Science.gov

Sample records for anaerobic syntrophic long-chain

  1. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum.

    PubMed

    Svetlitshnyi, V; Rainey, F; Wiegel, J

    1996-10-01

    Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, Thermosyntropha lipolytica gen. nov., sp. nov. (type strain JW/VS-265T; DSM 11003), were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60 degrees C the pH range for growth determined at 25 degrees C [pH25 degrees C] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH60 degrees C of 7.6 and 8.1). At a pH25 degrees C of 8.5 the temperature range for growth was from 52 to 70 degrees C, with an optimum between 60 and 66 degrees C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture could not utilize olive oil, triacylglycerols, short- and long-chain fatty acids, and glycerol for growth. In syntrophic coculture (Methanobacterium strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified Syntrophospora and Syntrophomonas spp. as closest phylogenetic neighbors.

  2. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum

    SciTech Connect

    Svetlitshnyi, V.; Wiegel, J.; Rainey, F.

    1996-10-01

    Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, Thermosyntropha lipolytica gen. nov., sp. nov. (type strain JW/VS-264{sup T}; DSM 11003) were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60{degrees}C, the pH range for growth determined at 25{degrees}C [pH{sup 25{degrees}C}] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH{sup 60{degrees}C} of 7.6 and 8.1). At a pH{sup 25{degrees}C} of 8.5 temperature range for growth was from 52 to 70{degrees}C, with an optimum between 60 and 66{degrees}C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture syntrophic coculture (Methanobacterium strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified Syntrophospora and Syntrophomonas spp. as closest phylogenetic neighbors.

  3. Synthesis and function of polyhydroxyalkanoates in anaerobic syntrophic bacteria

    SciTech Connect

    McInerney, M.J.; Amos, D.A.; Kealy, K.S.; Palmer, J.A.

    1992-12-31

    Anaerobic syntrophic bacteria degrade fatty acids and some aromatic compounds which are important intermediates in the degradation of organic matter to CO{sub 2} and CH{sub 4} in methanogenic environments. Several of the described syntrophic species produce poly-{beta}-hydroxyalkanoate (PHA) suggesting that the synthesis and use of PHA is important in their physiology. In the fatty acid-degrading, syntrophic bacterium, Syntrophomonas wolfei, PHA is made during exponential phase of growth and used after growth has stopped and substrate levels are low. Altering the carbon to nitrogen ratio of the medium does not affect the amount of PHA made or its monomeric composition. It is hypothesized that PHA serves as an endogenous energy source for syntrophic bacteria when the concentrations of hydrogen or acetate are too high for the degradation of the growth substrate to be thermodynamically favorable. In S. wolfei, PHA is synthesized by two routes, the direct incorporation of 3-ketoacyl-coenzyme A (CoA) generated in {beta}-oxidation without cleavage of a C-C bond, and by the condensation and subsequent reduction of two acetyl-CoA molecules. Genes that encode for the synthesis of PHA in S. wolfei have been cloned into Escherichia coli in order to understand the molecular mechanisms that regulate PHA synthesis. 61 refs., 1 fig., 4 tabs.

  4. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer

    DOE PAGES

    Ha, Phuc T.; Lindemann, Stephen R.; Shi, Liang; ...

    2017-01-09

    Microbial phototrophs, key primary producers on Earth, use H2O, H2, H2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call ‘syntrophic anaerobic photosynthesis’. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii does not grow inmore » co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. Lastly, this process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities.« less

  5. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer

    PubMed Central

    Ha, Phuc T.; Lindemann, Stephen R.; Shi, Liang; Dohnalkova, Alice C.; Fredrickson, James K.; Madigan, Michael T.; Beyenal, Haluk

    2017-01-01

    Microbial phototrophs, key primary producers on Earth, use H2O, H2, H2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call ‘syntrophic anaerobic photosynthesis'. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii does not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. This process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities. PMID:28067226

  6. Evidence for an anaerobic syntrophic benzoate degradation threshold and isolation of the syntrophic benzoate degrader

    SciTech Connect

    Hopkins, B.T.; McInerney, M.J.; Warikoo, V.

    1995-02-01

    An anaerobic, motile, gram-negative, rod-shaped, syntrophic. benzoate-degrading bacterium, strain SB. was isolated in pure culture with crotonate as the energy source. Benzoate was degraded only in association with an H{sub 2}-using bacterium. The kinetics of benzoate degradation by cell suspensions of strain SB in coculture with Desulfovibrio strain G-11 was studied by using progress curve analysis. The coculture degraded benzoate to a threshold concentration of 214 nM to 6.5 {mu}M, with no further benzoate degradation observed even after extended incubation times. The value of the threshold depended on the amount of benzoate added and, consequently, the amount of acetate produced. The addition of sodium acetate. but not that of sodium chloride, affected the threshold value; higher acetate concentrations resulted in higher threshold values for benzoate. When a cell suspension that had reached a threshold benzoate concentration was reamended with benzoate, benzoate was used without a lag. The hydrogen partial pressure was very low and formate was not detected in cell suspensions that had degraded benzoate to a threshold value. The Gibbs free energy change calculations showed that the degradation of benzoate was favorable when the threshold was reached. These studies showed that the threshold for benzoate degradation was not caused by nutritional limitations. the loss of metabolic activity, or inhibition by hydrogen or formate. The data are consistent with a thermodynamic explanation for the existence of a threshold, but a kinetic explanation based on acetate inhibition may also account for the existence of a threshold.

  7. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials.

    PubMed

    Zhao, Zhiqiang; Zhang, Yaobin; Woodard, T L; Nevin, K P; Lovley, D R

    2015-09-01

    Syntrophic metabolism of alcohols and fatty acids is a critical step in anaerobic digestion, which if enhanced can better stabilize the process and enable shorter retention times. Direct interspecies electron transfer (DIET) has recently been recognized as an alternative route to hydrogen interspecies transfer as a mechanism for interspecies syntrophic electron exchange. Therefore, the possibility of accelerating syntrophic metabolism of ethanol in up-flow anaerobic sludge blanket (UASB) reactors by incorporating conductive materials in reactor design was investigated. Graphite, biochar, and carbon cloth all immediately enhanced methane production and COD removal. As the hydraulic retention time was decreased the increased effectiveness of treatment in reactors with conductive materials increased versus the control reactor. When these conductive materials were removed from the reactors rates of syntrophic metabolism declined to rates comparable to the control reactor. These results suggest that incorporating conductive materials in the design of UASB reactors may enhance digester effectiveness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge.

    PubMed

    Ziels, Ryan M; Karlsson, Anna; Beck, David A C; Ejlertsson, Jörgen; Yekta, Sepehr Shakeri; Bjorn, Annika; Stensel, H David; Svensson, Bo H

    2016-10-15

    Codigesting fats, oils, and greases with municipal wastewater sludge can greatly improve biomethane recovery at wastewater treatment facilities. Process loading rates of fats, oils, and greases have been previously tested with little knowledge of the digester microbial community structure, and high transient fat loadings have led to long chain fatty acid (LCFA) accumulation and digester upsets. This study utilized recently-developed quantitative PCR assays for syntrophic LCFA-degrading bacteria along with 16S amplicon sequencing to relate changes in microbial community structure to LCFA accumulation during transient loading increases to an anaerobic codigester receiving waste restaurant oil and municipal wastewater sludge. The 16S rRNA gene concentration of the syntrophic β-oxidizing genus Syntrophomonas increased to ∼15% of the Bacteria community in the codigester, but stayed below 3% in the control digester that was fed only wastewater sludge. Methanosaeta and Methanospirillum were the dominant methanogenic genera enriched in the codigester, and together comprised over 80% of the Archaea community by the end of the experimental period. Constrained ordination showed that changes in the codigester Bacteria and Archaea community structures were related to measures of digester performance. Notably, the effluent LCFA concentration in the codigester was positively correlated to the specific loading rate of waste oil normalized to the Syntrophomonas 16S rRNA concentration. Specific loading rates of 0-1.5 × 10(-12) g VS oil/16S gene copies-day resulted in LCFA concentrations below 30 mg/g TS, whereas LCFA accumulated up to 104 mg/g TS at higher transient loading rates. Based on the community-dependent loading limitations found, enhanced biomethane production from high loadings of fats, oils and greases can be achieved by promoting a higher biomass of slow-growing syntrophic consortia, such as with longer digester solids retention times. This work also

  9. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater.

    PubMed

    Masse, L; Massé, D I; Kennedy, K J; Chou, S P

    2002-07-05

    Neutral fat hydrolysis and long-chain fatty acid (LCFA) oxidation rates were determined during the digestion of slaughterhouse wastewater in anaerobic sequencing batch reactors operated at 25 degrees C. The experimental substrate consisted of filtered slaughterhouse wastewater supplemented with pork fat particles at various average initial sizes (D(in)) ranging from 60 to 450 microm. At the D(in) tested, there was no significant particle size effect on the first-order hydrolysis rate. The neutral fat hydrolysis rate averaged 0.63 +/- 0.07 d(-1). LCFA oxidation rate was modelled using a Monod-type equation. The maximum substrate utilization rate (kmax) and the half-saturation concentration (Ks) averaged 164 +/- 37 mg LCFA/L/d and 35 +/- 31 mg LCFA/L, respectively. Pork fat particle degradation was mainly controlled by LCFA oxidation rate and, to a lesser extent, by neutral fat hydrolysis rate. Hydrolysis pretreatment of fat-containing wastewaters and sludges should not substantially accelerate their anaerobic treatment. At a D(in) of 450 microm, fat particles were found to inhibit methane production during the initial 20 h of digestion. Inhibition of methane production in the early phase of digestion was the only significant effect of fat particle size on anaerobic digestion of pork slaughterhouse wastewater. Soluble COD could not be used to determine the rate of lipid hydrolysis due to LCFA adsorption on the biomass.

  10. Modelling inhibitory effects of long chain fatty acids in the anaerobic digestion process.

    PubMed

    Zonta, Z; Alves, M M; Flotats, X; Palatsi, J

    2013-03-01

    Mathematical modelling of anaerobic digestion process has been used to give new insights regarding dynamics of the long chain fatty acids (LCFA) inhibition. Previously published experimental data, including batch tests with clay mineral bentonite additions, were used for parameter identification. New kinetics were considered to describe the bio-physics of the inhibitory process, including: i) adsorption of LCFA over granular biomass and ii) specific LCFA substrate (saturated/unsaturated) and LCFA-degrading populations. Furthermore, iii) a new variable was introduced to describe the state of damage of the acetoclastic methanogens in order to account for the loss of cell-functionality (inhibition) induced by the adsorbed LCFAs. The proposed model modifications are state compatible and easy to be integrated into the International Water Association's Anaerobic Digestion Model N°1 (ADM1) framework. Practical identifiability of model parameters was assessed with a global sensitivity analysis, while calibration and model structure validation were performed on independent data sets. A reliable simulation of the LCFA-inhibition process can be achieved, if the model includes the description of the adsorptive nature of the LCFAs and the LCFA-damage over specific biomass. The importance of microbial population structure (saturated/unsaturated LCFA-degraders) and the high sensitivity of acetoclastic population to LCFA are evidenced, providing a plausible explanation of experimental based hypothesis.

  11. Enrichment of thermophilic syntrophic anaerobic glutamate-degrading consortia using a dialysis membrane reactor.

    PubMed

    Plugge, C M; Stams, A J M

    2002-04-01

    A dialysis cultivation system was used to enrich slow-growing moderately thermophilic anaerobic bacteria at high cell densities. Bicarbonate buffered mineral salts medium with 5 mM glutamate as the sole carbon and energy source was used and the incubation temperature was 55 degrees C. The reactor inoculum originated from anaerobic methanogenic granular sludge bed reactors. The microbial population was monitored over a period of 2 years using the most probable number (MPN) technique. In the reactor glutamate was readily degraded to ammonium, methane, and carbon dioxide. Cell numbers of glutamate-degrading organisms increased 400-fold over the first year. In medium supplemented with bromoethane sulfonic acid (BES, an inhibitor of methanogenesis), tenfold lower cell numbers were counted, indicating the syntrophic nature of glutamate degradation. After 2 years of reactor operation the predominant organisms were isolated and characterized. Methanobacterium thermoautotrophicum (strain R43) and a Methanosaeta thermophila strain (strain A) were the predominant hydrogenotrophic and acetoclastic methanogens, respectively. The numbers in which the organisms were present in the reactor after 24 months of incubation were 8.6 x 10(9) and 3.8 x 10(7) mL(-1) sludge, respectively. The most predominant glutamate-degrading organism (8.6 x 10(7) mL(-1) sludge), strain Z, was identified as a new species, Caloramator coolhaasii. It converted glutamate to hydrogen, acetate, some propionate, ammonium, and carbon dioxide. Growth of this syntrophic organism on glutamate was strongly enhanced by the presence of methanogens.

  12. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    SciTech Connect

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.; Jarvis, Eric E.; Nagle, Nick J.; Chen, Shulin; Frear, Craig S.

    2015-09-15

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  13. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    DOE PAGES

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.; ...

    2015-09-15

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  14. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion

    PubMed Central

    Lyles, Christopher N.; Le, Huynh M.; Beasley, William Howard; McInerney, Michael J.; Suflita, Joseph M.

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons. PMID:24744752

  15. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion.

    PubMed

    Lyles, Christopher N; Le, Huynh M; Beasley, William Howard; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  16. Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis

    SciTech Connect

    Thiele, J.H.; Chartrain, M.; Zeikus, J.G.

    1988-01-01

    The flora of an anaerobic whey-processing chemostat was separated by anaerobic sedimentation techniques into a free-living bacterial fraction and a bacterial floc fraction. The floc fraction constituted a major part (i.e., 57% total protein) of the total microbial population in the digestor, and it accounted for 87% of the total CO/sub 2/-dependent methanogenic activity and 76% of the total ethanol-consuming acetogenic activity. Lactose was degraded by both cellular fractions, but in the free flora fraction it was associated with higher intermediary levels of H/sub 2/, ethanol, butyrate, and propionate production. Electron microscopic analysis of flocs showed bacterial diversity and juxtapositioning of tentative Desulfovibrio and Methanobacterium species without significant microcolony formation. Ethanol, an intermediary product of lactose-hydrolyzing bacteria, was converted to acetate and methane within the flocs by interspecies electron transfer. Ethanol-dependent methane formation was compartmentalized and closely coupled kinetically within the flocs but without significant formation of H/sub 2/ gas. Physical disruption of flocs into fragments of 10- to 20-..mu..m diameter initially increased the H/sub 2/ partial pressure but did not change the carbon transformation kinetic patterns of ethanol metabolism or demonstrate a significant role for H/sub 2/ in CO/sub 2/ reduction to methane. The data demonstrate that floc formation in a whey-processing anaerobic digestor functions in juxtapositioning cells for interspecies electron transfer during syntrophic ethanol conversion into acetate and methane but by a mechanism which was independent of the available dissolved H/sub 2/ gas pool in the ecosystem.

  17. Diverse syntrophic relationships within a microbial community performing anaerobic oxidation of methane and sulfate reduction

    NASA Astrophysics Data System (ADS)

    Wang, F.; Chen, Y.; Zhang, Y.; He, Y.; Xiao, X.

    2012-12-01

    Here we report the metagenome and metatranscriptome analysis of a highly enriched, active AOM-SR (anaerobic oxidation of methane - sulfate reduction) community obtained through a continuous high-pressure bioreactor system. The community has a very high diversity of bacteria, besides SRB within delta-Proteobacteria, gamma-, beta-Proteobacteria and OP1 were found abundant. The archaeal components in the system are rather simple with only ANME2 and Marine Benthic Group D detected. FISH analysis revealed that most ANME cells form cell aggregates with SRB. A complete and functioning methanogenesis pathway from CO2 reduction was identified. Besides the methanogenesis and sulfate reducing pathways, pathways for complete denitrification and nitrogen fixation were also identified and expressed. Single cell aggregates in the community were captured and sequenced. Besides ANME and SRB, a third type of microorganisms were found present in certain cell aggregates, thus provide direct evidence for diverse syntrophic relationships among the microorganisms within the system fueled by AOM-SR.

  18. Gelria glutamica gen. nov., sp. nov., a thermophilic, obligately syntrophic, glutamate-degrading anaerobe.

    PubMed

    Plugge, Caroline M; Balk, Melike; Zoetendal, Erwin G; Stams, Alfons J M

    2002-03-01

    A novel anaerobic, gram-positive, thermophilic, spore-forming, obligately syntrophic, glutamate-degrading bacterium, strain TGO(T), was isolated from a propionate-oxidizing methanogenic enrichment culture. The axenic culture was obtained by growing the bacterium on pyruvate. Cells were rod-shaped and non-motile. The optimal temperature for growth was 50-55 degrees C and growth occurred between 37 and 60 degrees C. The pH range for growth was 5.5-8 with optimum growth at pH 7. In pure culture, strain TGO(T) could grow on pyruvate, lactate, glycerol and several sugars. In co-culture with the hydrogenotrophic methanogen Methanobacterium thermautotrophicum strain Z-245, strain TGO(T) could grow on glutamate, proline and Casamino acids. Glutamate was converted to H2, CO2, propionate and traces of succinate. Strain TGO(T) was not able to utilize sulphate, sulphite, thiosulphate, nitrate or fumarate as electron acceptors. The G+C content was 33.8 mol%. Sequence analysis of the 16S rDNA revealed that strain TGO(T) belongs to the thermophilic, endospore-forming anaerobes, though no close relations were found. Its closest relations were Moorella glycerini (92%) and Moorella thermoacetica (90%). Strain TGOT had an unusually long 16S rDNA of more than 1700 bp. The additional base pairs were found as long loops in the V1, V7 and V9 regions of the 16S rDNA. However, the loops were not found in the 16S rRNA. The name Gelria glutamica gen. nov., sp. nov. is proposed for strain TGO(T).

  19. Determination of long chain fatty acids in anaerobic digesters using a rapid non-derivatisation GC-FID method.

    PubMed

    Jiang, Ying; Zhang, Yue; Banks, Charles J

    2012-01-01

    A rapid non-derivatisation gas chromatographic (GC) method for quantification of palmitic, stearic and oleic acids was achieved using a flame ionisation detector and a highly polar capillary column at elevated temperature. These long chain fatty acids (LCFA) can accumulate in anaerobic digesters and a simple extraction method was also developed to permit a more rapid sample turn-around time, facilitating more frequent monitoring. The GC method was satisfactory in terms of peak separation, signal response, reproducibility and linearity range. The extraction method achieved recoveries of 103.8, 127.2 and 84.2% for palmitic, stearic and oleic acid respectively. The method was tested on digestate from mesophilic laboratory-scale digesters fed with source-segregated domestic food waste, and showed good repeatability between replicate samples. It was observed that the concentrations of stearic and palmitic acid in digesters routinely supplemented with trace elements were lower in proportion to the applied lipid loading than those without supplementation.

  20. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia

    SciTech Connect

    Warikoo, V.; McInerney, M.J.; Suflita, J.M.

    1997-03-01

    Benzoate degradation by an anaerobic, syntrophic bacterium, strain SB, in coculture with Desulfovibrio strain G-11 reached a threshold value which depended on the amount of acetate added, and ranged from about 2.5 to 29.9 {mu}M. Increasing acetate concentrations also uncompetitively inhibited benzoate degradation. The apparent V{sub max} and K{sub m} for benzoate degradation decreased with increasing acetate concentration, but the benzoate degradation capacity (V{sub max}/K{sub m}) of cell suspensions remained comparable. The addition of an acetate-using bacterium to cocultures after the threshold was reached resulted in the degradation of benzoate to below the detection limit. Mathematical simulations showed that the benzoate threshold was not predicted by the inhibitory effect of acetate on benzoate degradation kinetics. With nitrate instead of sulfate as the terminal electron acceptor, no benzoate threshold was observed in the presence of 20 mM acetate even though the degradation capacity was lower with nitrate than with sulfate. When strain SB was grown with a hydrogen-using partner that had a 5-fold lower hydrogen utilization capacity, a 5 to 9-fold lower the benzoate degradation capacity was observed compared to SB/G-11 cocultures. The Gibb`s free energy for benzoate degradation was less negative in cell suspensions with threshold compared to those without threshold. These studies showed that the threshold was not a function of the inhibition of benzoate degradation capacity by acetate, or the toxicity of the undissociated form of acetate. Rather a critical or minimal Gibb`s free energy may exist where thermodynamic constraints preclude further benzoate degradation.

  1. Bacterial communities and syntrophic associations involved in anaerobic oxidation of methane process of the Sonora Margin cold seeps, Guaymas Basin.

    PubMed

    Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Caprais, Jean-Claude; Gayet, Nicolas; Cambon-Bonavita, Marie-Anne; Godfroy, Anne; Toffin, Laurent

    2014-09-01

    The Sonora Margin cold seeps present on the seafloor a patchiness pattern of white microbial mats surrounded by polychaete and gastropod beds. These surface assemblages are fuelled by abundant organic inputs sedimenting from the water column and upward-flowing seep fluids. Elevated microbial density was observed in the underlying sediments. A previous study on the same samples identified anaerobic oxidation of methane (AOM) as the potential dominant archaeal process in these Sonora Margin sediments, probably catalysed by three clades of archaeal anaerobic methanotrophs (ANME-1, ANME-2 and ANME-3) associated with bacterial syntrophs. In this study, molecular surveys and microscopic observations investigating the diversity of Bacteria involved in AOM process, as well as the environmental parameters affecting the composition and the morphologies of AOM consortia in the Sonora Margin sediments were carried out. Two groups of Bacteria were identified within the AOM consortia, the Desulfosarcina/Desulfococcus SEEP SRB-1a group and a Desulfobulbus-related group. These bacteria showed different niche distributions, association specificities and consortia architectures, depending on sediment surface communities, geochemical parameters and ANME-associated phylogeny. Therefore, the syntrophic AOM process appears to depend on sulphate-reducing bacteria with different ecological niches and/or metabolisms, in a biofilm-like organic matrix. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Importance of sulfide interaction with iron as regulator of the microbial community in biogas reactors and its effect on methanogenesis, volatile fatty acids turnover, and syntrophic long-chain fatty acids degradation.

    PubMed

    Shakeri Yekta, Sepehr; Ziels, Ryan M; Björn, Annika; Skyllberg, Ulf; Ejlertsson, Jörgen; Karlsson, Anna; Svedlund, Matilda; Willén, Magnus; Svensson, Bo H

    2017-05-01

    The inhibitory effects of sulfide on microbial processes during anaerobic digestion have been widely addressed. However, other effects of sulfide are less explored, given that sulfide is a potential sulfur source for microorganisms and its high reactivity triggers a suit of abiotic reactions. We demonstrated that sulfide interaction with Fe regulates the dynamics and activities of microbial community during anaerobic digestion. This was manifested by the S:Fe molar ratio, whose increase adversely influenced the acetoclastic methanogens, Methanosaeta, and turnover of acetate. Dynamics of hydrogenotrophic methanogens, Methanoculleus and Methanobrevibacter, were presumably influenced by sulfide-induced changes in the partial pressure of hydrogen. Interestingly, conversion of the long-chain fatty acid (LCFA), oleate, to methane was enhanced together with the abundance of LCFA-degrading, β-oxidizing Syntrophomonas at an elevated S:Fe molar ratio. The results suggested that sulfur chemical speciation is a controlling factor for microbial community functions in anaerobic digestion processes. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. A mathematical study of a syntrophic relationship of a model of anaerobic digestion process.

    PubMed

    El Hajji, Miled; Mazenc, Frédéric; Harmand, Jérôme

    2010-07-01

    A mathematical model involving the syntrophic relationship of two major populations of bacteria (acetogens and methanogens), each responsible for a stage of the methane fermentation process is proposed. A detailed qualitative analysis is carried out. The local and global stability analyses of the equilibria are performed. We demonstrate, under general assumptions of monotonicity, relevant from an applied point of view, the global asymptotic stability of a positive equilibrium point which corresponds to the coexistence of acetogenic and methanogenic bacteria.

  4. Long chain fatty acids (LCFA) evolution for inhibition forecasting during anaerobic treatment of lipid-rich wastes: Case of milk-fed veal slaughterhouse waste.

    PubMed

    Rodríguez-Méndez, R; Le Bihan, Y; Béline, F; Lessard, P

    2017-09-01

    A detailed study of a solid slaughterhouse waste (SHW) anaerobic treatment is presented. The waste used in this study is rich in lipids and proteins residue. Long chain fatty acids (LCFA), coming from the hydrolysis of lipids were inhibitory to anaerobic processes at different degrees. Acetogenesis and methanogenesis processes were mainly affected by inhibition whereas disintegration and hydrolysis processes did not seem to be affected by high LCFA concentrations. Nevertheless, because of the high energy content, this kind of waste is very suitable for anaerobic digestion but strict control of operating conditions is required to prevent inhibition. For that, two inhibition indicators were identified in this study. Those two indicators, LCFA dynamics and LCFA/VSbiomass ratio proved to be useful to predict and to estimate the process inhibition degree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing.

    PubMed

    Hatamoto, Masashi; Imachi, Hiroyuki; Yashiro, Yuto; Ohashi, Akiyoshi; Harada, Hideki

    2007-07-01

    Long-chain fatty acid (LCFA) degradation is a key step in methanogenic treatment of wastes/wastewaters containing high concentrations of lipids. However, despite the importance of LCFA-degrading bacteria, their natural diversity is little explored due to the limited availability of isolate information and the lack of appropriate molecular markers. We therefore investigated these microbes by using RNA-based stable isotope probing. We incubated four methanogenic sludges (mesophilic sludges MP and MBF and thermophilic sludges TP and JET) with (13)C-labeled palmitate (1 mM) as a substrate. After 8 to 19 days of incubation, we could detect (13)C-labeled bacterial rRNA. A density-resolved terminal restriction fragment length polymorphism fingerprinting analysis showed distinct bacterial populations in (13)C-labeled and unlabeled rRNA fractions. The bacterial populations in the (13)C-labeled rRNA fractions were identified by cloning and sequencing of reverse-transcribed 16S rRNA. Diverse phylogenetic bacterial sequences were retrieved, including those of members of the family Syntrophaceae, clone cluster MST belonging to the class Deltaproteobacteria, Clostridium clusters III and IV, phylum Bacteroidetes, phylum Spirochaetes, and family Syntrophomonadaceae. Although Syntrophomonadaceae species are considered to be the major fatty acid-degrading syntrophic microorganisms under methanogenic conditions, they were detected in only two of the clone libraries. These results suggest that phylogenetically diverse bacterial groups were active in situ in the degradation of LCFA under methanogenic conditions.

  6. Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge.

    PubMed

    Pereira, M A; Pires, O C; Mota, M; Alves, M M

    2005-10-05

    Palmitic acid was the main long chain fatty acids (LCFA) that accumulated onto the anaerobic sludge when oleic acid was fed to an EGSB reactor. The conversion between oleic and palmitic acid was linked to the biological activity. When palmitic acid was fed to an EGSB reactor it represented also the main LCFA that accumulated onto the sludge. The way of palmitic acid accumulation was different in the oleic and in the palmitic acid fed reactors. When oleic acid was fed, the biomass-associated LCFA (83% as palmitic acid) were mainly adsorbed and entrapped in the sludge that became "encapsulated" by an LCFA layer. However, when palmitic acid was fed, the biomass-associated LCFA (the totality as palmitic acid) was mainly precipitated in white spots like precipitates in between the sludge, which remained "non-encapsulated." The two sludges were compared in terms of the specific methanogenic activity (SMA) in the presence of acetate, propionate, butyrate, and H(2)CO(2), before and after the mineralization of similar amounts of biomass-associated LCFA (4.6 and 5.2 g COD-LCFA/g of volatile suspended solids (VSS), for the oleic and palmitic acid fed sludge, respectively). The "non-encapsulated," sludge exhibited a considerable initial methanogenic activity on all the tested substrates, with the single exception of butyrate. However, with the "encapsulated" sludge only methane production from ethanol and H(2)/CO(2) was detected, after a lag phase of about 50 h. After mineralization of the biomass-associated LCFA, both sludges exhibited activities of similar order of magnitude in the presence of the same individual substrates and significantly higher than before. The results evidenced that LCFA accumulation onto the sludge can create a physical barrier and hinder the transfer of substrates and products, inducing a delay on the initial methane production. Whatever the mechanism, metabolic or physical, that is behind this inhibition, it is reversible, being eliminated after the

  7. Enhanced methanogenic degradation of cellulose-containing sewage via fungi-methanogens syntrophic association in an anaerobic membrane bioreactor.

    PubMed

    Chen, Rong; Nie, Yulun; Tanaka, Nobuyuki; Niu, Qigui; Li, Qian; Li, Yu-You

    2017-09-08

    An anaerobic membrane bioreactor was configured for methanogenic degradation of cellulose-containing sewage. The degradation performance and microbial changes were evaluated under five hydraulic retention times (HRTs). The results indicated the methane production was largely enhanced with 92.6% efficiency of chemical oxygen demand (COD) converting to methane and 80% proportion of methane in produced biogas, meanwhile the biomass yield presented the fewest at the shortest HRT 8h. Enhanced methane production with decreased biomass yield was attributed to an association between fungi and methanogens. Microbial analysis showed fungi Basidiomycota and methanogen Methanoregula apparently established the association, especially Basidiomycota reaching 93% relative abundance at HRT 8h. Specific methanogenic activity (SMA) and biochemical methane potential (BMP) tests suggested the association was derived from H2 production by fungi and H2 consumption by methanogens, during the process of cellulose degradation. The methanogenic degradation of cellulose-containing sewage was markedly promoted via the fungi-methanogens syntrophic association. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Control of Interspecies Electron Flow during Anaerobic Digestion: Significance of Formate Transfer versus Hydrogen Transfer during Syntrophic Methanogenesis in Flocs

    PubMed Central

    Thiele, Jurgen H.; Zeikus, J. Gregory

    1988-01-01

    Microbial formate production and consumption during syntrophic conversion of ethanol or lactate to methane was examined in purified flocs and digestor contents obtained from a whey-processing digestor. Formate production by digestor contents or purified digestor flocs was dependent on CO2 and either ethanol or lactate but not H2 gas as an electron donor. During syntrophic methanogenesis, flocs were the primary site for formate production via ethanol-dependent CO2 reduction, with a formate production rate and methanogenic turnover constant of 660 μM/h and 0.044/min, respectively. Floc preparations accumulated fourfold-higher levels of formate (40 μM) than digestor contents, and the free flora was the primary site for formate cleavage to CO2 and H2 (90 μM formate per h). Inhibition of methanogenesis by CHCl3 resulted in formate accumulation and suppression of syntrophic ethanol oxidation. H2 gas was an insignificant intermediary metabolite of syntrophic ethanol conversion by flocs, and its exogenous addition neither stimulated methanogenesis nor inhibited the initial rate of ethanol oxidation. These results demonstrated that >90% of the syntrophic ethanol conversion to methane by mixed cultures containing primarily Desulfovibrio vulgaris and Methanobacterium formicicum was mediated via interspecies formate transfer and that <10% was mediated via interspecies H2 transfer. The results are discussed in relation to biochemical thermodynamics. A model is presented which describes the dynamics of a bicarbonate-formate electron shuttle mechanism for control of carbon and electron flow during syntrophic methanogenesis and provides a novel mechanism for energy conservation by syntrophic acetogens. PMID:16347526

  9. Effects of ferric hydroxide on methanogenesis from lipids and long-chain fatty acids in anaerobic digestion.

    PubMed

    Li, Zhengkai; Wrenn, Brian A; Venosa, Albert D

    2006-05-01

    The addition of ferric hydroxide to sludge from a municipal anaerobic digester stimulated the rate of methanogenesis from canola oil when the initial oil concentration was high (4600 mg/L; P < 0.002), but not when it was low (920 mg/L; P > 0.05). Similar trends were observed when oleic acid, a fatty acid that is a major component of canola oil triglycerides, was provided, but the effects were statistically significant only when the initial concentration of ferric hydroxide was also high (18 g/L; P = 0.015). Iron reduction occurred when ferric hydroxide was added to microcosms containing anaerobic digester sludge, but the extent of ferrous iron production was much less in acetate-amended microcosms than in those that were provided with canola oil or oleic acid. Methanogenesis and acetate consumption were completely inhibited when the initial acetate concentration was approximately 5000 mg/L, regardless of the initial ferric hydroxide concentration. The main effect of ferric hydroxide in this system appears to have been a result of stimulation of the rate of fatty acid oxidation.

  10. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus.

    PubMed

    Khelifi, Nadia; Amin Ali, Oulfat; Roche, Philippe; Grossi, Vincent; Brochier-Armanet, Céline; Valette, Odile; Ollivier, Bernard; Dolla, Alain; Hirschler-Réa, Agnès

    2014-11-01

    The thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain VC-16 (DSM 4304), which is known to oxidize fatty acids and n-alkenes, was shown to oxidize saturated hydrocarbons (n-alkanes in the range C10-C21) with thiosulfate or sulfate as a terminal electron acceptor. The amount of n-hexadecane degradation observed was in stoichiometric agreement with the theoretically expected amount of thiosulfate reduction. One of the pathways used by anaerobic microorganisms to activate alkanes is addition to fumarate that involves alkylsuccinate synthase as a key enzyme. A search for genes encoding homologous enzymes in A. fulgidus identified the pflD gene (locus-tag AF1449) that was previously annotated as a pyruvate formate lyase. A phylogenetic analysis revealed that this gene is of bacterial origin and was likely acquired by A. fulgidus from a bacterial donor through a horizontal gene transfer. Based on three-dimensional modeling of the corresponding protein and molecular dynamic simulations, we hypothesize an alkylsuccinate synthase activity for this gene product. The pflD gene expression was upregulated during the growth of A. fulgidus on an n-alkane (C16) compared with growth on a fatty acid. Our results suggest that anaerobic alkane degradation in A. fulgidus may involve the gene pflD in alkane activation through addition to fumarate. These findings highlight the possible importance of hydrocarbon oxidation at high temperatures by A. fulgidus in hydrothermal vents and the deep biosphere.

  11. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus

    PubMed Central

    Khelifi, Nadia; Amin Ali, Oulfat; Roche, Philippe; Grossi, Vincent; Brochier-Armanet, Céline; Valette, Odile; Ollivier, Bernard; Dolla, Alain; Hirschler-Réa, Agnès

    2014-01-01

    The thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain VC-16 (DSM 4304), which is known to oxidize fatty acids and n-alkenes, was shown to oxidize saturated hydrocarbons (n-alkanes in the range C10–C21) with thiosulfate or sulfate as a terminal electron acceptor. The amount of n-hexadecane degradation observed was in stoichiometric agreement with the theoretically expected amount of thiosulfate reduction. One of the pathways used by anaerobic microorganisms to activate alkanes is addition to fumarate that involves alkylsuccinate synthase as a key enzyme. A search for genes encoding homologous enzymes in A. fulgidus identified the pflD gene (locus-tag AF1449) that was previously annotated as a pyruvate formate lyase. A phylogenetic analysis revealed that this gene is of bacterial origin and was likely acquired by A. fulgidus from a bacterial donor through a horizontal gene transfer. Based on three-dimensional modeling of the corresponding protein and molecular dynamic simulations, we hypothesize an alkylsuccinate synthase activity for this gene product. The pflD gene expression was upregulated during the growth of A. fulgidus on an n-alkane (C16) compared with growth on a fatty acid. Our results suggest that anaerobic alkane degradation in A. fulgidus may involve the gene pflD in alkane activation through addition to fumarate. These findings highlight the possible importance of hydrocarbon oxidation at high temperatures by A. fulgidus in hydrothermal vents and the deep biosphere. PMID:24763368

  12. Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA).

    PubMed

    Alves, M Madalena; Pereira, M Alcina; Sousa, Diana Z; Cavaleiro, Ana J; Picavet, Merijn; Smidt, Hauke; Stams, Alfons J M

    2009-09-01

    The position of high-rate anaerobic technology (HR-AnWT) in the wastewater treatment and bioenergy market can be enhanced if the range of suitable substrates is expanded. Analyzing existing technologies, applications and problems, it is clear that, until now, wastewaters with high lipids content are not effectively treated by HR-AnWT. Nevertheless, waste lipids are ideal potential substrates for biogas production, since theoretically more methane can be produced, when compared with proteins or carbohydrates. In this minireview, the classical problems of lipids methanization in anaerobic processes are discussed and new concepts to enhance lipids degradation are presented. Reactors operation, feeding strategies and prospects of technological developments for wastewater treatment are discussed. Long-chain fatty acids (LCFA) degradation is accomplished by syntrophic communities of anaerobic bacteria and methanogenic archaea. For optimal performance these syntrophic communities need to be clustered in compact aggregates, which is often difficult to achieve with wastewaters that contain fats and lipids. Driving the methane production from lipids/LCFA at industrial scale without risk of overloading and inhibition is still a challenge that has the potential for filling a gap in the existing processes and technologies for biological methane production associated to waste and wastewater treatment.

  13. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms

    NASA Technical Reports Server (NTRS)

    Jackson, B. E.; Bhupathiraju, V. K.; Tanner, R. S.; Woese, C. R.; McInerney, M. J.

    1999-01-01

    Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 +/- 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the delta-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus.

  14. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms.

    PubMed

    Jackson, B E; Bhupathiraju, V K; Tanner, R S; Woese, C R; McInerney, M J

    1999-01-01

    Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 +/- 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the delta-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus.

  15. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms

    NASA Technical Reports Server (NTRS)

    Jackson, B. E.; Bhupathiraju, V. K.; Tanner, R. S.; Woese, C. R.; McInerney, M. J.

    1999-01-01

    Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 +/- 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the delta-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus.

  16. Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. [Methanobacterium formicicum; Desulfovibrio vulgaris

    SciTech Connect

    Thiele, J.H.; Zeikus, J.G.

    1988-01-01

    Microbial formate production and consumption during syntrophic conversion of ethanol or lactate to methane was examined in purified flocs and digestor contents obtained from a whey-processing digestor. Formate production by digestor contents or purified digestor flocs was dependent on CO/sub 2/ and either ethanol or lactate but not H/sub 2/ gas as an electron donor. Floc preparations accumulated fourfold-higher levels of formate (40 ..mu..M) than digestor contents, and the free flora was the primary site for formate cleavage to CO/sub 2/ and H/sub 2/ (90 ..mu..M formate per h). Inhibition of methanogenesis by CHCl/sub 3/ resulted in formate accumulation and suppression of syntrophic ethanol oxidation. H/sub 2/ gas was an insignificant intermediary metabolite of syntrophic ethanol conversion by flocs, and it exogenous addition neither stimulated methanogenes nor inhibited the initial rate of ethanol oxidation. These results demonstrated that >90% of the syntrophic ethanol conversion to methane by mixed cultures containing primarily Desulfovibrio vulgaris and Methanobacterium formicicum was mediated via interspecies formate transfer and the <10% was mediated via interspecies H/sub 2/ transfer. The results are discussed in relation to biochemical thermodynamics. A model is presented which describes the dynamics of a bicarbonate-formate electron shuttle mechanism for control of carbon and electron flow during syntrophic methanogenesis and provides a novel mechanism for energy conservation by syntrophic acetogens.

  17. Syntrophic interactions and mechanisms underpinning anaerobic methane oxidation: targeted metaproteogenomics, single-cell protein detection and quantitative isotope imaging of microbial consortia

    SciTech Connect

    Orphan, Victoria Jeanne

    2014-11-26

    Syntrophy and mutualism play a central role in carbon and nutrient cycling by microorganisms. Yet, our ability to effectively study symbionts in culture has been hindered by the inherent interdependence of syntrophic associations, their dynamic behavior, and their frequent existence at thermodynamic limits. Now solutions to these challenges are emerging in the form of new methodologies. Developing strategies that establish links between the identity of microorganisms and their metabolic potential, as well as techniques that can probe metabolic networks on a scale that captures individual molecule exchange and processing, is at the forefront of microbial ecology. Understanding the interactions between microorganisms on this level, at a resolution previously intractable, will lead to our greater understanding of carbon turnover and microbial community resilience to environmental perturbations. In this project, we studied an enigmatic syntrophic association between uncultured methane-oxidizing archaea and sulfate-reducing bacteria. This environmental archaeal-bacterial partnership represents a globally important sink for methane in anoxic environments. The specific goals of this project were organized into 3 major tasks designed to address questions relating to the ecophysiology of these syntrophic organisms under changing environmental conditions (e.g. different electron acceptors and nutrients), primarily through the development of microanalytical imaging methods which enable the visualization of the spatial distribution of the partners within aggregates, consumption and exchange of isotopically labeled substrates, and expression of targeted proteins identified via metaproteomics. The advanced tool set developed here to collect, correlate, and analyze these high resolution image and isotope-based datasets from methane-oxidizing consortia has the potential to be widely applicable for studying and modeling patterns of activity and interactions across a broad range of

  18. The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris

    SciTech Connect

    PBD; ENIGMA; GTL; VIMSS; Walker, Christopher B.; He, Zhili; Yang, Zamin K.; Ringbauer Jr., Joseph A.; He, Qiang; Zhou, Jizhong; Voordouw, Gerrit; Wall, Judy D.; Arkin, Adam P.; Hazen, Terry C.; Stolyar, Sergey; Stahl, David A.

    2009-06-22

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic couplings between hydrogen producers and consumers are a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent upon growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, D. vulgaris up-regulated numerous genes involved in electron transfer and energy generation when compared with sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn) and the well-characterized high-molecular weight cytochrome (Hmc) were among the most highly expressed and up-regulated. Additionally, a predicted operon coding for genes involved in lactate transport and oxidation exhibited up-regulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd and Hyn impaired or severely limited syntrophic growth but had little affect on growth via sulfate-respiration. These results demonstrate that syntrophic growth and sulfate-respiration use largely independent energy generation pathways and imply that understanding of microbial processes sustaining nutrient cycling must consider lifestyles not captured in pure culture.

  19. The electron transfer system of syntrophically grown Desulfovibrio vulgaris

    SciTech Connect

    Walker, C.B.; He, Z.; Yang, Z.K.; Ringbauer, Jr., J.A.; He, Q.; Zhou, J.; Voordouw, G.; Wall, J.D.; Arkin, A.P.; Hazen, T.C.; Stolyar, S.; Stahl, D.A.

    2009-05-01

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic couplings between hydrogen producers and consumers are a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent upon growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, D. vulgaris up-regulated numerous genes involved in electron transfer and energy generation when compared with sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn) and the well-characterized high-molecular weight cytochrome (Hmc) were among the most highly expressed and up-regulated. Additionally, a predicted operon coding for genes involved in lactate transport and oxidation exhibited up-regulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd and Hyn impaired or severely limited syntrophic growth but had little affect on growth via sulfate-respiration. These results demonstrate that syntrophic growth and sulfate-respiration use largely independent energy generation pathways and imply that understanding of microbial processes sustaining nutrient cycling must consider lifestyles not captured in pure culture.

  20. The electron transfer system of syntrophically grown Desulfovibrio vulgaris.

    PubMed

    Walker, Christopher B; He, Zhili; Yang, Zamin K; Ringbauer, Joseph A; He, Qiang; Zhou, Jizhong; Voordouw, Gerrit; Wall, Judy D; Arkin, Adam P; Hazen, Terry C; Stolyar, Sergey; Stahl, David A

    2009-09-01

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic coupling between hydrogen producers and consumers is a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent on growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, numerous genes involved in electron transfer and energy generation were upregulated in D. vulgaris compared with their expression in sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn), and the well-characterized high-molecular-weight cytochrome (Hmc) were among the most highly expressed and upregulated genes. Additionally, a predicted operon containing genes involved in lactate transport and oxidation exhibited upregulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd, and Hyn impaired or severely limited syntrophic growth but had little effect on growth via sulfate respiration. These results demonstrate that syntrophic growth and sulfate respiration use largely independent energy generation pathways and imply that to understand microbial processes that sustain nutrient cycling, lifestyles not captured in pure culture must be considered.

  1. The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris▿ †

    PubMed Central

    Walker, Christopher B.; He, Zhili; Yang, Zamin K.; Ringbauer, Joseph A.; He, Qiang; Zhou, Jizhong; Voordouw, Gerrit; Wall, Judy D.; Arkin, Adam P.; Hazen, Terry C.; Stolyar, Sergey; Stahl, David A.

    2009-01-01

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic coupling between hydrogen producers and consumers is a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent on growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, numerous genes involved in electron transfer and energy generation were upregulated in D. vulgaris compared with their expression in sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn), and the well-characterized high-molecular-weight cytochrome (Hmc) were among the most highly expressed and upregulated genes. Additionally, a predicted operon containing genes involved in lactate transport and oxidation exhibited upregulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd, and Hyn impaired or severely limited syntrophic growth but had little effect on growth via sulfate respiration. These results demonstrate that syntrophic growth and sulfate respiration use largely independent energy generation pathways and imply that to understand microbial processes that sustain nutrient cycling, lifestyles not captured in pure culture must be considered. PMID:19581361

  2. Metagenomic Analyses Reveal That Energy Transfer Gene Abundances Can Predict the Syntrophic Potential of Environmental Microbial Communities

    PubMed Central

    Oberding, Lisa; Gieg, Lisa M.

    2016-01-01

    Hydrocarbon compounds can be biodegraded by anaerobic microorganisms to form methane through an energetically interdependent metabolic process known as syntrophy. The microorganisms that perform this process as well as the energy transfer mechanisms involved are difficult to study and thus are still poorly understood, especially on an environmental scale. Here, metagenomic data was analyzed for specific clusters of orthologous groups (COGs) related to key energy transfer genes thus far identified in syntrophic bacteria, and principal component analysis was used in order to determine whether potentially syntrophic environments could be distinguished using these syntroph related COGs as opposed to universally present COGs. We found that COGs related to hydrogenase and formate dehydrogenase genes were able to distinguish known syntrophic consortia and environments with the potential for syntrophy from non-syntrophic environments, indicating that these COGs could be used as a tool to identify syntrophic hydrocarbon biodegrading environments using metagenomic data. PMID:27681901

  3. Long chain branching of PLA

    NASA Astrophysics Data System (ADS)

    Gu, Liangliang; Xu, Yuewen; Fahnhorst, Grant; Macosko, Christopher W.

    2017-05-01

    A trifunctional aziridine linker, trimethylolpropane tris(2-methyl-1-aziridinepropionate) (TTMAP), was melt blended with linear polylactic acid (PLA) to make star branched PLA. Adding pyromellitic dianhydride (PMDA) led to long chain branched (LCB) PLA. Mixing torque evolution during melt processing revealed high reactivity of aziridine with the carboxyl end group on PLA and an incomplete reaction of PMDA with the hydroxyl end group. Star-shaped PLA exhibited higher viscosity but no strain hardening in extensional flow while LCB PLA showed significant extensional hardening. Excess TTMAP in the branching reaction resulted in gel formation, which led to failure at low strain in extension. PMDA conversion was estimated based on gelation theory. The strain rate dependence of extensional hardening indicated that the LCB PLA had a low concentration of long chain branched molecules with an H-shaped topology. Unlike current methods used to branch PLA, free radical chemistry or use of an epoxy functional oligomers, our branching strategy produced strain hardening with less increase in shear viscosity. This study provides guidelines for design of polymers with low shear viscosity, which reduces pressure drop in extrusion, combined with strong extensional hardening, which enhances performance in processes that involve melt stretching.

  4. Energetics of syntrophic cooperation in methanogenic degradation.

    PubMed Central

    Schink, B

    1997-01-01

    Fatty acids and alcohols are key intermediates in the methanogenic degradation of organic matter, e.g., in anaerobic sewage sludge digestors or freshwater lake sediments. They are produced by classical fermenting bacteria for disposal of electrons derived in simultaneous substrate oxidations. Methanogenic bacteria can degrade primarily only one-carbon compounds. Therefore, acetate, propionate, ethanol, and their higher homologs have to be fermented further to one-carbon compounds. These fermentations are called secondary or syntrophic fermentations. They are endergonic processes under standard conditions and depend on intimate coupling with methanogenesis. The energetic situation of the prokaryotes cooperating in these processes is problematic: the free energy available in the reactions for total conversion of substrate to methane attributes to each partner amounts of energy in the range of the minimum biochemically convertible energy, i.e., 20 to 25 kJ per mol per reaction. This amount corresponds to one-third of an ATP unit and is equivalent to the energy required for a monovalent ion to cross the charged cytoplasmic membrane. Recent studies have revealed that syntrophically fermenting bacteria synthesize ATP by substrate-level phosphorylation and reinvest part of the ATP-bound energy into reversed electron transport processes, to release the electrons at a redox level accessible by the partner bacteria and to balance their energy budget. These findings allow us to understand the energy economy of these bacteria on the basis of concepts derived from the bioenergetics of other microorganisms. PMID:9184013

  5. Multiple Syntrophic Interactions in a Terephthalate-Degrading Methanogenic Consortium

    SciTech Connect

    Lykidis, Athanasios; Chen, Chia-Lung; Tringe, Susannah G.; McHardy, Alice C.; Copeland, Alex 5; Kyrpides, Nikos C.; Hugenholtz, Philip; Liu, Wen-Tso

    2010-08-05

    Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium tinside a hyper-mesophilic (i.e., between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified ?-oxidation to H{sub 2}/CO{sub 2} and acetate. These intermediates are converted to CH{sub 4}/CO{sub 2} by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to COsub 2}/H{sub 2} and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H{sub 2}-producing syntroph ? methanogen partnership that may serve to improve community stability.

  6. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by 'Smithella' spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens.

    PubMed

    Wawrik, Boris; Marks, Christopher R; Davidova, Irene A; McInerney, Michael J; Pruitt, Shane; Duncan, Kathleen E; Suflita, Joseph M; Callaghan, Amy V

    2016-09-01

    Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Anaerobic

    MedlinePlus

    ... more prolonged exercise like walking or jogging. Anaerobic reactions are faster. We need them during shorter, more intense activities like sprinting. Anaerobic exercise leads to a buildup of lactic acid in our tissues. We need oxygen to remove ...

  8. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments.

    PubMed

    Fowler, S Jane; Toth, Courtney R A; Gieg, Lisa M

    2016-01-01

    The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst

  9. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments

    PubMed Central

    Fowler, S. Jane; Toth, Courtney R. A.; Gieg, Lisa M.

    2016-01-01

    The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst

  10. Acetate inhibition of methanogenic, syntrophic benzoate degradation. [Methanospirillum

    SciTech Connect

    Dolfing, J.; Tiedje, J.M.

    1988-07-01

    Acetate inhibited benzoate degradation by a syntrophic coculture of an anaerobic benzoate degrader (strain BZ-2) and Methanospirillum strain PM-1; the apparent K/sub i/ for acetate was approximately 40 mM. The addition of acetate resulted in a decrease in the hydrogen concentration in the coculture, indicating that phenomena related to interspecies hydrogen transfer affected this value and that the effect of acetate on the benzoate-degrading partner was probably greater than the apparent K/sub i/ for the coculture suggests.

  11. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions.

    PubMed

    Sorokin, Dimitry Y; Abbas, Ben; Geleijnse, Mitchell; Kolganova, Tatjana V; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2016-09-01

    Until now anaerobic oxidation of VFA at high salt-pH has been demonstrated only at sulfate-reducing conditions. Here, we present results of a microbiological investigation of anaerobic conversion of organic acids and alcohols at methanogenic conditions by syntrophic associations enriched from hypersaline soda lakes in Central Asia. Sediment incubation experiments showed active, albeit very slow, methane formation from acetate, propionate, butyrate and C2 C4 alcohols at pH 10 and various levels of salinity. Enrichments of syntrophic associations using hydrogenotrophic members of the genus Methanocalculus from soda lakes as partners resulted in several highly enriched cultures converting acetate, propionate, butyrate, benzoate and EtOH to methane. Most syntrophs belonged to Firmicutes, while the propionate-oxidizer formed a novel lineage within the family Syntrophobacteraceae in the Deltaproteobacteria. The acetate-oxidizing syntroph was identified as 'Ca. Syntrophonatronum acetioxidans' previously found to oxidize acetate at sulfate-reducing conditions up to salt-saturating concentrations. Butyrate and a benzoate-degrading syntrophs represent novel genus-level lineages in Syntrophomonadales which are proposed as Candidatus taxons 'Syntrophobaca', 'Syntrophocurvum' and 'Syntropholuna'. Overall, despite very slow growth, the results indicated the presence of a functionally competent syntrophic community in hypersaline soda lakes, capable of efficient oxidation of fermentation products to methane at extremely haloalkaline conditions.

  12. Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations.

    PubMed

    Hao, Li-Ping; Lü, Fan; He, Pin-Jing; Li, Lei; Shao, Li-Ming

    2011-01-15

    To quantify the contribution of syntrophic acetate oxidation to thermophilic anaerobic methanogenesis under the stressed condition induced by acidification, the methanogenic conversion process of 100 mmol/L acetate was monitored simultaneously by using isotopic tracing and selective inhibition techniques, supplemented with the analysis of unculturable microorganisms. Both quantitative methods demonstrated that, in the presence of aceticlastic and hydrogenotrophic methanogens, a large percentage of methane (up to 89%) was initially derived from CO(2) reduction, indicating the predominant contribution of the syntrophic acetate oxidation pathway to acetate degradation at high acid concentrations. A temporal decrease of the fraction of hydrogenotrophic methanogenesis from more than 60% to less than 40% reflected the gradual prevalence of the aceticlastic methanogenesis pathway along with the reduction of acetate. This apparent discrimination of acetate methanization pathways highlighted the importance of the syntrophic acetate-oxidizing bacteria to initialize methanogenesis from high organic loadings.

  13. Microbial Community Dynamics and Stability during an Ammonia-Induced Shift to Syntrophic Acetate Oxidation

    PubMed Central

    Werner, Jeffrey J.; Garcia, Marcelo L.; Perkins, Sarah D.; Yarasheski, Kevin E.; Smith, Samuel R.; Muegge, Brian D.; Stadermann, Frank J.; DeRito, Christopher M.; Floss, Christine; Madsen, Eugene L.; Gordon, Jeffrey I.

    2014-01-01

    Anaerobic digesters rely on the diversity and distribution of parallel metabolic pathways mediated by complex syntrophic microbial communities to maintain robust and optimal performance. Using mesophilic swine waste digesters, we experimented with increased ammonia loading to induce a shift from aceticlastic methanogenesis to an alternative acetate-consuming pathway of syntrophic acetate oxidation. In comparison with control digesters, we observed shifts in bacterial 16S rRNA gene content and in functional gene repertoires over the course of the digesters' 3-year operating period. During the first year, under identical startup conditions, all bioreactors mirrored each other closely in terms of bacterial phylotype content, phylogenetic structure, and evenness. When we perturbed the digesters by increasing the ammonia concentration or temperature, the distribution of bacterial phylotypes became more uneven, followed by a return to more even communities once syntrophic acetate oxidation had allowed the experimental bioreactors to regain stable operation. The emergence of syntrophic acetate oxidation coincided with a partial shift from aceticlastic to hydrogenotrophic methanogens. Our 16S rRNA gene analysis also revealed that acetate-fed enrichment experiments resulted in communities that did not represent the bioreactor community. Analysis of shotgun sequencing of community DNA suggests that syntrophic acetate oxidation was carried out by a heterogeneous community rather than by a specific keystone population with representatives of enriched cultures with this metabolic capacity. PMID:24657858

  14. Response of a rice paddy soil methanogen to syntrophic growth as revealed by transcriptional analyses.

    PubMed

    Liu, Pengfei; Yang, Yanxiang; Lü, Zhe; Lu, Yahai

    2014-08-01

    Members of Methanocellales are widespread in paddy field soils and play the key role in methane production. These methanogens feature largely in these organisms’ adaptation to low H2 and syntrophic growth with anaerobic fatty acid oxidizers. The adaptive mechanisms, however, remain unknown. In the present study, we determined the transcripts of 21 genes involved in the key steps of methanogenesis and acetate assimilation of Methanocella conradii HZ254, a strain recently isolated from paddy field soil. M. conradii was grown in monoculture and syntrophically with Pelotomaculum thermopropionicum (a propionate syntroph) or Syntrophothermus lipocalidus (a butyrate syntroph). Comparison of the relative transcript abundances showed that three hydrogenase-encoding genes and all methanogenesis-related genes tested were upregulated in cocultures relative to monoculture. The genes encoding formylmethanofuran dehydrogenase (Fwd), heterodisulfide reductase (Hdr), and the membrane-bound energy-converting hydrogenase (Ech) were the most upregulated among the evaluated genes. The expression of the formate dehydrogenase (Fdh)-encoding gene also was significantly upregulated. In contrast, an acetate assimilation gene was downregulated in cocultures. The genes coding for Fwd, Hdr, and the D subunit of F420-nonreducing hydrogenase (Mvh) form a large predicted transcription unit; therefore, the Mvh/Hdr/Fwd complex, capable of mediating the electron bifurcation and connecting the first and last steps of methanogenesis, was predicted to be formed in M. conradii. We propose that Methanocella methanogens cope with low H2 and syntrophic growth by (i) stabilizing the Mvh/Hdr/Fwd complex and (ii) activating formatedependent methanogenesis.

  15. Single-cell analysis reveals gene-expression heterogeneity in syntrophic dual-culture of Desulfovibrio vulgaris with Methanosarcina barkeri

    NASA Astrophysics Data System (ADS)

    Qi, Zhenhua; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2014-12-01

    Microbial syntrophic metabolism has been well accepted as the heart of how methanogenic and other anaerobic microbial communities function. In this work, we applied a single-cell RT-qPCR approach to reveal gene-expression heterogeneity in a model syntrophic system of Desulfovibrio vulgaris and Methanosarcina barkeri, as compared with the D. vulgaris monoculture. Using the optimized primers and single-cell analytical protocol, we quantitatively determine gene-expression levels of 6 selected target genes in each of the 120 single cells of D. vulgaris isolated from its monoculture and dual-culture with M. barkeri. The results demonstrated very significant cell-to-cell gene-expression heterogeneity for the selected D. vulgaris genes in both the monoculture and the syntrophic dual-culture. Interestingly, no obvious increase in gene-expression heterogeneity for the selected genes was observed for the syntrophic dual-culture when compared with its monoculture, although the community structure and cell-cell interactions have become more complicated in the syntrophic dual-culture. In addition, the single-cell RT-qPCR analysis also provided further evidence that the gene cluster (DVU0148-DVU0150) may be involved syntrophic metabolism between D. vulgaris and M. barkeri. Finally, the study validated that single-cell RT-qPCR analysis could be a valuable tool in deciphering gene functions and metabolism in mixed-cultured microbial communities.

  16. Single-cell analysis reveals gene-expression heterogeneity in syntrophic dual-culture of Desulfovibrio vulgaris with Methanosarcina barkeri.

    PubMed

    Qi, Zhenhua; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2014-12-15

    Microbial syntrophic metabolism has been well accepted as the heart of how methanogenic and other anaerobic microbial communities function. In this work, we applied a single-cell RT-qPCR approach to reveal gene-expression heterogeneity in a model syntrophic system of Desulfovibrio vulgaris and Methanosarcina barkeri, as compared with the D. vulgaris monoculture. Using the optimized primers and single-cell analytical protocol, we quantitatively determine gene-expression levels of 6 selected target genes in each of the 120 single cells of D. vulgaris isolated from its monoculture and dual-culture with M. barkeri. The results demonstrated very significant cell-to-cell gene-expression heterogeneity for the selected D. vulgaris genes in both the monoculture and the syntrophic dual-culture. Interestingly, no obvious increase in gene-expression heterogeneity for the selected genes was observed for the syntrophic dual-culture when compared with its monoculture, although the community structure and cell-cell interactions have become more complicated in the syntrophic dual-culture. In addition, the single-cell RT-qPCR analysis also provided further evidence that the gene cluster (DVU0148-DVU0150) may be involved syntrophic metabolism between D. vulgaris and M. barkeri. Finally, the study validated that single-cell RT-qPCR analysis could be a valuable tool in deciphering gene functions and metabolism in mixed-cultured microbial communities.

  17. Thermodynamics and H2 Transfer in a Methanogenic, Syntrophic Community

    PubMed Central

    Hamilton, Joshua J.; Calixto Contreras, Montserrat; Reed, Jennifer L.

    2015-01-01

    Microorganisms in nature do not exist in isolation but rather interact with other species in their environment. Some microbes interact via syntrophic associations, in which the metabolic by-products of one species serve as nutrients for another. These associations sustain a variety of natural communities, including those involved in methanogenesis. In anaerobic syntrophic communities, energy is transferred from one species to another, either through direct contact and exchange of electrons, or through small molecule diffusion. Thermodynamics plays an important role in governing these interactions, as the oxidation reactions carried out by the first community member are only possible because degradation products are consumed by the second community member. This work presents the development and analysis of genome-scale network reconstructions of the bacterium Syntrophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei. The models were used to verify proposed mechanisms of ATP production within each species. We then identified additional constraints and the cellular objective function required to match experimental observations. The thermodynamic S. fumaroxidans model could not explain why S. fumaroxidans does not produce H2 in monoculture, indicating that current methods might not adequately estimate the thermodynamics, or that other cellular processes (e.g., regulation) play a role. We also developed a thermodynamic coculture model of the association between the organisms. The coculture model correctly predicted the exchange of both H2 and formate between the two species and suggested conditions under which H2 and formate produced by S. fumaroxidans would be fully consumed by M. hungatei. PMID:26147299

  18. Thermodynamics and H2 Transfer in a Methanogenic, Syntrophic Community.

    PubMed

    Hamilton, Joshua J; Calixto Contreras, Montserrat; Reed, Jennifer L

    2015-07-01

    Microorganisms in nature do not exist in isolation but rather interact with other species in their environment. Some microbes interact via syntrophic associations, in which the metabolic by-products of one species serve as nutrients for another. These associations sustain a variety of natural communities, including those involved in methanogenesis. In anaerobic syntrophic communities, energy is transferred from one species to another, either through direct contact and exchange of electrons, or through small molecule diffusion. Thermodynamics plays an important role in governing these interactions, as the oxidation reactions carried out by the first community member are only possible because degradation products are consumed by the second community member. This work presents the development and analysis of genome-scale network reconstructions of the bacterium Syntrophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei. The models were used to verify proposed mechanisms of ATP production within each species. We then identified additional constraints and the cellular objective function required to match experimental observations. The thermodynamic S. fumaroxidans model could not explain why S. fumaroxidans does not produce H2 in monoculture, indicating that current methods might not adequately estimate the thermodynamics, or that other cellular processes (e.g., regulation) play a role. We also developed a thermodynamic coculture model of the association between the organisms. The coculture model correctly predicted the exchange of both H2 and formate between the two species and suggested conditions under which H2 and formate produced by S. fumaroxidans would be fully consumed by M. hungatei.

  19. Novel Syntrophic Populations Dominate an Ammonia-Tolerant Methanogenic Microbiome

    PubMed Central

    Frank, J. A.; Arntzen, M. Ø.; Sun, L.; Hagen, L. H.; McHardy, A. C.; Horn, S. J.; Eijsink, V. G. H.; Schnürer, A.

    2016-01-01

    ABSTRACT Biogas reactors operating with protein-rich substrates have high methane potential and industrial value; however, they are highly susceptible to process failure because of the accumulation of ammonia. High ammonia levels cause a decline in acetate-utilizing methanogens and instead promote the conversion of acetate via a two-step mechanism involving syntrophic acetate oxidation (SAO) to H2 and CO2, followed by hydrogenotrophic methanogenesis. Despite the key role of syntrophic acetate-oxidizing bacteria (SAOB), only a few culturable representatives have been characterized. Here we show that the microbiome of a commercial, ammonia-tolerant biogas reactor harbors a deeply branched, uncultured phylotype (unFirm_1) accounting for approximately 5% of the 16S rRNA gene inventory and sharing 88% 16S rRNA gene identity with its closest characterized relative. Reconstructed genome and quantitative metaproteomic analyses imply unFirm_1’s metabolic dominance and SAO capabilities, whereby the key enzymes required for acetate oxidation are among the most highly detected in the reactor microbiome. While culturable SAOB were identified in genomic analyses of the reactor, their limited proteomic representation suggests that unFirm_1 plays an important role in channeling acetate toward methane. Notably, unFirm_1-like populations were found in other high-ammonia biogas installations, conjecturing a broader importance for this novel clade of SAOB in anaerobic fermentations. IMPORTANCE The microbial production of methane or “biogas” is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in

  20. The Genome of Syntrophomonas Wolfei: New Insights into Syntrophic Metabolism and Biohydrogen Production

    SciTech Connect

    Sieber, Jessica R; Sims, David R; Han, Cliff F; Kim, E; Lykidis, Athanasios; Lapidus, Alla; McDonald, Erin; Rohlin, Lars; Culley, David E; Gunsalus, Robert; McInerney, Michael J

    2010-08-01

    Syntrophomonas wolfei is a specialist, evolutionarily adapted for syntrophic growth with methanogens and other hydrogen- and/or formate-using microorganisms. This slow growing anaerobe has three putative ribosome RNA operons, each of which has 16S rRNA and 23S rRNA genes of different length and multiple 5S rRNA genes. The genome also contains ten RNA-directed, DNA polymerase genes. Genomic analysis shows that S. wolfei relies solely on the reduction of protons, bicarbonate, or unsaturated fatty acids to re-oxidize reduced cofactors. S. wolfei lacks the genes needed for aerobic or anaerobic respiration and has an exceptionally limited ability to create ion gradients. An ATP synthase and a pyrophosphatase were the only systems detected capable of creating an ion gradient. Multiple homologs for β-oxidation genes were present even though S. wolfei uses a limited range of fatty acids from 4 to 8 carbons in length. S. wolfei, other syntrophic metabolizers with completed genomic sequences, and thermophilic anaerobes known to produce high molar ratios of hydrogen from glucose have genes to produce H2 from NADH by an electron bifurcation mechanism. Comparative genomic analysis also suggests that formate production from NADH may involve electron bifurcation. A membrane-bound, iron-sulfur oxidoreductase found in S. wolfei and Syntrophus aciditrophicus may be uniquely involved in reverse electron transport during syntrophic fatty acid metabolism. The genome sequence of S. wolfei reveals several core reactions that may be characteristic of syntrophic fatty acid metabolism and illustrates how biological systems produce hydrogen from thermodynamically difficult reactions.

