlated with the concentrations of protein and fluoride. PMID:12620863

  17. Microbial iron respiration can protect steel from corrosion.

    PubMed

    Dubiel, M; Hsu, C H; Chien, C C; Mansfeld, F; Newman, D K

    2002-03-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration.

  18. Acetobacteroides hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp.

    PubMed

    Su, Xiao-Li; Tian, Qi; Zhang, Jie; Yuan, Xian-Zheng; Shi, Xiao-Shuang; Guo, Rong-Bo; Qiu, Yan-Ling

    2014-09-01

    A strictly anaerobic, mesophilic, carbohydrate-fermenting, hydrogen-producing bacterium, designated strain RL-C(T), was isolated from a reed swamp in China. Cells were Gram-stain-negative, catalase-negative, non-spore-forming, non-motile rods measuring 0.7-1.0 µm in width and 3.0-8.0 µm in length. The optimum temperature for growth of strain RL-C(T) was 37 °C (range 25-40 °C) and pH 7.0-7.5 (range pH 5.7-8.0). The strain could grow fermentatively on yeast extract, tryptone, arabinose, glucose, galactose, mannose, maltose, lactose, glycogen, pectin and starch. The main end products of glucose fermentation were acetate, H2 and CO2. Organic acids, alcohols and amino acids were not utilized for growth. Yeast extract was not required for growth; however, it stimulated growth slightly. Nitrate, sulfate, sulfite, thiosulfate, elemental sulfur and Fe(III) nitrilotriacetate were not reduced as terminal electron acceptors. Aesculin was hydrolysed but not gelatin. Indole and H2S were produced from yeast extract. The G+C content of the genomic DNA was 51.2 mol%. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0. The most abundant polar lipid of strain RL-C(T) was phosphatidylethanolamine. 16S rRNA gene sequence analysis revealed that the isolate belongs to the uncultured Blvii28 wastewater-sludge group (http://www.arb-silva.de/) in the family Rikenellaceae of the phylum Bacteroidetes, and shared low sequence similarities with the related species Alistipes shahii WAL 8301(T) (81.8 %), Rikenella microfusus ATCC 29728(T) (81.7 %) and Anaerocella delicata WN081(T) (80.9 %). On the basis of these data, a novel species in a new genus of the family Rikenellaceae is proposed, Acetobacteroides hydrogenigenes gen. nov., sp. nov. The type strain of the type species is RL-C(T) ( = JCM 17603(T) = DSM 24657(T) = CGMCC 1.5173(T)).

  19. Isolation and characterization of Thermanaerothrix daxensis gen. nov., sp. nov., a thermophilic anaerobic bacterium pertaining to the phylum "Chloroflexi", isolated from a deep hot aquifer in the Aquitaine Basin.

    PubMed

    Grégoire, Patrick; Fardeau, Marie-Laure; Joseph, Manon; Guasco, Sophie; Hamaide, Francette; Biasutti, Sandra; Michotey, Valérie; Bonin, Patricia; Ollivier, Bernard

    2011-11-01

    A new strictly anaerobic thermophilic multicellular filamentous bacterium (0.2-0.3μm×>100μm), designated GNS-1(T), was isolated from a deep hot aquifer in France. It was non-motile, and stained Gram-negative. Optimal growth was observed at 65°C, pH 7.0, and 2gL(-1) of NaCl. Strain GNS-1(T) was chemoorganotrophic fermenting ribose, glucose, galactose, arabinose, fructose, mannose, maltose, sucrose, xylose, raffinose, pyruvate, and xylan. Yeast extract was required for growth. The end products of glucose fermentation were lactate, acetate, CO(2), and H(2). The G+C content of the DNA was 57.6mol%. Its closest phylogenetic relative was Bellilinea caldifistulae with 92.5% similarity. Based on phylogenetic, genotypic and phenotypic characteristics, strain GNS-1(T) (DSM 23592(T), JCM 16980(T)) is proposed to be assigned to a novel species of a novel genus within the class Anaerolineae (subphylum I), phylum "Chloroflexi", Thermanaerothrix daxensis gen. nov., sp. nov. The GenBank accession number is HM596746.

  20. Respiration of Escherichia coli in the mouse intestine.

    PubMed

    Jones, Shari A; Chowdhury, Fatema Z; Fabich, Andrew J; Anderson, April; Schreiner, Darrel M; House, Anetra L; Autieri, Steven M; Leatham, Mary P; Lins, Jeremy J; Jorgensen, Mathias; Cohen, Paul S; Conway, Tyrrell

    2007-10-01

    Mammals are aerobes that harbor an intestinal ecosystem dominated by large numbers of anaerobic microorganisms. However, the role of oxygen in the intestinal ecosystem is largely unexplored. We used systematic mutational analysis to determine the role of respiratory metabolism in the streptomycin-treated mouse model of intestinal colonization. Here we provide evidence that aerobic respiration is required for commensal and pathogenic Escherichia coli to colonize mice. Our results showed that mutants lacking ATP synthase, which is required for all respiratory energy-conserving metabolism, were eliminated by competition with respiratory-competent wild-type strains. Mutants lacking the high-affinity cytochrome bd oxidase, which is used when oxygen tensions are low, also failed to colonize. However, the low-affinity cytochrome bo(3) oxidase, which is used when oxygen tension is high, was found not to be necessary for colonization. Mutants lacking either nitrate reductase or fumarate reductase also had major colonization defects. The results showed that the entire E. coli population was dependent on both microaerobic and anaerobic respiration, consistent with the hypothesis that the E. coli niche is alternately microaerobic and anaerobic, rather than static. The results indicate that success of the facultative anaerobes in the intestine depends on their respiratory flexibility. Despite competition for relatively scarce carbon sources, the energy efficiency provided by respiration may contribute to the widespread distribution (i.e., success) of E. coli strains as commensal inhabitants of the mammalian intestine. PMID:17698572

  1. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  2. Teaching Cellular Respiration & Alternate Energy Sources with a Laboratory Exercise Developed by a Scientist-Teacher Partnership

    ERIC Educational Resources Information Center

    Briggs, Brandon; Mitton, Teri; Smith, Rosemary; Magnuson, Timothy

    2009-01-01

    Microbial fuel cells are a current research area that harvests electricity from bacteria capable of anaerobic respiration. Graphite is an electrically conductive material that bacteria can respire on, thus it can be used to capture electrons from bacteria. When bacteria transfer electrons to graphite, an electrical potential is created that can…

  3. Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.

    PubMed

    Qi, Qiuzi; Ito, Yoshiyasu; Yoshimatsu, Katsuhiko; Fujiwara, Taketomo

    2016-01-01

    The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator.

  4. Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.

    PubMed

    Qi, Qiuzi; Ito, Yoshiyasu; Yoshimatsu, Katsuhiko; Fujiwara, Taketomo

    2016-01-01

    The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator. PMID:26507955

  5. Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov.

    PubMed

    Nunoura, Takuro; Hirai, Miho; Miyazaki, Masayuki; Kazama, Hiromi; Makita, Hiroko; Hirayama, Hisako; Furushima, Yasuo; Yamamoto, Hiroyuki; Imachi, Hiroyuki; Takai, Ken

    2013-01-01

    A novel marine thermophilic and heterotrophic Anaerolineae bacterium in the phylum Chloroflexi, strain SW7(T), was isolated from an in situ colonization system deployed in the main hydrothermal vent of the Taketomi submarine hot spring field located on the southern part of Yaeyama Archipelago, Japan. The microbial community associated with the hydrothermal vent was predominated by thermophilic heterotrophs such as Thermococcaceae and Anaerolineae, and the next dominant population was thermophilic sulfur oxidizers. Both aerobic and anaerobic hydrogenotrophs including methanogens were detected as minor populations. During the culture-dependent viable count analysis in this study, an Anaerolineae strain SW7(T) was isolated from an enrichment culture at a high dilution rate. Strain SW7(T) was an obligately anaerobic heterotroph that grew with fermentation and had non-motile thin rods 3.5-16.5 μm in length and 0.2 μm in width constituting multicellular filaments. Growth was observed between 37-65°C (optimum 60°C), pH 5.5-7.3 (optimum pH 6.0), and 0.5-3.5% (w/v) NaCl concentration (optimum 1.0%). Based on the physiological and phylogenetic features of a new isolate, we propose a new species representing a novel genus Thermomarinilinea: the type strain of Thermomarinilinea lacunofontalis sp. nov., is SW7(T) (=JCM15506(T)=KCTC5908(T)). PMID:23666537

  6. Draft Genome of Thermanaerothrix daxensis GNS-1, a Thermophilic Facultative Anaerobe from the Chloroflexi Class Anaerolineae.

    PubMed

    Pace, Laura A; Hemp, James; Ward, Lewis M; Fischer, Woodward W

    2015-01-01

    We present the draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic member of the Chloroflexi phylum. This organism was initially characterized as a nonmotile, strictly anaerobic fermenter; however, genome analysis demonstrates that it encodes genes for a flagellum and multiple pathways for aerobic and anaerobic respiration. PMID:26586891

  7. Olivine-respiring bacteria isolated from the rock-ice interface in a lava-tube cave, a Mars analog environment.

    PubMed

    Popa, Radu; Smith, Amy R; Popa, Rodica; Boone, Jane; Fisk, Martin

    2012-01-01

    The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp. HerB) can use ferrous iron Fe(II) from the igneous mineral olivine as an electron donor and O(2) as an electron acceptor. The optimum growth temperature is ∼12-14°C, but growth also occurs at 5°C. Bicarbonate is a facultative source of carbon. Growth of Pseudomonas sp. HerB as a chemolithotrophic iron oxidizer with olivine as the source of energy is favored in low O(2) conditions (e.g., 1.6% O(2)). Most likely, microbial oxidation of olivine near pH 7 requires low O(2) to offset the abiotic oxidation of iron. The metabolic capabilities of this bacterium would allow it to live in near-surface, icy, volcanic environments of Mars in the present or recent geological past and make this type of physiology a prime candidate in the search for life on Mars.

  8. Olivine-Respiring Bacteria Isolated from the Rock-Ice Interface in a Lava-Tube Cave, a Mars Analog Environment

    PubMed Central

    Smith, Amy R.; Popa, Rodica; Boone, Jane; Fisk, Martin

    2012-01-01

    Abstract The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp. HerB) can use ferrous iron Fe(II) from the igneous mineral olivine as an electron donor and O2 as an electron acceptor. The optimum growth temperature is ∼12–14°C, but growth also occurs at 5°C. Bicarbonate is a facultative source of carbon. Growth of Pseudomonas sp. HerB as a chemolithotrophic iron oxidizer with olivine as the source of energy is favored in low O2 conditions (e.g., 1.6% O2). Most likely, microbial oxidation of olivine near pH 7 requires low O2 to offset the abiotic oxidation of iron. The metabolic capabilities of this bacterium would allow it to live in near-surface, icy, volcanic environments of Mars in the present or recent geological past and make this type of physiology a prime candidate in the search for life on Mars. Key Words: Extremophiles—Mars—Olivine—Iron-oxidizing bacteria—Redox. Astrobiology 12, 9–18. PMID:22165996

  9. Dissimilatory arsenate reduction with sulfide as electron donor: Experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer

    USGS Publications Warehouse

    Hoeft, S.E.; Kulp, T.R.; Stolz, J.F.; Hollibaugh, J.T.; Oremland, R.S.

    2004-01-01

    Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H14CO3- into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the ??-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.

  10. Physiologically anaerobic microorganisms of the deep subsurface

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  11. Flow microcalorimetry of a respiration-deficient mutant of Saccharomyces cerevisiae.

    PubMed

    Loureiro-Dias, M C; Arrabaça, J D

    1982-01-01

    In aerobic batch cultures in mineral medium with glucose of a respiration-deficient mutant of Saccharomyces cerevisiae, growth parameters were estimated and the heat evolved was measured by a flow microcalorimeter. A growth enthalpy of -163.6 joule per mole of glucose consumed was measured. Under anaerobic conditions, the value was -134.6 joule, closer to the expected for alcoholic fermentation alone. The difference was found to be due to cyanide-resistant respiration under aerobic conditions.

  12. Perspectives of the microbial carbon pump with special references to microbial respiration and ecological efficiency

    NASA Astrophysics Data System (ADS)

    Dang, H.; Jiao, N.

    2014-01-01

    Although respiration consumes fixed carbon and produce CO2, it provides energy for essential biological processes of an ecosystem, including the microbial carbon pump (MCP). In MCP-driving biotransformation of labile DOC to recalcitrant DOC (RDOC), microbial respiration provides the metabolic energy for environmental organic substrate sensing, cellular enzyme syntheses and catalytic processes such as uptake, secretion, modification, fixation and storage of carbon compounds. The MCP efficiency of a heterotrophic microorganism is thus related to its energy production efficiency and hence to its respiration efficiency. Anaerobically respiring microbes usually have lower energy production efficiency and lower energy-dependent carbon transformation efficiency, and consequently lower MCP efficiency at per cell level. This effect is masked by the phenomena that anoxic environments often store more organic matter. Here we point out that organic carbon preservation and RDOC production is different in mechanisms, and anaerobically respiring ecosystems could also have lower MCP ecological efficiency. Typical cases can be found in large river estuarine ecosystems. Due to strong terrigenous input of nutrients and organic matter, estuarine ecosystems usually experience intense heterotrophic respiration processes that rapidly consume dissolved oxygen, potentially producing hypoxic and anoxic zones in the water column. The lowered availability of dissolved oxygen and the excessive supply of nutrients such as nitrate from river input prompt enhanced anaerobic respiration processes. Thus, some nutrients may be consumed by anaerobically respiring heterotrophic microorganisms, instead of being utilized by phytoplankton for carbon fixation and primary production. In this situation, the ecological functioning of the estuarine ecosystem is altered and the ecological efficiency is lowered, as less carbon is fixed and less energy is produced. Ultimately this would have negatively impacts

  13. Anaerobic Thermophiles

    PubMed Central

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has

  14. Spectrum and treatment of anaerobic infections.

    PubMed

    Brook, Itzhak

    2016-01-01

    Anaerobes are the most predominant components of the normal human skin and mucous membranes bacterial flora, and are a frequent cause of endogenous bacterial infections. Anaerobic infections can occur in all body locations: the central nervous system, oral cavity, head and neck, chest, abdomen, pelvis, skin, and soft tissues. Treatment of anaerobic infection is complicated by their slow growth in culture, by their polymicrobial nature and by their growing resistance to antimicrobials. Antimicrobial therapy is frequently the only form of therapy needed, whereas in others it is an important adjunct to drainage and surgery. Because anaerobes generally are isolated mixed with aerobes, the antimicrobial chosen should provide for adequate coverage of both. The most effective antimicrobials against anaerobes are: metronidazole, the carbapenems (imipenem, meropenem, doripenem, ertapenem), chloramphenicol, the combinations of a penicillin and a beta-lactamase inhibitors (ampicillin or ticarcillin plus clavulanate, amoxicillin plus sulbactam, piperacillin plus tazobactam), tigecycline, cefoxitin and clindamycin. PMID:26620376

  15. Anaerobic bioprocessing of low-rank coals

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1991-01-01

    The objective of this project is to find biological methods to remove carboxylic functionalities from low rank coals under ambient conditions and to assess the properties of these modified coals towards coal decarboxylation. The microbial consortia will be developed using a fermentor system first under batch and then in a continuous system. The main objectives for this quarter were to develop microbial consortia that would decarboxylate coal and isolate potential anaerobic microorganisms with decarboxylating, ability from these enriched microbial consortia, to continue to compare the known cultures with reward to their ability to decarboxylate coal, and to characterize the anaerobically biotreated coal using FTIR to confirm decarboxylation of coal. Significant achievements during the period include: coal decarboxylation was possible only under anaerobic conditions. microbial consortia that can anaerobically decarboxylate coal have been developed using anaerobic vials and batch fermentor system, and loss of carboxyl groups in biotreated coal has been confirmed by FT-IR.

  16. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3.

    PubMed

    Saltikov, Chad W; Cifuentes, Ana; Venkateswaran, Kasthuri; Newman, Dianne K

    2003-05-01

    Arsenate [As(V); HAsO(4)(2-)] respiration by bacteria is poorly understood at the molecular level largely due to a paucity of genetically tractable organisms with this metabolic capability. We report here the isolation of a new As(V)-respiring strain (ANA-3) that is phylogenetically related to members of the genus Shewanella and that also provides a useful model system with which to explore the molecular basis of As(V) respiration. This gram-negative strain stoichiometrically couples the oxidation of lactate to acetate with the reduction of As(V) to arsenite [As(III); HAsO(2)]. The generation time and lactate molar growth yield (Y(lactate)) are 2.8 h and 10.0 g of cells mol of lactate(-1), respectively, when it is grown anaerobically on lactate and As(V). ANA-3 uses a wide variety of terminal electron acceptors, including oxygen, soluble ferric iron, oxides of iron and manganese, nitrate, fumarate, the humic acid functional analog 2,6-anthraquinone disulfonate, and thiosulfate. ANA-3 also reduces As(V) to As(III) in the presence of oxygen and resists high concentrations of As(III) (up to 10 mM) when grown under either aerobic or anaerobic conditions. ANA-3 possesses an ars operon (arsDABC) that allows it to resist high levels of As(III); this operon also confers resistance to the As-sensitive strains Shewanella oneidensis MR-1 and Escherichia coli AW3110. When the gene encoding the As(III) efflux pump, arsB, is inactivated in ANA-3 by a polar mutation that also eliminates the expression of arsC, which encodes an As(V) reductase, the resulting As(III)-sensitive strain still respires As(V); however, the generation time and the Y(lactate) value are two- and threefold lower, respectively, than those of the wild type. These results suggest that ArsB and ArsC may be useful for As(V)-respiring bacteria in environments where As concentrations are high, but that neither is required for respiration.

  17. Anaerobic bioprocessing of low rank coals

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1991-01-01

    significant achievements were: (1) Coal decarboxylation was achieved by batch bioreactor systems using adapted anaerobic microbial consortium. (2) Two new isolates with coal decarboxylation potential were obtained from adapted microbial consortia. (3) CHN and TG anaysis of anaerobically biotreated coals have shown an increase in the H/C ratio and evolution rate of volatile carbon which could be a better feedstock for the liquefaction process.

  18. Neither respiration nor cytochrome c oxidase affects mitochondrial morphology in Saccharomyces cerevisiae.

    PubMed

    Church, C; Poyton, R O

    1998-06-01

    Previous studies have reported that mitochondrial morphology and volume in yeast cells are linked to cellular respiratory capacity. These studies revealed that mitochondrial morphology in glucose-repressed or anaerobically grown cells, which lack or have reduced levels of respiration, is different from that in fully respiring cells. Although both oxygen deprivation and glucose repression decrease the levels of respiratory chain proteins, they decrease the expression of many non-mitochondrial proteins as well, making it difficult to determine whether it is a defect in respiration or something else that effects mitochondrial morphology. To determine whether mitochondrial morphology is dependent on respiration per se, we used a strain with a null mutation in PET100, a nuclear gene that is specifically required for the assembly of cytochrome c oxidase. Although this strain lacks respiration, the mitochondrial morphology and volumes are both comparable to those found in its respiration-proficient parent. These findings indicate that respiration is not involved in the establishment or maintenance of yeast mitochondrial morphology, and that the previously observed effects of oxygen availability and glucose repression on mitochondrial morphology are not exerted through the respiratory chain. By applying the principle of symmorphosis to these findings, we conclude that the shape and size of the mitochondrial reticulum found in respiring yeast cells is maintained for reasons other than respiration.