  1. Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria

    PubMed Central

    Narihiro, Takashi; Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Sekiguchi, Yuji; Liu, Wen-Tso

    2016-01-01

    The syntrophic degradation of branched-chain fatty acids (BCFAs) such as 2-methylbutyrate and isobutyrate is an essential step in the production of methane from proteins/amino acids in anaerobic ecosystems. While a few syntrophic BCFA-degrading bacteria have been isolated, their metabolic pathways in BCFA and short-chain fatty acid (SCFA) degradation as well as energy conservation systems remain unclear. In an attempt to identify these pathways, we herein performed comparative genomics of three syntrophic bacteria: 2-methylbutyrate-degrading “Syntrophomonas wolfei subsp. methylbutyratica” strain JCM 14075T (=4J5T), isobutyrate-degrading Syntrophothermus lipocalidus strain TGB-C1T, and non-BCFA-metabolizing S. wolfei subsp. wolfei strain GöttingenT. We demonstrated that 4J5 and TGB-C1 both encode multiple genes/gene clusters involved in β-oxidation, as observed in the Göttingen genome, which has multiple copies of genes associated with butyrate degradation. The 4J5 genome possesses phylogenetically distinct β-oxidation genes, which may be involved in 2-methylbutyrate degradation. In addition, these Syntrophomonadaceae strains harbor various hydrogen/formate generation systems (i.e., electron-bifurcating hydrogenase, formate dehydrogenase, and membrane-bound hydrogenase) and energy-conserving electron transport systems, including electron transfer flavoprotein (ETF)-linked acyl-CoA dehydrogenase, ETF-linked iron-sulfur binding reductase, ETF dehydrogenase (FixABCX), and flavin oxidoreductase-heterodisulfide reductase (Flox-Hdr). Unexpectedly, the TGB-C1 genome encodes a nitrogenase complex, which may function as an alternative H2 generation mechanism. These results suggest that the BCFA-degrading syntrophic strains 4J5 and TGB-C1 possess specific β-oxidation-related enzymes for BCFA oxidation as well as appropriate energy conservation systems to perform thermodynamically unfavorable syntrophic metabolism. PMID:27431485

  2. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments.

    PubMed

    Li, Huijuan; Chang, Jiali; Liu, Pengfei; Fu, Li; Ding, Dewen; Lu, Yahai

    2015-05-01

    Syntrophic interaction occurs during anaerobic fermentation of organic substances forming methane as the final product. H2 and formate are known to serve as the electron carriers in this process. Recently, it has been shown that direct interspecies electron transfer (DIET) occurs for syntrophic CH4 production from ethanol and acetate. Here, we constructed paddy soil enrichments to determine the involvement of DIET in syntrophic butyrate oxidation and CH4 production. The results showed that CH4 production was significantly accelerated in the presence of nanoFe3 O4 in all continuous transfers. This acceleration increased with the increase of nanoFe3 O4 concentration but was dismissed when Fe3 O4 was coated with silica that insulated the mineral from electrical conduction. NanoFe3 O4 particles were found closely attached to the cell surfaces of different morphology, thus bridging cell connections. Molecular approaches, including DNA-based stable isotope probing, revealed that the bacterial Syntrophomonadaceae and Geobacteraceae, and the archaeal Methanosarcinaceae, Methanocellales and Methanobacteriales, were involved in the syntrophic butyrate oxidation and CH4 production. Among them, the growth of Geobacteraceae strictly relied on the presence of nanoFe3 O4 and its electrical conductivity in particular. Other organisms, except Methanobacteriales, were present in enrichments regardless of nanoFe3 O4 amendment. Collectively, our study demonstrated that the nanoFe3 O4 -facilitated DIET occurred in syntrophic CH4 production from butyrate, and Geobacter species played the key role in this process in the paddy soil enrichments.

  3. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

    PubMed

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2015-11-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate-oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic-cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleu thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation were assessed under 0.26, 3, 5 and 7 g NH4 (+)-N L(-1). The results showed that some hydrogenotrophic methanogens were equally, or in some cases, more tolerant to high ammonia levels compared to SAOB. Furthermore, a mesophilic hydrogenotrophic methanogen was more sensitive to ammonia toxicity compared to thermophilic methanogens tested in the study, which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still absent.

  4. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation.

    PubMed

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui

    2015-08-15

    Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89-94% of the electrons released from benzoate oxidation were recovered in CH4 production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  5. Evolution from a respiratory ancestor to fill syntrophic and fermentative niches: comparative fenomics of six Geobacteraceae species

    PubMed Central

    Butler, Jessica E; Young, Nelson D; Lovley, Derek R

    2009-01-01

    Background The anaerobic degradation of organic matter in natural environments, and the biotechnical use of anaerobes in energy production and remediation of subsurface environments, both require the cooperative activity of a diversity of microorganisms in different metabolic niches. The Geobacteraceae family contains members with three important anaerobic metabolisms: fermentation, syntrophic degradation of fermentation intermediates, and anaerobic respiration. Results In order to learn more about the evolution of anaerobic microbial communities, the genome sequences of six Geobacteraceae species were analyzed. The results indicate that the last common Geobacteraceae ancestor contained sufficient genes for anaerobic respiration, completely oxidizing organic compounds with the reduction of external electron acceptors, features that are still retained in modern Geobacter and Desulfuromonas species. Evolution of specialization for fermentative growth arose twice, via distinct lateral gene transfer events, in Pelobacter carbinolicus and Pelobacter propionicus. Furthermore, P. carbinolicus gained hydrogenase genes and genes for ferredoxin reduction that appear to permit syntrophic growth via hydrogen production. The gain of new physiological capabilities in the Pelobacter species were accompanied by the loss of several key genes necessary for the complete oxidation of organic compounds and the genes for the c-type cytochromes required for extracellular electron transfer. Conclusion The results suggest that Pelobacter species evolved parallel strategies to enhance their ability to compete in environments in which electron acceptors for anaerobic respiration were limiting. More generally, these results demonstrate how relatively few gene changes can dramatically transform metabolic capabilities and expand the range of environments in which microorganisms can compete. PMID:19284579

  6. Evolution from a respiratory ancestor to fill syntrophic and fermentative niches: comparative fenomics of six Geobacteraceae species.

    PubMed

    Butler, Jessica E; Young, Nelson D; Lovley, Derek R

    2009-03-11

    The anaerobic degradation of organic matter in natural environments, and the biotechnical use of anaerobes in energy production and remediation of subsurface environments, both require the cooperative activity of a diversity of microorganisms in different metabolic niches. The Geobacteraceae family contains members with three important anaerobic metabolisms: fermentation, syntrophic degradation of fermentation intermediates, and anaerobic respiration. In order to learn more about the evolution of anaerobic microbial communities, the genome sequences of six Geobacteraceae species were analyzed. The results indicate that the last common Geobacteraceae ancestor contained sufficient genes for anaerobic respiration, completely oxidizing organic compounds with the reduction of external electron acceptors, features that are still retained in modern Geobacter and Desulfuromonas species. Evolution of specialization for fermentative growth arose twice, via distinct lateral gene transfer events, in Pelobacter carbinolicus and Pelobacter propionicus. Furthermore, P. carbinolicus gained hydrogenase genes and genes for ferredoxin reduction that appear to permit syntrophic growth via hydrogen production. The gain of new physiological capabilities in the Pelobacter species were accompanied by the loss of several key genes necessary for the complete oxidation of organic compounds and the genes for the c-type cytochromes required for extracellular electron transfer. The results suggest that Pelobacter species evolved parallel strategies to enhance their ability to compete in environments in which electron acceptors for anaerobic respiration were limiting. More generally, these results demonstrate how relatively few gene changes can dramatically transform metabolic capabilities and expand the range of environments in which microorganisms can compete.

  7. Genome-Guided Analysis and Whole Transcriptome Profiling of the Mesophilic Syntrophic Acetate Oxidising Bacterium Syntrophaceticus schinkii

    PubMed Central

    Manzoor, Shahid; Bongcam-Rudloff, Erik; Schnürer, Anna; Müller, Bettina

    2016-01-01

    Syntrophaceticus schinkii is a mesophilic, anaerobic bacterium capable of oxidising acetate to CO2 and H2 in intimate association with a methanogenic partner, a syntrophic relationship which operates close to the energetic limits of microbial life. Syntrophaceticus schinkii has been identified as a key organism in engineered methane-producing processes relying on syntrophic acetate oxidation as the main methane-producing pathway. However, due to strict cultivation requirements and difficulties in reconstituting the thermodynamically unfavourable acetate oxidation, the physiology of this functional group is poorly understood. Genome-guided and whole transcriptome analyses performed in the present study provide new insights into habitat adaptation, syntrophic acetate oxidation and energy conservation. The working draft genome of Syntrophaceticus schinkii indicates limited metabolic capacities, with lack of organic nutrient uptake systems, chemotactic machineries, carbon catabolite repression and incomplete biosynthesis pathways. Ech hydrogenase, [FeFe] hydrogenases, [NiFe] hydrogenases, F1F0-ATP synthase and membrane-bound and cytoplasmic formate dehydrogenases were found clearly expressed, whereas Rnf and a predicted oxidoreductase/heterodisulphide reductase complex, both found encoded in the genome, were not expressed under syntrophic growth condition. A transporter sharing similarities to the high-affinity acetate transporters of aceticlastic methanogens was also found expressed, suggesting that Syntrophaceticus schinkii can potentially compete with methanogens for acetate. Acetate oxidation seems to proceed via the Wood-Ljungdahl pathway as all genes involved in this pathway were highly expressed. This study shows that Syntrophaceticus schinkii is a highly specialised, habitat-adapted organism relying on syntrophic acetate oxidation rather than metabolic versatility. By expanding its complement of respiratory complexes, it might overcome limiting bioenergetic

  8. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use

    PubMed Central

    Yoshida, Kiyohito; Hashimoto, Mikako; Hori, Ryuji; Adachi, Takumi; Okuyama, Hidetoshi; Orikasa, Yoshitake; Nagamine, Tadashi; Shimizu, Satoru; Ueno, Akio; Morita, Naoki

    2016-01-01

    The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase), the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs) such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed. PMID:27187420

  9. Dynamic functional characterization and phylogenetic changes due to Long Chain Fatty Acids pulses in biogas reactors

    PubMed Central

    Kougias, Panagiotis G.; Treu, Laura; Campanaro, Stefano; Zhu, Xinyu; Angelidaki, Irini

    2016-01-01

    The process stability of biogas plants is often deteriorated by the accumulation of Long Chain Fatty Acids (LCFA). The microbial community shifts due to LCFA disturbances have been poorly understood as the molecular techniques used were not able to identify the genome characteristics of uncultured microorganisms, and additionally, the presence of limited number of reference genomes in public databases prevented the comprehension of specific functional roles characterizing these microorganisms. The present study is the first research which deciphers by means of high throughput shotgun sequencing the dynamics of the microbial community during an inhibitory shock load induced by single pulses of unsaturated LCFA at two different concentrations (i.e. 2 g/L-reactor and 3 g/L-reactor). The metagenomic analysis showed that only the microbes associated with LCFA degradation could encode proteins related to “chemotaxis” and “flagellar assembly”, which promoted the ability to move towards the LCFA sources so as to degrade them. Moreover, the syntrophic interactions found between Syntrophomonas sp. together with Methanosarcina sp. were possibly assigned to the menaquinone-electron transfer. Finally, it was proven that a previously exposed to LCFA inoculum is more efficient in the degradation process of LCFA due to the specialization of the microbial consortium. PMID:27353502

  10. Syntrophic growth on formate: a new microbial niche in anoxic environments.

    PubMed

    Dolfing, Jan; Jiang, Bo; Henstra, Anne M; Stams, Alfons J M; Plugge, Caroline M

    2008-10-01

    Anaerobic syntrophic associations of fermentative bacteria and methanogenic archaea operate at the thermodynamic limits of life. The interspecies transfer of electrons from formate or hydrogen as a substrate for the methanogens is key. Contrary requirements of syntrophs and methanogens for growth-sustaining product and substrate concentrations keep the formate and hydrogen concentrations low and within a narrow range. Since formate is a direct substrate for methanogens, a niche for microorganisms that grow by the conversion of formate to hydrogen plus bicarbonate--or vice versa--may seem unlikely. Here we report experimental evidence for growth on formate by syntrophic communities of (i) Moorella sp. strain AMP in coculture with a thermophilic hydrogen-consuming Methanothermobacter species and of (ii) Desulfovibrio sp. strain G11 in coculture with a mesophilic hydrogen consumer, Methanobrevibacter arboriphilus AZ. In pure culture, neither Moorella sp. strain AMP, nor Desulfovibrio sp. strain G11, nor the methanogens grow on formate alone. These results imply the existence of a previously unrecognized microbial niche in anoxic environments.

  11. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments

    PubMed Central

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation. PMID:27597850

  12. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments.

    PubMed

    Zhang, Jianchao; Lu, Yahai

    2016-01-01

    Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation.

  13. An oleaginous bacterium that intrinsically accumulates long-chain free Fatty acids in its cytoplasm.

    PubMed

    Katayama, Taiki; Kanno, Manabu; Morita, Naoki; Hori, Tomoyuki; Narihiro, Takashi; Mitani, Yasuo; Kamagata, Yoichi

    2014-02-01

    Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.

  14. Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel.

    PubMed

    Li, Yue; Zhang, Yaobin; Yang, Yafei; Quan, Xie; Zhao, Zhiqiang

    2017-06-01

    Direct interspecies electron transfer (DIET) is an alternative to syntrophic metabolism in natural carbon cycle as well as in anaerobic digesters, but its function in anaerobic treatment of sulfate-containing wastewater have not yet to be described. Here, conductive stainless steel was added into anaerobic digesters for treating sulfate-containing wastewater to investigate the potential role of DIET in the response to the sulfate impact. Results showed that adding the conductive stainless steel made the anaerobic digestion less affected by the sulfate reduction than adding insulative plastic material. With adding stainless steel, methane production of the digesters increased by 7.5%-24.6%. Microbial analysis showed that the dissimilatory Fe (III) reducers like Geobacter species were enriched on the surface of the stainless steel. These results implied that the potential DIET of methanogenesis was established associating with stainless steel to outcompete the sulfate reduction.

  15. Small nickel nanoparticle arrays from long chain imidazolium ionic liquids

    DOE PAGES

    Yang, Mei; Campbell, Paul S.; Santini, Catherine C.; ...

    2013-11-08

    A series of six long chain alkyl mono- and bi-cationic imidazolium based salts with bis(trifluoromethylsulfonyl)imide (NTf2–) as the anion were synthesized and characterized. Single crystal structure of 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide could be obtained by X-ray analysis. All these long chain alkyl imidazolium based ILs were applied in the synthesis of nickel nanoparticles via chemical decomposition of an organometallic precursor of nickel. In these media, spontaneous decomposition of Ni(COD)2 (COD = 1,5-cyclooctadiene) in the absence of H2 occurred giving small NPs (≤4 nm) with narrow size distributions. Interestingly, formation of regularly interspaced NP arrays was also observed in long chain ILs. Lastly,more » such array formation could be interesting for potential applications such as carbon nanotube growth.« less

  16. Small nickel nanoparticle arrays from long chain imidazolium ionic liquids

    SciTech Connect

    Yang, Mei; Campbell, Paul S.; Santini, Catherine C.; Mudring, Anja -Verena

    2013-11-08

    A series of six long chain alkyl mono- and bi-cationic imidazolium based salts with bis(trifluoromethylsulfonyl)imide (NTf2–) as the anion were synthesized and characterized. Single crystal structure of 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide could be obtained by X-ray analysis. All these long chain alkyl imidazolium based ILs were applied in the synthesis of nickel nanoparticles via chemical decomposition of an organometallic precursor of nickel. In these media, spontaneous decomposition of Ni(COD)2 (COD = 1,5-cyclooctadiene) in the absence of H2 occurred giving small NPs (≤4 nm) with narrow size distributions. Interestingly, formation of regularly interspaced NP arrays was also observed in long chain ILs. Lastly, such array formation could be interesting for potential applications such as carbon nanotube growth.

  17. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat.

    PubMed

    Lin, Xueju; Handley, Kim M; Gilbert, Jack A; Kostka, Joel E

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  18. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    DOE PAGES

    Lin, Xueju; Handley, Kim M.; Gilbert, Jack A.; ...

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiablemore » carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.« less

  19. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    SciTech Connect

    Lin, Xueju; Handley, Kim M.; Gilbert, Jack A.; Kostka, Joel E.

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  20. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  1. Biosynthetic mechanism of very long chain polyunsaturated fatty acids in Thraustochytrium sp. 26185[S

    PubMed Central

    Meesapyodsuk, Dauenpen; Qiu, Xiao

    2016-01-01

    Thraustochytrium, a unicellular marine protist, has been used as a commercial source of very long chain PUFAs (VLCPUFAs) such as DHA (22:6n-3). Our recent work indicates coexistence of a Δ4-desaturation-dependent pathway (aerobic) and a polyketide synthase-like PUFA synthase pathway (anaerobic) to synthesize the fatty acids in Thraustochytrium sp. 26185. Heterologous expression of the Thraustochytrium PUFA synthase along with a phosphopantetheinyl transferase in Escherichia coli showed the anaerobic pathway was highly active in the biosynthesis of VLCPUFAs. The amount of Δ4 desaturated VLCPUFAs produced reached about 18% of the total fatty acids in the transformant cells at day 6 in a time course of the induced expression. In Thraustochytrium, the expression level of the PUFA synthase gene was much higher than that of the Δ4 desaturase gene, and also highly correlated with the production of VLCPUFAs. On the other hand, Δ9 and Δ12 desaturations in the aerobic pathway were either ineffective or absent in the species, as evidenced by the genomic survey, heterologous expression of candidate genes, and in vivo feeding experiments. These results indicate that the anaerobic pathway is solely responsible for the biosynthesis for VLCPUFAs in Thraustochytrium. PMID:27527703

  2. Assignment of fatty acid-beta-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses

    NASA Technical Reports Server (NTRS)

    Zhao, H.; Yang, D.; Woese, C. R.; Bryant, M. P.

    1993-01-01

    After enrichment from Chinese rural anaerobic digestor sludge, anaerobic, sporing and nonsporing, saturated fatty acid-beta-oxidizing syntrophic bacteria were isolated as cocultures with H2- and formate-utilizing Methanospirillum hungatei or Desulfovibrio sp. strain G-11. The syntrophs degraded C4 to C8 saturated fatty acids, including isobutyrate and 2-methylbutyrate. They were adapted to grow on crotonate and were isolated as pure cultures. The crotonate-grown pure cultures alone did not grow on butyrate in either the presence or the absence of some common electron acceptors. However, when they were reconstituted with M. hungatei, growth on butyrate again occurred. In contrast, crotonate-grown Clostridium kluyveri and Clostridium sticklandii, as well as Clostridium sporogenes, failed to grow on butyrate when these organisms were cocultured with M. hungatei. The crotonate-grown pure subcultures of the syntrophs described above were subjected to 16S rRNA sequence analysis. Several previously documented fatty acid-beta-oxidizing syntrophs grown in pure cultures with crotonate were also subjected to comparative sequence analyses. The sequence analyses revealed that the new sporing and nonsporing isolates and other syntrophs that we sequenced, which had either gram-negative or gram-positive cell wall ultrastructure, all belonged to the phylogenetically gram-positive phylum. They were not closely related to any of the previously known subdivisions in the gram-positive phylum with which they were compared, but were closely related to each other, forming a new subdivision in the phylum. We recommend that this group be designated Syntrophomonadaceae fam. nov.; a description is given.

  3. Assignment of fatty acid-beta-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses

    NASA Technical Reports Server (NTRS)

    Zhao, H.; Yang, D.; Woese, C. R.; Bryant, M. P.

    1993-01-01

    After enrichment from Chinese rural anaerobic digestor sludge, anaerobic, sporing and nonsporing, saturated fatty acid-beta-oxidizing syntrophic bacteria were isolated as cocultures with H2- and formate-utilizing Methanospirillum hungatei or Desulfovibrio sp. strain G-11. The syntrophs degraded C4 to C8 saturated fatty acids, including isobutyrate and 2-methylbutyrate. They were adapted to grow on crotonate and were isolated as pure cultures. The crotonate-grown pure cultures alone did not grow on butyrate in either the presence or the absence of some common electron acceptors. However, when they were reconstituted with M. hungatei, growth on butyrate again occurred. In contrast, crotonate-grown Clostridium kluyveri and Clostridium sticklandii, as well as Clostridium sporogenes, failed to grow on butyrate when these organisms were cocultured with M. hungatei. The crotonate-grown pure subcultures of the syntrophs described above were subjected to 16S rRNA sequence analysis. Several previously documented fatty acid-beta-oxidizing syntrophs grown in pure cultures with crotonate were also subjected to comparative sequence analyses. The sequence analyses revealed that the new sporing and nonsporing isolates and other syntrophs that we sequenced, which had either gram-negative or gram-positive cell wall ultrastructure, all belonged to the phylogenetically gram-positive phylum. They were not closely related to any of the previously known subdivisions in the gram-positive phylum with which they were compared, but were closely related to each other, forming a new subdivision in the phylum. We recommend that this group be designated Syntrophomonadaceae fam. nov.; a description is given.

  4. Assignment of fatty acid-beta-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses.

    PubMed

    Zhao, H; Yang, D; Woese, C R; Bryant, M P

    1993-04-01

    After enrichment from Chinese rural anaerobic digestor sludge, anaerobic, sporing and nonsporing, saturated fatty acid-beta-oxidizing syntrophic bacteria were isolated as cocultures with H2- and formate-utilizing Methanospirillum hungatei or Desulfovibrio sp. strain G-11. The syntrophs degraded C4 to C8 saturated fatty acids, including isobutyrate and 2-methylbutyrate. They were adapted to grow on crotonate and were isolated as pure cultures. The crotonate-grown pure cultures alone did not grow on butyrate in either the presence or the absence of some common electron acceptors. However, when they were reconstituted with M. hungatei, growth on butyrate again occurred. In contrast, crotonate-grown Clostridium kluyveri and Clostridium sticklandii, as well as Clostridium sporogenes, failed to grow on butyrate when these organisms were cocultured with M. hungatei. The crotonate-grown pure subcultures of the syntrophs described above were subjected to 16S rRNA sequence analysis. Several previously documented fatty acid-beta-oxidizing syntrophs grown in pure cultures with crotonate were also subjected to comparative sequence analyses. The sequence analyses revealed that the new sporing and nonsporing isolates and other syntrophs that we sequenced, which had either gram-negative or gram-positive cell wall ultrastructure, all belonged to the phylogenetically gram-positive phylum. They were not closely related to any of the previously known subdivisions in the gram-positive phylum with which they were compared, but were closely related to each other, forming a new subdivision in the phylum. We recommend that this group be designated Syntrophomonadaceae fam. nov.; a description is given.

  5. Genome-Guided Analysis of Physiological Capacities of Tepidanaerobacter acetatoxydans Provides Insights into Environmental Adaptations and Syntrophic Acetate Oxidation

    PubMed Central

    Niazi, Adnan; Bongcam-Rudloff, Erik; Schnürer, Anna

    2015-01-01

    This paper describes the genome-based analysis of Tepidanaerobacter acetatoxydans strain Re1, a syntrophic acetate-oxidising bacterium (SAOB). Principal issues such as environmental adaptations, metabolic capacities, and energy conserving systems have been investigated and the potential consequences for syntrophic acetate oxidation discussed. Briefly, in pure culture, T. acetatoxydans grows with different organic compounds and produces acetate as the main product. In a syntrophic consortium with a hydrogenotrophic methanogen, it can also reverse its metabolism and instead convert acetate to formate/H2 and CO2. It can only proceed if the product formed is continuously removed. This process generates a very small amount of energy that is scarcely enough for growth, which makes this particular syntrophy of special interest. As a crucial member of the biogas-producing community in ammonium-rich engineered AD processes, genomic features conferring ammonium resistance, bacterial defense, oxygen and temperature tolerance were found, as well as attributes related to biofilm formation and flocculation. It is likely that T. acetatoxydans can form an electrochemical gradient by putative electron-bifurcating Rnf complex and [Fe-Fe] hydrogenases, as observed in other acetogens. However, genomic deficiencies related to acetogenic metabolism and anaerobic respiration were discovered, such as the lack of formate dehydrogenase and F1F0 ATP synthase. This has potential consequences for the metabolic pathways used under SAO and non-SAO conditions. The two complete sets of bacteriophage genomes, which were found to be encoded in the genome, are also worthy of mention. PMID:25811859

  6. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures.

    PubMed

    Chen, Shanshan; Rotaru, Amelia-Elena; Liu, Fanghua; Philips, Jo; Woodard, Trevor L; Nevin, Kelly P; Lovley, Derek R

    2014-12-01

    This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth.

  7. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa

    PubMed Central

    Pewzner-Jung, Yael; Tavakoli Tabazavareh, Shaghayegh; Grassmé, Heike; Becker, Katrin Anne; Japtok, Lukasz; Steinmann, Jörg; Joseph, Tammar; Lang, Stephan; Tuemmler, Burkhard; Schuchman, Edward H; Lentsch, Alex B; Kleuser, Burkhard; Edwards, Michael J; Futerman, Anthony H; Gulbins, Erich

    2014-01-01

    Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P. aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P. aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection. PMID:25085879

  8. Syntrophic exchange in synthetic microbial communities

    PubMed Central

    Mee, Michael T.; Collins, James J.; Church, George M.; Wang, Harris H.

    2014-01-01

    Metabolic crossfeeding is an important process that can broadly shape microbial communities. However, little is known about specific crossfeeding principles that drive the formation and maintenance of individuals within a mixed population. Here, we devised a series of synthetic syntrophic communities to probe the complex interactions underlying metabolic exchange of amino acids. We experimentally analyzed multimember, multidimensional communities of Escherichia coli of increasing sophistication to assess the outcomes of synergistic crossfeeding. We find that biosynthetically costly amino acids including methionine, lysine, isoleucine, arginine, and aromatics, tend to promote stronger cooperative interactions than amino acids that are cheaper to produce. Furthermore, cells that share common intermediates along branching pathways yielded more synergistic growth, but exhibited many instances of both positive and negative epistasis when these interactions scaled to higher dimensions. In more complex communities, we find certain members exhibiting keystone species-like behavior that drastically impact the community dynamics. Based on comparative genomic analysis of >6,000 sequenced bacteria from diverse environments, we present evidence suggesting that amino acid biosynthesis has been broadly optimized to reduce individual metabolic burden in favor of enhanced crossfeeding to support synergistic growth across the biosphere. These results improve our basic understanding of microbial syntrophy while also highlighting the utility and limitations of current modeling approaches to describe the dynamic complexities underlying microbial ecosystems. This work sets the foundation for future endeavors to resolve key questions in microbial ecology and evolution, and presents a platform to develop better and more robust engineered synthetic communities for industrial biotechnology. PMID:24778240

  9. Syntrophic exchange in synthetic microbial communities.

    PubMed

    Mee, Michael T; Collins, James J; Church, George M; Wang, Harris H

    2014-05-20

    Metabolic crossfeeding is an important process that can broadly shape microbial communities. However, little is known about specific crossfeeding principles that drive the formation and maintenance of individuals within a mixed population. Here, we devised a series of synthetic syntrophic communities to probe the complex interactions underlying metabolic exchange of amino acids. We experimentally analyzed multimember, multidimensional communities of Escherichia coli of increasing sophistication to assess the outcomes of synergistic crossfeeding. We find that biosynthetically costly amino acids including methionine, lysine, isoleucine, arginine, and aromatics, tend to promote stronger cooperative interactions than amino acids that are cheaper to produce. Furthermore, cells that share common intermediates along branching pathways yielded more synergistic growth, but exhibited many instances of both positive and negative epistasis when these interactions scaled to higher dimensions. In more complex communities, we find certain members exhibiting keystone species-like behavior that drastically impact the community dynamics. Based on comparative genomic analysis of >6,000 sequenced bacteria from diverse environments, we present evidence suggesting that amino acid biosynthesis has been broadly optimized to reduce individual metabolic burden in favor of enhanced crossfeeding to support synergistic growth across the biosphere. These results improve our basic understanding of microbial syntrophy while also highlighting the utility and limitations of current modeling approaches to describe the dynamic complexities underlying microbial ecosystems. This work sets the foundation for future endeavors to resolve key questions in microbial ecology and evolution, and presents a platform to develop better and more robust engineered synthetic communities for industrial biotechnology.

  10. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium.

    PubMed

    Plugge, Caroline M; Balk, Melike; Stams, Alfons J M

    2002-03-01

    From granular sludge from a laboratory-scale upflow anaerobic sludge bed reactor operated at 55 degrees C with a mixture of volatile fatty acids as feed, a novel anaerobic, moderately thermophilic, syntrophic, spore-forming bacterium, strain TPO, was enriched on propionate in co-culture with Methanobacterium thermoautotrophicum Z245. The axenic culture was obtained by using pyruvate as the sole source of carbon and energy. The cells were straight rods with pointed ends and became lens-shaped when sporulation started. The cells were slightly motile. The optimum growth temperature was 55 degrees C and growth was possible between 45 and 62 degrees C. The pH range for growth of strain TPO was 6-8, with an optimum at pH 7-7.5. Propionate was converted to acetate, CO2 and CH4 by a co-culture of strain TPO with Methanobacterium thermoautotrophicum Z245. In pure culture, strain TPO could grow fermentatively on benzoate, fumarate, H2/CO2, pyruvate and lactate. Sulphate could serve as inorganic electron acceptor when strain TPO was grown on propionate, lactate, pyruvate and H2/CO2. The G+C content was 53.7 mol%. Comparison of 16S rDNA sequences revealed that strain TPO is related to Desulfotomaculum thermobenzoicum (98%) and Desulfotomaculum thermoacetoxidans (98%). DNA-DNA hybridization revealed 88.2% reassociation between strain TPO and D. thermobenzoicum and 83.8% between strain TPO and D. thermoacetoxidans. However, both organisms differ physiologically from strain TPO and are not capable of syntrophic propionate oxidation. It is proposed that strain TPO should be classified as new subspecies of D. thermobenzoicum as D. thermobenzoicum subsp. thermosyntrophicum.

  11. Theory analysis of mass spectra of long-chain isocyanates.

    PubMed

    Liu, Dongliang; Hao, Ce; Zhang, Hua; Qiao, Weihong; Li, Zongshi; Yu, Guanghui; Yan, Kelu; Guo, Yuliang; Cheng, Lvbo

    2008-07-01

    Electron impact mass spectra of four long-chain isocyanates, lauryl isocyanate, tetradecyl isocyanate, hexadecyl isocyanate and octadecyl isocyanate, were obtained with a GCT high-resolution time-of-flight mass spectrometer. The four isocyanates studied gave a common base peak of m/z 99, which suggested the formation of a stable six-membered ring structure to decentralize the positive charge. Quantum-mechanical energy calculation justified that the six-membered ring base peak had the lowest energy. The positive charge assigned during the fragmentation of the radical cation, and the relative intensity of the fragment ion peaks, were explained by quantum-mechanical calculations as well.

  12. Study of Triheptanoin for Treatment of Long-Chain Fatty Acid Oxidation Disorder

    ClinicalTrials.gov

    2017-03-21

    Very Long-chain acylCoA Dehydrogenase (VLCAD) Deficiency; Carnitine Palmitoyltransferase 2 (CPT2) Deficiency; Mitochondrial Trifunctional Protein (TFP) Deficiency; Long-chain 3 hydroxyacylCoA Dehydrogenase (LCHAD) Deficiency

  13. Microwave-Assisted Synthesis of Cinnamyl Long Chain Aroma Esters.

    PubMed

    Worzakowska, Marta

    2015-06-08

    Cinnamyl long chain aroma esters were prepared by using the conventional and microwave-assisted methods. The esterification reaction of naturally occurring 3-phenyl-prop-2-en-1-ol and different chain lengths acidic and diol reagents was carried out at the temperature of 140 °C under solvent free conditions. As acidic reagents, oxolane-2,5-dione, oxane-2,6-dione, hexanedioic acid and decanedioic acid were applied. Ethane-1,2-diol and 2,2'-[oxybis(2,1-ethandiyloxy)]diethanol were used as diol reagents. The synthesis of high molecular mass cinnamyl esters under conventional method conditions requires a long time to obtain high yields. The studies confirm that by using microwave irradiation, it is possible to reduce the reaction times to only 10-20 min. The structures of prepared esters were confirmed on the basis of FTIR, 1H-NMR and 13C-NMR. In addition, the newly obtained cinnamyl long chain esters were tested for their thermal properties. The TG studies proved the high thermal resistance of the obtained esters under inert and oxidative conditions.

  14. Equilibration of long chain polymer melts in computer simulations

    NASA Astrophysics Data System (ADS)

    Auhl, Rolf; Everaers, Ralf; Grest, Gary S.; Kremer, Kurt; Plimpton, Steven J.

    2003-12-01

    Several methods for preparing well equilibrated melts of long chains polymers are studied. We show that the standard method in which one starts with an ensemble of chains with the correct end-to-end distance arranged randomly in the simulation cell and introduces the excluded volume rapidly, leads to deformation on short length scales. This deformation is strongest for long chains and relaxes only after the chains have moved their own size. Two methods are shown to overcome this local deformation of the chains. One method is to first pre-pack the Gaussian chains, which reduces the density fluctuations in the system, followed by a gradual introduction of the excluded volume. The second method is a double-bridging algorithm in which new bonds are formed across a pair of chains, creating two new chains each substantially different from the original. We demonstrate the effectiveness of these methods for a linear bead spring polymer model with both zero and nonzero bending stiffness, however the methods are applicable to more complex architectures such as branched and star polymer.

  15. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  16. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation

    USDA-ARS?s Scientific Manuscript database

    Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been repor...

  17. Energetics of end product excretion in anaerobic bacteria and the metabolism of fatty acids by Syntrophomonas wolfei

    SciTech Connect

    McInerney, M.J.

    1986-01-01

    The study of anaerobic hydrogen-producing syntrophic bacteria is important for several reasons. These bacteria degrade fatty acids which are important intermediates in anaerobic degradation and methanogenesis. The rate and extent of anaerobic degradation of complex polymeric materials often depends on the activity of these organisms. The production of H{sub 2} during anaerobic fatty acid degradation is energetically favorable only when H{sub 2} is maintained at a low level by another bacterium such as a H{sub 2}- using methanogen. Thus, the fatty acid-degrading syntrophic associations serve as excellent models to study the biochemical aspects of mutualism. The fatty acid-degrading syntrophic bacteria are very slow growers since little free energy is released during fatty acid degradation. These bacteria must have very efficient energy conservation systems which are not understood at this time. Further study of these organisms will provide useful information on bioenergetics of living systems. We have chosen to study the metabolism and energetics of the anaerobic, syntrophic, fatty acid degrader, Syntrophomonas wolfei. This organism is the best characterized syntrophic bacterium and serves as an appropriate model organism.

  18. Bioavailability of long-chain omega-3 fatty acids.

    PubMed

    Schuchardt, Jan Philipp; Hahn, Andreas

    2013-07-01

    Supplements have reached a prominent role in improving the supply of long-chain omega-3 fatty acids, such as Eicosapentaenoic acid (EPA 20:5n-3) and Docosahexaenoic acid (DHA 22:6n-3). Similar to other nutrients, the availability of omega-3 fatty acids is highly variable and determined by numerous factors. However, the question of omega-3 fatty acids bioavailability has long been disregarded, which may have contributed to the neutral or negative results concerning their effects in several studies. This review provides an overview of the influence of chemical binding form (free fatty acids bound in ethylesters, triacylglycerides or phospholipids), matrix effects (capsule ingestion with concomitant intake of food, fat content in food) or galenic form (i.e. microencapsulation, emulsification) on the bioavailability of omega-3 fatty acids. There is a need to systematically investigate the bioavailability of omega-3 fatty acids formulations, which might be a key to designing more effective studies in the future.

  19. Plasma long-chain free fatty acids predict mammalian longevity.

    PubMed

    Jové, Mariona; Naudí, Alba; Aledo, Juan Carlos; Cabré, Rosanna; Ayala, Victoria; Portero-Otin, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-11-28

    Membrane lipid composition is an important correlate of the rate of aging of animals and, therefore, the determination of their longevity. In the present work, the use of high-throughput technologies allowed us to determine the plasma lipidomic profile of 11 mammalian species ranging in maximum longevity from 3.5 to 120 years. The non-targeted approach revealed a specie-specific lipidomic profile that accurately predicts the animal longevity. The regression analysis between lipid species and longevity demonstrated that the longer the longevity of a species, the lower is its plasma long-chain free fatty acid (LC-FFA) concentrations, peroxidizability index, and lipid peroxidation-derived products content. The inverse association between longevity and LC-FFA persisted after correction for body mass and phylogenetic interdependence. These results indicate that the lipidomic signature is an optimized feature associated with animal longevity, emerging LC-FFA as a potential biomarker of longevity.

  20. The Anomalous Translocation Dynamics of Long-Chain Molecules

    NASA Astrophysics Data System (ADS)

    Chaudhury, Srabanti; Cherayil, Binny J.

    2008-03-01

    Models of translocation based on simple Brownian diffusion mechanisms generally fail to account satisfactorily for anomalies in measured and simulated values of the average time of passage of long chain molecules through narrow pores. In an effort to rationalize these anomalies, we formulate an alternative model in which the time evolution of the number of monomers on one side of the pore is governed by the stochastic dynamics of a particle moving in a linear potential under the action of thermal fluctuations with long-ranged temporal correlations. We use this model in the limits of strong and weak diffusive bias to derive closed form expressions for the mean first passage time for pore crossing and the mean square displacement of a monomeric segment. These expressions, unlike those obtained from fractional Fokker-Planck formulations of the problem, are well-defined everywhere, and are also consistent with available numerical data.

  1. DITERMINAL OXIDATION OF LONG-CHAIN ALKANES BY BACTERIA1

    PubMed Central

    Kester, A. S.; Foster, J. W.

    1963-01-01

    Kester, A. S. (The University of Texas, Austin) and J. W. Foster. Diterminal oxidation of long-chain alkanes by bacteria. J. Bacteriol. 85:859–869. 1963.—A corynebacterial organism capable of growing in mineral salts with individual pure alkanes as carbon sources produces a series of acids from the C10-C14 alkanes. They have been isolated in pure form and identified as monoic, ω-hydroxy monoic, and dioic acids containing the same number of carbon atoms as the substrate alkane. Oxidation took place at both terminal methyl groups—“diterminal oxidation.” Appropriate labeling experiments indicate that omega oxidation of fatty acids occurs in this organism and that an oxygenation with O2 occurs. Images PMID:14044955

  2. Synthesis and stereochemistry of long-chain quinoxaline metallocyclophanes.

    PubMed

    Howard, Mark J; Heirtzler, Fenton R; Dias, Sandra I G

    2008-04-04

    Condensation of 1,2-diamino-4,5-bis(n-alkoxy)arenes with an oligopyridyl-type alpha-diketone afforded a series of long-chain pyridine-quinoxaline hybrids. These were evaluated for their ability to self-assemble with tetrahedral Cu(I) and Ag(I) to form dimeric, double-decker amphiphillic complexes having a flattened metallocyclophane topology. Detailed NOESY and T1 relaxation time experimentation showed that the configuration of the dicopper(I) complexes corresponds to inversion (meso) symmetry, which leads to an extended molecular shape, wherein the alkoxy chains of the individual ligand components lie on opposite sides of the metallocyclophane core, as opposed to the same side. Preliminary measurements show that the disilver(I) complexes having nC12H25 and nC18H37 chains exhibit reversible melting processes and undergo two endothermic transitions each, at 189/237 and 59/80 degrees C, respectively.

  3. Biosynthesis of very long chain fatty acids in Trypanosoma cruzi.

    PubMed

    Livore, Verónica I; Uttaro, Antonio D

    2015-01-01

    Trypanosoma brucei and Trypanosoma cruzi showed similar fatty acid (FA) compositions, having a high proportion of unsaturated FAs, mainly 18:2Δ9,12 (23-39%) and 18:1Δ9 (11-17%). C22 polyunsaturated FAs are in significant amounts only in T. brucei (12-20%) but represent a mere 2% of total FAs in T. cruzi. Both species have also similar profiles of medium- and long-chain saturated FAs, from 14:0 to 20:0. Interestingly, procyclic and bloodstream forms of T. brucei lack very long chain FAs (VLCFAs), whereas epimastigotes and trypomastigotes of T. cruzi contain 22:0 (0.1-0.2%), 24:0 (1.5-2%), and 26:0 (0.1-0.2%). This is in agreement with the presence of an additional FA elongase gene (TcELO4) in T. cruzi. TcELO4 was expressed in a Saccharomyces cerevisiae mutant lacking the endogenous ScELO3, rescuing the synthesis of saturated and hydroxylated C26 FAs in the yeast. Expression of TcELO4 also rescued the synthetic lethality of a ScELO2, ScELO3 double mutation, and the VLCFA profile of the transformed yeast was similar to that found in T. cruzi. By identifying TcELO4 as the enzyme responsible for the elongation of FA from 16:0 and 18:0 up to 26:0, with 24:0 being the preferred product, this work completed the characterization of FA elongases in Trypanosoma spp.

  4. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia.

    PubMed

    Westerholm, Maria; Levén, Lotta; Schnürer, Anna

    2012-11-01

    The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH(4)(+)-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors.

  5. Bioaugmentation of Syntrophic Acetate-Oxidizing Culture in Biogas Reactors Exposed to Increasing Levels of Ammonia

    PubMed Central

    Westerholm, Maria; Levén, Lotta

    2012-01-01

    The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH4+-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors. PMID:22923397

  6. Two Pathways for Glutamate Biosynthesis in the Syntrophic Bacterium Syntrophus aciditrophicus

    PubMed Central

    Kim, Marie; Le, Huynh M.; Xie, Xiulan; Feng, Xueyang; Tang, Yinjie J.; Mouttaki, Housna; McInerney, Michael J.

    2015-01-01

    The anaerobic metabolism of crotonate, benzoate, and cyclohexane carboxylate by Syntrophus aciditrophicus grown syntrophically with Methanospirillum hungatei provides a model to study syntrophic cooperation. Recent studies revealed that S. aciditrophicus contains Re-citrate synthase but lacks the common Si-citrate synthase. To establish whether the Re-citrate synthase is involved in glutamate synthesis via the oxidative branch of the Krebs cycle, we have used [1-13C]acetate and [1-14C]acetate as well as [13C]bicarbonate as additional carbon sources during axenic growth of S. aciditrophicus on crotonate. Our analyses showed that labeled carbons were detected in at least 14 amino acids, indicating the global utilization of acetate and bicarbonate. The labeling patterns of alanine and aspartate verified that pyruvate and oxaloacetate were synthesized by consecutive carboxylations of acetyl coenzyme A (acetyl-CoA). The isotopomer profile and 13C nuclear magnetic resonance (NMR) spectroscopy of the obtained [13C]glutamate, as well as decarboxylation of [14C]glutamate, revealed that this amino acid was synthesized by two pathways. Unexpectedly, only the minor route used Re-citrate synthase (30 to 40%), whereas the majority of glutamate was synthesized via the reductive carboxylation of succinate. This symmetrical intermediate could have been formed from two acetates via hydration of crotonyl-CoA to 4-hydroxybutyryl-CoA. 4-Hydroxybutyrate was detected in the medium of S. aciditrophicus when grown on crotonate, but an active hydratase could not be measured in cell extracts, and the annotated 4-hydroxybutyryl-CoA dehydratase (SYN_02445) lacks key amino acids needed to catalyze the hydration of crotonyl-CoA. Besides Clostridium kluyveri, this study reveals the second example of a microbial species to employ two pathways for glutamate synthesis. PMID:26431966

  7. Active Multienzyme Assemblies for Long-Chain Olefinic Hydrocarbon Biosynthesis.

    PubMed

    Christenson, James K; Jensen, Matthew R; Goblirsch, Brandon R; Mohamed, Fatuma; Zhang, Wei; Wilmot, Carrie M; Wackett, Lawrence P

    2017-05-01

    Bacteria from different phyla produce long-chain olefinic hydrocarbons derived from an OleA-catalyzed Claisen condensation of two fatty acyl coenzyme A (acyl-CoA) substrates, followed by reduction and oxygen elimination reactions catalyzed by the proteins OleB, OleC, and OleD. In this report, OleA, OleB, OleC, and OleD were individually purified as soluble proteins, and all were found to be essential for reconstituting hydrocarbon biosynthesis. Recombinant coexpression of tagged OleABCD proteins from Xanthomonas campestris in Escherichia coli and purification over His6 and FLAG columns resulted in OleA separating, while OleBCD purified together, irrespective of which of the four Ole proteins were tagged. Hydrocarbon biosynthetic activity of copurified OleBCD assemblies could be reconstituted by adding separately purified OleA. Immunoblots of nondenaturing gels using anti-OleC reacted with X. campestris crude protein lysate indicated the presence of a large protein assembly containing OleC in the native host. Negative-stain electron microscopy of recombinant OleBCD revealed distinct large structures with diameters primarily between 24 and 40 nm. Assembling OleB, OleC, and OleD into a complex may be important to maintain stereochemical integrity of intermediates, facilitate the movement of hydrophobic metabolites between enzyme active sites, and protect the cell against the highly reactive β-lactone intermediate produced by the OleC-catalyzed reaction.IMPORTANCE Bacteria biosynthesize hydrophobic molecules to maintain a membrane, store carbon, and for antibiotics that help them survive in their niche. The hydrophobic compounds are often synthesized by a multidomain protein or by large multienzyme assemblies. The present study reports on the discovery that long-chain olefinic hydrocarbons made by bacteria from different phyla are produced by multienzyme assemblies in X. campestris The OleBCD multienzyme assemblies are thought to compartmentalize and sequester olefin

  8. The long-chain alkane metabolism network of Alcanivorax dieselolei.

    PubMed

    Wang, Wanpeng; Shao, Zongze

    2014-12-12

    Alkane-degrading bacteria are ubiquitous in marine environments, but little is known about how alkane degradation is regulated. Here we investigate alkane sensing, chemotaxis, signal transduction, uptake and pathway regulation in Alcanivorax dieselolei. The outer membrane protein OmpS detects the presence of alkanes and triggers the expression of an alkane chemotaxis complex. The coupling protein CheW2 of the chemotaxis complex, which is induced only by long-chain (LC) alkanes, sends signals to trigger the expression of Cyo, which participates in modulating the expression of the negative regulator protein AlmR. This change in turn leads to the expression of ompT1 and almA, which drive the selective uptake and hydroxylation of LC alkanes, respectively. AlmA is confirmed as a hydroxylase of LC alkanes. Additional factors responsible for the metabolism of medium-chain-length alkanes are also identified, including CheW1, OmpT1 and OmpT2. These results provide new insights into alkane metabolism pathways from alkane sensing to degradation.

  9. Cryptosporidium parvum Long-Chain Fatty Acid Elongase▿ †

    PubMed Central

    Fritzler, Jason M.; Millership, Jason J.; Zhu, Guan

    2007-01-01

    We report the presence of a new fatty acyl coenzyme A (acyl-CoA) elongation system in Cryptosporidium and the functional characterization of the key enzyme, a single long-chain fatty acid elongase (LCE), in this parasite. This enzyme contains conserved motifs and predicted transmembrane domains characteristic to the elongase family and is placed within the ELO6 family specific for saturated substrates. CpLCE1 gene transcripts are present at all life cycle stages, but the levels are highest in free sporozoites and in stages at 36 h and 60 h postinfection that typically contain free merozoites. Immunostaining revealed localization to the outer surface of sporozoites and to the parasitophorous vacuolar membrane. Recombinant CpLCE1 displayed allosteric kinetics towards malonyl-CoA and palmitoyl-CoA and Michaelis-Menten kinetics towards NADPH. Myristoyl-CoA (C14:0) and palmitoyl-CoA (C16:0) display the highest activity when used as substrates, and only one round of elongation occurs. CpLCE1 is fairly resistant to cerulenin, an inhibitor for both type I and II fatty acid synthases (i.e., maximum inhibitions of 20.5% and 32.7% were observed when C16:0 and C14:0 were used as substrates, respectively). These observations ultimately validate the function of CpLCE1. PMID:17827345

  10. Interaction of long-chain nicotinates with dipalmitoylphosphatidylcholine.

    PubMed

    Lehmler, Hans-Joachim; Fortis-Santiago, Azarih; Nauduri, Dhananjaya; Bummer, Paul M

    2005-03-01

    The interaction of four long-chain nicotinates, compounds that are of interest as potential chemopreventive agents, with dipalmitoylphosphatidylcholine (DPPC) was investigated in monolayers at the air-water interface and in fully hydrated bilayers. For the monolayer studies, the compression isotherms of mixtures of the respective nicotinate with DPPC were recorded at various compositions on a hydrochloric acid subphase (pH 1.9-2.1, 37 +/- 2 degrees C). The headgroup of the nicotinates (24-29 A2/molecule) is larger than that of the hydrophobic tail (20 A2/molecule). The pure nicotinates exhibit a temperature- and chain length-dependent transition from an expanded to a condensed phase. Analysis of the concentration dependence of the average molecular area at constant film pressure and the concentration dependence of the breakpoint of the phase transition from the expanded to the condensed state suggests that all four DPPC-nicotinate mixtures are partially miscible at the air-water interface. Although a complex phase behavior with several phase transitions was observed, differential scanning calorimetry studies of the four mixtures are also indicative of the partial miscibility of DPPC and the respective nicotinate. Overall, the complex phase behavior most likely results from the head-tail mismatch of the nicotinates and the geometric packing constraints in the two-component lipid bilayer.

  11. Syntrophic acetate oxidation in industrial CSTR biogas digesters.

    PubMed

    Sun, Li; Müller, Bettina; Westerholm, Maria; Schnürer, Anna

    2014-02-10

    The extent of syntrophic acetate oxidation (SAO) and the levels of known SAO bacteria and acetate- and hydrogen-consuming methanogens were determined in sludge from 13 commercial biogas production plants. Results from these measurements were statistically related to the prevailing operating conditions, through partial least squares (PLS) analysis. This revealed that high abundance of microorganisms involved in SAO was positively correlated with relatively low abundance of aceticlastic methanogens and high concentrations of free ammonia (>160 mg/L) and volatile fatty acids (VFA). Temperature was identified as another influencing factor for the population structure of the syntrophic acetate oxidising bacteria (SAOB). Overall, there was a high abundance of SAOB in the different digesters despite differences in their operating parameters, indicating that SAOB are an enduring and important component of biogas-producing consortia.

  12. Integrative molecular and microanalytical studies of syntrophic partnerships linking C, S, and N cycles in anoxic environments

    SciTech Connect

    Orphan, Victoria

    2016-07-15

    Syntrophy and other forms of symbiotic associations between microorganisms are central to carbon and nutrient cycling in the environment. However, the inherent interdependence of these interactions, dynamic behavior, and frequent existence at thermodynamic limits has hindered our ability to both recognize syntrophic partnerships in nature and effectively study their behavior in the laboratory. To characterize and understand the underlying factors influencing syntrophic associations within complex communities requires a suite of tools that extend beyond basic molecular identification and cultivation. This specifically includes methods that preserve the natural spatial relationships between metabolically interdependent microorganisms while allowing downstream geochemical and/or molecular analysis. With support from this award, we have developed and applied new combinations of molecular, microscopy, and stable isotope-based methodologies that enable the characterization of fundamental links between phylogenetically-identified microorganisms and their specific metabolic activities and interactions in the environment. Through the coupling of fluorescence in situ hybridization (FISH) with cell capture and targeted metagenomics (Magneto-FISH), and FISH + secondary ion mass spectrometry (i.e. FISH-SIMS or FISH-nanoSIMS), we have defined new microbial interactions and the ecophysiology of anaerobic microorganisms involved in environmental methane cycling.

  13. Limitation of syntrophic coculture growth by the acetogen.

    PubMed

    Junicke, Helena; Feldman, Hannah; Van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2016-03-01

    The syntrophic cooperation between hydrogen-producing acetogens and hydrogenotrophic methanogens relies on a critical balance between both partners. A recent study, provided several indications for the dependence of the biomass-specific growth rate of a methanogenic coculture on the acetogen. Nevertheless, final experimental proof was lacking since biomass-specific rates were obtained from a descriptive model, and not from direct measurement of individual biomass concentrations. In this study, a recently developed quantitative PCR approach was used to measure the individual biomass concentrations in the coculture of Desulfovibrio sp. G11 and Methanospirillum hungatei JF1 on lactate, formate or both. The model-derived growth yields and biomass-specific rates were successfully validated. Experimental findings identified the acetogen as the growth-limiting partner in the coculture on lactate. While the acetogen was operating at its maximum biomass-specific lactate consumption rate, the hydrogenotrophic methanogen showed a significant overcapacity. Furthermore, this study provides experimental evidence for different growth strategies followed by the syntrophic partners in order to maintain a common biomass-specific growth rate. During syntrophic lactate conversion, the biomass-specific electron transfer rate of Methanospirillum hungatei JF1 was three-fold higher compared to Desulfovibrio sp. G11. This is to compensate for the lower methanogenic biomass yield per electron-mole of substrate, which is dictated by the thermodynamics of the underlying reaction. © 2015 Wiley Periodicals, Inc.

  14. Functional responses of methanogenic archaea to syntrophic growth

    PubMed Central

    Walker, Christopher B; Redding-Johanson, Alyssa M; Baidoo, Edward E; Rajeev, Lara; He, Zhili; Hendrickson, Erik L; Joachimiak, Marcin P; Stolyar, Sergey; Arkin, Adam P; Leigh, John A; Zhou, Jizhong; Keasling, Jay D; Mukhopadhyay, Aindrila; Stahl, David A

    2012-01-01

    Methanococcus maripaludis grown syntrophically with Desulfovibrio vulgaris was compared with M. maripaludis monocultures grown under hydrogen limitation using transcriptional, proteomic and metabolite analyses. These measurements indicate a decrease in transcript abundance for energy-consuming biosynthetic functions in syntrophically grown M. maripaludis, with an increase in transcript abundance for genes involved in the energy-generating central pathway for methanogenesis. Compared with growth in monoculture under hydrogen limitation, the response of paralogous genes, such as those coding for hydrogenases, often diverged, with transcripts of one variant increasing in relative abundance, whereas the other was little changed or significantly decreased in abundance. A common theme was an apparent increase in transcripts for functions using H2 directly as reductant, versus those using the reduced deazaflavin (coenzyme F420). The greater importance of direct reduction by H2 was supported by improved syntrophic growth of a deletion mutant in an F420-dependent dehydrogenase of M. maripaludis. These data suggest that paralogous genes enable the methanogen to adapt to changing substrate availability, sustaining it under environmental conditions that are often near the thermodynamic threshold for growth. Additionally, the discovery of interspecies alanine transfer adds another metabolic dimension to this environmentally relevant mutualism. PMID:22739494

  15. Mammalian long-chain acyl-CoA synthetases.

    PubMed

    Soupene, Eric; Kuypers, Frans A

    2008-05-01

    Acyl-CoA synthetase enzymes are essential for de novo lipid synthesis, fatty acid catabolism, and remodeling of membranes. Activation of fatty acids requires a two-step reaction catalyzed by these enzymes. In the first step, an acyl-AMP intermediate is formed from ATP. AMP is then exchanged with CoA to produce the activated acyl-CoA. The release of AMP in this reaction defines the superfamily of AMP-forming enzymes. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different acyl-CoA synthetases (ACS). On this basis, five sub-families of ACS have been characterized. The purpose of this review is to report on the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12 to 20 carbon atoms. Five genes and several isoforms generated by alternative splicing have been identified and limited information is available on their localization. The structure of these membrane proteins has not been solved for the mammalian ACSLs but homology to a bacterial form, whose structure has been determined, points at specific structural features that are important for these enzymes across species. The bacterial form acts as a dimer and has a conserved short motif, called the fatty acid Gate domain, that seems to determine substrate specificity. We will discuss the characterization and identification of the different spliced isoforms, draw attention to the inconsistencies and errors in their annotations, and their cellular localizations. These membrane proteins act on membrane-bound substrates probably as homo- and as heterodimer complexes but have often been expressed as single recombinant isoforms, apparently purified as monomers and tested in Triton X-100 micelles. We will argue that such studies have failed to provide an accurate assessment of the activity and of the distinct function of these enzymes in mammalian cells.

  16. Syntrophic Growth of Desulfovibrio alaskensis Requires Genes for H2 and Formate Metabolism as Well as Those for Flagellum and Biofilm Formation

    PubMed Central

    Bradstock, Peter; Sheik, Cody S.; Diao, Yiwei; Gazioglu, Ozcan; Gorby, Yuri; McInerney, Michael J.

    2015-01-01

    In anaerobic environments, mutually beneficial metabolic interactions between microorganisms (syntrophy) are essential for oxidation of organic matter to carbon dioxide and methane. Syntrophic interactions typically involve a microorganism degrading an organic compound to primary fermentation by-products and sources of electrons (i.e., formate, hydrogen, or nanowires) and a partner producing methane or respiring the electrons via alternative electron accepting processes. Using a transposon gene mutant library of the sulfate-reducing Desulfovibrio alaskensis G20, we screened for mutants incapable of serving as the electron-accepting partner of the butyrate-oxidizing bacterium, Syntrophomonas wolfei. A total of 17 gene mutants of D. alaskensis were identified as incapable of serving as the electron-accepting partner. The genes identified predominantly fell into three categories: membrane surface assembly, flagellum-pilus synthesis, and energy metabolism. Among these genes required to serve as the electron-accepting partner, the glycosyltransferase, pilus assembly protein (tadC), and flagellar biosynthesis protein showed reduced biofilm formation, suggesting that each of these components is involved in cell-to-cell interactions. Energy metabolism genes encoded proteins primarily involved in H2 uptake and electron cycling, including a rhodanese-containing complex that is phylogenetically conserved among sulfate-reducing Deltaproteobacteria. Utilizing an mRNA sequencing approach, analysis of transcript abundance in wild-type axenic and cocultures confirmed that genes identified as important for serving as the electron-accepting partner were more highly expressed under syntrophic conditions. The results imply that sulfate-reducing microorganisms require flagellar and outer membrane components to effectively couple to their syntrophic partners; furthermore, H2 metabolism is essential for syntrophic growth of D. alaskensis G20. PMID:25616787

  17. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS.

    PubMed

    Orphan, Victoria J; Turk, Kendra A; Green, Abigail M; House, Christopher H

    2009-07-01

    Methane release from the oceans is controlled in large part by syntrophic interactions between anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (DSS), frequently found as organized consortia. An understanding of the specifics of this symbiotic relationship and the metabolic heterogeneity existing between and within individual methane-oxidizing aggregates is currently lacking. Here, we use the microanalytical method FISH-SIMS (fluorescence in situ hybridization-secondary ion mass spectrometry) to describe the physiological traits and anabolic activity of individual methanotrophic consortia, specifically tracking (15)N-labelled protein synthesis to examine the effects of organization and size on the metabolic activity of the syntrophic partners. Patterns of (15)N distribution within individual aggregates showed enhanced (15)N assimilation in ANME-2 cells relative to the co-associated DSS revealing a decoupling in anabolic activity between the partners. Protein synthesis in ANME-2 cells was sustained throughout the core of individual ANME-2/DSS consortia ranging in size range from 4 to 20 μm. This indicates that metabolic activity of the methane-oxidizing archaea is not limited to, or noticeably enhanced at the ANME-2/DSS boundary. Overall, the metabolic activity of both syntrophic partners within consortia was greater than activity measured in representatives of the ANME-2 and DSS observed alone, with smaller ANME-2/DSS aggregates displaying a tendency for greater (15)N uptake and doubling times ranging from 3 to 5 months. The combination of (15)N-labelling and FISH-SIMS provides an important perspective on the extent of heterogeneity within methanotrophic aggregates and may aid in constraining predictive models of activity and growth by these syntrophic consortia.

  18. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor

    PubMed Central

    Dasa, Kris Triwulan; Westman, Supansa Y.; Cahyanto, Muhammad Nur; Niklasson, Claes

    2016-01-01

    Anaerobic digestion of lipid-containing wastes for biogas production is often hampered by the inhibitory effect of long-chain fatty acids (LCFAs). In this study, the inhibitory effects of LCFAs (palmitic, stearic, and oleic acid) on biogas production as well as the protective effect of a membrane bioreactor (MBR) against LCFAs were examined in thermophilic batch digesters. The results showed that palmitic and oleic acid with concentrations of 3.0 and 4.5 g/L resulted in >50% inhibition on the biogas production, while stearic acid had an even stronger inhibitory effect. The encased cells in the MBR system were able to perform better in the presence of LCFAs. This system exhibited a significantly lower percentage of inhibition than the free cell system, not reaching over 50% at any LCFA concentration tested. PMID:27699172

  19. Growth and Methane Oxidation Rates of Anaerobic Methanotrophic Archaea in a Continuous-Flow Bioreactor

    PubMed Central

    Girguis, Peter R.; Orphan, Victoria J.; Hallam, Steven J.; DeLong, Edward F.

    2003-01-01

    Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic methane oxidation, we developed a novel continuous-flow anaerobic methane incubation system (AMIS) that simulates the majority of in situ conditions and supports the metabolism and growth of anaerobic methanotrophic archaea. We incubated sediments collected from within and outside a methane cold seep in Monterey Canyon, Calif., for 24 weeks on the AMIS system. Anaerobic methane oxidation was measured in all sediments after incubation on AMIS, and quantitative molecular techniques verified the increases in methane-oxidizing archaeal populations in both seep and nonseep sediments. Our results demonstrate that the AMIS system stimulated the maintenance and growth of anaerobic methanotrophic archaea, and possibly their syntrophic, sulfate-reducing partners. Our data demonstrate the utility of combining physiological and molecular techniques to quantify the growth and metabolic activity of anaerobic microbial consortia. Further experiments with the AMIS system should provide a better understanding of the biological mechanisms of methane oxidation in anoxic marine environments. The AMIS may also enable the enrichment, purification, and isolation of methanotrophic archaea as pure cultures or defined syntrophic consortia. PMID:12957936

  20. New chalcones bearing a long-chain alkylphenol from the rhizomes of Alpinia galanga.

    PubMed

    Yang, Wan-Qiu; Gao, Yuan; Li, Ming; Miao, De-Ren; Wang, Fei

    2015-01-01

    Three novel chalcones bearing a long-chain alkylphenol, galanganones A-C (1-3), were isolated from the rhizomes of Alpinia galanga. Their structures were elucidated by extensive spectroscopic analysis including 2D NMR experiments. Compounds 1-3 represent the first examples of long-chain alkylphenol-coupled chalcone.

  1. Genetics Home Reference: long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... These mutations prevent the normal processing of long-chain fatty acids from food and body fat. As a result, these fatty acids are not converted to energy, which can lead to some features of this disorder, ... Long-chain fatty acids or partially metabolized fatty acids may ...

  2. Genetics Home Reference: very long-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... metabolize) a group of fats called very long-chain fatty acids. These fatty acids are found in foods and the body's fat tissues. Fatty acids are a major source of energy for the heart and muscles. During periods of fasting, ... of this enzyme, very long-chain fatty acids are not metabolized properly. As a ...