  19. Comparison of aerobic and anaerobic biotreatment of municipal solid waste.

    PubMed

    Borglin, Sharon E; Hazen, Terry C; Oldenburg, Curtis M; Zawislanski, Peter T

    2004-07-01

    To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.

  20. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

  1. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field.

    PubMed

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host.

  2. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field

    PubMed Central

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host. PMID:26914590

  3. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field.

    PubMed

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host. PMID:26914590

  4. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  5. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    PubMed

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  6. Tumors and mitochondrial respiration: a neglected connection.

    PubMed

    Viale, Andrea; Corti, Denise; Draetta, Giulio F

    2015-09-15

    For decades, tumor cells have been considered defective in mitochondrial respiration due to their dominant glycolytic metabolism. However, a growing body of evidence is now challenging this assumption, and also implying that tumors are metabolically less homogeneous than previously supposed. A small subpopulation of slow-cycling cells endowed with tumorigenic potential and multidrug resistance has been isolated from different tumors. Deep metabolic characterization of these tumorigenic cells revealed their dependency on mitochondrial respiration versus glycolysis, suggesting the existence of a common metabolic program active in slow-cycling cells across different tumors. These findings change our understanding of tumor metabolism and also highlight new vulnerabilities that can be exploited to eradicate cancer cells responsible for tumor relapse.

  7. Cytochrome c Biogenesis Genes Involved in Arsenate Respiration by Shewanella trabarsenatis ANA-3

    NASA Astrophysics Data System (ADS)

    Newman, D. K.

    2002-12-01

    Arsenate can be used as a terminal electron acceptor in anaerobic respiration by diverse bacteria. The detection of these bacteria in numerous contaminated environments suggests that they are widespread and metabolically active in nature. Arsenate-respiring bacteria have been implicated in the mobilization of arsenic from arsenic-contaminated sediments. However, the enzymatic mechanisms supporting arsenate respiration are largely unknown. Here, we describe c-type cytochromes that are involved in arsenate respiration by the bacterium Shewanella trabarsenatis strain ANA-3, a facultative anaerobe that is able to use a variety of electron acceptors for growth. We performed transposon mutagenesis to study the electron transport pathway in ANA-3 during arsenate respiration. 10 arsenate-respiration deficient mutants were found after screening up to 7,000 mutants, and 4 were shown to have unique transposon insertions through Southern Blot analysis. The physiological properties of these mutants were determined, including characterization of their growth on different electron acceptors. The genes flanking the transposon insertions were sequenced for each mutant, and several were found to encode c-type cytochrome biogenesis genes. UV/VIS spectra and SDS/PAGE were used to confirm the absence of c-type cytochromes in the mutants. Based on these findings, we proposed a model for respiratory electron transport to arsenate.

  8. Quinone-reactive proteins devoid of haem b form widespread membrane-bound electron transport modules in bacterial respiration.

    PubMed

    Simon, Jörg; Kern, Melanie

    2008-10-01

    Many quinone-reactive enzyme complexes that are part of membrane-integral eukaryotic or prokaryotic respiratory electron transport chains contain one or more haem b molecules embedded in the membrane. In recent years, various novel proteins have emerged that are devoid of haem b but are thought to fulfil a similar function in bacterial anaerobic respiratory systems. These proteins are encoded by genes organized in various genomic arrangements and are thought to form widespread membrane-bound quinone-reactive electron transport modules that exchange electrons with redox partner proteins located at the outer side of the cytoplasmic membrane. Prototypic representatives are the multihaem c-type cytochromes NapC, NrfH and TorC (NapC/NrfH family), the putative iron-sulfur protein NapH and representatives of the NrfD/PsrC family. Members of these protein families vary in the number of their predicted transmembrane segments and, consequently, diverse quinone-binding sites are expected. Only a few of these enzymes have been isolated and characterized biochemically and high-resolution structures are limited. This mini-review briefly summarizes predicted and experimentally demonstrated properties of the proteins in question and discusses their role in electron transport and bioenergetics of anaerobic respiration.

  9. Genome analysis of Chitinivibrio alkaliphilus gen. nov., sp. nov., a novel extremely haloalkaliphilic anaerobic chitinolytic bacterium from the candidate phylum Termite Group 3.

    PubMed

    Sorokin, Dimitry Y; Gumerov, Vadim M; Rakitin, Andrey L; Beletsky, Alexey V; Damsté, J S Sinninghe; Muyzer, Gerard; Mardanov, Andrey V; Ravin, Nikolai V

    2014-06-01

    Anaerobic enrichments from hypersaline soda lakes with chitin as substrate yielded five closely related anaerobic haloalkaliphilic isolates growing on insoluble chitin by fermentation at pH 10 and salinities up to 3.5 M. The chitinolytic activity was exclusively cell associated. To better understand the biology and evolutionary history of this novel bacterial lineage, the genome of the type strain ACht1 was sequenced. Analysis of the 2.6 Mb draft genome revealed enzymes of chitin-degradation pathways, including secreted cell-bound chitinases. The reconstructed central metabolism revealed pathways enabling the fermentation of polysaccharides, while it lacks the genes needed for aerobic or anaerobic respiration. The Rnf-type complex, oxaloacetate decarboxylase and sodium-transporting V-type adenosine triphosphatase were identified among putative membrane-bound ion pumps. According to 16S ribosomal RNA analysis, the isolates belong to the candidate phylum Termite Group 3, representing its first culturable members. Phylogenetic analysis using ribosomal proteins and taxonomic distribution analysis of the whole proteome supported a class-level classification of ACht1 most probably affiliated to the phylum Fibribacteres. Based on phylogenetic, phenotypic and genomic analyses, the novel bacteria are proposed to be classified as Chitinivibrio alkaliphilus gen. nov., sp. nov., within a novel class Chitinivibrione.

  10. Identification, distribution, and toxigenicity of obligate anaerobes in polluted waters.

    PubMed Central

    Daily, O P; Joseph, S W; Gillmore, J D; Colwell, R R; Seidler, R J

    1981-01-01

    A seasonal occurrence of obligately anaerobic bacteria, predominantly of the genera Bacteroides and Clostridium, in a polluted water site has been observed. The number of anaerobes varied from 1.8 X 10(3) cells/ml in the warmer months to 10 cells/ml in winter. Several isolates were toxigenic, indicating a potential human health hazard. PMID:7235706

  11. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.

  12. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new. PMID:27415771

  13. Hybrid respiration-signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Hybrid impedance-pneumograph and respiration-rate signal conditioner element of hand-held vital signs monitor measures changes in impedance of chest during breathing cycle and generates analog respiration signal as output along with synchronous square wave that can be monitored by breath-rate processor.

  14. Ecology and Biotechnology of Selenium-Respiring Bacteria

    PubMed Central

    2015-01-01

    SUMMARY In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  15. Ecology and biotechnology of selenium-respiring bacteria.

    PubMed

    Nancharaiah, Y V; Lens, P N L

    2015-03-01

    In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  16. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment

    SciTech Connect

    Hwang, C.; Copeland, A.; Lucas, Susan; Lapidus, Alla; Barry, Kerrie W.; Glavina del Rio, T.; Dalin, Eileen; Tice, Hope; Pitluck, S.; Sims, David R.; Brettin, T.; Bruce, David; Detter, J. C.; Han, Cliff F.; Schmutz, Jeremy; Larimer, F.; Land, M.; Hauser, L.; Kyrpides, Nikos C.; Lykidis, Athanasios; Richardson, P. M.; Beliaev, Alex S.; Sanford, Robert A.; Loeffler, Frank E.; Fields, Matthew W.

    2015-01-22

    We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.

  17. Natural Niche for Organohalide-Respiring Chloroflexi

    PubMed Central

    Krzmarzick, Mark J.; Crary, Benjamin B.; Harding, Jevon J.; Oyerinde, Oyenike O.; Leri, Alessandra C.; Myneni, Satish C. B.

    2012-01-01

    The phylum Chloroflexi contains several isolated bacteria that have been found to respire a diverse array of halogenated anthropogenic chemicals. The distribution and role of these Chloroflexi in uncontaminated terrestrial environments, where abundant natural organohalogens could function as potential electron acceptors, have not been studied. Soil samples (116 total, including 6 sectioned cores) from a range of uncontaminated sites were analyzed for the number of Dehalococcoides-like Chloroflexi 16S rRNA genes present. Dehalococcoides-like Chloroflexi populations were detected in all but 13 samples. The concentrations of organochlorine ([organochlorine]), inorganic chloride, and total organic carbon (TOC) were obtained for 67 soil core sections. The number of Dehalococcoides-like Chloroflexi 16S rRNA genes positively correlated with [organochlorine]/TOC while the number of Bacteria 16S rRNA genes did not. Dehalococcoides-like Chloroflexi were also observed to increase in number with a concomitant accumulation of chloride when cultured with an enzymatically produced mixture of organochlorines. This research provides evidence that organohalide-respiring Chloroflexi are widely distributed as part of uncontaminated terrestrial ecosystems, they are correlated with the fraction of TOC present as organochlorines, and they increase in abundance while dechlorinating organochlorines. These findings suggest that organohalide-respiring Chloroflexi may play an integral role in the biogeochemical chlorine cycle. PMID:22101035

  18. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells.

    PubMed

    Grüning, Nana-Maria; Rinnerthaler, Mark; Bluemlein, Katharina; Mülleder, Michael; Wamelink, Mirjam M C; Lehrach, Hans; Jakobs, Cornelis; Breitenbach, Michael; Ralser, Markus

    2011-09-01

    In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism when respiration is activated. Low PYK activity activated yeast respiration. However, levels of reactive oxygen species (ROS) did not increase, and cells gained resistance to oxidants. This adaptation was attributable to accumulation of the PYK substrate phosphoenolpyruvate (PEP). PEP acted as feedback inhibitor of the glycolytic enzyme triosephosphate isomerase (TPI). TPI inhibition stimulated the pentose phosphate pathway, increased antioxidative metabolism, and prevented ROS accumulation. Thus, a metabolic feedback loop, initiated by PYK, mediated by its substrate and acting on TPI, stimulates redox metabolism in respiring cells. Originating from a single catalytic step, this autonomous reconfiguration of central carbon metabolism prevents oxidative stress upon shifts between fermentation and respiration.

  19. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases

    PubMed Central

    Hug, Laura A.; Maphosa, Farai; Leys, David; Löffler, Frank E.; Smidt, Hauke; Edwards, Elizabeth A.; Adrian, Lorenz

    2013-01-01

    Organohalide respiration is an anaerobic bacterial respiratory process that uses halogenated hydrocarbons as terminal electron acceptors during electron transport-based energy conservation. This dechlorination process has triggered considerable interest for detoxification of anthropogenic groundwater contaminants. Organohalide-respiring bacteria have been identified from multiple bacterial phyla, and can be categorized as obligate and non-obligate organohalide respirers. The majority of the currently known organohalide-respiring bacteria carry multiple reductive dehalogenase genes. Analysis of a curated set of reductive dehalogenases reveals that sequence similarity and substrate specificity are generally not correlated, making functional prediction from sequence information difficult. In this article, an orthologue-based classification system for the reductive dehalogenases is proposed to aid integration of new sequencing data and to unify terminology. PMID:23479752

  20. Respiration signals from photoplethysmography.

    PubMed

    Nilsson, Lena M

    2013-10-01

    respiratory modulation of the pulse oximeter waveform and has been shown to predict fluid responsiveness in mechanically ventilated patients including infants. The pleth variability index value depends on the size of the tidal volume and on positive end-expiratory pressure. In conclusion, the respiration modulation of the PPG signal can be used to monitor respiratory rate. It is probable that improvements in neural network technology will increase sensitivity and specificity for detecting both central and obstructive apnea. The size of the PPG respiration variation can predict fluid responsiveness in mechanically ventilated patients. PMID:23449854

  1. PCR-based diagnostics for anaerobic infections.

    PubMed

    Song, Yuli

    2005-01-01

    Conventional methods to identify anaerobic bacteria have often relied on unique clinical findings, isolation of organisms, and laboratory identification by morphology and biochemical tests (phenotypic tests). Although these methods are still fundamental, there is an increasing move toward molecular diagnostics of anaerobes. In this review, some of the molecular approaches to anaerobic diagnostics based on the polymerase chain reaction (PCR) are discussed. This includes several technological advances in PCR-based methods for the detection, identification, and quantitation of anaerobes including real-time PCR which has been successfully used to provide rapid, quantitative data on anaerobic species on clinical samples. Since its introduction in the mid-1980s, PCR has provided many molecular diagnostic tools, some of which are discussed within this review. With the advances in micro-array technology and real-time PCR methods, the future is bright for the development of accurate, quantitative diagnostic tools that can provide information not only on individual anaerobic species but also on whole communities.

  2. Anxiety during respirator use: comparison of two respirator types.

    PubMed

    Wu, Samantha; Harber, Philip; Yun, David; Bansal, Siddharth; Li, Yuan; Santiago, Silverio

    2011-03-01

    Anxiety may interfere with proper respirator use. This study directly compares the effect of two types of respirators--elastomeric half-face mask with dual-cartridges (HFM) and N95 filtering facepiece--on anxiety levels. Twelve volunteers with normal or mildly impaired respiratory conditions performed a series of simulated work tasks using the HFM and N95 on different days. The State-Trait Anxiety Inventory (STAI) measured state anxiety (SA) before and during respirator use. STAI also measured trait anxiety (TA), a stable personal characteristic. The effect of the respirator was measured as the difference between SA pre-use and during use. Work with HFM was associated with an increase in SA (2.92 units, p < .01), whereas work with the N95 had no observed effect. Anxiety should be considered in the selection of the best respirator for a user. Impact on anxiety should be considered for respirator design and certification purposes, particularly if the device is to be widely used in workplace and community settings. PMID:21318920

  3. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  4. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs. PMID:25532022

  5. Isolation, Characterization, and U(VI)-Reducing Potential of a Facultatively Anaerobic, Acid-Resistant Bacterium from Low-pH, Nitrate- and U(VI)-Contaminated Subsurface Sediment and Description of Salmonella subterranea sp. nov.

    PubMed Central

    Shelobolina, Evgenya S.; Sullivan, Sara A.; O'Neill, Kathleen R.; Nevin, Kelly P.; Lovley, Derek R.

    2004-01-01

    A facultatively anaerobic, acid-resistant bacterium, designated strain FRCl, was isolated from a low-pH, nitrate- and U(VI)-contaminated subsurface sediment at site FW-024 at the Natural and Accelerated Bioremediation Research Field Research Center in Oak Ridge, Tenn. Strain FRCl was enriched at pH 4.5 in minimal medium with nitrate as the electron acceptor, hydrogen as the electron donor, and acetate as the carbon source. Clones with 16S ribosomal DNA (rDNA) sequences identical to the sequence of strain FRCl were also detected in a U(VI)-reducing enrichment culture derived from the same sediment. Cells of strain FRCl were gram-negative motile regular rods 2.0 to 3.4 μm long and 0.7 to 0.9 μm in diameter. Strain FRCl was positive for indole production, by the methyl red test, and for ornithine decarboxylase; it was negative by the Voges-Proskauer test (for acetylmethylcarbinol production), for urea hydrolysis, for arginine dihydrolase, for lysine decarboxylase, for phenylalanine deaminase, for H2S production, and for gelatin hydrolysis. Strain FRCl was capable of using O2, NO3−, S2O32−, fumarate, and malate as terminal electron acceptors and of reducing U(VI) in the cell suspension. Analysis of the 16S rDNA sequence of the isolate indicated that this strain was 96.4% similar to Salmonella bongori and 96.3% similar to Enterobacter cloacae. Physiological and phylogenetic analyses suggested that strain FRCl belongs to the genus Salmonella and represents a new species, Salmonella subterranea sp. nov. PMID:15128557

  6. Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium

    SciTech Connect

    Shu-Ying Liu; Wiegel, J.; Rainey, F.A.

    1996-04-01

    Six moderately acidophilic, thermophilic bacterial strains with similar properties were isolated from geothermally heated water and sediment samples collected in New Zealand. These Gram stain-negative but Gram type-positive, rod-shaped bacteria formed oval terminal endospores. The cells were peritrichously flagellated and exhibited tumbling motility. At 60{degrees}C the pH range for growth was 3.8 to 6.8, and the optimum pH was 5.2 when the organisms were grown with xylose. At pH 5.2 the temperature range for growth was 35 to 66{degrees}C, and the optimum temperature was 60 to 63{degrees}C. The fermentation products from flucose or xylose were ethanol, acetate, lactate, CO{sub 2}, and H{sub 2}. The DNA G+C content was 34.5 to 35 mol%. On the basis of properties such as formation of elemental sulfur from thiosulfate, growth at acidic pH values at elevated temperatures, and the results of a 16S rRNA sequence comparison performed with previously validly published species belonging to the genus Thermoanaerobacterium, we propose that strain JW/SL-NZ613{sup T} (T = type strain) and five similar strains isolated from samples collected in New Zealand represent a new species, Thermoanaerobacterium aotearoense. Strain JW/SL-NZ613{sup T} (= DSM 10170) is the type strain of this species.

  7. A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments

    PubMed Central

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu

    2016-01-01

    An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons (PH) in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305 ± 10 mA/m2 (1000Ω) was generated (power density 131.65 ± 10 mW/m2) by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21 ± 3 mA/m2; power density 720 ± 7 μW/m2, 1000 Ω) using PH as a sole energy source was also examined using an initial concentration of 800 mg l-1 of diesel range hydrocarbons (C9-C36) with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation). Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS. PMID:27462307

  8. A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments.

    PubMed

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu

    2016-01-01

    An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons (PH) in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305 ± 10 mA/m(2) (1000Ω) was generated (power density 131.65 ± 10 mW/m(2)) by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21 ± 3 mA/m(2); power density 720 ± 7 μW/m(2), 1000 Ω) using PH as a sole energy source was also examined using an initial concentration of 800 mg l(-1) of diesel range hydrocarbons (C9-C36) with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation). Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS. PMID:27462307

  9. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1.

    PubMed

    Gralnick, Jeffrey A; Vali, Hojatollah; Lies, Douglas P; Newman, Dianne K

    2006-03-21

    Shewanella species are renowned for their respiratory versatility, including their ability to respire poorly soluble substrates by using enzymatic machinery that is localized to the outside of the cell. The ability to engage in "extracellular respiration" to date has focused primarily on respiration of minerals. Here, we identify two gene clusters in Shewanella oneidensis strain MR-1 that each contain homologs of genes required for metal reduction and genes that are predicted to encode dimethyl sulfoxide (DMSO) reductase subunits. Molecular and genetic analyses of these clusters indicate that one (SO1427-SO1432) is required for anaerobic respiration of DMSO. We show that DMSO respiration is an extracellular respiratory process through the analysis of mutants defective in type II secretion, which is required for transporting proteins to the outer membrane in Shewanella. Moreover, immunogold labeling of DMSO reductase subunits reveals that they reside on the outer leaflet of the outer membrane under anaerobic conditions. The extracellular localization of the DMSO reductase in S. oneidensis suggests these organisms may perceive DMSO in the environment as an insoluble compound.

  10. Using nonlocal means to separate cardiac and respiration sounds

    NASA Astrophysics Data System (ADS)

    Rudnitskii, A. G.

    2014-11-01

    The paper presents the results of applying nonlocal means (NLMs) approach in the problem of separating respiration and cardiac sounds in a signal recorded on a human chest wall. The performance of the algorithm was tested both by simulated and real signals. As a quantitative efficiency measure of NLM filtration, the angle of divergence between isolated and reference signal was used. It is shown that for a wide range of signal-to-noise ratios, the algorithm makes it possible to efficiently solve this problem of separating cardiac and respiration sounds in the sum signal recorded on a human chest wall.

  11. Staged anaerobic reactor

    SciTech Connect

    Sullivan, R.A.

    1986-02-04

    This patent describes an anaerobic biological reactor for digesting organic substances, particularly high strength industrial and municipal sewage, and producing commercial quality methane. The reactor consists of: a unitary vessel for containing liquid carrying the organic substances to be digested and has a liquid inlet and a liquid outlet; a device for maintaining the liquid in the vessel at a desired level; the capability of dividing the vessel into separate environmentally isolated compartments, adapted to contain a level of liquid having a gas space located above. Each of the compartments is primarily dedicated to the digestion of organic substances by a respectively different microorganism. At least one of the organisms is an acid forming type that digests organic substances and in so doing evolves CO/sub 2/ gas. At least one other of the microorganisms is a type that digests organic substances and in so doing evolves a relatively high quality methane gas; a method for establishing and maintaining the optimum environmental conditions within each of the respective compartments to promote the unique biological activity within that compartment; a way to regulate the pH level; a set of gas operated mixers in each compartment of the vessel for mixing the liquid contained therein to maintain a homogenous mixture; a way for delivering the CO/sub 2/ gas from one compartment to the mixer in the other compartment; a way for flowing and agitating the liquid from the inlet through the environmentally isolated compartments in a predetermined sequence to the outlet; and a method for collecting and removing methane gas evolved in the vessel.

  12. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    PubMed

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  13. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    PubMed

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  14. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  15. Anaerobic infections in the head and neck region.

    PubMed

    Tabaqchali, S

    1988-01-01

    Anaerobic bacteria form the predominant flora of the oral cavity, outnumbering facultative organisms by 10-1,000: 1. The type of anaerobic bacteria and their concentration depend on the anatomical site and the degree of anaerobiosis in the different sites in the mouth. Three groups of anaerobic bacteria inhabit the oral cavity; the strict anaerobes, the moderate anaerobes, and the microaerophilic group of organisms. The majority of anaerobic bacterial infections occurring in the region of the mouth, head and neck are caused by the commensal flora. These infections include dental and periodontal disease where the predominant organisms are Bacteroides species, Veillonella, Bifidobacteria, Peptococcus, Peptostreptococcus and Propionibacterium species. More recently, Bacteroides endontalis has been isolated from a periapical abscess of endodontal origin and B. gingivalis, B. intermedius, Haemophilus actinomycetemcomitans and Wollinella species in chronic periodontal disease. Treponema species and other strict anaerobes are seen in smears of severe periodontal disease and acute necrotising gingivitis, but have not yet been isolated in pure culture. Until such time, their role in disease remains uncertain. Fusobacterium nucleatum is specially associated with severe orofacial infections which may extend into the mediastinum. Other anaerobic infections include chronic otitis media, chronic sinusitis and mastoiditis, and brain abscess. Treatment of these conditions should include the use of beta-lactamase resistant antimicrobials, such as clindamycin or one of the nitroimidazoles with penicillin.

  16. Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study.

    PubMed

    Torregrosa-Crespo, J; Martínez-Espinosa, R M; Esclapez, J; Bautista, V; Pire, C; Camacho, M; Richardson, D J; Bonete, M J

    2016-01-01

    A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter.

  17. Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study.

    PubMed

    Torregrosa-Crespo, J; Martínez-Espinosa, R M; Esclapez, J; Bautista, V; Pire, C; Camacho, M; Richardson, D J; Bonete, M J

    2016-01-01

    A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter. PMID:27134021

  18. Fermentation and growth response of a primary poultry isolate of Salmonella typhimurium grown under strict anaerobic conditions in continuous culture and amino acid-limited batch culture.

    PubMed

    Maciorowski, K G; Nisbet, D J; Ha, S D; Corrier, D E; DeLoach, J R; Ricke, S C

    1997-01-01

    Salmonella typhimurium is a significant hazard to consumer health that is carried asymptomatically in poultry gastrointestinal tracts. Nurmi cultures may prevent Salmonella colonization in young chicks, but the mechanism of competitive exclusion is unclear. Modeling Salmonella's metabolism in pure culture may allow for greater definition in choosing strains for Nurmi cultures. The growth rates and affinity constants of S. typhimurium growing in amino acid-limited conditions were determined in batch culture and compared to primary poultry isolates of cecal strains. Serine and NH4Cl were the best N sources for growth of all organisms tested in this study. The fermentation response of S. typhimurium was also monitored in continuous culture at a slow dilution rate of 0.021 h-1. S. typhimurium was found to adapt to VL media, with trends in protein disappearance, Yglucose, and Yprotein. This may show that amino acid or protein concentrations may be an integral component of the initial establishment of S. typhimurium in the cecum.

  19. Fermentation and growth response of a primary poultry isolate of Salmonella typhimurium grown under strict anaerobic conditions in continuous culture and amino acid-limited batch culture.

    PubMed

    Maciorowski, K G; Nisbet, D J; Ha, S D; Corrier, D E; DeLoach, J R; Ricke, S C

    1997-01-01

    Salmonella typhimurium is a significant hazard to consumer health that is carried asymptomatically in poultry gastrointestinal tracts. Nurmi cultures may prevent Salmonella colonization in young chicks, but the mechanism of competitive exclusion is unclear. Modeling Salmonella's metabolism in pure culture may allow for greater definition in choosing strains for Nurmi cultures. The growth rates and affinity constants of S. typhimurium growing in amino acid-limited conditions were determined in batch culture and compared to primary poultry isolates of cecal strains. Serine and NH4Cl were the best N sources for growth of all organisms tested in this study. The fermentation response of S. typhimurium was also monitored in continuous culture at a slow dilution rate of 0.021 h-1. S. typhimurium was found to adapt to VL media, with trends in protein disappearance, Yglucose, and Yprotein. This may show that amino acid or protein concentrations may be an integral component of the initial establishment of S. typhimurium in the cecum. PMID:9192013

  20. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  1. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions.

    PubMed

    DeMars, Zachary; Biswas, Silpak; Amachawadi, Raghavendra G; Renter, David G; Volkova, Victoriya V

    2016-01-01

    Antimicrobial treatments result in the host's enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  2. Appearance and Disappearance of Cyanide-Resistant Respiration in Vigna mungo Cotyledons during and following Germination of the Axis

    PubMed Central

    Morohashi, Yukio; Matsushima, Hisashi

    1983-01-01

    Mitochondrial preparations isolated from black gram (Vigna mungo L.) cotyledons exhibited cyanide-resistant respiration which was of mitochondrial origin. The appearance and the disappearance of this alternative respiration took place during and following imbibition. During the first 6 hours of imbibition, the respiration was completely inhibited by cyanide, but after this time the alternative respiration markedly developed, reaching a maximal cyanide-resistance 12 to 16 hours after the start of imbibition. Subsequently, the alternative respiration gradually disappeared. The actions of cycloheximide and chloramphenicol indicated that the appearance was dependent on cytoplasmic protein synthesis and that the disappearance depended on both cytoplasmic and mitochondrial protein synthesis. The alternative pathway contributed to state 4 respiration, but not to state 3 respiration, in mitochondria from 1-day-old cotyledons. On day 3, it contributed to neither state 3 nor state 4. PMID:16663192

  3. Appearance and Disappearance of Cyanide-Resistant Respiration in Vigna mungo Cotyledons during and following Germination of the Axis.

    PubMed

    Morohashi, Y; Matsushima, H

    1983-09-01

    Mitochondrial preparations isolated from black gram (Vigna mungo L.) cotyledons exhibited cyanide-resistant respiration which was of mitochondrial origin. The appearance and the disappearance of this alternative respiration took place during and following imbibition. During the first 6 hours of imbibition, the respiration was completely inhibited by cyanide, but after this time the alternative respiration markedly developed, reaching a maximal cyanide-resistance 12 to 16 hours after the start of imbibition. Subsequently, the alternative respiration gradually disappeared. The actions of cycloheximide and chloramphenicol indicated that the appearance was dependent on cytoplasmic protein synthesis and that the disappearance depended on both cytoplasmic and mitochondrial protein synthesis. The alternative pathway contributed to state 4 respiration, but not to state 3 respiration, in mitochondria from 1-day-old cotyledons. On day 3, it contributed to neither state 3 nor state 4.

  4. Draft Genome Sequence of Leptolinea tardivitalis YMTK-2, a Mesophilic Anaerobe from the Chloroflexi Class Anaerolineae.

    PubMed

    Ward, Lewis M; Hemp, James; Pace, Laura A; Fischer, Woodward W

    2015-01-01

    We present the draft genome sequence of Leptolinea tardivitalis YMTK-2, a member of the Chloroflexi phylum. This organism was initially characterized as a strictly anaerobic nonmotile fermenter; however, genome analysis demonstrates that it encodes for a flagella and might be capable of aerobic respiration. PMID:26586893

  5. Contribution of anaerobic energy expenditure to whole body thermogenesis

    PubMed Central

    Scott, Christopher B

    2005-01-01

    Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis). An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure. PMID:15958171

  6. Anaerobic Digestion and its Applications

    EPA Science Inventory

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  7. Pichia pastoris "just in time" alternative respiration.

    PubMed

    Kern, Alexander; Hartner, Franz S; Freigassner, Maria; Spielhofer, Julia; Rumpf, Cornelia; Leitner, Laura; Fröhlich, Kai-Uwe; Glieder, Anton

    2007-04-01

    Alternative oxidases (Aox or Aod) are present in the mitochondria of plants, fungi and many types of yeast. These enzymes transfer electrons from the ubiquinol pool directly to oxygen without contributing to the proton transfer across the mitochondrial membrane. Alternative oxidases are involved in stress responses, programmed cell death and maintenance of the cellular redox balance. The alternative oxidase gene of the methylotrophic yeast Pichia pastoris was isolated and cloned to study its regulation and the effects of deregulation of the alternative respiration by overexpression or disruption of the gene. Both disruption and overexpression had negative effects on the biomass yield; however, the growth rate and substrate uptake rate of the strain overexpressing the alternative oxidase were slightly increased. These effects were even more pronounced when higher glucose concentrations were used. The occurrence of free intracellular radicals and cell death phenomena was investigated using dihydrorhodamine 123 and the TUNEL test. The results suggest a major contribution of the alternative oxidase to P. pastoris cell viability. The negative effects of deregulated alternative respiration clearly indicated the importance of precise regulation of the alternative oxidase in this yeast.

  8. Measuring aerobic respiration in stream ecosystems using the resazurin-resorufin system

    NASA Astrophysics Data System (ADS)

    GonzáLez-Pinzón, Ricardo; Haggerty, Roy; Myrold, David D.

    2012-09-01

    The use of smart tracers to study hydrologic systems is becoming more widespread. Smart tracers are compounds that irreversibly react in the presence of a process or condition under investigation. Resazurin (Raz) is a smart tracer that undergoes an irreversible reduction to resorufin (Rru) in the presence of cellular metabolic activity. We quantified the relationship between the transformation of Raz and aerobic bacterial respiration in pure culture experiments using two obligate aerobes and two facultative anaerobes, and in colonized surface and shallow (<10 cm) hyporheic sediments using reach-scale experiments. We found that the transformation of Raz to Rru was nearly perfectly (minr2 = 0.986), positively correlated with aerobic microbial respiration in all experiments. These results suggest that Raz can be used as a surrogate to measure respiration in situ and in vivoat different spatial scales, thus providing an alternative to investigate mechanistic controls of solute transport and stream metabolism on nutrient processing. Lastly, a comparison of respiration and mass-transfer rates in streams suggests that field-scale respiration is controlled by the slower of respiration and mass transfer, highlighting the need to understand both biogeochemistry and physics in stream ecosystems.

  9. Predicting soil respiration from peatlands.

    PubMed

    Rowson, J G; Worrall, F; Evans, M G; Dixon, S D

    2013-01-01

    This study considers the relative performance of six different models to predict soil respiration from upland peat. Predicting soil respiration is important for global carbon budgets and gap filling measured data from eddy covariance and closed chamber measurements. Further to models previously published new models are presented using two sub-soil zones and season. Models are tested using data from the Bleaklow plateau, southern Pennines, UK. Presented literature models include ANOVA using logged environmental data, the Arrhenius equation, modified versions of the Arrhenius equation to include soil respiration activation energy and water table depth. New models are proposed including the introduction of two soil zones in the peat profile, and season. The first new model proposes a zone of high CO(2) productivity related to increased soil microbial CO(2) production due to the supply of labile carbon from plant root exudates and root respiration. The second zone is a deeper zone where CO(2) production is lower with less labile carbon. A final model allows the zone of high CO(2) production to become dormant during winter months when plants will senesce and will vary depending upon vegetation type within a fixed location. The final model accounted for, on average, 31.9% of variance in net ecosystem respiration within 11 different restoration sites whilst, using the same data set, the best fitting literature equation only accounted for 18.7% of the total variance. Our results demonstrate that soil respiration models can be improved by explicitly accounting for seasonality and the vertically stratified nature of soil processes. These improved models provide an enhanced basis for calculating the peatland carbon budgets which are essential in understanding the role of peatlands in the global C cycle.

  10. ENDOGENOUS RESPIRATION OF STAPHYLOCOCCUS AUREUS

    PubMed Central

    Ramsey, H. H.

    1962-01-01

    Ramsey, H. H. (Stanford University, Palo Alto, Calif.). Endogenous respiration of Staphylococcus aureus. J. Bacteriol. 83:507–514. 1962.—The endogenous respiration of Staphylococcus aureus is dependent upon the medium used to grow the cell suspension. Within wide ranges, the concentration of glucose in the medium has no effect upon subsequent endogenous respiration of the cells, but the concentration of amino acids in the medium, within certain limits, has a very marked effect. The total carbohydrate content of the cells does not decrease during endogenous respiration. As endogenous respiration proceeds, ammonia appears in the supernatant, and the concentration of glutamic acid in the free amino acid pool decreases. Organisms grown in the presence of labeled glutamic acid liberate labeled CO2 when allowed to respire without added substrate. The principal source of this CO2 is the free glutamate in the metabolic pool; its liberation is not suppressed by exogenous glucose or glutamate. With totally labeled cells, the free pool undergoes a rapid, but not total, depletion and remains at a low level for a long time. Activity of the protein fraction declines with time and shows the largest net decrease of all fractions. Exogenous glucose does not inhibit the release of labeled CO2 by totally labeled cells. Other amino acids in the free pool which can serve as endogenous substrates are aspartic acid and, to much lesser extents, glycine and alanine. The results indicate that both free amino acids and cellular protein may serve as endogenous substrates of S. aureus. PMID:14490204

  11. Predicting soil respiration from peatlands.

    PubMed

    Rowson, J G; Worrall, F; Evans, M G; Dixon, S D

    2013-01-01

    This study considers the relative performance of six different models to predict soil respiration from upland peat. Predicting soil respiration is important for global carbon budgets and gap filling measured data from eddy covariance and closed chamber measurements. Further to models previously published new models are presented using two sub-soil zones and season. Models are tested using data from the Bleaklow plateau, southern Pennines, UK. Presented literature models include ANOVA using logged environmental data, the Arrhenius equation, modified versions of the Arrhenius equation to include soil respiration activation energy and water table depth. New models are proposed including the introduction of two soil zones in the peat profile, and season. The first new model proposes a zone of high CO(2) productivity related to increased soil microbial CO(2) production due to the supply of labile carbon from plant root exudates and root respiration. The second zone is a deeper zone where CO(2) production is lower with less labile carbon. A final model allows the zone of high CO(2) production to become dormant during winter months when plants will senesce and will vary depending upon vegetation type within a fixed location. The final model accounted for, on average, 31.9% of variance in net ecosystem respiration within 11 different restoration sites whilst, using the same data set, the best fitting literature equation only accounted for 18.7% of the total variance. Our results demonstrate that soil respiration models can be improved by explicitly accounting for seasonality and the vertically stratified nature of soil processes. These improved models provide an enhanced basis for calculating the peatland carbon budgets which are essential in understanding the role of peatlands in the global C cycle. PMID:23178842

  12. [Dark respiration of terrestrial vegetations: a review].

    PubMed

    Sun, Jin-Wei; Yuan, Feng-Hui; Guan, De-Xin; Wu, Jia-Bing

    2013-06-01

    The source and sink effect of terrestrial plants is one of the hotspots in terrestrial ecosystem research under the background of global change. Dark respiration of terrestrial plants accounts for a large fraction of total net carbon balance, playing an important role in the research of carbon cycle under global climate change. However, there is little study on plant dark respiration. This paper summarized the physiological processes of plant dark respiration, measurement methods of the dark respiration, and the effects of plant biology and environmental factors on the dark respiration. The uncertainty of the dark respiration estimation was analyzed, and the future hotspots of related researches were pointed out.

  13. Anaerobic alkalithermophiles, a novel group of extremophiles.

    PubMed

    Wiegel, J

    1998-08-01

    Although some anaerobic and aerobic mesophiles have long been known to grow at alkaline pH (above 9.5), little was known until recently about thermophilic alkaliphiles, termed now alkalithermophiles. This minireview describes presently known and recently validly described anaerobic alkalithermophilic bacteria (pHopt55C > 8.5; Topt > 55 degrees C) and alkalitolerant thermophiles (pHopt55C < 8.5 but pHmax55C above 9.0). Some of these are widely distributed, but others have been isolated (thus far) only from one specific location. This novel group of anaerobic bacteria is comprised of physiologically different genera and species which, so far, all belong to the Gram-type positive Bacillus-Clostridium phylogenetic subbranch. An interesting feature of these anaerobic alkalithermophiles is that most of the isolates have short doubling times. The fastest growing among them are strains of Thermobrachium celere, with doubling times as short as 10 min while growing above pH 9.0 and above 55 degrees C.

  14. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms.

    PubMed

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-06-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.