  3. Significance of long chain polyunsaturated fatty acids in human health.

    PubMed

    Zárate, Rafael; El Jaber-Vazdekis, Nabil; Tejera, Noemi; Pérez, José A; Rodríguez, Covadonga

    2017-12-01

    In the last decades, the development of new technologies applied to lipidomics has revitalized the analysis of lipid profile alterations and the understanding of the underlying molecular mechanisms of lipid metabolism, together with their involvement in the occurrence of human disease. Of particular interest is the study of omega-3 and omega-6 long chain polyunsaturated fatty acids (LC-PUFAs), notably EPA (eicosapentaenoic acid, 20:5n-3), DHA (docosahexaenoic acid, 22:6n-3), and ARA (arachidonic acid, 20:4n-6), and their transformation into bioactive lipid mediators. In this sense, new families of PUFA-derived lipid mediators, including resolvins derived from EPA and DHA, and protectins and maresins derived from DHA, are being increasingly investigated because of their active role in the "return to homeostasis" process and resolution of inflammation. Recent findings reviewed in the present study highlight that the omega-6 fatty acid ARA appears increased, and omega-3 EPA and DHA decreased in most cancer tissues compared to normal ones, and that increments in omega-3 LC-PUFAs consumption and an omega-6/omega-3 ratio of 2-4:1, are associated with a reduced risk of breast, prostate, colon and renal cancers. Along with their lipid-lowering properties, omega-3 LC-PUFAs also exert cardioprotective functions, such as reducing platelet aggregation and inflammation, and controlling the presence of DHA in our body, especially in our liver and brain, which is crucial for optimal brain functionality. Considering that DHA is the principal omega-3 FA in cortical gray matter, the importance of DHA intake and its derived lipid mediators have been recently reported in patients with major depressive and bipolar disorders, Alzheimer disease, Parkinson's disease, and amyotrophic lateral sclerosis. The present study reviews the relationships between major diseases occurring today in the Western world and LC-PUFAs. More specifically this review focuses on the dietary omega-3 LC

  4. Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure

    NASA Astrophysics Data System (ADS)

    Liu, Jinming; Wu, Kai; Wang, Jian-Ping

    2016-05-01

    Cubic FeCo alloy nanoparticles (NPs) with body-centered cubic (bcc) phase were prepared using sputter based gas-condensation method. When the NPs formed long chain assemblies, the magnetic properties were quite different from that of well-dispersed NPs. Most of the well-dispersed NPs were superparamagnetic at room temperature while the long chain NP assemblies were ferromagnetic with coercivities around 765 Oe, which displayed quite different magnetic properties. The ferromagnetism of long chain NPs was from the exchange coupling between NPs, which eventually led to the transition from superparamagnetism (SPM) to superferromagetism (SFM). Zero-field-cooled (ZFC) and field-cooled (FC) curves were obtained and long chain NP assemblies displayed ferromagnetism at the temperature ranging from 10 K to 400 K. Time-dependent remanent magnetic moment curves also indicated that the long chain structure had better thermal stability due to the strong exchange coupling.

  5. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion.

    PubMed

    Barua, Sajib; Dhar, Bipro Ranjan

    2017-11-01

    Direct interspecies electron transfer (DIET) is a recently discovered microbial syntrophy where cell-to-cell electron transfer occurs between syntrophic microbial species. DIET between bacteria and methanogenic archaea in anaerobic digestion can accelerate the syntrophic conversion of various reduced organic compounds to methane. DIET-based syntrophy can naturally occur in some anaerobic digester via conductive pili, however, can be engineered via the addition of various non-biological conductive materials. In recent years, research into understanding and engineering DIET-based syntrophy has emerged with the aim of improving methanogenesis kinetics in anaerobic digestion. This article presents a state-of-art review focusing on the fundamental mechanisms, key microbial players, the role of electrical conductivity, the effectiveness of various conductive additives, the significance of substrate characteristics and organic loading rates in promoting DIET in anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Draft Genome Sequence of Clostridium ultunense Strain Esp, a Syntrophic Acetate-Oxidizing Bacterium.

    PubMed

    Manzoor, Shahid; Müller, Bettina; Niazi, Adnan; Bongcam-Rudloff, Erik; Schnürer, Anna

    2013-03-28

    Clostridium ultunense strain Esp belongs to the functional group of syntrophic acetate-oxidizing bacteria (SAOB), which have been identified as key organisms for efficient biogas production from protein-rich materials. Genome analysis and comparative genomics might aid us to define physiological features that are essential for maintaining this particular syntrophic lifestyle.

  7. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange.

    PubMed

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Aklujkar, Muktak; Liu, Fanghua; Shrestha, Minita; Summers, Zarath M; Malvankar, Nikhil; Flores, Dan Carlo; Lovley, Derek R

    2013-12-01

    Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy to support cell growth. In order to investigate this, co-cultures of Geobacter metallireducens, which can transfer electrons to wild-type G. sulfurreducens via DIET, were established with a citrate synthase-deficient G. sulfurreducens strain that can receive electrons for respiration through DIET only. In a medium with ethanol as the electron donor and fumarate as the electron acceptor, co-cultures with the citrate synthase-deficient G. sulfurreducens strain metabolized ethanol as fast as co-cultures with wild-type, but the acetate that G. metallireducens generated from ethanol oxidation accumulated. The lack of acetate metabolism resulted in less fumarate reduction and lower cell abundance of G. sulfurreducens. RNAseq analysis of transcript abundance was consistent with a lack of acetate metabolism in G. sulfurreducens and revealed gene expression levels for the uptake hydrogenase, formate dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Syntrophic Degradation of Lactate in Methanogenic Co-cultures

    SciTech Connect

    Meyer, Birte; Stahl, David

    2010-05-17

    In environments where the amount of the inorganic electron acceptors (oxygen, nitrate, sulfate, sulfur oroxidized metal ions (Fe3+;Mn4+) is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic associations of fermenting, acetogenic bacteria (e.g., sulfate-reducing bacteria (SRB) as"secondary fermenters") and methanogenic archaea. In these consortia, the conversion of lactate to acetate, CO2 and methane depends on the cooperating activities of both metabolically distinct microbial groups that are tightly linked by the need to maintain the exchanged metabolites (hydrogenandformate) at very low concentrations.

  9. Endogenous Production of Long-Chain Polyunsaturated Fatty Acids and Metabolic Disease Risk

    PubMed Central

    Murff, Harvey J; Edwards, Todd L.

    2015-01-01

    Long chain polyunsaturated fatty acids (PUFAs) are important structural components of cellular membranes and are converted into eicosanoids which serve various biological roles. The most common dietary n-6 and n-3 PUFAs are linoleic acid and α-linoleic acid, respectively. These 18-carbon chain fatty acids undergo a series of desaturation and elongation steps to become the 20-carbon fatty acids arachidonic acid and eicosapentaenoic acid, respectively. Evidence from genome wide association studies has consistently demonstrated that plasma and tissue levels of the n-6 long-chain PUFA arachidonic acid and to a lesser extent the n-3 long-chain PUFA eicosapentaenoic acid, are strongly influenced by variation in fatty acid desaturase-1,-2, and elongation of very long chain fatty acid genes. Studies of functional variants in these genes, as well as studies in which desaturase activity has been indirectly estimated by fatty acid product-to -precursor ratios, have suggested that endogenous capacity to synthesize long-chain PUFAs may be associated with metabolic diseases such as diabetes mellitus. Interventional studies are starting to tease out the complicated relationship between dietary intakes of specific fatty acids, variation in desaturase and elongase genes and tissue levels of long chain PUFAs. Thus future studies of dietary PUFA interventions designed to reduce inflammatory and metabolic diseases will need to carefully consider how an individual's genetically-determined endogenous long-chain PUFA synthesis capacity might modify therapeutic response. PMID:26392837

  10. Accumulation of phosphorylated sphingoid long chain bases results in cell growth inhibition in Saccharomyces cerevisiae.

    PubMed Central

    Kim, S; Fyrst, H; Saba, J

    2000-01-01

    Sphingolipid metabolites in mammals can function as signaling molecules with cell-specific functions. In Saccharomyces cerevisiae, phosphorylated long chain bases, such as dihydrosphingosine 1-phosphate and phytosphingosine 1-phosphate, have also been implicated in stress responses. To further explore the biological roles of these molecules, we created disruption mutants for LCB4, LCB5, DPL1, YSR2, YSR3, and SUR2. LCB4 and LCB5 encode kinases that phosphorylate long chain bases. DPL1 and YSR2/YSR3 are involved in degradation of the phosphorylated long chain bases. SUR2 catalyzes conversion of dihydrosphingosine to phytosphingosine. We adapted an HPLC method to measure intracellular concentrations of the phosphorylated long chain bases. Double mutants of dpl1 and ysr2 were inviable, whereas dpl1 ysr2 lcb4 triple mutants were viable. Further, growth inhibition associated with accumulated phosphorylated long chain bases was observed in the triple mutant dpl1 ysr2 lcb4 overexpressing LCB4 or LCB5. These results indicate that phosphorylated long chain bases can inhibit cell growth. Mutants defective in both YSR2 and SUR2, which accumulated dihydrosphingosine 1-phosphate only, grew poorly. The phenotypes of the ysr2 sur2 mutants were suppressed by overexpression of DPL1. Our results clearly show that elevated levels of phosphorylated long chain bases have an antiproliferative effect in yeast. PMID:11102354

  11. Biogeochemistry of anaerobic crude oil biodegradation

    NASA Astrophysics Data System (ADS)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.

  12. Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD) Extension Study for Subjects Previously Enrolled in Triheptanoin Studies.

    ClinicalTrials.gov

    2017-05-22

    Carnitine Palmitoyltransferase (CPT I or CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Long-chain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency; Carnitine-acylcarnitine Translocase (CACT) Deficiency

  13. Do long-chain omega-3 fatty acids protect from atopic dermatitis?

    PubMed

    Reese, Imke; Werfel, Thomas

    2015-09-01

    Long-chain polyunsaturated fatty acids are essential for human nutrition. The number of double bonds determines whether a given fatty acid is termed two, three, or x times unsaturated. Depending on the distance of the first double bond from the fatty acid's methyl group, one distinguishes omega-3 fatty acids from omega-6 fatty acids. While the use of gamma linolenic acid, a long-chain fatty acid of the omega-6 family, has proven unsuccessful in the prevention or treatment of atopic dermatitis, supplementation of long-chain omega-3 fatty acids may represent a promising approach in the prevention of allergic disorders, especially atopic dermatitis. Whether the concept of long-chain omega-3 fatty acid administration will also become established in a therapeutic setting, depends on whether the beneficial effects observed so far can be substantiated in randomized controlled intervention studies.

  14. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... long chain monobasic acids containing from 9 to 49 carbon atoms obtained by the ozonization of long... alpha-olefins, obtained from the polymerization of ethylene, have 20 to 50 carbon atoms and contain a...

  15. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from 9 to 49 carbon atoms obtained by the ozonization of long chain alpha-olefins, the unreacted... polymerization of ethylene, have 20 to 50 carbon atoms and contain a minimum of 75 percent by weight straight...

  16. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... long chain monobasic acids containing from 9 to 49 carbon atoms obtained by the ozonization of long... alpha-olefins, obtained from the polymerization of ethylene, have 20 to 50 carbon atoms and contain a...

  17. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... long chain monobasic acids containing from 9 to 49 carbon atoms obtained by the ozonization of long... alpha-olefins, obtained from the polymerization of ethylene, have 20 to 50 carbon atoms and contain a...

  18. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... long chain monobasic acids containing from 9 to 49 carbon atoms obtained by the ozonization of long... alpha-olefins, obtained from the polymerization of ethylene, have 20 to 50 carbon atoms and contain a...

  19. Genome of Bacillus macauensis ZFHKF-1, a long-chain-forming bacterium.

    PubMed

    Cai, Lin; Zhang, Tong

    2012-09-01

    Here, we report the draft genome sequence of Bacillus macauensis ZFHKF-1, a novel long-chain bacterium previously isolated and identified by us (Zhang T, Fan XJ, Hanada S, Kamagata Y, Fang HHP, J. Syst. Evol. Microbiol. 56:349-353, 2006). The genome provides basic genetic information to understand this particular species and explore the potential mechanism of long-chain formation. The type strain is ZFHKF-1 (= JCM 13285 = DSM 17262).

  20. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, November 1993--November 1994

    SciTech Connect

    McInerney, M.J.

    1994-12-06

    Factors influencing the rate and extent of benzoate degradation by the anaerobic syntrophic consortia were studied. Nonlinear regression analysis showed that the cause of the benzoate threshold was not a diminished benzoate degradation capacity. Analysis of cocultures with hydrogen users that differed in their hydrogen utilization capacities showed that the threshold did not depend on the kinetic properties of the syntrophic partner. These data support a thermodynamic explanation for the threshold, and exclude the possibility that a change in the affinity of the enzyme system due to acetate inhibition caused the threshold. Modeling studies showed that the threshold value could be predicted from the concentrations of the end products, assuming a critical Gibb`s free energy value. This work shows that interspecies acetate transfer is important in controlling the extent of metabolism by syntrophic organisms.

  1. Proteomic analysis reveals metabolic and regulatory systems involved in the syntrophic and axenic lifestyle of Syntrophomonas wolfei

    DOE PAGES

    Sieber, Jessica R.; Crable, Bryan R.; Sheik, Cody S.; ...

    2015-02-11

    We report that microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomics approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF) value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detectedmore » were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product) delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. In conclusion, the proteomic analysis revealed an emphasis on macromolecular stability and energy metabolism by S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status.« less

  2. Proteomic analysis reveals metabolic and regulatory systems involved in the syntrophic and axenic lifestyle of Syntrophomonas wolfei

    SciTech Connect

    Sieber, Jessica R.; Crable, Bryan R.; Sheik, Cody S.; Hurst, Gregory B.; Rohlin, Lars; Gunsalus, Robert P.; McInerney, Michael J.

    2015-02-11

    We report that microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomics approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF) value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detected were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product) delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. In conclusion, the proteomic analysis revealed an emphasis on macromolecular stability and energy metabolism by S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status.

  3. Proteomic analysis reveals metabolic and regulatory systems involved in the syntrophic and axenic lifestyle of Syntrophomonas wolfei

    PubMed Central

    Sieber, Jessica R.; Crable, Bryan R.; Sheik, Cody S.; Hurst, Gregory B.; Rohlin, Lars; Gunsalus, Robert P.; McInerney, Michael J.

    2015-01-01

    Microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomics approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF) value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detected were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product) delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. The proteomic analysis revealed an emphasis on macromolecular stability and energy metabolism by S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status. PMID:25717324

  4. ABC subfamily D proteins and very long chain fatty acid metabolism as novel targets in adrenoleukodystrophy.

    PubMed

    Morita, M; Shimozawa, Nobuyuki; Kashiwayama, Yoshinori; Suzuki, Yasuyuki; Imanaka, Tsuneo

    2011-05-01

    Peroxisomes are involved in a variety of metabolic processes, including β-oxidation of fatty acids, especially very long chain fatty acids. Three peroxisomal ABC proteins belonging to subfamily D have been identified in mammalian peroxisomes that have an important role in fatty acid metabolism. ABCD1/ALDP and ABCD2/ALDRP are suggested to be involved in the transport of very long chain acyl-CoA, and ABCD3/PMP70 is involved in the transport of long chain acyl-CoA. ABCD1 is known to be responsible for X-linked adrenoleukodystrophy (X-ALD); an inborn error of peroxisomal β-oxidation of very long chain fatty acids. X-ALD is characterized biochemically by the accumulation of very long chain fatty acids in all tissues, including the brain white matter. Progressive demyelination of the central nervous system and adrenal dysfunction have been observed. The pharmacological up-regulation of peroxisomal β-oxidation of very long chain fatty acids and the suppression of fatty acid elongation are important aspects of an optimal therapeutic approach. Attractive targets for the treatment of X-ALD patients include the ABCD2 as well as elongase that is involved in the elongation of very long chain fatty acids. In addition, stabilization of mutant ABCD1 that has retained some of its function might be another approach, since most of the mutant ABCD1s with a missense mutation are degraded rapidly by proteasomes before or after targeting to peroxisomes. Protection of the central nervous system against oxidative damage is also important in order to delay the progress of disease. We summarize recent pharmaceutical studies and consider the potential for future X-ALD therapies.

  5. Toxicants inhibiting anaerobic digestion: a review.

    PubMed

    Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C

    2014-12-01

    Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion.

  6. Metabolism of H2 by Desulfovibrio alaskensis G20 during syntrophic growth on lactate.

    PubMed

    Li, Xiangzhen; McInerney, Michael J; Stahl, David A; Krumholz, Lee R

    2011-10-01

    Syntrophic growth involves the oxidation of organic compounds and subsequent transfer of electrons to an H(2)- or formate-consuming micro-organism. In order to identify genes involved specifically in syntrophic growth, a mutant library of Desulfovibrio alaskensis G20 was screened for loss of the ability to grow syntrophically with Methanospirillum hungatei JF-1. A collection of 20 mutants with an impaired ability to grow syntrophically was obtained. All 20 mutants grew in pure culture on lactate under sulfidogenic conditions at a rate and to a maximum OD(600) similar to those of the parental strain. The largest number of mutations that affected syntrophic growth with lactate was in genes encoding proteins involved in H(2) oxidation, electron transfer, hydrogenase post-translational modification, pyruvate degradation and signal transduction. The qrcB gene, encoding a quinone reductase complex (Qrc), and cycA, encoding the periplasmic tetrahaem cytochrome c(3) (TpIc(3)), were required by G20 to grow syntrophically with lactate. A mutant in the hydA gene, encoding an Fe-only hydrogenase (Hyd), is also impaired in syntrophic growth with lactate. The other mutants grew more slowly than the parental strain in syntrophic culture with M. hungatei JF-1. qrcB and cycA were shown previously to be required for growth of G20 pure cultures with H(2) and sulfate. Washed cells of the parental strain produced H(2) from either lactate or pyruvate, but washed cells of qrcB, cycA and hydA mutants produced H(2) at rates similar to the parental strain from pyruvate and did not produce significant amounts of H(2) from lactate. Real-time quantitative PCR assays showed increases in expression of the above three genes during syntrophic growth compared with pure-culture growth with lactate and sulfate. Our work shows that Hyd, Qrc and TpIc(3) are involved in H(2) production during syntrophic lactate metabolism by D. alaskensis G20 and emphasizes the importance of H(2) production for

  7. Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community

    SciTech Connect

    Handley, KM; Verberkmoes, Nathan C; Steefel, Carl I; Sharon, I; Williams, Ken; Miller, CS; Frischkorn, Kyle C; Chourey, Karuna; Thomas, Brian; Shah, Manesh B; Long, Phil; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2013-01-01

    Stimulation of subsurface microorganisms to induce reductive immobilization of metals is a promising approach for bioremediation, yet the overall microbial community response is typically poorly understood. Here we used community proteogenomics to test the hypothesis that excess input of acetate activates syntrophic interactions among autotrophs and heterotrophs. A flow-through sediment column was incubated in a groundwater well of an acetate-amended aquifer. Genomic sequences from the community recovered during microbial sulfate reduction were used to econstruct, de novo, near-complete genomes for Desulfobacter (Deltaproteobacteria) and relatives of Sulfurovum and Sulfurimonas (Epsilonproteobacteria), and Bacteroidetes. Partial genomes were obtained for Clostridiales (Firmicutes) and Desulfuromonadales-like Deltaproteobacteria. The majority of proteins identified by mass spectrometry corresponded to Desulfobacter-like species, and demonstrate the role of this organism in sulfate reduction (Dsr and APS), nitrogen-fixation (Nif) and acetate oxidation to CO2 during amendment. Results suggest less abundant Desulfuromonadales and Bacteroidetes also actively contributed to CO2 production via the TCA cycle. Proteomic data indicate that sulfide was partially re-oxidized by Epsilonproteobacteria through nitrate-dependent sulfide oxidation (using Nap, Nir, Nos, SQR and Sox), with CO2 fixed using the reverse TCA cycle. Modeling shows that this reaction was thermodynamically possible, and kinetically favorable relative to acetate-dependent denitrification. We conclude that high-levels of carbon amendment aimed to stimulate anaerobic heterotrophy led to carbon fixation in co-dependent chemoautotrophs. These results have implications for understanding complex ecosystem behavior, and show that high levels of organic carbon supplementation can expand the range of microbial functionalities accessible for ecosystem manipulation.

  8. Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids.

    PubMed

    Nordell, Erik; Hansson, Anna B; Karlsson, Martin

    2013-12-01

    Protein and fat rich slaughterhouse waste is a very attractive waste stream for the production of biogas because of the high biochemical methane potential of the substrate. The material has however some drawbacks as the sole material for biogas production due to the production of several process disturbing metabolites such as ammonia, sulfides and long chain fatty acids. We can in this work present results that show that zeolites have the potential to relieve inhibitory stress from the presence of long chain fatty acids. Moreover, the results strongly indicate that it is mainly acetic acid consumers that are most negatively affected by long chain fatty acids and that the mechanism of stress relief is an adsorption of long chain fatty acids to the zeolites. In addition to this, it is shown that the effect is immediate and that only a small amount of zeolites is necessary to cancel the inhibitory effect of long chain fatty acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Role of very-long-chain acyl-coenzyme A synthetase in X-linked adrenoleukodystrophy.

    PubMed

    Steinberg, S J; Kemp, S; Braiterman, L T; Watkins, P A

    1999-09-01

    X-linked adrenoleukodystrophy (X-ALD) is characterized biochemically by decreased ability of cells to activate (via very-long-chain acyl-coenzyme A synthetase [VLCS]) and subsequently degrade very-long-chain fatty acids in peroxisomes. It is noteworthy that the gene defective in X-ALD encodes ALDP, a peroxisomal membrane protein unrelated to VLCS. We cloned human VLCS (hVLCS) and found that peroxisomes from X-ALD fibroblasts contained immunoreactive hVLCS, refuting the earlier hypothesis that ALDP is required to anchor VLCS to the peroxisomal membrane. Furthermore, hVLCS was topographically oriented facing the peroxisomal matrix in both control and X-ALD fibroblasts, contradicting the alternative hypothesis that ALDP is required to translocate VLCS into peroxisomes. However, overexpression of both hVLCS and ALDP in X-ALD fibroblasts synergistically increased very-long-chain fatty acid beta-oxidation, indicating that these proteins interact functionally.

  10. The Role of Long Chain Fatty Acids and Their Epoxide Metabolites in Nociceptive Signaling

    PubMed Central

    Wagner, Karen; Vito, Steve; Inceoglu, Bora; Hammock, Bruce D.

    2014-01-01

    Lipid derived mediators contribute to inflammation and the sensing of pain. The contributions of omega-6 derived prostanoids in enhancing inflammation and pain sensation are well known. Less well explored are the opposing anti-inflammatory and analgesic effects of the omega-6 derived epoxyeicosatrienoic acids. Far less has been described about the epoxidized metabolites derived from omega-3 long chain fatty acids. The epoxide metabolites are turned over rapidly with enzymatic hydrolysis by the soluble epoxide hydrolase being the major elimination pathway. Despite this, the overall understanding of the role of lipid mediators in the pathology of chronic pain is growing. Here we review the role of long chain fatty acids and their metabolites in alleviating both acute and chronic pain conditions. We focus specifically on the epoxidized metabolites of omega-6 and omega-3 long chain fatty acids as well as a novel strategy to modulate their activity in vivo. PMID:25240260

  11. [Novel nutritional management regimen for very long-chain acyl-CoA dehydrogenase deficiency].

    PubMed

    Haruki, Hiroyo; Kawai, Motoharu; Ogasawara, Jun-Ichi; Koga, Michiaki; Negoro, Kiyoshi; Kanda, Takashi

    2010-03-01

    We report a novel regimen of nutritional management in 22-year-old woman with myopathic form of very-long-chain acyl-CoA dehydrogenase deficiency. This regimen is based on avoidance of fasting by frequent intake of carbohydrates and substitution of medium chain triglyceride for long- and very long-chain fatty acids. Oral intake of medium amount of long-chain fatty acid (300 kcal daily) was allowed, to facilitate compliance and to escape pigmentary retinopathy. After this nutritional management and lifestyle guidance about prevention of fatigue and starvation, the patient was free from severe rhabdomyolysis for more than three years, which had forced her to hospital management nine times in seven years.

  12. Long-chain L-3-hydroxyacyl-coenzyme a dehydrogenase deficiency: a molecular and biochemical review.

    PubMed

    Rakheja, Dinesh; Bennett, Michael J; Rogers, Beverly B

    2002-07-01

    Since the first report of long-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency a little more than a decade ago, its phenotypic and genotypic heterogeneity in individuals homozygous for the enzyme defect has become more and more evident. Even more interesting is its association with pregnancy-specific disorders, including preeclampsia, HELLP syndrome (hemolysis, elevated liver enzymes, low platelets), hyperemesis gravidarum, acute fatty liver of pregnancy, and maternal floor infarct of the placenta. In this review we discuss the biochemical and molecular basis, clinical features, diagnosis, and management of long-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency.

  13. Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family.

    PubMed

    Mashek, Douglas G; Bornfeldt, Karin E; Coleman, Rosalind A; Berger, Johannes; Bernlohr, David A; Black, Paul; DiRusso, Concetta C; Farber, Steven A; Guo, Wen; Hashimoto, Naohiro; Khodiyar, Varsha; Kuypers, Frans A; Maltais, Lois J; Nebert, Daniel W; Renieri, Alessandra; Schaffer, Jean E; Stahl, Andreas; Watkins, Paul A; Vasiliou, Vasilis; Yamamoto, Tokuo T

    2004-10-01

    By consensus, the acyl-CoA synthetase (ACS) community, with the advice of the human and mouse genome nomenclature committees, has revised the nomenclature for the mammalian long-chain acyl-CoA synthetases. ACS is the family root name, and the human and mouse genes for the long-chain ACSs are termed ACSL1,3-6 and Acsl1,3-6, respectively. Splice variants of ACSL3, -4, -5, and -6 are cataloged. Suggestions for naming other family members and for the nonmammalian acyl-CoA synthetases are made.

  14. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    PubMed Central

    Touma, E; Rashed, M; Vianey-Saban, C; Sakr, A; Divry, P; Gregersen, N; Andresen, B

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased long chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence.

 PMID:11124787

  15. Cardiac Hypertrophy in Mice with Long-Chain Acyl-CoA Dehydrogenase (LCAD) or Very Long-Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency

    PubMed Central

    Cox, Keith B.; Liu, Jian; Tian, Liqun; Barnes, Stephen; Yang, Qinglin; Wood, Philip A.

    2009-01-01

    Cardiac hypertrophy is a common finding in human patients with inborn errors of long-chain fatty acid oxidation. Mice with either very long-chain acyl-CoA dehydrogenase deficiency (VLCAD−/−) or long-chain acyl-CoA dehydrogenase deficiency (LCAD−/−) develop cardiac hypertrophy. Cardiac hypertrophy, initially measured using heart/body weight ratios, was manifested most severely in LCAD−/− male mice. VLCAD−/− mice, as a group, showed a mild increase in normalized cardiac mass (8.8% hypertrophy compared to all wild-type [WT] mice). In contrast, LCAD−/− mice as a group showed more severe cardiac hypertrophy (32.2% increase compared to all WT mice). Based on a clear male predilection, we investigated the role of dietary plant estrogenic compounds commonly found in mouse diets due to soy or alfalfa components providing natural phytoestrogens or isoflavones in cardioprotection of LCAD−/− mice. Male LCAD−/− mice fed an isoflavone-free test diet had more severe cardiac hypertrophy (58.1% hypertrophy compared to WT mice fed the same diet. There were no significant differences in the female groups fed any of the diets. Echocardiography measurement performed on male LCAD deficient mice fed a standard diet at ~3 months of age confirmed the substantial cardiac hypertrophy in these mice compared with WT controls. Left ventricular wall thickness of interventricular septum and posterior wall was remarkably increased in LCAD−/− mice compared with that of WT controls. Accordingly, the calculated LV mass after normalization to body weight was increased about 40% in the LCAD−/− mice compared with WT mice. In summary, we found that metabolic cardiomyopathy, expressed as hypertrophy, developed in mice due to either VLCAD deficiency or LCAD deficiency; however, LCAD deficiency was the most profound and appeared to be attenuated either by endogenous estrogen in females or phytoestrogens in the diet as isoflavones in males. PMID:19736549

  16. Assessment of hydrogen metabolism in commercial anaerobic digesters.

    PubMed

    Kern, Tobias; Theiss, Juliane; Röske, Kerstin; Rother, Michael

    2016-05-01

    Degradation of biomass in the absence of exogenous electron acceptors via anaerobic digestion involves a syntrophic association of a plethora of anaerobic microorganisms. The commercial application of this process is the large-scale production of biogas from renewable feedstock as an alternative to fossil fuels. After hydrolysis of polymers, monomers are fermented to short-chain fatty acids and alcohols, which are further oxidized to acetate. Carbon dioxide, molecular hydrogen (H2), and acetate generated during the process are converted to methane by methanogenic archaea. Since many of the metabolic pathways as well as the syntrophic interactions and dependencies during anaerobic digestion involve formation, utilization, or transfer of H2, its metabolism and the methanogenic population were assessed in various samples from three commercial biogas plants. Addition of H2 significantly increased the rate of methane formation, which suggested that hydrogenotrophic methanogenesis is not a rate-limiting step during biogas formation. Methanoculleus and Methanosarcina appeared to numerically dominate the archaeal population of the three digesters, but their proportion and the Bacteria-to-Archaea ratio did not correlate with the methane productivity. Instead, hydrogenase activity in cell-free extracts from digester sludge correlated with methane productivity in a positive fashion. Since most microorganisms involved in biogas formation contain this activity, it approximates the overall anaerobic metabolic activity and may, thus, be suitable for monitoring biogas reactor performance.

  17. A chromatographic survey of methods for extacting long-chain grass fructans

    USDA-ARS?s Scientific Manuscript database

    Fructans were extracted under different conditions from four cool-season forages in order to develop extraction, cleanup, and chromatographic separation protocols permitting optimal analysis of long-chain fructans. Adequate sample cleanup was achieved by passage through a C18 solid-phase extractio...

  18. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    EPA Science Inventory

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  19. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    EPA Science Inventory

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  20. Long-chain n-3 fatty acids - New anabolic compounds improving protein metabolism

    USDA-ARS?s Scientific Manuscript database

    Previous animal studies demonstrated that chronic feeding of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA) that modifies muscle membrane fatty acid composition promotes protein anabolism by blunting the age-associated deterioration in insulin sensitivity. The current study assessed, as a pr...

  1. Long-chain polyunsaturated fatty acids in chronic childhood disorders: panacea, promising, or placebo

    USDA-ARS?s Scientific Manuscript database

    Long-chain polyunsaturated fatty acids (LCPUFA, or LCP) include the essential fatty acids alpha-linolenic acid (ALA, 18:3 n-3) and linoleic acid (LA, 18:2 n-6) as well as a number of metabolites of both, including eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachid...

  2. Two novel long-chain alkanoic acid esters of lupeol from alecrim-propolis.

    PubMed

    Furukawa, Satomi; Takagi, Naomichi; Ikeda, Tsuyoshi; Ono, Masateru; Nafady, Alaa Mohamed; Nohara, Toshihiro; Sugimoto, Hiroyuki; Doi, Shima; Yamada, Hideo

    2002-03-01

    Two new long-chain alkanoic acid esters of lupeol were isolated together with known triterpenoids, alpha-amyrin, beta-amyrin, cycloartenol, lanosta-7,24-diene-3beta-ol and lupeol from Alecrim-propolis collected in Brazil. The structures were characterized by spectroscopic means.

  3. Miscibility and thermal behavior of poly (ε-caprolactone)/long-chain ester of cellulose blends

    Treesearch

    Yuzhi Xu; Chunpeng Wang; Nicole M. Stark; Zhiyong Cai; Fuxiang Chu

    2012-01-01

    The long-chain cellulose ester (LCCE) cellulose laurate, poly(ε-caprolactone) (PCL) and their blends were characterized by tensile strength, Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). The compatibility of the blends was...

  4. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    EPA Science Inventory

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  5. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    EPA Science Inventory

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  6. Long-chain Diols as a Lacustrine Paleothermometer: Calibration, Caveats, and Future Possibilities

    NASA Astrophysics Data System (ADS)

    Phelps, S. R.; Russell, J. M.; Loomis, S. E.

    2013-12-01

    The fractional abundances of long-chain alkyl 1,13-, 1,14-, and 1,15-diols and the long-chain diol index (LDI) are a novel and promising tool for marine paleotemperature reconstructions. However, little is known about the precise organismal source of these compounds or the efficacy of this paleotemperature proxy in lacustrine environments. Here we analyzed the distribution of long-chain diols in surface-sediment samples from 38 East African lakes and compare them to climatic and limnological parameters, including mean annual air temperature (MAAT), lake water conductivity, pH, nutrient content, and morphometry. Fractional abundances of C32 1,15-diols showed the strongest correlation with MAAT across the entire dataset. Strong correlations were also found between individual diol fractional abundances and pH and phosphorus, but correlation between the LDI and temperature was low (r2 = 0.193, p = 0.012). We used stepwise forward selection (SFS) to develop a multivariate linear regression between the fractional abundances of a combination of long-chain diols and MAAT (r2 = 0.8, p < 0.001). Application of the LDI as well as this new temperature calibration to a sediment core from Lake Tanganyika indicate a cooling of 4°C from LGM to present, suggesting that long-chain diols may not provide accurate temperature reconstructions in large, warm, tropical lakes. However, by splitting the dataset into 'cold' and 'warm' lakes and developing SFS regressions for these lake subsets, we found a strong linear correlation between diol relative abundances and temperature in the 'cold' lakes subset, suggesting diols may be a valuable temperature proxy in cold, high elevation tropical lakes.

  7. Inhibitory Effect of Coumarin on Syntrophic Fatty Acid-Oxidizing and Methanogenic Cultures and Biogas Reactor Microbiomes.

    PubMed

    Popp, Denny; Plugge, Caroline M; Kleinsteuber, Sabine; Harms, Hauke; Sträuber, Heike

    2017-07-01

    Coumarins are widely found in plants as natural constituents having antimicrobial activity. When considering plants that are rich in coumarins for biogas production, adverse effects on microorganisms driving the anaerobic digestion process are expected. Furthermore, coumarin derivatives, like warfarin, which are used as anticoagulating medicines, are found in wastewater, affecting its treatment. Coumarin, the structure common to all coumarins, inhibits the anaerobic digestion process. However, the details of this inhibition are still elusive. Here, we studied the impact of coumarin on acetogenesis and methanogenesis. First, coumarin was applied at four concentrations between 0.25 and 1 g · liter(-1) to pure cultures of the methanogens Methanosarcina barkeri and Methanospirillum hungatei, which resulted in up to 25% less methane production. Acetate production of syntrophic propionate- and butyrate-degrading cultures of Syntrophobacter fumaroxidans and Syntrophomonas wolfei was inhibited by 72% at a coumarin concentration of 1 g · liter(-1) Coumarin also inhibited acetogenesis and acetoclastic methanogenesis in a complex biogas reactor microbiome. When a coumarin-adapted microbiome was used, acetogenesis and methanogenesis were not inhibited. According to amplicon sequencing of bacterial 16S rRNA genes and mcrA genes, the communities of the two microbiomes were similar, although Methanoculleus was more abundant and Methanobacterium less abundant in the coumarin-adapted than in the nonadapted microbiome. Our results suggest that well-dosed feeding with coumarin-rich feedstocks to full-scale biogas reactors while keeping the coumarin concentrations below 0.5 g · liter(-1) will allow adaptation to coumarins by structural and functional community reorganization and coumarin degradation.IMPORTANCE Coumarins from natural and anthropogenic sources have an inhibitory impact on the anaerobic digestion process. Here, we studied in detail the adverse effects of the model

  8. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir.

    PubMed

    Feng, Lu; Wang, Wei; Cheng, Jiansong; Ren, Yi; Zhao, Guang; Gao, Chunxu; Tang, Yun; Liu, Xueqian; Han, Weiqing; Peng, Xia; Liu, Rulin; Wang, Lei

    2007-03-27

    The complete genome sequence of Geobacillus thermodenitrificans NG80-2, a thermophilic bacillus isolated from a deep oil reservoir in Northern China, consists of a 3,550,319-bp chromosome and a 57,693-bp plasmid. The genome reveals that NG80-2 is well equipped for adaptation into a wide variety of environmental niches, including oil reservoirs, by possessing genes for utilization of a broad range of energy sources, genes encoding various transporters for efficient nutrient uptake and detoxification, and genes for a flexible respiration system including an aerobic branch comprising five terminal oxidases and an anaerobic branch comprising a complete denitrification pathway for quick response to dissolved oxygen fluctuation. The identification of a nitrous oxide reductase gene has not been previously described in Gram-positive bacteria. The proteome further reveals the presence of a long-chain alkane degradation pathway; and the function of the key enzyme in the pathway, the long-chain alkane monooxygenase LadA, is confirmed by in vivo and in vitro experiments. The thermophilic soluble monomeric LadA is an ideal candidate for treatment of environmental oil pollutions and biosynthesis of complex molecules.

  9. Can long chain n-3 fatty acids from feed be converted into very long chain n-3 fatty acids in fillets from farmed rainbow trout (Oncorhynchus mykiss)?

    NASA Astrophysics Data System (ADS)

    Lušnic Polak, M.; Demšar, L.; Luzar, U.; Polak, T.

    2017-09-01

    The link between the basic chemical and fatty acid composition of trout feed on one hand and trout (Oncorhynchus mykiss) meat (fillet) was investigated.. The content of 52 fatty acids from feed and trout meat lipids was determined by in-situ transesterification and capillary column gas-liquid chromatography. On average, 100 g of trout feed contained 7.4 g of moisture, 47.7 g of proteins, 6.09 g of ash, 21.4 g of fat, and as for fatty acid composition, 47.8 wt. % were monounsaturated, 34.0 wt. % were polyunsaturated and 18.1 wt. % were saturated fatty acids, with the PS ratio 1.88, n-6/n-3 ratio 1.74, 0.80 wt. % of trans and 3.28 wt. % of very long chain n-3 fatty acids. On average, 100 g of trout meat contained 76.1 g of moisture, 21.4 g of proteins, 1.34 g of ash, 2.52 g of fat, and in the fatty acid composition 42.1 wt. % were monounsaturated, 38.2 wt. % were polyunsaturated and 18.9 wt. % were saturated fatty acids, with the PS ratio 2.02, n-6/n-3 ratio 0.98, 0.95 wt. % of trans and 13.25 wt. % of very long chain n-3 fatty acids.

  10. Anaerobic bioprocessing of organic wastes.

    PubMed

    Verstraete, W; de Beer, D; Pena, M; Lettinga, G; Lens, P

    1996-05-01

    Anaerobic digestion of dissolved, suspended and solid organics has rapidly evolved in the last decades but nevertheless still faces several scientific unknowns. In this review, some fundamentals of bacterial conversions and adhesion are addressed initially. It is argued in the light of ΔG-values of reactions, and in view of the minimum energy quantum per mol, that anaerobic syntrophs must have special survival strategies in order to support their existence: redistributing the available energy between the partners, reduced end-product fermentation reactions and special cell-to-cell physiological interactions. In terms of kinetics, it appears that both reaction rates and residual substrate thresholds are strongly related to minimum ΔG-values. These new fundamental insights open perspectives for efficient design and operation of anaerobic bioprocesses. Subsequently, an overview is given of the current anaerobic biotechnology. For treating wastewaters, a novel and high performance new system has been introduced during the last decade; the upflow anaerobic sludge blanket system (UASB). This reactor concept requires anaerobic consortia to grow in a dense and eco-physiologically well-organized way. The microbial principles of such granular sludge growth are presented. Using a thermodynamic approach, the formation of different types of aggregates is explained. The application of this bioprocess in worldwide wastewater treatment is indicated. Due to the long retention times of the active biomass, the UASB is also suitable for the development of bacterial consortia capable of degrading xenobiotics. Operating granular sludge reactors at high upflow velocities (5-6 m/h) in expanded granular sludge bed (EGSB) systems enlarges the application field to very low strength wastewaters (chemical oxygen demand < 1 g/l) and psychrophilic temperatures (10°C). For the treatment of organic suspensions, there is currently a tendency to evolve from the conventional mesophilic

  11. Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei.

    PubMed

    de Bok, Frank A M; Luijten, Maurice L G C; Stams, Alfons J M

    2002-09-01

    The hydrogenase and formate dehydrogenase levels in Syntrophobacter fumaroxidans and Methanospirillum hungatei were studied in syntrophic propionate-oxidizing cultures and compared to the levels in axenic cultures of both organisms. Cells grown syntrophically were separated from each other by Percoll gradient centrifugation. In S. fumaroxidans both formate dehydrogenase and hydrogenase levels were highest in cells which were grown syntrophically, while the formate-H(2) lyase activities were comparable under the conditions tested. In M. hungatei the formate dehydrogenase and formate-H(2) lyase levels were highest in cells grown syntrophically, while the hydrogenase levels in syntrophically grown cells were comparable to those in cells grown on formate. Reconstituted syntrophic cultures from axenic cultures immediately resumed syntrophic growth, and the calculated growth rates of these cultures were highest for cells which were inoculated from the axenic S. fumaroxidans cultures that exhibited the highest formate dehydrogenase activities. The results suggest that formate is the preferred electron carrier in syntrophic propionate-oxidizing cocultures of S. fumaroxidans and M. hungatei.

  12. Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells.

    PubMed

    Yamamuro, Ayaka; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2014-01-01

    Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs) have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m(-2) (based on the projected area of the anode). In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors.

  13. Dynamic changes of carbon isotope apparent fractionation factor to describe transition to syntrophic acetate oxidation during cellulose and acetate methanization.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V

    2017-05-01

    To identify predominant metabolic pathway for cellulose methanization new equations that take into account dynamics of 13C are added to the basic model of cellulose methanization. The correct stoichiometry of hydrolysis, acidogenesis, acetogenesis and methanogenesis steps including biomass is considered. Using experimental data by Laukenmann et al. [Identification of methanogenic pathway in anaerobic digesters using stable carbon isotopes. Eng. Life Sci. 2010;10:1-6], who reported about the importance of ace`tate oxidation during mesophilic cellulose methanization, the model confirmed that, at high biomass concentration of acetate oxidizers, the carbon isotope fractionation factor amounts to about 1.085. The same model, suggested firstly for cellulose degradation, was used to describe, secondly, changes in, and in methane and carbon dioxide during mesophylic acetate methanization measured by Grossin-Debattista [Fractionnements isotopiques (13C/12C) engendres par la methanogenese: apports pour la comprehension des processus de biodegradation lors de la digestion anaerobie [doctoral thesis]. 2011. Bordeaux: Universite Bordeaux-1;2011. Available from: http://ori-oai.u-bordeaux1.fr/pdf/2011/GROSSIN-DEBATTISTA_JULIEN_2011.pdf . French].The model showed that under various ammonium concentrations, at dominating acetoclastic methanogenesis, the value decreases over time to a low level (1.016), while at dominating syntrophic acetate oxidation, coupled with hydrogenotrophic methanogenesis, slightly increases, reaching 1.060 at the end of incubation.

  14. Metagenomic Analyses Reveal the Involvement of Syntrophic Consortia in Methanol/Electricity Conversion in Microbial Fuel Cells

    PubMed Central

    Yamamuro, Ayaka; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2014-01-01

    Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs) have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m−2 (based on the projected area of the anode). In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors. PMID:24852573

  15. Humic Substances as Electron Acceptors and Electron Shuttlers in Anaerobic Marine Sediments.

    DTIC Science & Technology

    1998-09-30

    D. Lovley and B. Schink. 1998. Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic...fold after incubation with Geobacter Metallireducens. A direct positive correlation exists between the change in organic radicals and the molar...the humics with a pure culture of Geobacter metallireducens and acetate, and then adding Fe(III) and measuring the resulting Fe(II) using the

  16. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Mehalick, Leslie A; Poulsen, Christopher; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-12-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2-10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0-80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.

  17. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Mehalick, Leslie A.; Poulsen, Christopher; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2–10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0–80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26550599

  18. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  19. Membrane Complexes of Syntrophomonas wolfei Involved in Syntrophic Butyrate Degradation and Hydrogen Formation

    PubMed Central

    Crable, Bryan R.; Sieber, Jessica R.; Mao, Xinwei; Alvarez-Cohen, Lisa; Gunsalus, Robert; Ogorzalek Loo, Rachel R.; Nguyen, Hong; McInerney, Michael J.

    2016-01-01

    Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the biochemical machinery involved has not been clearly elucidated. In this study, the gene and enzyme systems involved in reverse electron transfer by Syntrophomonas wolfei were investigated using proteomic and gene expression approaches. S. wolfei was grown in co-culture with Methanospirillum hungatei or Dehalococcoides mccartyi under conditions requiring reverse electron transfer and compared to both axenic S. wolfei cultures and co-cultures grown in conditions that do not require reverse electron transfer. Blue native gel analysis of membranes solubilized from syntrophically grown cells revealed the presence of a membrane-bound hydrogenase, Hyd2, which exhibited hydrogenase activity during in gel assays. Bands containing a putative iron-sulfur (FeS) oxidoreductase were detected in membranes of crotonate-grown and butyrate grown S. wolfei cells. The genes for the corresponding hydrogenase subunits, hyd2ABC, were differentially expressed at higher levels during syntrophic butyrate growth when compared to growth on crotonate. The expression of the FeS oxidoreductase gene increased when S. wolfei was grown with M. hungatei. Additional membrane-associated proteins detected included FoF1 ATP synthase subunits and several membrane transporters that may aid syntrophic growth. Furthermore, syntrophic butyrate metabolism can proceed exclusively by interspecies hydrogen transfer, as demonstrated by growth with D. mccartyi, which is unable to use formate. These results argue for the importance of Hyd2 and FeS oxidoreductase in reverse electron transfer during syntrophic butyrate degradation

  20. Syntrophic growth via quinone-mediated interspecies electron transfer

    PubMed Central

    Smith, Jessica A.; Nevin, Kelly P.; Lovley, Derek R.

    2015-01-01

    The mechanisms by which microbial species exchange electrons are of interest because interspecies electron transfer can expand the metabolic capabilities of microbial communities. Previous studies with the humic substance analog anthraquinone-2,6-disulfonate (AQDS) suggested that quinone-mediated interspecies electron transfer (QUIET) is feasible, but it was not determined if sufficient energy is available from QUIET to support the growth of both species. Furthermore, there have been no previous studies on the mechanisms for the oxidation of anthrahydroquinone-2,6-disulfonate (AHQDS). A co-culture of Geobacter metallireducens and G. sulfurreducens metabolized ethanol with the reduction of fumarate much faster in the presence of AQDS, and there was an increase in cell protein. G. sulfurreducens was more abundant, consistent with G. sulfurreducens obtaining electrons from acetate that G. metallireducens produced from ethanol, as well as from AHQDS. Co-cultures initiated with a citrate synthase-deficient strain of G. sulfurreducens that was unable to use acetate as an electron donor also metabolized ethanol with the reduction of fumarate and cell growth, but acetate accumulated over time. G. sulfurreducens and G. metallireducens were equally abundant in these co-cultures reflecting the inability of the citrate synthase-deficient strain of G. sulfurreducens to metabolize acetate. Evaluation of the mechanisms by which G. sulfurreducens accepts electrons from AHQDS demonstrated that a strain deficient in outer-surface c-type cytochromes that are required for AQDS reduction was as effective at QUIET as the wild-type strain. Deletion of additional genes previously implicated in extracellular electron transfer also had no impact on QUIET. These results demonstrate that QUIET can yield sufficient energy to support the growth of both syntrophic partners, but that the mechanisms by which electrons are derived from extracellular hydroquinones require further investigation. PMID

  1. Retroviral-mediated gene transfer corrects very-long-chain fatty acid metabolism in adrenoleukodystrophy fibroblasts.

    PubMed Central

    Cartier, N; Lopez, J; Moullier, P; Rocchiccioli, F; Rolland, M O; Jorge, P; Mosser, J; Mandel, J L; Bougnères, P F; Danos, O

    1995-01-01

    Adrenoleukodystrophy (ALD), a lethal demyelinating disease of the brain, is caused by mutations of a gene encoding an ATP-binding transporter, called ALDP, localized in the peroxisomal membrane. It is associated with a defective oxidation of very-long-chain fatty acids, leading to their accumulation in many tissues. This study reports that the retroviral-mediated transfer of the ALD cDNA restored very-long-chain fatty acid oxidation in ALD fibroblasts in vitro following abundant expression and appropriate targeting of the vector-encoded ALDP in peroxisomes. The same method may be used in hematopoietic cells as a further step of a gene therapy approach of ALD. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7878038

  2. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  3. Long-chain polynucleotide filler for skin rejuvenation: efficacy and complications in five patients.

    PubMed

    Park, Kui Young; Seok, Joon; Rho, Nark Kyoung; Kim, Beom Joon; Kim, Myeung Nam

    2016-01-01

    Aging well has become the new target of preventative medicine, and aesthetic dermatology can contribute to this request. The polynucleotide (PN) containing products not only fill the space, but improve tissue regeneration, resulting in more natural tissue regeneration. Five Korean women received four times injections of long-chain PN filler in two-week intervals for skin rejuvenation. About 0.05 mL of material was injected in 40 points of one-side cheek. The pore and skin thickness were markedly improved in the patients in their 30s, whereas skin tone, melanin, wrinkles, and sagging were noticeably improved for patients in their 40s. There are no serious side effects. In conclusion, intradermal long-chain PN filler injection seems to be an effective and safe treatment for skin rejuvenation.

  4. Synthetic peptide antigens derived from long-chain alpha-neurotoxins: Immunogenicity effect against elapid venoms.

    PubMed

    de la Rosa, Guillermo; Pastor, Nina; Alagón, Alejandro; Corzo, Gerardo

    2017-02-01

    Three-finger toxins (3FTXs), especially α-neurotoxins, are the most poorly neutralized elapid snake toxins by current antivenoms. In this work, the conserved structural similarity and motif arrangements of long-chain α-neurotoxins led us to design peptides with consensus sequences. Eight long-chain α-neurotoxins (also known as Type II) were used to generate a consensus sequence from which two peptides were chemically synthesized, LCP1 and LCP2. Rabbit sera raised against them were able to generate partially-neutralizing antibodies, which delayed mice mortality in neutralization assays against Naja haje, Dendrospis polylepis and Ophiophagus hannah venoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    SciTech Connect

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  6. Transmembrane Movement of Exogenous Long-Chain Fatty Acids: Proteins, Enzymes, and Vectorial Esterification

    PubMed Central

    Black, Paul N.; DiRusso, Concetta C.

    2003-01-01

    The processes that govern the regulated transport of long-chain fatty acids across the plasma membrane are quite distinct compared to counterparts involved in the transport of hydrophilic solutes such as sugars and amino acids. These differences stem from the unique physical and chemical properties of long-chain fatty acids. To date, several distinct classes of proteins have been shown to participate in the transport of exogenous long-chain fatty acids across the membrane. More recent work is consistent with the hypothesis that in addition to the role played by proteins in this process, there is a diffusional component which must also be considered. Central to the development of this hypothesis are the appropriate experimental systems, which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both (i) exhibit saturable long-chain fatty acid transport at low ligand concentrations, (ii) have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus, and (iii) can be easily manipulated using the tools of molecular genetics. In both systems, central players in the process of fatty acid transport are fatty acid transport proteins (FadL or Fat1p) and fatty acyl coenzyme A (CoA) synthetase (FACS; fatty acid CoA ligase [AMP forming] [EC 6.2.1.3]). FACS appears to function in concert with FadL (bacteria) or Fat1p (yeast) in the conversion of the free fatty acid to CoA thioesters concomitant with transport, thereby rendering this process unidirectional. This process of trapping transported fatty acids represents one fundamental mechanism operational in the transport of exogenous fatty acids. PMID:12966144

  7. Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification.

    PubMed

    Black, Paul N; DiRusso, Concetta C

    2003-09-01

    The processes that govern the regulated transport of long-chain fatty acids across the plasma membrane are quite distinct compared to counterparts involved in the transport of hydrophilic solutes such as sugars and amino acids. These differences stem from the unique physical and chemical properties of long-chain fatty acids. To date, several distinct classes of proteins have been shown to participate in the transport of exogenous long-chain fatty acids across the membrane. More recent work is consistent with the hypothesis that in addition to the role played by proteins in this process, there is a diffusional component which must also be considered. Central to the development of this hypothesis are the appropriate experimental systems, which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both (i) exhibit saturable long-chain fatty acid transport at low ligand concentrations, (ii) have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus, and (iii) can be easily manipulated using the tools of molecular genetics. In both systems, central players in the process of fatty acid transport are fatty acid transport proteins (FadL or Fat1p) and fatty acyl coenzyme A (CoA) synthetase (FACS; fatty acid CoA ligase [AMP forming] [EC 6.2.1.3]). FACS appears to function in concert with FadL (bacteria) or Fat1p (yeast) in the conversion of the free fatty acid to CoA thioesters concomitant with transport, thereby rendering this process unidirectional. This process of trapping transported fatty acids represents one fundamental mechanism operational in the transport of exogenous fatty acids.

  8. Sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae: genetics, physiology, and a method for their selection.

    PubMed Central

    Pinto, W J; Srinivasan, B; Shepherd, S; Schmidt, A; Dickson, R C; Lester, R L

    1992-01-01

    A selection method for sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae was devised after observing that strains that require a long-chain base for growth become denser when starved for this substance. Genetic analysis of over 60 such strains indicated only two complementation classes, lcb1 and lcb2. Mutant strains from each class grew equally well with 3-ketodihydrosphingosine, erythrodihydrosphingosine or threodihydrosphingosine, or phytosphingosine. Since these metabolites represent the first, second, and last components, respectively, of the long-chain-base biosynthetic pathway, it is likely that the LCB1 and LCB2 genes are involved in the first step of long-chain-base synthesis. The results of long-chain-base starvation in the Lcb- strains suggest that one or more sphingolipids have a vital role in S. cerevisiae. Immediate sequelae of long-chain-base starvation were loss of viability, exacerbated in the presence of alpha-cyclodextrin, and loss of phosphoinositol sphingolipid synthesis but not phosphatidylinositol synthesis. Loss of viability with long-chain-base starvation could be prevented by also blocking either protein or nucleic acid synthesis. Without a long-chain-base, cell division, dry mass accumulation, and protein synthesis continued at a diminished rate and were further inhibited by the detergent Tergitol. The cell density increase induced by long-chain-base starvation is thus explained as a differential loss of cell division and mass accumulation. Long-chain-base starvation in Lcb- S. cerevisiae and inositol starvation of Inos- S. cerevisiae share common features: an increase in cell density and a loss of cell viability overcome by blocking macromolecular synthesis. PMID:1556075

  9. Molecular Basis for the Recognition of Long-chain Substrates by Plant α-Glucosidases

    PubMed Central

    Tagami, Takayoshi; Yamashita, Keitaro; Okuyama, Masayuki; Mori, Haruhide; Yao, Min; Kimura, Atsuo

    2013-01-01

    Sugar beet α-glucosidase (SBG), a member of glycoside hydrolase family 31, shows exceptional long-chain specificity, exhibiting higher kcat/Km values for longer malto-oligosaccharides. However, its amino acid sequence is similar to those of other short chain-specific α-glucosidases. To gain structural insights into the long-chain substrate recognition of SBG, a crystal structure complex with the pseudotetrasaccharide acarbose was determined at 1.7 Å resolution. The active site pocket of SBG is formed by a (β/α)8 barrel domain and a long loop (N-loop) bulging from the N-terminal domain similar to other related enzymes. Two residues (Phe-236 and Asn-237) in the N-loop are important for the long-chain specificity. Kinetic analysis of an Asn-237 mutant enzyme and a previous study of a Phe-236 mutant enzyme demonstrated that these residues create subsites +2 and +3. The structure also indicates that Phe-236 and Asn-237 guide the reducing end of long substrates to subdomain b2, which is an additional element inserted into the (β/α)8 barrel domain. Subdomain b2 of SBG includes Ser-497, which was identified as the residue at subsite +4 by site-directed mutagenesis. PMID:23687304

  10. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation.

    PubMed

    McCoin, Colin S; Piccolo, Brian D; Knotts, Trina A; Matern, Dietrich; Vockley, Jerry; Gillingham, Melanie B; Adams, Sean H

    2016-05-01

    Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been reported. We utilized untargeted metabolomics to characterize plasma metabolites in 12 overnight-fasted individuals with FAOD (10 LCHAD, two CPT2) and 11 healthy age-, sex-, and body mass index (BMI)-matched controls, with the caveat that individuals with FAOD consume a low-fat diet supplemented with medium-chain triglycerides (MCT) while matched controls consume a typical American diet. In plasma 832 metabolites were identified, and partial least squared-discriminant analysis (PLS-DA) identified 114 non-acylcarnitine variables that discriminated FAOD subjects and controls. FAOD individuals had significantly higher triglycerides and lower specific phosphatidylethanolamines, ceramides, and sphingomyelins. Differences in phosphatidylcholines were also found but the directionality differed by metabolite species. Further, there were few differences in non-lipid metabolites, indicating the metabolic impact of FAOD specifically on lipid pathways. This analysis provides evidence that LCHAD/CPT2 deficiency significantly alters complex lipid pathway flux. This metabolic signature may provide new clinical tools capable of confirming or diagnosing FAOD, even in subjects with a mild phenotype, and may provide clues regarding the biochemical and metabolic impact of FAOD that is relevant to the etiology of FAOD symptoms.

  11. Oleyl alcohol inhibits intestinal long-chain fatty acid absorption in rats.

    PubMed

    Murota, K; Kawada, T; Matsui, N; Sakakibara, M; Takahashi, N; Fushiki, T

    2000-12-01

    Long-chain fatty acids are important nutrients, but obesity is the most common nutritional disorder in humans. In this study we investigated the effect of oleyl alcohol on the intestinal long-chain fatty acid absorption in rats. We administered [14C]oleic acid and oleyl alcohol as lipid emulsion intraduodenally in unanesthetized lymph-cannulated rats and measured the lymphatic output of oleic acid. Second, we orally administered lipid emulsion with a stomach tube and measured the luminal and mucosal oleic acid residues. Furthermore, rats were fed oleyl alcohol as a dietary component for 20 days, and fecal lipid and the weight of adipose tissues were measured. In lymph-cannulated rats, triglyceride and [14C]oleic acid output in the lymph were significantly lower in the presence of oleyl alcohol when compared with the absence of oleyl alcohol in a dose-dependent manner. The radioactivity remaining in the intestinal lumen was more strongly detected in rats that had been orally administered oleyl alcohol than in the controls. The feces of rats fed an oleyl-alcohol-added diet contained much higher amounts of lipids, and the weights of their adipose tissues were significantly lower than in the control group. These results suggest that oleyl alcohol inhibits the rat gastrointestinal absorption of long-chain fatty acids in vivo.

  12. How Very-Long-Chain Fatty Acids Could Signal Stressful Conditions in Plants?

    PubMed Central

    De Bigault Du Granrut, Antoine; Cacas, Jean-Luc

    2016-01-01

    Although encountered in minor amounts in plant cells, very-long-chain fatty acids exert crucial functions in developmental processes. When their levels are perturbed by means of genetic approaches, marked phenotypic consequences that range from severe growth retardation to embryo lethality was indeed reported. More recently, a growing body of findings has also accumulated that points to a potential role for these lipids as signals in governing both biotic and abiotic stress outcomes. In the present work, we discuss the latter theory and explore the ins and outs of very-long-chain fatty acid-based signaling in response to stress, with an attempt to reconcile two supposedly antagonistic parameters: the insoluble nature of fatty acids and their signaling function. To explain this apparent dilemma, we provide new interpretations of pre-existing data based on the fact that sphingolipids are the main reservoir of very-long-chain fatty acids in leaves. Thus, three non-exclusive, molecular scenarii that involve these lipids as membrane-embedded and free entities are proposed. PMID:27803703

  13. The Long-Chain Sphingoid Base of Ceramides Determines Their Propensity for Lateral Segregation.

    PubMed

    Al Sazzad, Md Abdullah; Yasuda, Tomokazu; Murata, Michio; Slotte, J Peter

    2017-03-14

    We examined how the length of the long-chain base or the N-linked acyl chain of ceramides affected their lateral segregation in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Lateral segregation and ceramide-rich phase formation was ascertained by a lifetime analysis of trans-parinaric acid (tPA) fluorescence. The longer the length of the long-chain base (d16:1, d17:1, d18:1, d19:1, and d20:1 in N-palmitoyl ceramide), the less ceramide was needed for the onset of lateral segregation and ceramide-rich phase formation. A similar but much weaker trend was observed when sphingosine (d18:1)-based ceramide had N-linked acyl chains of increasing length (14:0 and 16:0-20:0 in one-carbon increments). The apparent lateral packing of the ceramide-rich phase, as determined from the longest-lifetime component of tPA fluorescence, also correlated strongly with the long-chain base length, but not as strongly with the N-acyl chain length. Finally, we compared two ceramide analogs with equal carbon numbers (d16:1/17:0 or d20:1/13:0) and observed that the analog with a longer sphingoid base segregated at lower bilayer concentrations to a ceramide-rich phase compared with the shorter sphingoid base analog. The gel phase formed by d20:1/13:0 ceramide also was more thermostable than the gel phase formed by d16:1/17:0 ceramide. (2)H NMR data for 10 mol % stearoyl ceramide in POPC also showed that the long-chain base was more ordered than the acyl chain at comparable chain positions and temperatures. We conclude that the long-chain base length of ceramide is more important than the acyl chain length in determining the lateral segregation of the ceramide-rich gel phase and intermolecular interactions therein.

  14. Effect of recombinant bovine somatotropin and calcium salts of long-chain fatty acids on milk from Italian buffalo.

    PubMed

    Polidori, F; Sgoifo Rossi, C A; Senatore, E M; Savoini, G; Dell'Orto, V

    1997-09-01

    Fifty-one lactating Italian river buffalo were used in an 84-d study to evaluate the effects of recombinant bovine somatotropin (bST) and Ca salts of long-chain fatty acids on productive performance. Treatments were 1) control diet, 2) the control diet plus 0.3 kg/d of added Ca salts of long-chain fatty acids, 3) the control diet plus 320 mg of recombinant bST injected every 21 d for four cycles, and 4) the control diet plus 0.3 kg/d of added Ca salts of long-chain fatty acids and 320 mg of recombinant bST administered as previously described. Administration of bST and Ca salts of long-chain fatty acids increased milk production. Milk fat percentage was not affected by treatments. The percentage of short-chain fatty acids in milk fat was reduced by the addition of Ca salts. Medium-chain, long-chain, and unsaturated fatty acids in milk fat were increased by bST treatment. Milk protein percentage was decreased by the addition of Ca salts of long-chain fatty acids. Milk casein content, as a percentage of total protein or as a percentage of true protein, was unaffected by bST. Body condition score was lowered by bST administration, but the addition of Ca salts of long-chain fatty acids reduced body condition loss in buffalo that were treated with somatotropin.

  15. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Poulsen, Christopher; Mehalick, Leslie A.; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 µM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propridium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2 to 10.0 µM long-chain bases and GML were not cytotoxic; 40.0 to 80.0 µM long-chain bases, but not GML, were cytotoxic; and 80.0 µM long-chain bases induced cellular damage and death in less than 20 minutes. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26005054

  16. Alkenone temperature and salinity: An evaluation of long chain C37 alkenone in Lake Qinghai, China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Liu, Z.; Fu, M.; An, Z.

    2007-12-01

    In recently years, the alkenone unsaturation index (Uk'37=C37:.2/(C37:2+ C37:3)) has been used to reconstructed paleo-temperature for lacustrine sediments. However, few studies have addressed whether the relative abundance of the C37:4 alkenone to the total C37 production (C37:4 percent) can reflect surface salinity changes in lake systems. Here we present the distribution of C37 long chain alkenone of modern lake sediments in Qinghai Lake, Qing-Tibet Plateau, to evaluate significance of abundance change of long chain C37 alkenone as an indicator of lake paleo-enviromental evolution. A group of surface sediments from different locations in the lake have been analyzed in this study. The results of long chain C37 alkenone from 28 surface sediments analyses shown relative abundance of C37:4 alkenone to total C37 production (C37:4 percent) change from 14.5 to 48.6 percent and the abundance of C37:4 alkenone is increasing with decreasing salinity of lake water. For the salinity lake in land, we suggested the relative abundance of C37:4 alkenone in lake sediments may be a indicator of paleo-silinity; We have also found that Uk'37 values are weakly correlated with salinity and C37:4 percent changes, implying that potential minor contributions of temperature and salinity effects to C37:4 percent and Uk'37 respectively cannot be excluded in this study. However, since these contributions are weak, we suggest that the C37:4 percent proxy can be used to reconstruct paleo-salinity changes at a regional scale, especially in lake systems, while Uk'37 remains as a powerful tool for reconstructions of paleo-temperature changes in the lake systems.

  17. A Long-Chain Flavodoxin Protects Pseudomonas aeruginosa from Oxidative Stress and Host Bacterial Clearance

    PubMed Central

    Moyano, Alejandro J.; Krapp, Adriana R.; Mondotte, Juan A.; Bocco, José L.; Saleh, Maria-Carla; Carrillo, Néstor; Smania, Andrea M.

    2014-01-01

    Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for flavodoxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments. PMID:24550745

  18. Treatment of Essential Tremor with Long-Chain Alcohols: Still Experimental or Ready for Prime Time?

    PubMed Central

    Haubenberger, Dietrich; Nahab, Fatta B.; Voller, Bernhard; Hallett, Mark

    2014-01-01

    Aim To review current literature on long-chain alcohols and their derivatives as novel pharmacotherapy for the treatment of essential tremor (ET). Background Currently available and recommended pharmacotherapies for ET are often limited by suboptimal treatment effects, frequent adverse effects, and drug interactions. While ethanol is reported to profoundly decrease tremor severity in the majority of patients with ET, preclinical experience suggests that long-chain alcohols such as 1-octanol might lead to a comparable tremor reduction without ethanol’s typical side effects of sedation and intoxication. Here, we review the literature on the first clinical trials on 1-octanol and its metabolite octanoic acid (OA) for the treatment of ET. Methods The literature on preclinical and clinical trials on long-chain alcohols as well as OA was reviewed and summarized, and an outlook given on next phases of development. Discussion 1-octanol was demonstrated to be safe and effective in a double-blind, placebo-controlled low-dose trial, and open-label data showed excellent tolerability and dose-dependent efficacy up to 128 mg/kg. Despite 1-octanol’s efficacy, its future viability as an effective therapy is limited by its pharmacological properties that require large volumes to be orally administered. Pharmacokinetic data indicate that OA is the active metabolite of 1-octanol. Preclinical efficacy data for OA are positive, and human pilot data demonstrated excellent safety as well as efficacy in secondary outcome measures of tremor amplitudes. OA also has more favorable pharmacological properties for drug delivery; hence, OA may be worth developing as a pharmaceutical. PMID:24587968

  19. A long-chain flavodoxin protects Pseudomonas aeruginosa from oxidative stress and host bacterial clearance.

    PubMed

    Moyano, Alejandro J; Tobares, Romina A; Rizzi, Yanina S; Krapp, Adriana R; Mondotte, Juan A; Bocco, José L; Saleh, Maria-Carla; Carrillo, Néstor; Smania, Andrea M

    2014-02-01

    Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for fl avo d oxin from P . aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments.

  20. Sequential depletion of rat testicular lipids with long-chain and very long-chain polyenoic fatty acids after X-ray-induced interruption of spermatogenesis[S

    PubMed Central

    Oresti, Gerardo M.; Ayuza Aresti, Pablo L.; Gigola, Graciela; Reyes, Luis E.; Aveldaño, Marta I.

    2010-01-01

    When a single dose of X-rays is applied to the adult rat testis, stem spermatogonia are damaged, and spermatogenesis is interrupted. Supported by Sertoli cells, spermatogenic cells that endure irradiation complete their differentiation and gradually leave the testis as spermatozoa. In this study, the in vivo changes taking place a number of weeks after irradiation revealed cell-specific features of testicular lipid classes. A linear drop, taking about six weeks, in testis weight, nonlipid materials, free cholesterol, and 22:5n-6-rich glycerophospholipids took place with germ cell depletion. Sphingomyelins and ceramides with nonhydroxy very long-chain polyenoic fatty acids (n-VLCPUFA) disappeared in four weeks, together with the last spermatocytes, whereas species with 2-hydroxy VLCPUFA lasted for six weeks, disappearing with the last spermatids and spermatozoa. The amount per testis of 22:5n-6-rich triacylglycerols, unchanged for four weeks, fell between weeks 4 and 6, associating these lipids with spermatids and their residual bodies, detected as small, bright lipid droplets. In contrast, 22:5n-6-rich species of cholesterol esters and large lipid droplets increased in seminiferous tubules up to week 6, revealing they are Sertoli cell products. At week 30, the lipid and fatty acid profiles reflected the resulting permanent testicular involution. Our data highlight the importance of Sertoli cells in maintaining lipid homeostasis during normal spermatogenesis. PMID:20529883

  1. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.

    PubMed

    Beller, Harry R; Goh, Ee-Been; Keasling, Jay D

    2010-02-01

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which

  2. Genes Involved in Long-Chain Alkene Biosynthesis in Micrococcus luteus▿

    PubMed Central

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-01

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the

  3. Peanut consumption increases levels of plasma very long chain fatty acids in humans.

    PubMed

    Lam, Christina; Wong, Derek; Cederbaum, Stephen; Lim, Bennie; Qu, Yong

    2012-11-01

    Peanut consumption has been suspected of raising plasma very long chain fatty acid (VLCFA) levels in humans. The effect of peanut consumption on VLCFAs was studied in six human subjects. After 3 to 4h of peanut butter ingestion, plasma C26:0 and C26:0/C22:0 were found to be significantly elevated to levels seen in patients with peroxisomal disorders. These levels returned to normal within 12h. Peanut consumption needs to be accounted for when interpreting VLCFAs. Published by Elsevier Inc.

  4. [The clinical value of measuring plasma level of very long chain fatty acids in Addison disease].

    PubMed

    Chen, Jun; Zhang, Jian; Wang, De-Xin

    2007-09-01

    To determine the level of very long chain fatty acids (VLCFA) in plasma to find out X-linked adrenoleukodystrophy (X-ALD) in patients with Addison disease. By using gas chromatography measurement of plasma levels of C(26:0), ratios of C(26:0)/C(22:0) and C(24:0)/C(22:0) was carried out in 36 patients with Addison disease. Among the 36 cases, 6 had elevated plasma VLCFA levels; thus the presence of X-ALD was confirmed. Misdiagnosis of X-ALD can be reduced by measuring plasma level of VLCFA early in male patients with Addison disease, especially in young ones.

  5. Anaerobic Infections

    MedlinePlus

    ... doses of antibiotics taken by mouth for months. Bacteroides and Prevotella infections. Bacterial organisms from species called Bacteroides and Prevotella are anaerobic. They are common organisms ...

  6. An Open-label Phase 2 Study of UX007 (Triheptanoin) in Subjects With Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD)

    ClinicalTrials.gov

    2017-08-11

    Long-chain Fatty Acid Oxidation Disorders (LC-FAOD); Carnitine Palmitoyltransferase (CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Longchain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency

  7. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by INEOS Chlor Americas

    EPA Pesticide Factsheets

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  8. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Dover Chemical

    EPA Pesticide Factsheets

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  9. A Novel Protocol to Analyze Short- and Long-Chain Fatty Acids Using Nonaqueous Microchip Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Cable, M. L.; Stockton, A. M.; Mora, Maria F; Willis, P. A.

    2013-01-01

    We propose a new protocol to identify and quantify both short- and long-chain saturated fatty acids in samples of astrobiological interest using non-aqueous microchip capillary electrophoresis (micronNACE) with laser induced fluorescence (LIF).

  10. Long-chain saturated and monounsaturated fatty acids associate with development of premature infants up to 18 months of age.

    PubMed

    Strandvik, Birgitta; Ntoumani, Eleni; Lundqvist-Persson, Cristina; Sabel, Karl-Göran

    2016-04-01

    Myelination is important perinatally and highly dependent on long-chain saturated and monounsaturated fatty acids. Long-chain polyunsaturated fatty acids, nowadays often supplemented, inhibit oleic acid synthesis. Using data from a premature cohort, we studied if nervonic, lignoceric and oleic acids correlated to growth and early development up to 18 months corrected age. Small for gestational age infants had lower concentrations than infants appropriate for gestational age. Only oleic acid was negatively correlated to long-chain polyunsaturated fatty acids. Oleic and lignoceric acids correlated to social interaction at one month, and nervonic acid to mental, psychomotor and behavioral development at 6, 10 and 18 months, also when adjusted for several confounders. Negative association between oleic acid and long-chain polyunsaturated fatty acids suggests inhibition of delta-9 desaturase, and nervonic acid´s divergent correlation to lignoceric and oleic acids suggests different metabolism in neonatal period. Our results may have implications for the supplementation of premature infants.

  11. A Novel Protocol to Analyze Short- and Long-Chain Fatty Acids Using Nonaqueous Microchip Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Cable, M. L.; Stockton, A. M.; Mora, Maria F; Willis, P. A.

    2013-01-01

    We propose a new protocol to identify and quantify both short- and long-chain saturated fatty acids in samples of astrobiological interest using non-aqueous microchip capillary electrophoresis (micronNACE) with laser induced fluorescence (LIF).

  12. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Qualice, LLC

    EPA Pesticide Factsheets

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  13. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California).

    PubMed

    Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Caprais, Jean-Claude; Cambon-Bonavita, Marie-Anne; Godfroy, Anne; Toffin, Laurent

    2013-08-01

    Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the 'BIG' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel 'ANME-2c Sonora' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support

  14. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California)

    PubMed Central

    Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Caprais, Jean-Claude; Cambon-Bonavita, Marie-Anne; Godfroy, Anne; Toffin, Laurent

    2013-01-01

    Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the ‘BIG' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel ‘ANME-2c Sonora' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support

  15. The association of serum long-chain n-3 PUFA and hair mercury with exercise cardiac power in men.

    PubMed

    Tajik, Behnam; Kurl, Sudhir; Tuomainen, Tomi-Pekka; Virtanen, Jyrki K

    2016-08-01

    Long-chain n-3 PUFA from fish and exercise capacity are associated with CVD risk. Fish, especially large and old predatory fish, may contain Hg, which may attenuate the inverse association of long-chain n-3 PUFA with CVD. However, the associations of long-chain n-3 PUFA or Hg exposure with exercise capacity are not well known. We aimed to evaluate the associations of serum long-chain n-3 PUFA EPA, docosapentaenoic acid (DPA) and DHA and hair Hg with exercise cardiac power (ECP, a ratio of VO2max:maximal systolic blood pressure (SBP) during an exercise test), a measure for exercise capacity. For this, data from the population-based Kuopio Ischaemic Heart Disease Risk Factor Study were analysed cross-sectionally in order to determine the associations between serum long-chain n-3 PUFA, hair Hg and ECP in 1672 men without CVD, aged 42-60 years. After multivariate adjustments, serum total long-chain n-3 PUFA concentration was associated with higher ECP and VO2max (P trend across quartiles=0·04 and P trend=0·02, respectively), but not with maximal SBP (P trend=0·69). Associations were generally similar when EPA, DPA and DHA were evaluated individually. Hair Hg was not associated with ECP, VO2max or maximal SBP. However, the associations of total long-chain n-3 PUFA (P interaction=0·03) and EPA (P interaction=0·02) with higher VO2max were stronger among men with lower hair Hg. Higher serum long-chain n-3 PUFA concentration, mainly a marker for fish consumption in this study population, was associated with higher ECP and VO2max in middle-aged men from eastern Finland.

  16. Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli.

    PubMed

    Fatma, Zia; Jawed, Kamran; Mattam, Anu Jose; Yazdani, Syed Shams

    2016-09-01

    Long chain fatty alcohols have wide application in chemical industries and transportation sector. There is no direct natural reservoir for long chain fatty alcohol production, thus many groups explored metabolic engineering approaches for its microbial production. Escherichia coli has been the major microbial platform for this effort, however, terminal endogenous enzyme responsible for converting fatty aldehydes of chain length C14-C18 to corresponding fatty alcohols is still been elusive. Through our in silico analysis we selected 35 endogenous enzymes of E. coli having potential of converting long chain fatty aldehydes to fatty alcohols and studied their role under in vivo condition. We found that deletion of ybbO gene, which encodes NADP(+) dependent aldehyde reductase, led to >90% reduction in long chain fatty alcohol production. This feature was found to be strain transcending and reinstalling ybbO gene via plasmid retained the ability of mutant to produce long chain fatty alcohols. Enzyme kinetic study revealed that YbbO has wide substrate specificity ranging from C6 to C18 aldehyde, with maximum affinity and efficiency for C18 and C16 chain length aldehyde, respectively. Along with endogenous production of fatty aldehyde via optimized heterologous expression of cyanobaterial acyl-ACP reductase (AAR), YbbO overexpression resulted in 169mg/L of long chain fatty alcohols. Further engineering involving modulation of fatty acid as well as of phospholipid biosynthesis pathway improved fatty alcohol production by 60%. Finally, the engineered strain produced 1989mg/L of long chain fatty alcohol in bioreactor under fed-batch cultivation condition. Our study shows for the first time a predominant role of a single enzyme in production of long chain fatty alcohols from fatty aldehydes as well as of modulation of phospholipid pathway in increasing the fatty alcohol production.

  17. Synergistic effects of the chitosan addition and polysaccharides-EPS on the formation of anaerobic granules.

    PubMed

    Hudayah, N; Suraraksa, B; Chaiprasert, P

    2016-11-01

    Concomitant early granulation with chitosan addition under a syntroph-specific substrate and enhancement of extracellular polymeric substances (EPS) production were aimed at to build anaerobic granules with high syntrophic activities in a short period. Two laboratory-scale upflow anaerobic sludge blanket reactors were operated as control (R1) and chitosan addition (R2) reactors during early granulation (phase 1). Chitosan decreased the negativity of microbial surface charges (zeta potential) to -10.5 mV on day 58 which led to increases in average diameter sizes, nuclei and granule ratio of approximately 115 µm, 55.1% and 8.2%, respectively. While zeta potential in R1 slightly changed, this resulted in less microbial aggregation. Although microbial aggregation in R2 was rapidly triggered by chitosan addition during phase 1, its structure was clumpy with rough surface due to lack of EPS. Substrate switching to glucose increased polysaccharides-EPS during phase 2 which was synergistically improved on the structural characteristics of microbial aggregate in R2, that is, more spherical and compact, with a smoother surface. Rapid-growth microorganism was also boosted, which then dominated the outer layer of the aggregate. The Archaea clumps were observed at a deeper layer and were surrounded by Eubacteria, presumably acetogens, indicating a syntrophic relationship due to substrate association between these microbial groups.

  18. Very-long-chain fatty acid metabolism in adrenoleukodystrophy protein-deficient mice.

    PubMed

    Yamada, T; Shinnoh, N; Kondo, A; Uchiyama, A; Shimozawa, N; Kira, J; Kobayashi, T

    2000-01-01

    X-linked adrenoleukodystrophy (X-ALD) is characterized by progressive mental and motor deterioration, with demyelination of the central and peripheral nervous system. Its principal biochemical abnormality is the accumulation of very-long-chain fatty acids (VLCFAs) in tissues and body fluids, caused by the impairment of peroxisomal beta-oxidation. The authors have generated a line of mice deficient in ALD protein (ALDP) by gene targeting. ALDP-deficient mice appeared normal clinically, at least up to 12 mo. Western blot analysis showed absence of ALDP in the brain, spinal cord, lung, and kidney. The amounts of C26:0 increased by 240% in the spinal cord. VLCFA beta-oxidation in cultured hepatocytes was reduced to 50% of normal. The authors investigated the roles of ALDP in VLCFA beta-oxidation using the ALDP-deficient mice. Very-long-chain acyl-CoA synthetase (VLACS) is functionally deficient in ALD cells. The impairment of VLCFA beta-oxidation in the ALDP-deficient fibroblasts was not corrected by over-expression of VLACS only, but was done by co-expression of VLACS and ALDP, suggesting that VLACS requires ALDP to function. VLACS was detected in the peroxisomal and microsomal fractions of the liver from both types of mice. Peroxisomal VLACS was clearly decreased in the ALDP-deficient mouse. Thus, ALDP is involved in the peroxisomal localization of VLACS.

  19. Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy.

    PubMed

    Heinzer, Ann K; Kemp, Stephan; Lu, Jyh-Feng; Watkins, Paul A; Smith, Kirby D

    2002-08-09

    X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by accumulation of very long-chain fatty acids (VLCFA). This accumulation has been attributed to decreased VLCFA beta-oxidation and peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity. The X-ALD gene, ABCD1, encodes a peroxisomal membrane ATP binding cassette transporter, ALDP, that is hypothesized to affect VLCS activity in peroxisomes by direct interaction with the VLCS enzyme. Recently, a VLCS gene that encodes a protein with significant sequence identity to known rat and human peroxisomal VLCS protein has been identified in mice. We find that the mouse VLCS gene (Vlcs) encodes an enzyme (Vlcs) with VLCS activity that localizes to peroxisomes and is expressed in X-ALD target tissues. We show that the expression of Vlcs in the peroxisomes of X-ALD mouse fibroblasts improves VLCFA beta-oxidation in these cells, implying a role for this enzyme in the biochemical abnormality of X-ALD. X-ALD mice, which accumulate VLCFA in tissues, show no change in the expression of Vlcs, the subcellular localization of Vlcs, or general peroxisomal VLCS activity. These observations imply that ALDP is not necessary for the proper expression or localization of Vlcs protein, and the control of VLCFA levels does not depend on the direct interaction of Vlcs and ALDP.

  20. Desaturase and elongase limiting endogenous long chain polyunsaturated fatty acid biosynthesis

    PubMed Central

    Zhang, Ji Yao; Kothapalli, Kumar S.D.; Brenna, J. Thomas

    2016-01-01

    Purpose of Review Endogenous synthesis of the long chain polyunsaturated fatty acids (LCPUFA) is mediated by the fatty acid desaturase (FADS) gene cluster (11q12-13.1) and elongation of very long chain fatty acids 2 (ELOVL2) (6p24.2) and ELOVL5 (6p12.1). Though older biochemical work identified the product of one gene, FADS2, rate limiting for LCPUFA synthesis, recent studies suggest that polymorphisms in any of these genes can limit accumulation of product LCPUFA. Recent findings Genome-wide association study (GWAS) of Greenland Inuit show strong adaptation signals within FADS gene cluster, attributed to high omega-3 fatty acid intake, while GWAS found ELOVL2 associated with sleep duration, age and DNA methylation. ELOVL5 coding mutations cause spinocerebellar ataxia 38, and epigenetic marks were associated with depression and suicide risk. Two sterol response element binding sites were found on ELOVL5, a SREBP-1c target gene. Minor allele carriers of a 3 single nucleotide polymorphism (SNP) haplotype in ELOVL2 have decreased 22:6n-3 levels. Unequivocal molecular evidence shows mammalian FADS2 catalyzes direct Δ4-desaturation to yield 22:6n-3 and 22:5n-6. A SNP near FADS1 influences the levels of 5-lipoxygenase products and epigenetic alteration. Summary Genetic polymorphisms within FADS and ELOVL can limit LCPUFA product accumulation at any step of the biosynthetic pathway. PMID:26828581

  1. Genes associated with long-chain omega-3 fatty acids in bovine skeletal muscle.

    PubMed

    Perez, R; Cañón, J; Dunner, S

    2010-01-01

    Long-chain omega-3 fatty acids (n-3 FAs) influence meat tenderness, juiciness, and flavor, and are beneficial to human health. The percentage of long-chain n-3 FAs in total FAs is termed the omega-3 index (O3I). It is thus of great interest to favor rising this index in bovine skeletal muscle, to obtain healthier, tastier, and more nutritive meat. This study was aimed to detect transcriptomic variations related to O3I in muscles in 15-month-old males of 4 Spanish cattle breeds raised under the same conditions. Through the analysis of extreme O3I phenotypes, 3 genes of interest (AANAT, UCP2 and AHA1) were identified. AANAT and UCP2 were strongly up-regulated, while AHA1 was repressed in animals with a high O3I. Moreover, gene expression differed between GDF8-null animal muscles (tested for nt821del11 and Q204X mutations) and the wild-type muscles for genes GDH1, IGF2R, FADS1, ASPH, and AIM1, all showing down-regulation in Asturiana de los Valles calves with muscle hypertrophy (GDF8-null). This shows that in GDF8-null animals other pathways are used for FA synthesis.

  2. Associations of birth weight with serum long chain polyunsaturated fatty acids in adolescents; the HELENA study.

    PubMed

    Labayen, Idoia; Moreno, Luis A; Ruiz, Jonatan R; Ortega, Francisco B; Sjostrom, Michael; Huybrechts, Inge; Gonzalez-Gross, Marcela; Spinneker, André; De Henauw, Stefaan; Manios, Yannis; Molnar, Dénés; Leclercq, Catherine; Gottrand, Frédéric

    2011-07-01

    Nutritional factors in early life may have long-term physiologic effects in humans. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play important roles in protecting against cardiovascular disease (CVD) risk. Our aim was to examine the association of birth weight (BW) with serum long chain polyunsaturated fatty acids (LCPUFA) profile in adolescents. A total of 772 European adolescents (56.3% females) aged 14.7 ± 1.2 years were included in this study. Information on BW and gestational age was obtained from parental records. DHA, EPA and arachidonic acid (AA) concentrations were measured in serum phospholipids. Alfa-linolenic (ALA), linoleic (LA), AA, EPA and DHA intakes assessed by a computer based 24h dietary recall. Gender, gestational age, pubertal status, body mass index, center and total energy and LCPUFA intakes were used as confounders in all the analyses. BW was significantly associated with serum DHA and EPA (both adjusted P<0.05) independently of potential confounders including their main dietetic source. We did not observe any significant relationship between BW and serum AA levels. Our findings suggest that early metabolic changes, as a result from prenatal environmental influences, could affect long chain polyunsaturated fatty acid metabolism later in life. These results may contribute to explain the relationship between early nutrition and growth and later metabolic disorders as CVD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Genetic loci associated with circulating levels of very long-chain saturated fatty acids.

    PubMed

    Lemaitre, Rozenn N; King, Irena B; Kabagambe, Edmond K; Wu, Jason H Y; McKnight, Barbara; Manichaikul, Ani; Guan, Weihua; Sun, Qi; Chasman, Daniel I; Foy, Millennia; Wang, Lu; Zhu, Jingwen; Siscovick, David S; Tsai, Michael Y; Arnett, Donna K; Psaty, Bruce M; Djousse, Luc; Chen, Yii-Der I; Tang, Weihong; Weng, Lu-Chen; Wu, Hongyu; Jensen, Majken K; Chu, Audrey Y; Jacobs, David R; Rich, Stephen S; Mozaffarian, Dariush; Steffen, Lyn; Rimm, Eric B; Hu, Frank B; Ridker, Paul M; Fornage, Myriam; Friedlander, Yechiel

    2015-01-01

    Very long-chain saturated fatty acids (VLSFAs) are saturated fatty acids with 20 or more carbons. In contrast to the more abundant saturated fatty acids, such as palmitic acid, there is growing evidence that circulating VLSFAs may have beneficial biological properties. Whether genetic factors influence circulating levels of VLSFAs is not known. We investigated the association of common genetic variation with plasma phospholipid/erythrocyte levels of three VLSFAs by performing genome-wide association studies in seven population-based cohorts comprising 10,129 subjects of European ancestry. We observed associations of circulating VLSFA concentrations with common variants in two genes, serine palmitoyl-transferase long-chain base subunit 3 (SPTLC3), a gene involved in the rate-limiting step of de novo sphingolipid synthesis, and ceramide synthase 4 (CERS4). The SPTLC3 variant at rs680379 was associated with higher arachidic acid (20:0 , P = 5.81 × 10(-13)). The CERS4 variant at rs2100944 was associated with higher levels of 20:0 (P = 2.65 × 10(-40)) and in analyses that adjusted for 20:0, with lower levels of behenic acid (P = 4.22 × 10(-26)) and lignoceric acid (P = 3.20 × 10(-21)). These novel associations suggest an inter-relationship of circulating VLSFAs and sphingolipid synthesis.

  4. Sirt6 regulates TNFα secretion via hydrolysis of long chain fatty acyl lysine

    PubMed Central

    Jiang, Hong; Khan, Saba; Wang, Yi; Charron, Guillaume; He, Bin; Sebastian, Carlos; Du, Jintang; Kim, Ray; Ge, Eva; Mostoslavsky, Raul; Hang, Howard C.; Hao, Quan; Lin, Hening

    2013-01-01

    The Sir2 family of enzymes or sirtuins are known as nicotinamide adenine dinucleotide (NAD)-dependent deacetylases1 and have been implicated in the regulation of transcription, genome stability, metabolism, and lifespan2, 3. However, four of the seven mammalian sirtuins have very weak deacetylase activity in vitro. Here we show that human Sirt6 efficiently removes long chain fatty acyl groups, such as myristoyl, from lysine residues. The crystal structure of Sirt6 reveals a large hydrophobic pocket that can accommodate long chain fatty acyl groups. We demonstrate further that Sirt6 promotes the secretion of tumor necrosis factor α (TNFα) by removing the fatty acyl modification on K19 and K20 of TNFα. Protein lysine fatty acylation has been known to occur in mammalian cells, but the function and regulatory mechanisms of this modification were unknown. Our data suggest that protein lysine fatty acylation is a novel mechanism that regulates protein secretion. The discovery of Sirt6 as an enzyme that controls protein lysine fatty acylation provides new opportunities to investigate the physiological function of the previously ignored protein posttranslational modification. PMID:23552949

  5. Phs1 and the Synthesis of Very Long Chain Fatty Acids Are Required for Ballistospore Formation

    PubMed Central

    Ianiri, Giuseppe; Abhyankar, Ritika; Kihara, Akio; Idnurm, Alexander

    2014-01-01

    The production and dissemination of spores by members of the fungal kingdom is a major reason for the success of this eukaryotic lineage in colonizing most terrestrial ecosystems. Ballistospores are a type of spore produced by basidiomycete fungi, such as the mushrooms and plant pathogenic rusts. These spores are forcefully discharged through a unique liquid-drop fusion mechanism, enabling the aerosolization of these particles that can contribute to plant disease and human allergies. The genes responsible for this process are unknown due to technical challenges in studying many of the fungi that produce ballistospores. Here, we applied newly-developed techniques in a forward genetic screen to identify genes required for ballistospore formation or function in a tractable red yeast, a species of Sporobolomyces. One strain bearing a mutation in the PHS1 gene was identified as a mirror mutant. PHS1 encodes 3-hydroxyacyl-CoA dehydratase required for the third step in very long chain fatty acid biosynthesis. The Sporobolomyces PHS1 gene complements the essential functions of a S. cerevisiae phs1 mutant. The Sporobolomyces phs1 mutant strain has less dehydratase activity and a reduction in very long chain fatty acids compared to wild type. The mutant strain also exhibits sensitivity to cell wall stress agents and loss of shooting due to a delay in ballistospore formation, indicating that the role of Phs1 in spore dissemination may be primarily in cellular integrity. PMID:25148260

  6. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein.

    PubMed

    Agbaga, Martin-Paul; Mandal, Md Nawajes A; Anderson, Robert E

    2010-07-01

    Compared with other mammalian tissues, retina is highly enriched in PUFA. Long-chain PUFA (LC-PUFA; C18-C24) are essential FAs that are enriched in the retina and are necessary for maintenance of normal retinal development and function. The retina, brain, and sperm also contain very LC-PUFA (VLC-PUFA; >C24). Although VLC-PUFA were discovered more than two decades ago, very little is known about their biosynthesis and functional roles in the retina. This is due mainly to intrinsic difficulties associated with working on these unusually long polyunsaturated hydrocarbon chains and their existence in small amounts. Recent studies on the FA elongase elongation of very long chain fatty acids-4 (ELOVL4) protein, however, suggest that VLC-PUFA probably play some uniquely important roles in the retina as well as the other tissues. Mutations in the ELOVL4 gene are found in patients with autosomal dominant Stargardt disease. Here, we review the recent literature on VLC-PUFA with special emphasis on the elongases responsible for their synthesis. We focus on a novel elongase, ELOVL4, involved in the synthesis of VLC-PUFA, and the importance of these FAs in maintaining the structural and functional integrity of retinal photoreceptors.

  7. Genetic loci associated with circulating levels of very long-chain saturated fatty acids[S

    PubMed Central

    Lemaitre, Rozenn N.; King, Irena B.; Kabagambe, Edmond K.; Wu, Jason H. Y.; McKnight, Barbara; Manichaikul, Ani; Guan, Weihua; Sun, Qi; Chasman, Daniel I.; Foy, Millennia; Wang, Lu; Zhu, Jingwen; Siscovick, David S.; Tsai, Michael Y.; Arnett, Donna K.; Psaty, Bruce M.; Djousse, Luc; Chen, Yii-Der I.; Tang, Weihong; Weng, Lu-Chen; Wu, Hongyu; Jensen, Majken K.; Chu, Audrey Y.; Jacobs, David R.; Rich, Stephen S.; Mozaffarian, Dariush; Steffen, Lyn; Rimm, Eric B.; Hu, Frank B.; Ridker, Paul M.; Fornage, Myriam; Friedlander, Yechiel

    2015-01-01

    Very long-chain saturated fatty acids (VLSFAs) are saturated fatty acids with 20 or more carbons. In contrast to the more abundant saturated fatty acids, such as palmitic acid, there is growing evidence that circulating VLSFAs may have beneficial biological properties. Whether genetic factors influence circulating levels of VLSFAs is not known. We investigated the association of common genetic variation with plasma phospholipid/erythrocyte levels of three VLSFAs by performing genome-wide association studies in seven population-based cohorts comprising 10,129 subjects of European ancestry. We observed associations of circulating VLSFA concentrations with common variants in two genes, serine palmitoyl-transferase long-chain base subunit 3 (SPTLC3), a gene involved in the rate-limiting step of de novo sphingolipid synthesis, and ceramide synthase 4 (CERS4). The SPTLC3 variant at rs680379 was associated with higher arachidic acid (20:0 , P = 5.81 × 10−13). The CERS4 variant at rs2100944 was associated with higher levels of 20:0 (P = 2.65 × 10−40) and in analyses that adjusted for 20:0, with lower levels of behenic acid (P = 4.22 × 10−26) and lignoceric acid (P = 3.20 × 10−21). These novel associations suggest an inter-relationship of circulating VLSFAs and sphingolipid synthesis. PMID:25378659

  8. Diverse physiological effects of long-chain saturated fatty acids: implications for cardiovascular disease.

    PubMed

    Flock, Michael R; Kris-Etherton, Penny M

    2013-03-01

    The purpose of this review is to discuss the metabolism of long-chain saturated fatty acids and the ensuing effects on an array of metabolic events. Individual long-chain saturated fatty acids exhibit unique biological properties. Dietary saturated fat absorption varies depending on chain-length and the associated food matrix. The in-vivo metabolism of saturated fatty acids varies depending on the individual fatty acid and the nutritional state of the individual. A variety of fatty acid metabolites are formed, each with their own unique structure and properties that warrant further research. Replacing saturated fatty acids with unsaturated fatty acids improves the blood lipid profile and reduces cardiovascular disease risk, although the benefits depend on the specific saturated fatty acid(s) being replaced. Acknowledging the complexity of saturated fatty acid metabolism and associated metabolic events is important when assessing their effects on cardiovascular disease risk. Investigating the biological effects of saturated fatty acids will advance our understanding of how they affect cardiovascular disease risk.

  9. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    PubMed

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials.

  10. Quantitative assessment of short amplicons in FFPE-derived long-chain RNA

    PubMed Central

    Kong, Hui; Zhu, Mengou; Cui, Fengyun; Wang, Shuyang; Gao, Xue; Lu, Shaohua; Wu, Ying; Zhu, Hongguang

    2014-01-01

    Formalin-fixed paraffin-embedded (FFPE) tissues are important resources for molecular medical research. However, long-chain RNA analysis is restricted in FFPE tissues due to high levels of degradation. To explore the possibility of long RNA quantification in FFPE tissues, we selected 14 target RNAs (8 mRNAs and 6 long noncoding RNAs) from literatures, and designed short (~60 bp) and long (~200 bp) amplicons for each of them. Colorectal carcinomas with adjacent normal tissues were subjected to quantitative reverse-transcription PCR (quantitative RT-PCR) in 3 cohorts, including 18 snap-frozen and 83 FFPE tissues. We found that short amplicons were amplified more efficiently than long amplicons both in snap-frozen (P = 0.0006) and FFPE (P = 0.0152) tissues. Nonetheless, comparison of colorectal carcinomas with their adjacent normal tissues demonstrated that the consistency of fold-change trends in a single short amplicon between snap-frozen and FFPE tissues was only 36%. Therefore, we innovatively performed quantitative RT-PCR with 3 non-overlapping short amplicons for 14 target RNAs in FFPE tissues. All target RNAs showed a concordance of 100% of fold-change trends in at least two short amplicons, which offers sufficient information for accurate quantification of target RNAs. Our findings demonstrated the possibility of long-chain RNA analysis with 3 non-overlapping short amplicons in standardized-preserved FFPE tissues. PMID:25430878

  11. Surface coupling of long-chain hyaluronan to the fibrils of reconstituted type II collagen.

    PubMed

    Chen, Yong G; Lee, Ming W; Tu, Yi H; Hung, Shih C; Wang, Yng J

    2009-01-01

    The aim of this study was to fabricate type II collagen fibrils with surface modified by long-chain hyaluronic acid. Monomeric type II collagen was isolated from bovine articular cartilage and reconstituted into collagen fibrils followed by a reaction with EDC (1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide)-activated long-chain hyaluronic acid. The existence of the hyaluronan molecules on the fibrillar surface was confirmed by the specific bindings of gold nanoparticles labeled with wheat germ agglutinin. The topographic pattern of type II collagen fibrils revealed by AFM scanning changed significantly after the surface coupling of hyaluronic acid. Beneath the hyaluronan, the characteristic D-bandings of the reconstituted collagen fibrils remained intact as shown by the results of TEM observation. The collagen fibrils became more resistant to collagenase digestion after surface coupling of hyaluronic acid as compared with that without hyaluronic acid immobilization. In addition, human mesenchymal stem cells encapsulated and cultured within the matrix of HA-collagen fibrils have a higher proliferation rate than cells grown within the unmodified type II collagen fibrils. The newly synthesized material of HA-collagen II fibrils has a great potential for use in constructing scaffold for tissue repair.

  12. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo

    PubMed Central

    Kajimoto, Masaki; O’Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy; Olson, Aaron K.; Portman, Michael A.

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), long-chain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart. PMID:23727393

  13. Thermophilic anaerobic digestion of thermal pretreated sludge: role of microbial community structure and correlation with process performances.

    PubMed

    Gagliano, M C; Braguglia, C M; Gianico, A; Mininni, G; Nakamura, K; Rossetti, S

    2015-01-01

    Thermal hydrolysis pretreatment coupled with Thermophilic Anaerobic Digestion (TAD) for Waste Activated Sludge (WAS) treatment is a promising combination to improve biodegradation kinetics during stabilization. However, to date there is a limited knowledge of the anaerobic biomass composition and its impact on TAD process performances. In this study, the structure and dynamics of the microbial communities selected in two semi-continuous anaerobic digesters, fed with untreated and thermal pretreated sludge, were investigated. The systems were operated for 250 days at different organic loading rate. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses allowed us to identify the majority of bacterial and archaeal populations. Proteolytic Coprothermobacter spp. and hydrogenotrophic Methanothermobacter spp. living in strict syntrophic association were found to dominate in TAD process. The establishment of a syntrophic proteolytic pathway was favoured by the high temperature of the process and enhanced by the thermal pretreatment of the feeding sludge. Proteolytic activity, alone or with thermal pretreatment, occurred during TAD as proven by increasing concentration of soluble ammonia and soluble COD (sCOD) during the process. However, the availability of a readily biodegradable substrate due to pretreatment allowed to significant sCOD removals (more than 55%) corresponding to higher biogas production in the reactor fed with thermal pretreated sludge. Microbial population dynamics analysed by FISH showed that Coprothermobacter and Methanothermobacter immediately established a stable syntrophic association in the reactor fed with pretreated sludge in line with the overall improved TAD performances observed under these conditions.

  14. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates.

    PubMed Central

    Lowe, S E; Jain, M K; Zeikus, J G

    1993-01-01

    Anaerobic bacteria include diverse species that can grow at environmental extremes of temperature, pH, salinity, substrate toxicity, or available free energy. The first evolved archaebacterial and eubacterial species appear to have been anaerobes adapted to high temperatures. Thermoanaerobes and their stable enzymes have served as model systems for basic and applied studies of microbial cellulose and starch degradation, methanogenesis, ethanologenesis, acetogenesis, autotrophic CO2 fixation, saccharidases, hydrogenases, and alcohol dehydrogenases. Anaerobes, unlike aerobes, appear to have evolved more energy-conserving mechanisms for physiological adaptation to environmental stresses such as novel enzyme activities and stabilities and novel membrane lipid compositions and functions. Anaerobic syntrophs do not have similar aerobic bacterial counterparts. The metabolic end products of syntrophs are potent thermodynamic inhibitors of energy conservation mechanisms, and they require coordinated consumption by a second partner organism for species growth. Anaerobes adapted to environmental stresses and their enzymes have biotechnological applications in organic waste treatment systems and chemical and fuel production systems based on biomass-derived substrates or syngas. These kinds of anaerobes have only recently been examined by biologists, and considerably more study is required before they are fully appreciated by science and technology. Images PMID:8336675

  15. Sources and proxy potential of long chain alkyl diols in lacustrine environments

    NASA Astrophysics Data System (ADS)

    Rampen, Sebastiaan W.; Datema, Mariska; Rodrigo-Gámiz, Marta; Schouten, Stefan; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S.

    2014-11-01

    Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD) composition of cultures of ten eustigmatophyte species, with three species from different families grown at various temperatures, to identify the effect of species composition and growth temperature on the LCD distribution. The results were compared with the LCD distribution of sixty-two lake surface sediments, and with previously reported LCD distributions from marine environments. The different families within the Eustigmatophyceae show distinct LCD patterns, with the freshwater family Eustigmataceae most closely resembling LCD distributions in both marine and lake environments. Unlike the other two eustigmatophyte families analyzed (Monodopsidaceae and Goniochloridaceae), C28 and C30 1,13-alkyl diols and C30 and C32 1,15-alkyl diols are all relatively abundant in the family Eustigmataceae, while the mono-unsaturated C32 1,15-alkyl diol was below detection limit. In contrast to the marine environment, LCD distributions in lakes did not show a clear relationship with temperature. The Long chain Diol Index (LDI), a proxy previously proposed for sea surface temperature reconstruction, showed a relatively weak correlation (R2 = 0.33) with mean annual air temperature used as an approximation for annual mean surface temperature of the lakes. A much-improved correlation (R2 = 0.74, p-value <0.001) was observed applying a multiple linear regression analysis between LCD distributions and lake temperatures reconstructed using branched tetraether lipid distributions. The obtained regression model provides good estimates of temperatures for cultures of the family Eustigmataceae, suggesting that algae belonging to this family have an important role as a source for LCDs in lacustrine

  16. Control of interspecies electron transfer flow during anaerobic digestion: dynamic diffusion reaction models for hydrogen gas transfer in microbial flocs.

    PubMed

    Ozturk, S S; Palsson, B O; Thiele, J H

    1989-02-05

    Dynamic reaction diffusion models were used to analyze the consequences of aggregation for syntrophic reactions in methanogenic ecosystems. Flocs from a whey digestor were used to measure all model parameters under the in situ conditions of a particular defined biological system. Fermentation simulations without adjustable parameters could precisely predict the kinetics of H(2) gas production of digestor flocs during syntrophic methanogenesis from ethanol. The results demonstrated a kinetic compartmentalization of H(2) metabolism inside the flocs. The interspecies electron transfer reaction was mildly diffusion controlled. The H(2) gas profiles across the flocs showed high H (2) concentrations inside the flocs at any time. Simulations of the syntrophic metabolism at low substrate concentrations such as in digestors or sediments showed that it is impossible to achieve high H(2) gas turnovers at simultaneously low steady-state H(2) concentrations. This showed a mechanistic contradiction in the concept of postulated low H(2) microenvironments for the anaerobic digestion process. The results of the computer experiments support the conclusion that syntrophic H(2) production may only be a side reaction of H(2) independent interspecies electron transfer in methanogenic ecosystems.

  17. Very long chain fatty acid and lipid signaling in the response of plants to pathogens

    PubMed Central

    Raffaele, Sylvain; Leger, Amandine

    2009-01-01

    Recent findings indicate that lipid signaling is essential for plant resistance to pathogens. Besides oxylipins and unsaturated fatty acids known to play important signaling functions during plant-pathogen interactions, the very long chain fatty acid (VLCFA) biosynthesis pathway has been recently associated to plant defense through different aspects. VLCFAs are indeed required for the biosynthesis of the plant cuticle and the generation of sphingolipids. Elucidation of the roles of these lipids in biotic stress responses is the result of the use of genetic approaches together with the identification of the genes/proteins involved in their biosynthesis. This review focuses on recent observations which revealed the complex function of the cuticle and cuticle-derived signals, and the key role of sphingolipids as bioactive molecules involved in signal transduction and cell death regulation during plant-pathogen interactions. PMID:19649180

  18. Heterogeneous freezing of ammonium sulfate and sodium chloride solutions by long chain alcohols

    NASA Astrophysics Data System (ADS)

    Cantrell, Will; Robinson, Carly

    2006-04-01

    High molecular weight organic compounds emitted during biomass burning can be transported to high altitudes where they may affect ice processes through heterogeneous nucleation. We show that freezing of solutions of ammonium sulfate and sodium chloride catalyzed by long chain alcohols is roughly consistent with the hypothesis that the water activity at the mean freezing temperature is a constant offset from the water activity at the melting point of the solution, though films of the longer chain alcohols may undergo structural changes at higher salt concentrations which cause a deviation from the constant offset. The heterogeneous nucleation rate coefficient, averaged over all solutions, alcohols, and droplet sizes is 6.0 × 104 +/- 4.0 × 104 cm-2 s-1, with no dependence on any of those parameters.

  19. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties

    PubMed Central

    Abedi, Elahe; Sahari, Mohammad Ali

    2014-01-01

    Recent studies have clearly shown the importance of polyunsaturated fatty acids (as essential fatty acids) and their nutritional value for human health. In this review, various sources, nutritional properties, and metabolism routes of long-chain polyunsaturated fatty acids (LC-PUFA) are introduced. Since the conversion efficiency of linoleic acid (LA) to arachidonic acid (AA) and also α-linolenic acid (ALA) to docosahexaenoic acid (DHA) and eicosatetraenoic acid (EPA) is low in humans, looking for the numerous sources of AA, EPA and EPA fatty acids. The sources include aquatic (fish, crustaceans, and mollusks), animal sources (meat, egg, and milk), plant sources including 20 plants, most of which were weeds having a good amount of LC-PUFA, fruits, herbs, and seeds; cyanobacteria; and microorganisms (bacteria, fungi, microalgae, and diatoms). PMID:25473503

  20. Short-term phenotypic plasticity in long-chain cuticular hydrocarbons

    PubMed Central

    Thomas, Melissa L.; Simmons, Leigh W.

    2011-01-01

    Cuticular hydrocarbons provide arthropods with the chemical equivalent of the visually extravagant plumage of birds. Their long chain length, together with the number and variety of positions in which methyl branches and double bonds occur, provide cuticular hydrocarbons with an extraordinary level of information content. Here, we demonstrate phenotypic plasticity in an individual's cuticular hydrocarbon profile. Using solid-phase microextraction, a chemical technique that enables multiple sampling of the same individual, we monitor short-term changes in cuticular hydrocarbon profiles of individual crickets, Teleogryllus oceanicus, in response to a social challenge. We experimentally manipulate the dominance status of males and find that dominant males, on losing fights with other dominant males, change their hydrocarbon profile to more closely resemble that of a subordinate. This result demonstrates that cuticular hydrocarbons can be far more responsive to changes in social dominance than previously realized. PMID:21367785

  1. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids.

    PubMed

    Busi, Roberto

    2014-09-01

    Herbicides that act by inhibiting the biosynthesis of very-long-chain fatty acids (VLCFAs) have been used to control grass weeds in major crops throughout the world for the past 60 years. VLCFA-inhibiting herbicides are generally highly selective in crops, induce similar symptoms in susceptible grasses and can be found within the herbicide groups classified by the HRAC as K3 and N. Even after many years of continuous use, only 12 grass weed species have evolved resistance to VLCFA-inhibiting herbicides. Here, the cases of resistance that have evolved in major grass weed species belonging to the Avena, Echinochloa and Lolium genera in three different agricultural systems are reviewed. In particular we explore the possible reasons why VLCFA herbicides have been slow to select resistant weeds, outline the herbicide mode of action and discuss the resistance mechanisms that are most likely to have been selected.

  2. Protein kinase C inhibition by sphingoid long-chain bases: effects on secretion in human neutrophils

    SciTech Connect

    Wilson, E.; Arnold, R.R.; Merrill, A.H.; Lambeth, J.D.

    1987-05-01

    Sphingoid long-chain bases (sphinganine and sphingosine(So)) have recently been shown to inhibit protein kinase C (PK-C) in vitro and to block activation of the oxidative burst in intact neutrophils (PMN) by inhibiting this enzyme. In the present study, the authors have used So to investigate the role of protein kinase C in stimulus-induced secretion of PMN granule contents. Secretion of the specific granule component lactoferrin (Lf) is completely inhibited by pretreatment with So when either PMA or fLMP is used as the secretogogue. Secretion of lysozyme, a component of both the azurophilic and specific granules, is completely inhibited by So when PMA is used, but only 40% inhibited with fMLP. The secretion of the azurophilic granule markers US -glucuronidase and myeloperoxidase was not affected by So regardless of the agonist used. Data indicate that both PK-C-dependent and -independent pathways participate in the neutrophil secretory response.

  3. Dielectric relaxation of long-chain glass-forming monohydroxy alcohols

    NASA Astrophysics Data System (ADS)

    Gao, Yanqin; Tu, Wenkang; Chen, Zeming; Tian, Yongjun; Liu, Riping; Wang, Li-Min

    2013-10-01

    The dielectric relaxation of two long-chain glass forming monohydroxy alcohols, 2-butyl-1-octanol and 2-hexyl-1-decanol, is studied at low temperature. Remarkable broadening from the pure Debye relaxation is identified for the slowest dynamics, differing from the dielectric spectra of short-chain alcohols. The broadening of the Debye-like relaxation in the two liquids develops as temperature increases, and the approaching of the Debye-like and structural relaxation widths is shown. Similar results are observed in the dielectric spectra of dilute 2-ethyl-1-hexanol in either 2-hexyl-1-decanol or squalane. The results of the liquids and mixtures reveal a correlation between the broadening and the Debye-like relaxation strength. Molecular associations in monohydroxy alcohols are discussed with the modification of the Debye relaxation.

  4. Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.

    PubMed

    Douliez, Jean-Paul

    2010-07-06

    It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.

  5. Stimulation by epinephrine of the membrane transport of long chain fatty acid in the adipocyte

    SciTech Connect

    Abumrad, N.A.; Perry, P.R.; Whitesell, R.R.

    1985-08-25

    In isolated rat adipocytes, epinephrine rapidly stimulates the transport of long chain fatty acid across the plasma membrane. At a concentration of unbound oleate of 0.1 microM and 5 min exposure to the hormone, the minimal effective concentration of epinephrine is 0.03 and the optimal concentration 0.3 microM (0.01 and 0.1 microgram/ml). The stimulated rates are 5-10-fold the basal rate of influx or efflux. The hormone effect is on the transport process specifically as shown by isolation of the product of transport in either direction as unesterified fatty acid and inhibition by the transport inhibitors phloretin and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. This effect of epinephrine on transport coordinates physiologically with lipase activation to bring about fatty acid release from adipose tissue.

  6. [Biology and biochemical aspects of long-chains polyunsaturated fatty acid during gestation].

    PubMed

    Bautista, Claudia Janet; Zambrano, Elena

    2010-01-01

    During pregnancy, the mother must provide the nutrients necessary for proper differentiation, maturation and growth of fetal organs and systems. During this period, the mother adapts her metabolism to address the continuing demand for substrates to be transferred to the fetus through the placenta. Essential fatty acids cannot be synthesized by humans, therefore, should be consumed as part of the diet. Its derivates, long-chain polyunsaturated fatty acids (LC-PUFAs) from biosynthesis in the maternal liver during pregnancy and lactation are compounds that will form part of the cell membranes of the brain, retina, and liver, fetal and newborn heart, thereby enabling the smooth, activation and regulation of cellular functions. Therefore, adequate nutritional status of the mother during pregnancy and lactation is necessary to ensure adequate product development. This article aims to review some aspects of the adaptive mechanisms of maternal lipid metabolism, mainly from LC-PUFAs compensating energy expenditure and allow the proper development of the product.

  7. Long-Chain Omega-3 Oils–An Update on Sustainable Sources

    PubMed Central

    Nichols, Peter D.; Petrie, James; Singh, Surinder

    2010-01-01

    Seafood is currently the best and generally a safe source of long-chain (LC, (≥C20) omega-3 oils amongst the common food groups. LC omega-3 oils are also obtained in lower amounts per serve from red meat, egg and selected other foods. As global population increases the opportunities to increase seafood harvest are limited, therefore new alternate sources are required. Emerging sources include microalgae and under-utilized resources such as Southern Ocean krill. Prospects for new land plant sources of these unique and health-benefiting oils are also particularly promising, offering hope for alternate and sustainable supplies of these key oils, with resulting health, social, economic and environmental benefits. PMID:22254042

  8. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants.

    PubMed

    Wu, Guohai; Truksa, Martin; Datla, Nagamani; Vrinten, Patricia; Bauer, Joerg; Zank, Thorsten; Cirpus, Petra; Heinz, Ernst; Qiu, Xiao

    2005-08-01

    Very long chain polyunsaturated fatty acids (VLCPUFAs) such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are valuable commodities that provide important human health benefits. We report the transgenic production of significant amounts of AA and EPA in Brassica juncea seeds via a stepwise metabolic engineering strategy. Using a series of transformations with increasing numbers of transgenes, we demonstrate the incremental production of VLCPUFAs, achieving AA levels of up to 25% and EPA levels of up to 15% of total seed fatty acids. Both fatty acids were almost exclusively found in triacylglycerols, with AA located preferentially at sn-2 and sn-3 positions and EPA distributed almost equally at all three positions. Moreover, we reconstituted the DHA biosynthetic pathway in plant seeds, demonstrating the practical feasibility of large-scale production of this important omega-3 fatty acid in oilseed crops.

  9. ANAEROBIC BIODEGRADATION OF VEGETABLE OIL AND ITS METABOLIC INTERMEDIATES IN OIL-ENRICHED FRESHWATER SEDIMENTS

    EPA Science Inventory

    Anaerobic biodegradation of vegetable oil in freshwater sediments is strongly inhibited by high concentrations of oil, but the presence of ferric hydroxide relieves the inhibition. The effect of ferric hydroxide is not due to physical or chemical interactions with long-chain fatt...

  10. ANAEROBIC BIODEGRADATION OF VEGETABLE OIL AND ITS METABOLIC INTERMEDIATES IN OIL-ENRICHED FRESHWATER SEDIMENTS

    EPA Science Inventory

    Anaerobic biodegradation of vegetable oil in freshwater sediments is strongly inhibited by high concentrations of oil, but the presence of ferric hydroxide relieves the inhibition. The effect of ferric hydroxide is not due to physical or chemical interactions with long-chain fatt...

  11. Variation among Desulfovibrio Species in Electron Transfer Systems Used for Syntrophic Growth

    PubMed Central

    Meyer, Birte; Kuehl, Jennifer; Deutschbauer, Adam M.; Price, Morgan N.; Arkin, Adam P.

    2013-01-01

    Mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers linked by interspecies electron transfer in syntrophic consortia that may include sulfate-reducing species (e.g., Desulfovibrio). Physiological differences and various gene repertoires implicated in syntrophic metabolism among Desulfovibrio species suggest considerable variation in the biochemical basis of syntrophy. In this study, comparative transcriptional and mutant analyses of Desulfovibrio alaskensis strain G20 and Desulfovibrio vulgaris strain Hildenborough growing syntrophically with Methanococcus maripaludis on lactate were used to develop new and revised models for their alternative electron transfer and energy conservation systems. Lactate oxidation by strain G20 generates a reduced thiol-disulfide redox pair(s) and ferredoxin that are energetically coupled to H+/CO2 reduction by periplasmic formate dehydrogenase and hydrogenase via a flavin-based reverse electron bifurcation process (electron confurcation) and a menaquinone (MQ) redox loop-mediated reverse electron flow involving the membrane-bound Qmo and Qrc complexes. In contrast, strain Hildenborough uses a larger number of cytoplasmic and periplasmic proteins linked in three intertwining pathways to couple H+ reduction to lactate oxidation. The faster growth of strain G20 in coculture is associated with a kinetic advantage conferred by the Qmo-MQ-Qrc loop as an electron transfer system that permits higher lactate oxidation rates under elevated hydrogen levels (thereby enhancing methanogenic growth) and use of formate as the main electron-exchange mediator (>70% electron flux), as opposed to the primarily hydrogen-based exchange by strain Hildenborough. This study further demonstrates the absence of a conserved gene core in Desulfovibrio that would determine the ability for a syntrophic lifestyle. PMID:23264581

  12. Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth.

    PubMed

    Meyer, Birte; Kuehl, Jennifer; Deutschbauer, Adam M; Price, Morgan N; Arkin, Adam P; Stahl, David A

    2013-03-01

    Mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers linked by interspecies electron transfer in syntrophic consortia that may include sulfate-reducing species (e.g., Desulfovibrio). Physiological differences and various gene repertoires implicated in syntrophic metabolism among Desulfovibrio species suggest considerable variation in the biochemical basis of syntrophy. In this study, comparative transcriptional and mutant analyses of Desulfovibrio alaskensis strain G20 and Desulfovibrio vulgaris strain Hildenborough growing syntrophically with Methanococcus maripaludis on lactate were used to develop new and revised models for their alternative electron transfer and energy conservation systems. Lactate oxidation by strain G20 generates a reduced thiol-disulfide redox pair(s) and ferredoxin that are energetically coupled to H(+)/CO(2) reduction by periplasmic formate dehydrogenase and hydrogenase via a flavin-based reverse electron bifurcation process (electron confurcation) and a menaquinone (MQ) redox loop-mediated reverse electron flow involving the membrane-bound Qmo and Qrc complexes. In contrast, strain Hildenborough uses a larger number of cytoplasmic and periplasmic proteins linked in three intertwining pathways to couple H(+) reduction to lactate oxidation. The faster growth of strain G20 in coculture is associated with a kinetic advantage conferred by the Qmo-MQ-Qrc loop as an electron transfer system that permits higher lactate oxidation rates under elevated hydrogen levels (thereby enhancing methanogenic growth) and use of formate as the main electron-exchange mediator (>70% electron flux), as opposed to the primarily hydrogen-based exchange by strain Hildenborough. This study further demonstrates the absence of a conserved gene core in Desulfovibrio that would determine the ability for a syntrophic lifestyle.

  13. Syntrophic-Methanogenic Associations along a Nutrient Gradient in the Florida Everglades

    PubMed Central

    Chauhan, Ashvini; Ogram, Andrew; Reddy, K. R.

    2004-01-01

    Nutrient runoff from the Everglades Agricultural Area resulted in a well-documented gradient of phosphorus concentrations in soil and water, with concomitant ecosystem-level changes, in the northern Florida Everglades. It was recently reported that sulfate-reducing prokaryote assemblage composition, numbers, and activities are dependent on position along the gradient (H. Castro, K. R. Reddy, and A. Ogram, Appl. Environ. Microbiol. 68:6129-6137, 2002). The present study utilized a combination of culture- and non-culture-based approaches to study differences in composition of assemblages of syntrophic and methanogenic microbial communities in eutrophic, transition, and oligotrophic areas along the phosphorus gradient. Methanogenesis rates were much higher in eutrophic and transition regions, and sequence analysis of 16S rRNA gene clone libraries constructed from samples taken from these regions revealed differences in composition and activities of syntroph-methanogen consortia. Methanogens from eutrophic and transition regions were almost exclusively composed of hydrogenotrophic methanogens, with approximately 10,000-fold-greater most probable numbers of hydrogenotrophs than of acetotrophs. Most cultivable strains from eutrophic and transition regions clustered within novel lineages. In non-culture-based studies to enrich syntrophs, most bacterial and archaeal clones were either members of novel lineages or closely related to uncultivated environmental clones. Novel cultivable Methanosaeta sp. and fatty acid-oxidizing bacteria related to the genera Syntrophomonas and Syntrophobacter were observed in microcosms containing soil from eutrophic regions, and different lines of evidence indicated the existence of novel syntrophic association in eutrophic regions. PMID:15184146

  14. Optimal dietary therapy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency

    PubMed Central

    Gillingham, Melanie B.; Connor, William E.; Matern, Dietrich; Rinaldo, Piero; Burlingame, Terry; Meeuws, Kaatje; Harding, Cary O.

    2009-01-01

    Current dietary therapy for long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency consists of fasting avoidance, and limiting long-chain fatty acid (LCFA) intake. This study reports the relationship of dietary intake and metabolic control as measured by plasma acylcarnitine and organic acid profiles in 10 children with LCHAD or TFP deficiency followed for 1 year. Subjects consumed an average of 11% of caloric intake as dietary LCFA, 11% as MCT, 12% as protein, and 66% as carbohydrate. Plasma levels of hydroxypalmitoleic acid, hydroxyoleic, and hydroxylinoleic carnitine esters positively correlated with total LCFA intake and negatively correlated with MCT intake suggesting that as dietary intake of LCFA decreases and MCT intake increases, there is a corresponding decrease in plasma hydroxyacylcarnitines. There was no correlation between plasma acylcarnitines and level of carnitine supplementation. Dietary intake of fat-soluble vitamins E and K was deficient. Dietary intake and plasma levels of essential fatty acids, linoleic and linolenic acid, were deficient. On this dietary regimen, the majority of subjects were healthy with no episodes of metabolic decompensation. Our data suggest that an LCHAD or TFP-deficient patient should adhere to a diet providing age-appropriate protein and limited LCFA intake (10% of total energy) while providing 10–20% of energy as MCT and a daily multi-vitamin and mineral (MVM) supplement that includes all of the fat-soluble vitamins. The diet should be supplemented with vegetable oils as part of the 10% total LCFA intake to provide essential fatty acids. PMID:12809642

  15. X-linked adrenoleukodystrophy: role of very long-chain acyl-CoA synthetases.

    PubMed

    Jia, Zhenzhen; Pei, Zhengtong; Li, Yuanyuan; Wei, Liumei; Smith, Kirby D; Watkins, Paul A

    2004-01-01

    The principal biochemical abnormality in the neurodegenerative disorder X-linked adrenoleukodystrophy (X-ALD) is elevated plasma and tissue levels of very long-chain fatty acids (VLCFA). Enzymes with very long-chain acyl-CoA synthetase (VLACS) activity are required for VLCFA metabolism, including degradation by peroxisomal beta-oxidation or incorporation into complex lipids, and may also participate in VLCFA synthesis. Two enzymes with VLACS activity, ACSVL1 and BG1, were investigated for their potential role in X-ALD biochemical pathology. Skin fibroblast mRNA levels for ACSVL1, an enzyme previously shown to be in peroxisomes and to participate in VLCFA beta-oxidation, were not significantly different between normal controls, patients with childhood cerebral X-ALD, and patients with adrenomyeloneuropathy. Similar results were obtained with mRNA for BG1, a non-peroxisomal enzyme that is highly expressed in nervous system, adrenal gland, and testis, the principal tissues pathologically affected in X-ALD. No significant differences in the immunohistochemical staining patterns of tissues expressing either ACSVL1 or BG1 were observed when wild-type and X-ALD mice were compared. Western blot analysis of BG1 protein levels showed no differences between fibroblasts from controls, cerebral X-ALD, or adrenomyeloneuropathy patients. BG1 protein levels were similar in wild-type and X-ALD mouse brain, spinal cord, testis, and adrenal gland. We hypothesized that one function of BG1 was to direct VLCFA into the cholesterol ester synthesis pathway. However, BG1 depletion in Neuro2a cells using RNA interference did not decrease incorporation of labeled VLCFA into cholesterol esters. We conclude that the role, if any, of ACSVL1 and BG1 in X-ALD biochemical pathology is indirect.

  16. Long-chain alkenones and related compounds in the benthic haptophyte Chrysotila lamellosa Anand HAP 17.

    PubMed

    Rontani, Jean-François; Beker, Béatriz; Volkman, John K

    2004-01-01

    The neutral lipid compositions of the coastal haptophyte Chrysotila lamellosa HAP 17 grown in batch culture at 10 and 20 degrees C have been determined. A comparison was also made between the lipid compositions of cells harvested in early and late stationary phase. This species contains a suite of very long-chain C(37)-C(40) alkenones and alkenoates as found in a few microalgae from the Haptophyta. The distributions of these compounds show some differences to earlier reports of different strains of this alga, which are only in part attributable to culture conditions. A suite of long-chain alkenols, the reduced form of the alkenones, was characterized for the first time. The abundance of these compounds was only 1.5% of that of the corresponding alkenones, and the relative proportion of C(37)-C(38) constituents depended on growth temperature. These data show that haptophyte algae are a possible source of the alkenols found in some marine sediments, but the small amounts found suggest that other sources such as bacterial reduction of alkenones are more likely in highly reducing sediments. A mixture of C(29)-C(33) n-alkenes, dominated by the C(31:1) monoene, was found in marked contrast to previous analyses of other strains which reported only the presence of a C(31:2) diene. The sterol distribution included the common haptophyte sterol 24alpha-methylcholesta-5,22E-dien-3beta-ol (epi-brassicasterol) as well as significant amounts of Delta(5)- and Delta(5,22)-C(29) sterols.

  17. Infusion of long-chain fatty acid anions by continuous-flow centrifugation

    PubMed Central

    Greenough, William B.; Crespin, Stephen R.; Steinberg, Daniel

    1969-01-01

    We have developed a method for the rapid infusion into plasma of large amounts of long-chain free fatty acids (FFA). Unanesthetized dogs were connected by a peripheral artery to a closed, continuousflow centrifuge from which cells and plasma emerged in separate lines. Sodium oleate was infused directly into the plasma line before cells and plasma were recombined and returned to the animal through a peripheral vein. The centrifugation procedure itself produced only small changes in circulating levels of glucose, FFA, and electrolytes. Plasma flow rates as high as 100 ml/min could be maintained, and centrifugations of 12 hr were accomplished without complications. During centrifugation, sodium oleate was infused at rates up to 80 μEq/kg per min for 2.5 hr; the maximum molar ratio of FFA to albumin without hemolysis was 10:1. Plasma FFA levels rose rapidly after infusions were started and reached constant elevated levels within 15-20 min. Oleate infusion at 10-50 μEq/kg per min produced a rise in plasma FFA proportional to the infusion rate. The maximum increment in plasma FFA above control values was 1.66 μEq/ml. When infusions ended, plasma FFA declined rapidly to control levels. Oleate infusion at rates below 30 μEq/kg per min did not reduce levels of other plasma FFA. Infusion at high rates was accompanied by a marked fall in blood glucose. This method permits adminsitration of long-chain fatty acids in sufficient quantities to study their individual metabolic effects, and provides a new way to supply lipid calories parenterally. PMID:5822596

  18. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats.

    PubMed

    Toufektsian, Marie-Claire; Salen, Patricia; Laporte, François; Tonelli, Chiara; de Lorgeril, Michel

    2011-01-01

    Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained ~0.24 ± 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 μL/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60 mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids.

  19. Characterization of a novel long-chain acyl-CoA thioesterase from Alcaligenes faecalis.

    PubMed

    Shahi, Puja; Kumar, Ish; Sharma, Ritu; Sanger, Shefali; Jolly, Ravinder S

    2006-06-01

    A novel long-chain acyl-CoA thioesterase from Alcaligenes faecalis has been isolated and characterized. The protein was extracted from the cells with 1 m NaCl, which required 1.5-fold, single-step purification to yield near-homogeneous preparations. In solution, the protein exists as homomeric aggregates, of mean diameter 21.6 nm, consisting of 22-kDa subunits. MS/MS data for peptides obtained by trypsin digestion of the thiosterase did not match any peptide from Escherichia coli thioesterases or any other thioesterases in the database. The thioesterase was associated exclusively with the surface of cells as revealed by ultrastructural studies using electron microscopy and immunogold labeling. It hydrolyzed saturated and unsaturated fatty acyl-CoAs of C12 to C18 chain length with Vmax and Km of 3.58-9.73 micromol x min(-1) x (mg protein)(-1) and 2.66-4.11 microm, respectively. A catalytically important histidine residue is implicated in the active site of the enzyme. The thioesterase was active and stable over a wide range of temperature and pH. Maximum activity was observed at 65 degrees C and pH 10.5, and varied between 60% and 80% at temperatures of 25-70 degrees C and pH 6.5-10. The thioesterase also hydrolyzed p-nitrophenyl esters of C2 to C12 chain length, but substrate competition experiments demonstrated that the long-chain acyl-CoAs are better substrates for thioesterase than p-nitrophenyl esters. When assayed at 37 and 20 degrees C, the affinity and catalytic efficiency of the thioesterase for palmitoleoyl-CoA and cis-vaccenoyl-CoA were reduced approximately twofold at the lower temperature, but remained largely unaltered for palmitoyl-CoA.

  20. Role of long-chain hydrocarbons in the aggregation behaviour of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae).

    PubMed

    Durieux, Delphine; Fischer, Christophe; Brostaux, Yves; Sloggett, John J; Deneubourg, Jean-Louis; Vandereycken, Axel; Joie, Emilie; Wathelet, Jean-Paul; Lognay, Georges; Haubruge, Eric; Verheggen, François J

    2012-06-01

    The multicoloured Asian ladybirds, Harmonia axyridis (Pallas), form large aggregations inside dwellings to survive cold winters, causing annoyance to householders due to their abundance, allergenic properties and problems consequent on reflex bleeding. Flight to overwintering sites and macrosite choice of this species is well documented. H. axyridis shows a hypsotactic behaviour and a clear preference for contrasting visual elements. However, how the microsite is selected remains undocumented, although a better understanding of the factors implicated could lead to the development of new control methods for this pest. In this work, we hypothesised that non-volatile compounds are involved in the microsite choice and aggregation of this beetle. Long chain hydrocarbons were identified at aggregation sites, comprising saturated and unsaturated homologues. An aggregation bioassay was then conducted on overwintering individuals, highlighting the retention capacity of the identified compounds on the tested ladybirds. Additional investigations showed that H. axyridis males and females, originating from overwintering sites, deposit a similar blend of molecules while walking. A Y-shaped tube assay revealed that this blend is used by male and female congeners as cue allowing individuals to orientate towards the treated side of the olfactometer. These results suggest the use of two different blends of long chain hydrocarbons by H. axyridis during its aggregative period, the first one to lead conspecifics towards aggregation sites (microsites) and the second to ensure the cohesion of the aggregation. These findings support the potential use of these blends, in association with volatiles, in the design of traps in order to control infestations of this species in dwellings.