  15. Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-Associated Clean Rooms▿

    PubMed Central

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-01-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus. PMID:19363082

  16. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains

    PubMed Central

    Rühle, Thilo; Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2008-01-01

    Background Sealed Chlamydomonas reinhardtii cultures evolve significant amounts of hydrogen gas under conditions of sulfur depletion. However, the eukaryotic green alga goes through drastic metabolic changes during this nutritional stress resulting in cell growth inhibition and eventually cell death. This study aimed at isolating C. reinhardtii transformants which produce hydrogen under normal growth conditions to allow a continuous hydrogen metabolism without the stressful impact of nutrient deprivation. Results To achieve a steady photobiological hydrogen production, a screening protocol was designed to identify C. reinhardtii DNA insertional mutagenesis transformants with an attenuated photosynthesis to respiration capacity ratio (P/R ratio). The screening protocol entails a new and fast method for mutant strain selection altered in their oxygen production/consumption balance. Out of 9000 transformants, four strains with P/R ratios varying from virtually zero to three were isolated. Strain apr1 was found to have a slightly higher respiration rate and a significantly lower photosynthesis rate than the wild type. Sealed cultures of apr1 became anaerobic in normal growth medium (TAP) under moderate light conditions and induced [FeFe]-hydrogenase activity, yet without significant hydrogen gas evolution. However, Calvin-Benson cycle inactivation of anaerobically adapted apr1 cells in the light led to a 2-3-fold higher in vivo hydrogen production than previously reported for the sulfur-deprived C. reinhardtii wild type. Conclusion Attenuated P/R capacity ratio in microalgal mutants constitutes a platform for achieving steady state photobiological hydrogen production. Using this platform, algal hydrogen metabolism can be analyzed without applying nutritional stress. Furthermore, these strains promise to be useful for biotechnological hydrogen generation, since high in vivo hydrogen production rates are achievable under normal growth conditions, when the photosynthesis

  17. Anaerobic bacteria and herpes simplex virus in genital ulceration.

    PubMed Central

    Masfari, A N; Kinghorn, G R; Hafiz, S; Barton, I G; Duerden, B I

    1985-01-01

    Of 91 patients with genital ulceration, herpes simplex virus was isolated from 52 (57%) and Haemophilus ducreyi from 12 (13%); none had syphilis. The difference in incidence of other aerobes in patients and controls was not significant. Anaerobes, predominantly Bacteroides spp, were isolated from a large proportion (77%) of men and women patients with ulcers but from few control men. The most common anaerobic species were B asaccharolyticus and B ureolyticus, with fewer isolates of the melaninogenicus/oralis group. The bacterial flora of herpetic and non-herpetic ulcers were similar, but Candida albicans was isolated significantly more often from non-herpetic ulcers. Anaerobic bacteria may contribute to the pathogenesis of genital ulcers. PMID:2984108

  18. Hydrogen thresholds and steady-state concentrations associated with microbial arsenate respiration.

    PubMed

    Heimann, Axel C; Blodau, Christian; Postma, Dieke; Larsen, Flemming; Viet, Pham H; Nhan, Pham Q; Jessen, Søren; Duc, Mai T; Hue, Nguyen T M; Jakobsen, Rasmus

    2007-04-01

    H2 thresholds for microbial respiration of arsenate (As(V)) were investigated in a pure culture of Sulfurospirillum arsenophilum. H2 was consumed to threshold concentrations of 0.03-0.09 nmol/L with As(V) as terminal electron acceptor, allowing for a Gibbs free-energy yield of 36-41 kJ per mol of reaction. These thresholds are among the lowest measured for anaerobic respirers and fall into the range of denitrifiers or Fe(III)-reducers. In sediments from an arsenic-contaminated aquifer in the Red River flood plain, Vietnam, H2 levels decreased to 0.4-2 nmol/L when As(V) was added under anoxic conditions. When As-(V) was depleted, H2 concentrations rebounded by a factor of 10, a level similar to that observed in arsenic-free controls. The sediment-associated microbial population completely reduced millimolar levels of As(V) to arsenite (As-(III)) within a few days. The rate of As(V)-reduction was essentially the same in sediments amended with a pure culture of S. arsenophilum. These findings together with a review of observed H2 threshold and steady-state values suggest that microbial As(V)-respirers have a competitive advantage over several other anaerobic respirers through their ability to thrive at low H2 levels. PMID:17438780

  19. Phenotypic and Genomic Properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., A Haloalkaliphilic Anaerobic Chitinolytic Bacterium Representing a Novel Class in the Phylum Fibrobacteres

    PubMed Central

    Sorokin, Dimitry Y.; Rakitin, Andrey L.; Gumerov, Vadim M.; Beletsky, Alexey V.; Sinninghe Damsté, Jaap S.; Mardanov, Andrey V.; Ravin, Nikolai V.

    2016-01-01

    Anaerobic enrichment from sediments of hypersaline alkaline lakes in Wadi el Natrun (Egypt) with chitin resulted in the isolation of a fermentative haloalkaliphilic bacterium, strain ACht6-1, growing exclusively with insoluble chitin as the substrate in a sodium carbonate-based medium at pH 8.5–10.5 and total Na+ concentrations from 0.4 to 1.75 M. The isolate had a Gram-negative cell wall and formed lipid cysts in old cultures. The chitinolytic activity was associated with cells. Analysis of the 4.4 Mb draft genome identified pathways for chitin utilization, particularly, secreted chitinases linked to the cell surface, as well as genes for the hydrolysis of other polysaccharides and fermentation of sugars, while the genes needed for aerobic and anaerobic respiration were absent. Adaptation to a haloalkaliphilic lifestyle was reflected by the gene repertoire encoding sodium rather than proton-dependent membrane-bound ion pumps, including the Rnf-type complex, oxaloacetate decarboxylase, V-type ATPase, and pyrophosphatase. The phylogenetic analysis using 16S rRNA gene and ribosomal proteins indicated that ACht6-1 forms a novel deep lineage at the class level within the bacterial candidate division TG3. Based on phylogenetic, phenotypic and genomic analyses, the novel chitinolytic bacterium is described as Chitinispirillum alkaliphilum gen. nov., sp. nov., within a novel class Chitinispirillia that could be included into the phylum Fibrobacteres. PMID:27065971

  20. Phenotypic and Genomic Properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., A Haloalkaliphilic Anaerobic Chitinolytic Bacterium Representing a Novel Class in the Phylum Fibrobacteres.

    PubMed

    Sorokin, Dimitry Y; Rakitin, Andrey L; Gumerov, Vadim M; Beletsky, Alexey V; Sinninghe Damsté, Jaap S; Mardanov, Andrey V; Ravin, Nikolai V

    2016-01-01

    Anaerobic enrichment from sediments of hypersaline alkaline lakes in Wadi el Natrun (Egypt) with chitin resulted in the isolation of a fermentative haloalkaliphilic bacterium, strain ACht6-1, growing exclusively with insoluble chitin as the substrate in a sodium carbonate-based medium at pH 8.5-10.5 and total Na(+) concentrations from 0.4 to 1.75 M. The isolate had a Gram-negative cell wall and formed lipid cysts in old cultures. The chitinolytic activity was associated with cells. Analysis of the 4.4 Mb draft genome identified pathways for chitin utilization, particularly, secreted chitinases linked to the cell surface, as well as genes for the hydrolysis of other polysaccharides and fermentation of sugars, while the genes needed for aerobic and anaerobic respiration were absent. Adaptation to a haloalkaliphilic lifestyle was reflected by the gene repertoire encoding sodium rather than proton-dependent membrane-bound ion pumps, including the Rnf-type complex, oxaloacetate decarboxylase, V-type ATPase, and pyrophosphatase. The phylogenetic analysis using 16S rRNA gene and ribosomal proteins indicated that ACht6-1 forms a novel deep lineage at the class level within the bacterial candidate division TG3. Based on phylogenetic, phenotypic and genomic analyses, the novel chitinolytic bacterium is described as Chitinispirillum alkaliphilum gen. nov., sp. nov., within a novel class Chitinispirillia that could be included into the phylum Fibrobacteres.

  1. Phenotypic and Genomic Properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., A Haloalkaliphilic Anaerobic Chitinolytic Bacterium Representing a Novel Class in the Phylum Fibrobacteres.

    PubMed

    Sorokin, Dimitry Y; Rakitin, Andrey L; Gumerov, Vadim M; Beletsky, Alexey V; Sinninghe Damsté, Jaap S; Mardanov, Andrey V; Ravin, Nikolai V

    2016-01-01

    Anaerobic enrichment from sediments of hypersaline alkaline lakes in Wadi el Natrun (Egypt) with chitin resulted in the isolation of a fermentative haloalkaliphilic bacterium, strain ACht6-1, growing exclusively with insoluble chitin as the substrate in a sodium carbonate-based medium at pH 8.5-10.5 and total Na(+) concentrations from 0.4 to 1.75 M. The isolate had a Gram-negative cell wall and formed lipid cysts in old cultures. The chitinolytic activity was associated with cells. Analysis of the 4.4 Mb draft genome identified pathways for chitin utilization, particularly, secreted chitinases linked to the cell surface, as well as genes for the hydrolysis of other polysaccharides and fermentation of sugars, while the genes needed for aerobic and anaerobic respiration were absent. Adaptation to a haloalkaliphilic lifestyle was reflected by the gene repertoire encoding sodium rather than proton-dependent membrane-bound ion pumps, including the Rnf-type complex, oxaloacetate decarboxylase, V-type ATPase, and pyrophosphatase. The phylogenetic analysis using 16S rRNA gene and ribosomal proteins indicated that ACht6-1 forms a novel deep lineage at the class level within the bacterial candidate division TG3. Based on phylogenetic, phenotypic and genomic analyses, the novel chitinolytic bacterium is described as Chitinispirillum alkaliphilum gen. nov., sp. nov., within a novel class Chitinispirillia that could be included into the phylum Fibrobacteres. PMID:27065971

  2. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect

    John R. Gallagher

    2001-07-31

    reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

  3. Soil Respiration - A Geochemist's Perspective

    NASA Astrophysics Data System (ADS)

    Van Cappellen, P.

    2015-12-01

    Soil biogeochemistry is largely driven by the decomposition of plant-derived organic matter by soil microorganisms. In addition to its effects on water quality and soil fertility, the decomposition of organic matter couples soil processes to climate, via the production and emission of greenhouse gases. In this presentation, I will review a number of key factors controlling the rate of decomposition of soil organic matter. In particular, I will discuss the importance of the spatial and temporal variations in redox conditions as drivers of soil respiration. The discussion will highlight the limitations of current soil respiration models based on partitioning soil organic matter in a finite number of pools of different degradability. In order to predict the sensitivity of soil respiration to anthropogenic pressures - including climate warming - it is crucial to relate the apparent degradability of soil organic matter to the geochemical and hydrological dynamics of the soil environment. Overall, there remains much scope for geochemists to help develop more robust, process-based, representations of soil respiration in global carbon models and climate predictions.

  4. Persistence of respirator use learning.

    PubMed

    Harber, Philip; Su, Jing; Hu, Cheng Cheng

    2014-01-01

    Although retraining and repeat fit-testing are needed for respirator users, the optimal frequency is uncertain. The persistence of proper respirator donning/doffing techniques and changes in quantitative fit factor over 6 months after initial training were measured in this study. Initial training was designed for rapid rollout situations in which direct contact with well-trained occupational health professionals may be infeasible. Subjects (n = 175) were assigned randomly to use either a filtering facepiece N95 (FFR) or dual cartridge half facemask (HFM) respirator. Each was assigned randomly to one of three training methods-printed brochure, video, or computer-based training. Soon after initial training, quantitative fit and measures of proper technique were determined. These measurements were repeated 6 months later. In the six-month followup, subjects were randomized to receive either a brief reminder card or a placebo card. Total performance score, major errors, and quantitative fit all became significantly worse at 6 months. An individual's result soon after training was the most important predictor of performance 6 months later. There was a marginal not statistically significant tendency for those initially trained by video to have better protection 6 months later. The study suggests that persons who use respirators intermittently should be thoroughly retrained and reevaluated periodically. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: Additional statistical analyses. PMID:24847912

  5. Physiologically anaerobic microorganisms of the deep subsurface. Progress report, June 1, 1990--May 30, 1991

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  6. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  7. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  8. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  9. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  10. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  11. Sensitivity of mitochondrial respiration to different inhibitors in Venturia inaequalis.

    PubMed

    Steinfeld, U; Sierotzki, H; Parisi, S; Poirey, S; Gisi, U

    2001-09-01

    The sensitivity of Venturia inaequalis field isolates to inhibitors of the cytochrome bc1 complex at the Qo site (QoIs) was characterised at the molecular, biochemical and physiological level, and compared to other respiration inhibitors. Comparison of a sensitive and a QoI-resistant isolate revealed very high resistance factors both in mycelium growth and spore germination assays. Cross-resistance was observed among QoIs such as trifloxystrobin, azoxystrobin, famoxadone, strobilurin B and myxothiazol. In the mycelium growth assay, antimycin A, an inhibitor of the cytochrome bc1 complex at the Qi site, was less active against the QoI-resistant than against the sensitive isolate. The mixture of QoIs with salicylhydroxamic acid (SHAM), an inhibitor of the alternative oxidase, exerted synergistic effects in the spore germination but not in the mycelium growth assay. Thus, the cytochrome and the alternative respiration pathways are assumed to play different roles, depending on the developmental stage of the fungus. Induction of alternative oxidase (AOX) by trifloxystrobin was observed in mycelium cells at the molecular level for the sensitive but not the resistant isolate. Following QoI treatment, respiration parameters such as oxygen consumption, ATP level, membrane potential and succinate dehydrogenase activity were only slightly reduced in Qo-resistant mycelium cells, and remained at much higher levels than in sensitive cells. In contrast, no difference was observed between sensitive and resistant isolates when NADH consumption was measured. Comparison of the cytochrome b (cyt b) gene of the sensitive and resistant isolates did not reveal any point mutations as is known to occur in resistant isolates of other plant pathogens. It is assumed that QoI resistance in V inaequalis may be based on a compensation of the energy deficiency following QoI application upstream of the NADH dehydrogenase of the respiratory chain. PMID:11561403

  12. The Source of Carbon for Root Respiration

    NASA Astrophysics Data System (ADS)

    Cisneros-Dozal, L.; Trumbore, S.; Zheng, S.

    2004-12-01

    In the Enriched Background Isotope Study (EBIS) that took advantage of a whole-ecosystem radiocarbon label that occurred in the temperate forest near Oak Ridge, Tennessee, we measured the radiocarbon signature of total soil respiration, heterotrophic respiration and root respiration, at different times during the last 3 growing seasons (2002-2004). By applying a mass balance approach, the relative and absolute contributions of heterotrophic and root respiration to total soil respiration were estimated. In contrast to heterotrophic respiration, root respiration seemed to be less affected by changes in soil moisture and temperature but rather showed a link to photosynthetic activity with a very similar pattern during the growing season as that of leaf area index. The radiocarbon signature of root respiration was very dynamic with low values in spring compared to the summer. The sources of variation can include changes in the local atmospheric signature and/or changes in the source of C being respired. Two different sites with different values and patterns of local atmospheric radiocarbon signature showed the same pattern in radiocarbon signatures of root respiration indicating that the source of variation was phenological. Low values during the spring could indicate the use of stored carbohydrates switching to more recent photosynthetic products as the summer progresses. As a first attempt to elucidate the source of C respired by roots, we will compare the radiocarbon content of starch, cellulose and soluble sugars in roots to that of bulk root material and root respired CO2. These radiocarbon signatures can help us identify the pool of C that is most likely being respired by roots during the growing season. A better understanding of the source of C for root respiration has implications for understanding the role of root respiration in C cycling in temperate forests, specifically the timescale over which carbon is fixed through photosynthesis and returned to the

  13. Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species.

    PubMed

    Boess, F; Ndikum-Moffor, F M; Boelsterli, U A; Roberts, S M

    2000-09-01

    Cocaine is capable of producing severe hepatocellular necrosis in laboratory animals and humans. The mechanism of cocaine hepatotoxicity is not well understood, but appears to result from the actions of one or more N-oxidative metabolites of cocaine. Mitochondria have been proposed as critical cellular targets for cocaine toxicity, and previous studies have found depressed mitochondrial respiration and increased mitochondrial generation of reactive oxygen species (ROS) in animals treated with cocaine. To examine the potential role of cocaine N-oxidative metabolites in these effects, mitochondrial respiration and ROS generation were examined in isolated mouse mitochondria treated with cocaine and its N-oxidative metabolites-norcocaine, N-hydroxynorcocaine, and norcocaine nitroxide. Cocaine, in concentrations of 0.25 or 0.5 mM, had no effect on state 3 respiration, state 4 respiration, respiratory control ratio (RCR), or ADP/O ratio. Norcocaine (0.5 mM) inhibited state 3 respiration, and N-hydroxynorcocaine (0.5 mM) inhibited both state 3 and state 4 respiration. Norcocaine nitroxide had the greatest effect on mitochondrial respiration; the lower concentration (0.25 mM) completely inhibited both state 3 and state 4 respiration. Preincubation of mitochondria with cocaine or metabolites increased the inhibitory effect of norcocaine and N-hydroxynorcocaine, but not cocaine. Cocaine, norcocaine, and N-hydroxynorcocaine (0.1 mM) had no effect on ROS generation during state 3 respiration, and cocaine and norcocaine decreased ROS generation under state 4 conditions. Norcocaine nitroxide interfered with the fluorescence ROS assay and could not be assessed. The results suggest that the effects of cocaine on mitochondrial respiration are due to its N-oxidative metabolites. Inhibition of mitochondrial respiration by the N-oxidative metabolites of cocaine may be the underlying cause for observed ATP depletion and subsequent cell death.

  14. The potential of anaerobic bacteria to degrade chlorinated compounds.

    PubMed

    van Eekert, M H; Schraa, G

    2001-01-01

    Chlorinated ethenes and chlorinated aromatics are often found as pollutants in sediments, groundwater, and wastewater. These compounds were long considered to be recalcitrant under anaerobic conditions. In the past years however, dechlorination of these compounds has been found to occur under anaerobic conditions at contaminated sites and in wastewater treatment systems. This dechlorination is mainly attributed to halo-respiring bacteria, which are able to couple this dechlorination to energy conservation via electron transport coupled phosphorylation. The dechlorinating activities of the halo-respiring bacteria seem to be confined to the dechlorination of chloroethenes and chlorinated aromatic compounds. In addition, methanogenic and acetogenic bacteria are also able to reduce the chlorinated ethenes via a-specific cometabolic pathways. Although these latter reactions may not be important in the remediation of contaminated sites, they may be of substantial influence in the start-up of remediation processes and in the application of granular sludge from UASB reactors. Specific halo-respiring bacteria may be used to increase the dechlorination activities via bioaugmentation in the case that the appropriate microorganisms are not present at the contaminated site or in the sludge.

  15. Anaerobic prosthetic joint infection.

    PubMed

    Shah, Neel B; Tande, Aaron J; Patel, Robin; Berbari, Elie F

    2015-12-01

    In an effort to improve mobility and alleviate pain from degenerative and connective tissue joint disease, an increasing number of individuals are undergoing prosthetic joint replacement in the United States. Joint replacement is a highly effective intervention, resulting in improved quality of life and increased independence [1]. By 2030, it is predicted that approximately 4 million total hip and knee arthroplasties will be performed yearly in the United States [2]. One of the major complications associated with this procedure is prosthetic joint infection (PJI), occurring at a rate of 1-2% [3-7]. In 2011, the Musculoskeletal Infectious Society created a unifying definition for prosthetic joint infection [8]. The following year, the Infectious Disease Society of America published practice guidelines that focused on the diagnosis and management of PJI. These guidelines focused on the management of commonly encountered organisms associated with PJI, including staphylococci, streptococci and select aerobic Gram-negative bacteria. However, with the exception of Propionibacterium acnes, management of other anaerobic organisms was not addressed in these guidelines [1]. Although making up approximately 3-6% of PJI [9,10], anaerobic microorganisms cause devastating complications, and similar to the more common organisms associated with PJI, these bacteria also result in significant morbidity, poor outcomes and increased health-care costs. Data on diagnosis and management of anaerobic PJI is mostly derived from case reports, along with a few cohort studies [3]. There is a paucity of published data outlining factors associated with risks, diagnosis and management of anaerobic PJI. We therefore reviewed available literature on anaerobic PJI by systematically searching the PubMed database, and collected data from secondary searches to determine information on pathogenesis, demographic data, clinical features, diagnosis and management. We focused our search on five commonly

  16. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries.