  1. Long-Chain Fatty Acids Activate Calcium Channels in Ventricular Myocytes

    NASA Astrophysics Data System (ADS)

    Huang, James Min-Che; Xian, Hu; Bacaner, Marvin

    1992-07-01

    Nonesterified fatty acids accumulate at sites of tissue injury and necrosis. In cardiac tissue the concentrations of oleic acid, arachidonic acid, leukotrienes, and other fatty acids increase greatly during ischemia due to receptor or nonreceptor-mediated activation of phospholipases and/or diminished reacylation. In ischemic myocardium, the time course of increase in fatty acids and tissue calcium closely parallels irreversible cardiac damage. We postulated that fatty acids released from membrane phospholipids may be involved in the increase of intracellular calcium. We report here that low concentrations (3-30 μM) of each long-chain unsaturated (oleic, linoleic, linolenic, and arachidonic) and saturated (palmitic, stearic, and arachidic) fatty acid tested induced multifold increases in voltage-dependent calcium currents (ICa) in cardiac myocytes. In contrast, neither short-chain fatty acids (<12 carbons) or fatty acid esters (oleic and palmitic methyl esters) had any effect on ICa, indicating that activation of calcium channels depended on chain length and required a free carboxyl group. Inhibition of protein kinases C and A, G proteins, eicosanoid production, or nonenzymatic oxidation did not block the fatty acid-induced increase in ICa. Thus, long-chain fatty acids appear to directly activate ICa, possibly by acting at some lipid sites near the channels or directly on the channel protein itself. We suggest that the combined effects of fatty acids released during ischemia on ICa may contribute to ischemia-induced pathogenic events on the heart that involve calcium, such as arrhythmias, conduction disturbances, and myocardial damage due to cytotoxic calcium overload.

  2. Transport of heptafluorostearate across model membranes. Membrane transport of long-chain fatty acid anions I.

    PubMed

    Schmider, W; Fahr, A; Blum, H E; Kurz, G

    2000-05-01

    Heptafluorostearic acid, an isogeometric derivative of stearic acid, has a pK(a) value of about 0.5. To evaluate the suitability of heptafluorostearate as model compound for anions of long-chain fatty acids in membrane transport, monolayer and liposome studies were performed with lipid mixtures containing phospholipids;-cholesterol-heptafluorostearate or stearate (100:40:20 molar ratios). Transfer of heptafluorostearate and stearate from liposomes to bovine serum albumin (BSA) was followed by measuring the intrinsic fluorescence of BSA. The percentage of heptafluorostearate, equivalent to the amount placed in their outer monolayer, transferred from liposomes (120;-130 nm diameter) to BSA was 55.7 +/- 3.7% within 10 min at 25 degrees C and 55 +/- 2% within 5 min at 37 degrees C. Slow transfer of 22.7 +/- 2.5% of heptafluorostearate at 25 degrees C followed with a half-life of 2.3 +/- 0.4 h and of 20 +/- 4% at 37 degrees C with a half-life of 0.9 +/- 0.1 h until the final equilibrium distributions between BSA and liposomes were reached, 79 +/- 6% to 21 +/- 5% at 25 degrees C and 75 +/- 5% to 25 +/- 4% at 37 degrees C. The pseudounimolecular rate constants for flip-flop of heptafluorostearate equal k(FF,25) = 0.24 +/- 0.05 h(-) and k(FF,37) = 0.6 +/- 0.1 h(-), respectively. By comparison, transfer of stearate required only 3 min to reach equilibrium distribution. The difference between heptafluorostearate and stearate may be explained by a rapid flip-flop movement of the un-ionized fatty acids which exist in different concentrations in accordance with their pK(a) values. Half-life of flip-flop of heptafluorostearate makes it suitable to study mediated membrane transport of long-chain fatty acid anions.

  3. Fluorinated alkyl compounds including long chain carboxylic acids in wild bird livers from Japan.

    PubMed

    Guruge, Keerthi S; Yeung, Leo W Y; Li, Peng; Taniyasu, Sachi; Yamashita, Nobuyoshi; Nakamura, Mayumi

    2011-04-01

    A wide range of fluorinated alkyl compounds (FACs) has been reported in wildlife in various locations in the world. However, such information regarding Japanese wildlife is rarely found. In the present study, we investigated the occurrence of 21 FACs, including perfluorinated alkyl sulfonates (PFASs), perfluorinated carboxylates (PFCAs), and fluorotelomer acids, in the livers of 10 wild bird species from two regions in northern Japan. To avoid interferences, FACs were quantified by a recently developed method using acetonitrile and solid-phase extraction followed by an ion exchange HPLC column separation. Apart from perfluorooctane sulfonate (PFOS), which was found at the highest levels of all the compounds detected, several long chain perfluorinated carboxylates (PFCAs) from C8 to C16, particularly perfluorotetradecanoic acid (PFTeDA) and perfluorohexadecanoic acid (PFHxDA), were detected for the first time. Additionally, 7:3 FTCA, a fluorotelomer acid, was also detected in most swan livers from Miyagi prefecture and all the birds from Tochigi prefecture. However, none of the sulfonamides and unsaturated telomer acids were detected in any species. Swans seem to be the least exposed wild birds to FACs among the investigated birds, signifying that feeding habits may reflect FAC accumulation in wild birds. The highest total concentration of detected FACs was 405ngg(-1)wet wt., which was found in a Japanese sparrowhawk, indicating that the top predatory wild birds can accumulate several long chain carboxylic acids. However, the current FAC concentrations found in livers may suggest that these compounds alone would not cause a severe toxic effect in these species.

  4. Microbial community dynamics in batch high-solid anaerobic digestion of food waste under mesophilic conditions.

    PubMed

    Yi, Jing; Dong, Bin; Xue, Yonggang; Li, Ning; Gao, Peng; Zhao, Yuxin; Dai, Lingling; Dai, Xiaohu

    2014-02-28

    Microbial community shifts, associated with performance data, were investigated in an anaerobic batch digester treating high-solid food waste under mesophilic conditions using, a combination of molecular techniques and chemical analysis methods. The batch process was successfully operated with an organic removal efficiency of 44.5% associated with a biogas yield of 0.82 L/g VSremoval. Microbial community structures were examined by denaturing gel gradient electrophoresis. Clostridium and Symbiobacterium organisms were suggested to be mainly responsible for the organic matter catabolism in hydrolysis and acidogenesis reactions. The dynamics of archaeal and methanogenic populations were monitored using real-time PCR targeting 16S rRNA genes. Methanosarcina was the predominant methanogen, suggesting that the methanogenesis took place mainly via an aceticlastic pathway. Hydrogenotrophic methanogens were also supported in high-solid anaerobic digestion of food waste through syntrophism with syntrophic bacterium. Microbial community shifts showed good agreement with the performance parameters in anaerobic digestion, implying the possibility of diagnosing a high-solid anaerobic digestion process by monitoring microbial community shifts. On the other hand, the batch results could be relevant to the start-up period of a continuous system and could also provide useful information to set up a continuous operation.

  5. Biosynthesis of triacylglycerols containing very long chain monounsaturated acyl moieties in developing seeds. [Lunaria annua L. ; Sinapis alba L

    SciTech Connect

    Fehling, E.; Murphy, D.J.; Mukherjee, K.D. )

    1990-10-01

    Particulate (15,000g) fractions from developing seeds of honesty (Lunaria annua L.) and mustard (Sinapis alba L.) synthesize radioactive very long chain monounsaturated fatty acids (gadoleic, erucic, and nervonic) from (1-{sup 14}C)oleoyl-CoA and malonyl-CoA or from oleoyl-CoA and (2-{sup 14}C)malonyl-CoA. The very long chain monounsaturated fatty acids are rapidly channeled to triacylglycerols and other acyl lipids without intermediate accumulation of their CoA thioesters. When (1-{sup 14}C)oleoyl-CoA is used as the radioactive substrate, phosphatidylcholines and other phospholipids are most extensively radiolabeled by oleoyl moieties rather than by very long chain monounsaturated acyl moieties. When (2-{sup 14}C)malonyl-CoA is used as the radioactive substrate, no radioactive oleic acid is formed and the newly synthesized very long chain monounsaturated fatty acids are extensively incorporated into phosphatidylcholines and other phospholipids as well as triacylglycerols. The pattern of labeling of the key intermediates of the Kennedy pathway, e.g. lysophosphatidic acids, phosphatidic acids, and diacylglycerols by the newly synthesized very long chain monounsaturated fatty acids is consistent with the operation of this pathway in the biosynthesis of triacylglycerols.

  6. Long chain n-alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records

    NASA Astrophysics Data System (ADS)

    Huang, Xianyu; Xue, Jiantao; Guo, Shouyu

    2012-03-01

    Five coticolous lichen samples were collected from western Hubei Province of China to analyze the long chain n-alkanes and their carbon isotope compositions. The n-alkanes range in carbon number from C17 to C33 with strong odd-over-even predominance between C21 and C33. Lichens are dominated by n-C29 in the samples of Dajiuhu, Shennongjia Mountain, but by both n-C23 and n-C29 at Qizimei Mountain. This difference may result from the different environmental conditions in these two sites. The δ 13C values of long chain n-alkanes in lichen samples show the signature of C3 plants. Based on compoundspecific carbon isotopic values and previous results, we state that alkane homologs >C23 mainly originate from the symbiotic fungi, while symbiotic algae only contribute trace amount of long chain alkanes. Of great interesting is the occurrence of long chain 3-methylalkanes in the Qizimei samples. These anteiso compounds range from C24 to C32, displaying obvious even-over-odd predominance. This study reveals that the association of long chain 3-methylalkanes with n-C23 alkane might be used as proxies to reconstruct the paleoecological implications of lichens in Earth history.

  7. Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop.

    PubMed

    Spiekerkoetter, U; Lindner, M; Santer, R; Grotzke, M; Baumgartner, M R; Boehles, H; Das, A; Haase, C; Hennermann, J B; Karall, D; de Klerk, H; Knerr, I; Koch, H G; Plecko, B; Röschinger, W; Schwab, K O; Scheible, D; Wijburg, F A; Zschocke, J; Mayatepek, E; Wendel, U

    2009-08-01

    At present, long-chain fatty acid oxidation (FAO) defects are diagnosed in a number of countries by newborn screening using tandem mass spectrometry. In the majority of cases, affected newborns are asymptomatic at time of diagnosis and acute clinical presentations can be avoided by early preventive measures. Because evidence-based studies on management of long-chain FAO defects are lacking, we carried out a retrospective analysis of 75 patients from 18 metabolic centres in Germany, Switzerland, Austria and the Netherlands with special regard to treatment and disease outcome. Dietary treatment is effective in many patients and can prevent acute metabolic derangements and prevent or reverse severe long-term complications such as cardiomyopathy. However, 38% of patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency had intermittent muscle weakness and pain despite adhering to therapy. Seventy-six per cent of patients with disorders of the mitochondrial trifunctional protein (TFP)-complex including long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency, had long-term myopathic symptoms. Of these, 21% had irreversible peripheral neuropathy and 43% had retinopathy. The main principle of treatment was a fat-reduced and fat-modified diet. Fat restriction differed among patients with different enzyme defects and was strictest in disorders of the TFP-complex. Patients with a medium-chain fat-based diet received supplementation of essential long-chain fatty acids. l-Carnitine was supplemented in about half of the patients, but in none of the patients with VLCAD deficiency identified by newborn screening. In summary, in this cohort the treatment regimen was adapted to the severity of the underlying enzyme defect and thus differed among the group of long-chain FAO defects.

  8. The Staphylococcus aureus Response to Unsaturated Long Chain Free Fatty Acids: Survival Mechanisms and Virulence Implications

    PubMed Central

    Kenny, John G.; Ward, Deborah; Josefsson, Elisabet; Jonsson, Ing-Marie; Hinds, Jason; Rees, Huw H.; Lindsay, Jodi A.; Tarkowski, Andrej; Horsburgh, Malcolm J.

    2009-01-01

    Staphylococcus aureus is an important human commensal and opportunistic pathogen responsible for a wide range of infections. Long chain unsaturated free fatty acids represent a barrier to colonisation and infection by S. aureus and act as an antimicrobial component of the innate immune system where they are found on epithelial surfaces and in abscesses. Despite many contradictory reports, the precise anti-staphylococcal mode of action of free fatty acids remains undetermined. In this study, transcriptional (microarrays and qRT-PCR) and translational (proteomics) analyses were applied to ascertain the response of S. aureus to a range of free fatty acids. An increase in expression of the σB and CtsR stress response regulons was observed. This included increased expression of genes associated with staphyloxanthin synthesis, which has been linked to membrane stabilisation. Similarly, up-regulation of genes involved in capsule formation was recorded as were significant changes in the expression of genes associated with peptidoglycan synthesis and regulation. Overall, alterations were recorded predominantly in pathways involved in cellular energetics. In addition, sensitivity to linoleic acid of a range of defined (sigB, arcA, sasF, sarA, agr, crtM) and transposon-derived mutants (vraE, SAR2632) was determined. Taken together, these data indicate a common mode of action for long chain unsaturated fatty acids that involves disruption of the cell membrane, leading to interference with energy production within the bacterial cell. Contrary to data reported for other strains, the clinically important EMRSA-16 strain MRSA252 used in this study showed an increase in expression of the important virulence regulator RNAIII following all of the treatment conditions tested. An adaptive response by S. aureus of reducing cell surface hydrophobicity was also observed. Two fatty acid sensitive mutants created during this study were also shown to diplay altered pathogenesis as assessed

  9. Long-Chain Alkyl Cyanides: Unprecedented Volatile Compounds Released by Pseudomonas and Micromonospora Bacteria.

    PubMed

    Montes Vidal, Diogo; von Rymon-Lipinski, Anna-Lena; Ravella, Srinivasa; Groenhagen, Ulrike; Herrmann, Jennifer; Zaburannyi, Nestor; Zarbin, Paulo H G; Varadarajan, Adithi R; Ahrens, Christian H; Weisskopf, Laure; Müller, Rolf; Schulz, Stefan

    2017-04-03

    The analysis of volatiles from bacterial cultures revealed long-chain aliphatic nitriles, a new class of natural products. Such nitriles are produced by both Gram-positive Micromonospora echinospora and Gram-negative Pseudomonas veronii bacteria, although the structures differ. A variable sequence of chain elongation and dehydration in the fatty acid biosynthesis leads to either unbranched saturated or unsaturated nitriles with an ω-7 double bond, such as (Z)-11-octadecenenitrile, or methyl-branched unsaturated nitriles with the double bond located at C-3, such as (Z)-13-methyltetradec-3-enenitrile. The nitrile biosynthesis starts from fatty acids, which are converted into their amides and finally dehydrated. The structures and biosyntheses of the 19 naturally occurring compounds were elucidated by mass spectrometry, synthesis, and feeding experiments with deuterium-labeled precursors. Some of the nitriles showed antimicrobial activity, for example, against multiresistant Staphylococcus aureus strains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Raman spectra of long chain hydrocarbons: anharmonic calculations, experiment and implications for imaging of biomembranes

    PubMed Central

    Šebek, Jiří; Pele, Liat; Potma, Eric O.

    2012-01-01

    First-principles anharmonic vibrational calculations are carried out for the Raman spectrum of the C–H stretching bands in dodecane, and for the C–D bands in the deuterated molecule. The calculations use the Vibrational Self-Consistent Field (VSCF) algorithm. The results are compared with liquid-state experiments, after smoothing the isolated-molecule sharp-line computed spectra. Very good agreement between the computed and experimental results is found for the two systems. The combined theoretical and experimental results provide insights into the spectrum, elucidating the roles of symmetric and asymmetric CH3 and CH2 hydrogenic stretches. This is expected to be very useful for the interpretation of spectra of long-chain hydrocarbons. The results show that anharmonic effects on the spectrum are large. On the other hand, vibrational degeneracy effects seem to be rather modest at the resolution of the experiments. The degeneracy effects may have more pronounced manifestations in higher-resolution experiments. The results show that first-principles anharmonic vibrational calculations for hydrocarbons are feasible, in good agreement with experiment, opening the way for applications to many similar systems. The results may be useful for the analysis of CARS imaging of lipids, for which dodecane is a representative molecule. It is suggested that first-principles vibrational calculations may be useful also for CARS imaging of other systems. PMID:21670823

  11. Long-chain omega-3 fatty acid supply in pregnancy and lactation.

    PubMed

    Cetin, Irene; Koletzko, Berthold

    2008-05-01

    Long-chain omega-3 fatty acids are essential for the developing fetus. Docosahexaenoic acid, the most important omega-3 fatty acid, is an important component of neural and retinal membranes, and rapidly accumulates in the brain during gestation and the postnatal period. Positive associations have been shown between maternal intake of fish, seafood and omega-3 fatty acids during pregnancy and/or lactation and visual and cognitive development. The review focuses on new findings by both observational and interventional studies on the influence of omega-3 fatty acids during pregnancy or lactation on gestation length and birth weight, preterm delivery, preeclampsia, maternal depression and infant visual function and neural development. Omega-3 fatty acids have been associated with reduced risk of cardiovascular and other diseases. Observational and interventional studies indicate a significant association with prolonging gestation and reducing the risk of preterm delivery both in low-risk and in high-risk pregnancies. Further benefits have been suggested for intrauterine growth restriction, preeclampsia and postpartum depression, but the evidence is inconclusive. Higher maternal docosahexaenoic acid intake both in pregnancy and lactation is associated with positive infant neurodevelopmental outcomes. Women of reproductive age should achieve an average dietary docosahexaenoic acid intake of at least 200 mg/day.

  12. Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids.

    PubMed

    Gong, Yangmin; Wan, Xia; Jiang, Mulan; Hu, Chuanjiong; Hu, Hanhua; Huang, Fenghong

    2014-10-01

    Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) have received growing attention due to their significant roles in human health. Currently the main source of these nutritionally and medically important fatty acids is marine fish, which has not met ever-increasing global demand. Microorganisms are an important alternative source also being explored. Although many microorganisms accumulate omega-3 LC-PUFAs naturally, metabolic engineering might still be necessary for significantly improving their yields. Here, we review recent research involving the engineering of microorganisms for production of omega-3 LC-PUFAs, including eicospentaenoic acid and docosohexaenoic acid. Both reconstitution of omega-3 LC-PUFA biosynthetic pathways and modification of existing pathways in microorganisms have demonstrated the potential to produce high levels of omega-3 LC-PUFAs. However, the yields of omega-3 LC-PUFAs in host systems have been substantially limited by potential metabolic bottlenecks, which might be caused partly by inefficient flux of fatty acid intermediates between the acyl-CoA and different lipid class pools. Although fatty acid flux in both native and heterologous microbial hosts might be controlled by several acyltransferases, evidence has suggested that genetic manipulation of one acyltransferase alone could significantly increase the accumulation of LC-PUFAs. The number of oleaginous microorganisms that can be genetically transformed is increasing, which will advance engineering efforts to maximize LC-PUFA yields in microbial strains.

  13. Effects of Long Chain Fatty Acid Synthesis and Associated Gene Expression in Microalga Tetraselmis sp

    PubMed Central

    Adarme-Vega, T. Catalina; Thomas-Hall, Skye R.; Lim, David K. Y.; Schenk, Peer M.

    2014-01-01

    With the depletion of global fish stocks, caused by high demand and effective fishing techniques, alternative sources for long chain omega-3 fatty acids are required for human nutrition and aquaculture feeds. Recent research has focused on land-based cultivation of microalgae, the primary producers of omega-3 fatty acids in the marine food web. The effect of salinity on fatty acids and related gene expression was studied in the model marine microalga, Tetraselmis sp. M8. Correlations were found for specific fatty acid biosynthesis and gene expression according to salinity and the growth phase. Low salinity was found to increase the conversion of C18:4 stearidonic acid (SDA) to C20:4 eicosatetraenoic acid (ETA), correlating with increased transcript abundance of the Δ-6-elongase-encoding gene in salinities of 5 and 10 ppt compared to higher salinity levels. The expression of the gene encoding β-ketoacyl-coenzyme was also found to increase at lower salinities during the nutrient deprivation phase (Day 4), but decreased with further nutrient stress. Nutrient deprivation also triggered fatty acids synthesis at all salinities, and C20:5 eicosapentaenoic acid (EPA) increased relative to total fatty acids, with nutrient starvation achieving a maximum of 7% EPA at Day 6 at a salinity of 40 ppt. PMID:24901700

  14. Anaplerotic Treatment of Long-Chain Fat Oxidation Disorders with Triheptanoin: Review of 15 years Experience

    PubMed Central

    Roe, Charles R.; Brunengraber, Henri

    2015-01-01

    Background The treatment of long-chain mitochondrial β-oxidation disorders (LC-FOD) with a low fat-high carbohydrate diet, a diet rich in medium-even-chain triglycerides (MCT), or a combination of both has been associated with high morbidity and mortality for decades. The pathological tableau appears to be caused by energy deficiency resulting from reduced availability of citric acid cycle (CAC) intermediates required for optimal oxidation of acetyl-CoA. This hypothesis was investigated by diet therapy with carnitine and anaplerotic triheptanoin (TH). Methods Fifty-two documented LC-FOD patients were studied in this investigation (age range: birth to 51 years). Safety monitoring included serial quantitative measurements of routine blood chemistries, blood levels of carnitine and acylcarnitines, and urinary organic acids. Results The average frequency of serious clinical complications were reduced from ~ 60 % with conventional diet therapy to 10 % with TH and carnitine treatment and mortality decreased from ~ 65 % with conventional diet therapy to 3.8 %. Carnitine supplementation was uncomplicated. Conclusion The energy deficiency in LC-FOD patients was corrected safely and more effectively with the triheptanoin diet and carnitine supplement than with conventional diet therapy. Safe intervention in neonates and infants will permit earlier intervention following pre-natal diagnosis or diagnosis by expanded newborn screening. PMID:26547562

  15. Long chain lipid based tamoxifen NLC. Part I: preformulation studies, formulation development and physicochemical characterization.

    PubMed

    Shete, Harshad; Patravale, Vandana

    2013-09-15

    Tamoxifen citrate (Tmx) was formulated in nanostructured lipid carrier system (NLC) using long chain solid lipids (LCSL) and oils (LCO) with the aim to target lymphatic system to improve its bioavailability in plasma and lymphnode (initial sites for metastasis) and reduce its drug associated toxicity. Tamoxifen loaded NLC (Tmx-NLC) was formulated using solvent diffusion technique. Preformulation studies comprised evaluation of drug-excipients compatibility. Solubility of Tmx was screened in LCSL and LCO, surfactants and co-surfactants to identify NLC components. Surfactant co-surfactant combinations were studied for their ability to stabilize the system. Tmx-NLC was physicochemically characterized by TEM, DSC, XRD, and FTIR studies. Drug-excipients chemical compatibility study facilitated anticipation of excipients induced oxidative degradation of Tmx. Suitable storage condition below 30°C could stabilize Tmx. Tmx-NLC with >90% entrapment efficiency and 215.60 ± 7.98 nm particle size were prepared and freeze dried. Freeze dried Tmx-NLC could withstand various gastrointestinal tract (GI) media (pH 1.2, pH 3.5, pH 4.5, pH 6.8, pH 7.4). Dissolution profile of Tmx-NLC in various media showed sustained release pattern irrespective of pH of medium. No significant change in characteristics of Tmx-NLC was observed after 3 months of accelerated stability studies.

  16. Long chain lipid based tamoxifen NLC. Part II: pharmacokinetic, biodistribution and in vitro anticancer efficacy studies.

    PubMed

    Shete, Harshad; Chatterjee, Sushmita; De, Abhijit; Patravale, Vandana

    2013-09-15

    Long chain lipid (LCL) based tamoxifen loaded nanostructured lipid carriers (Tmx-NLCs) meant to target intestinal lymphatic systems (ILSs) was developed and characterized previously. The aim of the present work was to evaluate in vitro efficacy of developed Tmx-NLC against breast cancer cell lines and to confirm the hypothesis of targeting ILS after single dose oral administration. In vitro anticancer activity of Tmx-NLC was assessed in human estrogen receptor expressing breast cancer cell lines viz. MCF-7 and ZR-75-1. The study revealed relatively improved activity for Tmx-NLC compared to free Tmx against MCF-7 cells. However, the activity was compromised against ZR-75-1 cells which could be attributed to its up regulation of MUC1 gene. Confocal and flow cytometric analysis revealed remarkable intracellular uptake of Tmx-NLC and its localization in nuclear and perinuclear region of cells. Tmx-NLC exhibited distinctly different pharmacokinetic profile compared to Tamoxifen suspension (Tmx-susp) and exhibited an increment in the bioavailability by 2.71-fold and prolonged the T1/2 by 7.10-fold. Moreover, detectable drug concentration in mesenteric lymph nodes justifies our hypothesis of targeting ILS and explains the major uptake of Tmx to occur via lymphatic system.

  17. H2O2 release from the very long chain acyl-CoA dehydrogenase

    PubMed Central

    Kakimoto, Pâmela A.H.B.; Tamaki, Fábio K.; Cardoso, Ariel R.; Marana, Sandro R.; Kowaltowski, Alicia J.

    2015-01-01

    Enhanced mitochondrial generation of oxidants, including hydrogen peroxide (H2O2), is related to a large number of pathological conditions, including diet-induced obesity and steatohepatosis. Indeed, we have previously shown that high fat diets increase the generation of H2O2 in liver mitochondria energized by activated fatty acids. Here, we further study fatty-acid induced H2O2 release in liver mitochondria, and determine the characteristics that regulate it. We find that this production of H2O2 is independent of mitochondrial inner membrane integrity and insensitive to purine nucleotides. On the other hand, palmitate-induced H2O2 production is strongly enhanced by high fat diets and is pH-sensitive, with a peak at a matrix pH of ~8.5. Using recombinantly expressed human very long chain acyl-CoA dehydrogenase, we are able to demonstrate that palmitate-induced H2O2 release may be ascribed to the activity of this enzyme alone, acting as an oxidase. Our results add to a number of findings indicating that sources outside of the electron transport chain can generate significant, physiopathologically relevant, amounts of oxidants in mitochondria. PMID:25728796

  18. Long-chain omega-3 from low-trophic-level fish provides value to farmed seafood

    PubMed Central

    Bibus, Douglas M

    2015-01-01

    Low-trophic-level fish are a crucial source of long-chain (LC) omega-3 fatty acids for farmed fish and humans. Many farm-raised fish species have a clear need for these nutrients. Farmed fish deposit the LC omega-3s in their flesh and transfer them up the food chain. However, the content of LC omega-3s in farm-raised seafood continues to decline, while the content of shorter-chain plant-sourced omega-3s, and pro-inflammtory omega-6s continue to increase. This reduces its nutritional worth. The value of low-trophic-level fish is often viewed merely as its price at the dock. Some reports and metrics steer public attention towards the mass balance between quantities of low-trophic-level fish and farmed seafood. However, the the nutritional value of seafood is more important than its mere quantities. The role of low-trophic-level fish in human nutrition, health, and wellbeing is a fundamental component of its economic value to society. PMID:26097289

  19. Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle.

    PubMed

    Montgomery, Magdalene K; Osborne, Brenna; Brown, Simon H J; Small, Lewin; Mitchell, Todd W; Cooney, Gregory J; Turner, Nigel

    2013-12-01

    Dietary intake of long-chain fatty acids (LCFAs) plays a causative role in insulin resistance and risk of diabetes. Whereas LCFAs promote lipid accumulation and insulin resistance, diets rich in medium-chain fatty acids (MCFAs) have been associated with increased oxidative metabolism and reduced adiposity, with few deleterious effects on insulin action. The molecular mechanisms underlying these differences between dietary fat subtypes are poorly understood. To investigate this further, we treated C2C12 myotubes with various LCFAs (16:0, 18:1n9, and 18:2n6) and MCFAs (10:0 and 12:0), as well as fed mice diets rich in LCFAs or MCFAs, and investigated fatty acid-induced changes in mitochondrial metabolism and oxidative stress. MCFA-treated cells displayed less lipid accumulation, increased mitochondrial oxidative capacity, and less oxidative stress than LCFA-treated cells. These changes were associated with improved insulin action in MCFA-treated myotubes. MCFA-fed mice exhibited increased energy expenditure, reduced adiposity, and better glucose tolerance compared with LCFA-fed mice. Dietary MCFAs increased respiration in isolated mitochondria, with a simultaneous reduction in reactive oxygen species generation, and subsequently low oxidative damage. Collectively our findings indicate that in contrast to LCFAs, MCFAs increase the intrinsic respiratory capacity of mitochondria without increasing oxidative stress. These effects potentially contribute to the beneficial metabolic actions of dietary MCFAs.

  20. Plasmalogens participate in very-long-chain fatty acid-induced pathology.

    PubMed

    Brites, Pedro; Mooyer, Petra A W; El Mrabet, Leila; Waterham, Hans R; Wanders, Ronald J A

    2009-02-01

    Peroxisomes are organelles responsible for multiple metabolic pathways including, the biosynthesis of plasmalogens, a class of phospholipids, and the beta-oxidation of very-long-chain fatty acids (VLCFA). Lack of peroxisomes or dysfunction in any of their normal functions is the cellular basis for human peroxisomal disorders. Here we used mouse models to understand and define the biochemical and cellular determinants that mediate the pathophysiological consequences caused by peroxisomal dysfunctions. We investigated the role and effects of cellular plasmalogens and VLCFA accumulation in liver, testis and nervous tissue using Pex7 and Abcd1 knockout (KO) mice. In addition, we also generated a Pex7:Abcd1 double KO mouse to investigate how different peroxisomal dysfunctions modulate cellular function and pathology. We found that plasmalogens function as fundamental structural phospholipids and protect cells from damage caused by VLCFA accumulation. In testis, plasmalogens protect spermatocytes from VLCFA-induced degeneration and apoptosis. In nervous tissue, we found that gliosis, inflammatory demyelination and axonopathy caused by accumulation of VLCFA are modulated by plasmalogens. Our findings demonstrate the importance of normal peroxisomal functioning and allow the understanding of the pathological causality of peroxisomal dysfunctions. Nervous tissue deficient in plasmalogens is more prone to damage, illustrating the importance of plasmalogens in peroxisomal disorders including Zellweger syndrome and X-linked adrenoleukodystrophy.

  1. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    PubMed Central

    Martins, Dulce Alves; Custódio, Luísa; Barreira, Luísa; Pereira, Hugo; Ben-Hamadou, Radhouan; Varela, João; Abu-Salah, Khalid M.

    2013-01-01

    The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented. PMID:23807546

  2. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo

    SciTech Connect

    Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Portman, Michael A.

    2013-09-01

    Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), longchain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart.

  3. A model for the interfacial kinetics of phospholipase D activity on long-chain lipids.

    PubMed

    Majd, Sheereen; Yusko, Erik C; Yang, Jerry; Sept, David; Mayer, Michael

    2013-07-02

    The membrane-active enzyme phospholipase D (PLD) catalyzes the hydrolysis of the phosphodiester bond in phospholipids and plays a critical role in cell signaling. This catalytic reaction proceeds on lipid-water interfaces and is an example of heterogeneous catalysis in biology. Recently we showed that planar lipid bilayers, a previously unexplored model membrane for these kinetic studies, can be used for monitoring interfacial catalytic reactions under well-defined experimental conditions with chemical and electrical access to both sides of the lipid membrane. Employing an assay that relies on the conductance of the pore-forming peptide gramicidin A to monitor PLD activity, the work presented here reveals the kinetics of hydrolysis of long-chain phosphatidylcholine lipids in situ. We have developed an extension of a basic kinetic model for interfacial catalysis that includes product activation and substrate depletion. This model describes the kinetic behavior very well and reveals two kinetic parameters, the specificity constant and the interfacial quality constant. This approach results in a simple and general model to account for product accumulation in interfacial enzyme kinetics.

  4. The very-long-chain fatty acid synthase is inhibited by chloroacetamides.

    PubMed

    Götz, Thomas; Böger, Peter

    2004-01-01

    The first elongation step to form very-long-chain fatty acids (VLCFAs) is catalyzed by the VLCFA-synthase. CoA-activated fatty acids react with malonyl-CoA to condense a C2-unit. As shown with recombinant enzyme this reaction is specifically inhibited by chloroacetamide herbicides. The inhibition is alleviated when the inhibitor (e.g. metazachlor) is incubated together with adequate concentrations of the substrate (e.g. oleoyl-CoA). Malonyl-CoA has no influence. However, once a chloroacetamide has been tightly bound to the synthase after an appropriate time it cannot be displaced anymore by the substrate. In contrast, oleoyl-CoA, is easily removed from the synthase by metazachlor. The irreversible binding of the chloroacetamides and their competition with the substrate explains the very low half-inhibition values of 10(-8) M and below. Chiral chloroacetamides like metolachlor or dimethenamid give identical results. However, only the (S)-enantiomers are active.

  5. Soluble Platinum Nanoparticles Ligated by Long-Chain N-Heterocyclic Carbenes as Catalysts.

    PubMed

    Martínez-Prieto, Luis M; Rakers, Lena; López-Vinasco, Angela M; Cano, Israel; Coppel, Yannick; Philippot, Karine; Glorius, Frank; Chaudret, Bruno; van Leeuwen, Piet W N M

    2017-09-18

    Soluble platinum nanoparticles (Pt NPs) ligated by two different long-chain N-heterocyclic carbenes (LC-IPr and LC-IMe) were synthesized and fully characterized by TEM, high-resolution TEM, wide-angle X-ray scattering (WAXS), X-ray photoelectron spectroscopy (XPS), and solution NMR. The surface chemistry of these NPs (Pt@LC-IPr and Pt@LC-IMe) was investigated by FT-IR and solid state NMR using CO as a probe molecule. A clear influence of the bulkiness of the N-substituents on the size, surface state, and catalytic activity of these Pt NPs was observed. While Pt@LC-IMe showed no activity in the hydroboration of phenylacetylene, Pt@LC-IPr revealed good selectivity for the trans-isomer, which may be supported by a homogeneous species. This is the first example of hydroboration of acetylenes catalyzed by non-supported Pt NPs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Long-chain carboxylic acids in pyrolysates of Green River kerogen

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Tannenbaum, E.; Huizinga, B. J.; Kaplan, I. R.

    1986-01-01

    Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200-400 degrees C, 2-1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300 degrees C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.

  7. Long-chain omega-3 from low-trophic-level fish provides value to farmed seafood.

    PubMed

    Bibus, Douglas M

    2015-03-01

    Low-trophic-level fish are a crucial source of long-chain (LC) omega-3 fatty acids for farmed fish and humans. Many farm-raised fish species have a clear need for these nutrients. Farmed fish deposit the LC omega-3s in their flesh and transfer them up the food chain. However, the content of LC omega-3s in farm-raised seafood continues to decline, while the content of shorter-chain plant-sourced omega-3s, and pro-inflammtory omega-6s continue to increase. This reduces its nutritional worth. The value of low-trophic-level fish is often viewed merely as its price at the dock. Some reports and metrics steer public attention towards the mass balance between quantities of low-trophic-level fish and farmed seafood. However, the the nutritional value of seafood is more important than its mere quantities. The role of low-trophic-level fish in human nutrition, health, and wellbeing is a fundamental component of its economic value to society.

  8. Long-chain Omega-3 Fatty Acids and Optimization of Cognitive Performance

    PubMed Central

    Muldoon, Matthew F.; Ryan, Christopher M.; Yao, Jeffrey K.; Conklin, Sarah M.; Manuck, Stephen B.

    2016-01-01

    Low consumption of the omega-3 fatty acids, eicosapentaenoic (EPA) and docosahexaenonic acids (DHA), is linked to delayed brain development and, in late life, increased risk for Alzheimers Disease. The current review focuses on cognitive functioning during mid-life and summarizes available scientific evidence relevant to the hypothesis that adequate dietary consumption of the long-chain, omega-3 fatty acids is necessary for optimal cognitive performance. Taken together, the findings suggest that raising the currently low consumption among healthy adults may improve some aspects of cognitive performance. Nonetheless, evidence from randomized clinical trials is comparatively sparse and leaves unclear: a) whether such effects are clinically significant, b) whether effects of EPA and DHA differ, c) which dimensions of cognitive function are affected, d) the dose-response relationships, or e) the time course of the response. Clarification of these issues through both laboratory and clinical investigations is a priority given the broad implications for public health, as well as for military personnel and other positions of high performance demand and responsibility. PMID:25373092

  9. The function of very long chain polyunsaturated fatty acids in the pineal gland.

    PubMed

    Catalá, Angel

    2010-02-01

    The mammalian pineal gland is a prominent secretory organ with a high metabolic activity. Melatonin (N-acetyl-5-methoxytryptamine), the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. Approximately 25% of the total fatty acids present in the rat pineal lipids are represented by arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3). These very long chain polyunsaturated fatty acids play important roles in the pineal gland. In addition to the production of melatonin, the mammalian pineal gland is able of convert these polyunsaturated fatty acids into bioactive lipid mediators. Lipoxygenation is the principal lipoxygenase (LOX) activity observed in the rat pineal gland. Lipoxygenation in the pineal gland is exceptional because no other brain regions express significant LOX activities under normal physiological conditions. The rat pineal gland expresses both 12- and 15-lipoxygenase (LOX) activities, producing 12- and 15-hydroperoxyeicosatetraenoic acid (12- and 15-HpETE) from arachidonic acid and 14- and 17-hydroxydocosahexaenoic acid (14- and 17-HdoHE) from docosahexaenoic acid, respectively. The rat pineal also produces hepoxilins via LOX pathways. The hepoxilins are bioactive epoxy-hydroxy products of the arachidonic acid metabolism via the 12S-lipoxygenase (12S-LOX) pathway. The two key pineal biochemical functions, lipoxygenation and melatonin synthesis, may be synergistically regulated by the status of n-3 essential fatty acids.

  10. A comparison of medium-chain and long-chain triglycerides in surgical patients.

    PubMed

    Jiang, Z M; Zhang, S Y; Wang, X R; Yang, N F; Zhu, Y; Wilmore, D

    1993-02-01

    Available lipid emulsions made from soybean or safflower oil are classified as long-chain triglycerides (LCT). In contrast, medium-chain triglyceride (MCT) emulsions have different physical properties and are metabolized by other biochemical pathways. To compare the differences between these two fat emulsions, the authors studied 12 surgical patients and 6 volunteers. These subjects were randomly assigned to receive parenteral nutrition with MCT or LCT emulsion. Measurement of arterial and venous concentration differences across the forearm demonstrated that muscle utilization was significantly improved with MCT administration. There was also a trend toward improved nitrogen balance in the MCT group, and less weight loss in the postoperative period also was observed in this group. During the fat clearance test, the serum ketone concentrations were significantly higher in the MCT than the LCT group. The improvement in nitrogen retention may be associated with increasing ketone and insulin levels. Fat emulsions containing 50% MCT are safe for use in parenteral nutrition and may provide an alternate fuel that improves protein metabolism.

  11. A comparison of medium-chain and long-chain triglycerides in surgical patients.

    PubMed Central

    Jiang, Z M; Zhang, S Y; Wang, X R; Yang, N F; Zhu, Y; Wilmore, D

    1993-01-01

    Available lipid emulsions made from soybean or safflower oil are classified as long-chain triglycerides (LCT). In contrast, medium-chain triglyceride (MCT) emulsions have different physical properties and are metabolized by other biochemical pathways. To compare the differences between these two fat emulsions, the authors studied 12 surgical patients and 6 volunteers. These subjects were randomly assigned to receive parenteral nutrition with MCT or LCT emulsion. Measurement of arterial and venous concentration differences across the forearm demonstrated that muscle utilization was significantly improved with MCT administration. There was also a trend toward improved nitrogen balance in the MCT group, and less weight loss in the postoperative period also was observed in this group. During the fat clearance test, the serum ketone concentrations were significantly higher in the MCT than the LCT group. The improvement in nitrogen retention may be associated with increasing ketone and insulin levels. Fat emulsions containing 50% MCT are safe for use in parenteral nutrition and may provide an alternate fuel that improves protein metabolism. PMID:8439215

  12. Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle[S

    PubMed Central

    Montgomery, Magdalene K.; Osborne, Brenna; Brown, Simon H. J.; Small, Lewin; Mitchell, Todd W.; Cooney, Gregory J.; Turner, Nigel

    2013-01-01

    Dietary intake of long-chain fatty acids (LCFAs) plays a causative role in insulin resistance and risk of diabetes. Whereas LCFAs promote lipid accumulation and insulin resistance, diets rich in medium-chain fatty acids (MCFAs) have been associated with increased oxidative metabolism and reduced adiposity, with few deleterious effects on insulin action. The molecular mechanisms underlying these differences between dietary fat subtypes are poorly understood. To investigate this further, we treated C2C12 myotubes with various LCFAs (16:0, 18:1n9, and 18:2n6) and MCFAs (10:0 and 12:0), as well as fed mice diets rich in LCFAs or MCFAs, and investigated fatty acid-induced changes in mitochondrial metabolism and oxidative stress. MCFA-treated cells displayed less lipid accumulation, increased mitochondrial oxidative capacity, and less oxidative stress than LCFA-treated cells. These changes were associated with improved insulin action in MCFA-treated myotubes. MCFA-fed mice exhibited increased energy expenditure, reduced adiposity, and better glucose tolerance compared with LCFA-fed mice. Dietary MCFAs increased respiration in isolated mitochondria, with a simultaneous reduction in reactive oxygen species generation, and subsequently low oxidative damage. Collectively our findings indicate that in contrast to LCFAs, MCFAs increase the intrinsic respiratory capacity of mitochondria without increasing oxidative stress. These effects potentially contribute to the beneficial metabolic actions of dietary MCFAs. PMID:24078708

  13. Effect of headgroup-substrate interactions on the thermal behavior of long-chain amphiphiles

    NASA Astrophysics Data System (ADS)

    Singla, Saranshu; Zhu, He; Dhinojwala, Ali

    The structure of amphiphilic molecules at liquid/solid and solid/solid interfaces is relevant in understanding lubrication, colloid stabilization, chromatography, and nucleation. Here, we characterize the interfacial structures of long chain amphiphilic molecules with different head groups (OH, COOH, NH2) using interface-sensitive sum frequency generation (SFG) spectroscopy. The behavior of these self-assembled monolayers (SAMs) on sapphire substrate is recorded in situ as a function of temperature (above and below bulk Tm) using SFG. Previous studies using synchrotron X-ray reflectivity and SFG show that the melting point of an ordered hexadecanol monolayer is around 30°C above its bulk Tm. The thermal stability of the monolayer is explained due to strong hydrogen bonding interactions between the head-group and the sapphire substrate. The strength of these hydrogen-bonding interactions between substrate and different head groups is calculated using the Badger-Bauer equation. Below Tm, the ordered monolayer influenced the structure of the interfacial crystalline layer, and the transition from monolayer to the bulk crystalline phases. The results with different head groups will be presented.

  14. Long-chain polyunsaturated fatty acid status in children, adolescents and adults with phenylketonuria.

    PubMed

    Gramer, Gwendolyn; Haege, Gisela; Langhans, Claus-Dieter; Schuhmann, Vera; Burgard, Peter; Hoffmann, Georg F

    2016-06-01

    Patients with phenylketonuria have been reported to be deficient in long-chain polyunsaturated fatty acids (LCPUFAs). It has been postulated that good compliance with the dietary regimen negatively influences LCPUFA status. In 36 patients with phenylketonuria and 18 age-matched healthy control subjects LCPUFA-levels in plasma phospholipids and cholesteryl esters, erythrocyte phosphatidylcholine and phosphatidylethanolamine were evaluated. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels did not differ significantly between patients and control subjects in plasma and erythrocyte fractions. There was a significant negative correlation between SDS (standard deviation) scores of DHA-levels in erythrocyte parameters from the respective age-matched control group and patients' concurrent and long-term phenylalanine levels for erythrocyte phosphatidylethanolamine and erythrocyte phosphatidylcholine. Patients with lower (higher) phenylalanine levels had positive (negative) DHA-SDS. In contrast to previous reports we did not find lower LCPUFA-levels in patients with phenylketonuria compared to age-matched healthy control subjects. Good dietary control was associated with better LCPUFA status. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Opportunities to enhance alternative sources of long-chain n-3 fatty acids within the diet.

    PubMed

    Delarue, Jacques; Guriec, Nathalie

    2014-08-01

    Health benefits or advocated health benefits of long-chain (LC) n-3 PUFA are better known by medical doctors as well as by consumers, so that consumption increases. In addition, the development of aquaculture requires more fishmeal and fish oil. Humanisation of care of companion animals is also associated with addition of LC n-3 PUFA in pet foods. The risk of the increased demand for LC n-3 PUFA is the excess harvesting of natural sources, especially of marine origin (oily fishes, krill). In order to improve sustainability, alternative sources of LC n-3 PUFA have been developed. These alternative sources are: (a) terrestrial plants naturally or genetically enriched in stearidonic acid (SDA), which bypasses the first limiting step of (i.e. ∆6 desaturase) of the biosynthesis of LC n-3 PUFA; (b) single-cell oils rich in LC n-3 PUFA (microalgae, Escherichia coli) and krill. Currently, plants rich in SDA are expensive, metabolic engineering is unfavourably accepted by consumers in many countries, cultivation of microalgae is very expensive even though their ability (for some of them) to synthesise biofuels could induce a decrease in industrial costs, and Antarctic krill harvest must be restricted. Thus, it is difficult to predict their real development in the future.

  16. New evidence for the cardiovascular benefits of long chain omega-3 fatty acids.

    PubMed

    Hansen, Susan N; Harris, William S

    2007-12-01

    The role of long chain omega-3 fatty acids (LC n-3 FAs) as cardioprotective agents has become even clearer with the recent publication of the Japan EPA Lipid Intervention Study. This was the largest randomized controlled trial in the field, and it demonstrated that even in a population with one of the highest LC n-3 FA intakes in the world, the addition of eicosapentaenoic acid could reduce cardiac events. A comprehensive analysis of the risks and benefits of fish consumption was likewise recently published that should quiet any remaining fears that there are substantial risks to consuming oily fish such as salmon. A new meta-analysis has now demonstrated that reduced tissue/blood levels of LC n-3 FAs provide a better indication of increased cardiovascular risk than the n-6:n-3 ratio. Finally, a supplementation study in cardiac surgery patients has demonstrated both the time course and extent of incorporation of LC n-3 FAs into the human heart.

  17. Long-chain carboxylic acids in pyrolysates of Green River kerogen

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Tannenbaum, E.; Huizinga, B. J.; Kaplan, I. R.

    1986-01-01

    Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200-400 degrees C, 2-1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300 degrees C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.

  18. Mid-infrared Complex Refractive Indices for Long-chain Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Argon, P.; Edwards, M.; Roman, B.

    2016-12-01

    Frequency-dependent complex refractive indices, when coupled with an appropriate optical model, can be used to predict the scattering and absorption properties of particulate matter. Conversely, such refractive indices can be used to obtain basic physical information from an ensemble of particles through a suitable retrieval method. Physical quantities such as particle size, shape, and composition, for example, may be obtained from a careful analysis of aerosol extinction spectra. While refractive index data sets are available for some organic compounds in the literature, there is a lack of such sets for long-chain hydrocarbons. In this presentation, we report on the retrieval of complex refractive indices for squalane (C30H62) and squalene (C30H50) in the mid-infrared from their respective aerosol extinction spectra. Both compounds are used commercially, however, they can also be used as proxies for atmospheric aerosols in laboratory studies. In addition, we will present early results on the optical properties of motor oil aerosols and their relationship to those of other hydrocarbons. The included image shows a snapshot of the complex refractive indices for squalane across the mid-infrared.

  19. Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction.

    PubMed

    Goetzman, Eric S; Alcorn, John F; Bharathi, Sivakama S; Uppala, Radha; McHugh, Kevin J; Kosmider, Beata; Chen, Rimei; Zuo, Yi Y; Beck, Megan E; McKinney, Richard W; Skilling, Helen; Suhrie, Kristen R; Karunanidhi, Anuradha; Yeasted, Renita; Otsubo, Chikara; Ellis, Bryon; Tyurina, Yulia Y; Kagan, Valerian E; Mallampalli, Rama K; Vockley, Jerry

    2014-04-11

    Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD(-/-) mice. LCAD(-/-) mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD(-/-) mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD(-/-) surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD(-/-) lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.

  20. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution.

    PubMed

    Inoue, Tohru; Ebina, Hayato; Dong, Bin; Zheng, Liqiang

    2007-10-01

    Electrical conductivity was measured for aqueous solutions of long-chain imidazolium ionic liquids (IL), 1-alkyl-3-methylimidazolium bromides with C(12)-C(16) alkyl chains. The break points appeared in specific conductivity (kappa) vs concentration (c) plot indicates that the molecular aggregates, i.e., micelles, are formed in aqueous solutions of these IL species. The critical micelle concentration (cmc) determined from the kappa vs c plot is somewhat lower than those for typical cationic surfactants, alkyltrimethylammonium bromides with the same hydrocarbon chain length. The electrical conductivity data were analyzed according to the mixed electrolyte model of micellar solution, and the aggregation number, n, and the degree of counter ion binding, beta, were estimated. The n values of the present ILs are somewhat smaller than those reported for alkyltrimethylammonium bromides, which may be attributed to bulkiness of the cationic head group of the IL species. The thermodynamic parameters for micelle formation of the present ILs were estimated using the values of cmc and beta as a function of temperature. The contribution of entropy term to the micelle formation is superior to that of enthalpy term below about 30 degrees C, and it becomes opposite at higher temperature. This coincides with the picture drawn for the micelle formation of conventional ionic surfactants.

  1. Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging.

    PubMed

    Echeverría, Francisca; Ortiz, Macarena; Valenzuela, Rodrigo; Videla, Luis A

    2016-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that function as ligand-dependent transcription factors that can be activated by different types of fatty acids (FAs). Three isoforms of PPARs have been identify, namely, PPARα, PPARβ/δ, and PPARγ, which are able to bind long-chain polyunsaturated FAs (LCPUFAs), n-3 LCPUFAs being bound with greater affinity to achieve activation. FA binding induces a conformational change of the nuclear receptors, triggering the transcription of specific genes including those encoding for various metabolic and cellular processes such as FA β-oxidation and adipogenesis, thus representing key mediators of lipid homeostasis. In addition, PPARs have important roles during placental, embryonal, and fetal development, and in the regulation of processes related to aging comprising oxidative stress, inflammation, and neuroprotection. The aim of this review was to assess the role of FAs as PPARs ligands, in terms of their main functions associated with FA metabolism and their relevance in the prevention and treatment of related pathologies during human life span.

  2. Self-Assembly of Bilayer Vesicles Made of Saturated Long Chain Fatty Acids.

    PubMed

    Douliez, Jean-Paul; Houssou, Bérénice Houinsou; Fameau, A-Laure; Navailles, Laurence; Nallet, Frédéric; Grélard, Axelle; Dufourc, Erick J; Gaillard, Cédric

    2016-01-19

    Saturated long chain fatty acids (sLCFA, e.g., C14:0, C16:0, and C18:0) are potentially the greenest and cheapest surfactants naturally available. However, because aqueous sodium soaps of sLCFA are known to crystallize, the self-assembly of stable bilayer vesicles has not been reported yet. Here, by using such soaps in combination with guanidine hydrochloride (GuHCl), which has been shown recently to prevent crystallization, we were capable of producing stable bilayer vesicles made of sLCFA. The phase diagrams were established for a variety of systems showing that vesicles can form in a broad range of composition and pH. Both solid state NMR and small-angle neutron scattering allowed demonstrating that in such vesicles sLCFA are arranged in a bilayer structure which exhibits similar dynamic and structural properties as those of phospholipid membranes. We expect these vesicles to be of interest as model systems of protocells and minimal cells but also for various applications since fatty acids are potentially substitutes to phospholipids, synthetic surfactants, and polymers.

  3. A Long-Chain Secondary Alcohol Dehydrogenase from Rhodococcus erythropolis ATCC 4277

    PubMed Central

    Ludwig, B.; Akundi, A.; Kendall, K.

    1995-01-01

    A NAD-dependent secondary alcohol dehydrogenase has been purified from the alkane-degrading bacterium, Rhodococcus erythropolis ATCC 4277. The enzyme was found to be active against a broad range of substrates, particularly long-chain secondary aliphatic alcohols. Although optimal activity was observed with linear 2-alcohols containing between 6 and 11 carbon atoms, secondary alcohols as long as 2-tetradecanol were oxidized at 25% of the rate seen with mid-range alcohols. The purified enzyme was specific for the S-(+) stereoisomer of 2-octanol and had a specific activity for 2-octanol of over 200 (mu)mol/min/mg of protein at pH 9 and 37(deg)C, 25-fold higher than that of any previously reported S-(+) secondary alcohol dehydrogenase. Linear primary alcohols containing between 3 and 13 carbon atoms were utilized 20- to 40-fold less efficiently than the corresponding secondary alcohols. The apparent K(infm) value for NAD(sup+) with 2-octanol as the substrate was 260 (mu)M, whereas the apparent K(infm) values for the 2-alcohols ranged from over 5 mM for 2-pentanol to less than 2 (mu)M for 2-tetradecanol. The enzyme showed moderate thermostability (half-life of 4 h at 60(deg)C) and could potentially be useful for the synthesis of optically pure stereoisomers of secondary alcohols. PMID:16535152

  4. Rapid nanoscale quantitative analysis of plant sphingolipid long-chain bases by GC-MS.

    PubMed

    Cacas, Jean-Luc; Melser, Su; Domergue, Frédéric; Joubès, Jérôme; Bourdenx, Brice; Schmitter, Jean-Marie; Mongrand, Sébastien

    2012-07-01

    In eukaryotic organisms, sphingolipids are major structural lipids of biological membranes and perform additional essential functions as signalling molecules. While long-chain bases (LCB), the common precursor to all sphingolipid classes, is represented by only one major molecular species in animals and fungi, up to nine LCB have been found in plants. In the absence of genuine plant sphingolipid references required for proper quantification, we have reinvestigated and optimized a protocol destined to the quantification of total plant LCB that relies on the use of gas chromatography-mass spectrometry (GC-MS). This rapid three-step protocol sequentially involves (1) the release of LCB from biological samples using barium hydroxide solution, (2) their oxidation into aldehydes by metaperiodate, and (3) the subsequent identification/quantification of these aldehydes by GC-MS. It is simple and reliable and enables separation of aldehydes upon their stero-specificity. It further enables the quantification of total LCB from a wide variety of samples including yeast and animal cell cultures.

  5. Role of dietary long-chain polyunsaturated fatty acids in infant allergies and respiratory diseases.

    PubMed

    Shek, Lynette P; Chong, Mary Foong-Fong; Lim, Jia Yi; Soh, Shu-E; Chong, Yap-Seng

    2012-01-01

    Maternal nutrition has critical effects on the developing structures and functions of the fetus. Malnutrition during pregnancy can result in low birth weight and small for gestational age babies, increase risk for infection, and impact the immune system. Long-chain polyunsaturated fatty acids (PUFAs) have been reported to have immunomodulatory effects. Decreased consumption of omega-6 PUFAs, in favor of more anti-inflammatory omega-3 PUFAs in modern diets, has demonstrated the potential protective role of omega-3 PUFAs in allergic and respiratory diseases. In this paper, we examine the role of PUFAs consumption during pregnancy and early childhood and its influence on allergy and respiratory diseases. PUFAs act via several mechanisms to modulate immune function. Omega-3 PUFAs may alter the T helper (Th) cell balance by inhibiting cytokine production which in turn inhibits immunoglobulin E synthesis and Th type 2 cell differentiation. PUFAs may further modify cellular membrane, induce eicosanoid metabolism, and alter gene expression. These studies indicate the benefits of omega-3 PUFAs supplementation. Nevertheless, further investigations are warranted to assess the long-term effects of omega-3 PUFAs in preventing other immune-mediated diseases, as well as its effects on the later immunodefense and health status during early growth and development.

  6. "Green" functionalization of pristine multi-walled carbon nanotubes with long-chain aliphatic amines.

    PubMed

    Basiuk, Elena V; Ochoa-Olmos, Omar; Contreras-Torres, Flavio F; Meza-Laguna, Víctor; Alvarez-Zauco, Edgar; Puente-Lee, Iván; Basiuk, Vladimir A

    2011-06-01

    Short pristine multi-walled carbon nanotubes (MWNTs) were functionalized with a series of long-chain (including polymeric) aliphatic amines, namely octadecylamine (ODA), 1,8-diaminooctane (DO), polyethylene glycol diamine (PEGDA) and polyethylenimine (PEI), via two "green" approaches: (1) gas-phase functionalization (for volatile ODA and DO) and (2) direct heating in the melt (for polymeric PEGDA and PEI). Both of them consist in one-step reaction between MWNTs and amine without the use of organic solvents. The nanostructures obtained were characterized by using infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. It was observed that both solvent-free methods were efficient in the nanotube functionalization, and the nanostructures of variable solubility and morphology were obtained depending on the amines attached. ODA, PEGDA and PEI-functionalized MWNTs were found to be soluble in propanol, meanwhile the MWNTs-PEGDA and MWNTs-PEI were soluble in water as well. The attachment of 1,8-diaminooctane onto MWNTs resulted in cross-linked stable nanostructure.

  7. Aminocarnitine and acylaminocarnitines: Carnitine acyltransferase inhibitors affecting long-chain fatty acid and glucose metabolism

    SciTech Connect

    Clark, D.J.

    1989-01-01

    DL-Aminocarnitine (DL-3-amino-4-trimethylaminobutyrate) and the acylaminocarnitines acetyl-, decanoyl- and palmitoyl-DL-aminocarnitine have been synthesized and tested as inhibitors of carnitine palmitoyl-transferase and carnitine acetyltransferase in vitro and in vivo. Acetyl-DL-aaminocarnitine is the most potent reversible inhibitor of carnitine acetyltransferase reported to date, and is competitive with respect to acetyl-L-carnitine. Mice given acetyl-DL-aminocarnitine metabolize (U-{sup 14}C)acetyl-L-carnitine at about 60% of the rate of control mice. Palmitoyl-DL-aminocarnitine is the most potent reversible inhibitor of carnitine palmitoyltransferase reported to date. Decanoyl-DL-aminocarnitine and DL-aminocarnitine are also very potent inhibitors; all compounds inhibit the catabolism of ({sup 14}C)palmitate to {sup 14}CO{sub 2} in intact mice by at least 50%. Carnitine palmitoyltransferase controls the entry of long-chain fatty acids into the mitochondrial matrix for {beta}-oxidation. The inhibition of carnitine palmitoyltransferase by aminocarnitine or acylaminocarnitines in vivo prevents or reverses ketogenesis in fasted mice, and causes the reversible accumulation of triglycerides in liver, kidney and plasma. Administration of DL-aminocarnitine to streptozotocindiabetic mice lowers plasma glucose levels and improves the glucose tolerance test.

  8. Transesterification reaction between medium- and long-chain fatty acid triglycerides using surfactant-modified lipase.

    PubMed

    Mogi, K; Nakajima, M; Mukataka, S

    2000-03-05

    Transesterification between medium-chain fatty acid triglycerides (MCT) and long-chain fatty acid triglycerides (LCT) in a nonsolvent system was investigated using surfactant modified lipase which is a complex of lipase, Rhizopus japonicus and surfactant, sorbitan monostearate. 74% conversion of was obtained after a 48-h reaction period, and the triglyceride composition was well described by the 1, 3-random 2-random stochastic model. The transesterification reaction between MCT and LCT closely followed the simple kinetic model, and the change in MCT and LCT contents could be simulated using one parameter. The effects of the water activity (A(w)) of modified lipase, the water content of the reaction system and the reaction temperature on the reaction rate were studied. A modified lipase A(w) of 0.35 and a water content of the reaction system at 0.09 wt % showed the highest activity. Inactivation did not occur below 60 degrees C, however, the activity decreased at temperatures over 70 degrees C. Copyright 2000 John Wiley & Sons, Inc.

  9. Increased Mauthner cell activity and escaping behaviour in seabream fed long-chain PUFA.

    PubMed

    Benítez-Santana, Tibiábin; Juárez-Carrillo, Eduardo; Betancor, Mónica Beatriz; Torrecillas, Silvia; Caballero, María José; Izquierdo, María Soledad

    2012-01-01

    There is limited information on the specific effects of long-chain PUFA (LCPUFA) on neuron development and functioning. Deficiency of those essential fatty acids impairs escape and avoidance behaviour in fish, where Mauthner cells (M-cells) play a particularly important role in initiating this response. Gilthead seabream larvae fed two different LCPUFA profiles were challenged with a sonorous stimulus. Feeding n-3 LCPUFA increased the content of these fatty acids in fish tissues and caused a higher number of larvae to react to the stimulus with a faster burst swimming speed response. This faster startle response in fish fed n-3 LCPUFA was also associated with an increased immune-positive neural response, particularly in M-cells, denoting a higher production of acetylcholine. The present study shows the first evidence of the effect of n-3 LCPUFA on the functioning of particular neurons in fish, the M-cells and the behaviour response that they modulate to escape from a sound stimulus.

  10. Long-chain omega-3 fatty acids improve brain function and structure in older adults.

    PubMed

    Witte, A Veronica; Kerti, Lucia; Hermannstädter, Henrike M; Fiebach, Jochen B; Schreiber, Stephan J; Schuchardt, Jan Philipp; Hahn, Andreas; Flöel, Agnes

    2014-11-01

    Higher intake of seafish or oil rich in long-chain omega-3 polyunsaturated fatty acids (LC-n3-FA) may be beneficial for the aging brain. We tested in a prospective interventional design whether high levels of supplementary LC-n3-FA would improve cognition, and addressed potential mechanisms underlying the effects. Sixty-five healthy subjects (50-75 years, 30 females) successfully completed 26 weeks of either fish oil (2.2 g/day LC-n3-FA) or placebo intake. Before and after the intervention period, cognitive performance, structural neuroimaging, vascular markers, and blood parameters were assayed. We found a significant increase in executive functions after LC-n3-FA compared with placebo (P = 0.023). In parallel, LC-n3-FA exerted beneficial effects on white matter microstructural integrity and gray matter volume in frontal, temporal, parietal, and limbic areas primarily of the left hemisphere, and on carotid intima media thickness and diastolic blood pressure. Improvements in executive functions correlated positively with changes in omega-3-index and peripheral brain-derived neurotrophic factor, and negatively with changes in peripheral fasting insulin. This double-blind randomized interventional study provides first-time evidence that LC-n3-FA exert positive effects on brain functions in healthy older adults, and elucidates underlying mechanisms. Our findings suggest novel strategies to maintain cognitive functions into old age.

  11. n-3 long-chain polyunsaturated fatty acids in type 2 diabetes: a review.

    PubMed

    Nettleton, Joyce A; Katz, Robert

    2005-03-01

    Historically, epidemiologic studies have reported a lower prevalence of impaired glucose tolerance and type 2 diabetes in populations consuming large amounts of the n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) found mainly in fish. Controlled clinical studies have shown that consumption of n-3 LC-PUFAs has cardioprotective effects in persons with type 2 diabetes without adverse effects on glucose control and insulin activity. Benefits include lower risk of primary cardiac arrest; reduced cardiovascular mortality, particularly sudden cardiac death; reduced triglyceride levels; increased high-density lipoprotein levels; improved endothelial function; reduced platelet aggregability; and lower blood pressure. These favorable effects outweigh the modest increase in low-density lipoprotein levels that may result from increased n-3 LC-PUFA intake. Preliminary evidence suggests increased consumption of n-3 LC-PUFAs with reduced intake of saturated fat may reduce the risk of conversion from impaired glucose tolerance to type 2 diabetes in overweight persons. Reported improvements in hemostasis, slower progression of artery narrowing, albuminuria, subclinical inflammation, oxidative stress, and obesity require additional confirmation. Expected health benefits and public health implications of consuming 1 to 2 g/day n-3 LC-PUFA as part of lifestyle modification in insulin resistance and type 2 diabetes are discussed.

  12. Suppression of adipose lipolysis by long-chain fatty acid analogs.

    PubMed

    Kalderon, Bella; Azazmeh, Narmen; Azulay, Nili; Vissler, Noam; Valitsky, Michael; Bar-Tana, Jacob

    2012-05-01

    Agonist-induced lipolysis of adipose fat is robustly inhibited by insulin or by feedback inhibition by the long-chain fatty acids (LCFA) produced during lipolysis. However, the mode of action of LCFA in suppressing adipose lipolysis is not clear. β,β'-Tetramethyl hexadecanedioic acid (Mββ/ EDICA16) is a synthetic LCFA that is neither esterified into lipids nor β-oxidized, and therefore, it was exploited for suppressing agonist-induced lipolysis in analogy to natural LCFA. Mββ is shown here to suppress isoproterenol-induced lipolysis in the rat in vivo as well as in 3T3-L1 adipocytes. Inhibition of isoproterenol-induced lipolysis is due to decrease in isoproterenol-induced cAMP with concomitant inhibition of the phosphorylation of hormone-sensitive lipase and perilipin by protein kinase A. Suppression of cellular cAMP levels is accounted for by inhibition of the adenylate cyclase due to suppression of Raf1 expression by Mββ-activated AMPK. Suppression of Raf1 is further complemented by induction of components of the unfolded-protein-response by Mββ. Our findings imply genuine inhibition of agonist-induced adipose lipolysis by LCFA, independent of their β-oxidation or reesterification. Mββ suppression of agonist-induced lipolysis and cellular cAMP levels independent of the insulin transduction pathway may indicate that synthetic LCFA could serve as insulin mimetics in the lipolysis context under conditions of insulin resistance.