    PubMed

    Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V; Busija, David W

    2015-11-01

    Mitochondrial respiration has never been directly examined in intact cerebral arteries. We tested the hypothesis that mitochondrial energetics of large cerebral arteries ex vivo are sex dependent. The Seahorse XFe24 analyzer was used to examine mitochondrial respiration in isolated cerebral arteries from adult male and female Sprague-Dawley rats. We examined the role of nitric oxide (NO) on mitochondrial respiration under basal conditions, using N(ω)-nitro-l-arginine methyl ester, and following pharmacological challenge using diazoxide (DZ), and also determined levels of mitochondrial and nonmitochondrial proteins using Western blot, and vascular diameter responses to DZ. The components of mitochondrial respiration including basal respiration, ATP production, proton leak, maximal respiration, and spare respiratory capacity were elevated in females compared with males, but increased in both male and female arteries in the presence of the NOS inhibitor. Although acute DZ treatment had little effect on mitochondrial respiration of male arteries, it decreased the respiration in female arteries. Levels of mitochondrial proteins in Complexes I-V and the voltage-dependent anion channel protein were elevated in female compared with male cerebral arteries. The DZ-induced vasodilation was greater in females than in males. Our findings show that substantial sex differences in mitochondrial respiratory dynamics exist in large cerebral arteries and may provide the mechanistic basis for observations that the female cerebral vasculature is more adaptable after injury.

  17. Simulated workplace performance of N95 respirators.

    PubMed

    Coffey, C C; Campbell, D L; Zhuang, Z

    1999-01-01

    During July 1995 the National Institute for Occupational Safety and Health (NIOSH) began to certify nine new classes of particulate respirators. To determine the level of performance of these respirators, NIOSH researchers conducted a study to (1) measure the simulated workplace performance of 21 N95 respirator models, (2) determine whether fit-testing affected the performance, and (3) investigate the effect of varying fit-test pass/fail criteria on respirator performance. The performance of each respirator model was measured by conducting 100 total penetration tests. The performance of each respirator model was then estimated by determining the 95th percentile of the total penetration through the respirator (i.e., 95% of wearers of that respirator can expect to have a total penetration value below the 95th percentile penetration value). The 95th percentile of total penetrations for each respirator without fit-testing ranged from 6 to 88%. The 95th percentile of total penetrations for all the respirators combined was 33%, which exceeds the amount of total penetration (10%) normally expected of a half-mask respirator. When a surrogate fit test (1% criterion) was applied to the data, the 95th percentile of total penetrations for each respirator decreased to 1 to 16%. The 95th percentile of total penetrations for all the respirators combined was only 4%. Therefore, fit-testing of N95 respirators is necessary to ensure that the user receives the expected level of protection. The study also found that respirator performance was dependent on the value of the pass/fail criterion used in the surrogate fit-test. PMID:10529991

  18. Trimethylamine oxide respiration in Proteus sp. strain NTHC153: electron transfer-dependent phosphorylation and L-serine transport.

    PubMed Central

    Stenberg, E; Styrvold, O B; Strøm, A R

    1982-01-01

    Cells of Proteus sp. strains NTHC153 grown anaerobically with glucose and trimethylamine oxide (TMAO) were converted to spheroplasts by the penicillin method. The spheroplasts were lysed by osmotic shock, and the membrane vesicles were purified by sucrose gradient centrifugation. Vesicles energized electron transfer from formate to TMAO displayed active anaerobic transport of serine. An anaerobic cell-free extract of Proteus sp. disrupted in a French pressure cell reduced TMAO with formate and NADH with the concomitant formation of organic phosphate. The net P/2e- ratios determined were 0.1 and 0.3, respectively. The NADH- and TMAO-dependent phosphorylation was sensitive to uncouplers of oxidative phosphorylation (protonophores), and the formate- and TMAO-dependent serine transport was sensitive to ionophores and protonophores. We conclude that TMAO reduction in Proteus sp. fulfills the essential features of anaerobic respiration. PMID:6798018

  19. Anaerobic bacteraemia: a 10-year retrospective epidemiological survey.

    PubMed

    De Keukeleire, Steven; Wybo, Ingrid; Naessens, Anne; Echahidi, Fedoua; Van der Beken, Mieke; Vandoorslaer, Kristof; Vermeulen, Stefan; Piérard, Denis

    2016-06-01

    In order to identify current trends in anaerobic bacteraemia, a 10-year retrospective study was performed in the University Hospital Brussel, Belgium. All clinically relevant bacteraemia detected from 2004 until 2013 were included. Medical records were reviewed in an attempt to define clinical parameters that might be associated with the occurrence of anaerobic bacteraemia. 437 of the isolated organisms causing anaerobic bacteraemia were thawed, subcultured and reanalyzed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). There were an average of 33 cases of anaerobic bacteraemia per year during 2004-2008 compared to an average of 27 cases per year during 2009-2013 (P = 0.017), corresponding to a decrease by 19% between the first and the latter period. Also, the total number of cases of anaerobic bacteraemia per 100,000 patient days decreased from 17.3 in the period from 2004 to 2008 to 13.7 in the period 2009 to 2013 (P = 0.023). Additionally, the mean incidence of anaerobic bacteraemia decreased during the study period (1.27/1000 patients in 2004 vs. 0.94/1000 patients in 2013; P = 0.008). In contrast, the proportion of isolated anaerobic bacteraemia compared to the number of all bacteraemia remained stable at 5%. Bacteroides spp. and Parabacteroides spp. accounted for 47.1% of the anaerobes, followed by 14.4% Clostridium spp., 12.6% non-spore-forming Gram-positive rods, 10.5% anaerobic cocci, 8.2% Prevotella spp. and other Gram-negative rods and 7.1% Fusobacterium spp. The lower gastrointestinal tract (47%) and wound infections (10%) were the two most frequent sources for bacteraemia, with the origin remaining unknown in 62 cases (21%). The overall mortality rate was 14%. Further studies focusing on the antimicrobial susceptibility and demographic background of patients are needed to further objectify the currently observed trends.

  20. Are incidence and epidemiology of anaerobic bacteremia really changing?

    PubMed

    Vena, A; Muñoz, P; Alcalá, L; Fernandez-Cruz, A; Sanchez, C; Valerio, M; Bouza, E

    2015-08-01

    Incidence, prognosis and need of performing blood cultures for anaerobic bacteria are under debate, mainly due to the belief that the presence of anaerobes in blood can be easily suspected on clinical basis. We aimed to assess these three points in a retrospective analysis of a 10-year experience in our tertiary hospital. All episodes of significant anaerobic bacteremia diagnosed from 2003 to 2012 were included. Risk factors for mortality and clinical predictability of anaerobic bacteremia were evaluated in 113 randomly selected episodes. Overall incidence of anaerobic bacteremia was 1.2 episodes/1000 admissions, with no significant changes during the 10-year study period. B. fragilis group (38.1 %) and Clostridium spp. (13.7 %) were the most frequent isolated microorganisms. As for the clinical study, 43.4 % of the patients had a comorbidity classified as ultimately fatal or rapidly fatal according to the McCabe and Jackson scale. Clinical manifestations suggestive of anaerobic involvement were present in only 55 % of the patients. Twenty-eight patients (24.8 %) died during the hospitalization. Independent predictive factors of mortality were a high Charlson's comorbidity index and presentation with septic shock, whereas, an adequate source control of the infection was associated with a better outcome. In our centre, incidence of anaerobic bacteremia remained stable during the last decade. The routine use of anaerobic BCs seems to be adequate, since in about half of the cases anaerobes could not be suspected on clinical bases. Moreover, prompt source control of infection is essential in order to reduce mortality of patients with anaerobic bacteremia. PMID:26017663

  1. Are incidence and epidemiology of anaerobic bacteremia really changing?

    PubMed

    Vena, A; Muñoz, P; Alcalá, L; Fernandez-Cruz, A; Sanchez, C; Valerio, M; Bouza, E

    2015-08-01

    Incidence, prognosis and need of performing blood cultures for anaerobic bacteria are under debate, mainly due to the belief that the presence of anaerobes in blood can be easily suspected on clinical basis. We aimed to assess these three points in a retrospective analysis of a 10-year experience in our tertiary hospital. All episodes of significant anaerobic bacteremia diagnosed from 2003 to 2012 were included. Risk factors for mortality and clinical predictability of anaerobic bacteremia were evaluated in 113 randomly selected episodes. Overall incidence of anaerobic bacteremia was 1.2 episodes/1000 admissions, with no significant changes during the 10-year study period. B. fragilis group (38.1 %) and Clostridium spp. (13.7 %) were the most frequent isolated microorganisms. As for the clinical study, 43.4 % of the patients had a comorbidity classified as ultimately fatal or rapidly fatal according to the McCabe and Jackson scale. Clinical manifestations suggestive of anaerobic involvement were present in only 55 % of the patients. Twenty-eight patients (24.8 %) died during the hospitalization. Independent predictive factors of mortality were a high Charlson's comorbidity index and presentation with septic shock, whereas, an adequate source control of the infection was associated with a better outcome. In our centre, incidence of anaerobic bacteremia remained stable during the last decade. The routine use of anaerobic BCs seems to be adequate, since in about half of the cases anaerobes could not be suspected on clinical bases. Moreover, prompt source control of infection is essential in order to reduce mortality of patients with anaerobic bacteremia.

  2. Clinical evaluation of the RapID-ANA II panel for identification of anaerobic bacteria.

    PubMed

    Celig, D M; Schreckenberger, P C

    1991-03-01

    The accuracy of the RapID-ANA II system (Innovative Diagnostic Systems, Inc., Atlanta, Ga.) was evaluated by comparing the results obtained with that system with results obtained by the methods described by the Virginia Polytechnic Institute and State University. Three hundred anaerobic bacteria were tested, including 259 clinical isolates and 41 stock strains of anaerobic microorganisms representing 16 genera and 48 species. When identifications to the genus level only were included, 96% of the anaerobic gram-negative bacilli, 94% of the Clostridium species, 83% of the anaerobic, nonsporeforming, gram-positive bacilli, and 97% of the anaerobic cocci were correctly identified. When correct identifications to the genus and species levels were compared, 86% of 152 anaerobic gram-negative bacilli, 76% of 34 Clostridium species, 81% of 41 anaerobic, nonsporeforming, gram-positive bacilli, and 97% of 73 anaerobic cocci were correctly identified. Eight isolates (3%) produced inadequate identification in which the correct identification was listed with one or two other possible choices and extra tests were required for separation. A total of 9 isolates (3%) were misidentified by the RapID-ANA II panel. Overall, the system was able to correctly identify 94% of all the isolates to the genus level and 87% of the isolates to the species level in 4 h by using aerobic incubation.

  3. Anaerobic Biotransformation and Mobility of Pu and PuEDTA

    SciTech Connect

    Xun, Luying

    2005-06-01

    Although our goal is to isolate anaerobic EDTA degraders, we initiated the experiments to include nitrilotriacetate (NTA), which is a structure homologue of EDTA. All the aerobic EDTA degraders can degrade NTA, but the isolated NTA degraders cannot degrade EDTA. Since NTA is a simpler structure homologue, it is likely that EDTA-degrading ability is evolved from NTA degradation. This hypothesis is further supported from our characterization of EDTA and NTA-degrading enzymes and genes (J. Bact. 179:1112-1116; and Appl. Environ. Microbiol. 67:688-695). The EDTA monooxygenase and NTA monooxygenase are highly homologous. EDTA monooxygenase can use both EDTA and NTA as substrates, but NTA monooxygenase can only use NTA as a substrate. Thus, we put our effort to isolate both NTA and EDTA degraders. In case, an anaerobic EDTA degrader is not immediately enriched, we will try to evolve the NTA degraders to use EDTA. Both aerobic and anaerobic enrichment cultures were set.

  4. Developments of anaerobic treatment

    SciTech Connect

    Roy, D.; Jones, L.M.

    1984-01-01

    Two modifications of anaerobic fermentation of biomass were studied: separation of acid and CH4 phases of the anaerobic process used in CH4 production from the biomass and the use of attached growth methanogenesis. A continuously stirred tank reactor (CSTR) was used for the acid phase. Effluent from the acid reactor was fed simultaneously to a conventional CSTR and an anaerobic rotating biological contactor (ARBC) operating in parallel for the CH4 phase. The temperature of all the reactors was 35 plus or minus 1 degree, the pH of the acid phase was 4.3, and the CH4 phase was studied at pH 7.5. The retention time for the acid phase CSTR was 4.5 h, and that for the ARBC and CSTR in the CH4 phase was 36 h.

  5. Anaerobic transformations and bioremediation of chlorinated solvents.

    PubMed

    Ferguson, J F; Pietari, J M

    2000-02-01

    . Reductive dechlorination of PCE and TCE has been studied in many laboratories. Studies with mixed anaerobic consortia and with several dehalogenating bacteria, including strain 195 (. Isolation of a bacterium that reductively dechlorinates tetrachloroethane to ethane. Science 276, 1568-1571) that transforms PCE to ethene, have demonstrated that reductive dechlorination supports growth of the novel bacteria that carry out the reactions. Hydrogen has been shown to be an electron donor for the bacterial dehalogenation reactions, and kinetic and thermodynamic considerations indicate that dehalogenators can compete in some, but not all, anaerobic environments, pointing to applications of in situ bioremediation and to its limitations. Selected field studies of anaerobic transformations help delineate the applications of this type of bioremediation.

  6. Hemicellulases from anaerobic thermophiles. Progress report

    SciTech Connect

    Wiegel, J.

    1994-05-01

    The longterm goal of this research effort is to obtain an anaerobic thermophilic bacterium that efficiently converts various hemicellulose-containing biomass to ethanol over a broad pH range. The strategy is to modify the outfit and regulation of the rate-limiting xylanases, glycosidases and xylan esterases in the ethanologenic, anaerobic thermophile Thermoanaerobacter ethanolicus, which grows between pH 4.5 and 9.5. Although it utilizes xylans, the xylanase, acetyl(xylan) esterase and O-methylglucuronidase activities in T. ethanolicus are barely measurable and regarded as the rate limiting steps in its xylan utilization. Thus, and also due to the presently limited knowledge of hemicellulases in anaerobic thermophiles, we characterize the hemicellulolytic enzymes from this and other anaerobic thermophiles as enzyme donors. Beside the active xylosidase/arabinosidase from T. ethanolicus, exhibiting the two different activities, we characterized 2 xylosidases, two acetyl(xylan) esterases, and an O-methylglucuronidase from Thermoanaerobacterium spec. We will continue with the characterization of xylanases from novel isolated slightly acidophilic, neutrophilic and slightly alkalophilic thermophiles. We have cloned, subcloned and partially sequenced the 165,000 Da (2 x 85,000) xylosidase/arabinosidase from T. ethanolicus and started with the cloning of the esterases from Thermoanaerobacterium spec. Consequently, we will develop a shuttle vector and continue to apply electroporation of autoplasts as a method for cloning into T. ethanolicus.

  7. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph

    PubMed Central

    Harrold, Zoë R.; Skidmore, Mark L.; Hamilton, Trinity L.; Desch, Libby; Amada, Kirina; van Gelder, Will; Glover, Kevin; Roden, Eric E.

    2015-01-01

    Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O32−), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O32− that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO42−) several orders of magnitude higher than those of S2O32−. Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O32−, CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O32− as the electron donor was lower at 5.1°C than 14.4°C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O32−-oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O32− by RG5-like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment. PMID:26712544

  8. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph.

    PubMed

    Harrold, Zoë R; Skidmore, Mark L; Hamilton, Trinity L; Desch, Libby; Amada, Kirina; van Gelder, Will; Glover, Kevin; Roden, Eric E; Boyd, Eric S

    2016-03-01

    Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O3 (2-)), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O3 (2-) that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO4 (2-)) several orders of magnitude higher than those of S2O3 (2-). Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O3 (2-), CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O3 (2-) as the electron donor was lower at 5.1°C than 14.4°C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O3 (2-)-oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O3 (2-) by RG5-like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment. PMID:26712544

  9. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph.

    PubMed

    Harrold, Zoë R; Skidmore, Mark L; Hamilton, Trinity L; Desch, Libby; Amada, Kirina; van Gelder, Will; Glover, Kevin; Roden, Eric E; Boyd, Eric S

    2015-12-28

    Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O3 (2-)), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O3 (2-) that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO4 (2-)) several orders of magnitude higher than those of S2O3 (2-). Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O3 (2-), CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O3 (2-) as the electron donor was lower at 5.1°C than 14.4°C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O3 (2-)-oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O3 (2-) by RG5-like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment.

  10. Impact of Anodic Respiration on Biopolymer Production and Consequent Membrane Fouling.

    PubMed

    Ishizaki, So; Terada, Kotaro; Miyake, Hiroshi; Okabe, Satoshi

    2016-09-01

    Microbial fuel cells (MFCs) have recently been integrated with membrane bioreactors (MBRs) for wastewater treatment and energy recovery. However, the impact of integration of the two reactors on membrane fouling of MBR has not been reported yet. In this study, MFCs equipped with different external resistances (1-10 000 ohm) were operated, and membrane-fouling potentials of the MFC anode effluents were directly measured to study the impact of anodic respiration by exoelectrogens on membrane fouling. It was found that although the COD removal efficiency was comparable, the fouling potential was significantly reduced due to less production of biopolymer (a major foulant) in MFCs equipped with lower external resistance (i.e., with higher current generation) as compared with aerobic respiration. Furthermore, it was confirmed that Geobacter sulfurreducens strain PCA, a dominant exoelectrogen in anode biofilms of MFCs in this study, produced less biopolymer under anodic respiration condition than fumarate (anaerobic) respiration condition, resulting in lower membrane-fouling potential. Taken together, anodic respiration can mitigate membrane fouling of MBR due to lower biopolymer production, suggesting that development of an electrode-assisted MBR (e-MBR) without aeration is feasible.

  11. Impact of Anodic Respiration on Biopolymer Production and Consequent Membrane Fouling.

    PubMed

    Ishizaki, So; Terada, Kotaro; Miyake, Hiroshi; Okabe, Satoshi

    2016-09-01

    Microbial fuel cells (MFCs) have recently been integrated with membrane bioreactors (MBRs) for wastewater treatment and energy recovery. However, the impact of integration of the two reactors on membrane fouling of MBR has not been reported yet. In this study, MFCs equipped with different external resistances (1-10 000 ohm) were operated, and membrane-fouling potentials of the MFC anode effluents were directly measured to study the impact of anodic respiration by exoelectrogens on membrane fouling. It was found that although the COD removal efficiency was comparable, the fouling potential was significantly reduced due to less production of biopolymer (a major foulant) in MFCs equipped with lower external resistance (i.e., with higher current generation) as compared with aerobic respiration. Furthermore, it was confirmed that Geobacter sulfurreducens strain PCA, a dominant exoelectrogen in anode biofilms of MFCs in this study, produced less biopolymer under anodic respiration condition than fumarate (anaerobic) respiration condition, resulting in lower membrane-fouling potential. Taken together, anodic respiration can mitigate membrane fouling of MBR due to lower biopolymer production, suggesting that development of an electrode-assisted MBR (e-MBR) without aeration is feasible. PMID:27427998

  12. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; DeVincenzi, D. L. (Principal Investigator)

    1989-01-01

    Compilations have been made of sulfate reduction rates and oxic respiration rates over the entire range of marine sedimentation rates, and sedimentary environments, including several euxinic sites. These data show, consistent with the findings of Jorgensen (1982, Nature, 296, 643-645), that sulfate reduction and oxic respiration oxidize equal amounts of organic carbon in nearshore sediments. As sedimentation rates decrease, oxic respiration, becomes progressively more important, and in deep-sea sediments 100-1000 times more organic carbon is oxidized by oxic respiration than by sulfate reduction. By contrast, nearly as much organic carbon is oxidized by sulfate reduction in euxinic sediments as is oxidized by the sum of sulfate reduction and oxic respiration in normal marine sediments of similar deposition rate. This observation appears at odds with the enhanced preservation of organic carbon observed in euxinic sediments. However, only small reductions in (depth-integrated) organic carbon decomposition rates (compared to normal marine) are required to give both high organic carbon concentrations and enhanced carbon preservation in euxinic sediments. Lower rates of organic carbon decomposition (if only by subtle amounts) are explained by the diminished ability of anaerobic bacteria to oxidize the full suite of sedimentary organic compounds.