  13. Kinetics and reaction mechanism of yeast alcohol dehydrogenase with long-chain primary alcohols.

    PubMed Central

    Schöpp, W; Aurich, H

    1976-01-01

    Kinetic studies of yeast alcohol dehydrogenase with NAD+ and ethanol, hexanol or decanol as substrates invariably result in non-linear Lineweaver-Burk plots if the alcohol is the variable substrate. The kinetic coefficients determined from secondary plots are consistent with an 'equilibrium random-order' mechanism for extremely low alcohol concentrations and for all alcohols, the transformation of the ternary complexes being the rate-limiting step of the reaction. This mechanism also applies to long-chain substrates at high concentrations, whereas the rate of the ethanol-NAD+ reaction at high ethanol concentrations is determined by the dissociation of the enzyme-NADH complex. The dissociation constants for the enzyme-NAD+ complex and for the enzyme-alcohol complexes obtained from the kinetic quotients satisfactorily correspond to the dissociation constants obtained by use of other techniques. It is suggested that the non-linear curves may be attributed to a structural change in the enzyme itself, caused by the alcohol. PMID:183740

  14. Wetting and spreading of long-chain ZDOL polymer nanodroplet on graphene-coated amorphous carbon

    NASA Astrophysics Data System (ADS)

    Sorkin, V.; Zhang, Y. W.

    2014-12-01

    Wetting transparency/translucency/opacity of graphene recently has attracted great interest. The underlying mechanisms and physics for simple liquid droplets containing small molecules on graphene coated crystalline substrates have been studied extensively. However, the behavior of more complicated polymeric droplets on graphene coated amorphous substrates has not been explored. In this work, we perform molecular dynamics simulations to examine the wetting of long-chain ZDOL polymeric droplet on graphene coated amorphous hydrogenated diamond-like carbon or DLCH. We find that at room temperature, the droplet adopts a nearly spherical cap shape with no protruding foot on bare DLCH, and a complex multi-layered structure is formed at the droplet-substrate interface. With addition of graphene layers, externally, the height of the droplet decreases and the protruding foot at the droplet edge appears and grows in size; while internally, the complex multi-layered structure near the droplet-substrate interface remains, but the density distribution for the formed layers becomes increasingly non-uniform. A steady state of the droplet is attained when the number of graphene layers reaches three. These changes can be explained by the interactions between the droplet and substrate across the number of graphene layers. Therefore, it is concluded that the graphene monolayer and bilayer are translucent, while trilayer and above are opaque from the wetting point of view.

  15. Susceptibility of synthetic long-chain alkylbenzenes to degradation in reducing marine sediments

    USGS Publications Warehouse

    Eganhouse, Robert P.; Pontolillo, James

    2008-01-01

    Long-chain alkylbenzenes (LCABs) synthesized for production of alkylbenzene sulfonate surfactants have been used as molecular markers of anthropogenic waste for 25 years. Synthetic LCABs comprise two classes, the tetrapropylene-based alkylbenzenes (TABs) and the linear alkylbenzenes (LABs). LABs supplanted TABs in the mid-1960s because of improved biodegradability of their sulfonated analogs. Use of LCABs for molecular stratigraphy depends on their preservation in sediments over decadal time scales. Most laboratory and field studies suggest that LABs degrade rapidly under aerobic conditions but are resistant to degradation when oxygen is absent. However, recent work indicates that LABs may not be as persistent under reducing conditions as previously thought. To assess the potential for degradation of LCABs in reducing sediments, box cores collected in 1992 and 2003 near a submarine wastewater outfall system were analyzed using gas chromatography/mass spectrometry. The TABs were effectively preserved; differences between whole-core inventories were within analytical error. By contrast, whole-core inventories of the LABs decreased by about 50-60% during the same time interval. Based on direct comparison of chemical inventories in coeval core sections, LAB transformation rates are estimated at 0.07 ±. 0.01 yr-1. These results indicate that caution should be exercised when using synthetic LCABs for reconstruction of depositional records.

  16. Interaction of a partially fluorinated long-chain nicotinate with dipalmitoylphosphatidylcholine.

    PubMed

    Lehmler, Hans-Joachim; Bummer, Paul M

    2005-11-01

    The interaction of a partially fluorinated long-chain nicotinate, F-NA18, a compound of interest as a chemopreventive agent, with dipalmitoylphosphatidylcholine (DPPC) was investigated in monolayers at the air-water interface and in fully hydrated bilayers and compared with its hydrocarbon analog, NA18. For the monolayer studies, the compression isotherms of mixtures of F-NA18 with DPPC were recorded at various compositions on a hydrochloric acid subphase (pH = 1.9-2.1, 32 +/- 2 degrees C). Analysis of the composition dependence of the average molecular area at constant film pressure and of the dependence of the breakpoints of the phase transitions suggests that F-NA18 is miscible with DPPC at the air-water interface, whereas NA18 shows some degree of immiscibility. In differential scanning calorimetry studies, only one major phase transition was observed for F-NA18-DPPC mixtures, whereas NA18-DPPC mixtures exhibited a complex phase behavior. The differences in the phase behavior of the respective mixtures may be the result of the geometric packing constraints of F-NA18 versus NA18. Therefore, for biomedical applications, the use of a partially fluorinated tail may offer advantages over simple hydrocarbon systems because, in addition to the chain length, the position and degree of fluorination can be adjusted.

  17. Visual evoked potentials and dietary long chain polyunsaturated fatty acids in preterm infants.

    PubMed Central

    Faldella, G; Govoni, M; Alessandroni, R; Marchiani, E; Salvioli, G P; Biagi, P L; Spano, C

    1996-01-01

    The influence of dietary long chain polyunsaturated fatty acid (LCP) supply, and especially of docosahexaenoic acid (DHA), on evoked potential maturation, was studied in 58 healthy preterm infants using flash visual evoked potentials (VEPs), flash electroretinography (ERG), and brainstem acoustic evoked potentials (BAEPs) at 52 weeks of postconceptional age. At the same time, the fatty acid composition of red blood cell membranes was examined. The infants were fed on breast milk (n = 12), a preterm formula supplemented with LCP (PF-LCP) (n = 21), or a traditional preterm formula (PF) (n = 25). In the breast milk and PF-LCP groups the morphology and latencies of the waves that reflect the visual projecting system were similar; in the PF group the morphology was quite different and the wave latencies were significantly longer. This could mean that the maturation pattern of VEPs in preterm infants who did not receive LCP was slower. Moreover, a higher level of erythrocyte LCP, especially DHA, was found in breast milk and PF-LCP groups compared with the PF group. ERG and BAEP recordings were the same in all three groups. These results suggest that a well balanced LCP supplement in preterm formulas can positively influence the maturation of visual evoked potentials in preterm infants when breast milk is not available. PMID:8949693

  18. Assessing the role of spatial structure on cell-specific activity and interactions within uncultured methane-oxidizing syntrophic consortia (Invited)

    NASA Astrophysics Data System (ADS)

    Orphan, V. J.; McGlynn, S.; Chadwick, G.; Dekas, A.; Green-Saxena, A.

    2013-12-01

    Sulfate-coupled anaerobic oxidation of methane is catalysed through symbiotic associations between archaea and sulphate-reducing bacteria and represents the dominant sink for methane in the oceans. These methane-oxidizing symbiotic consortia form well-structured multi-celled aggregations in marine methane seeps, where close spatial proximity is believed to be essential for efficient exchange of substrates between syntrophic partners. The nature of this interspecies metabolic relationship is still unknown however there are a number of hypotheses regarding the electron carrying intermediate and ecophysiology of the partners, each of which should be affected by, and influence, the spatial arrangement of archaeal and bacterial cells within aggregates. To advance our understanding of the role of spatial structure within naturally occurring environmental consortia, we are using spatial statistical methods combined with fluorescence in situ hybridization and high-resolution nanoscale secondary ion mass spectrometry (FISH-nanoSIMS) to quantify the effect of spatial organization and intra- and inter-species interactions on cell-specific microbial activity within these diverse archaeal-bacterial partnerships.

  19. Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria

    USDA-ARS?s Scientific Manuscript database

    Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream...

  20. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride

    PubMed Central

    Roe, Charles R.; Sweetman, Lawrence; Roe, Diane S.; David, France; Brunengraber, Henri

    2002-01-01

    The current dietary treatment of long-chain fatty acid oxidation defects (high carbohydrate with medium-even-chain triglycerides and reduced amounts of long-chain fats) fails, in many cases, to prevent cardiomyopathy, rhabdomyolysis, and muscle weakness. We hypothesized that the apparent defect in energy production results from a depletion of the catalytic intermediates of the citric acid cycle via leakage through cell membranes (cataplerosis). We further hypothesized that replacing dietary medium-even-chain fatty acids (precursors of acetyl-CoA) by medium-odd-chain fatty acids (precursors of acetyl-CoA and anaplerotic propionyl-CoA) would restore energy production and improve cardiac and skeletal muscle function. We fed subjects with long-chain defects a controlled diet in which the fat component was switched from medium-even-chain triglycerides to triheptanoin. In three patients with very-long-chain acyl-CoA dehydrogenase deficiency, this treatment led rapidly to clinical improvement that included the permanent disappearance of chronic cardiomyopathy, rhabdomyolysis, and muscle weakness (for more than 2 years in one child), and of rhabdomyolysis and weakness in the others. There was no evidence of propionyl overload in these patients. The treatment has been well tolerated for up to 26 months and opens new avenues for the management of patients with mitochondrial fat oxidation disorders. PMID:12122118

  1. Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts.

    PubMed

    Roe, D S; Yang, B Z; Vianey-Saban, C; Struys, E; Sweetman, L; Roe, C R

    2006-01-01

    The differentiation of carnitine-acylcarnitine translocase deficiency (CACT) from carnitine palmitoyltransferase type II deficiency (CPT-II) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency from mitochondrial trifunctional protein deficiency (MTP) continues to be ambiguous using current acylcarnitine profiling techniques either from plasma or blood spots, or in the intact cell system (fibroblasts/amniocytes). Currently, enzyme assays are required to unequivocally differentiate CACT from CPT-II, and LCHAD from MTP. Over the years we have studied the responses of numerous FOD deficient cell lines to both even and odd numbered fatty acids of various chain lengths as well as branched-chain amino acids. In doing so, we discovered diagnostic elevations of unlabeled butyrylcarnitine detected only in CACT deficient cell lines when incubated with a shorter chain fatty acid, [7-2H3]heptanoate plus l-carnitine compared to the routinely used long-chain fatty acid, [16-2H3]palmitate. In monitoring the unlabeled C4/C5 acylcarnitine ratio, further differentiation from ETF/ETF-DH is also achieved. Similarly, incubating LCHAD and MTP deficient cell lines with the long-chain branched fatty acid, pristanic acid, and monitoring the C11/C9 acylcarnitine ratio has allowed differentiation between these disorders. These methods may be considered useful alternatives to specific enzyme assays for differentiation between these long-chain fatty acid oxidation disorders, as well as provide insight into new treatment strategies.

  2. STATISTICAL EVALUATION OF AN ANALYTICAL GC/MS METHOD FOR THE DETERMINATION OF LONG CHAIN FATTY ACIDS

    EPA Science Inventory

    In-depth evaluation of an analytical method to detect and quantify long chain fatty acids (C8 - C16) at trace level concentrations (25-1000 µg/l) is presented. The method requires derivatization of the acids with methanolic boron trifluoride, separation, and...

  3. Orchardgrass forage effects on bacterial communities and long-chain fatty acid profiles in the rumen of Holstein heifers

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to determine if ruminal bacterial community composition (BCC) and long-chain fatty acid (FA) profiles differed in heifers grazing in orchardgrass pasture (OP) versus those fed hay (OH) harvested from the same field at the same stage of maturity. Five ruminally cannulated Ho...

  4. STATISTICAL EVALUATION OF AN ANALYTICAL GC/MS METHOD FOR THE DETERMINATION OF LONG CHAIN FATTY ACIDS

    EPA Science Inventory

    In-depth evaluation of an analytical method to detect and quantify long chain fatty acids (C8 - C16) at trace level concentrations (25-1000 µg/l) is presented. The method requires derivatization of the acids with methanolic boron trifluoride, separation, and...

  5. Increased and early lipolysis in children with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency during fast.

    PubMed

    Haglind, C Bieneck; Nordenström, A; Ask, S; von Döbeln, U; Gustafsson, J; Stenlid, M Halldin

    2015-03-01

    Children with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD) have a defect in the degradation of long-chain fatty acids and are at risk of hypoketotic hypoglycemia and insufficient energy production as well as accumulation of toxic fatty acid intermediates. Knowledge on substrate metabolism in children with LCHAD deficiency during fasting is limited. Treatment guidelines differ between centers, both as far as length of fasting periods and need for night feeds are concerned. To increase the understanding of fasting intolerance and improve treatment recommendations, children with LCHAD deficiency were investigated with stable isotope technique, microdialysis, and indirect calometry, in order to assess lipolysis and glucose production during 6 h of fasting. We found an early and increased lipolysis and accumulation of long chain acylcarnitines after 4 h of fasting, albeit no patients developed hypoglycemia. The rate of glycerol production, reflecting lipolysis, averaged 7.7 ± 1.6 µmol/kg/min, which is higher compared to that of peers. The rate of glucose production was normal for age; 19.6 ± 3.4 µmol/kg/min (3.5 ± 0.6 mg/kg/min). Resting energy expenditure was also normal, even though the respiratory quotient was increased indicating mainly glucose oxidation. The results show that lipolysis and accumulation of long chain acylcarnitines occurs before hypoglycemia in fasting children with LCHAD, which may indicate more limited fasting tolerance than previously suggested.

  6. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, March 1992--June 1995

    SciTech Connect

    McInerney M.J.

    1995-06-23

    Factors affecting the rate and extent of benzoate degradation by anaerobic syntrophic consortia were studied. Cocultures of a syntrophic benzoate degrader, strain SB, with a hydrogen/formate-using sulfate reducer degraded benzoate to a threshold that depended on the amount of substrate and acetate present. The benzoate threshold was not a function of the inhibition of benzoate degradation capacity by acetate or the toxicity of the undissociated form of acetate. Rather, a critical or minimal Gibb`s free energy value may exist where thermodynamic constraints preclude further benzoate degradation. A sensitive assay to detect low formate concentrations was developed to measure the formate levels when the benzoate threshold was reached. We showed that increased acetate concentrations, even when hydrogen and formate levels are low, affects the extent of benzoate degradation, implicating the importance of interspecies acetate transfer. In addition to benzoate, various saturated and unsaturated fatty acids, 2-methylbutyrate, and methyl esters of fatty acids supported growth in coculture with a hydrogen-using partner. SB is the only syntrophic bacterium known to use both benzoate and fatty acids. Phylogenetic analysis showed that SB clustered with sulfate reducers in the delta subclass of the Proteobacteria. SB grew well in coculture with Desulfoarculus baarsii, a sulfate reducer that uses formate but not hydrogen. This unequivocally shows that SB can grow by interspecies formate transfer.

  7. Syntrophic Interactions Within a Butane-Oxidizing Bacterial Consortium Isolated from Puguang Gas Field in China.

    PubMed

    Zhang, Ying; Deng, Chun-Ping; Shen, Bin; Yang, Jin-Shui; Wang, En-Tao; Yuan, Hong-Li

    2016-10-01

    Butane oxidation by the hydrocarbon degradation bacteria has long been described, but little is known about the microbial interaction in this process. To investigate this interaction, the efficiency of butane oxidation was estimated in monocultures and co-cultures of six strains of butane-oxidizing bacteria (BOB) and a butanol-oxidizing strain. Results showed that the butane degradation velocity was at least 26 times higher in the co-culture of the seven strains (228.50 nmol h(-1)) than in the six individual monocultures (8.71 nmol h(-1)). Gas chromatographic analysis of metabolites in the cultures revealed the accumulation of butanol in the monocultures of BOB strains but not in the co-culture with the butanol-oxidizing strain. These results evidenced a novel syntrophic association between BOB and butanol-oxidizing bacteria in the butane oxidation. The BOB strains oxidized butane into butanol, but this activity was inhibited by the accumulated butanol in monocultures, whereas the removal of butanol by the butanol-oxidizing strain in co-culture could eliminate the suppression and improve the butane degradation efficiency. In the co-culture, both BOB and butanol-oxidizing bacteria could grow and the time needed for butane complete removal was shortened from more than 192 h to less than 4 h. The unsuppressed effect of the co-culture was also consistent with the results of reverse transcription quantitative real-time PCR (RT-qPCR) of bmoX gene because increased expression of this gene was detected during the syntrophic growth compared with that in monoculture, pointing to the upregulation of bmoX in the syntrophic interaction.

  8. Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: involvement of an ancient horizontal gene transfer

    SciTech Connect

    Scholten, Johannes C.; Culley, David E.; Brockman, Fred J.; Wu, Gang; Zhang, Weiwen

    2007-01-05

    The sulfate reducing bacteria Desulfovibrio vulgaris and the methanogenic archaea Methanosarcina barkeri can grow syntrophically on lactate. In this study, three functionally unknown genes of D. vulgaris, DVU2103, DVU2104 and DVU2108, were found to be up-regulated 2-4 fold following the lifestyle shift from syntroph to sulfatereducer; moreover, none of these genes were regulated when D. vulgaris was grown alone in various pure culture conditions. These results suggest that these genes may play roles related to the lifestyle change of D. vulgaris from syntroph to sulfate reducer. This hypothesis is further supported by phylogenomic analyses showing that homologies of these genes were only narrowly present in several groups of bacteria, most of which are restricted to a syntrophic life-style, such as Pelobacter carbinolicus, Syntrophobacter fumaroxidans, Syntrophomonas wolfei and Syntrophus aciditrophicus. Phylogenetic analysis showed that the genes tended to be clustered with archaeal genera, and they were rooted on archaeal species in the phylogenetic trees, suggesting that they originated from an archaeal methanogen and were horizontally transferred to a common ancestor of delta- Proteobacteria, Clostridia and Thermotogae. While lost in most species during evolution, these genes appear to have been retained in bacteria capable of syntrophic relationships, probably due to their providing a selective advantage. In addition, no significant bias in codon and amino acid usages was detected between these genes and the rest of the D. vulgaris genome, suggesting these gene transfers may have occurred early in the evolutionary history so that sufficient time has elapsed to allow an adaptation to the codon and amino acid usages of D. vulgaris. This report provides novel insights into the origin and evolution of bacterial genes involved in the syntrophic lifestyle.

  9. Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes.

    PubMed

    Lv, Wen; Schanbacher, Floyd L; Yu, Zhongtang

    2010-12-01

    Methane biogas production through anaerobic digestion (or biomethanation) is one of the few technologies that both produce bioenergy and protect the environment. When the focus of anaerobic digestion (AD) is shifted from primarily wastewater treatment to bioenergy production, efficiency and process stability become critical to the economic viability of AD technologies. Temperature-phased anaerobic digestion (TPAD) is a promising process that can significantly enhance both digestion efficiency and process robustness. A TPAD system separates the conventional AD process into two phases, so both phases can be optimized according to their individual functional needs. In the first, thermophilic phase, the often rate-limiting hydrolysis step of polymeric feedstock is accelerated by elevated temperatures, while in the second, mesophilic phase, the fastidious syntrophic acetogens and methanogens are provided with permissive conditions where inhibitions to key guilds (e.g., syntrophic acetogens and methanogens) are attenuated. Although large-scale TPAD systems have not been applied widely, researchers have demonstrated the potential superiority of TPAD systems over single-stage digesters and other AD processes with enhanced VS (volatile solids) and pathogen removal; increased methane yield, process stability, OLR (organic loading rate); shorter HRT (hydraulic retention time); decreased foaming and short-chain fatty acids in effluent. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. A Proteomic View at the Biochemistry of Syntrophic Butyrate Oxidation in Syntrophomonas wolfei

    PubMed Central

    Schmidt, Alexander; Müller, Nicolai; Schink, Bernhard; Schleheck, David

    2013-01-01

    In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT), a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224) was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB) and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF224) to a

  11. Long chain fatty acids of diet as factors influencing reproduction in cattle.

    PubMed

    Santos, J E P; Bilby, T R; Thatcher, W W; Staples, C R; Silvestre, F T

    2008-07-01

    Cattle are fed moderate amounts of long chain fatty acids (FA) with the objective to enhance lactation and growth; however, recent interest on lipid feeding to cows has focused on reproduction, immunity and health. Increasing the caloric density of the ration by fat feeding has generally improved measures of cow reproduction, but when milk yield and body weight losses were increased by fat supplementation, positive effects on reproduction were not always observed. Feeding fat has influenced reproduction by altering the size of the dominant follicle, hastening the interval to first postpartum ovulation in beef cows, increasing progesterone concentrations during the luteal phase of the oestrous cycle, modulating uterine prostaglandin (PG) synthesis, and improving oocyte and embryo quality and developmental competence. Some of these effects were altered by the type of FA fed. The polyunsaturated FA of the n-6 and n-3 families seem to have the most remarkable effects on reproductive responses of cattle, but it is not completely clear whether these effects are mediated only by them or by other potential intermediates produced during rumen biohydrogenation. Generally, feeding fat sources rich in n-6 FA during late gestation and early lactation enhanced follicle growth, uterine PG secretion, embryo quality and pregnancy in cows. Similarly, feeding n-3 FA during lactation suppressed uterine PG release, and improved embryo quality and maintenance of pregnancy. Future research ought to focus on methods to improve the delivery of specific FA and adequately powered studies should be designed to critically evaluate their effects on establishment and maintenance of pregnancy in cattle.

  12. Inhibition of cereulide toxin synthesis by emetic Bacillus cereus via long-chain polyphosphates.

    PubMed

    Frenzel, Elrike; Letzel, Thomas; Scherer, Siegfried; Ehling-Schulz, Monika

    2011-02-01

    Severe intoxications caused by the Bacillus cereus emetic toxin cereulide can hardly be prevented due to the ubiquitous distribution and heat resistance of spores and the extreme thermal and chemical stability of cereulide. It would therefore be desirable to inhibit cereulide synthesis during food manufacturing processes or in prepared foods, which are stored under time-temperature abuse conditions. Toward this end, the impacts of three long-chain polyphosphate (polyP) formulations on growth and cereulide production were examined. The inhibition was dependent on the concentration and the type of the polyP blend, indicating that polyPs and not the orthophosphates were effective. Quantitative PCR (qPCR) monitoring at sublethal concentrations revealed that polyPs reduced the transcription of ces nonribosomal peptide synthetase (NRPS) genes by 3- to 4-fold along with a significantly reduced toxin production level. At lower concentrations, toxin synthesis was decreased, although the growth rate was not affected. These data indicate a differential effect on toxin synthesis independent of growth inhibition. The inhibition of toxin synthesis in food was also observed. Despite the growth of B. cereus, toxin synthesis was reduced by 70 to 100% in two model food systems (reconstituted infant food and oat milk), which were analyzed with HEp-2 cell culture assays and high-performance liquid chromatography (HPLC)/electrospray ionization-time of flight mass spectrometry (ESI-TOF-MS). Accordingly, ces promoter activity was strongly downregulated, as visualized by using a lux-based reporter strain. These data illustrate the potential of polyphosphate formulations to reduce the risk of cereulide synthesis in food and may contribute to targeted hurdle concepts.

  13. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase.

    PubMed

    Fraisl, Peter; Forss-Petter, Sonja; Zigman, Mihaela; Berger, Johannes

    2004-01-01

    It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely.

  14. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase.

    PubMed Central

    Fraisl, Peter; Forss-Petter, Sonja; Zigman, Mihaela; Berger, Johannes

    2004-01-01

    It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely. PMID:14516277

  15. Controlled formation of ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution.

    PubMed

    Huber, Klaus; Witte, Thomas; Hollmann, Jutta; Keuker-Baumann, Susanne

    2007-02-07

    A new tool is presented to control formation of Ag nanoparticles. Small amounts of silver ions were added to dilute solutions of long-chain sodium polyacrylates (NaPA). Four NaPA samples covering a molar mass regime of 97 kD < or = Mw < or = 650 kD have been used. With amounts of added Ag(+) as low as 1-2% of the COO(-) groups of the polyanionic chains, significant changes could already be induced in the NaPA coils with 650 kD. If the NaPA concentration was kept below 0.1 g/L, the coils with 650 kD exhibited a significant coil shrinking in stable solutions. At larger NaPA concentrations, addition of Ag+ initiates an aggregation of the polyacrylate coils toward compact structures. Coil shrinking and aggregation was revealed by means of time-resolved static light scattering. If exposed to UV-radiation, small Ag particles formed within the shrunken anionic polyacrylate coils. The Ag nanoparticles were identified by means of an enhanced light scattering and a characteristic plasmon absorption band around 410 nm. No such Ag particle formation could be observed even at 5 times larger concentrations of Ag(+) and NaPA if the two smallest polyacrylate samples have been used under otherwise equal conditions. This molar mass sensitive response of NaPA to Ag(+)-addition suggests an interesting phenomenon: if the coil size of the NaPa chains, which act as Ag(+) collectors, is large enough, local Ag(+) concentration in these coil-shaped Ag(+) containers exceeds a critical value, and irradiation with UV generates Ag nanoparticles.

  16. Inhibition of lysozyme amyloidogenesis by phospholipids. Focus on long-chain dimyristoylphosphocholine.

    PubMed

    Ponikova, Slavomira; Kubackova, Jana; Bednarikova, Zuzana; Marek, Jozef; Demjen, Erna; Antosova, Andrea; Musatov, Andrey; Gazova, Zuzana

    2017-11-01

    Protein amyloid aggregation is an important pathological feature of a group of different degenerative human diseases called amyloidosis. We tested effect of two phospholipids, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) on amyloid aggregation of hen egg white (HEW) lysozyme in vitro. Effect of phospholipids was investigated using spectroscopic techniques (fluorescence and CD spectroscopy), atomic force microscopy and image analysis. Phospholipids DMPC and DHPC are able dose-dependently inhibit lysozyme fibril formation. The length of the phospholipid tails and different structural arrangement of the phospholipid molecules affect inhibitory activity; long-chain DMPC inhibits fibrillization more efficiently. Interestingly, interference of DMPC with lysozyme amyloid fibrils has no effect on their morphology or amount. Phospholipid molecules have significant effect on lysozyme amyloid fibrillization. We suggest that inhibitory activity is due to the interference of phospholipids with lysozyme leading to the blocking of the intermolecular protein interactions important for formation of the cross-β structure within the core of the fibrils. The higher inhibitory activity of DMPC is probably due to adsorption of protein molecules on the liposome surfaces which caused decrease of species needed for fibrillization. Interaction of the phospholipids with formed fibrils is not sufficient enough to interrupt the bonds in β-sheets which are required for destroying of amyloid fibrils. The obtained results contribute to a better understanding of the effect of phospholipids on amyloid fibrillization of the lysozyme. The data suggest that DMPC and DHPC phospholipids represent agents able to modulate lysozyme amyloid aggregation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. On the appearance of traffic jams in a long chain with a shortcut in the bulk

    NASA Astrophysics Data System (ADS)

    Bunzarova, N. Zh.; Pesheva, N. C.; Brankov, J. G.

    2015-11-01

    The Totally Asymmetric Simple Exclusion Process (TASEP) is studied on open long chains with a shunted section between two simple chain segments in the maximum current phase. The reference case, when the two branches are chosen with equal probability, is considered. The conditions for the occurrence of traffic jams and their properties are investigated both within the effective rates approximation and by extensive Monte Carlo simulations for arbitrary length of the shortcut. Our main results are: (1) For any length of the shortcut and any values of the external rates in the domain of the maximum current phase, there exists a position of the shortcut where the shunted segment is in a phase of coexistence with a completely delocalized domain wall; (2) The main features of the coexistence phase and the density profiles in the whole network are well described by the domain wall theory. Apart from the small inter-chain correlations, they depend only on the current through the shortcut; (3) The model displays unexpected features: (a) the current through the longer shunted segment is larger than the current through the shortcut, and (b) the delocalized domain wall in the coexistence phase of the long shunted segment induces similar behavior even in shortcuts containing a small number of sites; (4) From the viewpoint of vehicular traffic, most comfortable conditions for the drivers are provided when the shortcut is shifted downstream from the position of coexistence, when both the shunted segment and the shortcut exhibit low-density lamellar flow. Most unfavorable is the opposite case of upstream shifted shortcut, when both the shunted segment and the shortcut are in a high-density phase describing congested traffic of slowly moving cars. The above results are relevant also to phenomena like crowding of molecular motors moving along twisted protofilaments.

  18. Nanostructured solvation in mixtures of protic ionic liquids and long-chained alcohols.

    PubMed

    Montes-Campos, Hadrián; Otero-Mato, José M; Méndez-Morales, Trinidad; López-Lago, Elena; Russina, Olga; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M

    2017-03-28

    The structural and dynamical properties of bulk mixtures of long-chained primary and secondary alcohols (propanol, butanol, and 2-pentanol) with protic ionic liquids (ethylammonium and butylammonium nitrate) were studied by means of molecular dynamics simulations and small angle X-ray scattering (SAXS). Changes in the structure with the alcohol concentration and with the alkyl chain length of the alcohol moieties were found, showing variations in the radial distribution function and in the number of hydrogen bonds in the bulk liquids. Moreover, the structural behaviour of the studied mixtures is further clarified with the spatial distribution functions. The global picture in the local scale is in good agreement with the nanostructured solvation paradigm [T. Méndez-Morales et al. Phys. Chem. B 118, 761 (2014)], according to which alcohols are accommodated into the hydrogen bonds' network of the ionic liquid instead of forming clusters in the bulk. Indeed, our study reveals that the alcohol molecules are placed with their polar heads at the interfaces between polar and nonpolar nanodomains in the ionic liquid, with their alkyl chains inside the nonpolar organic nanodomains. The influence of alcohol chain length in the single-particle dynamics of the mixtures is also reported calculating the velocity autocorrelation function and vibrational densities of states of the different species in the ionic liquid-alcohol mixtures, and a weak caging effect for the ethylammonium cations independent of the chain size of the alcohols was found. However, the SAXS data collected for the studied mixtures show an excess of the scattering intensities which indicates that there are also some structural heterogeneities at the nanoscale.

  19. Nanostructured solvation in mixtures of protic ionic liquids and long-chained alcohols

    NASA Astrophysics Data System (ADS)

    Montes-Campos, Hadrián; Otero-Mato, José M.; Méndez-Morales, Trinidad; López-Lago, Elena; Russina, Olga; Cabeza, Oscar; Gallego, Luis J.; Varela, Luis M.

    2017-03-01

    The structural and dynamical properties of bulk mixtures of long-chained primary and secondary alcohols (propanol, butanol, and 2-pentanol) with protic ionic liquids (ethylammonium and butylammonium nitrate) were studied by means of molecular dynamics simulations and small angle X-ray scattering (SAXS). Changes in the structure with the alcohol concentration and with the alkyl chain length of the alcohol moieties were found, showing variations in the radial distribution function and in the number of hydrogen bonds in the bulk liquids. Moreover, the structural behaviour of the studied mixtures is further clarified with the spatial distribution functions. The global picture in the local scale is in good agreement with the nanostructured solvation paradigm [T. Méndez-Morales et al. Phys. Chem. B 118, 761 (2014)], according to which alcohols are accommodated into the hydrogen bonds' network of the ionic liquid instead of forming clusters in the bulk. Indeed, our study reveals that the alcohol molecules are placed with their polar heads at the interfaces between polar and nonpolar nanodomains in the ionic liquid, with their alkyl chains inside the nonpolar organic nanodomains. The influence of alcohol chain length in the single-particle dynamics of the mixtures is also reported calculating the velocity autocorrelation function and vibrational densities of states of the different species in the ionic liquid-alcohol mixtures, and a weak caging effect for the ethylammonium cations independent of the chain size of the alcohols was found. However, the SAXS data collected for the studied mixtures show an excess of the scattering intensities which indicates that there are also some structural heterogeneities at the nanoscale.

  20. Elongation of very long-chain fatty acids is enhanced in X-linked adrenoleukodystrophy.

    PubMed

    Kemp, Stephan; Valianpour, Fredoen; Denis, Simone; Ofman, Rob; Sanders, Robert-Jan; Mooyer, Petra; Barth, Peter G; Wanders, Ronald J A

    2005-02-01

    X-linked adrenoleukodystrophy (X-ALD) is a progressive neurodegenerative disorder characterized by the accumulation of saturated and mono-unsaturated very long-chain fatty acids (VLCFA) and reduced peroxisomal VLCFA beta-oxidation activity. In this study, we investigated the role of VLCFA biosynthesis in X-ALD fibroblasts. Our data demonstrate that elongation of both saturated and mono-unsaturated VLCFAs is enhanced in fibroblasts from patients with peroxisomal beta-oxidation defects including X-ALD, and peroxisome biogenesis disorders. These data indicate that enhanced VLCFA elongation is a general phenomenon associated with an impairment in peroxisomal beta-oxidation, and not specific for X-ALD alone. Analysis of plasma samples from patients with X-ALD and different peroxisomal beta-oxidation deficiencies revealed increased concentrations of VLCFAs up to 32 carbons. We infer that enhanced elongation does not result from impaired peroxisomal beta-oxidation alone, but is due to the additional effect of unchecked chain elongation. We demonstrate that elongated VLCFAs are incorporated into complex lipids. The role of chain elongation was also studied retrospectively in samples from patients with X-ALD previously treated with "Lorenzo's oil." We found that the decrease in plasma C26:0 previously found is offset by the increase of mono-unsaturated VLCFAs, not measured previously during the trial. We conclude that evaluation of treatment protocols for disorders of peroxisomal beta-oxidation making use of plasma samples should include the measurement of saturated and unsaturated VLCFAs of chain lengths above 26 carbon atoms. We also conclude that chain elongation offers an interesting target to be studied as a possible mode of treatment for X-ALD and other peroxisomal beta-oxidation disorders.

  1. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae.

    PubMed

    Wenning, Leonie; Yu, Tao; David, Florian; Nielsen, Jens; Siewers, Verena

    2016-11-14

    Wax esters (WEs) are neutral lipids and can be used for a broad range of commercial applications, including personal care products, lubricants, or coatings. They are synthesized by enzymatic reactions catalyzed by a fatty acyl reductase (FAR) and a wax ester synthase (WS). At present, commercially used WEs are mainly isolated from Simmondsia chinensis (jojoba), but the high extraction costs and limited harvest areas constrain their use. The use of FARs in combination with different WSs to achieve a synthesis of jojoba-like WEs in bacteria and yeast has been reported previously, but the products were restricted to C28-C36 WEs. These rather short WEs make up only a very small percentage of the total WEs in natural jojoba oil. The synthesis of longer chain WEs (up to C44) in Saccharomyces cerevisiae has so far only been achieved after substrate feeding. Here we identified new routes for producing very long-chain fatty alcohols (VLCFOHs) up to a chain length of C22 by heterologous expression of a FAR derived from Apis mellifera (AmFAR1) or Marinobacter aquaeolei VT8 (Maqu_2220) in S. cerevisiae and achieved maximum yields of 3.22 ± 0.36 mg/g cell dry weight (CDW) and 7.84 ± 3.09 mg/g CDW, respectively, after 48 h. Moreover, we enabled the synthesis of jojoba-like WEs up to a chain length of C42, catalyzed by a combination of Maqu_2220 together with the WS from S. chinensis (SciWS) and the S. cerevisiae elongase Elo2p, with a maximum yield of 12.24 ± 3.35 mg/g CDW after 48 h. Biotechnol. Bioeng. 2016;9999: 1-11. © 2016 Wiley Periodicals, Inc.

  2. The impact of long-chain n-3 polyunsaturated fatty acids on human health.

    PubMed

    Ruxton, C H S; Calder, P C; Reed, S C; Simpson, M J A

    2005-06-01

    A considerable literature has been published on the health benefits of fish, oil-rich fish and fish oils and their constituent long-chain (LC) n-3 PUFA. Evidence from epidemiological studies highlights the cardioprotective attributes of diets rich in fish, especially oil-rich fish. Data from intervention trials are consistent in suggesting that LC n-3 PUFA lower the risk of CVD, probably by the multiple mechanisms of lowering serum triacylglycerols, improving the LDL:HDL ratio, anti-arrhythmic effects on heart muscle, improved plaque stability, anti-thrombotic effects and reduced endothelial activation. Research indicates LC n-3 PUFA provision has an impact during development, and there is preliminary evidence that docosahexaenoic acid supplementation during pregnancy could optimise brain and retina development in the infant. LC n-3 PUFA are also postulated to ameliorate behavioural and mental health disturbances such as depression, schizophrenia, dementia and attention deficit hyperactivity disorder. However, despite some positive evidence in each of these areas, use of LC n-3 PUFA in these conditions remains at the experimental stage. In the case of immune function, there is little doubt that LC n-3 PUFA have a positive effect. Although intervention trials in rheumatoid arthritis show strong evidence of benefit, evidence for efficacy in other inflammatory conditions, including Crohn's disease, ulcerative colitis, psoriasis, lupus, multiple sclerosis, cystic fibrosis and asthma, is inconsistent or inadequate. More promising evidence in some conditions may come from studies which attempt to modify the fetal environment using LC n-3 PUFA supplementation during pregnancy.

  3. Dietary n-3 long chain polyunsaturated fatty acids in allergy prevention and asthma treatment.

    PubMed

    Willemsen, Linette E M

    2016-08-15

    The rise in non-communicable diseases, such as allergies, in westernized countries links to changes in lifestyle and diet. N-3 long chain polyunsaturated fatty acids (LCPUFA) present in marine oils facilitate a favorable milieu for immune maturation and may contribute to allergy prevention. N-3 LCPUFA can suppress innate and adaptive immune activation and induce epigenetic changes. Murine studies convincingly show protective effects of fish oil, a source of n-3 LCPUFA, in food allergy and asthma models. Observational studies in human indicate that high dietary intake of n-3 LCPUFA and low intake of n-6 PUFA may protect against the development of allergic disease early in life. High n-6 PUFA intake is also associated with an increased asthma risk while n-3 LCPUFA may be protective and reduce symptoms. The quality of the marine oil used has impact on efficacy of allergy prevention and several observations link in particular n-3 LCPUFA DHA to allergy suppression. Randomized controlled trials indicate that optimal timing, duration and dosage of n-3 LC-PUFA is required to exert an allergy protective effect. Supplementation during early pregnancy and lactation has shown promising results regarding allergy prevention. However these findings should be confirmed in a larger cohort. Although clinical trials in asthma patients reveal no consistent clinical benefits of n-3 LCPUFA supplementation on lung function, it can suppress airway inflammation. Future food-pharma approaches may reveal whether adjunct therapy with dietary n-3 LCPUFA can improve allergy prevention or immunotherapy via support of allergen specific oral tolerance induction or contribute to the efficacy of drug therapy for asthma patients.

  4. Formula with long-chain polyunsaturated fatty acids reduces incidence of allergy in early childhood.

    PubMed

    Foiles, Amanda M; Kerling, Elizabeth H; Wick, Jo A; Scalabrin, Deolinda M F; Colombo, John; Carlson, Susan E

    2016-03-01

    Allergy has sharply increased in affluent Western countries in the last 30 years. N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) may protect the immune system against development of allergy. We prospectively categorized illnesses by body system in a subset of 91 children from the Kansas City cohort of the DIAMOND (DHA Intake and Measurement of Neural Development) study who had yearly medical records through 4 years of age. As infants, they were fed either a control formula without LCPUFA (n = 19) or one of three formulas with LCPUFA from docosahexaenoic acid (DHA) and arachidonic acid (ARA) (n = 72). Allergic illnesses in the first year were lower in the combined LCPUFA group compared to the control. LCPUFAs significantly delayed time to first allergic illness (p = 0.04) and skin allergic illness (p = 0.03) and resulted in a trend to reduced wheeze/asthma (p = 0.1). If the mother had no allergies, LCPUFAs reduced the risk of any allergic diseases (HR = 0.24, 95% CI = 0.1, 0.56, p = 0.0.001) and skin allergic diseases (HR = 0.35, 95% CI = 0.13, 0.93, p = 0.04). In contrast, if the mother had allergies, LCPUFAs reduced wheezing/asthma (HR = 0.26, 95% CI = 0.07, 0.9, p = 0.02). LCPUFA supplementation during infancy reduced the risk of skin and respiratory allergic diseases in childhood with effects influenced by maternal allergies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Long chain N-3 polyunsaturated fatty acids in the prevention of allergic and cardiovascular disease.

    PubMed

    van den Elsen, Lieke; Garssen, Johan; Willemsen, Linette

    2012-01-01

    The diet is considered to have a major impact on human health. Dietary lipids including long chain polyunsaturated fatty acids (LCPUFA) possess potent immunomodulatory activities. Over the last decades the incidence of inflammatory disorders including allergic and cardiovascular diseases (CVD) has been rising. This phenomenon is associated with deficiencies in N-3 LCPUFA, found in fatty fish, and increased content of N-6 LCPUFA in the Western diet. LCPUFA act via different mechanisms including membrane fluidity, raft composition, lipid mediator formation, signaling pathways and transmembrane receptors. N-3 LCPUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can reduce the development of allergic disease by affecting both the innate and adaptive immune system involved in the initiation and persistence of allergic disease. Fish oil has been shown to be effective in the primary prevention of allergic disease in infants at risk when supplemented during pregnancy and lactation. Subtle effects of N-3 LCPUFA on the outcome of the immune response may underlie these protective effects. This review describes the currently reported effects of LCPUFA on dendritic cells, T cells, B cells and mast cells. Also CVD are positively affected by N-3 LCPUFA. Populations consuming high amounts of oily fish are protected against CVD. Moreover N-3 LCPUFA are effective in the secondary prevention of cardiovascular events. Amongst other effects, EPA and DHA have been shown to suppress endothelial cell activation hereby reducing adhesion molecule expression and endothelial cell - leukocyte interactions. This review describes the mechanistic basis of the preventive role for N-3 LCPUFA in allergic disease and CVD.

  6. Breastfeeding, long-chain polyunsaturated fatty acids in colostrum, and infant mental development.

    PubMed

    Guxens, Mònica; Mendez, Michelle A; Moltó-Puigmartí, Carolina; Julvez, Jordi; García-Esteban, Raquel; Forns, Joan; Ferrer, Muriel; Vrijheid, Martine; López-Sabater, M Carmen; Sunyer, Jordi

    2011-10-01

    Breastfeeding has been associated with improved neurodevelopment in children. However, it remains unknown to what extent nutritional advantages of breast milk may explain this relationship. We assessed the role of parental psychosocial factors and colostrum long-chain polyunsaturated fatty acid (LC-PUFA) levels in the relationship between breastfeeding and children's neurodevelopment. A population-based birth cohort was established in the city of Sabadell (Catalonia, Spain) as part of the INMA-INfancia y Medio Ambiente Project. A total of 657 women were recruited during the first trimester of pregnancy. Information about parental characteristics and breastfeeding was obtained by using a questionnaire, and trained psychologists assessed mental and psychomotor development by using the Bayley Scales of Infant Development in 504 children at 14 months of age. A high percentage of breastfeeds among all milk feeds accumulated during the first 14 months was positively related with child mental development (0.37 points per month of full breastfeeding [95% confidence interval: 0.06-0.67]). Maternal education, social class, and intelligence quotient only partly explained this association. Children with a longer duration of breastfeeding also exposed to higher ratios between n-3 and n-6 PUFAs in colostrum had significantly higher mental scores than children with low breastfeeding duration exposed to low levels. Greater levels of accumulated breastfeeding during the first year of life were related to higher mental development at 14 months, largely independently from a wide range of parental psychosocial factors. LC-PUFA levels seem to play a beneficial role in children's mental development when breastfeeding levels are high.

  7. Dietary polychlorinated biphenyls, long-chain n-3 polyunsaturated fatty acids and incidence of malignant melanoma.

    PubMed

    Donat-Vargas, Carolina; Berglund, Marika; Glynn, Anders; Wolk, Alicja; Åkesson, Agneta

    2017-02-01

    For malignant melanoma, other risk factors aside from sun exposure have been hardly explored. Polychlorinated biphenyls (PCBs)-mainly from fatty fish- may affect melanogenesis and promote melanoma progression, while long-chain n-3 polyunsaturated fatty acids seem to exert antineoplastic actions in melanoma cells. We aimed to assess the association of validated estimates of dietary PCB exposure as well as the intake of eicosapentaenoic acid and docosahexaenoic acid (EPA-DHA), accounting for sun habits and skin type, with the risk of malignant melanoma in middle-aged and elderly women. We included 20,785 women at baseline in 2009 from the prospective population-based Swedish Mammography Cohort. Validated estimates of dietary PCB exposure and EPA-DHA intake were obtained via a food frequency questionnaire. Incident melanoma cases were ascertained through register-linkage. During 4.5 years of follow-up, we ascertained 67 incident cases of melanoma. After multivariable adjustments, exposure to dietary PCBs was associated with four-fold increased risk of malignant melanoma (hazard ratio [HR], 4.0 [95% confidence interval {CI}, 1.2-13; P for trend = 0.02]), while EPA-DHA intake was associated with 80% lower risk (HR, 0.2 [95% CI, 0.1-0.8; P for trend = 0.03]), comparing the highest exposure tertiles with the lowest. While we found a direct association between dietary PCB exposure and risk of melanoma, EPA-DHA intake showed to have a substantial protective association. Question of benefits and risk from fish consumption is very relevant and further prospective studies in the general population verifying these findings are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Long-chain polyunsaturated fatty acid requirements during pregnancy and lactation.

    PubMed

    Makrides, M; Gibson, R A

    2000-01-01

    Much interest has been expressed about the long-chain polyunsaturated fatty acid (LCPUFA) requirements of both preterm and term infants, whereas relatively little attention has been given to the LCPUFA needs of mothers, who may provide the primary source of LCPUFAs for their fetuses and breast-fed infants. Although maternal requirements for LCPUFAs are difficult to estimate because of large body stores and the capacity to synthesize LCPUFAs from precursors, biochemical and clinical intervention studies have provided some clues. From a biochemical viewpoint, there appears to be no detectable reduction in plasma n-3 LCPUFA concentrations during pregnancy, whereas there is a clear decline during the early postpartum period. The postpartum decrease in maternal plasma docosahexaenoic acid (DHA) concentration is not instantaneous, may be long-term, is independent of lactation, and is reversible with dietary DHA supplementation (200-400 mg/d). From a functional standpoint, the results of randomized clinical studies suggest that n-3 LCPUFA supplementation during pregnancy does not affect the incidences of pregnancy-induced hypertension and preeclampsia without edema. However, n-3 LCPUFA supplementation may cause modest increases in the duration of gestation, birth weight, or both. To date, there is little evidence of harm as a result of n-3 LCPUFA supplementation during either pregnancy or lactation. However, researchers need to further elucidate any potential benefits of supplementation for mothers and infants. Careful attention should be paid to study design, measurement of appropriate health outcomes, and defining minimum and maximum plasma n-3 LCPUFA concentrations that are optimal for both mothers and infants.

  9. Sensations induced by medium and long chain triglycerides: role of gastric tone and hormones

    PubMed Central

    Barbera, R; Peracchi, M; Brighenti, F; Cesana, B; Bianchi, P; Basilisco, G

    2000-01-01

    BACKGROUND—The relative roles of gastric relaxation and the neuroendocrine signals released by the small intestine in the perception of nutrient induced sensations are controversial. The different effects of long chain (LCT) and medium chain (MCT) triglyceride ingestion on perception, gastric relaxation, and hormonal release may help to elucidate the mechanisms underlying nutrient induced sensations.
AIMS—To compare the effects of intraduodenal LCT and MCT infusions on perception, gastric tone, and plasma gut hormone levels in healthy subjects.
SUBJECTS—Nine fasting healthy volunteers.
METHODS—The subjects received duodenal infusions of saline followed by LCTs and MCTs in a randomised order on two different days. The sensations were rated on a visual analogue scale. Gastric tone was measured using a barostat, and plasma gut hormone levels by radioimmunoassay.
RESULTS—LCT infusion increased satiation scores, reduced gastric tone, and increased the levels of plasma cholecystokinin, gastric inhibitory polypeptide, neurotensin, and pancreatic polypeptide. MCT infusion reduced gastric tone but did not significantly affect perception or plasma gut hormone levels. LCTs produced greater gastric relaxation than MCTs.
CONCLUSIONS—The satiation induced by intraduodenal LCT infusion seems to involve changes in gastric tone and plasma gut hormone levels. The gastric relaxation induced by MCT infusion, together with the absence of any significant change in satiation scores and plasma hormone levels, suggests that, at least up to a certain level, gastric relaxation is not sufficient to induce satiation and that nutrient induced gastric relaxation may occur through cholecystokinin independent mechanisms.


Keywords: gastric tone; triglyceride; hormones; satiation; cholecystokinin; nutrients PMID:10601051

  10. Synthesis of Long-Chain Chitooligosaccharides by a Hypertransglycosylating Processive Endochitinase of Serratia proteamaculans 568

    PubMed Central

    Purushotham, Pallinti

    2012-01-01

    We describe the heterologous expression and characterization of a 407-residue single-domain glycosyl hydrolase family 18 chitinase (SpChiD) from Gram-negative Serratia proteamaculans 568 that has unprecedented catalytic properties. SpChiD was optimally active at pH 6.0 and 40°C, where it showed a Km of 83 mg ml−1, a kcat of 3.9 × 102 h−1, and a kcat/Km of 4.7 h mg−1 ml−1 on colloidal chitin. On chitobiose, the Km, kcat, and kcat/Km were 203 μM, 1.3 × 102 h−1, and 0.62 h−1 μM−1, respectively. Hydrolytic activity on chitooligosaccharides (CHOS) and colloidal chitin indicated that SpChiD was an endo-acting processive enzyme, with the unique ability to convert released chitobiose to N-acetylglucosamine, the major end product. SpChiD showed hyper transglycosylation (TG) with trimer-hexamer CHOS substrates, generating considerable amounts of long-chain CHOS. The TG activity of SpChiD was dependent on both the length and concentration of the oligomeric substrate and also on the enzyme concentration. The length and amount of accumulated TG products increased with increases in the length of the substrate and its concentration and decreased with increases in the enzyme concentration. The SpChiD bound to insoluble and soluble chitin substrates despite the absence of accessory domains. Sequence alignments and structural modeling indicated that SpChiD would have a deep substrate-binding groove lined with aromatic residues, which is characteristic of processive enzymes. SpChiD shows a combination of properties that seems rare among family 18 chitinases and that may resemble the properties of human chitotriosidase. PMID:22685288

  11. Long chain microRNA conjugates in calcium phosphate nanoparticles for efficient formulation and delivery.

    PubMed

    Jung, Hyosook; Kim, Seung An; Yang, Yong Geun; Yoo, Hyundong; Lim, Soo-Jeong; Mok, Hyejung

    2015-01-01

    A long chain microRNA-34a conjugate (lc-miRNA) was prepared by chemical crosslinking in order to improve entrapment efficiency into calcium phosphate nanoparticles (CaPs) and intracellular delivery. Thiol-modified miRNA at both terminal ends was chemically conjugated using crosslinkers to form lc-miRNA which was encapsulated within CaPs by a conventional co-precipitation method. Encapsulation efficiencies, physicochemical properties, and in vitro intracellular delivery efficiencies of the prepared linear polyethyleneimine (LPEI)-coated CaPs (LPEI-CaP) containing common miRNA and lc-miRNA were comparatively evaluated. The prepared lc-miRNA exhibited noticeably enhanced encapsulation efficiency during the CaP formulation process when compared to common miRNA. LPEI-CaP/lc-miRNAs consisted of nano-sized particles with great homogeneity and were observed to be successfully delivered into PC-3 cells. Fabricated LPEI-CaPs with duplex form of lc-miRNA (lc-miRNA-d) suppressed cancer cell proliferation as well as migration much more efficiently than those with duplex form of miRNA (miRNA-d). In addition, LPEI-CaP/lc-miRNA-d conferred negligible cytotoxicity on PC-3 cells. Chemical crosslinking of therapeutic miRNAs via a reducible linkage may allow more efficient encapsulation within CaPs as well as homogeneous particle formulation due to a higher spatial charge density than common miRNAs. The well-formulated LPEI-CaPs with lc-miRNA-d have the potential to provide superior miRNA transfection efficiency and inhibition of cancer proliferation.

  12. Neurorestorative targets of dietary long-chain omega-3 fatty acids in neurological injury

    PubMed Central

    Figueroa, Johnny D.; De Leon, Marino

    2014-01-01

    Long-chain omega-3 polyunsaturated fatty acids (LC-O3PUFAs) exhibit therapeutic potential for the treatment and prevention of the neurological deficits associated with spinal cord injury (SCI). However, the mechanisms implicated in these protective responses remain unclear. The objective of the present functional metabolomics study was to identify and define the dominant metabolic pathways targeted by dietary LC-O3PUFAs. Sprague-Dawley rats were fed rodent purified chows containing menhaden fish oil-derived LC-O3PUFAs for 8 weeks before being subjected to sham or spinal cord contusion surgeries. We show, through untargeted metabolomics, that dietary LC-O3PUFAs regulate important biochemical signatures associated with amino acid metabolism and free radical scavenging in both the injured and sham-operated spinal cord. Of particular significance, the spinal cord metabolome of animals fed with LC-O3PUFAs exhibited reduced glucose levels (−48%) and polar uncharged/hydrophobic amino acids (<−20%) while showing significant increases in the levels of antioxidant/anti-inflammatory amino acids and peptides metabolites, including β-alanine (+24%), carnosine (+33%), homocarnosine (+27%), kynurenine (+88%), when compared to animals receiving control diets (p < 0.05). Further, we found that dietary LC-O3PUFAs impacted the levels of neurotransmitters and the mitochondrial metabolism, as evidenced by significant increases in the levels of N-acetylglutamate (+43%) and acetyl-CoA levels (+27%), respectively. Interestingly, this dietary intervention resulted in a global correction of the pro-oxidant metabolic profile that characterized the SCI-mediated sensorimotor dysfunction. In summary, the significant benefits of metabolic homeostasis and increased antioxidant defenses unlock important neurorestorative pathways of dietary LC-O3PUFAs against SCI. PMID:24740740

  13. Impact of medium and long chain triglycerides consumption on appetite and food intake in overweight men.

    PubMed

    St-Onge, M-P; Mayrsohn, B; O'Keeffe, M; Kissileff, H R; Choudhury, A R; Laferrère, B

    2014-10-01

    Medium chain triglycerides (MCT) enhance thermogenesis and may reduce food intake relative to long chain triglycerides (LCT). The goal of this study was to establish the effects of MCT on appetite and food intake and determine whether differences were due to differences in hormone concentrations. Two randomized, crossover studies were conducted in which overweight men consumed 20 g of MCT or corn oil (LCT) at breakfast. Blood samples were obtained over 3 h. In Study 1 (n=10), an ad lib lunch was served after 3 h. In Study 2 (n=7), a preload containing 10 g of test oil was given at 3 h and lunch was served 1 h later. Linear mixed model analyses were performed to determine the effects of MCT and LCT oil on change in hormones and metabolites from fasting, adjusting for body weight. Correlations were computed between differences in hormones just before the test meals and differences in intakes after the two oils for Study 1 only. Food intake at the lunch test meal after the MCT preload (Study 2) was (mean±s.e.m.) 532±389 kcal vs 804±486 kcal after LCT (P<0.05). MCT consumption resulted in a lower rise in triglycerides (P=0.014) and glucose (P=0.066) and a higher rise in peptide YY (PYY, P=0.017) and leptin (P=0.036) compared with LCT (combined data). Correlations between differences in hormone levels (glucagon-like peptide (GLP-1), PYY) and differences in food intake were in the opposite direction to expectations. MCT consumption reduced food intake acutely but this does not seem to be mediated by changes in GLP-1, PYY and insulin.

  14. Long-chain omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer

    PubMed Central

    Kantor, Elizabeth D; Lampe, Johanna W.; Peters, Ulrike; Vaughan, Thomas L.; White, Emily

    2013-01-01

    Research suggests that long-chain omega-3 polyunsaturated fatty acids (LC-PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti-neoplastic properties, yet evidence for association between LC-PUFAs and colorectal cancer (CRC) remains inconsistent. Using the VITamins And Lifestyle (VITAL) cohort, we evaluated how EPA/DHA intake, and its primary sources, fish oil supplement use and dark fish consumption, relate to CRC risk. A total of 68,109 Washington residents aged 50-76 completed a questionnaire between 2000-2002 and were followed for CRC through 2008 (n=488). Persons using fish oil supplements on 4+days/week for 3+years experienced 49% lower CRC risk than non-users (HR:0.51; 95% CI:0.26-1.00; p-trend=0.06). The association between fish oil use and decreased CRC risk was primarily observed for men (p-interaction=0.02; p-trend men=0.02; p-trend women=0.88) and for colon cancer (p-difference=0.05; p-trend colon=0.03; p-trend rectum=0.87). While dark fish and total EPA+DHA intake were not associated with CRC risk overall, these associations varied by genetic risk (p-interaction=0.009 and 0.02, respectively), with inverse associations observed among low-moderate genetic risk groups and positive associations observed among high risk groups. Results suggest that associations between LC-PUFA intake and CRC may vary by gender, subsite, and genetic risk, providing additional insight into the potential role of LC-PUFAs in cancer prevention. PMID:24053119

  15. Formula with long chain polyunsaturated fatty acids reduces incidence of allergy in early childhood

    PubMed Central

    Foiles, Amanda M.; Kerling, Elizabeth H.; Wick, Jo A.; Scalabrin, Deolinda M.F.; Colombo, John; Carlson, Susan E.

    2016-01-01

    Background Allergy has sharply increased in affluent Western countries in the last 30 years. N-3 long chain polyunsaturated fatty acids (n-3 LCPUFAs) may protect the immune system against development of allergy. Methods We prospectively categorized illnesses by body system in a subset of 91 children from the Kansas City cohort of the DIAMOND (DHA Intake and Measurement of Neural Development) study who had yearly medical records through 4 years of age. As infants, they were fed either a control formula without LCPUFA (n=19) or one of three formulas with LCPUFA from docosahexaenoic acid (DHA) and arachidonic acid (ARA) (n=72). Results Allergic illnesses in the first year were lower in the combined LCPUFA group compared to the control. LCPUFAs significantly delayed time to first allergic illness (p=0.04) and skin allergic illness (p=0.03); and resulted in a trend to reduced wheeze/asthma (p=0.1). If the mother had no allergies, LCPUFAs reduced the risk of any allergic diseases (HR = 0.24, 95% CI = 0.1, 0.56, p=0.0.001) and skin allergic diseases (HR = 0.35, 95% CI = 0.13, 0.93, p=0.04). In contrast, if the mother had allergies, LCPUFAs reduced wheezing/asthma (HR = 0.26, 95% CI = 0.07, 0.9, p = 0.02). Conclusions LCPUFA supplementation during infancy reduced the risk of skin and respiratory allergic diseases in childhood with effects influenced by maternal allergies. PMID:26613373

  16. [Comparison of long-chain polyunsaturated fatty acids in plasma and erythrocyte phospholipids for biological monitoring].

    PubMed

    Kawabata, Terue; Nakai, Kunihiko; Hagiwara, Chie; Kurokawa, Naoyuki; Murata, Katsuyuki; Yaginuma, Kozue; Satoh, Hiroshi

    2011-01-01

    Previous data have indicated that the erythrocyte membrane may be the preferred sample type for assessing long-chain polyunsaturated fatty acid (LCPUFA) contents in cardiac and cerebral membranes. In this epidemiological study, we examined whether plasma phospholipids can be used for accurate biological monitoring of the LCPUFA state or whether analysis of erythrocyte membrane phospholipids is indispensable. (1) The analysis of LCPUFA contents in erythrocyte membrane phospholipids was conducted at baseline and after 1 and 3 days at 4°C, and 21 days at -40°C, after blood drawing, and the changes in LCPUFA content were examined. (2) The LCPUFA compositions of plasma and erythrocyte phospholipids in 133 young women (18-30 years old) were examined and the relationships between the sample type and the levels of LCPUFAs were determined. Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and DHA/arachidonic acid (AA) and (EPA+DHA)/AA ratios in erythrocyte membrane phospholipids after 21 days of blood drawing significantly decreased compared with the corresponding baseline data. Regarding AA, EPA and DHA, a significant positive correlation was shown between levels of erythrocyte membrane phospholipids and plasma phospholipids (AA, r=0.364; EPA, r=0.709; DHA, r=0.653). The predictive value of plasma phospholipids for determining the highest concentration quartile in erythrocyte phospholipids was better in EPA (70%) than in DHA (55%) and AA (42%). The measurement of LCPUFA content in erythrocyte membrane phospholipids is necessary for accurate biological monitoring. We also found that LCPUFA in erythrocyte membrane phospholipids is stable in cold storage (4°C) for 3 days after blood drawing.

  17. Associations of dietary polychlorinated biphenyls and long-chain omega-3 fatty acids with stroke risk.

    PubMed

    Kippler, Maria; Larsson, Susanna C; Berglund, Marika; Glynn, Anders; Wolk, Alicja; Åkesson, Agneta

    2016-09-01

    Little is known about joint exposure to polychlorinated biphenyls (PCBs) and long-chain omega-3 fatty acids [eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)], through fish consumption, on cerebrovascular disease risk. To explore associations of dietary PCB exposure and EPA-DHA intake with risk of different stroke subtypes. This was assessed in the prospective population-based Cohort of Swedish Men including 39,948, middle-aged and elderly men, who were free of cardiovascular disease and cancer at baseline in 1997. Validated estimates of dietary PCBs and EPA-DHA were obtained via a food frequency questionnaire. During 12years of follow-up, 2286 and 474 incident cases of ischemic stroke and hemorrhagic stroke, respectively, were ascertained through register linkage. Dietary PCB exposure and EPA-DHA intake were associated with hemorrhagic stroke but not ischemic stroke. Men in the highest quartile of dietary PCB exposure (median 412ng/day) had a multivariable- and EPA-DHA-adjusted RR of hemorrhagic stroke of 2.77 [95% confidence interval (CI), 1.48-5.19] compared with men in the lowest quartile (median 128ng/day; p for trend <0.01). The corresponding RRs in men with and without hypertension were 5.45 (95% CI, 1.34-22.1) and 2.37 (95% CI 1.17-4.79), respectively. The multivariable- and PCB-adjusted RR of hemorrhagic stroke for the highest quartile of EPA-DHA intake (median 0.73g/day) versus the lowest quartile (median 0.18g/day) was 0.42 (95% CI, 0.22-0.79). Dietary PCB exposure was associated with an increased risk of hemorrhagic stroke, whereas a protective association was observed for dietary EPA-DHA intake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm.

    PubMed

    De Clippeleir, Haydée; Defoirdt, Tom; Vanhaecke, Lynn; Vlaeminck, Siegfried E; Carballa, Marta; Verstraete, Willy; Boon, Nico

    2011-05-01

    The oxygen-limited autotrophic nitrification/denitrification (OLAND) process comprises one-stage partial nitritation and anammox, catalyzed by aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB), respectively. The goal of this study was to investigate whether quorum sensing influences anoxic ammonium oxidation in an OLAND biofilm, with AnAOB colonizing 13% of the biofilm, as determined with fluorescent in situ hybridization (FISH). At high biomass concentrations, the specific anoxic ammonium oxidation rate of the OLAND biofilm significantly increased with a factor of 1.5 ± 0.2 compared to low biomass concentrations. Supernatant obtained from the biofilm showed no ammonium-oxidizing activity on itself, but its addition to low OLAND biomass concentrations resulted in a significant activity increase of the biomass. In the biofilm supernatant, the presence of long-chain acylhomoserine lactones (AHLs) was shown using the reporter strain Chromobacterium violaceum CV026, and one specific AHL, N-dodecanoyl homoserine lactone (C(12)-HSL), was identified via LC-MS/MS. Furthermore, C(12)-HSL was detected in an AnAOB-enriched community, but not in an AerAOB-enriched community. Addition of C(12)-HSL to low OLAND biomass concentrations resulted in a significantly higher ammonium oxidation rate (p < 0.05). To our knowledge, this is the first report demonstrating that AHLs enhance the anoxic ammonium oxidation process. Future work should confirm which species are responsible for the in situ production of C(12)-HSL in AnAOB-based applications.

  19. Relationship between plasma free fatty acid, intramyocellular triglycerides and long-chain acylcarnitines in resting humans

    PubMed Central

    Kanaley, Jill A; Shadid, Samyah; Sheehan, Michael T; Guo, ZengKui; Jensen, Michael D

    2009-01-01

    We hypothesized that plasma non-esterified fatty acids (NEFA) are trafficked directly to intramyocellular long-chain acylcarnitines (imLCAC) rather than transiting intramyocellular triglycerides (imTG) on the way to resting muscle fatty acid oxidation. Overnight fasted adults (n= 61) received intravenous infusions of [U-13C]palmitate (0400–0830 h) and [U-13C]oleate (0800–1400 h) labelling plasma NEFA, imTG, imLCAC and im-non-esterified FA (imNEFA). Two muscle biopsies (0830 and 1400 h) were performed following 6 h, overlapping, sequential palmitate/oleate tracer infusions. Enrichment of plasma palmitate was ∼15 times greater than enrichment of imTG, imNEFA-palmitate and im-palmitoyl-carnitine. Fatty acid enrichment in LCAC was correlated with imTG and imNEFA; there was a significant correlation between imTG concentrations and imLCAC concentrations in women (r= 0.51, P= 0.005), but not men (r= 0.30, P= 0.11). We estimated that ∼11% of NEFA were stored in imTG. imTG NEFA storage was correlated only with NEFA concentrations (r= 0.52, P= 0.004) in women and with (r= 0.45, P= 0.02) in men. At rest, plasma NEFA are trafficked largely to imTG before they enter LCAC oxidative pools; thus, imTG are an important, central pool that regulates the delivery of fatty acids to the intracellular environment. Factors relating to plasma NEFA storage into imTG differ in men and women. PMID:19858228

  20. Impact of medium and long chain triglycerides consumption on appetite and food intake in overweight men

    PubMed Central

    St-Onge, Marie-Pierre; Mayrsohn, Brian; O’Keeffe, Majella; Kissileff, Harry R.; Choudhury, Arindam Roy; Laferrère, Blandine

    2014-01-01

    Background Medium chain triglycerides (MCT) enhance thermogenesis and may reduce food intake relative to long chain triglycerides (LCT). The goal of this study was to establish the effects of MCT on appetite and food intake and determine whether differences were due to differences in hormone concentrations. Methods Two randomized, crossover studies were conducted in which overweight men consumed 20 g of MCT or corn oil (LCT) at breakfast. Blood samples were obtained over 3 h. In Study 1 (n=10), an ad lib lunch was served after 3 h. In Study 2 (n=7), a pre-load containing 10 g of test oil was given at 3 h and lunch was served 1 h later. Linear mixed model analyses were performed to determine the effects of MCT and LCT oil on change in hormones and metabolites from fasting, adjusting for body weight. Correlations were computed between differences in hormones just before the test meals and differences in intakes after the two oils for Study 1 only. Results Food intake at the lunch test meal after the MCT pre-load (Study 2) was (mean ± SEM) 532 ± 389 kcal vs. 804 ± 486 kcal after LCT (P < 0.05). MCT consumption resulted in a lower rise in triglycerides (P = 0.014) and glucose (P = 0.066) and a higher rise in peptide YY (P = 0.017) and leptin (P = 0.036) compared to LCT (combined data). Correlations between differences in hormone levels (GLP-1, PYY) and differences in food intake were in the opposite direction to expectations. Conclusions MCT consumption reduced food intake acutely but this does not seem to be mediated by changes in GLP-1, PYY, and insulin. PMID:25074387

  1. Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity

    PubMed Central

    Twining, Cornelia W.; Brenna, J. Thomas; Lawrence, Peter; Shipley, J. Ryan; Tollefson, Troy N.; Winkler, David W.

    2016-01-01

    Once-abundant aerial insectivores, such as the Tree Swallow (Tachycineta bicolor), have declined steadily in the past several decades, making it imperative to understand all aspects of their ecology. Aerial insectivores forage on a mixture of aquatic and terrestrial insects that differ in fatty acid composition, specifically long-chain omega-3 polyunsaturated fatty acid (LCPUFA) content. Aquatic insects contain high levels of both LCPUFA and their precursor omega-3 PUFA, alpha-linolenic acid (ALA), whereas terrestrial insects contain much lower levels of both. We manipulated both the quantity and quality of food for Tree Swallow chicks in a full factorial design. Diets were either high-LCPUFA or low in LCPUFA but high in ALA, allowing us to separate the effects of direct LCPUFA in diet from the ability of Tree Swallows to convert their precursor, ALA, into LCPUFA. We found that fatty acid composition was more important for Tree Swallow chick performance than food quantity. On high-LCPUFA diets, chicks grew faster, were in better condition, and had greater immunocompetence and lower basal metabolic rates compared with chicks on both low LCPUFA diets. Increasing the quantity of high-LCPUFA diets resulted in improvements to all metrics of performance while increasing the quantity of low-LCPUFA diets only resulted in greater immunocompetence and lower metabolic rates. Chicks preferentially retained LCPUFA in brain and muscle when both food quantity and LCPUFA were limited. Our work suggests that fatty acid composition is an important dimension of aerial insectivore nutritional ecology and reinforces the importance of high-quality aquatic habitat for these declining birds. PMID:27638210

  2. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers.

    PubMed

    Lueders, Tillmann

    2017-01-01

    The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ (13)C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers

    PubMed Central

    Lueders, Tillmann

    2017-01-01

    Abstract The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ. 13C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation. PMID:27810873

  4. Functional genomic study of the environmentally important Desulfovibrio /Methanococcus syntrophic co-culture.

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, A.

    2008-12-01

    The use of microbe-oriented bioremediation for ameliorating extensive environmental pollution has fostered fundamental and applied studies of environmentally relevant microorganisms such as Desulfovibrio vulgaris, Shewanella oneidensis and Geobacter metallireducens.. Concurrently, there has been an increasing appreciation that the physiology of these organisms in pure culture is not necessarily representative of its activities in the environment. To enable a better understanding of microbial physiology under more environmentally relevant conditions, the syntrophic growth between the sulfate reducing bacterium, D. vulgaris and the hydrogenotrophic methanogen, Methanococcus maripaludis serves as an ideal system for laboratory studies. Cell wide analyses using transcript, proteomics and metabolite analysis have been widely used to understand cellular activity at a molecular level. Using D. vulgaris and M. maripaludis arrays, and the iTRAQ proteomics method, we studied the physiology of the D. vulgaris / M. maripaludis syntrophic co- cultures. The results from this study allowed us to identify differences in cellular response in mono-culture vs. co-culture growth for both D. vulgaris and M. maripaludis.

  5. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells.

    PubMed

    Lu, Lu; Xing, Defeng; Ren, Nanqi; Logan, Bruce E

    2012-11-01

    H(2) can be obtained from glucose by fermentation at mesophilic temperatures, but here we demonstrate that hydrogen can also be obtained from glucose at low temperatures using microbial electrolysis cells (MECs). H(2) was produced from glucose at 4°C in single-chamber MECs at a yield of about 6 mol H(2)mol(-1) glucose, and at rates of 0.25±0.03-0.37±0.04 m(3) H(2)m(-3)d(-1). Pyrosequencing of 16S rRNA gene and electrochemical analyses showed that syntrophic interactions combining glucose fermentation with the oxidization of fermentation products by exoelectrogens was the predominant pathway for current production at a low temperature other than direct glucose oxidization by exoelectrogens. Another syntrophic interaction, methanogenesis and homoacetogenesis, which have been found in 25°C reactors, were not detected in MECs at 4°C. These results demonstrate the feasibility of H(2) production from abundant biomass of carbohydrates at low temperature in MECs.

  6. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen

    PubMed Central

    Kimura, Zen-ichiro; Okabe, Satoshi

    2013-01-01

    Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor. PMID:23486252

  7. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen.

    PubMed

    Kimura, Zen-ichiro; Okabe, Satoshi

    2013-08-01

    Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor.

  8. Human Milk Plasmalogens Are Highly Enriched in Long-Chain PUFAs.

    PubMed

    Moukarzel, Sara; Dyer, Roger A; Keller, Bernd O; Elango, Rajavel; Innis, Sheila M

    2016-11-01

    Human milk contains unique glycerophospholipids, including ethanolamine-containing plasmalogens (Pls-PEs) in the milk fat globule membrane, which have been implicated in infant brain development. Brain Pls-PEs accumulate postnatally and are enriched in long-chain polyunsaturated fatty acids (LC-PUFAs), particularly docosahexaenoic acid (DHA). Fatty acid (FA) composition of Pls-PEs in milk is poorly understood because of the analytical challenges in separating Pls-PEs from other phospholipids in the predominating presence of triacylglycerols. The variability of Pls-PE FAs and the potential role of maternal diet remain unknown. Our primary objectives were to establish improved methodology for extracting Pls-PEs from human milk, enabling FA analysis, and to compare FA composition between Pls-PEs and 2 major milk phospholipids, phosphatidylcholine and phosphatidylethanolamine. Our secondary objective was to explore associations between maternal DHA intake and DHA in milk phospholipids and variability in phospholipid-DHA within a woman. Mature milk was collected from 25 women, with 4 providing 3 milk samples on 3 separate days. Lipids were extracted, and phospholipids were removed by solid phase extraction. Pls-PEs were separated by using normal-phase HPLC, recovered and analyzed for FAs by GLC. Diet was assessed by using a validated food-frequency questionnaire. Pls-PE concentration in human milk was significantly higher in LC-PUFAs than phosphatidylethanolamine and phosphatidylcholine, including arachidonic acid (AA) and DHA. The mean ± SD concentration of AAs in Pls-PEs was ∼2.5-fold higher than in phosphatidylethanolamine (10.5 ± 1.71 and 3.82 ± 0.92 g/100 g, respectively). DHA in Pls-PEs varied across women (0.95-6.51 g/100 g), likely independent of maternal DHA intake. Pls-PE DHA also varied within a woman across days (CV ranged from 9.8% to 28%). Human milk provides the infant with LC-PUFAs from multiple lipid pools, including a source from Pls-PEs. The

  9. Long-chain polyunsaturated fatty acid supplementation in infants born at term.

    PubMed

    Simmer, Karen; Patole, Sanjay K; Rao, Shripada C

    2011-12-07

    The n-3 and n-6 fatty acids linolenic acid and linoleic acid are precursors of the n-3 and n-6 long chain fatty acids (LCPUFA). Infant formula has historically only contained the precursor fatty acids. Over the last few years, some manufacturers have added LCPUFA to formulae and marketed them as providing an advantage for the development of term infants. To assess whether supplementation of formula with LCPUFA is safe and of benefit to term infants. We searched the Cochrane Central Register of Controlled Trials (The Cochrane Library, April, 2011), MEDLINE (1966 to April 2011), EMBASE (1980 to April 2011), CINAHL (December 1982 to April 2011) and abstracts of the Society for Pediatric Research (1980 to 2010). No language restrictions were applied. Randomised and quasi randomised trials comparing LCPUFA supplemented vs. non-supplemented formula milk and with clinical endpoints were reviewed. Methodological quality of studies was assessed using the guidelines of Cochrane neonatal review group. Data were sought regarding effects on visual acuity, neurodevelopmental outcomes and physical growth. When appropriate, meta-analysis was conducted to provide a pooled estimate of effect. Twenty-five randomised studies were identified; fifteen were included (n = 1889) and ten excluded.Visual acuity was assessed by nine studies. Visual evoked potential was used in six studies, two used Teller cards and one used both. Four studies reported beneficial effects while the remaining five did not.Neurodevelopmental outcome was measured by eleven studies. Bayley scales of infant development (BSID) was used in nine studies; only two showed beneficial effects. Meta-analysis did not show significant benefits of supplementation. One study followed the infants up to nine years of age and did not find benefit of supplementation. One study reported better novelty preference measured by Fagan Infant test at nine months. Another study reported better problem solving at 10 months. One study used

  10. Long-chain monounsaturated fatty acids and incidence of congestive heart failure in two prospective cohorts

    PubMed Central

    Imamura, Fumiaki; Lemaitre, Rozenn N.; King, Irena B.; Song, Xiaoling; Steffen, Lyn M.; Folsom, Aaron R.; Siscovick, David S.; Mozaffarian, Dariush

    2013-01-01

    Background Decades-old animal experiments suggested dietary long-chain monounsaturated fatty acids (LCMUFA) caused cardiotoxicity, leading, for example, Canada to develop Canadian-oil-low-in-erucic-acid (Canola) from rapeseed. However, potential cardiotoxicity in humans and contemporary dietary sources of LCMUFA are unknown. Methods and Results We prospectively investigated associations of plasma phospholipid LCMUFA (20:1, 22:1, and 24:1), objective biomarkers of exposure, with incidence congestive heart failure (CHF) in two independent cohorts: 3,694 older adults (mean age=75.2±5.2 years) in the Cardiovascular Health Study (CHS, 1992–2006), and 3,577 middle-aged adults (mean age=54.1±5.8 years) in the Atherosclerosis Risk in Communities Study Minnesota subcohort (ARIC, 1987–2008). We further examined dietary correlates of circulating LCMUFA in CHS and ARIC, and US dietary sources of LCMUFA in the 2003–2010 National Health and Nutrition Examination Survey (NHANES). In CHS, 997 CHF events occurred during 39,238 person-years; and in ARIC, 330 events during 64,438 person-years. After multivariable-adjustment, higher levels of 22:1 and 24:1 were positively associated with greater incident CHF in both CHS and ARIC: hazard ratios (95% confidence interval)=1.34 (1.02–1.76) and 1.57 (1.11–2.23) for highest vs. lowest quintiles of 22:1, respectively; and 1.75 (1.23–2.50) and 1.92 (1.22–3.03) for 24:1, respectively (P-trend≤0.03 each). A variety of foods related to circulating LCMUFA in CHS and ARIC, consistent with food sources of LCMUFA in NHANES, including fish, poultry, meats, whole grains, and mustard. Conclusions Higher circulating levels of 22:1 and 24:1, with apparently diverse dietary sources, were associated with incident CHF in two independent cohorts, suggesting possible cardiotoxicity of LCMUFA in humans. PMID:23487436

  11. Identification of long-chain perfluorinated acids in biota from the Canadian Arctic.

    PubMed

    Martin, Jonathan W; Smithwick, Marla M; Braune, Birgit M; Hoekstra, Paul F; Muir, Derek C G; Mabury, Scott A

    2004-01-15

    Recently it was discovered that humans and animals from various urban and remote global locations contained a novel class of persistent fluorinated contaminants, the most pervasive of which was perfluorooctane sulfonate (PFOS). Lower concentrations of perfluorooctanoate, perfluorohexane sulfonate, and heptadecafluorooctane sulfonamide have also been detected in various samples. Although longer perfluoroalkyl carboxylates (PFCAs) are used in industry and have been detected in fish following a spill of aqueous film forming foam, no studies have been conducted to examine the widespread occurrence of long-chain PFCAs (e.g., CF3(CF2)xCOO-, where x > 6). To provide a preliminary assessment of fluorinated contaminants, including PFCAs, in the Canadian Arctic, polar bears, ringed seals, arctic fox, mink, common loons, northern fulmars, black guillemots, and fish were collected at various locations in the circumpolar region. PFOS was the major contaminant detected in most samples and in polar bear liver was the most prominent organohalogen (mean PFOS = 3.1 microg/g wet weight) compared to individual polychlorinated biphenyl congeners, chlordane, or hexachlorocyclohexane-related chemicals in fat. Using two independent mass spectral techniques, it was confirmed that all samples also contained ng/g concentrations of a homologous series of PFCAs, ranging in length from 9 to 15 carbons. Sum concentrations of PFCAs (sum(PFCAs)) were lower than total PFOS equivalents (sum(PFOS)) in all samples except for mink. In mink, perfluorononanoate (PFNA) concentrations exceeded PFOS concentrations, indicating that PFNA and other PFCAs should be considered in future risk assessments. Mammals feeding at higher trophic levels had greater concentrations of PFOS and PFCAs than mammals feeding at lower trophic positions. In general, odd-length PFCAs exceeded the concentration of even-length PFCAs, and concentrations decreased with increasing chain length in mammals. PFOS and PFCA concentrations

  12. Health benefits, enzymatic production, and application of medium- and long-chain triacylglycerol (MLCT) in food industries: a review.

    PubMed

    Lee, Yee-Ying; Tang, Teck-Kim; Lai, Oi-Ming

    2012-08-01

    Medium- and long-chain triacylglycerol (MLCT) is a modified lipid containing medium- chain (C6-C12) and long-chain fatty acids (C14-C24) in the same triacylglycerol (TAG) molecule. It can be produced either through enzymatic (with 1,3 specific or nonspecific enzyme) or chemical methods. The specialty of this structured lipid is that it is metabolized differently compared to conventional fats and oils, which can lead to a reduction of fat accumulation in the body. Therefore, it can be used for obesity management. It also contains nutritional properties that can be used to treat metabolic problems. This review will discuss on the health benefits of MLCT, its production methods especially via enzymatic processes and its applications in food industries.

  13. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    PubMed Central

    Serek, Robert; Forwood, Jade K.; Hume, David A.; Martin, Jennifer L.; Kobe, Bostjan

    2006-01-01

    The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-­hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination. PMID:16511283

  14. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil.

    PubMed

    Ryckebosch, Eline; Bruneel, Charlotte; Termote-Verhalle, Romina; Goiris, Koen; Muylaert, Koenraad; Foubert, Imogen

    2014-10-01

    The purpose of this work was to evaluate the nutritional value of the total lipid extract of different omega-3 long chain polyunsaturated fatty acids producing photoautotrophic microalgae in one study. It was shown that microalgae oils from Isochrysis, Nannochloropsis, Phaeodactylum, Pavlova and Thalassiosira contain sufficient omega-3 LC-PUFA to serve as an alternative for fish oil, which was used as the 'golden standard'. In the microalgae oils an important part of the omega-3 long chain polyunsaturated fatty acids are present in the polar lipid fraction, which may be favourable from a bioavailability and stability viewpoint. Consumption of microalgae oil ensures intake of sterols and carotenoids. The intake of sterols, including cholesterol and phytosterols, is probably not relevant. The intake of carotenoids is however definitely significant and could give the microalgae oils a nutritional added value compared to fish oil.

  15. Identification and Biological Activities of Long-Chain Peptaibols Produced by a Marine-Derived Strain of Trichoderma longibrachiatum.

    PubMed

    Mohamed-Benkada, Mustapha; François Pouchus, Yves; Vérité, Philippe; Pagniez, Fabrice; Caroff, Nathalie; Ruiz, Nicolas

    2016-05-01

    Six long-chain peptaibols, 1 - 6, were identified from agar cultures of a marine-derived Trichoderma longibrachiatum Rifai strain (MMS151) isolated from blue mussels. The structure elucidation was carried out using electrospray ionization ion trap mass spectrometry (ESI-IT-MS) and GC/EI-MS. The long-chain peptaibols exhibited the general building scheme Ac-Aib-Ala-Aib-Ala-Aib-XXX-Gln-Aib-Vxx-Aib-Gly-XXX-Aib-Pro-Vxx-Aib-XXX-Gln-Gln-Pheol and were similar or identical to recurrent 20-residue peptaibols produced by Trichoderma spp. Three new sequences were identified and were called longibrachins A-0, A-II-a, and A-IV-b. The isolated peptaibols were assayed for cytotoxic, antibacterial, and antifungal activities, and acute toxicity on Dipteran larvae. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Synthesis of specific deuterated derivatives of the long chained stratum corneum lipids [EOS] and [EOP] and characterization using neutron scattering.

    PubMed

    Sonnenberger, Stefan; Eichner, Adina; Schmitt, Thomas; Hauß, Thomas; Lange, Stefan; Langner, Andreas; Neubert, Reinhard H H; Dobner, Bodo

    2017-06-15

    The synthesis of specific deuterated derivatives of the long chained ceramides [EOS] and [EOP] is described. The structural differences with respect to the natural compounds are founded in the substitution of the 2 double bonds containing linoleic acid by a palmitic acid branched with a methyl group in 10-position. The specific deuteration is introduced both in the branched and in the terminal methyl group, which was realized by common methods of successive deuteration of carboxylic groups in 3 steps. These modified fatty acids resp. the corresponding ceramides [EOS] and [EOP] were prepared for neutron scattering investigations. First results of these investigations were presented in this manuscript showing that the deuterated compounds could be detected in the stratum corneum lipid model membranes. The deuterated ceramides [EOS] and [EOP] are valuable tools to investigate the influence of these long chained ceramide species on the nanostructure of stratum corneum lipid model membranes. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Three-way assessment of long-chain n-3 PUFA nutrition: by questionnaire and matched blood and skin samples.

    PubMed

    Wallingford, Sarah C; Pilkington, Suzanne M; Massey, Karen A; Al-Aasswad, Naser M I; Ibiebele, Torukiri I; Celia Hughes, Maria; Bennett, Susan; Nicolaou, Anna; Rhodes, Lesley E; Green, Adèle C

    2013-02-28

    The long-chain n-3 PUFA, EPA, is believed to be important for skin health, including roles in the modulation of inflammation and protection from photodamage. FFQ and blood levels are used as non-invasive proxies for assessing skin PUFA levels, but studies examining how well these proxies reflect target organ content are lacking. In seventy-eight healthy women (mean age 42·8, range 21-60 years) residing in Greater Manchester, we performed a quantitative analysis of long-chain n-3 PUFA nutrition estimated from a self-reported FFQ (n 75) and correlated this with n-3 PUFA concentrations in erythrocytes (n 72) and dermis (n 39). Linear associations between the three n-3 PUFA measurements were assessed by Spearman correlation coefficients and agreement between these measurements was estimated. Average total dietary content of the principal long-chain n-3 PUFA EPA and DHA was 171 (SD 168) and 236 (SD 248) mg/d, respectively. EPA showed significant correlations between FFQ assessments and both erythrocyte (r 0·57, P< 0·0001) and dermal (r 0·33, P= 0·05) levels, as well as between erythrocytes and dermis (r 0·45, P= 0·008). FFQ intake of DHA and the sum of n-3 PUFA also correlated well with erythrocyte concentrations (r 0·50, P< 0·0001; r 0·27, P= 0·03). Agreement between ranked thirds of dietary intake, blood and dermis approached 50% for EPA and DHA, though gross misclassification was lower for EPA. Thus, FFQ estimates and circulating levels of the dietary long-chain n-3 PUFA, EPA, may be utilised as well-correlated measures of its dermal bioavailability.

  18. Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season.

    PubMed

    Bajda, Agnieszka; Chojnacki, Tadeusz; Hertel, Józefina; Swiezewska, Ewa; Wójcik, Jacek; Kaczkowska, Alicja; Marczewski, Andrzej; Bojarczuk, Tomasz; Karolewski, Piotr; Oleksyn, Jacek

    2005-01-01

    In many plants belonging to angiosperms and gymnosperms the accumulation in leaves of long chain polyprenols and polyprenyl esters during growth in natural habitats depends on the light intensity. The amount of polyprenols in leaves is also positively correlated with the thickness of the leaf blade (SLA, specific leaf area). The polyprenol content of leaves shows seasonal changes with a maximum in autumn and a minimum in early summer with the difference between poorly and well illuminated plants persisting throughout the vegetation season.

  19. Optical properties of secondary organic aerosols derived from long-chain alkanes under various NOx and seed conditions.

    PubMed

    Li, Junling; Li, Kun; Wang, Weigang; Wang, Jing; Peng, Chao; Ge, Maofa

    2017-02-01

    Long-chain alkanes are a type of important intermediate-volatile organic compounds (IVOCs) in the atmosphere, which contribute to a large proportion of secondary organic aerosol (SOA). However, the optical properties of SOA derived from long-chain alkanes remain poorly understood. Here, we investigate the refractive index (RI) of SOA derived from photo-oxidation of dodecane (C12), pentadecane (C15) and heptadecane (C17) under low-NOx and high-NOx conditions with the absence or presence of inorganic aerosol seeds. The RIs of these SOAs are found to be in the range of 1.33 to 1.57 at the wavelength of 532nm. The results from mass spectroscopy indicate that both reaction mechanisms influenced by NOx level and gas-particle partitioning influenced by seeds have important impact on the chemical compositions of SOAs, which further influence the optical properties like RI. Finally, by comparing the RI values to other literature and model results, we suggest that various RIs of SOAs derived from long-chain alkanes should be applied in atmospheric and climate models. Copyright © 2016. Published by Elsevier B.V.

  20. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    SciTech Connect

    Serek, Robert; Forwood, Jade K.; Hume, David A.; Martin, Jennifer L.; Kobe, Bostjan

    2006-02-01

    The C-terminal domain of the mouse long-chain acyl-CoA thioesterase has been expressed in bacteria and crystallized by vapour diffusion. The crystals diffract to 2.4 Å resolution. The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination.

  1. Dependence of the product chain-length on detergents for long-chain E-polyprenyl diphosphate synthases.

    PubMed

    Pan, Jian-Jung; Ramamoorthy, Gurusankar; Poulter, C Dale

    2013-07-23

    Long-chain E-polyprenyl diphosphate synthases (E-PDS) catalyze repetitive addition of isopentenyl diphosphate (IPP) to the growing prenyl chain of an allylic diphosphate. The polyprenyl diphosphate products are required for the biosynthesis of ubiquinones and menaquinones required for electron transport during oxidative phosphorylation to generate ATP. In vitro, the long-chain PDSs require addition of phospholipids or detergents to the assay buffer to enhance product release and maintain efficient turnover. During preliminary assays of product chain-length with anionic, zwitterionic, and nonionic detergents, we discovered considerable variability. Examination of a series of nonionic PEG detergents with several long-chain E-PDSs from different organisms revealed that in vitro incubations with nonaethylene glycol monododecyl ether or Triton X-100 typically gave chain-lengths that corresponded to those of the isoprenoid moieties in respiratory quinones synthesized in vivo. In contrast, incubations in buffer with n-butanol, CHAPS, DMSO, n-octyl-β-glucopyranoside, or β-cyclodextrin or in buffer without detergent typically proceeded more slowly and gave a broad range of chain-lengths.

  2. Dependence of the product chain-length on detergents for long-chain E-polyprenyl diphosphate synthases

    PubMed Central

    Pan, Jian-Jung; Ramamoorthy, Gurusankar; Poulter, C. Dale

    2013-01-01

    Long-chain E-polyprenyl diphosphate synthases (E-PDS) catalyze repetitive addition of isopentenyl diphosphate (IPP) to the growing prenyl chain of an allylic diphosphate. The polyprenyl diphosphate products are required for the biosynthesis of ubiquinones and menaquinones required for electron transport during oxidative phosphorylation to generate ATP. In vitro, the long-chain PDSs require addition of phospholipids or detergents to the assay buffer to enhance product release and maintain efficient turnover. During preliminary assays of product chain-length with anionic, zwitterionic, and non-ionic detergents, we discovered considerable variability. Examination of a series of non-ionic PEG detergents with several long-chain E-PDSs from different organisms revealed that in vitro incubations with nonaethylene glycol monododecyl ether or Triton X-100 typically gave chain lengths that corresponded to those of the isoprenoid moieties in respiratory quinones synthesized in vivo. In contrast incubations in buffer with n-butanol, CHAPS, DMSO, n-octyl-β-glucopyranoside, or β-cyclodextrin or in buffer without detergent typically proceeded more slowly and gave a broad range of chain lengths. PMID:23802587

  3. Long chain 1,13- and 1,15-diols as a potential proxy for palaeotemperature reconstruction

    NASA Astrophysics Data System (ADS)

    Rampen, Sebastiaan W.; Willmott, Verónica; Kim, Jung-Hyun; Uliana, Eleonora; Mollenhauer, Gesine; Schefuß, Enno; Sinninghe Damsté, Jaap S.; Schouten, Stefan

    2012-05-01

    Although commonly reported in marine and freshwater environments, little is known about the biological sources of long chain alkyl 1,13- and 1,15-diols, and factors controlling their distributions. Here we analyzed the occurrence and distribution of these lipids in a comprehensive set of marine surface sediments and compare their distributions with environmental conditions like sea surface temperature (SST), salinity and nutrient concentrations. Fractional abundances of the C28 1,13-, C30 1,13- and C30 1,15-diols show a strong correlation with SST and based on these results, we propose the Long chain Diol Index (LDI), which expresses the C30 1,15-diol abundance relative to those of C28 1,13-, C30 1,13- and C30 1,15-diols. The LDI shows a strong linear correlation with SST (LDI = 0.033 × SST + 0.095; R2 = 0.969, n = 162) over a temperature range of -3 to 27 °C. Long chain diol distributions in sediments from the South Atlantic close to the Congo River outflow (West Africa) provided a 43 kyr LDI SST record. This record reflects several known climatic events and shows similarities with an alkenone-derived SST record obtained using the same suite of sediments, both in trend and in terms of absolute SST. This confirms the potential of the LDI as a proxy for palaeo-SST reconstruction.

  4. Epoxidation of plasmalogens: source for long-chain alpha-hydroxyaldehydes in subcellular fractions of bovine liver.

    PubMed Central

    Loidl-Stahlhofen, A; Hannemann, K; Felde, R; Spiteller, G

    1995-01-01

    1. Masked long-chain alpha-hydroxyaldehydes were trapped in all subcellular fractions of bovine liver by application of pentafluorbenzyloxime derivatization [van Kuijk, Thomas, Stephens and Dratz (1986) Biochem. Biophys. Res. Commun. 139, 144-149] and quantified via GLC/MS using characteristic ion traces. 2. The chain-length profile of long-chain 2-hydroxyalkanales clearly indicates their relationship to plasmalogens as precursor molecules. 3. The previously postulated existence of alpha-acyloxyplasmalogens as precursor molecules of masked long-chain alpha-hydroxyaldehydes in bovine tissue lipids [Lutz and Spiteller (1991) Liebigs Ann. Chem. 1991, 563-567] was excluded. 4. The constant oxidation rate of plasmalogens in all subcellular fractions provides conclusive evidence for a non-enzymic plasmalogen epoxidation process (probably via hydroperoxy radicals). 5. The high reactivity of alpha-hydroxyaldehydes sheds some doubt on the postulation that plasmalogens protect mammalian cells against oxidative stress as postulated previously [Morand, Zoeller and Raetz (1988) J. Biol. Chem. 263, 11590-11596; Morand, Zoeller and Raetz (1988) J. Biol. Chem. 263, 11597-11606]. Images Figure 4 PMID:7639697

  5. Functional Characterization of Two Elongases of Very Long-Chain Fatty Acid from Tenebrio molitor L. (Coleoptera: Tenebrionidae).

    PubMed

    Zheng, Tianxiang; Li, Hongshuang; Han, Na; Wang, Shengyin; Hackney Price, Jennifer; Wang, Minzi; Zhang, Dayu

    2017-09-08

    The elongases of very long chain fatty acid (ELOVL or ELO) are essential in the biosynthesis of fatty acids longer than C14. Here, two ELO full-length cDNAs (TmELO1, TmELO2) from the yellow mealworm (Tenebrio molitor L.) were isolated and the functions were characterized. The open reading frame (ORF) lengths of TmELO1 and TmELO2 were 1005 bp and 972 bp, respectively and the corresponding peptide sequences each contained several conserved motifs including the histidine-box motif HXXHH. Phylogenetic analysis demonstrated high similarity with the ELO of Tribolium castaneum and Drosophila melanogaster. Both TmELO genes were expressed at various levels in eggs, 1(st) and 2(nd) instar larvae, mature larvae, pupae, male and female adults. Injection of dsTmELO1 but not dsTmELO2 RNA into mature larvae significantly increased mortality although RNAi did not produce any obvious changes in the fatty acid composition in the survivors. Heterologous expression of TmELO genes in yeast revealed that TmELO1 and TmELO2 function to synthesize long chain and very long chain fatty acids.

  6. Phase behavior and hydrated solid structure in lysophospholipid/long-chain alcohol/water system and effect of cholesterol addition.

    PubMed

    Konno, Yoshikazu; Naito, Noboru; Yoshimura, Akio; Aramaki, Kenji

    2010-01-01

    Phase behavior in lysophospholipid/long-chain alcohol/water system at 80°C was investigated using hexanol and oleyl alcohol as the long-chain alcohol. Similarly to hydrophilic surfactant, a micellar phase in a lysophospholipid/water system transitioned to a lamellar liquid-crystalline phase by the addition of long-chain alcohol. In the oleyl alcohol system the lamellar liquid-crystalline phase was observed in wider region compared to the hexanol system. The effect of cholesterol addition on the phase behavior was also studied. The region of liquid-crystalline phase and (reverse micellar + liquid-crystalline + water) phase shifted towards higher lysophospholipid concentrations. The structure of hydrated solid as well as the transition between lamellar liquid-crystalline phase and hydrated solid was analyzed by X-ray scattering measurement and differential scanning calorimetry measurement. It was revealed that the hydrated solid was α-type crystals with lamellar structure. The hydrated solid (gel)-liquid crystal transition temperature gradually decreased with increasing oleyl alcohol concentration and the decrement was enhanced by the addition of cholesterol.

  7. Importance of the Long-Chain Fatty Acid Beta-Hydroxylating Cytochrome P450 Enzyme YbdT for Lipopeptide Biosynthesis in Bacillus subtilis Strain OKB105

    PubMed Central

    Youssef, Noha H.; Wofford, Neil; McInerney, Michael J.

    2011-01-01

    Bacillus species produce extracellular, surface-active lipopeptides such as surfactin that have wide applications in industry and medicine. The steps involved in the synthesis of 3-hydroxyacyl-coenzyme A (CoA) substrates needed for surfactin biosynthesis are not understood. Cell-free extracts of Bacillus subtilis strain OKB105 synthesized lipopeptide biosurfactants in presence of l-amino acids, myristic acid, coenzyme A, ATP, and H2O2, which suggested that 3-hydroxylation occurs prior to CoA ligation of the long chain fatty acids (LCFAs). We hypothesized that YbdT, a cytochrome P450 enzyme known to beta-hydroxylate LCFAs, functions to form 3-hydroxy fatty acids for lipopeptide biosynthesis. An in-frame mutation of ybdT was constructed and the resulting mutant strain (NHY1) produced predominantly non-hydroxylated lipopeptide with diminished biosurfactant and beta-hemolytic activities. Mass spectrometry showed that 95.6% of the fatty acids in the NHY1 biosurfactant were non-hydroxylated compared to only ∼61% in the OKB105 biosurfactant. Cell-free extracts of the NHY1 synthesized surfactin containing 3-hydroxymyristic acid from 3-hydroxymyristoyl-CoA at a specific activity similar to that of the wild type (17 ± 2 versus 17.4 ± 6 ng biosurfactant min−1·ng·protein−1, respectively). These results showed that the mutation did not affect any function needed to synthesize surfactin once the 3-hydroxyacyl-CoA substrate was formed and that YbdT functions to supply 3-hydroxy fatty acid for surfactin biosynthesis. The fact that YbdT is a peroxidase could explain why biosurfactant production is rarely observed in anaerobically grown Bacillus species. Manipulation of LCFA specificity of YbdT could provide a new route to produce biosurfactants with activities tailored to specific functions. PMID:21673922

  8. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid

    SciTech Connect

    Shelton, D.R.; Tiedje, J.M.

    1984-10-01

    A methanogenic consortium able to use 3-chlorobenzoic acid as its sole energy and carbon source was enriched from anaerobic sewage sludge. Seven bacteria were isolated from the consortium in mono- or coculture. They included: one dechlorinating bacterium, one benzoate-oxidizing bacterium, two butyrate-oxidizing bacteria, two H/sub 2/-consuming methanogens (methanospirillum hungatei PM-1 and Methanobacterium sp. strain PM-2), and a sulfate-reducing bacterium (Desulfovibrio sp.). The dechlorinating bacterium was a gram-negative, obligate anaerobe with a unique collar surrounding the cell. A medium containing rumen fluid supported minimal growth; pyruvate was the only substrate found to increase growth. The bacterium had a generation time of 4 to 5 days. 3-Chlorobenzoate was dechlorinated stoichiometrically to benzoate, which accumulated in the medium; the rate of dechlorination was ca. 0.1 pmol bacterium/sup -1/ day/sup -1/. The benzoate-oxidizing bacterium was a gram-negative, obligate anaerobe and could only be grown as a syntroph. Benzoate was the only substrate observed to support growth, and, when grown in coculture with M. hungatei, it was fermented to acetate and CH/sub 4/. One butyrate-oxidizing bacterium was a gram-negative, non-sporeforming, obligate anaerobe; the other was a gram-positive, sporeforming, obligate anaerobe. Both could only be grown as syntrophs. The substrates observed to support growth of both bacteria were butyrate, 2-DL-methylbutyrate, valerate, and caproate; isobutyrate supported growth of only the sporeforming bacterium. Fermentation products were acetate and CH/sub 4/ or acetate, propionate, and CH/sub 4/ when grown in coculture with M. hungatei. A mutualism among at least the dechlorinating, benzoate-oxidizing, and methane-forming members was apparently required for utilization of the 3-chlorobenzoate substrate. 21 references, 8 figures, 2 tables.

  9. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism.

    PubMed

    Plugge, Caroline M; Scholten, Johannes C M; Culley, David E; Nie, Lei; Brockman, Fred J; Zhang, Weiwen

    2010-09-01

    Desulfovibrio vulgaris is a metabolically flexible micro-organism. It can use sulfate as an electron acceptor to catabolize a variety of substrates, or in the absence of sulfate can utilize organic acids and alcohols by forming a syntrophic association with a hydrogen-scavenging partner to relieve inhibition by hydrogen. These alternative metabolic types increase the chance of survival for D. vulgaris in environments where one of the potential external electron acceptors becomes depleted. In this work, whole-genome D. vulgaris microarrays were used to determine relative transcript levels as D. vulgaris shifted its metabolism from syntrophic in a lactate-oxidizing dual-culture with Methanosarcina barkeri to a sulfidogenic metabolism. Syntrophic dual-cultures were grown in two independent chemostats and perturbation was introduced after six volume changes with the addition of sulfate. The results showed that 132 genes were differentially expressed in D. vulgaris 2 h after addition of sulfate. Functional analyses suggested that genes involved in cell envelope and energy metabolism were the most regulated when comparing syntrophic and sulfidogenic metabolism. Upregulation was observed for genes encoding ATPase and the membrane-integrated energy-conserving hydrogenase (Ech) when cells shifted to a sulfidogenic metabolism. A five-gene cluster encoding several lipoproteins and membrane-bound proteins was downregulated when cells were shifted to a sulfidogenic metabolism. Interestingly, this gene cluster has orthologues found only in another syntrophic bacterium, Syntrophobacter fumaroxidans, and four recently sequenced Desulfovibrio strains. This study also identified several novel c-type cytochrome-encoding genes, which may be involved in the sulfidogenic metabolism.

  10. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism

    SciTech Connect

    Plugge, Caroline M.; Scholten, Johannes C.; Culley, David E.; Nie, Lei; Brockman, Fred J.; Zhang, Weiwen

    2010-09-01

    Abstract Desulfovibrio vulgaris is a metabolically flexible microorganism. It can use sulfate as electron acceptor to catabolize a variety of substrates, or in the absence of sulfate can utilize organic acids and alcohols by forming a syntrophic association with hydrogen scavenging partner to relieve inhibition by hydrogen. These alternativemetabolic types increase the chance of survival for D. vulgaris in environments where one of the potential external electron acceptors becomes depleted. In this work, whole-genome D. vulgaris microarrays were used to determine relative transcript levels as D. vulgaris shifted its metabolism from syntroph in a lactate-oxidizing dual-culture with Methanosarcina barkeri to a sulfidogenic metabolism. Syntrophic dual-cultures were grown in two independent chemostats and perturbation was introduced after six volume changes with the addition of sulfate. The results showed that 132 genes were differentially expressed in D. vulgaris 2 hours after addition of sulfate. Functional analyses suggested that genes involved in cell envelope and energy metabolism were the most regulated when comparing syntrophic and sulfidogenic metabolism. Up-regulation was observed for genes encoding ATPase and the membrane-integrated energy conserving hydrogenase (Ech) when cells shifted to a sulfidogenic metabolism. A five-gene cluster encoding several lipo- and membrane-bound proteins was down-regulated when cells were shifted to a sulfidogenic metabolism. Interestingly, this gene cluster has orthologs found only in another syntrophic bacterium Syntrophobacter fumaroxidans and four recently sequenced Desulfovibrio strains. This study also identified several novel c-type cytochrome encoding genes which may be involved in the sulfidogenic metabolism.

  11. Long-chain polyunsaturated fatty acid supplementation in infants born at term.

    PubMed

    Simmer, K; Patole, S K; Rao, S C

    2008-01-23

    The n-3 and n-6 fatty acids linolenic acid and linoleic acid are precursors of the n-3 and n-6 long chain fatty acids (LCPUFA). Infant formula has historically only contained the precursor fatty acids. Controversy exists over whether LCPUFA are also essential nutrients in infancy. Over the last few years, some manufacturers have added LCPUFA to formulae and marketed them as providing an advantage for the development of term infants. To assess whether supplementation of formula with LCPUFA is safe and of benefit to term infants. Eligible studies were identified by searching MEDLINE (March 2007), EMBASE 1980 - 2007, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1, 2007) and CINAHL (December 1982 - March 2007). Abstracts of the Society for Pediatric Research were hand searched from 1980 to 2006 inclusive. Reference lists of published narrative and systematic reviews were also reviewed. No language restrictions were applied. All randomised and quasi randomised trials comparing LCPUFA supplemented formula milk vs. non-supplemented formula milk and with clinical endpoints were reviewed. Methodological quality of eligible studies was assessed according to allocation concealment, blinding of intervention, blinding of outcome assessment and completeness of follow up. Data were sought regarding effects on visual acuity, neurodevelopmental outcomes and physical growth. When appropriate, meta-analysis was conducted to provide a pooled estimate of effect. Continuous data were analysed using weighted mean difference (WMD). There were no categorical outcomes in this review. Twenty randomised studies were identified. Fourteen were included (n = 1719) and six excluded. Eleven included studies were of good quality. The main outcomes assessed were visual acuity, neurodevelopmental and physical growth. Visual acuity was measured at various stages throughout the first three years of life by nine studies. Visual evoked potential was used to assess

  12. Anaerobic Digestion.

    PubMed

    Liebetrau, Jan; Sträuber, Heike; Kretzschmar, Jörg; Denysenko, Velina; Nelles, Michael

    2017-04-09

    The term anaerobic digestion usually refers to the microbial conversion of organic material to biogas, which mainly consists of methane and carbon dioxide. The technical application of the naturally-occurring process is used to provide a renewable energy carrier and - as the substrate is often waste material - to reduce the organic matter content of the substrate prior to disposal.Applications can be found in sewage sludge treatment, the treatment of industrial and municipal solid wastes and wastewaters (including landfill gas utilization), and the conversion of agricultural residues and energy crops.For biorefinery concepts, the anaerobic digestion (AD) process is, on the one hand, an option to treat organic residues from other production processes. Concomitant effects are the reduction of organic carbon within the treated substance, the conversion of nitrogen and sulfur components, and the production of an energy-rich gas - the biogas. On the other hand, the multistep conversion of complex organic material offers the possibility of interrupting the conversion chain and locking out intermediates for utilization as basic material within the chemical industry.

  13. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    PubMed Central

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

  14. Invited review: anaerobic fermentation of dairy food wastewater.

    PubMed

    Hassan, A N; Nelson, B K

    2012-11-01

    Dairy food wastewater disposal represents a major environmental problem. This review discusses microorganisms associated with anaerobic digestion of dairy food wastewater, biochemistry of the process, factors affecting anaerobic digestion, and efforts to develop defined cultures. Anaerobic digestion of dairy food wastewater offers many advantages over other treatments in that a high level of waste stabilization is achieved with much lower levels of sludge. In addition, the process produces readily usable methane with low nutrient requirements and no oxygen. Anaerobic digestion is a series of complex reactions that broadly involve 2 groups of anaerobic or facultative anaerobic microorganisms: acidogens and methanogens. The first group of microorganisms breaks down organic compounds into CO(2) and volatile fatty acids. Some of these organisms are acetogenic, which convert long-chain fatty acids to acetate, CO(2), and hydrogen. Methanogens convert the acidogens' products to methane. The imbalance among the different microbial groups can lead not only to less methane production, but also to process failure. This is due to accumulation of intermediate compounds, such as volatile fatty acids, that inhibit methanogens. The criteria used for evaluation of the anaerobic digestion include levels of hydrogen and volatile fatty acids, methane:carbon ratio, and the gas production rate. A steady state is achieved in an anaerobic digester when the pH, chemical oxygen demand of the effluent, the suspended solids of the effluent, and the daily gas production remain constant. Factors affecting efficiency and stability of the process are types of microorganisms, feed C:N ratio, hydraulic retention time, reactor design, temperature, pH control, hydrogen pressure, and additives such as manure and surfactants. As anaerobic digesters become increasingly used in dairy plants, more research should be directed toward selecting the best cultures that maximize methane production from dairy

  15. Competition and coexistence between a syntrophic consortium and a metabolic generalist, and its effect on productivity.

    PubMed

    Stump, Simon M; Klausmeier, Christopher A

    2016-09-07

    Syntrophic interactions, where species consume metabolites excreted by others, are common in microbial communities, and have uses in synthetic biology. Syntrophy is likely to arise when trade-offs favor an organism that specializes on particular metabolites, rather than all possible metabolites. Several trade-offs have been suggested; however, few models consider different trade-offs to test which are most consistent with observed patterns. Here, we develop a differential equation model to study competition between a syntrophic processing chain, where each microbe can perform one step in metabolizing an initial resource to a final state, and a metabolic generalist that can perform all metabolic functions. We also examine how competition affects the production of the final metabolic compound. We find that competitive outcomes can be predicted by a generalization of the R(⁎)-rule and relative nonlinearity. Therefore, the species that can persist at the lowest resource level is the competitive dominant in a constant environment, and species can coexist by partitioning variation in resources. We derive a simple rule for predicting production rates of the final metabolite, and show that competition may not maximize final metabolite production. We show that processing chains are inherently less efficient, because resources are lost during each step of the process. Our results also suggest which trade-offs are capable of explaining certain empirical observations. For example, processing chains appear to be more common in nutrient-rich environments; our model suggests that a specificity trade-off and an affinity-yield trade-off would not predict this, but a yield-maximum growth trade-off might.

  16. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes.

    PubMed

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-11-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella.

  17. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes

    PubMed Central

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-01-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. PMID:21914097

  18. Structures of microbial communities found in anaerobic batch runs that produce methane from propionic acid--Seeded from full-scale anaerobic digesters above a certain threshold.

    PubMed

    Kim, Woong; Shin, Seung Gu; Han, Gyuseong; Cho, Kyungjin; Hwang, Seokhwan

    2015-11-20

    The volatile fatty acid propionate inhibits anaerobic digestion during organic waste treatments. To examine potential microbial interactions that accelerate propionate oxidation, anaerobic digestion systems seeded with various types of anaerobic sludge were analyzed. Seed samples were collected from 10 different full-scale anaerobic reactors in South Korea. Propionate oxidation was estimated as the methane production rate per gram of propionate used per day. Two domestic sewage sludge showed the highest methane production rate values, 109.1 ± 4.2 and 74.5 ± 8.6 mL CH4/(g propionate ∙ d). A food waste recycling wastewater source exhibited the lowest methane production rate, 33.2 ± 2.6 mL CH4/(g propionate ∙ d). To investigate how the microbial community structure affected propionate oxidation, qualitative molecular analyses were carried out using denaturing gradient gel electrophoresis. Methanosaeta concilii, an aceticlastic methanogen, was detected in most batch runs. Smithella propionica, a unique propionate oxidizer and simultaneous producer of acetate, was found in domestic sewage sludge sources showing the highest methane production rate; in contrast, Desulfobulbus rhabdoformis, a sulfate reducer coupled with the consumption of acetate to be used as a precursor of methane, was observed in food waste recycling wastewater sludge source showing the lowest methane production rate. Thus, we propose that S. propionica, a syntrophic acetate producer using propionate, might cooperate with aceticlastic methanogens for high methane production during anaerobic digestion that included propionate.

  19. Distinct and diverse anaerobic respiration of methanogenic community in response to MnO2 nanoparticles in anaerobic digester sludge.

    PubMed

    Tian, Tian; Qiao, Sen; Yu, Cong; Tian, Yihui; Yang, Yue; Zhou, Jiti

    2017-10-15

    Recently, the influence of metal oxide nanoparticles (NPs) on methanogenesis in anaerobic digestion has drawn much attention, however, the changes in NPs and functioning consortia within the methanogenic community are usually not investigated. Therefore, the methanogenesis performance, NPs transformation and methanogenic community development in anaerobic digester sludge under MnO2 NP supplementation were demonstrated in this study. MnO2 NPs (400 mg/gVSS) stimulated the methane (CH4) yield by 42% for a final CH4 proportion of 81.8% of the total gas production. Meanwhile, the coenzyme F420 and INT-electron transport system activities showed positive correlation with MnO2 concentration. Microbial Mn reduction and oxidation occurred in conjunction with methanogenesis, resulting in transformation of the shape of the MnO2 NPs from wire-like to globular particles. Microbial community analysis indicated that the relative abundances of genera Methanobacterium, Methanosaeta, and Methanosarcina were higher in the presence of MnO2 NPs. Moreover, a new and different crucial synergy within the methanogenic community was formed with low-abundance consortia driving Mn respiration coupled to methanogenesis in anaerobic digestion. To our knowledge, this is the first report on transformation of metal oxides NPs combined with syntrophic community development in studies focusing on methanogenesis in response to NPs. Copyright © 2017. Published by Elsevier Ltd.

  20. Long chain polyunsaturated fatty acid supplementation in infants born at term.

    PubMed

    Jasani, Bonny; Simmer, Karen; Patole, Sanjay K; Rao, Shripada C

    2017-03-10

    The long chain polyunsaturated fatty acids (LCPUFA) docosahexaenoic acid (DHA) and arachidonic acid (AA) are considered essential for maturation of the developing brain, retina and other organs in newborn infants. Standard infant milk formulae are not supplemented with LCPUFA; they contain only alpha-linolenic acid and linoleic acid, from which formula-fed infants must synthesise their own DHA and AA, respectively. Over the past few years, some manufacturers have added LCPUFA to formula milk and have marketed these products as providing an advantage for the overall development of full-term infants. To assess whether supplementation of formula milk with LCPUFA is both safe and beneficial for full-term infants, while focusing on effects on visual function, neurodevelopment and physical growth. Two review authors independently searched the Cochrane Central Register of Controlled Trials (CENTRAL; December 2016), MEDLINE (Ovid, 1966 to December 2016), Embase (Ovid, 1980 to December 2016), the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1980 to December 2016) and abstracts of the Pediatric Academic Societies (2000 to 2016). We applied no language restrictions. We reviewed all randomised controlled trials (RCTs) evaluating effects of LCPUFA supplemented versus non-supplemented formula milk on visual function, neurodevelopment and physical growth. We did not include trials reporting only biochemical outcomes. Two review authors extracted data independently. We assessed risk of bias of included studies using the guidelines of the Cochrane Neonatal Review Group. When appropriate, we conducted meta-analysis to determine a pooled estimate of effect. We identified 31 RCTs and included 15 of these in the review (N = 1889).Nine studies assessed visual acuity, six of which used visual evoked potentials (VEP), two Teller cards and one both. Four studies reported beneficial effects, and the remaining five did not. Meta-analysis of three RCTs showed significant

  1. Anaerobic thermophiles.

    PubMed

    Canganella, Francesco; Wiegel, Juergen

    2014-02-26

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  2. Anaerobic Thermophiles

    PubMed Central

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has

  3. Effect of community structure on the kinetics of anaerobic degradation of aromatic compounds. Progress report, March 1989--June 1991

    SciTech Connect

    McInerney, M.J.

    1991-06-01

    The physiology of fatty acid metabolism and the kinetics of benzoate degradation by anaerobic syntrophic bacteria were studied. We have shown that: a threshold for benzoate degradation by a syntrophic coculture of Syntrophus buswellii and Desulfovibrio strain G11 exists and the value of the threshold depends on the amount of benzoate and acetate suggesting a thermodynamic limitation. Syntrophomonas wolfei has the enzymatic ability to produce formate and that low levels of formate are made during growth in pure culture with crotonate or in coculture with butyrate. However, the high specific activities of hydrogenase compared to formate dehydrogenase indicate that hydrogen rather than formate is the intermediate involved in the interspecies transfer of reducing equivalents. We have isolated Syntrophus buswellii and a novel anaerobic bacteria that catalyzes an aryl-ether cleavage reaction using crotonate as the energy source. Several novel obligately halophilic anaerobes from hypersaline oil reservoir brines were isolated and characterized. Two of these degraded pyrogallate with the production of acetate. We have shown that S. wolfei synthesizes poly-{beta}hydroxyalkanoate (PHA) by two routes, directly from a {beta}-oxidation intermediate without cleaving a C-C bond and by the condensation of two acetyl-CoA molecules. The formation of D-3-hydroxyacyl-CoA needed for PHA synthesis occurs by the activity of a acetoacetyl-CoA reductase rather than a enoyl-CoA hydratase. The genes for PHA synthesis in S. wolfei have been cloned into Escherichia coli.

  4. More than 2500 years of oil exposure shape sediment microbiomes with the potential for syntrophic degradation of hydrocarbons linked to methanogenesis.

    PubMed

    Michas, Antonios; Vestergaard, Gisle; Trautwein, Kathleen; Avramidis, Pavlos; Hatzinikolaou, Dimitris G; Vorgias, Constantinos E; Wilkes, Heinz; Rabus, Ralf; Schloter, Michael; Schöler, Anne

    2017-09-11

    Natural oil seeps offer the opportunity to study the adaptation of ecosystems and the associated microbiota to long-term oil exposure. In the current study, we investigated a land-to-sea transition ecosystem called "Keri Lake" in Zakynthos Island, Greece. This ecosystem is unique due to asphalt oil springs found at several sites, a phenomenon already reported 2500 years ago. Sediment microbiomes at Keri Lake were studied, and their structure and functional potential were compared to other ecosystems with oil exposure histories of various time periods. Replicate sediment cores (up to 3-m depth) were retrieved from one site exposed to oil as well as a non-exposed control site. Samples from three different depths were subjected to chemical analysis and metagenomic shotgun sequencing. At the oil-exposed site, we observed high amounts of asphalt oil compounds and a depletion of sulfate compared to the non-exposed control site. The numbers of reads assigned to genes involved in the anaerobic degradation of hydrocarbons were similar between the two sites. The numbers of denitrifiers and sulfate reducers were clearly lower in the samples from the oil-exposed site, while a higher abundance of methanogens was detected compared to the non-exposed site. Higher abundances of the genes of methanogenesis were also observed in the metagenomes from other ecosystems with a long history of oil exposure, compared to short-term exposed environments. The analysis of Keri Lake metagenomes revealed that microbiomes in the oil-exposed sediment have a higher potential for methanogenesis over denitrification/sulfate reduction, compared to those in the non-exposed site. Comparison with metagenomes from various oil-impacted environments suggests that syntrophic interactions of hydrocarbon degraders with methanogens are favored in the ecosystems with a long-term presence of oil.

  5. A New Pain Regulatory System via the Brain Long Chain Fatty Acid Receptor GPR40/FFA1 Signal.

    PubMed

    Nakamoto, Kazuo

    2017-01-01

     An increasingly large number of pharmacological and physiological works on fatty acids have shown that the functional properties of fatty acids are regulated by the amount of individual fatty acid intake and the distribution of fatty acids among organs. Recently, it has been determined that G-protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFA1) is activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). GPR40/FFA1 is mainly expressed in the β cell of the pancreas, spinal cord and brain. It is reported that this receptor has a functional role in controlling blood glucose levels via the modulation of insulin secretion. However, its physiological function in the brain remains unknown. Our previous studies have shown that GPR40/FFA1 is expressed in pro-opiomelanocortin (POMC)-positive neurons of the arcuate nucleus, serotonergic neurons in the nucleus raphe magnus, and in noradrenergic neurons in the locus coeruleus. Furthermore, the intracerebroventricular injection of DHA or GW9508, which is a selective GPR40/FFA1 agonist, attenuates formalin-induced inflammatory pain behavior through increasing β-endorphin release in the hypothalamus. It also suppresses complete Freund's adjuvant-induced mechanical allodynia and thermal hyperalgesia. Our findings suggest that brain free long-chain fatty acids-GPR40/FFA1 signaling might have an important role in the modulation of endogenous pain control systems. In this review, I discuss the current status and our recent study regarding a new pain regulatory system via the brain long chain fatty acid receptor GPR40/FFA1 signal.

  6. Anti-inflammatory coumarins with short- and long-chain hydrophobic groups from roots of Angelica dahurica cv. Hangbaizhi.

    PubMed

    Wei, Wei; Wu, Xiu-Wen; Deng, Gai-Gai; Yang, Xiu-Wei

    2016-03-01

    The (1)H NMR-guided fractionation of a cyclohexane soluble portion of the 75% ethanolic extract of the roots of Angelica dahurica cv. Hangbaizhi led to the isolation of two coumarins, namely, 5-(3"-hydroxy-3"-methylbutyl)-8-hydroxyfuranocoumarin, and isobyakangelicin hydrate-3"-ethyl ether, and ten coumarins with short- or long-chain hydrophobic groups, namely, andafocoumarins A-J. Their structures were elucidated by extensive spectroscopic analyses. The absolute configurations of the C-2" secondary alcohols in ten of these compounds were deduced via the circular dichroism data of the in situ formed [Rh2(OCOCF3)4] complex, and oxidation reactions were utilized to determine location of the double bonds in the lipid chain of andafocoumarins H and I, respectively. The long-chain hydrophobic group of andafocoumarin J was determined by the method of chemical degradation and GC-MS analysis. It was the first time that coumarins with short- or long-chain hydrophobic groups in this plant had been comprehensively investigated. All isolates were assayed for their inhibitory effect against nitric oxide (NO) production in a lipopolysaccharide (LPS)-activated RAW264.7 macrophage cell line, among which andafocoumarins A and B exhibited a potent inhibition on LPS-activated NO production with IC50 values of 19.7 and 13.9 μM, respectively, indicating their stronger inhibitory activity than l-N(6)-(1-iminoethyl)-lysine (IC50=23.7 μM), a selective inhibitor of inducible nitric oxide synthase.

  7. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis.

    PubMed

    Goblirsch, Brandon R; Jensen, Matthew R; Mohamed, Fatuma A; Wackett, Lawrence P; Wilmot, Carrie M

    2016-12-23

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety-unusual for a thiolase-are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys(143)) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ(117)) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.

  8. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial.

    PubMed

    Gillingham, Melanie B; Heitner, Stephen B; Martin, Julie; Rose, Sarah; Goldstein, Amy; El-Gharbawy, Areeg Hassan; Deward, Stephanie; Lasarev, Michael R; Pollaro, Jim; DeLany, James P; Burchill, Luke J; Goodpaster, Bret; Shoemaker, James; Matern, Dietrich; Harding, Cary O; Vockley, Jerry

    2017-09-04

    Observational reports suggest that supplementation that increases citric acid cycle intermediates via anaplerosis may have therapeutic advantages over traditional medium-chain triglyceride (MCT) treatment of long-chain fatty acid oxidation disorders (LC-FAODs) but controlled trials have not been reported. The goal of our study was to compare the effects of triheptanoin (C7), an anaplerotic seven-carbon fatty acid triglyceride, to trioctanoin (C8), an eight-carbon fatty acid triglyceride, in patients with LC-FAODs. A double blinded, randomized controlled trial of 32 subjects with LC-FAODs (carnitine palmitoyltransferase-2, very long-chain acylCoA dehydrogenase, trifunctional protein or long-chain 3-hydroxy acylCoA dehydrogenase deficiencies) who were randomly assigned a diet containing 20% of their total daily energy from either C7 or C8 for 4 months was conducted. Primary outcomes included changes in total energy expenditure (TEE), cardiac function by echocardiogram, exercise tolerance, and phosphocreatine recovery following acute exercise. Secondary outcomes included body composition, blood biomarkers, and adverse events, including incidence of rhabdomyolysis. Patients in the C7 group increased left ventricular (LV) ejection fraction by 7.4% (p = 0.046) while experiencing a 20% (p = 0.041) decrease in LV wall mass on their resting echocardiogram. They also required a lower heart rate for the same amount of work during a moderate-intensity exercise stress test when compared to patients taking C8. There was no difference in TEE, phosphocreatine recovery, body composition, incidence of rhabdomyolysis, or any secondary outcome measures between the groups. C7 improved LV ejection fraction and reduced LV mass at rest, as well as lowering heart rate during exercise among patients with LC-FAODs. Clinicaltrials.gov NCT01379625.

  9. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis

    SciTech Connect

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2016-11-04

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.

  10. Ganglioside-binding specificities of E. coli enterotoxin LT-IIc: Importance of long-chain fatty acyl ceramide

    PubMed Central

    Berenson, Charles S; Nawar, Hesham F; Kruzel, Ragina L; Mandell, Lorrie M; Connell, Terry D

    2013-01-01

    Bacterial heat-labile (LT) enterotoxins signal through tightly regulated interactions with host cell gangliosides. LT-IIa and LT-IIb of Escherichia coli bind preferentially to gangliosides with a NeuAcα2-3Galβ1-3GalNAc terminus, with key distinctions in specificity. LT-IIc, a newly discovered E. coli LT, is comprised of an A polypeptide with high homology, and a B polypeptide with moderate homology, to LT-IIa and LT-IIb. LT-IIc is less cytotoxic than LT-IIa and LT-IIb. We theorized that LT-IIc–host cell interaction is regulated by specific structural attributes of immune cell ganglioside receptors and designed experiments to test this hypothesis. Overlay immunoblotting to a diverse array of neural and macrophage gangliosides indicated that LT-IIc bound to a restrictive range of gangliosides, each possessing a NeuAcα2-3Galβ1-3GalNAc with a requisite terminal sialic acid. LT-IIc did not bind to GM1a with short-chain fatty acyl ceramides. Affinity overlay immunoblots, constructed to a diverse array of known ganglioside structures of murine peritoneal macrophages, established that LT-IIc bound to GM1a comprised of long-chain fatty acyl ceramides. Findings were confirmed with LT-IIc also binding to GM1a of RAW264.7 cells, comprised of a long-chain fatty acyl ceramide. Thus, LT-IIc-ganglioside binding differs distinctly from that of LT-IIa and LT-IIb. LT-IIc binding is not just dependent on carbohydrate composition, but also upon the orientation of the oligosaccharide portion of GM1a by the ceramide moiety. These studies are the first demonstration of LT-ganglioside dependence upon ceramide composition and underscore the contribution of long-chain fatty acyl ceramides to host cell interactions. PMID:22917572

  11. Ganglioside-binding specificities of E. coli enterotoxin LT-IIc: Importance of long-chain fatty acyl ceramide.

    PubMed

    Berenson, Charles S; Nawar, Hesham F; Kruzel, Ragina L; Mandell, Lorrie M; Connell, Terry D

    2013-01-01

    Bacterial heat-labile (LT) enterotoxins signal through tightly regulated interactions with host cell gangliosides. LT-IIa and LT-IIb of Escherichia coli bind preferentially to gangliosides with a NeuAcα2-3Galβ1-3GalNAc terminus, with key distinctions in specificity. LT-IIc, a newly discovered E. coli LT, is comprised of an A polypeptide with high homology, and a B polypeptide with moderate homology, to LT-IIa and LT-IIb. LT-IIc is less cytotoxic than LT-IIa and LT-IIb. We theorized that LT-IIc-host cell interaction is regulated by specific structural attributes of immune cell ganglioside receptors and designed experiments to test this hypothesis. Overlay immunoblotting to a diverse array of neural and macrophage gangliosides indicated that LT-IIc bound to a restrictive range of gangliosides, each possessing a NeuAcα2-3Galβ1-3GalNAc with a requisite terminal sialic acid. LT-IIc did not bind to GM1a with short-chain fatty acyl ceramides. Affinity overlay immunoblots, constructed to a diverse array of known ganglioside structures of murine peritoneal macrophages, established that LT-IIc bound to GM1a comprised of long-chain fatty acyl ceramides. Findings were confirmed with LT-IIc also binding to GM1a of RAW264.7 cells, comprised of a long-chain fatty acyl ceramide. Thus, LT-IIc-ganglioside binding differs distinctly from that of LT-IIa and LT-IIb. LT-IIc binding is not just dependent on carbohydrate composition, but also upon the orientation of the oligosaccharide portion of GM1a by the ceramide moiety. These studies are the first demonstration of LT-ganglioside dependence upon ceramide composition and underscore the contribution of long-chain fatty acyl ceramides to host cell interactions.

  12. APOE ε4 and the associations of seafood and long-chain omega-3 fatty acids with cognitive decline.

    PubMed

    van de Rest, Ondine; Wang, Yamin; Barnes, Lisa L; Tangney, Christine; Bennett, David A; Morris, Martha Clare

    2016-05-31

    To examine the association between consumption of seafood and long-chain n-3 fatty acids with change in 5 cognitive domains over an average of 4.9 years. From an ongoing longitudinal, community-based epidemiologic study of aging and dementia (the Rush Memory and Aging Project), we included 915 participants (age 81.4 ± 7.2 years, 25% men) who had completed at least one follow-up cognitive assessment and dietary data. Diet was assessed by semiquantitative food frequency questionnaire. Scores for global cognitive function and 5 cognitive domains (episodic, semantic, and working memory, perceptual speed, and visuospatial ability) were assessed using 19 cognitive tests. Mixed models adjusted for multiple risk factors of cognitive change were used to assess the associations. Consumption of seafood was associated with slower decline in semantic memory (β = 0.024; p = 0.03) and perceptual speed (β = 0.020; p = 0.05) in separate models adjusted for age, sex, education, participation in cognitive activities, physical activity, alcohol consumption, smoking, and total energy intake. In secondary analyses, APOE ε4 carriers demonstrated slower rates of decline in global cognition and in multiple cognitive domains with weekly seafood consumption and with moderate to high long-chain n-3 fatty acid intake from food. These associations were not present in APOE ε4 noncarriers. Higher intake levels of α-linolenic acid were associated with slower global cognitive decline, but also only in APOE ε4 carriers. These results suggest protective relations of one meal per week of seafood and long-chain n-3 fatty acids against decline in multiple cognitive domains. The role of APOE ε4 in this association needs further study. © 2016 American Academy of Neurology.

  13. Metabolic and endocrine effects of long-chain versus essential omega-3 polyunsaturated fatty acids in polycystic ovary syndrome.