  13. Anaerobic bacteria in otitis media.

    PubMed

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  14. Anaerobes in biofilm-based healthcare-associated infections.

    PubMed

    Vuotto, Claudia; Donelli, Gianfranco

    2015-01-01

    Anaerobic bacteria can cause an infection when they encounter a permissive environment within the host. These opportunistic pathogens are seldom recovered as single isolates but more frequently are involved in polymicrobial infections, together with other anaerobes or aerobes. Nowadays it's known that some anaerobic bacteria are also able to grow as biofilm even if this feature and its role in the healthcare-associated infections (HAIs) are still poorly characterized. As consequence, the involvement of biofilm-forming anaerobic bacteria in infections related to healthcare procedures, including surgery and medical devices implantation, is underestimated.The current knowledge on the role of biofilm-growing anaerobes in HAIs has been here reviewed, with particular reference to respiratory, intestinal, intra-abdominal, wound, and urogenital tract infections. Even if the data are still scarce, the ability to form biofilm of opportunistic anaerobic species and their possible role as causative agents of HAIs should alert even more clinicians and microbiologists on the need to search for anaerobes in clinical samples when their presence can be reasonably assumed.

  15. Laboratory survey and literature review of anaerobic bacteriology: foundations of a clinically orientated and evidence-based workup for anaerobic cultures.

    PubMed

    Peeters, Bart; Magerman, Koen; Waumans, Luc; Cartuyvels, Reinoud

    2016-09-01

    Since the introduction of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in routine microbiology laboratories, identification of anaerobic bacteria has become easier. These increased possibilities provide new challenges concerning analytical workup and reporting of anaerobes. In February 2015, an extensive web-based survey on pre-analytical, analytical and post-analytical procedures of anaerobic microbiology was sent to 53 Belgian, university and non-university hospital laboratories. Answers of 34 participating laboratories revealed a huge diversity in all analytical stages of anaerobic microbiology. Whether or not colony types were identified was mainly based on anatomical origin of the sample, colony morphology, and total number of different anaerobic isolates in the sample, while reporting of isolate results and performing anti-microbial susceptibility testing was mainly based on anatomical origin of the sample, number of different anaerobic isolates, and the identification of the anaerobic bacteria. These variety of workup procedures were mainly expert-based and have not been extensively clinically validated. For this reason, a standardized, clinically orientated, and feasible procedure for the workup of anaerobic cultures was developed, using MALDI-TOF MS identification, based upon literature data and existing guidelines.

  16. Laboratory survey and literature review of anaerobic bacteriology: foundations of a clinically orientated and evidence-based workup for anaerobic cultures.

    PubMed

    Peeters, Bart; Magerman, Koen; Waumans, Luc; Cartuyvels, Reinoud

    2016-09-01

    Since the introduction of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in routine microbiology laboratories, identification of anaerobic bacteria has become easier. These increased possibilities provide new challenges concerning analytical workup and reporting of anaerobes. In February 2015, an extensive web-based survey on pre-analytical, analytical and post-analytical procedures of anaerobic microbiology was sent to 53 Belgian, university and non-university hospital laboratories. Answers of 34 participating laboratories revealed a huge diversity in all analytical stages of anaerobic microbiology. Whether or not colony types were identified was mainly based on anatomical origin of the sample, colony morphology, and total number of different anaerobic isolates in the sample, while reporting of isolate results and performing anti-microbial susceptibility testing was mainly based on anatomical origin of the sample, number of different anaerobic isolates, and the identification of the anaerobic bacteria. These variety of workup procedures were mainly expert-based and have not been extensively clinically validated. For this reason, a standardized, clinically orientated, and feasible procedure for the workup of anaerobic cultures was developed, using MALDI-TOF MS identification, based upon literature data and existing guidelines. PMID:27344540

  17. Diatoms respire nitrate to survive dark and anoxic conditions

    PubMed Central

    Kamp, Anja; de Beer, Dirk; Nitsch, Jana L.; Lavik, Gaute; Stief, Peter

    2011-01-01

    Diatoms survive in dark, anoxic sediment layers for months to decades. Our investigation reveals a correlation between the dark survival potential of marine diatoms and their ability to accumulate NO3− intracellularly. Axenic strains of benthic and pelagic diatoms that stored 11–274 mM NO3− in their cells survived for 6–28 wk. After sudden shifts to dark, anoxic conditions, the benthic diatom Amphora coffeaeformis consumed 84–87% of its intracellular NO3− pool within 1 d. A stable-isotope labeling experiment proved that 15NO3− consumption was accompanied by the production and release of 15NH4+, indicating dissimilatory nitrate reduction to ammonium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dissimilatory nitrate reduction pathway used by a eukaryotic phototroph. Similar to large sulfur bacteria and benthic foraminifera, diatoms may respire intracellular NO3− in sediment layers without O2 and NO3−. The rapid depletion of the intracellular NO3− storage, however, implies that diatoms use DNRA to enter a resting stage for long-term survival. Assuming that pelagic diatoms are also capable of DNRA, senescing diatoms that sink through oxygen-deficient water layers may be a significant NH4+ source for anammox, the prevalent nitrogen loss pathway of oceanic oxygen minimum zones. PMID:21402908

  18. Effect of Rocking Movements on Respiration

    PubMed Central

    Omlin, Ximena; Crivelli, Francesco; Heinicke, Lorenz; Zaunseder, Sebastian; Achermann, Peter; Riener, Robert

    2016-01-01

    For centuries, rocking has been used to promote sleep in babies or toddlers. Recent research suggested that relaxation could play a role in facilitating the transition from waking to sleep during rocking. Breathing techniques are often used to promote relaxation. However, studies investigating head motions and body rotations showed that vestibular stimulation might elicit a vestibulo-respiratory response, leading to an increase in respiration frequency. An increase in respiration frequency would not be considered to promote relaxation in the first place. On the other hand, a coordination of respiration to rhythmic vestibular stimulation has been observed. Therefore, this study aimed to investigate the effect of different movement frequencies and amplitudes on respiration frequency. Furthermore, we tested whether subjects adapt their respiration to movement frequencies below their spontaneous respiration frequency at rest, which could be beneficial for relaxation. Twenty-one healthy subjects (24–42 years, 12 males) were investigated using an actuated bed, moving along a lateral translation. Following movement frequencies were applied: +30%, +15%, -15%, and -30% of subjects’ rest respiration frequency during baseline (no movement). Furthermore, two different movement amplitudes were tested (Amplitudes: 15 cm, 7.5 cm; movement frequency: 0.3 Hz). In addition, five subjects (25–28 years, 2 males) were stimulated with their individual rest respiration frequency. Rocking movements along a lateral translation caused a vestibulo-respiratory adaptation leading to an increase in respiration frequency. The increase was independent of the applied movement frequencies or amplitudes but did not occur when stimulating with subjects’ rest respiration frequency. Furthermore, no synchronization of the respiration frequency to the movement frequency was observed. In particular, subjects did not lower their respiration frequency below their resting frequency. Hence, it was not

  19. Anaerobic thermophilic culture system

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

  20. The anaerobic digestion process

    SciTech Connect

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  1. Anaerobic Chemolithotrophic Growth of the Haloalkaliphilic Bacterium Strain MLMS-1 by Disproportionation of Monothioarsenate.

    PubMed

    Planer-Friedrich, B; Härtig, C; Lohmayer, R; Suess, E; McCann, S H; Oremland, R

    2015-06-01

    A novel chemolithotrophic metabolism based on a mixed arsenic-sulfur species has been discovered for the anaerobic deltaproteobacterium, strain MLMS-1, a haloalkaliphile isolated from Mono Lake, California, U.S. Strain MLMS-1 is the first reported obligate arsenate-respiring chemoautotroph which grows by coupling arsenate reduction to arsenite with the oxidation of sulfide to sulfate. In that pathway the formation of a mixed arsenic-sulfur species was reported. That species was assumed to be monothioarsenite ([H2As(III)S(-II)O2](-)), formed as an intermediate by abiotic reaction of arsenite with sulfide. We now report that this species is monothioarsenate ([HAs(V)S(-II)O3](2-)) as revealed by X-ray absorption spectroscopy. Monothioarsenate forms by abiotic reaction of arsenite with zerovalent sulfur. Monothioarsenate is kinetically stable under a wide range of pH and redox conditions. However, it was metabolized rapidly by strain MLMS-1 when incubated with arsenate. Incubations using monothioarsenate confirmed that strain MLMS-1 was able to grow (μ = 0.017 h(-1)) on this substrate via a disproportionation reaction by oxidizing the thio-group-sulfur (S(-II)) to zerovalent sulfur or sulfate while concurrently reducing the central arsenic atom (As(V)) to arsenite. Monothioarsenate disproportionation could be widespread in nature beyond the already studied arsenic and sulfide rich hot springs and soda lakes where it was discovered.

  2. Anaerobic chemolithotrophic growth of the haloalkaliphilic bacterium strain MLMS‑1 by disproportionation of monothioarsenate

    USGS Publications Warehouse

    Planer-Friedrich, B.; Hartig, C.; Lohmayer, R.; Suess, E.; McCann, Shelley; Oremland, Ronald S.

    2015-01-01

    A novel chemolithotrophic metabolism based on a mixed arsenic−sulfur species has been discovered for the anaerobic deltaproteobacterium, strain MLMS-1, a haloalkaliphile isolated from Mono Lake, California, U.S. Strain MLMS‑1 is the first reported obligate arsenate-respiring chemoautotroph which grows by coupling arsenate reduction to arsenite with the oxidation of sulfide to sulfate. In that pathway the formation of a mixed arsenic−sulfur species was reported. That species was assumed to be monothioarsenite ([H2AsIIIS−IIO2] −), formed as an intermediate by abiotic reaction of arsenite with sulfide. We now report that this species is monothioarsenate ([HAsVS−IIO3] 2−) as revealed by X-ray absorption spectroscopy. Monothioarsenate forms by abiotic reaction of arsenite with zerovalent sulfur. Monothioarsenate is kinetically stable under a wide range of pH and redox conditions. However, it was metabolized rapidly by strain MLMS-1 when incubated with arsenate. Incubations using monothioarsenate confirmed that strain MLMS-1 was able to grow (μ = 0.017 h−1 ) on this substrate via a disproportionation reaction by oxidizing the thio-group-sulfur (S−II) to zerovalent sulfur or sulfate while concurrently reducing the central arsenic atom (AsV) to arsenite. Monothioarsenate disproportionation could be widespread in nature beyond the already studied arsenic and sulfide rich hot springs and soda lakes where it was discovered.

  3. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes.

    PubMed

    Miller, Laurence G; Oremland, Ronald S

    2008-11-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress.

  4. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  5. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    PubMed Central

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. PMID:26887229

  6. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor.

    PubMed

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. PMID:26887229

  7. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration.

    PubMed

    Fišar, Z; Hroudová, J

    2016-01-01

    Oxidative phosphorylation is a key process of intracellular energy transfer by which mitochondria produce ATP. Isolated mitochondria serve as a biological model for understanding the mitochondrial respiration control, effects of various biologically active substances, and pathophysiology of mitochondrial diseases. The aim of our study was to evaluate pig brain mitochondria as a proper biological model for investigation of activity of the mitochondrial electron transport chain. Oxygen consumption rates of isolated pig brain mitochondria were measured using high-resolution respirometry. Mitochondrial respiration of crude mitochondrial fraction, mitochondria purified in sucrose gradient, and mitochondria purified in Percoll gradient were assayed as a function of storage time. Oxygen flux and various mitochondrial respiratory control ratios were not changed within two days of mitochondria storage on ice. Leak respiration was found higher and Complex I-linked respiration lower in purified mitochondria compared to the crude mitochondrial fraction. Damage to both outer and inner mitochondrial membrane caused by the isolation procedure was the greatest after purification in a sucrose gradient. We confirmed that pig brain mitochondria can serve as a biological model for investigation of mitochondrial respiration. The advantage of this biological model is the stability of respiratory parameters for more than 48 h and the possibility to isolate large amounts of mitochondria from specific brain areas without the need to kill laboratory animals. We suggest the use of high-resolution respirometry of pig brain mitochondria for research of the neuroprotective effects and/or mitochondrial toxicity of new medical drugs.

  8. The role of p38 in mitochondrial respiration in male and female mice.

    PubMed

    Ju, Xiaohua; Wen, Yi; Metzger, Daniel; Jung, Marianna

    2013-06-01

    p38 is a mitogen-activated protein kinase and mediates cell growth, cell differentiation, and synaptic plasticity. The aim of this study is to determine the extent to which p38 plays a role in maintaining mitochondrial respiration in male and female mice under a normal condition. To achieve this aim, we have generated transgenic mice that lack p38 in cerebellar Purkinje neurons by crossing Pcp2 (Purkinje cell protein 2)-Cre mice with p38(loxP/loxP) mice. Mitochondria from cerebellum were then isolated from the transgenic and wild-type mice to measure mitochondrial respiration using XF24 respirometer. The mRNA and protein expression of cytochrome c oxidase (COX) in cerebellum were also measured using RT-PCR and immunoblot methods. Separately, HT22 cells were used to determine the involvement of 17β-estradiol (E2) and COX in mitochondrial respiration. The genetic knockout of p38 in Purkinje neurons suppressed the mitochondrial respiration only in male mice and increased COX expression only in female mice. The inhibition of COX by sodium azide (SA) sharply suppressed mitochondrial respiration of HT22 cells in a manner that was protected by E2. These data suggest that p38 is required for the mitochondrial respiration of male mice. When p38 is below a normal level, females may maintain mitochondrial respiration through COX up-regulation.

  9. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration.

    PubMed

    Wang, Xin; Liu, Lingli; Piao, Shilong; Janssens, Ivan A; Tang, Jianwu; Liu, Weixing; Chi, Yonggang; Wang, Jing; Xu, Shan

    2014-10-01

    Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta-analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming-induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long-term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming-induced soil hydrological changes when modeling soil respiration under climate change.

  10. Aerobic Microbial Respiration in Oceanic Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Schunck, Harald; Loescher, Carolin; Desai, Dhwani K.; LaRoche, Julie; Schmitz-Streit, Ruth; Kuypers, Marcel M. M.

    2014-05-01

    In the oxygen minimum zones (OMZs) of the tropical oceans, sluggish ventilation combined with strong microbial respiration of sinking organic matter results in the depletion of oxygen (O2). When O2 concentrations drop below ~5 µmol/L, organic matter is generally assumed to be respired with nitrate, ultimately leading to the loss of fixed inorganic nitrogen via anammox and denitrification. However, direct measurements of microbial O2 consumption at low O2 levels are - apart from a single experiment conducted in the OMZ off Peru - so far lacking. At the same time, consistently observed active aerobic ammonium and nitrite oxidation at non-detectable O2 concentrations (<1 µmol/L) in all major OMZs, suggests aerobic microorganisms, likely including heterotrophs, to be well adapted to near-anoxic conditions. Consequently, microaerobic (≤5 µmol/L) remineralization of organic matter, and thus release of ammonium, in low- O2 environments might be significantly underestimated at present. Here we present extensive measurements of microbial O2 consumption in OMZ waters, combined with highly sensitive O2 (STOX) measurements and meta-omic functional gene analyses. Short-term incubation experiments with labelled O2 (18-18O2) carried out in the Namibian and Peruvian OMZ, revealed persistent aerobic microbial activity at depths with non-detectable concentrations of O2 (≤50 nmol/L). In accordance, examination of metagenomes and metatranscriptomes from Chilean and Peruvian OMZ waters identified genes encoding for terminal respiratory oxidases with high O2 affinities as well as their expression by diverse microbial communities. Oxygen consumption was particularly enhanced near the upper OMZ boundaries and could mostly (~80%) be assigned to heterotrophic microbial activity. Compared to previously identified anaerobic microbial processes, microaerobic organic matter respiration was the dominant remineralization pathway and source of ammonium (~90%) in the upper Namibian and

  11. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    NASA Astrophysics Data System (ADS)

    Bannert, A.; Bogen, C.; Esperschütz, J.; Koubová, A.; Buegger, F.; Fischer, D.; Radl, V.; Fuß, R.; Chroňáková, A.; Elhottová, D.; Šimek, M.; Schloter, M.

    2012-04-01

    While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle-overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labeled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were found in Gram-negative microorganisms and anaerobes. The fact that these lipids are also typical for type I methanotrophs, known as aerobic methane oxidizers, might indicate a link between aerobic and anaerobic methane oxidation.

  12. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    NASA Astrophysics Data System (ADS)

    Bannert, A.; Bogen, C.; Esperschütz, J.; Koubová, A.; Buegger, F.; Fischer, D.; Radl, V.; Fuß, R.; Chroňáková, A.; Elhottová, D.; Šimek, M.; Schloter, M.

    2012-10-01

    While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006) after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.

  13. Meclizine inhibits mitochondrial respiration through direct targeting of cytosolic phosphoethanolamine metabolism.

    PubMed

    Gohil, Vishal M; Zhu, Lin; Baker, Charli D; Cracan, Valentin; Yaseen, Abbas; Jain, Mohit; Clish, Clary B; Brookes, Paul S; Bakovic, Marica; Mootha, Vamsi K

    2013-12-01

    We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism. PMID:24142790

  14. Meclizine Inhibits Mitochondrial Respiration through Direct Targeting of Cytosolic Phosphoethanolamine Metabolism*

    PubMed Central

    Gohil, Vishal M.; Zhu, Lin; Baker, Charli D.; Cracan, Valentin; Yaseen, Abbas; Jain, Mohit; Clish, Clary B.; Brookes, Paul S.; Bakovic, Marica; Mootha, Vamsi K.

    2013-01-01

    We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism. PMID:24142790

  15. Meclizine inhibits mitochondrial respiration through direct targeting of cytosolic phosphoethanolamine metabolism.

    PubMed

    Gohil, Vishal M; Zhu, Lin; Baker, Charli D; Cracan, Valentin; Yaseen, Abbas; Jain, Mohit; Clish, Clary B; Brookes, Paul S; Bakovic, Marica; Mootha, Vamsi K

    2013-12-01

    We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism.