    PubMed

    Vargas, M Luisa; Almario, Rogelio U; Buchan, Wendy; Kim, Kyoungmi; Karakas, Sidika E

    2011-12-01

    The objective of the study was to compare the effects of essential vs long-chain omega (n)-3 polyunsaturated fatty acids (PUFAs) in polycystic ovary syndrome. In this 6-week, prospective, double-blinded, placebo (soybean oil)-controlled study, 51 completers received 3.5 g n-3 PUFA per day (essential PUFA from flaxseed oil or long-chain PUFA from fish oil). Anthropometric variables, cardiovascular risk factors, and androgens were measured; oral glucose tolerance test (OGTT) and frequently sampled intravenous GTT (IVGTT) were conducted at baseline and 6 weeks. Between-group comparisons showed significant differences in serum triglyceride response (P = .0368), whereas the changes in disposition index also tended to differ (P = .0621). When within-group changes (after vs before intervention) were considered, fish oil and flaxseed oil lowered serum triglyceride (P = .0154 and P = .0176, respectively). Fish oil increased glucose at 120 minutes of OGTT (P = .0355), decreased the Matsuda index (P = .0378), and tended to decrease acute insulin response during IVGTT (P = .0871). Soybean oil increased glucose at 30 (P = .0030) and 60 minutes (P = .0121) and AUC for glucose (P = .0122) during OGTT, tended to decrease acute insulin response during IVGTT (P = .0848), reduced testosterone (P = .0216), and tended to reduce sex hormone-binding globulin (P = .0858). Fasting glucose, insulin, adiponectin, leptin, or high-sensitivity C-reactive protein did not change with any intervention. Long-chain vs essential n-3 PUFA-rich oils have distinct metabolic and endocrine effects in polycystic ovary syndrome; and therefore, they should not be used interchangeably.

  14. The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation.

    PubMed

    Callaghan, A V; Morris, B E L; Pereira, I A C; McInerney, M J; Austin, R N; Groves, J T; Kukor, J J; Suflita, J M; Young, L Y; Zylstra, G J; Wawrik, B

    2012-01-01

    Desulfatibacillum alkenivorans AK-01 serves as a model organism for anaerobic alkane biodegradation because of its distinctive biochemistry and metabolic versatility. The D. alkenivorans genome provides a blueprint for understanding the genetic systems involved in alkane metabolism including substrate activation, CoA ligation, carbon-skeleton rearrangement and decarboxylation. Genomic analysis suggested a route to regenerate the fumarate needed for alkane activation via methylmalonyl-CoA and predicted the capability for syntrophic alkane metabolism, which was experimentally verified. Pathways involved in the oxidation of alkanes, alcohols, organic acids and n-saturated fatty acids coupled to sulfate reduction and the ability to grow chemolithoautotrophically were predicted. A complement of genes for motility and oxygen detoxification suggests that D. alkenivorans may be physiologically adapted to a wide range of environmental conditions. The D. alkenivorans genome serves as a platform for further study of anaerobic, hydrocarbon-oxidizing microorganisms and their roles in bioremediation, energy recovery and global carbon cycling.

  15. Acute fatty liver of pregnancy and neonatal long-chain 3-hydroxyacyl-coenzyme A dehydrogenase (LCHAD) deficiency.

    PubMed

    Gutiérrez Junquera, Carolina; Balmaseda, Elena; Gil, Esther; Martínez, Andrés; Sorli, Moisés; Cuartero, Isabel; Merinero, Begoña; Ugarte, Magdalena

    2009-01-01

    Here we report a 7-month-old girl with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase (LCHAD) deficiency with hypoketotic hypoglycemia; the mother had a history of acute fatty liver in a previous pregnancy leading to fetal death at 34 weeks of gestation. The misense mutation 1528G > C was detected in both alleles in the proband and in one allele in both parents. We emphasize that screening for fatty acid oxidation disorders and specifically LCHAD deficiency should be performed in newborns from mothers with hepatic complications during pregnancy such as acute fatty liver of pregnancy or severe or recurrent HELLP syndrome.

  16. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long-Chain Alkenes.

    PubMed

    Passananti, Monica; Kong, Lingdong; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; Chen, Jianmin; Donaldson, D James; George, Christian

    2016-08-22

    The heterogeneous reaction between SO2 and unsaturated compounds results in the efficient production of organosulfates for several fatty acids and long-chain alkenes. The presence of an acid group, the physical state of the reactants (solid or liquid), the nature of the double bond (cis, trans, terminal), and the use of light irradiation all have an impact on the reaction rate. The reaction was investigated using different set-ups (coated flow tube, aerosol flow tube, and diffuse reflectance infrared Fourier transform cell). The reaction products were identified by high-resolution mass spectrometry and the impact of this reaction on organosulfate formation in the atmosphere is discussed.

  17. Fast convergence to equilibrium for long-chain polymer melts using a MD/continuum hybrid method.

    PubMed

    Senda, Yasuhiro; Fujio, Miyuki; Shimamura, Shuji; Blomqvist, Janne; Nieminen, Risto M

    2012-10-21

    Effective and fast convergence toward an equilibrium state for long-chain polymer melts is realized by a hybrid method coupling molecular dynamics and the elastic continuum. The required simulation time to achieve the equilibrium state is reduced compared with conventional equilibration methods. The polymers move on a wide range phase space due to large-scale fluctuation generated by the elastic continuum. A variety of chain structures is generated in the polymer melt which results in the fast convergence to the equilibrium state.

  18. Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: a review.

    PubMed

    Heinze, Verónica M; Actis, Adriana B

    2012-02-01

    The role of dietary fatty acids on cancer is still controversial. To examine the current literature on the protective role of conjugated linoleic acid (CLA) and marine long-chain fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and the risk of breast and prostate cancer, data from 41 case-control and cohort studies and relevant in vitro and animal experiments were included in this 2000-2010 revision. Epidemiological studies on CLA intake or its tissue concentration related to breast and prostate tumorigenesis are not conclusive; EPA and DHA intake have shown important inverse associations just in some studies. Additional research on the analysed association is required.

  19. Surface passivation of (100) GaSb using self-assembled monolayers of long-chain octadecanethiol

    SciTech Connect

    Papis-Polakowska, E. Kaniewski, J.; Jurenczyk, J.; Jasik, A.; Czuba, K.; Szade, J.

    2016-05-15

    The passivation of (100) GaSb surface was investigated by means of the long-chain octadecanethiol (ODT) self-assembled monolayer (SAM). The properties of ODT SAM on (100) GaSb were characterized by the atomic force microscopy using Kelvin probe force microscopy mode and X-ray photoelectron spectroscopy. The chemical treatment of 10 mM ODT-C{sub 2}H{sub 5}OH has been applied to the passivation of a type-II superlattice InAs/GaSb photodetector. The electrical measurements indicate that the current density was reduced by one order of magnitude as compared to an unpassivated photodetector.

  20. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria.

    PubMed

    Tonin, Anelise M; Amaral, Alexandre U; Busanello, Estela N B; Grings, Mateus; Castilho, Roger F; Wajner, Moacir

    2013-02-01

    Cardiomyopathy is a common clinical feature of some inherited disorders of mitochondrial fatty acid β-oxidation including mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies. Since individuals affected by these disorders present tissue accumulation of various fatty acids, including long-chain 3-hydroxy fatty acids, in the present study we investigated the effect of 3-hydroxydecanoic (3 HDCA), 3-hydroxydodecanoic (3 HDDA), 3-hydroxytetradecanoic (3 HTA) and 3-hydroxypalmitic (3 HPA) acids on mitochondrial oxidative metabolism, estimated by oximetry, NAD(P)H content, hydrogen peroxide production, membrane potential (ΔΨ) and swelling in rat heart mitochondrial preparations. We observed that 3 HTA and 3 HPA increased resting respiration and diminished the respiratory control and ADP/O ratios using glutamate/malate or succinate as substrates. Furthermore, 3 HDDA, 3 HTA and 3 HPA decreased ΔΨ, the matrix NAD(P)H pool and hydrogen peroxide production. These data indicate that these fatty acids behave as uncouplers of oxidative phosphorylation. We also verified that 3 HTA-induced uncoupling-effect was not mediated by the adenine nucleotide translocator and that this fatty acid induced the mitochondrial permeability transition pore opening in calcium-loaded organelles since cyclosporin A prevented the reduction of mitochondrial ΔΨ and swelling provoked by 3 HTA. The present data indicate that major 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies behave as strong uncouplers of oxidative phosphorylation potentially impairing heart energy homeostasis.

  1. Acetate yield increased by gas circulation and fed-batch fermentation in a novel syntrophic acetogenesis and homoacetogenesis coupling system.

    PubMed

    Nie, YanQiu; Liu, He; Du, GuoCheng; Chen, Jian

    2008-05-01

    Gas circulation and fed-batch fermentation were applied for enhancing acetate production by mixed culture in a novel syntrophic acetogenesis and homoacetogenesis coupling system. The results show that the acetate yield in the fed-batch test with gas circulation is about 47% higher than that in the batch test without gas circulation. The fed-batch method helps to increase acetate yield by balancing hydrogen production in the acetogenesis phase (the 1st phase) and hydrogen consumption in the homoacetogenesis phase (the 2nd phase) of the coupling system. Gas circulation enhances mass transfer between different phases of the coupling system, hence resulting in increased homoacetogenesis in the 2nd phase and relief of the products (H2) inhibition to syntrophic acetogenesis in the 1st phase. The effects of gas circulation and fed-batch fermentation on direct glucose conversion to acetate were also investigated.

  2. Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire.

    PubMed

    Castro, L Filipe C; Tocher, Douglas R; Monroig, Oscar

    2016-04-01

    Long-chain polyunsaturated fatty acids (LC-PUFA) are major components of complex lipid molecules and are also involved in numerous critical biological processes. Studies conducted mainly in vertebrates have demonstrated that LC-PUFA can be biosynthesized through the concerted action of two sets of enzymes, namely fatty acyl desaturases (Fads) and elongation of very long-chain fatty acid (Elovl) proteins. While LC-PUFA research is a thriving field, mainly focused on human health, an integrated view regarding the evolution of LC-PUFA biosynthetic genetic machinery in chordates is yet to be produced. Particularly important is to understand whether lineage specific life history trajectories, as well as major biological transitions, or particular genomic processes such as genome duplications have impacted the evolution of LC-PUFA biosynthetic pathways. Here we review the gene repertoire of Fads and Elovl in chordate genomes and the diversity of substrate specificities acquired during evolution. We take advantage of the magnitude of genomic and functional data to show that combination duplication processes and functional plasticity have generated a wide diversity of physiological capacities in extant lineages. A clear evolutionary framework is provided, which will be instrumental for the full clarification of functional capacities between the various vertebrate groups.

  3. Adrenoleukodystrophy protein enhances association of very long-chain acyl-coenzyme A synthetase with the peroxisome.

    PubMed

    Yamada, T; Taniwaki, T; Shinnoh, N; Uchiyama, A; Shimozawa, N; Ohyagi, Y; Asahara, H; Kira, J

    1999-02-01

    To clarify the function of adrenoleukodystrophy protein (ALDP) using our ALDP-deficient mice established by gene targeting. X-linked adrenoleukodystrophy (ALD) is characterized biochemically by the accumulation of very long-chain fatty acids (VLCFA) in tissues and body fluids, and is caused by impairment of peroxisomal beta-oxidation. In ALD, very long-chain acyl-coenzyme A synthetase (VLACS), which is necessary for peroxisomal beta-oxidation, does not function. The ALDP-deficient mice and C57BL/6J mice were used. VLACS or ALDP were transiently expressed by lipofection in murine fibroblasts, and VLCFA beta-oxidation was assayed. Liver peroxisomes were purified by sequential centrifugations and a Nycodenz gradient centrifugation. The peroxisomal localization of VLACS was compared between the mutant and control mice using a Western blot analysis. Impairment of VLCFA beta-oxidation in ALDP-deficient fibroblasts was not corrected by the additional expression of VLACS alone but was by the coexpression of VLACS and ALDP. Although the tissue-specific expression of VLACS was similar in ALDP-deficient and normal mice, peroxisomal VLACS was clearly lower in ALDP-deficient than in normal mice. ALDP plays a role in the peroxisomal localization of VLACS, and VLACS does not function unless localized in the peroxisome.

  4. The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy

    PubMed Central

    Ofman, Rob; Dijkstra, Inge M E; van Roermund, Carlo W T; Burger, Nena; Turkenburg, Marjolein; van Cruchten, Arno; van Engen, Catherine E; Wanders, Ronald J A; Kemp, Stephan

    2010-01-01

    X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). X-ALD is characterized by the accumulation of very long-chain fatty acids (VLCFA; ≥C24) in plasma and tissues. In this manuscript we provide insight into the pathway underlying the elevated levels of C26:0 in X-ALD. ALDP transports VLCFacyl-CoA across the peroxisomal membrane. A deficiency in ALDP impairs peroxisomal β-oxidation of VLCFA but also raises cytosolic levels of VLCFacyl-CoA which are substrate for further elongation. We identify ELOVL1 (elongation of very-long-chain-fatty acids) as the single elongase catalysing the synthesis of both saturated VLCFA (C26:0) and mono-unsaturated VLCFA (C26:1). ELOVL1 expression is not increased in X-ALD fibroblasts suggesting that increased levels of C26:0 result from increased substrate availability due to the primary deficiency in ALDP. Importantly, ELOVL1 knockdown reduces elongation of C22:0 to C26:0 and lowers C26:0 levels in X-ALD fibroblasts. Given the likely pathogenic effects of high C26:0 levels, our findings highlight the potential of modulating ELOVL1 activity in the treatment of X-ALD. PMID:20166112

  5. The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy.

    PubMed

    Ofman, Rob; Dijkstra, Inge M E; van Roermund, Carlo W T; Burger, Nena; Turkenburg, Marjolein; van Cruchten, Arno; van Engen, Catherine E; Wanders, Ronald J A; Kemp, Stephan

    2010-03-01

    X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). X-ALD is characterized by the accumulation of very long-chain fatty acids (VLCFA; > or =C24) in plasma and tissues. In this manuscript we provide insight into the pathway underlying the elevated levels of C26:0 in X-ALD. ALDP transports VLCFacyl-CoA across the peroxisomal membrane. A deficiency in ALDP impairs peroxisomal beta-oxidation of VLCFA but also raises cytosolic levels of VLCFacyl-CoA which are substrate for further elongation. We identify ELOVL1 (elongation of very-long-chain-fatty acids) as the single elongase catalysing the synthesis of both saturated VLCFA (C26:0) and mono-unsaturated VLCFA (C26:1). ELOVL1 expression is not increased in X-ALD fibroblasts suggesting that increased levels of C26:0 result from increased substrate availability due to the primary deficiency in ALDP. Importantly, ELOVL1 knockdown reduces elongation of C22:0 to C26:0 and lowers C26:0 levels in X-ALD fibroblasts. Given the likely pathogenic effects of high C26:0 levels, our findings highlight the potential of modulating ELOVL1 activity in the treatment of X-ALD.

  6. Medium- and long-chain triacylglycerols reduce body fat and blood triacylglycerols in hypertriacylglycerolemic, overweight but not obese, Chinese individuals.

    PubMed

    Zhang, Yuehong; Liu, Yinghua; Wang, Jin; Zhang, Rongxin; Jing, Hongjiang; Yu, Xiaoming; Zhang, Yong; Xu, Qin; Zhang, Jieying; Zheng, Zixin; Nosaka, Naohisa; Arai, Chie; Kasai, Michio; Aoyama, Toshiaki; Wu, Jian; Xue, Changyong

    2010-06-01

    In contrast to the consumption of long-chain triacylglycerols (LCT), consumption of medium- and long-chain triacylglycerols (MLCT) reduces the body fat and blood triacylglycerols (TAG) level in hypertriacylglycerolemic Chinese individuals. These responses may be affected by BMI because of obesity-induced insulin resistance. We aimed to compare the effects of consuming MLCT or LCT on reducing body fat and blood TAG level in hypertriacylglycerolemic Chinese subjects with different ranges of BMI. Employing a double-blind, randomized and controlled protocol, 101 hypertriacylglycerolemic subjects (including 67 men and 34 women) were randomly allocated to ingest 25-30 g/day MLCT or LCT oil as the only cooking oil for 8 consecutive weeks. Anthropometric measurements of body weight, BMI, body fat, WC, HC, blood biochemical variables, and subcutaneous fat area and visceral fat area in the abdomen were measured at week 0 and 8. As compared to subjects with BMI 24-28 kg/m(2) in the LCT group, corresponding subjects in the MLCT group showed significantly greater decrease in body weight, BMI, body fat, WC, ratio of WC to HC, total fat area and subcutaneous fat area in the abdomen, as well as blood TAG and LDL-C levels at week 8. Based upon our results, consumption of MLCT oil may reduce body weight, body fat, and blood TAG and LDL-C levels in overweight hypertriacylglycerolemic Chinese subjects but may not induce these changes in normal or obese hypertriacylglycerolemic subjects.

  7. Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids.

    PubMed

    Tvrdik, P; Westerberg, R; Silve, S; Asadi, A; Jakobsson, A; Cannon, B; Loison, G; Jacobsson, A

    2000-05-01

    Whereas the physiological significance of microsomal fatty acid elongation is generally appreciated, its molecular nature is poorly understood. Here, we describe tissue-specific regulation of a novel mouse gene family encoding components implicated in the synthesis of very long chain fatty acids. The Ssc1 gene appears to be ubiquitously expressed, whereas Ssc2 and Cig30 show a restricted expression pattern. Their translation products are all integral membrane proteins with five putative transmembrane domains. By complementing the homologous yeast mutants, we found that Ssc1 could rescue normal sphingolipid synthesis in the sur4/elo3 mutant lacking the ability to synthesize cerotic acid (C(26:0)). Similarly, Cig30 reverted the phenotype of the fen1/elo2 mutant that has reduced levels of fatty acids in the C(20)-C(24) range. Further, we show that Ssc1 mRNA levels were markedly decreased in the brains of myelin-deficient mouse mutants known to have very low fatty acid chain elongation activity. Conversely, the dramatic induction of Cig30 expression during brown fat recruitment coincided with elevated elongation activity. Our results strongly implicate this new mammalian gene family in tissue-specific synthesis of very long chain fatty acids and sphingolipids.

  8. CYP4F2 affects phenotypic outcome in adrenoleukodystrophy by modulating the clearance of very long-chain fatty acids.

    PubMed

    van Engen, Catherine E; Ofman, Rob; Dijkstra, Inge M E; van Goethem, Tessa Jacobs; Verheij, Eveline; Varin, Jennifer; Vidaud, Michel; Wanders, Ronald J A; Aubourg, Patrick; Kemp, Stephan; Barbier, Mathieu

    2016-10-01

    X-linked adrenoleukodystrophy (ALD) is a severe neurodegenerative disorder caused by the accumulation of very long-chain fatty acids (VLCFA) due to mutations in the ABCD1 gene. The phenotypic spectrum ranges from a fatal cerebral demyelinating disease in childhood (cerebral ALD) to a progressive myelopathy without cerebral involvement in adulthood (adrenomyeloneuropathy). Because ABCD1 mutations have no predictive value with respect to clinical outcome a role for modifier genes was postulated. We report that the CYP4F2 polymorphism rs2108622 increases the risk of developing cerebral ALD in Caucasian patients. The rs2108622 polymorphism (c.1297G>A) results in an amino acid substitution valine for methionine at position 433 (p.V433M). Using cellular models of VLCFA accumulation, we show that p.V433M decreases the conversion of VLCFA into very long-chain dicarboxylic acids by ω-oxidation, a potential escape route for the deficient peroxisomal β-oxidation of VLCFA in ALD. Although p.V433M does not affect the catalytic activity of CYP4F2 it reduces CYP4F2 protein levels markedly. These findings open perspectives for therapeutic interventions in a disease with currently limited treatment options. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins

    SciTech Connect

    Xiang, Yizhi; Kruse, Norbert

    2016-10-06

    Here, the catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ~97% can be n-aldehydes. While the product slate contains ~60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson–Schulz–Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies.

  10. Lipidomic analyses of the mouse brain after antidepressant treatment: evidence for endogenous release of long-chain fatty acids?

    PubMed

    Lee, Lynette Hui-Wen; Shui, Guanghou; Farooqui, Akhlaq A; Wenk, Markus R; Tan, Chay-Hoon; Ong, Wei-Yi

    2009-08-01

    Recently, there has been considerable interest in a possible link between changes in brain polyunsaturated fatty acids, neural membrane phospholipid degradation, serotonergic neurotransmission, and depression. The present study aims to examine effects of antidepressants on lipids in different regions of the brain at individual molecular species level, using the novel technique of lipidomics. Balb/C mice received daily intraperitoneal (i.p.) injections of 10 mg/kg of the antidepressants maprotiline, fluoxetine and paroxetine for 4 wk. The prefrontal cortex, hippocampus, striatum and cerebellum were harvested, and lipid profiles compared to those of saline-injected mice. Treatment with maprotiline and paroxetine, but not fluoxetine, resulted in significant decreases in phosphatidylcholine (PC) species, PC36:1, PC38:3, PC40:2p, PC40:6, PC40:5, PC42:7p, PC42:6p and PC42:5p in the prefrontal neocortex. The decreases in phospholipids were accompanied by increases in lysophospholipid species, lysoPC16:0, lysoPC18:2 and lysoPC18:0 in the prefrontal cortex, indicating increase in phospholipase A2 activity and possible release of long-chain fatty acids. Maprotiline and paroxetine treatment also resulted in decreases in sphingomyelin and increases in several ceramide species in the prefrontal cortex. It is postulated that endogenous release of long-chain fatty acids may be related to the mechanism of action of maprotiline and paroxetine.

  11. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins

    DOE PAGES

    Xiang, Yizhi; Kruse, Norbert

    2016-10-06

    Here, the catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ~97% can be n-aldehydes. While the product slate contains ~60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson–Schulz–Flory behaviour, independentmore » of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies.« less

  12. The influence of the long chain fatty acid on the antagonistic activities of Rhizobium sin-1 lipid A

    PubMed Central

    Zhang, Yanghui; Wolfert, Margreet A.; Boons, Geert-Jan

    2007-01-01

    The lipid A from nitrogen-fixing bacterial species R. sin-1 is structurally unusual due to lack of phosphates and the presence of a 2-aminogluconolactone and a very long chain fatty acid, 27-hydroxyoctacosanoic acid (27OHC28:0), moiety. This structurally unusual lipid A can antagonize TNF-α production by human monocytes induced by E. coli LPS. To establish the relevance of the unusual long chain 27-hydroxyoctacosanoic acid for antagonistic properties, a highly convergent strategy for the synthesis of several derivatives of the lipid A of Rhizobium sin-1 has been developed. Compound 1 is a natural R. sin-1 lipid A having a 27-hydroxyoctacosanoic acid at C-2′, compound 2 contains an octacosanoic acid moiety at this position, and compound 3 is modified by a short chain tetradecanoic acid. Cellular activation studies with a human monocytic cell line have shown that the octacosanoic acid is important for optimal antagonistic properties. The hydroxyl of the natural 27-hydroxyoctacosanoic moiety does, however, not account for inhibitory activity. The resulting structure activity relationships are important for the design of compounds for the treatment of septic shock. PMID:17513113

  13. Effects of ethanol and long-chain ethyl ester concentrations on volatile partitioning in a whisky model system.

    PubMed

    Boothroyd, Emily L; Linforth, Robert S T; Cook, David J

    2012-10-10

    Ethanolic atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was used to analyze the headspace concentrations of a test set of 14 whisky volatile compounds above a series of aqueous ethanolic solutions differing in alcohol content (5-40% ABV) and with regard to concentration of ethyl hexadecanoate (0-500 mg/L). The latter was selected to represent the long-chain ethyl esters found at various concentrations in new-make spirit. Headspace ion intensities were modeled against ethanol and ethyl hexadecanoate concentrations as factors. A separate model was prepared for each compound. Not surprisingly, ethanol content in the range of 5-40% ABV had a significant effect (P < 0.0001) on headspace volatile concentrations of all volatile compounds, whereas the ethyl hexadecanoate concentration had a selective effect of reducing headspace concentrations of the more hydrophobic compounds (log P > 2.5). This finding is discussed in terms of the "structuring" effects of ethyl hexadecanoate when present above critical micelle concentration, leading to the selective incorporation of hydrophobic volatile compounds into the interior of micelle-like structures. Data presented illustrate that dilution of whiskies to 23% ABV for "nosing" in the presence of long-chain ethyl esters is likely to change the balance of volatile compounds in the headspace and thus the perceived aroma character.

  14. Visual functions in phenylketonuria-evaluating the dopamine and long-chain polyunsaturated fatty acids depletion hypotheses.

    PubMed

    Gramer, Gwendolyn; Förl, Birgit; Springer, Christina; Weimer, Petra; Haege, Gisela; Mackensen, Friederike; Müller, Edith; Völcker, Hans Eberhard; Hoffmann, Georg Friedrich; Lindner, Martin; Krastel, Hermann; Burgard, Peter

    2013-01-01

    In phenylketonuria presymptomatic treatment following newborn screening prevents severe mental and physical impairment. The reasons for subtle impairments of cerebral functions despite early treatment remain unclear. We assessed a broad spectrum of visual functions in early-treated patients with phenylketonuria and evaluated two hypotheses-the dopamine and the long-chain polyunsaturated fatty acids (LCPUFAs) depletion hypotheses. Contrast sensitivity, colour vision, electroretinography, frequency doubling technology campimetry (FDT), and their relation with blood phenylalanine and docosahexaenoic acid levels were assessed in 36 patients with phenylketonuria and 18 age-matched healthy controls. Contrast sensitivity was significantly lower and total error scores in colour vision significantly higher in patients than controls. Electroretinography results differed significantly between patients and controls. We found a trend for the effect of phenylalanine-levels on contrast sensitivity and a significant effect on colour vision/FDT results. Docosahexaenoic acid levels in erythrocytes were not associated with visual functions. This is the first evaluation of visual functions in phenylketonuria using a comprehensive ophthalmological test battery. We found no evidence supporting the long-chain polyunsaturated fatty acids depletion hypothesis. However, the effect of phenylalanine-levels on visual functions suggests that imbalance between phenylalanine and tyrosine may affect retinal dopamine levels in phenylketonuria. This is supported by the similar patterns of visual functions in patients with phenylketonuria observed in our study and patients with Parkinson's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Determination of individual long-chain fatty acyl-CoA esters in heart and skeletal muscle.

    PubMed

    Molaparast-Saless, F; Shrago, E; Spennetta, T L; Donatello, S; Kneeland, L M; Nellis, S H; Liedtke, A J

    1988-05-01

    A method has been developed for determination of individual long-chain fatty acyl-CoA esters from heart and skeletal muscle using high performance liquid chromatography (HPLC). The esters were extracted from freeze-clamped tissue of pig and rat hearts and rat skeletal muscle for analysis on a radially compressed C18 5mu reverse-phase column. Nine peaks in the extract with carbon chain lengths from C12 to C20 that subsequently disappeared on alkaline hydrolysis were identified. The major acyl-CoA peaks were 14:1, 18:2, 16:0 and 18:1 and additionally in rat heart 18:0. Total long-chain acyl-CoA esters obtained by summation of the individual molecular species was 11.34 +/- 1.48 nmol/g wet wt. pig heart; 14.51 +/- 2.11 nmol/g wet wt. in rat heart, and 4.35 +/- 0.71 nmol/g wet wt. in rat skeletal muscle. These values were approximately 132% of those obtained using a separate procedure that measured total CoA by HPLC after alkaline hydrolysis of the esters. The described method demonstrates the quantitation of individual acyl-CoA species in muscle tissue. Therefore, it has a number of advantages in that it permits information to be obtained on the individual molecular species under various nutritional and metabolic conditions.

  16. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins

    NASA Astrophysics Data System (ADS)

    Xiang, Yizhi; Kruse, Norbert

    2016-10-01

    The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ~97% can be n-aldehydes. While the product slate contains ~60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson-Schulz-Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies.

  17. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins.

    PubMed

    Xiang, Yizhi; Kruse, Norbert

    2016-10-06

    The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ∼97% can be n-aldehydes. While the product slate contains ∼60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson-Schulz-Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies.

  18. Fish Oil Finishing Diet Maintains Optimal n-3 Long-Chain Fatty Acid Content in European Whitefish (Coregonus lavaretus).

    PubMed

    Suomela, Jukka-Pekka; Tarvainen, Marko; Kallio, Heikki; Airaksinen, Susanna

    2017-08-31

    This study examined the effect of substituting vegetable oil for fish oil in feed, with subsequent re-introduction of fish oil-rich feed (finishing feeding) in late stages of growth, on the fatty acids of cultivated European whitefish (Coregonus lavaretus). Restorative finishing feeding with fish oil-rich feed for 15 and 25 weeks was sufficient to change the total content of nutritionally valuable long-chain n-3 fatty acids, eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3), to correspond to that of fish fed the fish oil-rich feed throughout their lifespan. Under natural conditions, 15 and 25 weeks correspond to weight gains of 75% and 100% (i.e. doubling), respectively. Also, the fatty acid profile of the fish was restored after finishing periods of 15 and 25 weeks. Limiting the use of fish oil by lowering the overall fat content of the feed (no vegetable oil added) resulted in a decrease in the long-chain n-3 fatty acids. Based on the results, after receiving a vegetable oil-rich diet, restorative fish oil-rich feeding in the last stages of growth in European whitefish is nutritionally justified in order to balance nutritional gain for consumers with sustainable use of finite marine oils. The results encourage commercial efforts to further utilize and optimize finishing feeding practices.

  19. Characterization of carnitine and fatty acid metabolism in the long-chain acyl-CoA dehydrogenase-deficient mouse

    PubMed Central

    van Vlies, Naomi; Tian, Liqun; Overmars, Henk; Bootsma, Albert H.; Kulik, Willem; Wanders, Ronald J. A.; Wood, Philip A.; Vaz, Frédéric M.

    2004-01-01

    In the present paper, we describe a novel method which enables the analysis of tissue acylcarnitines and carnitine biosynthesis intermediates in the same sample. This method was used to investigate the carnitine and fatty acid metabolism in wild-type and LCAD−/− (long-chain acyl-CoA dehydrogenase-deficient) mice. In agreement with previous results in plasma and bile, we found accumulation of the characteristic C14:1-acylcarnitine in all investigated tissues from LCAD−/− mice. Surprisingly, quantitatively relevant levels of 3-hydroxyacylcarnitines were found to be present in heart, muscle and brain in wild-type mice, suggesting that, in these tissues, long-chain 3-hydroxyacyl-CoA dehydrogenase is rate-limiting for mitochondrial β-oxidation. The 3-hydroxyacylcarnitines were absent in LCAD−/− tissues, indicating that, in this situation, the β-oxidation flux is limited by the LCAD deficiency. A profound deficiency of acetylcarnitine was observed in LCAD−/− hearts, which most likely corresponds with low cardiac levels of acetyl-CoA. Since there was no carnitine deficiency and only a marginal elevation of potentially cardiotoxic acylcarnitines, we conclude from these data that the cardiomyopathy in the LCAD−/− mouse is caused primarily by a severe energy deficiency in the heart, stressing the important role of LCAD in cardiac fatty acid metabolism in the mouse. PMID:15535801

  20. Long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies induce oxidative stress in rat brain.

    PubMed

    Tonin, Anelise M; Grings, Mateus; Busanello, Estela N B; Moura, Alana P; Ferreira, Gustavo C; Viegas, Carolina M; Fernandes, Carolina G; Schuck, Patrícia F; Wajner, Moacir

    2010-07-01

    Accumulation of long-chain 3-hydroxy fatty acids is the biochemical hallmark of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. These disorders are clinically characterized by neurological symptoms, such as convulsions and lethargy, as well as by cardiomyopathy and muscle weakness. In the present work we investigated the in vitro effect of 3-hydroxydodecanoic (3HDA), 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, which accumulate in these disorders, on important oxidative stress parameters in cerebral cortex of young rats in the hope to clarify the mechanisms leading to the brain damage found in patients affected by these disorders. It was first verified that these compounds significantly induced lipid peroxidation, as determined by increased thiobarbituric acid-reactive substances levels. In addition, carbonyl formation was significantly increased and sulfhydryl content decreased by 3HTA and 3HPA, which indicates that these fatty acids elicit protein oxidative damage. 3HTA and 3HPA also diminished the reduced glutathione (GSH) levels, without affecting nitrate and nitrite production. Finally, we observed that the addition of the antioxidants and free radical scavengers trolox and deferoxamine (DFO) was able to partially prevent lipid oxidative damage, whereas DFO fully prevented the reduction on GSH levels induced by 3HTA. Our present data showing that 3HDA, 3HTA and 3HPA elicit oxidative stress in rat brain indicate that oxidative damage may represent an important pathomechanism involved in the neurologic symptoms manifested by patients affected by LCHAD and MTP deficiencies.

  1. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases

    PubMed Central

    Narita, Tomomi; Naganuma, Tatsuro; Sase, Yurie; Kihara, Akio

    2016-01-01

    Transport of dietary lipids into small-intestinal epithelial cells is pathologically and nutritionally important. However, lipid uptake remains an almost unexplored research area. Although we know that long-chain bases (LCBs), constituents of sphingolipids, can enter into cells efficiently, the molecular mechanism of LCB uptake is completely unclear. Here, we found that the yeast acyl-CoA synthetases (ACSs) Faa1 and Faa4 are redundantly involved in LCB uptake. In addition to fatty acid-activating activity, transporter activity toward long-chain fatty acids (LCFAs) has been suggested for ACSs. Both LCB and LCFA transports were largely impaired in faa1Δ faa4Δ cells. Furthermore, LCB and LCFA uptakes were mutually competitive. However, the energy dependency was different for their transports. Sodium azide/2-deoxy-D-glucose treatment inhibited import of LCFA but not that of LCB. Furthermore, the ATP-AMP motif mutation FAA1 S271A largely impaired the metabolic activity and LCFA uptake, while leaving LCB import unaffected. These results indicate that only LCFA transport requires ATP. Since ACSs do not metabolize LCBs as substrates, Faa1 and Faa4 are likely directly involved in LCB transport. Furthermore, we revealed that ACSs are also involved in LCB transport in mammalian cells. Thus, our findings provide strong support for the hypothesis that ACSs directly transport LCFAs. PMID:27136724

  2. Hepatic expression of long-chain acyl-CoA synthetase 3 is upregulated in hyperlipidemic hamsters.

    PubMed

    Wu, Minhao; Liu, Haiyan; Chen, Wei; Fujimoto, Yasuyuki; Liu, Jingwen

    2009-11-01

    Members of the mammalian long-chain acyl-CoA synthetase (ACSL) family are key enzymes for cellular fatty acid metabolism that catalyze the initial step in activation of long-chain fatty acids. However, the specificity of individual isoforms of ACSL to the lipid metabolic process is not well studied. In addition, the regulation of expression of individual ACSL isoforms under hyperlipidemic conditions is largely unknown. We cloned the hamster ACSL3 cDNA coding region and generated specific antibodies recognizing the ACSL3 protein. We next observed the changes in ACSL3 mRNA and protein expression in hamsters fed a standard chow diet or a high fat and high cholesterol (HFHC) diet. HFHC feeding significantly increased ACSL3 mRNA and protein expression in liver and to a lesser extent in muscle but not in adipose, brain, heart, or testis. Additionally, ACSL3 mRNA abundance was differentially regulated by the nutritional status in different tissues with liver, muscle, and adipose being the most sensitive tissues. Importantly, the hepatic ACSL3 mRNA expression pattern in response to fasting and refeeding in hyperlipidemic hamsters differed from that observed in normal chow-fed hamsters. Together, these results provide the first in vivo evidence of altered regulation of hepatic ACSL3 expression under hyperlipidemic conditions and suggest important regulatory roles for this enzyme in lipid metabolism.

  3. Anesthetic agents in patients with very long-chain acyl-coenzyme A dehydrogenase deficiency: a literature review.

    PubMed

    Redshaw, Charlotte; Stewart, Catherine

    2014-11-01

    Very long-chain acyl-coenzyme A dehydrongenase deficiency (VLCADD) is a rare disorder of fatty acid metabolism that renders sufferers susceptible to hypoglycemia, liver failure, cardiomyopathy, and rhabdomyolysis. The literature about the management of these patients is hugely conflicting, suggesting that both propofol and volatile anesthesia should be avoided. We have reviewed the literature and have concluded that the source papers do not support the statements that volatile anesthetic agents are unsafe. The reports on rhabdomyolysis secondary to anesthesia appear to be due to inadequate supply of carbohydrate not volatile agents. Catabolism must be avoided with minimal fasting, glucose infusions based on age and weight, and attenuation of emotional and physical stress. General anesthesia appears to be protective of stress-induced catabolism and may offer benefits in children and anxious patients over regional anesthesia. Propofol has not been demonstrated to be harmful in VLCADD but is presented in an emulsion containing very long-chain fatty acids which can cause organ lipidosis and itself can inhibit mitochondrial fatty acid metabolism. It is therefore not recommended. Suxamethonium-induced myalgia may mimic symptoms of rhabdomyolysis and cause raised CK therefore should be avoided. Opioids, NSAIDS, regional anesthesia, and local anesthetic techniques have all been used without complication.

  4. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins

    PubMed Central

    Xiang, Yizhi; Kruse, Norbert

    2016-01-01

    The catalytic CO hydrogenation is one of the most versatile large-scale chemical syntheses leading to variable chemical feedstock. While traditionally mainly methanol and long-chain hydrocarbons are produced by CO hydrogenation, here we show that the same reaction can be tuned to produce long-chain n-aldehydes, 1-alcohols and olefins, as well as n-paraffins over potassium-promoted CoMn catalysts. The sum selectivity of aldehydes and alcohols is usually >50 wt% whereof up to ∼97% can be n-aldehydes. While the product slate contains ∼60% n-aldehydes at /pCO=0.5, a 65/35% slate of paraffins/alcohols is obtained at a ratio of 9. A linear Anderson–Schulz–Flory behaviour, independent of the /pCO ratio, is found for the sum of C4+ products. We advocate a synergistic interaction between a Mn5O8 oxide and a bulk Co2C phase, promoted by the presence of potassium, to be responsible for the unique product spectra in our studies. PMID:27708269

  5. Long-chain triglycerides-based self-nanoemulsifying oily formulations (SNEOFs) of darunavir with improved lymphatic targeting potential.

    PubMed

    Garg, Babita; Beg, Sarwar; Kaur, Ranjot; Kumar, Rajendra; Katare, Om Prakash; Singh, Bhupinder

    2017-09-05

    The current studies entail systematic development of SNEOFs containing long-chain triglycerides for improving lymphatic targeting of darunavir for complete inhibition of HIV progression. As per QbD-oriented approach for formulation development, the QTPP was defined and CQAs were earmarked. Preformulation equilibrium solubility and phase diagram studies, and risk assessment through FMEA studies identified Lauroglycol 90, Tween 80 and Transcutol HP as the lipid, emulgent and cosolvent, respectively, for formulating SNEOFs of darunavir. Systematic optimisation of SNEOFs was conducted using IV-optimal mixture design, and the optimised formulation was chosen through numerical desirability function. Characterisation of optimised SNEOFs exhibited globule size of 50 nm,  >85% drug release within 15 min and >75% permeation within 45 min. In vivo lymph cannulation and in situ intestinal perfusion studies indicated significant improvement in the drug absorption parameters from SNEOFs via intestinal lymphatic pathways, owing primarily to the presence of long-chain triglycerides. Also, in vivo pharmacokinetic studies in rat corroborated significant improvement in rate and extent of drug absorption into plasma vis-à-vis pure drug. In a nutshell, these studies indicate significant improvement in the biopharmaceutical attributes of a robust and stable SNEOFs formulation of darunavir for holistic management of viral loads in lymph and blood.

  6. Continuous recording of long-chain acyl-coenzyme a synthetase activity using fluorescently labeled bovine serum albumin.

    PubMed

    Demant, E J; Nystrøm, B T

    2001-08-01

    The fluorescence-based long-chain fatty acid probe BSA-HCA (bovine serum albumin labeled with 7-hydroxycoumarin-4-acetic acid) is shown to respond to binding of long-chain acyl-CoA thioesters by quenching of the 450 nm fluorescence emission. As determined by spectrofluorometric titration, binding affinities for palmitoyl-, stearoyl-, and oleoyl-CoA (Kd = 0.2-0.4 microM) are 5-10 times lower than those for the corresponding nonesterified fatty acids. In the presence of detergent (Chaps, Triton X-100, n-octylglucoside) above the critical micelle concentration, acyl-CoA partitions from BSA-HCA and into the detergent micelles. This allows BSA-HCA to be used as a fluorescent probe for continuous recording of fatty acid concentrations in detergent solution with little interference from acyl-CoA. Using a calibration of the fluorescence signal with fatty acids in the C14 to C20 chain-length range, fatty acid consumption by Pseudomonas fragi and rat liver microsomal acyl-CoA synthetase activities are measured down to 0.05 microM/min with a data sampling rate of 10 points per second. This new method provides a very promising spectrofluorometric approach to the study of acyl-CoA synthetase reaction kinetics at physiologically relevant (nM) aqueous phase concentrations of fatty acid substrates and at a time resolution that cannot be obtained in isotopic sampling or enzyme-coupled assays.

  7. Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrices by its signature lipopolysacchride branched-long-chain hydroxy fatty acids

    USGS Publications Warehouse

    Ringleberg, D.B.; Townsend, G.T.; DeWeerd, K.A.; Suflita, J.M.; White, D.C.

    1994-01-01

    Desulfomonile tiedjei is a Gram-negative sulfate-reducing bacterium capable of catalyzing aryl reductive dehalogenation reactions. Since many toxic and persistent contaminants in the subsurface are halogenated aromatic compounds, the detection and enumeration of dehalogenating microorganisms in the environment may be a useful tool for planning and evaluating bioremediation efforts. In this study, we show that D. tiedjei contains unique lipopolysaccharide branched 3-hydroxy fatty acids, unknown as yet in other bacteria, and that it is possible to detect the bacterium in inoculated aquifer sediments based on these signature lipid biomarkers. The detection of D. tiedjeiand other dehalogenating microorganisms possessing similar cellular properties in environmental matrices may be possible by this technique. Additionally, the effect of such inoculation on dehalogenation activity is examined.

  8. Potential therapeutic impact of omega-3 long chain-polyunsaturated fatty acids on inflammation markers in Duchenne muscular dystrophy: A double-blind, controlled randomized trial.

    PubMed

    Rodríguez-Cruz, Maricela; Cruz-Guzmán, Oriana Del Rocío; Almeida-Becerril, Tomás; Solís-Serna, Alan Donovan; Atilano-Miguel, Salvador; Sánchez-González, Juan Raúl; Barbosa-Cortés, Lourdes; Ruíz-Cruz, Eugenia Dolores; Huicochea, Juan Carlos; Cárdenas-Conejo, Alan; Escobar-Cedillo, Rosa Elena; Yam-Ontiveros, Carlos Alberto; Ricárdez-Marcial, Edgar F

    2017-09-23

    Duchenne Muscular Dystrophy (DMD) is the most frequent dystrophy in childhood generated by a deficiency in dystrophin. DMD is a neuromuscular disease and its clinical course comprises chronic inflammation and gradual muscle weakness. Supplementation of omega-3 long chain-Polyunsaturated Fatty Acids (ω-3 long chain-PUFA) reduces inflammatory markers in various disorders. The goal of this research was to analyze the influence of ω-3 long chain-PUFA intake on gene expression and blood inflammatory markers in boys with DMD. In a placebo-controlled, double. Blind, randomized trial, boys with DMD (n = 36) consumed 2.9 g/day of ω-3 long chain-PUFA or sunflower oil as control, in capsules, for a period of 6 months. Blood was analyzed at baseline and at months 1, 2, 3, and 6 of supplementation for expression of inflammatory markers in leukocytes and serum. There was high adherence to capsule intake (control: 95.3% ± 7.2%, and ω-3 long chain-PUFA: 97.4% ± 3.7% at month 6). Enrichment of EicosaPentaenoic Acid (EPA) and DocosaHexaenoic Acid (DHA) in erythrocytes increased significantly in patients supplemented with ω-3 long chain-PUFA compared with the placebo group during the 6 months of supplementation. Messenger RNA (mRNA) of the Nuclear Factor kappa beta (NF-κB) and its target genes InterLeukin 1 beta (IL-1β) and IL-6 was downregulated significantly (p < 0.05) in leukocytes from DMD boys supplemented with ω-3 long chain-PUFA for 6 months, compared to the placebo group. Omega-3 long chain-PUFA intake decreased the serum IL-1β (-59.5%; p = 0.011) and IL-6 (-54.8%; p = 0.041), and increased the serum IL-10 (99.9%, p < 0.005), in relation to those with placebo treatment. Supplementation with ω-3 long chain-PUFA 2.9 g/day is well-tolerated, has a beneficial reductive effect on proinflammatory markers, and increases an anti-inflammatory marker, indicating that ω-3 long chain-PUFA could have a potential therapeutic impact on chronic inflammation in

  9. Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river.

    PubMed

    Zhao, Pujun; Xia, Xinghui; Dong, Jianwei; Xia, Na; Jiang, Xiaoman; Li, Yang; Zhu, Yuemei

    2016-10-15

    Perfluoroalkyl substances (PFASs) have attracted attentions all around the world. However, little is known about their distribution among water, suspended particulate matter (SPM), and sediment phases in rivers, especially for the short-chain PFASs. In this work, the Yellow River, the largest turbid river in the world, was selected as a case to study eleven kinds of PFASs in the three phases of rivers. These PFASs included C4-C12 perfluorinated carboxylates (PFCAs), perfluorobutyl sulfonate (PFBS), and perfluorooctansulfonate (PFOS), among which C4-C7 PFCAs and PFBS belong to short-chain PFASs, while C8-C12 PFCAs and PFOS belong to long-chain PFASs. The results showed that the total PFAS concentration ranged from 44.7ngL(-1) to 1.52μgL(-1) in the water, from 8.19 to 17.4ngg(-1) in the sediment, and from 3.44 to 14.7ngg(-1) in the SPM. Short-chain PFASs predominated in the water and could reach up to 88.8% of the total PFAS concentration in water, while long-chain PFASs prevailed in the sediment and SPM. The PFAS concentration in SPM showed a significant negative correlation with SPM concentration in river water (p<0.01). The distribution coefficients (Kd) of PFASs between sediment/SPM and water increased with their chain length and there was a positive correlation between logKd and logKow (octanol-water partition coefficients). The total annual flux of all the eleven PFASs was estimated at 3.88tons for the Yellow River into the Bohai Sea, among which the PFOA flux was the highest (0.90tons). The widely occurrence and high concentrations of short-chain PFASs in the Yellow River indicates the shift of manufacturing focus of perfluoroalkyl chemicals from traditional long-chain ones to short-chain ones. Further studies should be conducted to evaluate the eco-environmental risks of these short-chain PFASs in water environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Isolation and characterization of Pseudomonas aeruginosa strain SJTD-2 for degrading long-chain n-alkanes and crude oil.

    PubMed

    Xu, Jing; Liu, Huan; Liu, Jianhua; Liang, Rubing

    2015-06-04

    Oil pollution poses a severe threat to ecosystems, and bioremediation is considered as a safe and efficient alternative to physicochemical. for eliminating this contaminant. In this study, a gram-negative bacteria strain SJTD-2 isolated from oil-contaminated soil was found capable of utilizing n-alkanes and crude oil as sole energy sources. The efficiency of this strain in degrading these pollutants was analyzed. Strain SJTD-2 was identified on the basis of its phenotype, its physiological features, and a comparative genetic analysis using 16S rRNA sequence. Growth of strain SJTD-2 with different carbon sources (n-alkanes of different lengths and crude oil) was assessed, and the gas chromatography-mass spectrometry method was used to analyze the degradation efficiency of strain SJTD-2 for n-alkanes and petroleum by detecting the residual n-alkane concentrations. Strain SJTD-2 was identified as Pseudomonas aeruginosa based on the phenotype, physiological features, and 16S rRNA sequence analysis. This strain can efficiently decompose medium-chain and long-chain n-alkanes (C10-C26), and petroleum as its sole carbon sources. It preferred the long-chain n-alkanes (C18-C22), and n-docosane was considered as the best carbon source for its growth. In 48 h, 500 mg/L n-docosane could be degraded completely, and 2 g/L n-docosane was decomposed to undetectable levels within 72 h. Moreover, strain SJTD-2 could utilize about 88% of 2 g/L crude oil in 7days. Compared with other alkane-utilizing strains, strain SJTD-2 showed outstanding degradation efficiency for long-chain n-alkanes and high tolerance to petroleum at elevated concentrations. The isolation and characterization of strain SJTD-2 would help researchers study the mechanisms underlying the biodegradation of n-alkanes, and this strain could be used as a potential strain for environmental governance and soil bioremediation.

  11. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  12. Paucity of evidence for a relationship between long-chain omega-3 fatty acid intake and chronic obstructive pulmonary disease: a systematic review.

    PubMed

    Fulton, Ashley S; Hill, Alison M; Williams, Marie T; Howe, Peter R C; Coates, Alison M

    2015-09-01

    The anti-inflammatory activity of long-chain n-3 polyunsaturated fatty acids (PUFAs) has been established in several chronic inflammatory diseases but has yet to be demonstrated in inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD). The aim of this systematic review was to investigate, using PRISMA guidelines, the relationship between the intake of long-chain n-3 PUFAs and the prevalence, severity, and health outcomes of COPD. Eight health databases and the World Health Organization's international clinical trial registry were searched for relevant studies. Experimental or observational studies that were published in English and that assessed long-chain n-3 PUFA intake (by determining habitual consumption and/or tissue levels) in adults with COPD were included. Publication demographics, participant characteristics, type of intervention or exposure, long-chain n-3 PUFA intake, pulmonary function, COPD mortality, and COPD severity were independently extracted from each article by 2 authors using a prospectively designed data extraction tool. All 11 of the studies included in the review were observational. Approximately equal numbers of studies reported significant (n = 6, 5 inverse) relationships or no significant relationships (n = 5) between either consumption of long-chain n-3 PUFAs or levels of long-chain n-3 PUFAS in tissue and a COPD outcome. Current evidence of a relationship between long-chain n-3 PUFA intake and COPD is limited and conflicting, with studies having wide methodological variation. PROSPERO 2013:CRD42013004085. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process.

    PubMed

    Lehtinen, Tapio; Efimova, Elena; Tremblay, Pier-Luc; Santala, Suvi; Zhang, Tian; Santala, Ville

    2017-11-01

    Microbial electrosynthesis (MES) is a promising technology for the reduction of carbon dioxide into value-added multicarbon molecules. In order to broaden the product profile of MES processes, we developed a two-stage process for microbial conversion of carbon dioxide and electricity into long chain alkyl esters. In the first stage, the carbon dioxide is reduced to organic compounds, mainly acetate, in a MES process by Sporomusa ovata. In the second stage, the liquid end-products of the MES process are converted to the final product by a second microorganism, Acinetobacter baylyi in an aerobic bioprocess. In this proof-of-principle study, we demonstrate for the first time the bacterial production of long alkyl esters (wax esters) from carbon dioxide and electricity as the sole sources of carbon and energy. The process holds potential for the efficient production of carbon-neutral chemicals or biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Physiological Function of Alcohol Dehydrogenases and Long-Chain (C30) Fatty Acids in Alcohol Tolerance of Thermoanaerobacter ethanolicus

    PubMed Central

    Burdette, D. S.; Jung, S.-H.; Shen, G.-J.; Hollingsworth, R. I.; Zeikus, J. G.

    2002-01-01

    A mutant strain (39E H8) of Thermoanaerobacter ethanolicus that displayed high (8% [vol/vol]) ethanol tolerance for growth was developed and characterized in comparison to the wild-type strain (39E), which lacks alcohol tolerance (<1.5% [vol/vol]). The mutant strain, unlike the wild type, lacked primary alcohol dehydrogenase and was able to increase the percentage of transmembrane fatty acids (i.e., long-chain C30 fatty acids) in response to increasing levels of ethanol. The data support the hypothesis that primary alcohol dehydrogenase functions primarily in ethanol consumption, whereas secondary alcohol dehydrogenase functions in ethanol production. These results suggest that improved thermophilic ethanol fermentations at high alcohol levels can be developed by altering both cell membrane composition (e.g., increasing transmembrane fatty acids) and the metabolic machinery (e.g., altering primary alcohol dehydrogenase and lactate dehydrogenase activities). PMID:11916712

  15. Expression of the long-chain fatty acid receptor GPR120 in the gonadotropes of the mouse anterior pituitary gland.

    PubMed

    Moriyama, Ryutaro; Deura, Chikaya; Imoto, Shingo; Nose, Kazuhiro; Fukushima, Nobuyuki

    2015-01-01

    G-protein-coupled receptor 120 (GPR120) has been known to be a receptor of long-chain fatty acids. Here, we investigated GPR120 expression in the mouse pituitary gland via real-time PCR, in situ hybridization, and immunohistochemistry. GPR120 mRNA was abundantly expressed in the pituitary gland of ad-lib fed animals. In situ hybridization and immunohistochemistry revealed GPR120 expression in the gonadotropes of the anterior pituitary gland, but not in thyrotropes, somatotropes, lactotropes, corticotropes, melanotropes, and the posterior pituitary gland. Furthermore, 24 h of fasting induced an increase in GPR120 mRNA expression in the pituitary gland. These results demonstrate that GPR120 in mouse pituitary gonadotropes is upregulated by fasting and that it may play a role in controlling gonadotropin secretion.

  16. The impact of a ketogenic diet and liver dysfunction on serum very long-chain fatty acids levels.

    PubMed

    Stradomska, T J; Bachański, M; Pawłowska, J; Syczewska, M; Stolarczyk, A; Tylki-Szymańska, A

    2013-04-01

    Peroxisomes play an essential role in mammalian cellular metabolism, particularly in oxidation fatty acid pathways. Serum very long-chain fatty acids (VLCFA), the main biochemical diagnostic parameters for peroxisomal disorders, were examined in 25 neurological patients with epilepsy on a ketogenic diet and 27 patients with liver dysfunction. The data show that patients on a ketogenic diet have increased levels of C22:0 and C24:0, but not C26:0, and normal C24:0/C22:0 and C26:0/C22:0. Patients with liver insufficiency showed a slightly elevated level of C26:0, a normal level of C24:0 and a decreased level of C22:0; thus in 21/27 the ratio of C24:0/C22:0 was increased and 15/27 the ratio of C26:0/C22:0 was increased.

  17. Activation of Short and Long Chain Fatty Acid Sensing Machinery in the Ileum Lowers Glucose Production in Vivo.

    PubMed

    Zadeh-Tahmasebi, Melika; Duca, Frank A; Rasmussen, Brittany A; Bauer, Paige V; Côté, Clémence D; Filippi, Beatrice M; Lam, Tony K T

    2016-04-15

    Evidence continues to emerge detailing the myriad of ways the gut microbiota influences host energy homeostasis. Among the potential mechanisms, short chain fatty acids (SCFAs), the byproducts of microbial fermentation of dietary fibers, exhibit correlative beneficial metabolic effects in humans and rodents, including improvements in glucose homeostasis. The underlying mechanisms, however, remain elusive. We here report that one of the main bacterially produced SCFAs, propionate, activates ileal mucosal free fatty acid receptor 2 to trigger a negative feedback pathway to lower hepatic glucose production in healthy rats in vivo We further demonstrate that an ileal glucagon-like peptide-1 receptor-dependent neuronal network is necessary for ileal propionate and long chain fatty acid sensing to regulate glucose homeostasis. These findings highlight the potential to manipulate fatty acid sensing machinery in the ileum to regulate glucose homeostasis.

  18. [Research advances in diagnostic and therapeutic application of long-chain non-coding RNAs in hepatocellular carcinoma].

    PubMed

    Li, W X; Li, Q; Lin, Y; Huang, Y X; Chen, L

    2016-08-20

    In recent years, hepatocellular carcinoma (HCC) has become one of the serious health-threatening malignancies worldwide, and its incidence and mortality rates continue to rise. Hepatitis B (HBV) is moderately endemic in China, with enormous numbers of HBV-related HCC cases. Although serum alpha-fetoprotein (AFP) and ultrasound are the major diagnostic methods for HCC, they have limited application for screening out early or small HCC. The current management of HCC is based on tumor size and location, not on suppressing tumorigenesis, and therefore patients are often faced with low 5-year survival and high relapse rates. Recent studies have shown that long-chain non-coding RNAs (lncRNAs) are closely associated with HCC tumorigenesis, which may have considerable utility as new diagnostic marker and treatment target for HCC. Here, we review the application of lncRNAs in the diagnosis, metastasis, treatment, recurrence, and prognosis of HCC.

  19. Effect of copper nanofluid in aqueous solution of long chain alcohols in the performance of heat pipes

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, R.; Vaidyanathan, S.; Sivaraman, B.

    2015-02-01

    Heat pipes are widely used for the thermal control of electronic devices due to their capability of heat transport at high rate over considerable distance with small temperature drop. This study investigates the experimental performance of the heat pipe using the combination of copper nanofluids and the different types of aqueous solution of long chain alcohols. An experimental system is set up to measure the temperature distribution of heat pipes along the surface to determine the thermal efficiency and the thermal resistance of different working fluids computed. The working fluids used in this analysis illustrate certain improvement in the metrics over the conventional working fluids, pertaining to the heat transport limitations. The experimental results display higher efficiency and lower thermal resistance of the heat pipe when compared with the conventional working fluids like water.

  20. Discovery of pyrazole carboxylic acids as potent inhibitors of rat long chain L-2-hydroxy acid oxidase.

    PubMed

    Barawkar, Dinesh A; Bandyopadhyay, Anish; Deshpande, Anil; Koul, Summon; Kandalkar, Sachin; Patil, Pradeep; Khose, Goraksha; Vyas, Samir; Mone, Mahesh; Bhosale, Shubhangi; Singh, Umesh; De, Siddhartha; Meru, Ashwin; Gundu, Jayasagar; Chugh, Anita; Palle, Venkata P; Mookhtiar, Kasim A; Vacca, Joseph P; Chakravarty, Prasun K; Nargund, Ravi P; Wright, Samuel D; Roy, Sophie; Graziano, Michael P; Cully, Doris; Cai, Tian-Quan; Singh, Sheo B

    2012-07-01

    Long chain L-2-hydroxy acid oxidase 2 (Hao2) is a peroxisomal enzyme expressed in the kidney and the liver. Hao2 was identified as a candidate gene for blood pressure (BP) quantitative trait locus (QTL) but the identity of its physiological substrate and its role in vivo remains largely unknown. To define a pharmacological role of this gene product, we report the development of selective inhibitors of Hao2. We identified pyrazole carboxylic acid hits 1 and 2 from screening of a compound library. Lead optimization of these hits led to the discovery of 15-XV and 15-XXXII as potent and selective inhibitors of rat Hao2. This report details the structure activity relationship of the pyrazole carboxylic acids as specific inhibitors of Hao2.

  1. The impact of dietary long-chain polyunsaturated fatty acids on respiratory illness in infants and children.

    PubMed

    Hageman, Jeske H J; Hooyenga, Pieter; Diersen-Schade, Deborah A; Scalabrin, Deolinda M Felin; Wichers, Harry J; Birch, Eileen E

    2012-12-01

    Increasing evidence suggests that intake of long-chain polyunsaturated fatty acids (LCPUFA), especially omega-3 LCPUFA, improves respiratory health early in life. This review summarizes publications from 2009 through July 2012 that evaluated effects of fish, fish oil or LCPUFA intake during pregnancy, lactation, and early postnatal years on allergic and infectious respiratory illnesses. Studies during pregnancy found inconsistent effects in offspring: two showed no effects and three showed protective effects of omega-3 LCPUFA on respiratory illnesses or atopic dermatitis. Two studies found that infants fed breast milk with higher omega-3 LCPUFA had reduced allergic manifestations. Earlier introduction of fish improved respiratory health or reduced allergy in four studies. Three randomized controlled trials showed that providing LCPUFA during infancy or childhood reduced allergy and/or respiratory illness while one found no effect. Potential explanations for the variability among studies and possible mechanisms of action for LCPUFA in allergy and respiratory disease are discussed.

  2. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    PubMed

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases.

  3. Atlantic salmon (Salmo salar L.) as a net producer of long-chain marine ω-3 fatty acids.

    PubMed

    Sanden, Monica; Stubhaug, Ingunn; Berntssen, Marc H G; Lie, Øyvind; Torstensen, Bente E

    2011-12-14

    The objective of the present study was to investigate the effects of replacing high levels of marine ingredients with vegetable raw materials and with emphasis on lipid metabolism and net production of long-chain polyunsaturated ω-3 fatty acids (EPA + DHA). Atlantic salmon were fed three different replacement vegetable diets and one control marine diet before sensory attributes, β-oxidation capacity, and fatty acid productive value (FAPV) of ingested fatty acids (FAs) were evaluated. Fish fed the high replacement diet had a net production of 0.8 g of DHA and a FAPV of 142%. Fish fed the marine diet had a net loss of DHA. The present work shows that Atlantic salmon can be a net producer of marine DHA when dietary fish oil is replaced by vegetable oil with minor effects on sensory attributes and lipid metabolism.

  4. Reducing the burden of obesity-associated cancers with anti-inflammatory long-chain omega-3 polyunsaturated fatty acids

    PubMed Central

    Khatib, Subreen A.; Rossi, Emily L.; Bowers, Laura W.; Hursting, Stephen D.

    2016-01-01

    Today’s world population has an unprecedented risk of dying from the consequences of being overweight and obese. Chronic diseases such as cardiovascular disease, type 2 diabetes, and cancer are often accelerated because of excessive adiposity. Various biological mechanisms are implicated in the obesity-cancer link, particularly local and systemic inflammation as well as altered growth factor signaling pathways. In order to combat obesity-induced inflammation and the resulting increases in cancer risk and progression, the identification of safe and effective mechanism-based interventions is imperative. Notably, long chain omega-3 polyunsaturated fatty acids (PUFAs) modulate the secretion of pro-inflammatory cytokines, prostaglandins and other inflammatory mediators, restore insulin sensitivity, and can prevent or delay tumorigenesis. Delineating the precise mechanisms by which omega-3 PUFAs suppress obesity-induced inflammation will help identify promising key mechanistic targets and intervention strategies to break the obesity-cancer link. PMID:27448716

  5. Lovastatin and sodium phenylacetate normalize the levels of very long chain fatty acids in skin fibroblasts of X- adrenoleukodystrophy.

    PubMed

    Singh, I; Pahan, K; Khan, M

    1998-04-24

    The present study underlines the importance of lovastatin, an inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, and the sodium salt of phenylacetic acid (NaPA), an inhibitor of mevalonate pyrophosphate decarboxylase, in normalizing the pathognomonic accumulation of saturated very long chain fatty acids (VLCFA) in cultured skin fibroblasts of X-adrenoleukodystrophy (X-ALD) in which the ALD gene is either mutated or deleted. Lovastatin or NaPA alone or in combination stimulated the beta-oxidation of lignoceric acid (C24:0) and normalized the elevated levels of VLCFA in skin fibroblasts of X-ALD. Ability of lovastatin and NaPA to normalize the pathognomonic accumulation of VLCFA in skin fibroblasts of X-ALD may identify these drugs as possible therapeutics for X-ALD.

  6. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling.

    PubMed Central

    Faergeman, N J; Knudsen, J

    1997-01-01

    The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl-CoA binding protein and that acetyl-CoA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of acyl-CoA indicate that long-chain acyl-CoA esters can act as regulatory molecules in vivo. This view is further supported by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase. PMID:9173866

  7. Selective transport of long-chain fatty acids by FAT/CD36 in skeletal muscle of broilers.

    PubMed

    Guo, J; Shu, G; Zhou, L; Zhu, X; Liao, W; Wang, S; Yang, J; Zhou, G; Xi, Q; Gao, P; Zhang, Y; Zhang, S; Yuan, L; Jiang, Q

    2013-03-01

    Fatty acid translocase (FAT/CD36) is a membrane receptor that facilitates long-chain fatty acid uptake. To investigate its role in the regulation of long-chain fatty acid composition in muscle tissue, we studied and compared FAT/CD36 gene expression in muscle tissues of commercial broiler chickens and Chinese local Silky fowls. The results from gas chromatography-mass spectrometry analysis of muscle samples demonstrated that Chinese local Silky fowls had significantly higher (P < 0.05) proportions of linoleic acid (LA) and palmitic acid, lower proportions (P < 0.05) of arachidonic acid (AA) and oleic acid than the commercial broiler chickens. The mRNA expression levels of fatty acid (FA) transporters (FA transport protein-1, membrane FA-binding protein, FAT/CD36 and caveolin-1) in the m. ipsilateral pectoralis and biceps femoris were analyzed by Q-PCR, and FAT/CD36 expression levels showed significant differences between these types of chickens (P < 0.01). Interestingly, the levels of FAT/CD36 expression are positively correlated with LA content (r = 0.567, P < 0.01) but negatively correlated with palmitic acid content (r = -0.568, P < 0.01). Further experiments in the stably transfected Chinese hamster oocytes cells with chicken FAT/CD36 cDNA demonstrated that overexpression of FAT/CD36 improves total FA uptake with a significant increase in the proportion of LA and AA, and a decreased proportion of palmitic acid. These results suggest that chicken FAT/CD36 may selectively transport LA and AA, which may lead to the higher LA deposition in muscle tissue.

  8. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.

    PubMed

    Hixson, Stefanie M; Arts, Michael T

    2016-08-01

    Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of