  16. Respirator selection for clandestine methamphetamine laboratory investigation.

    PubMed

    Nelson, Gary O; Bronder, Gregory D; Larson, Scott A; Parker, Jay A; Metzler, Richard W

    2012-01-01

    First responders to illicit drug labs may not always have SCBA protection available. Air-purifying respirators using organic vapor cartridges with P-100 filters may not be sufficient. It would be better to use a NIOSH-approved CBRN respirator with its required multi-purpose cartridge system, which includes a P-100 filter. This would remove all the primary drug lab contaminants—organic vapors, acid gases, ammonia, phosphine, iodine, and airborne meth particulates. To assure the proper selection and use of a respirator, it is recommended that the contaminants present be identified and quantified and the OSHA 29 CFR 1910.134 respirator protection program requirements followed. PMID:22571884

  17. Respirator protection factors: Part II-protection factors of supplied-air respirators.

    PubMed

    Hack, A L; Bradley, O D; Trujillo, A

    1980-05-01

    Protection Factors provided by 25 NIOSH approved supplied-air respirators were determined while the devices were worn by a panel of test subjects anthropometrically selected to represent adult facial sizes. Polydispersed DOP aerosol was used for respirator fit tests on continuous flow, demand, and pressure-demand respirators. Based on facepiece leakage measurements it appears that demand-type respirators should neither be used nor approved. The highest level of protection was provided by pressure-demand devices.

  18. Perspectives on the microbial carbon pump with special reference to microbial respiration and ecosystem efficiency in large estuarine systems

    NASA Astrophysics Data System (ADS)

    Dang, H.; Jiao, N.

    2014-07-01

    Although respiration-based oxidation of reduced carbon releases CO2 into the environment, it provides an ecosystem with the metabolic energy for essential biogeochemical processes, including the newly proposed microbial carbon pump (MCP). The efficiency of MCP in heterotrophic microorganisms is related to the mechanisms of energy transduction employed and hence is related to the form of respiration utilized. Anaerobic organisms typically have lower efficiencies of energy transduction and hence lower efficiencies of energy-dependent carbon transformation. This leads to a lower MCP efficiency on a per-cell basis. Substantial input of terrigenous nutrients and organic matter into estuarine ecosystems typically results in elevated heterotrophic respiration that rapidly consumes dissolved oxygen, potentially producing hypoxic and anoxic zones in the water column. The lowered availability of dissolved oxygen and the excessive supply of nutrients such as nitrate from river discharge lead to enhanced anaerobic respiration processes such as denitrification and dissimilatory nitrate reduction to ammonium. Thus, some nutrients may be consumed through anaerobic heterotrophs, instead of being utilized by phytoplankton for autotrophic carbon fixation. In this manner, eutrophied estuarine ecosystems become largely fueled by anaerobic respiratory pathways and their efficiency is less due to lowered ecosystem productivity when compared to healthy and balanced estuarine ecosystems. This situation may have a negative impact on the ecological function and efficiency of the MCP which depends on the supply of both organic carbon and metabolic energy. This review presents our current understanding of the MCP mechanisms from the view point of ecosystem energy transduction efficiency, which has not been discussed in previous literature.

  19. Biological isolation garment

    NASA Technical Reports Server (NTRS)

    Spross, F. R.

    1968-01-01

    Biological Isolation Garment /BIG/ is a one-piece loose fitting garment fabricated from a tightly woven, permeable, 100 percent-cotton fabric. Its headpiece, incorporates an integral oronsal respirator with 0.3-micron-particle filters, and a full width visor. All fabrication seams are sealed on the inside of the garment.

  20. Anaerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Roopathy, R.

    1995-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used aerobic tempts to degrade nitroaromatics under aerobic microorganisms. In many cases attempts to degrade nitroaromatics under aerobic conditions results in no mineralization and only superficial modifications of the structure. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. Trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitrate from trinitrotoluene is achieved by a series of reductive reactions with the production of ammonia and toluene by Desulfovibrio sp. (B strain). Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. This presentation will review the data supporting the anaerobic transformation of TNT and other nitroaromatics.

  1. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped... commercial designation of the respirator it contains and all appropriate approval labels....

  2. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all completely assembled respirators which are designed for use as respiratory protection during entry into...

  3. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped... commercial designation of the respirator it contains, and all appropriate approval labels....

  4. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all completely assembled respirators which are designed for use as respiratory protection during entry into...

  5. Early anaerobic metabolisms

    PubMed Central

    Canfield, Don E; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8 Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle. PMID:17008221

  6. Anaerobic Biotransformation and Mobility of Pu and PuEDTA

    SciTech Connect

    Xun, Luying

    2005-06-01

    The objective of this report is to isolate anaerobic EDTA-degrading bacteria. Although our goal is to isolate anaerobic EDTA degraders, we initiated the experiments to include nitrilotriacetate (NTA), which is a structure homologue of EDTA. All the aerobic EDTA degraders can degrade NTA, but the isolated NTA degraders cannot degrade EDTA. Since NTA is a simpler structure homologue, it is likely that EDTA-degrading ability is evolved from NTA degradation. This hypothesis is further supported from our characterization of EDTA and NTA-degrading enzymes and genes (J. Bact. 179:1112-1116; and Appl. Environ. Microbiol. 67:688-695). The EDTA monooxygenase and NTA monooxygenase are highly homologous. EDTA monooxygenase can use both EDTA and NTA as substrates, but NTA monooxygenase can only use NTA as a substrate. Thus, we put our effort to isolate both NTA and EDTA degraders. In case, an anaerobic EDTA degrader is not immediately enriched, we will try to evolve the NTA degraders to use EDTA. Both aerobic and anaerobic enrichment cultures were set.

  7. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics.

    PubMed

    Terashima, Mia; Specht, Michael; Naumann, Bianca; Hippler, Michael

    2010-07-01

    The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic (induced by 8 h of argon bubbling) conditions were isolated and analyzed using comparative proteomics. A total of 2315 proteins were identified. Further analysis based on spectral counting clearly localized 606 of these proteins to the chloroplast, including many proteins of the fermentative metabolism. Comparative quantitative analyses were performed with the chloroplast-localized proteins using stable isotopic labeling of amino acids ([(13)C(6)]arginine/[(12)C(6)]arginine in an arginine auxotrophic strain). The quantitative data confirmed proteins previously characterized as induced at the transcript level as well as identified several new proteins of unknown function induced under anaerobic conditions. These proteins of unknown function provide new candidates for further investigation, which could bring insights for the engineering of hydrogen-producing alga strains. PMID:20190198

  8. Direct reading of electrocardiograms and respiration rates

    NASA Technical Reports Server (NTRS)

    Wise, J. P.

    1969-01-01

    Technique for reading heart and respiration rates is more accurate and direct than the previous method. Index of a plastic calibrated card is aligned with a point on the electrocardiogram. Complexes are counted as indicated on the card and heart or respiration rate is read directly from the appropriate scale.

  9. Photosynthesis and Respiration in a Jar.

    ERIC Educational Resources Information Center

    Buttner, Joseph K.

    2000-01-01

    Describes an activity that reduces the biosphere to a water-filled jar to simulate the relationship between cellular respiration, photosynthesis, and energy. Allows students in high school biology and related courses to explore quantitatively cellular respiration and photosynthesis in almost any laboratory setting. (ASK)

  10. Low-potential respirators support electricity production in microbial fuel cells.

    PubMed

    Grüning, André; Beecroft, Nelli J; Avignone-Rossa, Claudio

    2015-07-01

    In this paper, we analyse how electric power production in microbial fuel cells (MFCs) depends on the composition of the anodic biofilm in terms of metabolic capabilities of identified sets of species. MFCs are a promising technology for organic waste treatment and sustainable bioelectricity production. Inoculated with natural communities, they present a complex microbial ecosystem with syntrophic interactions between microbes with different metabolic capabilities. Our results demonstrate that low-potential anaerobic respirators--that is those that are able to use terminal electron acceptors with a low redox potential--are important for good power production. Our results also confirm that community metabolism in MFCs with natural inoculum and fermentable feedstock is a two-stage system with fermentation followed by anode respiration.

  11. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    NASA Technical Reports Server (NTRS)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  12. Expedited CO2 respiration in people with Miltenberger erythrocyte phenotype GP.Mur.

    PubMed

    Hsu, Kate; Kuo, Mei-Shin; Yao, Ching-Che; Lee, Ting-Ying; Chen, Yi-Chun; Cheng, Han-Chih; Lin, Chia-Hao; Yu, Tzung-Han; Lin, Hui-Ju

    2015-05-22

    In Southeast Asia, Miltenberger antigen subtype III (Mi.III; GP.Mur) is considered one of the most important red blood cell antigens in the field of transfusion medicine. Mi.III functions to promote erythrocyte band 3 expression and band 3-related HCO3(-) transport, with implications in blood CO2 metabolism. Could Mi.III affect physiologic CO2 respiration in its carriers? Here, we conducted a human trial to study the impacts of Mi.III expression in respiration. We recruited 188 healthy, adult subjects for blood typing, band 3 measurements, and respiratory tests before and after exercise. The 3-minute step exercise test forced the demand for CO2 dissipation to rise. We found that immediately following exercise, Mi.III + subjects exhaled CO2 at greater rates than Miltenberger-negative subjects. Respiration rates were also higher for Mi.III + subjects immediately after exercise. Blood gas tests further revealed distinct blood CO2 responses post-exercise between Mi.III and non-Mi.III. In contrast, from measurements of heart rates, blood O2 saturation and lactate, Mi.III phenotype was found to be independent of one's aerobic and anaerobic capacities. Thus, Mi.III expression supported physiologic CO2 respiration. Conceivably, Mi.III + people may have advantages in performing physically enduring activities.

  13. Expedited CO2 respiration in people with Miltenberger erythrocyte phenotype GP.Mur.

    PubMed

    Hsu, Kate; Kuo, Mei-Shin; Yao, Ching-Che; Lee, Ting-Ying; Chen, Yi-Chun; Cheng, Han-Chih; Lin, Chia-Hao; Yu, Tzung-Han; Lin, Hui-Ju

    2015-01-01

    In Southeast Asia, Miltenberger antigen subtype III (Mi.III; GP.Mur) is considered one of the most important red blood cell antigens in the field of transfusion medicine. Mi.III functions to promote erythrocyte band 3 expression and band 3-related HCO3(-) transport, with implications in blood CO2 metabolism. Could Mi.III affect physiologic CO2 respiration in its carriers? Here, we conducted a human trial to study the impacts of Mi.III expression in respiration. We recruited 188 healthy, adult subjects for blood typing, band 3 measurements, and respiratory tests before and after exercise. The 3-minute step exercise test forced the demand for CO2 dissipation to rise. We found that immediately following exercise, Mi.III + subjects exhaled CO2 at greater rates than Miltenberger-negative subjects. Respiration rates were also higher for Mi.III + subjects immediately after exercise. Blood gas tests further revealed distinct blood CO2 responses post-exercise between Mi.III and non-Mi.III. In contrast, from measurements of heart rates, blood O2 saturation and lactate, Mi.III phenotype was found to be independent of one's aerobic and anaerobic capacities. Thus, Mi.III expression supported physiologic CO2 respiration. Conceivably, Mi.III + people may have advantages in performing physically enduring activities. PMID:26000803

  14. Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates.

    PubMed

    Goris, Tobias; Schiffmann, Christian L; Gadkari, Jennifer; Schubert, Torsten; Seifert, Jana; Jehmlich, Nico; von Bergen, Martin; Diekert, Gabriele

    2015-09-21

    Organohalide respiration is an environmentally important but poorly characterized type of anaerobic respiration. We compared the global proteome of the versatile organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans grown with different electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]). The most significant differences in protein abundance were found for gene products of the organohalide respiration region. This genomic region encodes the corrinoid and FeS cluster containing PCE reductive dehalogenase PceA and other proteins putatively involved in PCE metabolism such as those involved in corrinoid biosynthesis. The latter gene products as well as PceA and a putative quinol dehydrogenase were almost exclusively detected in cells grown with PCE. This finding suggests an electron flow from the electron donor such as formate or pyruvate via the quinone pool and a quinol dehydrogenase to PceA and the terminal electron acceptor PCE. Two putative accessory proteins, an IscU-like protein and a peroxidase-like protein, were detected with PCE only and might be involved in PceA maturation. The proteome of cells grown with pyruvate instead of formate as electron donor indicates a route of electrons from reduced ferredoxin via an Epsilonproteobacterial complex I and the quinone pool to PCE.

  15. Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates

    PubMed Central

    Goris, Tobias; Schiffmann, Christian L.; Gadkari, Jennifer; Schubert, Torsten; Seifert, Jana; Jehmlich, Nico; von Bergen, Martin; Diekert, Gabriele

    2015-01-01

    Organohalide respiration is an environmentally important but poorly characterized type of anaerobic respiration. We compared the global proteome of the versatile organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans grown with different electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]). The most significant differences in protein abundance were found for gene products of the organohalide respiration region. This genomic region encodes the corrinoid and FeS cluster containing PCE reductive dehalogenase PceA and other proteins putatively involved in PCE metabolism such as those involved in corrinoid biosynthesis. The latter gene products as well as PceA and a putative quinol dehydrogenase were almost exclusively detected in cells grown with PCE. This finding suggests an electron flow from the electron donor such as formate or pyruvate via the quinone pool and a quinol dehydrogenase to PceA and the terminal electron acceptor PCE. Two putative accessory proteins, an IscU-like protein and a peroxidase-like protein, were detected with PCE only and might be involved in PceA maturation. The proteome of cells grown with pyruvate instead of formate as electron donor indicates a route of electrons from reduced ferredoxin via an Epsilonproteobacterial complex I and the quinone pool to PCE. PMID:26387727

  16. Inhibition of cardiac mitochondrial respiration by salicylic acid and acetylsalicylate.

    PubMed

    Nulton-Persson, Amy C; Szweda, Luke I; Sadek, Hesham A

    2004-11-01

    Acetylsalicylate, the active ingredient in aspirin, has been shown to be beneficial in the treatment and prevention of cardiovascular disease. Because of the increasing frequency with which salicylates are used, it is important to more fully characterize extra- and intracellular processes that are altered by these compounds. Evidence is provided that treatment of isolated cardiac mitochondria with salicylic acid and to a lesser extent acetylsalicylate resulted in an increase in the rate of uncoupled respiration. In contrast, both compounds inhibited ADP-dependent NADH-linked (state 3) respiration to similar degrees. Under the conditions of our experiments, loss in state 3 respiration resulted from inhibition of the Krebs cycle enzyme alpha-ketoglutarate dehydrogenase (KGDH). Kinetic analysis indicates that salicylic acid acts as a competitive inhibitor at the alpha-ketoglutarate binding site. In contrast, acetylsalicylate inhibited the enzyme in a noncompetitive fashion consistent with interaction with the alpha-ketoglutarate binding site followed by enzyme-catalyzed acetylation. The effects of salicylic acid and acetylsalicylate on cardiac mitochondrial function may contribute to the known cardioprotective effects of therapeutic doses of aspirin, as well as to the toxicity associated with salicylate overdose.

  17. Modelling Soil respiration in agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth

    2013-04-01

    A soil respiration model was developed to simulate soil respiration in crops on a daily time step. The soil heterotrophic respiration component was derived from Century (Parton et al., 1987). Soil organic carbon is divided into three major components including active, slow and passive soil carbon. Each pool has its own decomposition rate coefficient. Carbon flows between these pools are controlled by carbon inputs (crop residues), decomposition rate and microbial respiration loss parameters, both of which are a function of soil texture, soil temperature and soil water content. The model assumes that all C decompositions flows are associated with microbial activity and that microbial respiration occurs for each of these flows. Heterotrophic soil respiration is the sum of all these microbial respiration processes. To model the soil autotrophic respiration component, maintenance respiration is calculated from the nitrogen content and assuming an exponential relationship to account for temperature dependence (Ryan et al., 1991). Growth respiration is calculated assuming a dependence on both growth rate and construction cost of the considered organ (MacCree et al., 1982) A database, made of four different soil and climate conditions in mid-latitude was used to study the two components of the soil respiration model in wheat fields. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to

  18. Susceptibility testing of anaerobic bacteria: myth, magic, or method?

    PubMed Central

    Wexler, H M

    1991-01-01

    The demand for susceptibility testing of anaerobes has increased, yet consensus as to procedure and interpretation in this area has not been achieved. While routine testing of anaerobic isolates is not needed, certain isolates in specific clinical settings should be tested. Also, laboratories may monitor their local antibiograms by doing periodic surveillance batch testing. The National Committee for Clinical Laboratory Standards has published a protocol of methods approved for susceptibility testing of anaerobic bacteria. Both agar and broth microdilution are included; however, the broth disk elution method is no longer approved by the National Committee for Clinical Laboratory Standards because of method-related interpretive errors. A number of newer methods are undergoing evaluation and seem promising. Clinicians and microbiologists reviewing susceptibility reports should be aware of sources of variability in the test results. Variables in susceptibility testing of anaerobes include the media and methods used, organisms chosen for testing, breakpoints chosen for interpretation, antibiotic, and determination of endpoint. Clustering of MICs around the breakpoint may lead to significant variability in test results. Adherence of testing laboratories to approved methods and careful descriptions of the method and the breakpoints used for interpretation would facilitate interlaboratory comparisons and allow problems of emerging resistance to be noted. A variety of resistance mechanisms occurs in anaerobic bacteria, including the production of beta-lactamase and other drug-inactivating enzymes, alteration of target proteins, and inability of the drug to penetrate the bacterial wall. Antimicrobial resistance patterns in the United States and abroad are described. PMID:1747863

  19. Use of Presumpto Plates to identify anaerobic bacteria.

    PubMed Central

    Whaley, D N; Wiggs, L S; Miller, P H; Srivastava, P U; Miller, J M

    1995-01-01

    Identification of anaerobic bacteria requires special media and growth conditions that contribute to a higher cost per identification than that for aerobic isolates. Newer rapid methods streamline the identification process, but confirmation to the species level is often difficult. The Presumpto Plate method for the identification of commonly encountered anaerobes consists of three quadrant plates, each containing four conventional media, that result in the generation of 21 test parameters: growth on Lombard-Dowell medium; production of indole, indole derivative, catalase, lecithinase, and lipase; proteolysis of milk, H2S, and esculin; growth on 20% bile; precipitate on bile; DNase, glucose, casein, starch, and gelatin hydrolysis; and fermentation of lactose, mannitol, and rhamnose. Identification charts were developed by using the results from 2,300 anaerobic isolates. Because conventional media were used, there was a high degree of agreement between the Presumpto Plate method and the reference method when testing commonly encountered anaerobes. The Presumpto Plate method is as accurate as commercially available enzyme systems for the identification of many anaerobic species but is less expensive to perform. PMID:7615728

  20. Use of Presumpto Plates to identify anaerobic bacteria.

    PubMed

    Whaley, D N; Wiggs, L S; Miller, P H; Srivastava, P U; Miller, J M

    1995-05-01

    Identification of anaerobic bacteria requires special media and growth conditions that contribute to a higher cost per identification than that for aerobic isolates. Newer rapid methods streamline the identification process, but confirmation to the species level is often difficult. The Presumpto Plate method for the identification of commonly encountered anaerobes consists of three quadrant plates, each containing four conventional media, that result in the generation of 21 test parameters: growth on Lombard-Dowell medium; production of indole, indole derivative, catalase, lecithinase, and lipase; proteolysis of milk, H2S, and esculin; growth on 20% bile; precipitate on bile; DNase, glucose, casein, starch, and gelatin hydrolysis; and fermentation of lactose, mannitol, and rhamnose. Identification charts were developed by using the results from 2,300 anaerobic isolates. Because conventional media were used, there was a high degree of agreement between the Presumpto Plate method and the reference method when testing commonly encountered anaerobes. The Presumpto Plate method is as accurate as commercially available enzyme systems for the identification of many anaerobic species but is less expensive to perform.

  1. Inhibition Experiments on Anaerobic Methane Oxidation †

    PubMed Central

    Alperin, Marc J.; Reeburgh, William S.

    1985-01-01

    Anaerobic methane oxidation is a general process important in controlling fluxes of methane from anoxic marine sediments. The responsible organism has not been isolated, and little is known about the electron acceptors and substrates involved in the process. Laboratory evidence indicates that sulfate reducers and methanogens are able to oxidize small quantities of methane. Field evidence suggests anaerobic methane oxidation may be linked to sulfate reduction. Experiments with specific inhibitors for sulfate reduction (molybdate), methanogenesis (2-bromoethanesulfonic acid), and acetate utilization (fluoroacetate) were performed on marine sediments from the zone of methane oxidation to determine whether sulfate-reducing bacteria or methanogenic bacteria are responsible for methane oxidation. The inhibition experiment results suggest that methane oxidation in anoxic marine sediments is not directly mediated by sulfate-reducing bacteria or methanogenic bacteria. Our results are consistent with two possibilities: anaerobic methane oxidation may be mediated by an unknown organism or a consortium involving an unknown methane oxidizer and sulfate-reducing bacteria. PMID:16346921

  2. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  3. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  4. Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut' of the lower termite Mastotermes darwiniensis.

    PubMed

    Fröhlich, J; Sass, H; Babenzien, H D; Kuhnigk, T; Varma, A; Saxena, S; Nalepa, C; Pfeiffer, P; König, H

    1999-02-01

    A Gram-negative, anaerobic sulfate-reducing bacterium was isolated from hindgut contents of the lower termite Mastotermes darwiniensis Froggatt (strain KMS2). Strain KMS2 is motile by a single polar flagellum. The isolate possesses desulfoviridin and catalase activity. The G+C content of its DNA is in the range of 54.5-55.5 mol% (strain KMS2). It respires hydrogen and different low molecular weight organic compounds in the presence of sulfate, thiosulfate, and sulfite, and also oxygen. The isolated strain ferments pyruvate. Fastest growth with a doubling time of 12.5 h was obtained at 37 degrees C and not at 28 degrees C, the temperature at which the termites were grown. The isolate showed a 16S rDNA sequence homology of 95.9% to Desulfovibrio desulfuricans ATCC 27774 and a DNA-DNA homology of 44.6% to D. desulfuricans Essex 6 (type strain). Based on its biochemical properties and 16S rDNA sequence, the isolate was assigned to a new species named Desulfovibrio intestinalis. PMID:10380647

  5. Molecular Characterization of Bacterial Respiration on Minerals

    SciTech Connect

    Blake, Robert C.

    2013-04-26

    anomalous dispersion (MAD) phasing; 4. An acid-stable red cytochrome with a novel absorbance peak at 579 nm was purified from cell-free extracts of L. ferriphilum. Functional studies demonstrated that this cytochrome was an important component of the aerobic iron respiratory chain in this organism; 5. The specific adhesion of At. ferrooxidans to pyrite is mediated by an extracellular protein that was identified as aporusticyanin. The adhesion of At. ferrooxidans to minerals was characterized by high affinity binding that exhibited a high specificity for pyrite over other sulfide minerals. The principal biopolymer involved in this high-affinity adhesion to pyrite was isolated by mineral affinity chromatography and identified as aporusticyanin. The adhesion of purified aporusticyanin to minerals was observed to adhere to different mineral with a pattern of reactivity identical to that observed with the intact bacterium. Further, preincubation of pyrite with excess exogenous aporusticyanin served to inhibit the adherence of intact cells to the surface of the mineral, indicating that the protein and the cells adhered to the pyrite in a mutually exclusive manner. Taken together, these observations support a model where aporusticyanin located on the surface of the bacterial cell acts as a mineral-specific receptor for the initial adherence of At. ferrooxidans to solid pyrite; 6. The specific adhesion of L. ferriphilum to pyrite was mediated by a different acid-stable extracellular protein than aporusticyanin; and 7. A prototype integrating cavity absorption meter (ICAM) was assembled to determine whether this novel spectrophotometer could be used to study cellular respiration in situ.

  6. Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration

    SciTech Connect

    Nadanaciva, Sashi; Dykens, James A.; Bernal, Autumn; Capaldi, Roderick A.; Will, Yvonne

    2007-09-15

    Mitochondrial impairment is increasingly implicated in the etiology of toxicity caused by some thiazolidinediones, fibrates, and statins. We examined the effects of members of these drug classes on respiration of isolated rat liver mitochondria using a phosphorescent oxygen sensitive probe and on the activity of individual oxidative phosphorylation (OXPHOS) complexes using a recently developed immunocapture technique. Of the six thiazolidinediones examined, ciglitazone, troglitazone, and darglitazone potently disrupted mitochondrial respiration. In accord with these data, ciglitazone and troglitazone were also potent inhibitors of Complexes II + III, IV, and V, while darglitazone predominantly inhibited Complex IV. Of the six statins evaluated, lovastatin, simvastatin, and cerivastatin impaired mitochondrial respiration the most, with simvastatin and lovastatin impairing multiple OXPHOS Complexes. Within the class of fibrates, gemfibrozil more potently impaired respiration than fenofibrate, clofibrate, or ciprofibrate. Gemfibrozil only modestly inhibited Complex I, fenofibrate inhibited Complexes I, II + III, and V, and clofibrate inhibited Complex V. Our findings with the two complementary methods indicate that (1) some members of each class impair mitochondrial respiration, whereas others have little or no effect, and (2) the rank order of mitochondrial impairment accords with clinical adverse events observed with these drugs. Since the statins are frequently co-prescribed with the fibrates or thiazolidinediones, various combinations of these three drug classes were also analyzed for their mitochondrial effects. In several cases, the combination additively uncoupled or inhibited respiration, suggesting that some combinations are more likely to yield clinically relevant drug-induced mitochondrial side effects than others.

  7. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    NASA Astrophysics Data System (ADS)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  8. Dissimilatory Sb(V) reduction by microorganisms isolated from Sb-contaminated sediment

    NASA Astrophysics Data System (ADS)

    Dovick, M. A.; Kulp, T. R.

    2013-12-01

    Mining and smelting are major sources of trace metal contamination in freshwater systems. Arsenic (As) is a common contaminant derived from certain mining operations and is a known toxic metalloid and carcinogen. Antimony (Sb) is listed as a pollutant of priority interest by the EPA and is presumed to share similar geochemical and toxicological properties with arsenic. Both elements can occur in four different oxidation states (V, III, 0, and -III) under naturally occurring conditions. In aqueous solutions As(V) and Sb(V) predominate in oxygenated surface waters whereas As(III) and Sb(III) are stable in anoxic settings. Numerous studies have examined microbiological redox pathways that utilize As(V) as a terminal electron acceptor for anaerobic respiration, however there have been few studies on microbial mechanisms that may affect the biogeochemical cycling of Sb in the environment. Here we report bacterial reduction of Sb(V) to Sb(III) in anoxic enrichment cultures and bacterial isolates grown from sediment collected from an Sb contaminated pond at a mine tailings site in Idaho (total pond water Sb concentration = 235.2 +/- 136.3 ug/L). Anaerobic sediment microcosms (40 mL) were established in artificial freshwater mineral salt medium, amended with millimolar concentrations of Sb(V), acetate or lactate, and incubated at 27°C for several days. Antimony(V), lactate, and acetate concentrations were monitored during incubation by High Performance Liquid Chromatography (HPLC) and Ion Chromatography (IC). Live sediment microcosms reduced millimolar amendments of Sb(V) to Sb(III) coupled to the oxidation of acetate and lactate, while no activity occurred in killed controls. Enrichment cultures were established by serially diluting Sb(V)-reducing microcosms in mineral salt medium with Sb(V) and acetate, and a Sb(V)-reducing bacterial strain was isolated by plating on anaerobic agar plates amended with millimolar Sb(V) and acetate. Direct cell counting demonstrated that

  9. Effects of thyroid state on respiration of perfused rat and guinea pig hearts

    SciTech Connect

    Read, L.C.; Wallace, P.G.; Berry, M.N. )

    1987-09-01

    The effects of thyroid state on the respiration of the isolated heart were investigated using retrograde perfused rat and guinea pig hearts. In both species, hypothyroidism caused a marked depression in circulating thyroid hormone concentrations and in the respiration of the isolated, retrograde perfused heart. Hypothyroidism was caused by injecting animals with Na{sup 131}I. The effects on myocardial respiration could be attributed to changes in the contraction frequency and in the oxygen consumption per beat, with little contribution from basal respiration. Treatment of animals with thyroxine elevated plasma thyroid hormones to a similar extent in rats and guinea pigs. In the latter, thyroxine treatment was associated with substantial increases in the contraction frequency and the oxygen consumption per beat of the isolated heart. In contrast, only small changes were apparent in the retrograde perfused rat heart, observations that were confirmed in rat hearts perfused at near physiological work loads. It was concluded that rat hearts isolated from normal animals function at near maximal thyroid state, in contrast to the guinea pig heart, which requires higher circulating concentrations of thyroid hormones to attain maximal responses.

  10. Draft Genome Sequence of the Respiration-Competent Strain Lactobacillus casei N87.

    PubMed

    Zotta, Teresa; Ricciardi, Annamaria; Parente, Eugenio; Reale, Anna; Ianniello, Rocco G; Bassi, Daniela

    2016-01-01

    Lactobacillus casei is used as a starter, adjunct, and/or probiotic culture in the production of fermented and functional foods. Here, we report the draft genome sequence of the respiration-competent strain L. casei N87, isolated from infant feces. This genome information may be useful for the study of respiratory metabolism in lactic acid bacteria. PMID:27151805

  11. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  12. Respirator physiological effects under simulated work conditions.

    PubMed

    Bansal, Siddharth; Harber, Philip; Yun, David; Liu, David; Liu, Yihang; Wu, Samantha; Ng, David; Santiago, Silverio

    2009-04-01

    This study compared the physiological impacts of two respirator types in simulated work conditions. Fifty-six subjects included normal volunteers and persons with mild respiratory impairments (chronic rhinitis, mild COPD, and mild asthma). Respiratory parameters and electrocardiogram were measured using respiratory inductive plethysmography while performing eight work tasks involving low to moderate exertion using two respirators: (1) a dual cartridge half face mask (HFM) respirator, and (2) the N95. Mixed model regression analyses evaluating the effect of task and respirator type showed that task affected tidal volume, minute ventilation, breathing frequency and heart rate; all were greater in heavier tasks. Although respirator type did not affect respiratory volume parameters and flow rates, the HFM led to increase in the inspiratory time, reduction of the expiratory time, and increase in the duty cycle in comparison with the N95. The magnitude of differences was relatively small. The results suggest that most individuals, including persons with mild respiratory impairments, will physiologically tolerate either type of respirator at low to moderate exertion tasks. However, because effective protection depends on proper use, differences in subjective effect may have greater impact than physiological differences. Using respirators may be feasible on a widespread basis if necessary for maintaining essential services in the face of widespread concern about an infectious or terrorist threat. PMID:19180375

  13. Induction and repression of outer membrane proteins by anaerobic growth of Neisseria gonorrhoeae.

    PubMed Central

    Clark, V L; Campbell, L A; Palermo, D A; Evans, T M; Klimpel, K W

    1987-01-01

    Neisseria gonorrhoeae is generally considered to be an obligate aerobe; it can, however, grow in the absence of oxygen by anaerobic respiration by using nitrite as a terminal electron acceptor. The outer membrane protein compositions of aerobically and anaerobically grown N. gonorrhoeae strains were compared by one- and two-dimensional polyacrylamide gel electrophoresis. Anaerobically grown strains expressed at least three proteins (Pan 1 to Pan 3) at much higher levels than did aerobically grown cells. Conversely, at least five other proteins (Pox 1 to Pox 5) were found to be expressed at significantly higher levels in aerobically grown cells. None of the Pan or Pox proteins were heat modifiable, and none of the heat-modifiable protein IIs or other major outer membrane proteins (protein I, protein III, pilin, or H-8 protein) were significantly altered in expression by anaerobic growth. There were also no apparent differences in lipopolysaccharide composition in aerobically and anaerobically grown gonococci. The regulation of protein expression by oxygen availability suggests that anaerobic growth is a physiologically significant state for this organism. Images PMID:3106220

  14. Economic viability of anaerobic digestion

    SciTech Connect

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  15. Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster

    PubMed Central

    2005-01-01

    The principal objective of the present study was to identify specific alterations in mitochondrial respiratory functions during the aging process. Respiration rates and the activities of electron transport chain complexes were measured at various ages in mitochondria isolated from thoraces of the fruit fly, Drosophila melanogaster, which consist primarily of flight muscles. The rates of state 3 respiration (ADP-stimulated), RCRs (respiratory control ratios) and uncoupled respiration rates decreased significantly as a function of age, using either NAD+- or FAD-linked substrates; however, there were no differences in state 4 respiration (ADP-depleted) rates. There was also a significant age-related decline in the activity of cytochrome c oxidase (complex IV), but not of the other mitochondrial oxidoreductases examined. Exposure of mitochondria isolated from young flies to low doses of KCN or NaAz (sodium azide), complex IV inhibitors, decreased cytochrome c oxidase activity and increased the production of H2O2. Collectively, these results support the hypothesis that impairment of mitochondrial respiration may be a causal factor in the aging process, and that such impairment may result from and contribute to increased H2O2 production in vivo. PMID:15853766

  16. BOREAS TE-5 Soil Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  17. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria

    PubMed Central

    Hards, Kiel; Vilchèze, Catherine; Hartman, Travis; Berney, Michael

    2014-01-01

    Mycobacteria inhabit a wide range of intracellular and extracellular environments. Many of these environments are highly dynamic and therefore mycobacteria are faced with the constant challenge of redirecting their metabolic activity to be commensurate with either replicative growth or a non-replicative quiescence. A fundamental feature in this adaptation is the ability of mycobacteria to respire, regenerate reducing equivalents and generate ATP via oxidative phosphorylation. Mycobacteria harbor multiple primary dehydrogenases to fuel the electron transport chain and two terminal respiratory oxidases, an aa3-type cytochrome c oxidase and cytochrome bd-type menaquinol oxidase, are present for dioxygen reduction coupled to the generation of a protonmotive force. Hypoxia leads to the downregulation of key respiratory complexes, but the molecular mechanisms regulating this expression are unknown. Despite being obligate aerobes, mycobacteria have the ability to metabolize in the absence of oxygen and a number of reductases are present to facilitate the turnover of reducing equivalents under these conditions (e.g. nitrate reductase, succinate dehydrogenase/fumarate reductase). Hydrogenases and ferredoxins are also present in the genomes of mycobacteria suggesting the ability of these bacteria to adapt to an anaerobic-type of metabolism in the absence of oxygen. ATP synthesis by the membrane-bound F1FO-ATP synthase is essential for growing and non-growing mycobacteria and the enzyme is able to function over a wide range of protonmotive force values (aerobic to hypoxic). The discovery of lead compounds that target respiration and oxidative phosphorylation in Mycobacterium tuberculosis highlights the importance of this area for the generation of new front line drugs to combat tuberculosis. PMID:25346874

  18. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria.

    PubMed

    Cook, Gregory M; Hards, Kiel; Vilchèze, Catherine; Hartman, Travis; Berney, Michael

    2014-06-01

    Mycobacteria inhabit a wide range of intracellular and extracellular environments. Many of these environments are highly dynamic and therefore mycobacteria are faced with the constant challenge of redirecting their metabolic activity to be commensurate with either replicative growth or a non-replicative quiescence. A fundamental feature in this adaptation is the ability of mycobacteria to respire, regenerate reducing equivalents and generate ATP via oxidative phosphorylation. Mycobacteria harbor multiple primary dehydrogenases to fuel the electron transport chain and two terminal respiratory oxidases, an aa3 -type cytochrome c oxidase and cytochrome bd-type menaquinol oxidase, are present for dioxygen reduction coupled to the generation of a protonmotive force. Hypoxia leads to the downregulation of key respiratory complexes, but the molecular mechanisms regulating this expression are unknown. Despite being obligate aerobes, mycobacteria have the ability to metabolize in the absence of oxygen and a number of reductases are present to facilitate the turnover of reducing equivalents under these conditions (e.g. nitrate reductase, succinate dehydrogenase/fumarate reductase). Hydrogenases and ferredoxins are also present in the genomes of mycobacteria suggesting the ability of these bacteria to adapt to an anaerobic-type of metabolism in the absence of oxygen. ATP synthesis by the membrane-bound F1FO-ATP synthase is essential for growing and non-growing mycobacteria and the enzyme is able to function over a wide range of protonmotive force values (aerobic to hypoxic). The discovery of lead compounds that target respiration and oxidative phosphorylation in Mycobacterium tuberculosis highlights the importance of this area for the generation of new front line drugs to combat tuberculosis. PMID:25346874

  19. The effect of subject characteristics and respirator features on respirator fit.

    PubMed

    Zhuang, Ziqing; Coffey, Christopher C; Ann, Roland Berry

    2005-12-01

    A recent study was conducted to compare five fit test methods for screening out poor-fitting N95 filtering-facepiece respirators. Eighteen models of NIOSH-certified, N95 filtering-facepiece respirators were used to assess the fit test methods by using a simulated workplace protection factor (SWPF) test. The purpose of this companion study was to investigate the effect of subject characteristics (gender and face dimensions) and respirator features on respirator fit. The respirator features studied were design style (folding and cup style) and number of sizes available (one size fits all, two sizes, and three sizes). Thirty-three subjects participated in this study. Each was measured for 12 face dimensions using traditional calipers and tape. From this group, 25 subjects with face size categories 1 to 10 tested each respirator. The SWPF test protocol entailed using the PortaCount Plus to determine a SWPF based on total penetration (face-seal leakage plus filter penetration) while the subject performed six simulated workplace movements. Six tests were conducted for each subject/respirator model combination with redonning between tests. The respirator design style (folding style and cup style) did not have a significant effect on respirator fit in this study. The number of respirator sizes available for a model had significant impact on respirator fit on the panel for cup-style respirators with one and two sizes available. There was no significant difference in the geometric mean fit factor between male and female subjects for 16 of the 18 respirator models. Subsets of one to six face dimensions were found to be significantly correlated with SWPFs (p < 0.05) in 16 of the 33 respirator model/respirator size combinations. Bigonial breadth, face width, face length, and nose protrusion appeared the most in subsets (five or six) of face dimensions and their multiple linear regression coefficients were significantly different from zero (p < 0.05). Lip length was found in

  20. Physiologically anaerobic microorganisms of the deep subsurface. Progress report, June 1, 1991--May 31, 1992

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  1. Respiration in Neonate Sea Turtles

    PubMed Central

    Paladino, Frank V.; Strohl, Kingman P.; Pilar Santidrián, T.; Klann, Kenneth; Spotila, James R.

    2007-01-01

    The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings’ response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ventilation characteristics that are similar to those of adults: a single breath followed by a long respiratory pause, slow frequency, and high metabolic rate. With hypercapnic challenge, both species responded primarily by elevating respiratory frequency via a decrease in the non-ventilatory period. Leatherback resting tidal volume increased with age but otherwise, neither species’ resting respiratory pattern nor response to gas challenge changed significantly over the first few days after hatching. At the time of nest emergence, sea turtles have achieved a respiratory pattern that is similar to